1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/MachO.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstVisitor.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/MC/MCSectionMachO.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Instrumentation.h"
72 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ModuleUtils.h"
76 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
90 #define DEBUG_TYPE "asan"
92 static const uint64_t kDefaultShadowScale
= 3;
93 static const uint64_t kDefaultShadowOffset32
= 1ULL << 29;
94 static const uint64_t kDefaultShadowOffset64
= 1ULL << 44;
95 static const uint64_t kDynamicShadowSentinel
=
96 std::numeric_limits
<uint64_t>::max();
97 static const uint64_t kSmallX86_64ShadowOffsetBase
= 0x7FFFFFFF; // < 2G.
98 static const uint64_t kSmallX86_64ShadowOffsetAlignMask
= ~0xFFFULL
;
99 static const uint64_t kLinuxKasan_ShadowOffset64
= 0xdffffc0000000000;
100 static const uint64_t kPPC64_ShadowOffset64
= 1ULL << 44;
101 static const uint64_t kSystemZ_ShadowOffset64
= 1ULL << 52;
102 static const uint64_t kMIPS32_ShadowOffset32
= 0x0aaa0000;
103 static const uint64_t kMIPS64_ShadowOffset64
= 1ULL << 37;
104 static const uint64_t kAArch64_ShadowOffset64
= 1ULL << 36;
105 static const uint64_t kFreeBSD_ShadowOffset32
= 1ULL << 30;
106 static const uint64_t kFreeBSD_ShadowOffset64
= 1ULL << 46;
107 static const uint64_t kNetBSD_ShadowOffset32
= 1ULL << 30;
108 static const uint64_t kNetBSD_ShadowOffset64
= 1ULL << 46;
109 static const uint64_t kNetBSDKasan_ShadowOffset64
= 0xdfff900000000000;
110 static const uint64_t kPS4CPU_ShadowOffset64
= 1ULL << 40;
111 static const uint64_t kWindowsShadowOffset32
= 3ULL << 28;
112 static const uint64_t kEmscriptenShadowOffset
= 0;
114 static const uint64_t kMyriadShadowScale
= 5;
115 static const uint64_t kMyriadMemoryOffset32
= 0x80000000ULL
;
116 static const uint64_t kMyriadMemorySize32
= 0x20000000ULL
;
117 static const uint64_t kMyriadTagShift
= 29;
118 static const uint64_t kMyriadDDRTag
= 4;
119 static const uint64_t kMyriadCacheBitMask32
= 0x40000000ULL
;
121 // The shadow memory space is dynamically allocated.
122 static const uint64_t kWindowsShadowOffset64
= kDynamicShadowSentinel
;
124 static const size_t kMinStackMallocSize
= 1 << 6; // 64B
125 static const size_t kMaxStackMallocSize
= 1 << 16; // 64K
126 static const uintptr_t kCurrentStackFrameMagic
= 0x41B58AB3;
127 static const uintptr_t kRetiredStackFrameMagic
= 0x45E0360E;
129 static const char *const kAsanModuleCtorName
= "asan.module_ctor";
130 static const char *const kAsanModuleDtorName
= "asan.module_dtor";
131 static const uint64_t kAsanCtorAndDtorPriority
= 1;
132 // On Emscripten, the system needs more than one priorities for constructors.
133 static const uint64_t kAsanEmscriptenCtorAndDtorPriority
= 50;
134 static const char *const kAsanReportErrorTemplate
= "__asan_report_";
135 static const char *const kAsanRegisterGlobalsName
= "__asan_register_globals";
136 static const char *const kAsanUnregisterGlobalsName
=
137 "__asan_unregister_globals";
138 static const char *const kAsanRegisterImageGlobalsName
=
139 "__asan_register_image_globals";
140 static const char *const kAsanUnregisterImageGlobalsName
=
141 "__asan_unregister_image_globals";
142 static const char *const kAsanRegisterElfGlobalsName
=
143 "__asan_register_elf_globals";
144 static const char *const kAsanUnregisterElfGlobalsName
=
145 "__asan_unregister_elf_globals";
146 static const char *const kAsanPoisonGlobalsName
= "__asan_before_dynamic_init";
147 static const char *const kAsanUnpoisonGlobalsName
= "__asan_after_dynamic_init";
148 static const char *const kAsanInitName
= "__asan_init";
149 static const char *const kAsanVersionCheckNamePrefix
=
150 "__asan_version_mismatch_check_v";
151 static const char *const kAsanPtrCmp
= "__sanitizer_ptr_cmp";
152 static const char *const kAsanPtrSub
= "__sanitizer_ptr_sub";
153 static const char *const kAsanHandleNoReturnName
= "__asan_handle_no_return";
154 static const int kMaxAsanStackMallocSizeClass
= 10;
155 static const char *const kAsanStackMallocNameTemplate
= "__asan_stack_malloc_";
156 static const char *const kAsanStackFreeNameTemplate
= "__asan_stack_free_";
157 static const char *const kAsanGenPrefix
= "___asan_gen_";
158 static const char *const kODRGenPrefix
= "__odr_asan_gen_";
159 static const char *const kSanCovGenPrefix
= "__sancov_gen_";
160 static const char *const kAsanSetShadowPrefix
= "__asan_set_shadow_";
161 static const char *const kAsanPoisonStackMemoryName
=
162 "__asan_poison_stack_memory";
163 static const char *const kAsanUnpoisonStackMemoryName
=
164 "__asan_unpoison_stack_memory";
166 // ASan version script has __asan_* wildcard. Triple underscore prevents a
167 // linker (gold) warning about attempting to export a local symbol.
168 static const char *const kAsanGlobalsRegisteredFlagName
=
169 "___asan_globals_registered";
171 static const char *const kAsanOptionDetectUseAfterReturn
=
172 "__asan_option_detect_stack_use_after_return";
174 static const char *const kAsanShadowMemoryDynamicAddress
=
175 "__asan_shadow_memory_dynamic_address";
177 static const char *const kAsanAllocaPoison
= "__asan_alloca_poison";
178 static const char *const kAsanAllocasUnpoison
= "__asan_allocas_unpoison";
180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
181 static const size_t kNumberOfAccessSizes
= 5;
183 static const unsigned kAllocaRzSize
= 32;
185 // Command-line flags.
187 static cl::opt
<bool> ClEnableKasan(
188 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
189 cl::Hidden
, cl::init(false));
191 static cl::opt
<bool> ClRecover(
193 cl::desc("Enable recovery mode (continue-after-error)."),
194 cl::Hidden
, cl::init(false));
196 static cl::opt
<bool> ClInsertVersionCheck(
197 "asan-guard-against-version-mismatch",
198 cl::desc("Guard against compiler/runtime version mismatch."),
199 cl::Hidden
, cl::init(true));
201 // This flag may need to be replaced with -f[no-]asan-reads.
202 static cl::opt
<bool> ClInstrumentReads("asan-instrument-reads",
203 cl::desc("instrument read instructions"),
204 cl::Hidden
, cl::init(true));
206 static cl::opt
<bool> ClInstrumentWrites(
207 "asan-instrument-writes", cl::desc("instrument write instructions"),
208 cl::Hidden
, cl::init(true));
210 static cl::opt
<bool> ClInstrumentAtomics(
211 "asan-instrument-atomics",
212 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden
,
215 static cl::opt
<bool> ClAlwaysSlowPath(
216 "asan-always-slow-path",
217 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden
,
220 static cl::opt
<bool> ClForceDynamicShadow(
221 "asan-force-dynamic-shadow",
222 cl::desc("Load shadow address into a local variable for each function"),
223 cl::Hidden
, cl::init(false));
226 ClWithIfunc("asan-with-ifunc",
227 cl::desc("Access dynamic shadow through an ifunc global on "
228 "platforms that support this"),
229 cl::Hidden
, cl::init(true));
231 static cl::opt
<bool> ClWithIfuncSuppressRemat(
232 "asan-with-ifunc-suppress-remat",
233 cl::desc("Suppress rematerialization of dynamic shadow address by passing "
234 "it through inline asm in prologue."),
235 cl::Hidden
, cl::init(true));
237 // This flag limits the number of instructions to be instrumented
238 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
239 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
241 static cl::opt
<int> ClMaxInsnsToInstrumentPerBB(
242 "asan-max-ins-per-bb", cl::init(10000),
243 cl::desc("maximal number of instructions to instrument in any given BB"),
246 // This flag may need to be replaced with -f[no]asan-stack.
247 static cl::opt
<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
248 cl::Hidden
, cl::init(true));
249 static cl::opt
<uint32_t> ClMaxInlinePoisoningSize(
250 "asan-max-inline-poisoning-size",
252 "Inline shadow poisoning for blocks up to the given size in bytes."),
253 cl::Hidden
, cl::init(64));
255 static cl::opt
<bool> ClUseAfterReturn("asan-use-after-return",
256 cl::desc("Check stack-use-after-return"),
257 cl::Hidden
, cl::init(true));
259 static cl::opt
<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
260 cl::desc("Create redzones for byval "
261 "arguments (extra copy "
262 "required)"), cl::Hidden
,
265 static cl::opt
<bool> ClUseAfterScope("asan-use-after-scope",
266 cl::desc("Check stack-use-after-scope"),
267 cl::Hidden
, cl::init(false));
269 // This flag may need to be replaced with -f[no]asan-globals.
270 static cl::opt
<bool> ClGlobals("asan-globals",
271 cl::desc("Handle global objects"), cl::Hidden
,
274 static cl::opt
<bool> ClInitializers("asan-initialization-order",
275 cl::desc("Handle C++ initializer order"),
276 cl::Hidden
, cl::init(true));
278 static cl::opt
<bool> ClInvalidPointerPairs(
279 "asan-detect-invalid-pointer-pair",
280 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden
,
283 static cl::opt
<bool> ClInvalidPointerCmp(
284 "asan-detect-invalid-pointer-cmp",
285 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden
,
288 static cl::opt
<bool> ClInvalidPointerSub(
289 "asan-detect-invalid-pointer-sub",
290 cl::desc("Instrument - operations with pointer operands"), cl::Hidden
,
293 static cl::opt
<unsigned> ClRealignStack(
294 "asan-realign-stack",
295 cl::desc("Realign stack to the value of this flag (power of two)"),
296 cl::Hidden
, cl::init(32));
298 static cl::opt
<int> ClInstrumentationWithCallsThreshold(
299 "asan-instrumentation-with-call-threshold",
301 "If the function being instrumented contains more than "
302 "this number of memory accesses, use callbacks instead of "
303 "inline checks (-1 means never use callbacks)."),
304 cl::Hidden
, cl::init(7000));
306 static cl::opt
<std::string
> ClMemoryAccessCallbackPrefix(
307 "asan-memory-access-callback-prefix",
308 cl::desc("Prefix for memory access callbacks"), cl::Hidden
,
309 cl::init("__asan_"));
312 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
313 cl::desc("instrument dynamic allocas"),
314 cl::Hidden
, cl::init(true));
316 static cl::opt
<bool> ClSkipPromotableAllocas(
317 "asan-skip-promotable-allocas",
318 cl::desc("Do not instrument promotable allocas"), cl::Hidden
,
321 // These flags allow to change the shadow mapping.
322 // The shadow mapping looks like
323 // Shadow = (Mem >> scale) + offset
325 static cl::opt
<int> ClMappingScale("asan-mapping-scale",
326 cl::desc("scale of asan shadow mapping"),
327 cl::Hidden
, cl::init(0));
329 static cl::opt
<uint64_t>
330 ClMappingOffset("asan-mapping-offset",
331 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
332 cl::Hidden
, cl::init(0));
334 // Optimization flags. Not user visible, used mostly for testing
335 // and benchmarking the tool.
337 static cl::opt
<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
338 cl::Hidden
, cl::init(true));
340 static cl::opt
<bool> ClOptSameTemp(
341 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
342 cl::Hidden
, cl::init(true));
344 static cl::opt
<bool> ClOptGlobals("asan-opt-globals",
345 cl::desc("Don't instrument scalar globals"),
346 cl::Hidden
, cl::init(true));
348 static cl::opt
<bool> ClOptStack(
349 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
350 cl::Hidden
, cl::init(false));
352 static cl::opt
<bool> ClDynamicAllocaStack(
353 "asan-stack-dynamic-alloca",
354 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden
,
357 static cl::opt
<uint32_t> ClForceExperiment(
358 "asan-force-experiment",
359 cl::desc("Force optimization experiment (for testing)"), cl::Hidden
,
363 ClUsePrivateAlias("asan-use-private-alias",
364 cl::desc("Use private aliases for global variables"),
365 cl::Hidden
, cl::init(false));
368 ClUseOdrIndicator("asan-use-odr-indicator",
369 cl::desc("Use odr indicators to improve ODR reporting"),
370 cl::Hidden
, cl::init(false));
373 ClUseGlobalsGC("asan-globals-live-support",
374 cl::desc("Use linker features to support dead "
375 "code stripping of globals"),
376 cl::Hidden
, cl::init(true));
378 // This is on by default even though there is a bug in gold:
379 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
381 ClWithComdat("asan-with-comdat",
382 cl::desc("Place ASan constructors in comdat sections"),
383 cl::Hidden
, cl::init(true));
387 static cl::opt
<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden
,
390 static cl::opt
<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
391 cl::Hidden
, cl::init(0));
393 static cl::opt
<std::string
> ClDebugFunc("asan-debug-func", cl::Hidden
,
394 cl::desc("Debug func"));
396 static cl::opt
<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
397 cl::Hidden
, cl::init(-1));
399 static cl::opt
<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
400 cl::Hidden
, cl::init(-1));
402 STATISTIC(NumInstrumentedReads
, "Number of instrumented reads");
403 STATISTIC(NumInstrumentedWrites
, "Number of instrumented writes");
404 STATISTIC(NumOptimizedAccessesToGlobalVar
,
405 "Number of optimized accesses to global vars");
406 STATISTIC(NumOptimizedAccessesToStackVar
,
407 "Number of optimized accesses to stack vars");
411 /// This struct defines the shadow mapping using the rule:
412 /// shadow = (mem >> Scale) ADD-or-OR Offset.
413 /// If InGlobal is true, then
414 /// extern char __asan_shadow[];
415 /// shadow = (mem >> Scale) + &__asan_shadow
416 struct ShadowMapping
{
423 } // end anonymous namespace
425 static ShadowMapping
getShadowMapping(Triple
&TargetTriple
, int LongSize
,
427 bool IsAndroid
= TargetTriple
.isAndroid();
428 bool IsIOS
= TargetTriple
.isiOS() || TargetTriple
.isWatchOS();
429 bool IsFreeBSD
= TargetTriple
.isOSFreeBSD();
430 bool IsNetBSD
= TargetTriple
.isOSNetBSD();
431 bool IsPS4CPU
= TargetTriple
.isPS4CPU();
432 bool IsLinux
= TargetTriple
.isOSLinux();
433 bool IsPPC64
= TargetTriple
.getArch() == Triple::ppc64
||
434 TargetTriple
.getArch() == Triple::ppc64le
;
435 bool IsSystemZ
= TargetTriple
.getArch() == Triple::systemz
;
436 bool IsX86_64
= TargetTriple
.getArch() == Triple::x86_64
;
437 bool IsMIPS32
= TargetTriple
.isMIPS32();
438 bool IsMIPS64
= TargetTriple
.isMIPS64();
439 bool IsArmOrThumb
= TargetTriple
.isARM() || TargetTriple
.isThumb();
440 bool IsAArch64
= TargetTriple
.getArch() == Triple::aarch64
;
441 bool IsWindows
= TargetTriple
.isOSWindows();
442 bool IsFuchsia
= TargetTriple
.isOSFuchsia();
443 bool IsMyriad
= TargetTriple
.getVendor() == llvm::Triple::Myriad
;
444 bool IsEmscripten
= TargetTriple
.isOSEmscripten();
446 ShadowMapping Mapping
;
448 Mapping
.Scale
= IsMyriad
? kMyriadShadowScale
: kDefaultShadowScale
;
449 if (ClMappingScale
.getNumOccurrences() > 0) {
450 Mapping
.Scale
= ClMappingScale
;
453 if (LongSize
== 32) {
455 Mapping
.Offset
= kDynamicShadowSentinel
;
457 Mapping
.Offset
= kMIPS32_ShadowOffset32
;
459 Mapping
.Offset
= kFreeBSD_ShadowOffset32
;
461 Mapping
.Offset
= kNetBSD_ShadowOffset32
;
463 Mapping
.Offset
= kDynamicShadowSentinel
;
465 Mapping
.Offset
= kWindowsShadowOffset32
;
466 else if (IsEmscripten
)
467 Mapping
.Offset
= kEmscriptenShadowOffset
;
469 uint64_t ShadowOffset
= (kMyriadMemoryOffset32
+ kMyriadMemorySize32
-
470 (kMyriadMemorySize32
>> Mapping
.Scale
));
471 Mapping
.Offset
= ShadowOffset
- (kMyriadMemoryOffset32
>> Mapping
.Scale
);
474 Mapping
.Offset
= kDefaultShadowOffset32
;
475 } else { // LongSize == 64
476 // Fuchsia is always PIE, which means that the beginning of the address
477 // space is always available.
481 Mapping
.Offset
= kPPC64_ShadowOffset64
;
483 Mapping
.Offset
= kSystemZ_ShadowOffset64
;
484 else if (IsFreeBSD
&& !IsMIPS64
)
485 Mapping
.Offset
= kFreeBSD_ShadowOffset64
;
488 Mapping
.Offset
= kNetBSDKasan_ShadowOffset64
;
490 Mapping
.Offset
= kNetBSD_ShadowOffset64
;
492 Mapping
.Offset
= kPS4CPU_ShadowOffset64
;
493 else if (IsLinux
&& IsX86_64
) {
495 Mapping
.Offset
= kLinuxKasan_ShadowOffset64
;
497 Mapping
.Offset
= (kSmallX86_64ShadowOffsetBase
&
498 (kSmallX86_64ShadowOffsetAlignMask
<< Mapping
.Scale
));
499 } else if (IsWindows
&& IsX86_64
) {
500 Mapping
.Offset
= kWindowsShadowOffset64
;
502 Mapping
.Offset
= kMIPS64_ShadowOffset64
;
504 Mapping
.Offset
= kDynamicShadowSentinel
;
506 Mapping
.Offset
= kAArch64_ShadowOffset64
;
508 Mapping
.Offset
= kDefaultShadowOffset64
;
511 if (ClForceDynamicShadow
) {
512 Mapping
.Offset
= kDynamicShadowSentinel
;
515 if (ClMappingOffset
.getNumOccurrences() > 0) {
516 Mapping
.Offset
= ClMappingOffset
;
519 // OR-ing shadow offset if more efficient (at least on x86) if the offset
520 // is a power of two, but on ppc64 we have to use add since the shadow
521 // offset is not necessary 1/8-th of the address space. On SystemZ,
522 // we could OR the constant in a single instruction, but it's more
523 // efficient to load it once and use indexed addressing.
524 Mapping
.OrShadowOffset
= !IsAArch64
&& !IsPPC64
&& !IsSystemZ
&& !IsPS4CPU
&&
525 !(Mapping
.Offset
& (Mapping
.Offset
- 1)) &&
526 Mapping
.Offset
!= kDynamicShadowSentinel
;
527 bool IsAndroidWithIfuncSupport
=
528 IsAndroid
&& !TargetTriple
.isAndroidVersionLT(21);
529 Mapping
.InGlobal
= ClWithIfunc
&& IsAndroidWithIfuncSupport
&& IsArmOrThumb
;
534 static size_t RedzoneSizeForScale(int MappingScale
) {
535 // Redzone used for stack and globals is at least 32 bytes.
536 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
537 return std::max(32U, 1U << MappingScale
);
540 static uint64_t GetCtorAndDtorPriority(Triple
&TargetTriple
) {
541 if (TargetTriple
.isOSEmscripten()) {
542 return kAsanEmscriptenCtorAndDtorPriority
;
544 return kAsanCtorAndDtorPriority
;
550 /// Module analysis for getting various metadata about the module.
551 class ASanGlobalsMetadataWrapperPass
: public ModulePass
{
555 ASanGlobalsMetadataWrapperPass() : ModulePass(ID
) {
556 initializeASanGlobalsMetadataWrapperPassPass(
557 *PassRegistry::getPassRegistry());
560 bool runOnModule(Module
&M
) override
{
561 GlobalsMD
= GlobalsMetadata(M
);
565 StringRef
getPassName() const override
{
566 return "ASanGlobalsMetadataWrapperPass";
569 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
570 AU
.setPreservesAll();
573 GlobalsMetadata
&getGlobalsMD() { return GlobalsMD
; }
576 GlobalsMetadata GlobalsMD
;
579 char ASanGlobalsMetadataWrapperPass::ID
= 0;
581 /// AddressSanitizer: instrument the code in module to find memory bugs.
582 struct AddressSanitizer
{
583 AddressSanitizer(Module
&M
, const GlobalsMetadata
*GlobalsMD
,
584 bool CompileKernel
= false, bool Recover
= false,
585 bool UseAfterScope
= false)
586 : UseAfterScope(UseAfterScope
|| ClUseAfterScope
), GlobalsMD(*GlobalsMD
) {
587 this->Recover
= ClRecover
.getNumOccurrences() > 0 ? ClRecover
: Recover
;
588 this->CompileKernel
=
589 ClEnableKasan
.getNumOccurrences() > 0 ? ClEnableKasan
: CompileKernel
;
591 C
= &(M
.getContext());
592 LongSize
= M
.getDataLayout().getPointerSizeInBits();
593 IntptrTy
= Type::getIntNTy(*C
, LongSize
);
594 TargetTriple
= Triple(M
.getTargetTriple());
596 Mapping
= getShadowMapping(TargetTriple
, LongSize
, this->CompileKernel
);
599 uint64_t getAllocaSizeInBytes(const AllocaInst
&AI
) const {
600 uint64_t ArraySize
= 1;
601 if (AI
.isArrayAllocation()) {
602 const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(AI
.getArraySize());
603 assert(CI
&& "non-constant array size");
604 ArraySize
= CI
->getZExtValue();
606 Type
*Ty
= AI
.getAllocatedType();
607 uint64_t SizeInBytes
=
608 AI
.getModule()->getDataLayout().getTypeAllocSize(Ty
);
609 return SizeInBytes
* ArraySize
;
612 /// Check if we want (and can) handle this alloca.
613 bool isInterestingAlloca(const AllocaInst
&AI
);
615 /// If it is an interesting memory access, return the PointerOperand
616 /// and set IsWrite/Alignment. Otherwise return nullptr.
617 /// MaybeMask is an output parameter for the mask Value, if we're looking at a
618 /// masked load/store.
619 Value
*isInterestingMemoryAccess(Instruction
*I
, bool *IsWrite
,
620 uint64_t *TypeSize
, unsigned *Alignment
,
621 Value
**MaybeMask
= nullptr);
623 void instrumentMop(ObjectSizeOffsetVisitor
&ObjSizeVis
, Instruction
*I
,
624 bool UseCalls
, const DataLayout
&DL
);
625 void instrumentPointerComparisonOrSubtraction(Instruction
*I
);
626 void instrumentAddress(Instruction
*OrigIns
, Instruction
*InsertBefore
,
627 Value
*Addr
, uint32_t TypeSize
, bool IsWrite
,
628 Value
*SizeArgument
, bool UseCalls
, uint32_t Exp
);
629 void instrumentUnusualSizeOrAlignment(Instruction
*I
,
630 Instruction
*InsertBefore
, Value
*Addr
,
631 uint32_t TypeSize
, bool IsWrite
,
632 Value
*SizeArgument
, bool UseCalls
,
634 Value
*createSlowPathCmp(IRBuilder
<> &IRB
, Value
*AddrLong
,
635 Value
*ShadowValue
, uint32_t TypeSize
);
636 Instruction
*generateCrashCode(Instruction
*InsertBefore
, Value
*Addr
,
637 bool IsWrite
, size_t AccessSizeIndex
,
638 Value
*SizeArgument
, uint32_t Exp
);
639 void instrumentMemIntrinsic(MemIntrinsic
*MI
);
640 Value
*memToShadow(Value
*Shadow
, IRBuilder
<> &IRB
);
641 bool instrumentFunction(Function
&F
, const TargetLibraryInfo
*TLI
);
642 bool maybeInsertAsanInitAtFunctionEntry(Function
&F
);
643 void maybeInsertDynamicShadowAtFunctionEntry(Function
&F
);
644 void markEscapedLocalAllocas(Function
&F
);
647 friend struct FunctionStackPoisoner
;
649 void initializeCallbacks(Module
&M
);
651 bool LooksLikeCodeInBug11395(Instruction
*I
);
652 bool GlobalIsLinkerInitialized(GlobalVariable
*G
);
653 bool isSafeAccess(ObjectSizeOffsetVisitor
&ObjSizeVis
, Value
*Addr
,
654 uint64_t TypeSize
) const;
656 /// Helper to cleanup per-function state.
657 struct FunctionStateRAII
{
658 AddressSanitizer
*Pass
;
660 FunctionStateRAII(AddressSanitizer
*Pass
) : Pass(Pass
) {
661 assert(Pass
->ProcessedAllocas
.empty() &&
662 "last pass forgot to clear cache");
663 assert(!Pass
->LocalDynamicShadow
);
666 ~FunctionStateRAII() {
667 Pass
->LocalDynamicShadow
= nullptr;
668 Pass
->ProcessedAllocas
.clear();
679 ShadowMapping Mapping
;
680 FunctionCallee AsanHandleNoReturnFunc
;
681 FunctionCallee AsanPtrCmpFunction
, AsanPtrSubFunction
;
682 Constant
*AsanShadowGlobal
;
684 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
685 FunctionCallee AsanErrorCallback
[2][2][kNumberOfAccessSizes
];
686 FunctionCallee AsanMemoryAccessCallback
[2][2][kNumberOfAccessSizes
];
688 // These arrays is indexed by AccessIsWrite and Experiment.
689 FunctionCallee AsanErrorCallbackSized
[2][2];
690 FunctionCallee AsanMemoryAccessCallbackSized
[2][2];
692 FunctionCallee AsanMemmove
, AsanMemcpy
, AsanMemset
;
694 Value
*LocalDynamicShadow
= nullptr;
695 const GlobalsMetadata
&GlobalsMD
;
696 DenseMap
<const AllocaInst
*, bool> ProcessedAllocas
;
699 class AddressSanitizerLegacyPass
: public FunctionPass
{
703 explicit AddressSanitizerLegacyPass(bool CompileKernel
= false,
704 bool Recover
= false,
705 bool UseAfterScope
= false)
706 : FunctionPass(ID
), CompileKernel(CompileKernel
), Recover(Recover
),
707 UseAfterScope(UseAfterScope
) {
708 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
711 StringRef
getPassName() const override
{
712 return "AddressSanitizerFunctionPass";
715 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
716 AU
.addRequired
<ASanGlobalsMetadataWrapperPass
>();
717 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
720 bool runOnFunction(Function
&F
) override
{
721 GlobalsMetadata
&GlobalsMD
=
722 getAnalysis
<ASanGlobalsMetadataWrapperPass
>().getGlobalsMD();
723 const TargetLibraryInfo
*TLI
=
724 &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
725 AddressSanitizer
ASan(*F
.getParent(), &GlobalsMD
, CompileKernel
, Recover
,
727 return ASan
.instrumentFunction(F
, TLI
);
736 class ModuleAddressSanitizer
{
738 ModuleAddressSanitizer(Module
&M
, const GlobalsMetadata
*GlobalsMD
,
739 bool CompileKernel
= false, bool Recover
= false,
740 bool UseGlobalsGC
= true, bool UseOdrIndicator
= false)
741 : GlobalsMD(*GlobalsMD
), UseGlobalsGC(UseGlobalsGC
&& ClUseGlobalsGC
),
742 // Enable aliases as they should have no downside with ODR indicators.
743 UsePrivateAlias(UseOdrIndicator
|| ClUsePrivateAlias
),
744 UseOdrIndicator(UseOdrIndicator
|| ClUseOdrIndicator
),
745 // Not a typo: ClWithComdat is almost completely pointless without
746 // ClUseGlobalsGC (because then it only works on modules without
747 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
748 // and both suffer from gold PR19002 for which UseGlobalsGC constructor
749 // argument is designed as workaround. Therefore, disable both
750 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
752 UseCtorComdat(UseGlobalsGC
&& ClWithComdat
) {
753 this->Recover
= ClRecover
.getNumOccurrences() > 0 ? ClRecover
: Recover
;
754 this->CompileKernel
=
755 ClEnableKasan
.getNumOccurrences() > 0 ? ClEnableKasan
: CompileKernel
;
757 C
= &(M
.getContext());
758 int LongSize
= M
.getDataLayout().getPointerSizeInBits();
759 IntptrTy
= Type::getIntNTy(*C
, LongSize
);
760 TargetTriple
= Triple(M
.getTargetTriple());
761 Mapping
= getShadowMapping(TargetTriple
, LongSize
, this->CompileKernel
);
764 bool instrumentModule(Module
&);
767 void initializeCallbacks(Module
&M
);
769 bool InstrumentGlobals(IRBuilder
<> &IRB
, Module
&M
, bool *CtorComdat
);
770 void InstrumentGlobalsCOFF(IRBuilder
<> &IRB
, Module
&M
,
771 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
772 ArrayRef
<Constant
*> MetadataInitializers
);
773 void InstrumentGlobalsELF(IRBuilder
<> &IRB
, Module
&M
,
774 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
775 ArrayRef
<Constant
*> MetadataInitializers
,
776 const std::string
&UniqueModuleId
);
777 void InstrumentGlobalsMachO(IRBuilder
<> &IRB
, Module
&M
,
778 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
779 ArrayRef
<Constant
*> MetadataInitializers
);
781 InstrumentGlobalsWithMetadataArray(IRBuilder
<> &IRB
, Module
&M
,
782 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
783 ArrayRef
<Constant
*> MetadataInitializers
);
785 GlobalVariable
*CreateMetadataGlobal(Module
&M
, Constant
*Initializer
,
786 StringRef OriginalName
);
787 void SetComdatForGlobalMetadata(GlobalVariable
*G
, GlobalVariable
*Metadata
,
788 StringRef InternalSuffix
);
789 IRBuilder
<> CreateAsanModuleDtor(Module
&M
);
791 bool ShouldInstrumentGlobal(GlobalVariable
*G
);
792 bool ShouldUseMachOGlobalsSection() const;
793 StringRef
getGlobalMetadataSection() const;
794 void poisonOneInitializer(Function
&GlobalInit
, GlobalValue
*ModuleName
);
795 void createInitializerPoisonCalls(Module
&M
, GlobalValue
*ModuleName
);
796 size_t MinRedzoneSizeForGlobal() const {
797 return RedzoneSizeForScale(Mapping
.Scale
);
799 int GetAsanVersion(const Module
&M
) const;
801 const GlobalsMetadata
&GlobalsMD
;
805 bool UsePrivateAlias
;
806 bool UseOdrIndicator
;
811 ShadowMapping Mapping
;
812 FunctionCallee AsanPoisonGlobals
;
813 FunctionCallee AsanUnpoisonGlobals
;
814 FunctionCallee AsanRegisterGlobals
;
815 FunctionCallee AsanUnregisterGlobals
;
816 FunctionCallee AsanRegisterImageGlobals
;
817 FunctionCallee AsanUnregisterImageGlobals
;
818 FunctionCallee AsanRegisterElfGlobals
;
819 FunctionCallee AsanUnregisterElfGlobals
;
821 Function
*AsanCtorFunction
= nullptr;
822 Function
*AsanDtorFunction
= nullptr;
825 class ModuleAddressSanitizerLegacyPass
: public ModulePass
{
829 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel
= false,
830 bool Recover
= false,
831 bool UseGlobalGC
= true,
832 bool UseOdrIndicator
= false)
833 : ModulePass(ID
), CompileKernel(CompileKernel
), Recover(Recover
),
834 UseGlobalGC(UseGlobalGC
), UseOdrIndicator(UseOdrIndicator
) {
835 initializeModuleAddressSanitizerLegacyPassPass(
836 *PassRegistry::getPassRegistry());
839 StringRef
getPassName() const override
{ return "ModuleAddressSanitizer"; }
841 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
842 AU
.addRequired
<ASanGlobalsMetadataWrapperPass
>();
845 bool runOnModule(Module
&M
) override
{
846 GlobalsMetadata
&GlobalsMD
=
847 getAnalysis
<ASanGlobalsMetadataWrapperPass
>().getGlobalsMD();
848 ModuleAddressSanitizer
ASanModule(M
, &GlobalsMD
, CompileKernel
, Recover
,
849 UseGlobalGC
, UseOdrIndicator
);
850 return ASanModule
.instrumentModule(M
);
857 bool UseOdrIndicator
;
860 // Stack poisoning does not play well with exception handling.
861 // When an exception is thrown, we essentially bypass the code
862 // that unpoisones the stack. This is why the run-time library has
863 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
864 // stack in the interceptor. This however does not work inside the
865 // actual function which catches the exception. Most likely because the
866 // compiler hoists the load of the shadow value somewhere too high.
867 // This causes asan to report a non-existing bug on 453.povray.
868 // It sounds like an LLVM bug.
869 struct FunctionStackPoisoner
: public InstVisitor
<FunctionStackPoisoner
> {
871 AddressSanitizer
&ASan
;
876 ShadowMapping Mapping
;
878 SmallVector
<AllocaInst
*, 16> AllocaVec
;
879 SmallVector
<AllocaInst
*, 16> StaticAllocasToMoveUp
;
880 SmallVector
<Instruction
*, 8> RetVec
;
881 unsigned StackAlignment
;
883 FunctionCallee AsanStackMallocFunc
[kMaxAsanStackMallocSizeClass
+ 1],
884 AsanStackFreeFunc
[kMaxAsanStackMallocSizeClass
+ 1];
885 FunctionCallee AsanSetShadowFunc
[0x100] = {};
886 FunctionCallee AsanPoisonStackMemoryFunc
, AsanUnpoisonStackMemoryFunc
;
887 FunctionCallee AsanAllocaPoisonFunc
, AsanAllocasUnpoisonFunc
;
889 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
890 struct AllocaPoisonCall
{
891 IntrinsicInst
*InsBefore
;
896 SmallVector
<AllocaPoisonCall
, 8> DynamicAllocaPoisonCallVec
;
897 SmallVector
<AllocaPoisonCall
, 8> StaticAllocaPoisonCallVec
;
898 bool HasUntracedLifetimeIntrinsic
= false;
900 SmallVector
<AllocaInst
*, 1> DynamicAllocaVec
;
901 SmallVector
<IntrinsicInst
*, 1> StackRestoreVec
;
902 AllocaInst
*DynamicAllocaLayout
= nullptr;
903 IntrinsicInst
*LocalEscapeCall
= nullptr;
905 // Maps Value to an AllocaInst from which the Value is originated.
906 using AllocaForValueMapTy
= DenseMap
<Value
*, AllocaInst
*>;
907 AllocaForValueMapTy AllocaForValue
;
909 bool HasNonEmptyInlineAsm
= false;
910 bool HasReturnsTwiceCall
= false;
911 std::unique_ptr
<CallInst
> EmptyInlineAsm
;
913 FunctionStackPoisoner(Function
&F
, AddressSanitizer
&ASan
)
914 : F(F
), ASan(ASan
), DIB(*F
.getParent(), /*AllowUnresolved*/ false),
915 C(ASan
.C
), IntptrTy(ASan
.IntptrTy
),
916 IntptrPtrTy(PointerType::get(IntptrTy
, 0)), Mapping(ASan
.Mapping
),
917 StackAlignment(1 << Mapping
.Scale
),
918 EmptyInlineAsm(CallInst::Create(ASan
.EmptyAsm
)) {}
920 bool runOnFunction() {
921 if (!ClStack
) return false;
923 if (ClRedzoneByvalArgs
)
924 copyArgsPassedByValToAllocas();
926 // Collect alloca, ret, lifetime instructions etc.
927 for (BasicBlock
*BB
: depth_first(&F
.getEntryBlock())) visit(*BB
);
929 if (AllocaVec
.empty() && DynamicAllocaVec
.empty()) return false;
931 initializeCallbacks(*F
.getParent());
933 if (HasUntracedLifetimeIntrinsic
) {
934 // If there are lifetime intrinsics which couldn't be traced back to an
935 // alloca, we may not know exactly when a variable enters scope, and
936 // therefore should "fail safe" by not poisoning them.
937 StaticAllocaPoisonCallVec
.clear();
938 DynamicAllocaPoisonCallVec
.clear();
941 processDynamicAllocas();
942 processStaticAllocas();
945 LLVM_DEBUG(dbgs() << F
);
950 // Arguments marked with the "byval" attribute are implicitly copied without
951 // using an alloca instruction. To produce redzones for those arguments, we
952 // copy them a second time into memory allocated with an alloca instruction.
953 void copyArgsPassedByValToAllocas();
955 // Finds all Alloca instructions and puts
956 // poisoned red zones around all of them.
957 // Then unpoison everything back before the function returns.
958 void processStaticAllocas();
959 void processDynamicAllocas();
961 void createDynamicAllocasInitStorage();
963 // ----------------------- Visitors.
964 /// Collect all Ret instructions.
965 void visitReturnInst(ReturnInst
&RI
) { RetVec
.push_back(&RI
); }
967 /// Collect all Resume instructions.
968 void visitResumeInst(ResumeInst
&RI
) { RetVec
.push_back(&RI
); }
970 /// Collect all CatchReturnInst instructions.
971 void visitCleanupReturnInst(CleanupReturnInst
&CRI
) { RetVec
.push_back(&CRI
); }
973 void unpoisonDynamicAllocasBeforeInst(Instruction
*InstBefore
,
975 IRBuilder
<> IRB(InstBefore
);
976 Value
*DynamicAreaPtr
= IRB
.CreatePtrToInt(SavedStack
, IntptrTy
);
977 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
978 // need to adjust extracted SP to compute the address of the most recent
979 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
981 if (!isa
<ReturnInst
>(InstBefore
)) {
982 Function
*DynamicAreaOffsetFunc
= Intrinsic::getDeclaration(
983 InstBefore
->getModule(), Intrinsic::get_dynamic_area_offset
,
986 Value
*DynamicAreaOffset
= IRB
.CreateCall(DynamicAreaOffsetFunc
, {});
988 DynamicAreaPtr
= IRB
.CreateAdd(IRB
.CreatePtrToInt(SavedStack
, IntptrTy
),
993 AsanAllocasUnpoisonFunc
,
994 {IRB
.CreateLoad(IntptrTy
, DynamicAllocaLayout
), DynamicAreaPtr
});
997 // Unpoison dynamic allocas redzones.
998 void unpoisonDynamicAllocas() {
999 for (auto &Ret
: RetVec
)
1000 unpoisonDynamicAllocasBeforeInst(Ret
, DynamicAllocaLayout
);
1002 for (auto &StackRestoreInst
: StackRestoreVec
)
1003 unpoisonDynamicAllocasBeforeInst(StackRestoreInst
,
1004 StackRestoreInst
->getOperand(0));
1007 // Deploy and poison redzones around dynamic alloca call. To do this, we
1008 // should replace this call with another one with changed parameters and
1009 // replace all its uses with new address, so
1010 // addr = alloca type, old_size, align
1012 // new_size = (old_size + additional_size) * sizeof(type)
1013 // tmp = alloca i8, new_size, max(align, 32)
1014 // addr = tmp + 32 (first 32 bytes are for the left redzone).
1015 // Additional_size is added to make new memory allocation contain not only
1016 // requested memory, but also left, partial and right redzones.
1017 void handleDynamicAllocaCall(AllocaInst
*AI
);
1019 /// Collect Alloca instructions we want (and can) handle.
1020 void visitAllocaInst(AllocaInst
&AI
) {
1021 if (!ASan
.isInterestingAlloca(AI
)) {
1022 if (AI
.isStaticAlloca()) {
1023 // Skip over allocas that are present *before* the first instrumented
1024 // alloca, we don't want to move those around.
1025 if (AllocaVec
.empty())
1028 StaticAllocasToMoveUp
.push_back(&AI
);
1033 StackAlignment
= std::max(StackAlignment
, AI
.getAlignment());
1034 if (!AI
.isStaticAlloca())
1035 DynamicAllocaVec
.push_back(&AI
);
1037 AllocaVec
.push_back(&AI
);
1040 /// Collect lifetime intrinsic calls to check for use-after-scope
1042 void visitIntrinsicInst(IntrinsicInst
&II
) {
1043 Intrinsic::ID ID
= II
.getIntrinsicID();
1044 if (ID
== Intrinsic::stackrestore
) StackRestoreVec
.push_back(&II
);
1045 if (ID
== Intrinsic::localescape
) LocalEscapeCall
= &II
;
1046 if (!ASan
.UseAfterScope
)
1048 if (!II
.isLifetimeStartOrEnd())
1050 // Found lifetime intrinsic, add ASan instrumentation if necessary.
1051 auto *Size
= cast
<ConstantInt
>(II
.getArgOperand(0));
1052 // If size argument is undefined, don't do anything.
1053 if (Size
->isMinusOne()) return;
1054 // Check that size doesn't saturate uint64_t and can
1055 // be stored in IntptrTy.
1056 const uint64_t SizeValue
= Size
->getValue().getLimitedValue();
1057 if (SizeValue
== ~0ULL ||
1058 !ConstantInt::isValueValidForType(IntptrTy
, SizeValue
))
1060 // Find alloca instruction that corresponds to llvm.lifetime argument.
1062 llvm::findAllocaForValue(II
.getArgOperand(1), AllocaForValue
);
1064 HasUntracedLifetimeIntrinsic
= true;
1067 // We're interested only in allocas we can handle.
1068 if (!ASan
.isInterestingAlloca(*AI
))
1070 bool DoPoison
= (ID
== Intrinsic::lifetime_end
);
1071 AllocaPoisonCall APC
= {&II
, AI
, SizeValue
, DoPoison
};
1072 if (AI
->isStaticAlloca())
1073 StaticAllocaPoisonCallVec
.push_back(APC
);
1074 else if (ClInstrumentDynamicAllocas
)
1075 DynamicAllocaPoisonCallVec
.push_back(APC
);
1078 void visitCallSite(CallSite CS
) {
1079 Instruction
*I
= CS
.getInstruction();
1080 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
1081 HasNonEmptyInlineAsm
|= CI
->isInlineAsm() &&
1082 !CI
->isIdenticalTo(EmptyInlineAsm
.get()) &&
1083 I
!= ASan
.LocalDynamicShadow
;
1084 HasReturnsTwiceCall
|= CI
->canReturnTwice();
1088 // ---------------------- Helpers.
1089 void initializeCallbacks(Module
&M
);
1091 // Copies bytes from ShadowBytes into shadow memory for indexes where
1092 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1093 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1094 void copyToShadow(ArrayRef
<uint8_t> ShadowMask
, ArrayRef
<uint8_t> ShadowBytes
,
1095 IRBuilder
<> &IRB
, Value
*ShadowBase
);
1096 void copyToShadow(ArrayRef
<uint8_t> ShadowMask
, ArrayRef
<uint8_t> ShadowBytes
,
1097 size_t Begin
, size_t End
, IRBuilder
<> &IRB
,
1099 void copyToShadowInline(ArrayRef
<uint8_t> ShadowMask
,
1100 ArrayRef
<uint8_t> ShadowBytes
, size_t Begin
,
1101 size_t End
, IRBuilder
<> &IRB
, Value
*ShadowBase
);
1103 void poisonAlloca(Value
*V
, uint64_t Size
, IRBuilder
<> &IRB
, bool DoPoison
);
1105 Value
*createAllocaForLayout(IRBuilder
<> &IRB
, const ASanStackFrameLayout
&L
,
1107 PHINode
*createPHI(IRBuilder
<> &IRB
, Value
*Cond
, Value
*ValueIfTrue
,
1108 Instruction
*ThenTerm
, Value
*ValueIfFalse
);
1111 } // end anonymous namespace
1113 void LocationMetadata::parse(MDNode
*MDN
) {
1114 assert(MDN
->getNumOperands() == 3);
1115 MDString
*DIFilename
= cast
<MDString
>(MDN
->getOperand(0));
1116 Filename
= DIFilename
->getString();
1117 LineNo
= mdconst::extract
<ConstantInt
>(MDN
->getOperand(1))->getLimitedValue();
1119 mdconst::extract
<ConstantInt
>(MDN
->getOperand(2))->getLimitedValue();
1122 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1123 // we want to sanitize instead and reading this metadata on each pass over a
1124 // function instead of reading module level metadata at first.
1125 GlobalsMetadata::GlobalsMetadata(Module
&M
) {
1126 NamedMDNode
*Globals
= M
.getNamedMetadata("llvm.asan.globals");
1129 for (auto MDN
: Globals
->operands()) {
1130 // Metadata node contains the global and the fields of "Entry".
1131 assert(MDN
->getNumOperands() == 5);
1132 auto *V
= mdconst::extract_or_null
<Constant
>(MDN
->getOperand(0));
1133 // The optimizer may optimize away a global entirely.
1136 auto *StrippedV
= V
->stripPointerCasts();
1137 auto *GV
= dyn_cast
<GlobalVariable
>(StrippedV
);
1140 // We can already have an entry for GV if it was merged with another
1142 Entry
&E
= Entries
[GV
];
1143 if (auto *Loc
= cast_or_null
<MDNode
>(MDN
->getOperand(1)))
1144 E
.SourceLoc
.parse(Loc
);
1145 if (auto *Name
= cast_or_null
<MDString
>(MDN
->getOperand(2)))
1146 E
.Name
= Name
->getString();
1147 ConstantInt
*IsDynInit
= mdconst::extract
<ConstantInt
>(MDN
->getOperand(3));
1148 E
.IsDynInit
|= IsDynInit
->isOne();
1149 ConstantInt
*IsBlacklisted
=
1150 mdconst::extract
<ConstantInt
>(MDN
->getOperand(4));
1151 E
.IsBlacklisted
|= IsBlacklisted
->isOne();
1155 AnalysisKey
ASanGlobalsMetadataAnalysis::Key
;
1157 GlobalsMetadata
ASanGlobalsMetadataAnalysis::run(Module
&M
,
1158 ModuleAnalysisManager
&AM
) {
1159 return GlobalsMetadata(M
);
1162 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel
, bool Recover
,
1164 : CompileKernel(CompileKernel
), Recover(Recover
),
1165 UseAfterScope(UseAfterScope
) {}
1167 PreservedAnalyses
AddressSanitizerPass::run(Function
&F
,
1168 AnalysisManager
<Function
> &AM
) {
1169 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
);
1170 auto &MAM
= MAMProxy
.getManager();
1171 Module
&M
= *F
.getParent();
1172 if (auto *R
= MAM
.getCachedResult
<ASanGlobalsMetadataAnalysis
>(M
)) {
1173 const TargetLibraryInfo
*TLI
= &AM
.getResult
<TargetLibraryAnalysis
>(F
);
1174 AddressSanitizer
Sanitizer(M
, R
, CompileKernel
, Recover
, UseAfterScope
);
1175 if (Sanitizer
.instrumentFunction(F
, TLI
))
1176 return PreservedAnalyses::none();
1177 return PreservedAnalyses::all();
1181 "The ASanGlobalsMetadataAnalysis is required to run before "
1182 "AddressSanitizer can run");
1183 return PreservedAnalyses::all();
1186 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel
,
1189 bool UseOdrIndicator
)
1190 : CompileKernel(CompileKernel
), Recover(Recover
), UseGlobalGC(UseGlobalGC
),
1191 UseOdrIndicator(UseOdrIndicator
) {}
1193 PreservedAnalyses
ModuleAddressSanitizerPass::run(Module
&M
,
1194 AnalysisManager
<Module
> &AM
) {
1195 GlobalsMetadata
&GlobalsMD
= AM
.getResult
<ASanGlobalsMetadataAnalysis
>(M
);
1196 ModuleAddressSanitizer
Sanitizer(M
, &GlobalsMD
, CompileKernel
, Recover
,
1197 UseGlobalGC
, UseOdrIndicator
);
1198 if (Sanitizer
.instrumentModule(M
))
1199 return PreservedAnalyses::none();
1200 return PreservedAnalyses::all();
1203 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass
, "asan-globals-md",
1204 "Read metadata to mark which globals should be instrumented "
1205 "when running ASan.",
1208 char AddressSanitizerLegacyPass::ID
= 0;
1210 INITIALIZE_PASS_BEGIN(
1211 AddressSanitizerLegacyPass
, "asan",
1212 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1214 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass
)
1215 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
1216 INITIALIZE_PASS_END(
1217 AddressSanitizerLegacyPass
, "asan",
1218 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1221 FunctionPass
*llvm::createAddressSanitizerFunctionPass(bool CompileKernel
,
1223 bool UseAfterScope
) {
1224 assert(!CompileKernel
|| Recover
);
1225 return new AddressSanitizerLegacyPass(CompileKernel
, Recover
, UseAfterScope
);
1228 char ModuleAddressSanitizerLegacyPass::ID
= 0;
1231 ModuleAddressSanitizerLegacyPass
, "asan-module",
1232 "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1236 ModulePass
*llvm::createModuleAddressSanitizerLegacyPassPass(
1237 bool CompileKernel
, bool Recover
, bool UseGlobalsGC
, bool UseOdrIndicator
) {
1238 assert(!CompileKernel
|| Recover
);
1239 return new ModuleAddressSanitizerLegacyPass(CompileKernel
, Recover
,
1240 UseGlobalsGC
, UseOdrIndicator
);
1243 static size_t TypeSizeToSizeIndex(uint32_t TypeSize
) {
1244 size_t Res
= countTrailingZeros(TypeSize
/ 8);
1245 assert(Res
< kNumberOfAccessSizes
);
1249 /// Create a global describing a source location.
1250 static GlobalVariable
*createPrivateGlobalForSourceLoc(Module
&M
,
1251 LocationMetadata MD
) {
1252 Constant
*LocData
[] = {
1253 createPrivateGlobalForString(M
, MD
.Filename
, true, kAsanGenPrefix
),
1254 ConstantInt::get(Type::getInt32Ty(M
.getContext()), MD
.LineNo
),
1255 ConstantInt::get(Type::getInt32Ty(M
.getContext()), MD
.ColumnNo
),
1257 auto LocStruct
= ConstantStruct::getAnon(LocData
);
1258 auto GV
= new GlobalVariable(M
, LocStruct
->getType(), true,
1259 GlobalValue::PrivateLinkage
, LocStruct
,
1261 GV
->setUnnamedAddr(GlobalValue::UnnamedAddr::Global
);
1265 /// Check if \p G has been created by a trusted compiler pass.
1266 static bool GlobalWasGeneratedByCompiler(GlobalVariable
*G
) {
1267 // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1268 if (G
->getName().startswith("llvm."))
1271 // Do not instrument asan globals.
1272 if (G
->getName().startswith(kAsanGenPrefix
) ||
1273 G
->getName().startswith(kSanCovGenPrefix
) ||
1274 G
->getName().startswith(kODRGenPrefix
))
1277 // Do not instrument gcov counter arrays.
1278 if (G
->getName() == "__llvm_gcov_ctr")
1284 Value
*AddressSanitizer::memToShadow(Value
*Shadow
, IRBuilder
<> &IRB
) {
1286 Shadow
= IRB
.CreateLShr(Shadow
, Mapping
.Scale
);
1287 if (Mapping
.Offset
== 0) return Shadow
;
1288 // (Shadow >> scale) | offset
1290 if (LocalDynamicShadow
)
1291 ShadowBase
= LocalDynamicShadow
;
1293 ShadowBase
= ConstantInt::get(IntptrTy
, Mapping
.Offset
);
1294 if (Mapping
.OrShadowOffset
)
1295 return IRB
.CreateOr(Shadow
, ShadowBase
);
1297 return IRB
.CreateAdd(Shadow
, ShadowBase
);
1300 // Instrument memset/memmove/memcpy
1301 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic
*MI
) {
1302 IRBuilder
<> IRB(MI
);
1303 if (isa
<MemTransferInst
>(MI
)) {
1305 isa
<MemMoveInst
>(MI
) ? AsanMemmove
: AsanMemcpy
,
1306 {IRB
.CreatePointerCast(MI
->getOperand(0), IRB
.getInt8PtrTy()),
1307 IRB
.CreatePointerCast(MI
->getOperand(1), IRB
.getInt8PtrTy()),
1308 IRB
.CreateIntCast(MI
->getOperand(2), IntptrTy
, false)});
1309 } else if (isa
<MemSetInst
>(MI
)) {
1312 {IRB
.CreatePointerCast(MI
->getOperand(0), IRB
.getInt8PtrTy()),
1313 IRB
.CreateIntCast(MI
->getOperand(1), IRB
.getInt32Ty(), false),
1314 IRB
.CreateIntCast(MI
->getOperand(2), IntptrTy
, false)});
1316 MI
->eraseFromParent();
1319 /// Check if we want (and can) handle this alloca.
1320 bool AddressSanitizer::isInterestingAlloca(const AllocaInst
&AI
) {
1321 auto PreviouslySeenAllocaInfo
= ProcessedAllocas
.find(&AI
);
1323 if (PreviouslySeenAllocaInfo
!= ProcessedAllocas
.end())
1324 return PreviouslySeenAllocaInfo
->getSecond();
1326 bool IsInteresting
=
1327 (AI
.getAllocatedType()->isSized() &&
1328 // alloca() may be called with 0 size, ignore it.
1329 ((!AI
.isStaticAlloca()) || getAllocaSizeInBytes(AI
) > 0) &&
1330 // We are only interested in allocas not promotable to registers.
1331 // Promotable allocas are common under -O0.
1332 (!ClSkipPromotableAllocas
|| !isAllocaPromotable(&AI
)) &&
1333 // inalloca allocas are not treated as static, and we don't want
1334 // dynamic alloca instrumentation for them as well.
1335 !AI
.isUsedWithInAlloca() &&
1336 // swifterror allocas are register promoted by ISel
1337 !AI
.isSwiftError());
1339 ProcessedAllocas
[&AI
] = IsInteresting
;
1340 return IsInteresting
;
1343 Value
*AddressSanitizer::isInterestingMemoryAccess(Instruction
*I
,
1346 unsigned *Alignment
,
1347 Value
**MaybeMask
) {
1348 // Skip memory accesses inserted by another instrumentation.
1349 if (I
->hasMetadata("nosanitize")) return nullptr;
1351 // Do not instrument the load fetching the dynamic shadow address.
1352 if (LocalDynamicShadow
== I
)
1355 Value
*PtrOperand
= nullptr;
1356 const DataLayout
&DL
= I
->getModule()->getDataLayout();
1357 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
1358 if (!ClInstrumentReads
) return nullptr;
1360 *TypeSize
= DL
.getTypeStoreSizeInBits(LI
->getType());
1361 *Alignment
= LI
->getAlignment();
1362 PtrOperand
= LI
->getPointerOperand();
1363 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
1364 if (!ClInstrumentWrites
) return nullptr;
1366 *TypeSize
= DL
.getTypeStoreSizeInBits(SI
->getValueOperand()->getType());
1367 *Alignment
= SI
->getAlignment();
1368 PtrOperand
= SI
->getPointerOperand();
1369 } else if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(I
)) {
1370 if (!ClInstrumentAtomics
) return nullptr;
1372 *TypeSize
= DL
.getTypeStoreSizeInBits(RMW
->getValOperand()->getType());
1374 PtrOperand
= RMW
->getPointerOperand();
1375 } else if (AtomicCmpXchgInst
*XCHG
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
1376 if (!ClInstrumentAtomics
) return nullptr;
1378 *TypeSize
= DL
.getTypeStoreSizeInBits(XCHG
->getCompareOperand()->getType());
1380 PtrOperand
= XCHG
->getPointerOperand();
1381 } else if (auto CI
= dyn_cast
<CallInst
>(I
)) {
1382 auto *F
= dyn_cast
<Function
>(CI
->getCalledValue());
1383 if (F
&& (F
->getName().startswith("llvm.masked.load.") ||
1384 F
->getName().startswith("llvm.masked.store."))) {
1385 unsigned OpOffset
= 0;
1386 if (F
->getName().startswith("llvm.masked.store.")) {
1387 if (!ClInstrumentWrites
)
1389 // Masked store has an initial operand for the value.
1393 if (!ClInstrumentReads
)
1398 auto BasePtr
= CI
->getOperand(0 + OpOffset
);
1399 auto Ty
= cast
<PointerType
>(BasePtr
->getType())->getElementType();
1400 *TypeSize
= DL
.getTypeStoreSizeInBits(Ty
);
1401 if (auto AlignmentConstant
=
1402 dyn_cast
<ConstantInt
>(CI
->getOperand(1 + OpOffset
)))
1403 *Alignment
= (unsigned)AlignmentConstant
->getZExtValue();
1405 *Alignment
= 1; // No alignment guarantees. We probably got Undef
1407 *MaybeMask
= CI
->getOperand(2 + OpOffset
);
1408 PtrOperand
= BasePtr
;
1413 // Do not instrument acesses from different address spaces; we cannot deal
1415 Type
*PtrTy
= cast
<PointerType
>(PtrOperand
->getType()->getScalarType());
1416 if (PtrTy
->getPointerAddressSpace() != 0)
1419 // Ignore swifterror addresses.
1420 // swifterror memory addresses are mem2reg promoted by instruction
1421 // selection. As such they cannot have regular uses like an instrumentation
1422 // function and it makes no sense to track them as memory.
1423 if (PtrOperand
->isSwiftError())
1427 // Treat memory accesses to promotable allocas as non-interesting since they
1428 // will not cause memory violations. This greatly speeds up the instrumented
1429 // executable at -O0.
1430 if (ClSkipPromotableAllocas
)
1431 if (auto AI
= dyn_cast_or_null
<AllocaInst
>(PtrOperand
))
1432 return isInterestingAlloca(*AI
) ? AI
: nullptr;
1437 static bool isPointerOperand(Value
*V
) {
1438 return V
->getType()->isPointerTy() || isa
<PtrToIntInst
>(V
);
1441 // This is a rough heuristic; it may cause both false positives and
1442 // false negatives. The proper implementation requires cooperation with
1444 static bool isInterestingPointerComparison(Instruction
*I
) {
1445 if (ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(I
)) {
1446 if (!Cmp
->isRelational())
1451 return isPointerOperand(I
->getOperand(0)) &&
1452 isPointerOperand(I
->getOperand(1));
1455 // This is a rough heuristic; it may cause both false positives and
1456 // false negatives. The proper implementation requires cooperation with
1458 static bool isInterestingPointerSubtraction(Instruction
*I
) {
1459 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
1460 if (BO
->getOpcode() != Instruction::Sub
)
1465 return isPointerOperand(I
->getOperand(0)) &&
1466 isPointerOperand(I
->getOperand(1));
1469 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable
*G
) {
1470 // If a global variable does not have dynamic initialization we don't
1471 // have to instrument it. However, if a global does not have initializer
1472 // at all, we assume it has dynamic initializer (in other TU).
1474 // FIXME: Metadata should be attched directly to the global directly instead
1475 // of being added to llvm.asan.globals.
1476 return G
->hasInitializer() && !GlobalsMD
.get(G
).IsDynInit
;
1479 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1482 FunctionCallee F
= isa
<ICmpInst
>(I
) ? AsanPtrCmpFunction
: AsanPtrSubFunction
;
1483 Value
*Param
[2] = {I
->getOperand(0), I
->getOperand(1)};
1484 for (Value
*&i
: Param
) {
1485 if (i
->getType()->isPointerTy())
1486 i
= IRB
.CreatePointerCast(i
, IntptrTy
);
1488 IRB
.CreateCall(F
, Param
);
1491 static void doInstrumentAddress(AddressSanitizer
*Pass
, Instruction
*I
,
1492 Instruction
*InsertBefore
, Value
*Addr
,
1493 unsigned Alignment
, unsigned Granularity
,
1494 uint32_t TypeSize
, bool IsWrite
,
1495 Value
*SizeArgument
, bool UseCalls
,
1497 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1498 // if the data is properly aligned.
1499 if ((TypeSize
== 8 || TypeSize
== 16 || TypeSize
== 32 || TypeSize
== 64 ||
1501 (Alignment
>= Granularity
|| Alignment
== 0 || Alignment
>= TypeSize
/ 8))
1502 return Pass
->instrumentAddress(I
, InsertBefore
, Addr
, TypeSize
, IsWrite
,
1503 nullptr, UseCalls
, Exp
);
1504 Pass
->instrumentUnusualSizeOrAlignment(I
, InsertBefore
, Addr
, TypeSize
,
1505 IsWrite
, nullptr, UseCalls
, Exp
);
1508 static void instrumentMaskedLoadOrStore(AddressSanitizer
*Pass
,
1509 const DataLayout
&DL
, Type
*IntptrTy
,
1510 Value
*Mask
, Instruction
*I
,
1511 Value
*Addr
, unsigned Alignment
,
1512 unsigned Granularity
, uint32_t TypeSize
,
1513 bool IsWrite
, Value
*SizeArgument
,
1514 bool UseCalls
, uint32_t Exp
) {
1515 auto *VTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
1516 uint64_t ElemTypeSize
= DL
.getTypeStoreSizeInBits(VTy
->getScalarType());
1517 unsigned Num
= VTy
->getVectorNumElements();
1518 auto Zero
= ConstantInt::get(IntptrTy
, 0);
1519 for (unsigned Idx
= 0; Idx
< Num
; ++Idx
) {
1520 Value
*InstrumentedAddress
= nullptr;
1521 Instruction
*InsertBefore
= I
;
1522 if (auto *Vector
= dyn_cast
<ConstantVector
>(Mask
)) {
1523 // dyn_cast as we might get UndefValue
1524 if (auto *Masked
= dyn_cast
<ConstantInt
>(Vector
->getOperand(Idx
))) {
1525 if (Masked
->isZero())
1526 // Mask is constant false, so no instrumentation needed.
1528 // If we have a true or undef value, fall through to doInstrumentAddress
1529 // with InsertBefore == I
1533 Value
*MaskElem
= IRB
.CreateExtractElement(Mask
, Idx
);
1534 Instruction
*ThenTerm
= SplitBlockAndInsertIfThen(MaskElem
, I
, false);
1535 InsertBefore
= ThenTerm
;
1538 IRBuilder
<> IRB(InsertBefore
);
1539 InstrumentedAddress
=
1540 IRB
.CreateGEP(VTy
, Addr
, {Zero
, ConstantInt::get(IntptrTy
, Idx
)});
1541 doInstrumentAddress(Pass
, I
, InsertBefore
, InstrumentedAddress
, Alignment
,
1542 Granularity
, ElemTypeSize
, IsWrite
, SizeArgument
,
1547 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor
&ObjSizeVis
,
1548 Instruction
*I
, bool UseCalls
,
1549 const DataLayout
&DL
) {
1550 bool IsWrite
= false;
1551 unsigned Alignment
= 0;
1552 uint64_t TypeSize
= 0;
1553 Value
*MaybeMask
= nullptr;
1555 isInterestingMemoryAccess(I
, &IsWrite
, &TypeSize
, &Alignment
, &MaybeMask
);
1558 // Optimization experiments.
1559 // The experiments can be used to evaluate potential optimizations that remove
1560 // instrumentation (assess false negatives). Instead of completely removing
1561 // some instrumentation, you set Exp to a non-zero value (mask of optimization
1562 // experiments that want to remove instrumentation of this instruction).
1563 // If Exp is non-zero, this pass will emit special calls into runtime
1564 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1565 // make runtime terminate the program in a special way (with a different
1566 // exit status). Then you run the new compiler on a buggy corpus, collect
1567 // the special terminations (ideally, you don't see them at all -- no false
1568 // negatives) and make the decision on the optimization.
1569 uint32_t Exp
= ClForceExperiment
;
1571 if (ClOpt
&& ClOptGlobals
) {
1572 // If initialization order checking is disabled, a simple access to a
1573 // dynamically initialized global is always valid.
1574 GlobalVariable
*G
= dyn_cast
<GlobalVariable
>(GetUnderlyingObject(Addr
, DL
));
1575 if (G
&& (!ClInitializers
|| GlobalIsLinkerInitialized(G
)) &&
1576 isSafeAccess(ObjSizeVis
, Addr
, TypeSize
)) {
1577 NumOptimizedAccessesToGlobalVar
++;
1582 if (ClOpt
&& ClOptStack
) {
1583 // A direct inbounds access to a stack variable is always valid.
1584 if (isa
<AllocaInst
>(GetUnderlyingObject(Addr
, DL
)) &&
1585 isSafeAccess(ObjSizeVis
, Addr
, TypeSize
)) {
1586 NumOptimizedAccessesToStackVar
++;
1592 NumInstrumentedWrites
++;
1594 NumInstrumentedReads
++;
1596 unsigned Granularity
= 1 << Mapping
.Scale
;
1598 instrumentMaskedLoadOrStore(this, DL
, IntptrTy
, MaybeMask
, I
, Addr
,
1599 Alignment
, Granularity
, TypeSize
, IsWrite
,
1600 nullptr, UseCalls
, Exp
);
1602 doInstrumentAddress(this, I
, I
, Addr
, Alignment
, Granularity
, TypeSize
,
1603 IsWrite
, nullptr, UseCalls
, Exp
);
1607 Instruction
*AddressSanitizer::generateCrashCode(Instruction
*InsertBefore
,
1608 Value
*Addr
, bool IsWrite
,
1609 size_t AccessSizeIndex
,
1610 Value
*SizeArgument
,
1612 IRBuilder
<> IRB(InsertBefore
);
1613 Value
*ExpVal
= Exp
== 0 ? nullptr : ConstantInt::get(IRB
.getInt32Ty(), Exp
);
1614 CallInst
*Call
= nullptr;
1617 Call
= IRB
.CreateCall(AsanErrorCallbackSized
[IsWrite
][0],
1618 {Addr
, SizeArgument
});
1620 Call
= IRB
.CreateCall(AsanErrorCallbackSized
[IsWrite
][1],
1621 {Addr
, SizeArgument
, ExpVal
});
1625 IRB
.CreateCall(AsanErrorCallback
[IsWrite
][0][AccessSizeIndex
], Addr
);
1627 Call
= IRB
.CreateCall(AsanErrorCallback
[IsWrite
][1][AccessSizeIndex
],
1631 // We don't do Call->setDoesNotReturn() because the BB already has
1632 // UnreachableInst at the end.
1633 // This EmptyAsm is required to avoid callback merge.
1634 IRB
.CreateCall(EmptyAsm
, {});
1638 Value
*AddressSanitizer::createSlowPathCmp(IRBuilder
<> &IRB
, Value
*AddrLong
,
1640 uint32_t TypeSize
) {
1641 size_t Granularity
= static_cast<size_t>(1) << Mapping
.Scale
;
1642 // Addr & (Granularity - 1)
1643 Value
*LastAccessedByte
=
1644 IRB
.CreateAnd(AddrLong
, ConstantInt::get(IntptrTy
, Granularity
- 1));
1645 // (Addr & (Granularity - 1)) + size - 1
1646 if (TypeSize
/ 8 > 1)
1647 LastAccessedByte
= IRB
.CreateAdd(
1648 LastAccessedByte
, ConstantInt::get(IntptrTy
, TypeSize
/ 8 - 1));
1649 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1651 IRB
.CreateIntCast(LastAccessedByte
, ShadowValue
->getType(), false);
1652 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1653 return IRB
.CreateICmpSGE(LastAccessedByte
, ShadowValue
);
1656 void AddressSanitizer::instrumentAddress(Instruction
*OrigIns
,
1657 Instruction
*InsertBefore
, Value
*Addr
,
1658 uint32_t TypeSize
, bool IsWrite
,
1659 Value
*SizeArgument
, bool UseCalls
,
1661 bool IsMyriad
= TargetTriple
.getVendor() == llvm::Triple::Myriad
;
1663 IRBuilder
<> IRB(InsertBefore
);
1664 Value
*AddrLong
= IRB
.CreatePointerCast(Addr
, IntptrTy
);
1665 size_t AccessSizeIndex
= TypeSizeToSizeIndex(TypeSize
);
1669 IRB
.CreateCall(AsanMemoryAccessCallback
[IsWrite
][0][AccessSizeIndex
],
1672 IRB
.CreateCall(AsanMemoryAccessCallback
[IsWrite
][1][AccessSizeIndex
],
1673 {AddrLong
, ConstantInt::get(IRB
.getInt32Ty(), Exp
)});
1678 // Strip the cache bit and do range check.
1679 // AddrLong &= ~kMyriadCacheBitMask32
1680 AddrLong
= IRB
.CreateAnd(AddrLong
, ~kMyriadCacheBitMask32
);
1681 // Tag = AddrLong >> kMyriadTagShift
1682 Value
*Tag
= IRB
.CreateLShr(AddrLong
, kMyriadTagShift
);
1683 // Tag == kMyriadDDRTag
1685 IRB
.CreateICmpEQ(Tag
, ConstantInt::get(IntptrTy
, kMyriadDDRTag
));
1687 Instruction
*TagCheckTerm
=
1688 SplitBlockAndInsertIfThen(TagCheck
, InsertBefore
, false,
1689 MDBuilder(*C
).createBranchWeights(1, 100000));
1690 assert(cast
<BranchInst
>(TagCheckTerm
)->isUnconditional());
1691 IRB
.SetInsertPoint(TagCheckTerm
);
1692 InsertBefore
= TagCheckTerm
;
1696 IntegerType::get(*C
, std::max(8U, TypeSize
>> Mapping
.Scale
));
1697 Type
*ShadowPtrTy
= PointerType::get(ShadowTy
, 0);
1698 Value
*ShadowPtr
= memToShadow(AddrLong
, IRB
);
1699 Value
*CmpVal
= Constant::getNullValue(ShadowTy
);
1700 Value
*ShadowValue
=
1701 IRB
.CreateLoad(ShadowTy
, IRB
.CreateIntToPtr(ShadowPtr
, ShadowPtrTy
));
1703 Value
*Cmp
= IRB
.CreateICmpNE(ShadowValue
, CmpVal
);
1704 size_t Granularity
= 1ULL << Mapping
.Scale
;
1705 Instruction
*CrashTerm
= nullptr;
1707 if (ClAlwaysSlowPath
|| (TypeSize
< 8 * Granularity
)) {
1708 // We use branch weights for the slow path check, to indicate that the slow
1709 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1710 Instruction
*CheckTerm
= SplitBlockAndInsertIfThen(
1711 Cmp
, InsertBefore
, false, MDBuilder(*C
).createBranchWeights(1, 100000));
1712 assert(cast
<BranchInst
>(CheckTerm
)->isUnconditional());
1713 BasicBlock
*NextBB
= CheckTerm
->getSuccessor(0);
1714 IRB
.SetInsertPoint(CheckTerm
);
1715 Value
*Cmp2
= createSlowPathCmp(IRB
, AddrLong
, ShadowValue
, TypeSize
);
1717 CrashTerm
= SplitBlockAndInsertIfThen(Cmp2
, CheckTerm
, false);
1719 BasicBlock
*CrashBlock
=
1720 BasicBlock::Create(*C
, "", NextBB
->getParent(), NextBB
);
1721 CrashTerm
= new UnreachableInst(*C
, CrashBlock
);
1722 BranchInst
*NewTerm
= BranchInst::Create(CrashBlock
, NextBB
, Cmp2
);
1723 ReplaceInstWithInst(CheckTerm
, NewTerm
);
1726 CrashTerm
= SplitBlockAndInsertIfThen(Cmp
, InsertBefore
, !Recover
);
1729 Instruction
*Crash
= generateCrashCode(CrashTerm
, AddrLong
, IsWrite
,
1730 AccessSizeIndex
, SizeArgument
, Exp
);
1731 Crash
->setDebugLoc(OrigIns
->getDebugLoc());
1734 // Instrument unusual size or unusual alignment.
1735 // We can not do it with a single check, so we do 1-byte check for the first
1736 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1737 // to report the actual access size.
1738 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1739 Instruction
*I
, Instruction
*InsertBefore
, Value
*Addr
, uint32_t TypeSize
,
1740 bool IsWrite
, Value
*SizeArgument
, bool UseCalls
, uint32_t Exp
) {
1741 IRBuilder
<> IRB(InsertBefore
);
1742 Value
*Size
= ConstantInt::get(IntptrTy
, TypeSize
/ 8);
1743 Value
*AddrLong
= IRB
.CreatePointerCast(Addr
, IntptrTy
);
1746 IRB
.CreateCall(AsanMemoryAccessCallbackSized
[IsWrite
][0],
1749 IRB
.CreateCall(AsanMemoryAccessCallbackSized
[IsWrite
][1],
1750 {AddrLong
, Size
, ConstantInt::get(IRB
.getInt32Ty(), Exp
)});
1752 Value
*LastByte
= IRB
.CreateIntToPtr(
1753 IRB
.CreateAdd(AddrLong
, ConstantInt::get(IntptrTy
, TypeSize
/ 8 - 1)),
1755 instrumentAddress(I
, InsertBefore
, Addr
, 8, IsWrite
, Size
, false, Exp
);
1756 instrumentAddress(I
, InsertBefore
, LastByte
, 8, IsWrite
, Size
, false, Exp
);
1760 void ModuleAddressSanitizer::poisonOneInitializer(Function
&GlobalInit
,
1761 GlobalValue
*ModuleName
) {
1762 // Set up the arguments to our poison/unpoison functions.
1763 IRBuilder
<> IRB(&GlobalInit
.front(),
1764 GlobalInit
.front().getFirstInsertionPt());
1766 // Add a call to poison all external globals before the given function starts.
1767 Value
*ModuleNameAddr
= ConstantExpr::getPointerCast(ModuleName
, IntptrTy
);
1768 IRB
.CreateCall(AsanPoisonGlobals
, ModuleNameAddr
);
1770 // Add calls to unpoison all globals before each return instruction.
1771 for (auto &BB
: GlobalInit
.getBasicBlockList())
1772 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
.getTerminator()))
1773 CallInst::Create(AsanUnpoisonGlobals
, "", RI
);
1776 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1777 Module
&M
, GlobalValue
*ModuleName
) {
1778 GlobalVariable
*GV
= M
.getGlobalVariable("llvm.global_ctors");
1782 ConstantArray
*CA
= dyn_cast
<ConstantArray
>(GV
->getInitializer());
1786 for (Use
&OP
: CA
->operands()) {
1787 if (isa
<ConstantAggregateZero
>(OP
)) continue;
1788 ConstantStruct
*CS
= cast
<ConstantStruct
>(OP
);
1790 // Must have a function or null ptr.
1791 if (Function
*F
= dyn_cast
<Function
>(CS
->getOperand(1))) {
1792 if (F
->getName() == kAsanModuleCtorName
) continue;
1793 auto *Priority
= cast
<ConstantInt
>(CS
->getOperand(0));
1794 // Don't instrument CTORs that will run before asan.module_ctor.
1795 if (Priority
->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple
))
1797 poisonOneInitializer(*F
, ModuleName
);
1802 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable
*G
) {
1803 Type
*Ty
= G
->getValueType();
1804 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G
<< "\n");
1806 // FIXME: Metadata should be attched directly to the global directly instead
1807 // of being added to llvm.asan.globals.
1808 if (GlobalsMD
.get(G
).IsBlacklisted
) return false;
1809 if (!Ty
->isSized()) return false;
1810 if (!G
->hasInitializer()) return false;
1811 if (GlobalWasGeneratedByCompiler(G
)) return false; // Our own globals.
1812 // Two problems with thread-locals:
1813 // - The address of the main thread's copy can't be computed at link-time.
1814 // - Need to poison all copies, not just the main thread's one.
1815 if (G
->isThreadLocal()) return false;
1816 // For now, just ignore this Global if the alignment is large.
1817 if (G
->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1819 // For non-COFF targets, only instrument globals known to be defined by this
1821 // FIXME: We can instrument comdat globals on ELF if we are using the
1822 // GC-friendly metadata scheme.
1823 if (!TargetTriple
.isOSBinFormatCOFF()) {
1824 if (!G
->hasExactDefinition() || G
->hasComdat())
1827 // On COFF, don't instrument non-ODR linkages.
1828 if (G
->isInterposable())
1832 // If a comdat is present, it must have a selection kind that implies ODR
1833 // semantics: no duplicates, any, or exact match.
1834 if (Comdat
*C
= G
->getComdat()) {
1835 switch (C
->getSelectionKind()) {
1837 case Comdat::ExactMatch
:
1838 case Comdat::NoDuplicates
:
1840 case Comdat::Largest
:
1841 case Comdat::SameSize
:
1846 if (G
->hasSection()) {
1847 StringRef Section
= G
->getSection();
1849 // Globals from llvm.metadata aren't emitted, do not instrument them.
1850 if (Section
== "llvm.metadata") return false;
1851 // Do not instrument globals from special LLVM sections.
1852 if (Section
.find("__llvm") != StringRef::npos
|| Section
.find("__LLVM") != StringRef::npos
) return false;
1854 // Do not instrument function pointers to initialization and termination
1855 // routines: dynamic linker will not properly handle redzones.
1856 if (Section
.startswith(".preinit_array") ||
1857 Section
.startswith(".init_array") ||
1858 Section
.startswith(".fini_array")) {
1862 // On COFF, if the section name contains '$', it is highly likely that the
1863 // user is using section sorting to create an array of globals similar to
1864 // the way initialization callbacks are registered in .init_array and
1865 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1866 // to such globals is counterproductive, because the intent is that they
1867 // will form an array, and out-of-bounds accesses are expected.
1868 // See https://github.com/google/sanitizers/issues/305
1869 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1870 if (TargetTriple
.isOSBinFormatCOFF() && Section
.contains('$')) {
1871 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1876 if (TargetTriple
.isOSBinFormatMachO()) {
1877 StringRef ParsedSegment
, ParsedSection
;
1878 unsigned TAA
= 0, StubSize
= 0;
1880 std::string ErrorCode
= MCSectionMachO::ParseSectionSpecifier(
1881 Section
, ParsedSegment
, ParsedSection
, TAA
, TAAParsed
, StubSize
);
1882 assert(ErrorCode
.empty() && "Invalid section specifier.");
1884 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1885 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1887 if (ParsedSegment
== "__OBJC" ||
1888 (ParsedSegment
== "__DATA" && ParsedSection
.startswith("__objc_"))) {
1889 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G
<< "\n");
1892 // See https://github.com/google/sanitizers/issues/32
1893 // Constant CFString instances are compiled in the following way:
1894 // -- the string buffer is emitted into
1895 // __TEXT,__cstring,cstring_literals
1896 // -- the constant NSConstantString structure referencing that buffer
1897 // is placed into __DATA,__cfstring
1898 // Therefore there's no point in placing redzones into __DATA,__cfstring.
1899 // Moreover, it causes the linker to crash on OS X 10.7
1900 if (ParsedSegment
== "__DATA" && ParsedSection
== "__cfstring") {
1901 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G
<< "\n");
1904 // The linker merges the contents of cstring_literals and removes the
1906 if (ParsedSegment
== "__TEXT" && (TAA
& MachO::S_CSTRING_LITERALS
)) {
1907 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G
<< "\n");
1916 // On Mach-O platforms, we emit global metadata in a separate section of the
1917 // binary in order to allow the linker to properly dead strip. This is only
1918 // supported on recent versions of ld64.
1919 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
1920 if (!TargetTriple
.isOSBinFormatMachO())
1923 if (TargetTriple
.isMacOSX() && !TargetTriple
.isMacOSXVersionLT(10, 11))
1925 if (TargetTriple
.isiOS() /* or tvOS */ && !TargetTriple
.isOSVersionLT(9))
1927 if (TargetTriple
.isWatchOS() && !TargetTriple
.isOSVersionLT(2))
1933 StringRef
ModuleAddressSanitizer::getGlobalMetadataSection() const {
1934 switch (TargetTriple
.getObjectFormat()) {
1935 case Triple::COFF
: return ".ASAN$GL";
1936 case Triple::ELF
: return "asan_globals";
1937 case Triple::MachO
: return "__DATA,__asan_globals,regular";
1941 "ModuleAddressSanitizer not implemented for object file format.");
1942 case Triple::UnknownObjectFormat
:
1945 llvm_unreachable("unsupported object format");
1948 void ModuleAddressSanitizer::initializeCallbacks(Module
&M
) {
1949 IRBuilder
<> IRB(*C
);
1951 // Declare our poisoning and unpoisoning functions.
1953 M
.getOrInsertFunction(kAsanPoisonGlobalsName
, IRB
.getVoidTy(), IntptrTy
);
1954 AsanUnpoisonGlobals
=
1955 M
.getOrInsertFunction(kAsanUnpoisonGlobalsName
, IRB
.getVoidTy());
1957 // Declare functions that register/unregister globals.
1958 AsanRegisterGlobals
= M
.getOrInsertFunction(
1959 kAsanRegisterGlobalsName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
1960 AsanUnregisterGlobals
= M
.getOrInsertFunction(
1961 kAsanUnregisterGlobalsName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
1963 // Declare the functions that find globals in a shared object and then invoke
1964 // the (un)register function on them.
1965 AsanRegisterImageGlobals
= M
.getOrInsertFunction(
1966 kAsanRegisterImageGlobalsName
, IRB
.getVoidTy(), IntptrTy
);
1967 AsanUnregisterImageGlobals
= M
.getOrInsertFunction(
1968 kAsanUnregisterImageGlobalsName
, IRB
.getVoidTy(), IntptrTy
);
1970 AsanRegisterElfGlobals
=
1971 M
.getOrInsertFunction(kAsanRegisterElfGlobalsName
, IRB
.getVoidTy(),
1972 IntptrTy
, IntptrTy
, IntptrTy
);
1973 AsanUnregisterElfGlobals
=
1974 M
.getOrInsertFunction(kAsanUnregisterElfGlobalsName
, IRB
.getVoidTy(),
1975 IntptrTy
, IntptrTy
, IntptrTy
);
1978 // Put the metadata and the instrumented global in the same group. This ensures
1979 // that the metadata is discarded if the instrumented global is discarded.
1980 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
1981 GlobalVariable
*G
, GlobalVariable
*Metadata
, StringRef InternalSuffix
) {
1982 Module
&M
= *G
->getParent();
1983 Comdat
*C
= G
->getComdat();
1985 if (!G
->hasName()) {
1986 // If G is unnamed, it must be internal. Give it an artificial name
1987 // so we can put it in a comdat.
1988 assert(G
->hasLocalLinkage());
1989 G
->setName(Twine(kAsanGenPrefix
) + "_anon_global");
1992 if (!InternalSuffix
.empty() && G
->hasLocalLinkage()) {
1993 std::string Name
= G
->getName();
1994 Name
+= InternalSuffix
;
1995 C
= M
.getOrInsertComdat(Name
);
1997 C
= M
.getOrInsertComdat(G
->getName());
2000 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2001 // linkage to internal linkage so that a symbol table entry is emitted. This
2002 // is necessary in order to create the comdat group.
2003 if (TargetTriple
.isOSBinFormatCOFF()) {
2004 C
->setSelectionKind(Comdat::NoDuplicates
);
2005 if (G
->hasPrivateLinkage())
2006 G
->setLinkage(GlobalValue::InternalLinkage
);
2011 assert(G
->hasComdat());
2012 Metadata
->setComdat(G
->getComdat());
2015 // Create a separate metadata global and put it in the appropriate ASan
2016 // global registration section.
2018 ModuleAddressSanitizer::CreateMetadataGlobal(Module
&M
, Constant
*Initializer
,
2019 StringRef OriginalName
) {
2020 auto Linkage
= TargetTriple
.isOSBinFormatMachO()
2021 ? GlobalVariable::InternalLinkage
2022 : GlobalVariable::PrivateLinkage
;
2023 GlobalVariable
*Metadata
= new GlobalVariable(
2024 M
, Initializer
->getType(), false, Linkage
, Initializer
,
2025 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName
));
2026 Metadata
->setSection(getGlobalMetadataSection());
2030 IRBuilder
<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module
&M
) {
2032 Function::Create(FunctionType::get(Type::getVoidTy(*C
), false),
2033 GlobalValue::InternalLinkage
, kAsanModuleDtorName
, &M
);
2034 BasicBlock
*AsanDtorBB
= BasicBlock::Create(*C
, "", AsanDtorFunction
);
2036 return IRBuilder
<>(ReturnInst::Create(*C
, AsanDtorBB
));
2039 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2040 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2041 ArrayRef
<Constant
*> MetadataInitializers
) {
2042 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2043 auto &DL
= M
.getDataLayout();
2045 for (size_t i
= 0; i
< ExtendedGlobals
.size(); i
++) {
2046 Constant
*Initializer
= MetadataInitializers
[i
];
2047 GlobalVariable
*G
= ExtendedGlobals
[i
];
2048 GlobalVariable
*Metadata
=
2049 CreateMetadataGlobal(M
, Initializer
, G
->getName());
2051 // The MSVC linker always inserts padding when linking incrementally. We
2052 // cope with that by aligning each struct to its size, which must be a power
2054 unsigned SizeOfGlobalStruct
= DL
.getTypeAllocSize(Initializer
->getType());
2055 assert(isPowerOf2_32(SizeOfGlobalStruct
) &&
2056 "global metadata will not be padded appropriately");
2057 Metadata
->setAlignment(assumeAligned(SizeOfGlobalStruct
));
2059 SetComdatForGlobalMetadata(G
, Metadata
, "");
2063 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2064 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2065 ArrayRef
<Constant
*> MetadataInitializers
,
2066 const std::string
&UniqueModuleId
) {
2067 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2069 SmallVector
<GlobalValue
*, 16> MetadataGlobals(ExtendedGlobals
.size());
2070 for (size_t i
= 0; i
< ExtendedGlobals
.size(); i
++) {
2071 GlobalVariable
*G
= ExtendedGlobals
[i
];
2072 GlobalVariable
*Metadata
=
2073 CreateMetadataGlobal(M
, MetadataInitializers
[i
], G
->getName());
2074 MDNode
*MD
= MDNode::get(M
.getContext(), ValueAsMetadata::get(G
));
2075 Metadata
->setMetadata(LLVMContext::MD_associated
, MD
);
2076 MetadataGlobals
[i
] = Metadata
;
2078 SetComdatForGlobalMetadata(G
, Metadata
, UniqueModuleId
);
2081 // Update llvm.compiler.used, adding the new metadata globals. This is
2082 // needed so that during LTO these variables stay alive.
2083 if (!MetadataGlobals
.empty())
2084 appendToCompilerUsed(M
, MetadataGlobals
);
2086 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2087 // to look up the loaded image that contains it. Second, we can store in it
2088 // whether registration has already occurred, to prevent duplicate
2091 // Common linkage ensures that there is only one global per shared library.
2092 GlobalVariable
*RegisteredFlag
= new GlobalVariable(
2093 M
, IntptrTy
, false, GlobalVariable::CommonLinkage
,
2094 ConstantInt::get(IntptrTy
, 0), kAsanGlobalsRegisteredFlagName
);
2095 RegisteredFlag
->setVisibility(GlobalVariable::HiddenVisibility
);
2097 // Create start and stop symbols.
2098 GlobalVariable
*StartELFMetadata
= new GlobalVariable(
2099 M
, IntptrTy
, false, GlobalVariable::ExternalWeakLinkage
, nullptr,
2100 "__start_" + getGlobalMetadataSection());
2101 StartELFMetadata
->setVisibility(GlobalVariable::HiddenVisibility
);
2102 GlobalVariable
*StopELFMetadata
= new GlobalVariable(
2103 M
, IntptrTy
, false, GlobalVariable::ExternalWeakLinkage
, nullptr,
2104 "__stop_" + getGlobalMetadataSection());
2105 StopELFMetadata
->setVisibility(GlobalVariable::HiddenVisibility
);
2107 // Create a call to register the globals with the runtime.
2108 IRB
.CreateCall(AsanRegisterElfGlobals
,
2109 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
),
2110 IRB
.CreatePointerCast(StartELFMetadata
, IntptrTy
),
2111 IRB
.CreatePointerCast(StopELFMetadata
, IntptrTy
)});
2113 // We also need to unregister globals at the end, e.g., when a shared library
2115 IRBuilder
<> IRB_Dtor
= CreateAsanModuleDtor(M
);
2116 IRB_Dtor
.CreateCall(AsanUnregisterElfGlobals
,
2117 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
),
2118 IRB
.CreatePointerCast(StartELFMetadata
, IntptrTy
),
2119 IRB
.CreatePointerCast(StopELFMetadata
, IntptrTy
)});
2122 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2123 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2124 ArrayRef
<Constant
*> MetadataInitializers
) {
2125 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2127 // On recent Mach-O platforms, use a structure which binds the liveness of
2128 // the global variable to the metadata struct. Keep the list of "Liveness" GV
2129 // created to be added to llvm.compiler.used
2130 StructType
*LivenessTy
= StructType::get(IntptrTy
, IntptrTy
);
2131 SmallVector
<GlobalValue
*, 16> LivenessGlobals(ExtendedGlobals
.size());
2133 for (size_t i
= 0; i
< ExtendedGlobals
.size(); i
++) {
2134 Constant
*Initializer
= MetadataInitializers
[i
];
2135 GlobalVariable
*G
= ExtendedGlobals
[i
];
2136 GlobalVariable
*Metadata
=
2137 CreateMetadataGlobal(M
, Initializer
, G
->getName());
2139 // On recent Mach-O platforms, we emit the global metadata in a way that
2140 // allows the linker to properly strip dead globals.
2141 auto LivenessBinder
=
2142 ConstantStruct::get(LivenessTy
, Initializer
->getAggregateElement(0u),
2143 ConstantExpr::getPointerCast(Metadata
, IntptrTy
));
2144 GlobalVariable
*Liveness
= new GlobalVariable(
2145 M
, LivenessTy
, false, GlobalVariable::InternalLinkage
, LivenessBinder
,
2146 Twine("__asan_binder_") + G
->getName());
2147 Liveness
->setSection("__DATA,__asan_liveness,regular,live_support");
2148 LivenessGlobals
[i
] = Liveness
;
2151 // Update llvm.compiler.used, adding the new liveness globals. This is
2152 // needed so that during LTO these variables stay alive. The alternative
2153 // would be to have the linker handling the LTO symbols, but libLTO
2154 // current API does not expose access to the section for each symbol.
2155 if (!LivenessGlobals
.empty())
2156 appendToCompilerUsed(M
, LivenessGlobals
);
2158 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2159 // to look up the loaded image that contains it. Second, we can store in it
2160 // whether registration has already occurred, to prevent duplicate
2163 // common linkage ensures that there is only one global per shared library.
2164 GlobalVariable
*RegisteredFlag
= new GlobalVariable(
2165 M
, IntptrTy
, false, GlobalVariable::CommonLinkage
,
2166 ConstantInt::get(IntptrTy
, 0), kAsanGlobalsRegisteredFlagName
);
2167 RegisteredFlag
->setVisibility(GlobalVariable::HiddenVisibility
);
2169 IRB
.CreateCall(AsanRegisterImageGlobals
,
2170 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
)});
2172 // We also need to unregister globals at the end, e.g., when a shared library
2174 IRBuilder
<> IRB_Dtor
= CreateAsanModuleDtor(M
);
2175 IRB_Dtor
.CreateCall(AsanUnregisterImageGlobals
,
2176 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
)});
2179 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2180 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2181 ArrayRef
<Constant
*> MetadataInitializers
) {
2182 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2183 unsigned N
= ExtendedGlobals
.size();
2186 // On platforms that don't have a custom metadata section, we emit an array
2187 // of global metadata structures.
2188 ArrayType
*ArrayOfGlobalStructTy
=
2189 ArrayType::get(MetadataInitializers
[0]->getType(), N
);
2190 auto AllGlobals
= new GlobalVariable(
2191 M
, ArrayOfGlobalStructTy
, false, GlobalVariable::InternalLinkage
,
2192 ConstantArray::get(ArrayOfGlobalStructTy
, MetadataInitializers
), "");
2193 if (Mapping
.Scale
> 3)
2194 AllGlobals
->setAlignment(Align(1ULL << Mapping
.Scale
));
2196 IRB
.CreateCall(AsanRegisterGlobals
,
2197 {IRB
.CreatePointerCast(AllGlobals
, IntptrTy
),
2198 ConstantInt::get(IntptrTy
, N
)});
2200 // We also need to unregister globals at the end, e.g., when a shared library
2202 IRBuilder
<> IRB_Dtor
= CreateAsanModuleDtor(M
);
2203 IRB_Dtor
.CreateCall(AsanUnregisterGlobals
,
2204 {IRB
.CreatePointerCast(AllGlobals
, IntptrTy
),
2205 ConstantInt::get(IntptrTy
, N
)});
2208 // This function replaces all global variables with new variables that have
2209 // trailing redzones. It also creates a function that poisons
2210 // redzones and inserts this function into llvm.global_ctors.
2211 // Sets *CtorComdat to true if the global registration code emitted into the
2212 // asan constructor is comdat-compatible.
2213 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder
<> &IRB
, Module
&M
,
2215 *CtorComdat
= false;
2217 SmallVector
<GlobalVariable
*, 16> GlobalsToChange
;
2219 for (auto &G
: M
.globals()) {
2220 if (ShouldInstrumentGlobal(&G
)) GlobalsToChange
.push_back(&G
);
2223 size_t n
= GlobalsToChange
.size();
2229 auto &DL
= M
.getDataLayout();
2231 // A global is described by a structure
2234 // size_t size_with_redzone;
2235 // const char *name;
2236 // const char *module_name;
2237 // size_t has_dynamic_init;
2238 // void *source_location;
2239 // size_t odr_indicator;
2240 // We initialize an array of such structures and pass it to a run-time call.
2241 StructType
*GlobalStructTy
=
2242 StructType::get(IntptrTy
, IntptrTy
, IntptrTy
, IntptrTy
, IntptrTy
,
2243 IntptrTy
, IntptrTy
, IntptrTy
);
2244 SmallVector
<GlobalVariable
*, 16> NewGlobals(n
);
2245 SmallVector
<Constant
*, 16> Initializers(n
);
2247 bool HasDynamicallyInitializedGlobals
= false;
2249 // We shouldn't merge same module names, as this string serves as unique
2250 // module ID in runtime.
2251 GlobalVariable
*ModuleName
= createPrivateGlobalForString(
2252 M
, M
.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix
);
2254 for (size_t i
= 0; i
< n
; i
++) {
2255 static const uint64_t kMaxGlobalRedzone
= 1 << 18;
2256 GlobalVariable
*G
= GlobalsToChange
[i
];
2258 // FIXME: Metadata should be attched directly to the global directly instead
2259 // of being added to llvm.asan.globals.
2260 auto MD
= GlobalsMD
.get(G
);
2261 StringRef NameForGlobal
= G
->getName();
2262 // Create string holding the global name (use global name from metadata
2263 // if it's available, otherwise just write the name of global variable).
2264 GlobalVariable
*Name
= createPrivateGlobalForString(
2265 M
, MD
.Name
.empty() ? NameForGlobal
: MD
.Name
,
2266 /*AllowMerging*/ true, kAsanGenPrefix
);
2268 Type
*Ty
= G
->getValueType();
2269 uint64_t SizeInBytes
= DL
.getTypeAllocSize(Ty
);
2270 uint64_t MinRZ
= MinRedzoneSizeForGlobal();
2271 // MinRZ <= RZ <= kMaxGlobalRedzone
2272 // and trying to make RZ to be ~ 1/4 of SizeInBytes.
2273 uint64_t RZ
= std::max(
2274 MinRZ
, std::min(kMaxGlobalRedzone
, (SizeInBytes
/ MinRZ
/ 4) * MinRZ
));
2275 uint64_t RightRedzoneSize
= RZ
;
2276 // Round up to MinRZ
2277 if (SizeInBytes
% MinRZ
) RightRedzoneSize
+= MinRZ
- (SizeInBytes
% MinRZ
);
2278 assert(((RightRedzoneSize
+ SizeInBytes
) % MinRZ
) == 0);
2279 Type
*RightRedZoneTy
= ArrayType::get(IRB
.getInt8Ty(), RightRedzoneSize
);
2281 StructType
*NewTy
= StructType::get(Ty
, RightRedZoneTy
);
2282 Constant
*NewInitializer
= ConstantStruct::get(
2283 NewTy
, G
->getInitializer(), Constant::getNullValue(RightRedZoneTy
));
2285 // Create a new global variable with enough space for a redzone.
2286 GlobalValue::LinkageTypes Linkage
= G
->getLinkage();
2287 if (G
->isConstant() && Linkage
== GlobalValue::PrivateLinkage
)
2288 Linkage
= GlobalValue::InternalLinkage
;
2289 GlobalVariable
*NewGlobal
=
2290 new GlobalVariable(M
, NewTy
, G
->isConstant(), Linkage
, NewInitializer
,
2291 "", G
, G
->getThreadLocalMode());
2292 NewGlobal
->copyAttributesFrom(G
);
2293 NewGlobal
->setComdat(G
->getComdat());
2294 NewGlobal
->setAlignment(MaybeAlign(MinRZ
));
2295 // Don't fold globals with redzones. ODR violation detector and redzone
2296 // poisoning implicitly creates a dependence on the global's address, so it
2297 // is no longer valid for it to be marked unnamed_addr.
2298 NewGlobal
->setUnnamedAddr(GlobalValue::UnnamedAddr::None
);
2300 // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2301 if (TargetTriple
.isOSBinFormatMachO() && !G
->hasSection() &&
2303 auto Seq
= dyn_cast
<ConstantDataSequential
>(G
->getInitializer());
2304 if (Seq
&& Seq
->isCString())
2305 NewGlobal
->setSection("__TEXT,__asan_cstring,regular");
2308 // Transfer the debug info. The payload starts at offset zero so we can
2309 // copy the debug info over as is.
2310 SmallVector
<DIGlobalVariableExpression
*, 1> GVs
;
2311 G
->getDebugInfo(GVs
);
2312 for (auto *GV
: GVs
)
2313 NewGlobal
->addDebugInfo(GV
);
2316 Indices2
[0] = IRB
.getInt32(0);
2317 Indices2
[1] = IRB
.getInt32(0);
2319 G
->replaceAllUsesWith(
2320 ConstantExpr::getGetElementPtr(NewTy
, NewGlobal
, Indices2
, true));
2321 NewGlobal
->takeName(G
);
2322 G
->eraseFromParent();
2323 NewGlobals
[i
] = NewGlobal
;
2325 Constant
*SourceLoc
;
2326 if (!MD
.SourceLoc
.empty()) {
2327 auto SourceLocGlobal
= createPrivateGlobalForSourceLoc(M
, MD
.SourceLoc
);
2328 SourceLoc
= ConstantExpr::getPointerCast(SourceLocGlobal
, IntptrTy
);
2330 SourceLoc
= ConstantInt::get(IntptrTy
, 0);
2333 Constant
*ODRIndicator
= ConstantExpr::getNullValue(IRB
.getInt8PtrTy());
2334 GlobalValue
*InstrumentedGlobal
= NewGlobal
;
2336 bool CanUsePrivateAliases
=
2337 TargetTriple
.isOSBinFormatELF() || TargetTriple
.isOSBinFormatMachO() ||
2338 TargetTriple
.isOSBinFormatWasm();
2339 if (CanUsePrivateAliases
&& UsePrivateAlias
) {
2340 // Create local alias for NewGlobal to avoid crash on ODR between
2341 // instrumented and non-instrumented libraries.
2342 InstrumentedGlobal
=
2343 GlobalAlias::create(GlobalValue::PrivateLinkage
, "", NewGlobal
);
2346 // ODR should not happen for local linkage.
2347 if (NewGlobal
->hasLocalLinkage()) {
2348 ODRIndicator
= ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy
, -1),
2349 IRB
.getInt8PtrTy());
2350 } else if (UseOdrIndicator
) {
2351 // With local aliases, we need to provide another externally visible
2352 // symbol __odr_asan_XXX to detect ODR violation.
2353 auto *ODRIndicatorSym
=
2354 new GlobalVariable(M
, IRB
.getInt8Ty(), false, Linkage
,
2355 Constant::getNullValue(IRB
.getInt8Ty()),
2356 kODRGenPrefix
+ NameForGlobal
, nullptr,
2357 NewGlobal
->getThreadLocalMode());
2359 // Set meaningful attributes for indicator symbol.
2360 ODRIndicatorSym
->setVisibility(NewGlobal
->getVisibility());
2361 ODRIndicatorSym
->setDLLStorageClass(NewGlobal
->getDLLStorageClass());
2362 ODRIndicatorSym
->setAlignment(Align::None());
2363 ODRIndicator
= ODRIndicatorSym
;
2366 Constant
*Initializer
= ConstantStruct::get(
2368 ConstantExpr::getPointerCast(InstrumentedGlobal
, IntptrTy
),
2369 ConstantInt::get(IntptrTy
, SizeInBytes
),
2370 ConstantInt::get(IntptrTy
, SizeInBytes
+ RightRedzoneSize
),
2371 ConstantExpr::getPointerCast(Name
, IntptrTy
),
2372 ConstantExpr::getPointerCast(ModuleName
, IntptrTy
),
2373 ConstantInt::get(IntptrTy
, MD
.IsDynInit
), SourceLoc
,
2374 ConstantExpr::getPointerCast(ODRIndicator
, IntptrTy
));
2376 if (ClInitializers
&& MD
.IsDynInit
) HasDynamicallyInitializedGlobals
= true;
2378 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal
<< "\n");
2380 Initializers
[i
] = Initializer
;
2383 // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2384 // ConstantMerge'ing them.
2385 SmallVector
<GlobalValue
*, 16> GlobalsToAddToUsedList
;
2386 for (size_t i
= 0; i
< n
; i
++) {
2387 GlobalVariable
*G
= NewGlobals
[i
];
2388 if (G
->getName().empty()) continue;
2389 GlobalsToAddToUsedList
.push_back(G
);
2391 appendToCompilerUsed(M
, ArrayRef
<GlobalValue
*>(GlobalsToAddToUsedList
));
2393 std::string ELFUniqueModuleId
=
2394 (UseGlobalsGC
&& TargetTriple
.isOSBinFormatELF()) ? getUniqueModuleId(&M
)
2397 if (!ELFUniqueModuleId
.empty()) {
2398 InstrumentGlobalsELF(IRB
, M
, NewGlobals
, Initializers
, ELFUniqueModuleId
);
2400 } else if (UseGlobalsGC
&& TargetTriple
.isOSBinFormatCOFF()) {
2401 InstrumentGlobalsCOFF(IRB
, M
, NewGlobals
, Initializers
);
2402 } else if (UseGlobalsGC
&& ShouldUseMachOGlobalsSection()) {
2403 InstrumentGlobalsMachO(IRB
, M
, NewGlobals
, Initializers
);
2405 InstrumentGlobalsWithMetadataArray(IRB
, M
, NewGlobals
, Initializers
);
2408 // Create calls for poisoning before initializers run and unpoisoning after.
2409 if (HasDynamicallyInitializedGlobals
)
2410 createInitializerPoisonCalls(M
, ModuleName
);
2412 LLVM_DEBUG(dbgs() << M
);
2416 int ModuleAddressSanitizer::GetAsanVersion(const Module
&M
) const {
2417 int LongSize
= M
.getDataLayout().getPointerSizeInBits();
2418 bool isAndroid
= Triple(M
.getTargetTriple()).isAndroid();
2420 // 32-bit Android is one version ahead because of the switch to dynamic
2422 Version
+= (LongSize
== 32 && isAndroid
);
2426 bool ModuleAddressSanitizer::instrumentModule(Module
&M
) {
2427 initializeCallbacks(M
);
2432 // Create a module constructor. A destructor is created lazily because not all
2433 // platforms, and not all modules need it.
2434 std::string AsanVersion
= std::to_string(GetAsanVersion(M
));
2435 std::string VersionCheckName
=
2436 ClInsertVersionCheck
? (kAsanVersionCheckNamePrefix
+ AsanVersion
) : "";
2437 std::tie(AsanCtorFunction
, std::ignore
) = createSanitizerCtorAndInitFunctions(
2438 M
, kAsanModuleCtorName
, kAsanInitName
, /*InitArgTypes=*/{},
2439 /*InitArgs=*/{}, VersionCheckName
);
2441 bool CtorComdat
= true;
2442 // TODO(glider): temporarily disabled globals instrumentation for KASan.
2444 IRBuilder
<> IRB(AsanCtorFunction
->getEntryBlock().getTerminator());
2445 InstrumentGlobals(IRB
, M
, &CtorComdat
);
2448 const uint64_t Priority
= GetCtorAndDtorPriority(TargetTriple
);
2450 // Put the constructor and destructor in comdat if both
2451 // (1) global instrumentation is not TU-specific
2452 // (2) target is ELF.
2453 if (UseCtorComdat
&& TargetTriple
.isOSBinFormatELF() && CtorComdat
) {
2454 AsanCtorFunction
->setComdat(M
.getOrInsertComdat(kAsanModuleCtorName
));
2455 appendToGlobalCtors(M
, AsanCtorFunction
, Priority
, AsanCtorFunction
);
2456 if (AsanDtorFunction
) {
2457 AsanDtorFunction
->setComdat(M
.getOrInsertComdat(kAsanModuleDtorName
));
2458 appendToGlobalDtors(M
, AsanDtorFunction
, Priority
, AsanDtorFunction
);
2461 appendToGlobalCtors(M
, AsanCtorFunction
, Priority
);
2462 if (AsanDtorFunction
)
2463 appendToGlobalDtors(M
, AsanDtorFunction
, Priority
);
2469 void AddressSanitizer::initializeCallbacks(Module
&M
) {
2470 IRBuilder
<> IRB(*C
);
2471 // Create __asan_report* callbacks.
2472 // IsWrite, TypeSize and Exp are encoded in the function name.
2473 for (int Exp
= 0; Exp
< 2; Exp
++) {
2474 for (size_t AccessIsWrite
= 0; AccessIsWrite
<= 1; AccessIsWrite
++) {
2475 const std::string TypeStr
= AccessIsWrite
? "store" : "load";
2476 const std::string ExpStr
= Exp
? "exp_" : "";
2477 const std::string EndingStr
= Recover
? "_noabort" : "";
2479 SmallVector
<Type
*, 3> Args2
= {IntptrTy
, IntptrTy
};
2480 SmallVector
<Type
*, 2> Args1
{1, IntptrTy
};
2482 Type
*ExpType
= Type::getInt32Ty(*C
);
2483 Args2
.push_back(ExpType
);
2484 Args1
.push_back(ExpType
);
2486 AsanErrorCallbackSized
[AccessIsWrite
][Exp
] = M
.getOrInsertFunction(
2487 kAsanReportErrorTemplate
+ ExpStr
+ TypeStr
+ "_n" + EndingStr
,
2488 FunctionType::get(IRB
.getVoidTy(), Args2
, false));
2490 AsanMemoryAccessCallbackSized
[AccessIsWrite
][Exp
] = M
.getOrInsertFunction(
2491 ClMemoryAccessCallbackPrefix
+ ExpStr
+ TypeStr
+ "N" + EndingStr
,
2492 FunctionType::get(IRB
.getVoidTy(), Args2
, false));
2494 for (size_t AccessSizeIndex
= 0; AccessSizeIndex
< kNumberOfAccessSizes
;
2495 AccessSizeIndex
++) {
2496 const std::string Suffix
= TypeStr
+ itostr(1ULL << AccessSizeIndex
);
2497 AsanErrorCallback
[AccessIsWrite
][Exp
][AccessSizeIndex
] =
2498 M
.getOrInsertFunction(
2499 kAsanReportErrorTemplate
+ ExpStr
+ Suffix
+ EndingStr
,
2500 FunctionType::get(IRB
.getVoidTy(), Args1
, false));
2502 AsanMemoryAccessCallback
[AccessIsWrite
][Exp
][AccessSizeIndex
] =
2503 M
.getOrInsertFunction(
2504 ClMemoryAccessCallbackPrefix
+ ExpStr
+ Suffix
+ EndingStr
,
2505 FunctionType::get(IRB
.getVoidTy(), Args1
, false));
2510 const std::string MemIntrinCallbackPrefix
=
2511 CompileKernel
? std::string("") : ClMemoryAccessCallbackPrefix
;
2512 AsanMemmove
= M
.getOrInsertFunction(MemIntrinCallbackPrefix
+ "memmove",
2513 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
2514 IRB
.getInt8PtrTy(), IntptrTy
);
2515 AsanMemcpy
= M
.getOrInsertFunction(MemIntrinCallbackPrefix
+ "memcpy",
2516 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
2517 IRB
.getInt8PtrTy(), IntptrTy
);
2518 AsanMemset
= M
.getOrInsertFunction(MemIntrinCallbackPrefix
+ "memset",
2519 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
2520 IRB
.getInt32Ty(), IntptrTy
);
2522 AsanHandleNoReturnFunc
=
2523 M
.getOrInsertFunction(kAsanHandleNoReturnName
, IRB
.getVoidTy());
2525 AsanPtrCmpFunction
=
2526 M
.getOrInsertFunction(kAsanPtrCmp
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2527 AsanPtrSubFunction
=
2528 M
.getOrInsertFunction(kAsanPtrSub
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2529 // We insert an empty inline asm after __asan_report* to avoid callback merge.
2530 EmptyAsm
= InlineAsm::get(FunctionType::get(IRB
.getVoidTy(), false),
2531 StringRef(""), StringRef(""),
2532 /*hasSideEffects=*/true);
2533 if (Mapping
.InGlobal
)
2534 AsanShadowGlobal
= M
.getOrInsertGlobal("__asan_shadow",
2535 ArrayType::get(IRB
.getInt8Ty(), 0));
2538 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function
&F
) {
2539 // For each NSObject descendant having a +load method, this method is invoked
2540 // by the ObjC runtime before any of the static constructors is called.
2541 // Therefore we need to instrument such methods with a call to __asan_init
2542 // at the beginning in order to initialize our runtime before any access to
2543 // the shadow memory.
2544 // We cannot just ignore these methods, because they may call other
2545 // instrumented functions.
2546 if (F
.getName().find(" load]") != std::string::npos
) {
2547 FunctionCallee AsanInitFunction
=
2548 declareSanitizerInitFunction(*F
.getParent(), kAsanInitName
, {});
2549 IRBuilder
<> IRB(&F
.front(), F
.front().begin());
2550 IRB
.CreateCall(AsanInitFunction
, {});
2556 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function
&F
) {
2557 // Generate code only when dynamic addressing is needed.
2558 if (Mapping
.Offset
!= kDynamicShadowSentinel
)
2561 IRBuilder
<> IRB(&F
.front().front());
2562 if (Mapping
.InGlobal
) {
2563 if (ClWithIfuncSuppressRemat
) {
2564 // An empty inline asm with input reg == output reg.
2565 // An opaque pointer-to-int cast, basically.
2566 InlineAsm
*Asm
= InlineAsm::get(
2567 FunctionType::get(IntptrTy
, {AsanShadowGlobal
->getType()}, false),
2568 StringRef(""), StringRef("=r,0"),
2569 /*hasSideEffects=*/false);
2570 LocalDynamicShadow
=
2571 IRB
.CreateCall(Asm
, {AsanShadowGlobal
}, ".asan.shadow");
2573 LocalDynamicShadow
=
2574 IRB
.CreatePointerCast(AsanShadowGlobal
, IntptrTy
, ".asan.shadow");
2577 Value
*GlobalDynamicAddress
= F
.getParent()->getOrInsertGlobal(
2578 kAsanShadowMemoryDynamicAddress
, IntptrTy
);
2579 LocalDynamicShadow
= IRB
.CreateLoad(IntptrTy
, GlobalDynamicAddress
);
2583 void AddressSanitizer::markEscapedLocalAllocas(Function
&F
) {
2584 // Find the one possible call to llvm.localescape and pre-mark allocas passed
2585 // to it as uninteresting. This assumes we haven't started processing allocas
2586 // yet. This check is done up front because iterating the use list in
2587 // isInterestingAlloca would be algorithmically slower.
2588 assert(ProcessedAllocas
.empty() && "must process localescape before allocas");
2590 // Try to get the declaration of llvm.localescape. If it's not in the module,
2591 // we can exit early.
2592 if (!F
.getParent()->getFunction("llvm.localescape")) return;
2594 // Look for a call to llvm.localescape call in the entry block. It can't be in
2596 for (Instruction
&I
: F
.getEntryBlock()) {
2597 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(&I
);
2598 if (II
&& II
->getIntrinsicID() == Intrinsic::localescape
) {
2599 // We found a call. Mark all the allocas passed in as uninteresting.
2600 for (Value
*Arg
: II
->arg_operands()) {
2601 AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Arg
->stripPointerCasts());
2602 assert(AI
&& AI
->isStaticAlloca() &&
2603 "non-static alloca arg to localescape");
2604 ProcessedAllocas
[AI
] = false;
2611 bool AddressSanitizer::instrumentFunction(Function
&F
,
2612 const TargetLibraryInfo
*TLI
) {
2613 if (F
.getLinkage() == GlobalValue::AvailableExternallyLinkage
) return false;
2614 if (!ClDebugFunc
.empty() && ClDebugFunc
== F
.getName()) return false;
2615 if (F
.getName().startswith("__asan_")) return false;
2617 bool FunctionModified
= false;
2619 // If needed, insert __asan_init before checking for SanitizeAddress attr.
2620 // This function needs to be called even if the function body is not
2622 if (maybeInsertAsanInitAtFunctionEntry(F
))
2623 FunctionModified
= true;
2625 // Leave if the function doesn't need instrumentation.
2626 if (!F
.hasFnAttribute(Attribute::SanitizeAddress
)) return FunctionModified
;
2628 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F
<< "\n");
2630 initializeCallbacks(*F
.getParent());
2632 FunctionStateRAII
CleanupObj(this);
2634 maybeInsertDynamicShadowAtFunctionEntry(F
);
2636 // We can't instrument allocas used with llvm.localescape. Only static allocas
2637 // can be passed to that intrinsic.
2638 markEscapedLocalAllocas(F
);
2640 // We want to instrument every address only once per basic block (unless there
2641 // are calls between uses).
2642 SmallPtrSet
<Value
*, 16> TempsToInstrument
;
2643 SmallVector
<Instruction
*, 16> ToInstrument
;
2644 SmallVector
<Instruction
*, 8> NoReturnCalls
;
2645 SmallVector
<BasicBlock
*, 16> AllBlocks
;
2646 SmallVector
<Instruction
*, 16> PointerComparisonsOrSubtracts
;
2652 // Fill the set of memory operations to instrument.
2653 for (auto &BB
: F
) {
2654 AllBlocks
.push_back(&BB
);
2655 TempsToInstrument
.clear();
2656 int NumInsnsPerBB
= 0;
2657 for (auto &Inst
: BB
) {
2658 if (LooksLikeCodeInBug11395(&Inst
)) return false;
2659 Value
*MaybeMask
= nullptr;
2660 if (Value
*Addr
= isInterestingMemoryAccess(&Inst
, &IsWrite
, &TypeSize
,
2661 &Alignment
, &MaybeMask
)) {
2662 if (ClOpt
&& ClOptSameTemp
) {
2663 // If we have a mask, skip instrumentation if we've already
2664 // instrumented the full object. But don't add to TempsToInstrument
2665 // because we might get another load/store with a different mask.
2667 if (TempsToInstrument
.count(Addr
))
2668 continue; // We've seen this (whole) temp in the current BB.
2670 if (!TempsToInstrument
.insert(Addr
).second
)
2671 continue; // We've seen this temp in the current BB.
2674 } else if (((ClInvalidPointerPairs
|| ClInvalidPointerCmp
) &&
2675 isInterestingPointerComparison(&Inst
)) ||
2676 ((ClInvalidPointerPairs
|| ClInvalidPointerSub
) &&
2677 isInterestingPointerSubtraction(&Inst
))) {
2678 PointerComparisonsOrSubtracts
.push_back(&Inst
);
2680 } else if (isa
<MemIntrinsic
>(Inst
)) {
2683 if (isa
<AllocaInst
>(Inst
)) NumAllocas
++;
2686 // A call inside BB.
2687 TempsToInstrument
.clear();
2688 if (CS
.doesNotReturn() && !CS
->hasMetadata("nosanitize"))
2689 NoReturnCalls
.push_back(CS
.getInstruction());
2691 if (CallInst
*CI
= dyn_cast
<CallInst
>(&Inst
))
2692 maybeMarkSanitizerLibraryCallNoBuiltin(CI
, TLI
);
2695 ToInstrument
.push_back(&Inst
);
2697 if (NumInsnsPerBB
>= ClMaxInsnsToInstrumentPerBB
) break;
2702 (ClInstrumentationWithCallsThreshold
>= 0 &&
2703 ToInstrument
.size() > (unsigned)ClInstrumentationWithCallsThreshold
);
2704 const DataLayout
&DL
= F
.getParent()->getDataLayout();
2705 ObjectSizeOpts ObjSizeOpts
;
2706 ObjSizeOpts
.RoundToAlign
= true;
2707 ObjectSizeOffsetVisitor
ObjSizeVis(DL
, TLI
, F
.getContext(), ObjSizeOpts
);
2710 int NumInstrumented
= 0;
2711 for (auto Inst
: ToInstrument
) {
2712 if (ClDebugMin
< 0 || ClDebugMax
< 0 ||
2713 (NumInstrumented
>= ClDebugMin
&& NumInstrumented
<= ClDebugMax
)) {
2714 if (isInterestingMemoryAccess(Inst
, &IsWrite
, &TypeSize
, &Alignment
))
2715 instrumentMop(ObjSizeVis
, Inst
, UseCalls
,
2716 F
.getParent()->getDataLayout());
2718 instrumentMemIntrinsic(cast
<MemIntrinsic
>(Inst
));
2723 FunctionStackPoisoner
FSP(F
, *this);
2724 bool ChangedStack
= FSP
.runOnFunction();
2726 // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2727 // See e.g. https://github.com/google/sanitizers/issues/37
2728 for (auto CI
: NoReturnCalls
) {
2729 IRBuilder
<> IRB(CI
);
2730 IRB
.CreateCall(AsanHandleNoReturnFunc
, {});
2733 for (auto Inst
: PointerComparisonsOrSubtracts
) {
2734 instrumentPointerComparisonOrSubtraction(Inst
);
2738 if (NumInstrumented
> 0 || ChangedStack
|| !NoReturnCalls
.empty())
2739 FunctionModified
= true;
2741 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified
<< " "
2744 return FunctionModified
;
2747 // Workaround for bug 11395: we don't want to instrument stack in functions
2748 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2749 // FIXME: remove once the bug 11395 is fixed.
2750 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction
*I
) {
2751 if (LongSize
!= 32) return false;
2752 CallInst
*CI
= dyn_cast
<CallInst
>(I
);
2753 if (!CI
|| !CI
->isInlineAsm()) return false;
2754 if (CI
->getNumArgOperands() <= 5) return false;
2755 // We have inline assembly with quite a few arguments.
2759 void FunctionStackPoisoner::initializeCallbacks(Module
&M
) {
2760 IRBuilder
<> IRB(*C
);
2761 for (int i
= 0; i
<= kMaxAsanStackMallocSizeClass
; i
++) {
2762 std::string Suffix
= itostr(i
);
2763 AsanStackMallocFunc
[i
] = M
.getOrInsertFunction(
2764 kAsanStackMallocNameTemplate
+ Suffix
, IntptrTy
, IntptrTy
);
2765 AsanStackFreeFunc
[i
] =
2766 M
.getOrInsertFunction(kAsanStackFreeNameTemplate
+ Suffix
,
2767 IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2769 if (ASan
.UseAfterScope
) {
2770 AsanPoisonStackMemoryFunc
= M
.getOrInsertFunction(
2771 kAsanPoisonStackMemoryName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2772 AsanUnpoisonStackMemoryFunc
= M
.getOrInsertFunction(
2773 kAsanUnpoisonStackMemoryName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2776 for (size_t Val
: {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2777 std::ostringstream Name
;
2778 Name
<< kAsanSetShadowPrefix
;
2779 Name
<< std::setw(2) << std::setfill('0') << std::hex
<< Val
;
2780 AsanSetShadowFunc
[Val
] =
2781 M
.getOrInsertFunction(Name
.str(), IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2784 AsanAllocaPoisonFunc
= M
.getOrInsertFunction(
2785 kAsanAllocaPoison
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2786 AsanAllocasUnpoisonFunc
= M
.getOrInsertFunction(
2787 kAsanAllocasUnpoison
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2790 void FunctionStackPoisoner::copyToShadowInline(ArrayRef
<uint8_t> ShadowMask
,
2791 ArrayRef
<uint8_t> ShadowBytes
,
2792 size_t Begin
, size_t End
,
2794 Value
*ShadowBase
) {
2798 const size_t LargestStoreSizeInBytes
=
2799 std::min
<size_t>(sizeof(uint64_t), ASan
.LongSize
/ 8);
2801 const bool IsLittleEndian
= F
.getParent()->getDataLayout().isLittleEndian();
2803 // Poison given range in shadow using larges store size with out leading and
2804 // trailing zeros in ShadowMask. Zeros never change, so they need neither
2805 // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2806 // middle of a store.
2807 for (size_t i
= Begin
; i
< End
;) {
2808 if (!ShadowMask
[i
]) {
2809 assert(!ShadowBytes
[i
]);
2814 size_t StoreSizeInBytes
= LargestStoreSizeInBytes
;
2815 // Fit store size into the range.
2816 while (StoreSizeInBytes
> End
- i
)
2817 StoreSizeInBytes
/= 2;
2819 // Minimize store size by trimming trailing zeros.
2820 for (size_t j
= StoreSizeInBytes
- 1; j
&& !ShadowMask
[i
+ j
]; --j
) {
2821 while (j
<= StoreSizeInBytes
/ 2)
2822 StoreSizeInBytes
/= 2;
2826 for (size_t j
= 0; j
< StoreSizeInBytes
; j
++) {
2828 Val
|= (uint64_t)ShadowBytes
[i
+ j
] << (8 * j
);
2830 Val
= (Val
<< 8) | ShadowBytes
[i
+ j
];
2833 Value
*Ptr
= IRB
.CreateAdd(ShadowBase
, ConstantInt::get(IntptrTy
, i
));
2834 Value
*Poison
= IRB
.getIntN(StoreSizeInBytes
* 8, Val
);
2835 IRB
.CreateAlignedStore(
2836 Poison
, IRB
.CreateIntToPtr(Ptr
, Poison
->getType()->getPointerTo()), 1);
2838 i
+= StoreSizeInBytes
;
2842 void FunctionStackPoisoner::copyToShadow(ArrayRef
<uint8_t> ShadowMask
,
2843 ArrayRef
<uint8_t> ShadowBytes
,
2844 IRBuilder
<> &IRB
, Value
*ShadowBase
) {
2845 copyToShadow(ShadowMask
, ShadowBytes
, 0, ShadowMask
.size(), IRB
, ShadowBase
);
2848 void FunctionStackPoisoner::copyToShadow(ArrayRef
<uint8_t> ShadowMask
,
2849 ArrayRef
<uint8_t> ShadowBytes
,
2850 size_t Begin
, size_t End
,
2851 IRBuilder
<> &IRB
, Value
*ShadowBase
) {
2852 assert(ShadowMask
.size() == ShadowBytes
.size());
2853 size_t Done
= Begin
;
2854 for (size_t i
= Begin
, j
= Begin
+ 1; i
< End
; i
= j
++) {
2855 if (!ShadowMask
[i
]) {
2856 assert(!ShadowBytes
[i
]);
2859 uint8_t Val
= ShadowBytes
[i
];
2860 if (!AsanSetShadowFunc
[Val
])
2863 // Skip same values.
2864 for (; j
< End
&& ShadowMask
[j
] && Val
== ShadowBytes
[j
]; ++j
) {
2867 if (j
- i
>= ClMaxInlinePoisoningSize
) {
2868 copyToShadowInline(ShadowMask
, ShadowBytes
, Done
, i
, IRB
, ShadowBase
);
2869 IRB
.CreateCall(AsanSetShadowFunc
[Val
],
2870 {IRB
.CreateAdd(ShadowBase
, ConstantInt::get(IntptrTy
, i
)),
2871 ConstantInt::get(IntptrTy
, j
- i
)});
2876 copyToShadowInline(ShadowMask
, ShadowBytes
, Done
, End
, IRB
, ShadowBase
);
2879 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
2880 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
2881 static int StackMallocSizeClass(uint64_t LocalStackSize
) {
2882 assert(LocalStackSize
<= kMaxStackMallocSize
);
2883 uint64_t MaxSize
= kMinStackMallocSize
;
2884 for (int i
= 0;; i
++, MaxSize
*= 2)
2885 if (LocalStackSize
<= MaxSize
) return i
;
2886 llvm_unreachable("impossible LocalStackSize");
2889 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
2890 Instruction
*CopyInsertPoint
= &F
.front().front();
2891 if (CopyInsertPoint
== ASan
.LocalDynamicShadow
) {
2892 // Insert after the dynamic shadow location is determined
2893 CopyInsertPoint
= CopyInsertPoint
->getNextNode();
2894 assert(CopyInsertPoint
);
2896 IRBuilder
<> IRB(CopyInsertPoint
);
2897 const DataLayout
&DL
= F
.getParent()->getDataLayout();
2898 for (Argument
&Arg
: F
.args()) {
2899 if (Arg
.hasByValAttr()) {
2900 Type
*Ty
= Arg
.getType()->getPointerElementType();
2901 unsigned Alignment
= Arg
.getParamAlignment();
2903 Alignment
= DL
.getABITypeAlignment(Ty
);
2905 AllocaInst
*AI
= IRB
.CreateAlloca(
2907 (Arg
.hasName() ? Arg
.getName() : "Arg" + Twine(Arg
.getArgNo())) +
2909 AI
->setAlignment(Align(Alignment
));
2910 Arg
.replaceAllUsesWith(AI
);
2912 uint64_t AllocSize
= DL
.getTypeAllocSize(Ty
);
2913 IRB
.CreateMemCpy(AI
, Alignment
, &Arg
, Alignment
, AllocSize
);
2918 PHINode
*FunctionStackPoisoner::createPHI(IRBuilder
<> &IRB
, Value
*Cond
,
2920 Instruction
*ThenTerm
,
2921 Value
*ValueIfFalse
) {
2922 PHINode
*PHI
= IRB
.CreatePHI(IntptrTy
, 2);
2923 BasicBlock
*CondBlock
= cast
<Instruction
>(Cond
)->getParent();
2924 PHI
->addIncoming(ValueIfFalse
, CondBlock
);
2925 BasicBlock
*ThenBlock
= ThenTerm
->getParent();
2926 PHI
->addIncoming(ValueIfTrue
, ThenBlock
);
2930 Value
*FunctionStackPoisoner::createAllocaForLayout(
2931 IRBuilder
<> &IRB
, const ASanStackFrameLayout
&L
, bool Dynamic
) {
2934 Alloca
= IRB
.CreateAlloca(IRB
.getInt8Ty(),
2935 ConstantInt::get(IRB
.getInt64Ty(), L
.FrameSize
),
2938 Alloca
= IRB
.CreateAlloca(ArrayType::get(IRB
.getInt8Ty(), L
.FrameSize
),
2939 nullptr, "MyAlloca");
2940 assert(Alloca
->isStaticAlloca());
2942 assert((ClRealignStack
& (ClRealignStack
- 1)) == 0);
2943 size_t FrameAlignment
= std::max(L
.FrameAlignment
, (size_t)ClRealignStack
);
2944 Alloca
->setAlignment(MaybeAlign(FrameAlignment
));
2945 return IRB
.CreatePointerCast(Alloca
, IntptrTy
);
2948 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
2949 BasicBlock
&FirstBB
= *F
.begin();
2950 IRBuilder
<> IRB(dyn_cast
<Instruction
>(FirstBB
.begin()));
2951 DynamicAllocaLayout
= IRB
.CreateAlloca(IntptrTy
, nullptr);
2952 IRB
.CreateStore(Constant::getNullValue(IntptrTy
), DynamicAllocaLayout
);
2953 DynamicAllocaLayout
->setAlignment(Align(32));
2956 void FunctionStackPoisoner::processDynamicAllocas() {
2957 if (!ClInstrumentDynamicAllocas
|| DynamicAllocaVec
.empty()) {
2958 assert(DynamicAllocaPoisonCallVec
.empty());
2962 // Insert poison calls for lifetime intrinsics for dynamic allocas.
2963 for (const auto &APC
: DynamicAllocaPoisonCallVec
) {
2964 assert(APC
.InsBefore
);
2966 assert(ASan
.isInterestingAlloca(*APC
.AI
));
2967 assert(!APC
.AI
->isStaticAlloca());
2969 IRBuilder
<> IRB(APC
.InsBefore
);
2970 poisonAlloca(APC
.AI
, APC
.Size
, IRB
, APC
.DoPoison
);
2971 // Dynamic allocas will be unpoisoned unconditionally below in
2972 // unpoisonDynamicAllocas.
2973 // Flag that we need unpoison static allocas.
2976 // Handle dynamic allocas.
2977 createDynamicAllocasInitStorage();
2978 for (auto &AI
: DynamicAllocaVec
)
2979 handleDynamicAllocaCall(AI
);
2980 unpoisonDynamicAllocas();
2983 void FunctionStackPoisoner::processStaticAllocas() {
2984 if (AllocaVec
.empty()) {
2985 assert(StaticAllocaPoisonCallVec
.empty());
2989 int StackMallocIdx
= -1;
2990 DebugLoc EntryDebugLocation
;
2991 if (auto SP
= F
.getSubprogram())
2992 EntryDebugLocation
= DebugLoc::get(SP
->getScopeLine(), 0, SP
);
2994 Instruction
*InsBefore
= AllocaVec
[0];
2995 IRBuilder
<> IRB(InsBefore
);
2996 IRB
.SetCurrentDebugLocation(EntryDebugLocation
);
2998 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
2999 // debug info is broken, because only entry-block allocas are treated as
3000 // regular stack slots.
3001 auto InsBeforeB
= InsBefore
->getParent();
3002 assert(InsBeforeB
== &F
.getEntryBlock());
3003 for (auto *AI
: StaticAllocasToMoveUp
)
3004 if (AI
->getParent() == InsBeforeB
)
3005 AI
->moveBefore(InsBefore
);
3007 // If we have a call to llvm.localescape, keep it in the entry block.
3008 if (LocalEscapeCall
) LocalEscapeCall
->moveBefore(InsBefore
);
3010 SmallVector
<ASanStackVariableDescription
, 16> SVD
;
3011 SVD
.reserve(AllocaVec
.size());
3012 for (AllocaInst
*AI
: AllocaVec
) {
3013 ASanStackVariableDescription D
= {AI
->getName().data(),
3014 ASan
.getAllocaSizeInBytes(*AI
),
3023 // Minimal header size (left redzone) is 4 pointers,
3024 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3025 size_t Granularity
= 1ULL << Mapping
.Scale
;
3026 size_t MinHeaderSize
= std::max((size_t)ASan
.LongSize
/ 2, Granularity
);
3027 const ASanStackFrameLayout
&L
=
3028 ComputeASanStackFrameLayout(SVD
, Granularity
, MinHeaderSize
);
3030 // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3031 DenseMap
<const AllocaInst
*, ASanStackVariableDescription
*> AllocaToSVDMap
;
3032 for (auto &Desc
: SVD
)
3033 AllocaToSVDMap
[Desc
.AI
] = &Desc
;
3035 // Update SVD with information from lifetime intrinsics.
3036 for (const auto &APC
: StaticAllocaPoisonCallVec
) {
3037 assert(APC
.InsBefore
);
3039 assert(ASan
.isInterestingAlloca(*APC
.AI
));
3040 assert(APC
.AI
->isStaticAlloca());
3042 ASanStackVariableDescription
&Desc
= *AllocaToSVDMap
[APC
.AI
];
3043 Desc
.LifetimeSize
= Desc
.Size
;
3044 if (const DILocation
*FnLoc
= EntryDebugLocation
.get()) {
3045 if (const DILocation
*LifetimeLoc
= APC
.InsBefore
->getDebugLoc().get()) {
3046 if (LifetimeLoc
->getFile() == FnLoc
->getFile())
3047 if (unsigned Line
= LifetimeLoc
->getLine())
3048 Desc
.Line
= std::min(Desc
.Line
? Desc
.Line
: Line
, Line
);
3053 auto DescriptionString
= ComputeASanStackFrameDescription(SVD
);
3054 LLVM_DEBUG(dbgs() << DescriptionString
<< " --- " << L
.FrameSize
<< "\n");
3055 uint64_t LocalStackSize
= L
.FrameSize
;
3056 bool DoStackMalloc
= ClUseAfterReturn
&& !ASan
.CompileKernel
&&
3057 LocalStackSize
<= kMaxStackMallocSize
;
3058 bool DoDynamicAlloca
= ClDynamicAllocaStack
;
3059 // Don't do dynamic alloca or stack malloc if:
3060 // 1) There is inline asm: too often it makes assumptions on which registers
3062 // 2) There is a returns_twice call (typically setjmp), which is
3063 // optimization-hostile, and doesn't play well with introduced indirect
3064 // register-relative calculation of local variable addresses.
3065 DoDynamicAlloca
&= !HasNonEmptyInlineAsm
&& !HasReturnsTwiceCall
;
3066 DoStackMalloc
&= !HasNonEmptyInlineAsm
&& !HasReturnsTwiceCall
;
3068 Value
*StaticAlloca
=
3069 DoDynamicAlloca
? nullptr : createAllocaForLayout(IRB
, L
, false);
3072 Value
*LocalStackBase
;
3073 Value
*LocalStackBaseAlloca
;
3074 uint8_t DIExprFlags
= DIExpression::ApplyOffset
;
3076 if (DoStackMalloc
) {
3077 LocalStackBaseAlloca
=
3078 IRB
.CreateAlloca(IntptrTy
, nullptr, "asan_local_stack_base");
3079 // void *FakeStack = __asan_option_detect_stack_use_after_return
3080 // ? __asan_stack_malloc_N(LocalStackSize)
3082 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
3083 Constant
*OptionDetectUseAfterReturn
= F
.getParent()->getOrInsertGlobal(
3084 kAsanOptionDetectUseAfterReturn
, IRB
.getInt32Ty());
3085 Value
*UseAfterReturnIsEnabled
= IRB
.CreateICmpNE(
3086 IRB
.CreateLoad(IRB
.getInt32Ty(), OptionDetectUseAfterReturn
),
3087 Constant::getNullValue(IRB
.getInt32Ty()));
3089 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled
, InsBefore
, false);
3090 IRBuilder
<> IRBIf(Term
);
3091 IRBIf
.SetCurrentDebugLocation(EntryDebugLocation
);
3092 StackMallocIdx
= StackMallocSizeClass(LocalStackSize
);
3093 assert(StackMallocIdx
<= kMaxAsanStackMallocSizeClass
);
3094 Value
*FakeStackValue
=
3095 IRBIf
.CreateCall(AsanStackMallocFunc
[StackMallocIdx
],
3096 ConstantInt::get(IntptrTy
, LocalStackSize
));
3097 IRB
.SetInsertPoint(InsBefore
);
3098 IRB
.SetCurrentDebugLocation(EntryDebugLocation
);
3099 FakeStack
= createPHI(IRB
, UseAfterReturnIsEnabled
, FakeStackValue
, Term
,
3100 ConstantInt::get(IntptrTy
, 0));
3102 Value
*NoFakeStack
=
3103 IRB
.CreateICmpEQ(FakeStack
, Constant::getNullValue(IntptrTy
));
3104 Term
= SplitBlockAndInsertIfThen(NoFakeStack
, InsBefore
, false);
3105 IRBIf
.SetInsertPoint(Term
);
3106 IRBIf
.SetCurrentDebugLocation(EntryDebugLocation
);
3107 Value
*AllocaValue
=
3108 DoDynamicAlloca
? createAllocaForLayout(IRBIf
, L
, true) : StaticAlloca
;
3110 IRB
.SetInsertPoint(InsBefore
);
3111 IRB
.SetCurrentDebugLocation(EntryDebugLocation
);
3112 LocalStackBase
= createPHI(IRB
, NoFakeStack
, AllocaValue
, Term
, FakeStack
);
3113 IRB
.SetCurrentDebugLocation(EntryDebugLocation
);
3114 IRB
.CreateStore(LocalStackBase
, LocalStackBaseAlloca
);
3115 DIExprFlags
|= DIExpression::DerefBefore
;
3117 // void *FakeStack = nullptr;
3118 // void *LocalStackBase = alloca(LocalStackSize);
3119 FakeStack
= ConstantInt::get(IntptrTy
, 0);
3121 DoDynamicAlloca
? createAllocaForLayout(IRB
, L
, true) : StaticAlloca
;
3122 LocalStackBaseAlloca
= LocalStackBase
;
3125 // Replace Alloca instructions with base+offset.
3126 for (const auto &Desc
: SVD
) {
3127 AllocaInst
*AI
= Desc
.AI
;
3128 replaceDbgDeclareForAlloca(AI
, LocalStackBaseAlloca
, DIB
, DIExprFlags
,
3130 Value
*NewAllocaPtr
= IRB
.CreateIntToPtr(
3131 IRB
.CreateAdd(LocalStackBase
, ConstantInt::get(IntptrTy
, Desc
.Offset
)),
3133 AI
->replaceAllUsesWith(NewAllocaPtr
);
3136 // The left-most redzone has enough space for at least 4 pointers.
3137 // Write the Magic value to redzone[0].
3138 Value
*BasePlus0
= IRB
.CreateIntToPtr(LocalStackBase
, IntptrPtrTy
);
3139 IRB
.CreateStore(ConstantInt::get(IntptrTy
, kCurrentStackFrameMagic
),
3141 // Write the frame description constant to redzone[1].
3142 Value
*BasePlus1
= IRB
.CreateIntToPtr(
3143 IRB
.CreateAdd(LocalStackBase
,
3144 ConstantInt::get(IntptrTy
, ASan
.LongSize
/ 8)),
3146 GlobalVariable
*StackDescriptionGlobal
=
3147 createPrivateGlobalForString(*F
.getParent(), DescriptionString
,
3148 /*AllowMerging*/ true, kAsanGenPrefix
);
3149 Value
*Description
= IRB
.CreatePointerCast(StackDescriptionGlobal
, IntptrTy
);
3150 IRB
.CreateStore(Description
, BasePlus1
);
3151 // Write the PC to redzone[2].
3152 Value
*BasePlus2
= IRB
.CreateIntToPtr(
3153 IRB
.CreateAdd(LocalStackBase
,
3154 ConstantInt::get(IntptrTy
, 2 * ASan
.LongSize
/ 8)),
3156 IRB
.CreateStore(IRB
.CreatePointerCast(&F
, IntptrTy
), BasePlus2
);
3158 const auto &ShadowAfterScope
= GetShadowBytesAfterScope(SVD
, L
);
3160 // Poison the stack red zones at the entry.
3161 Value
*ShadowBase
= ASan
.memToShadow(LocalStackBase
, IRB
);
3162 // As mask we must use most poisoned case: red zones and after scope.
3163 // As bytes we can use either the same or just red zones only.
3164 copyToShadow(ShadowAfterScope
, ShadowAfterScope
, IRB
, ShadowBase
);
3166 if (!StaticAllocaPoisonCallVec
.empty()) {
3167 const auto &ShadowInScope
= GetShadowBytes(SVD
, L
);
3169 // Poison static allocas near lifetime intrinsics.
3170 for (const auto &APC
: StaticAllocaPoisonCallVec
) {
3171 const ASanStackVariableDescription
&Desc
= *AllocaToSVDMap
[APC
.AI
];
3172 assert(Desc
.Offset
% L
.Granularity
== 0);
3173 size_t Begin
= Desc
.Offset
/ L
.Granularity
;
3174 size_t End
= Begin
+ (APC
.Size
+ L
.Granularity
- 1) / L
.Granularity
;
3176 IRBuilder
<> IRB(APC
.InsBefore
);
3177 copyToShadow(ShadowAfterScope
,
3178 APC
.DoPoison
? ShadowAfterScope
: ShadowInScope
, Begin
, End
,
3183 SmallVector
<uint8_t, 64> ShadowClean(ShadowAfterScope
.size(), 0);
3184 SmallVector
<uint8_t, 64> ShadowAfterReturn
;
3186 // (Un)poison the stack before all ret instructions.
3187 for (auto Ret
: RetVec
) {
3188 IRBuilder
<> IRBRet(Ret
);
3189 // Mark the current frame as retired.
3190 IRBRet
.CreateStore(ConstantInt::get(IntptrTy
, kRetiredStackFrameMagic
),
3192 if (DoStackMalloc
) {
3193 assert(StackMallocIdx
>= 0);
3194 // if FakeStack != 0 // LocalStackBase == FakeStack
3195 // // In use-after-return mode, poison the whole stack frame.
3196 // if StackMallocIdx <= 4
3197 // // For small sizes inline the whole thing:
3198 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3199 // **SavedFlagPtr(FakeStack) = 0
3201 // __asan_stack_free_N(FakeStack, LocalStackSize)
3203 // <This is not a fake stack; unpoison the redzones>
3205 IRBRet
.CreateICmpNE(FakeStack
, Constant::getNullValue(IntptrTy
));
3206 Instruction
*ThenTerm
, *ElseTerm
;
3207 SplitBlockAndInsertIfThenElse(Cmp
, Ret
, &ThenTerm
, &ElseTerm
);
3209 IRBuilder
<> IRBPoison(ThenTerm
);
3210 if (StackMallocIdx
<= 4) {
3211 int ClassSize
= kMinStackMallocSize
<< StackMallocIdx
;
3212 ShadowAfterReturn
.resize(ClassSize
/ L
.Granularity
,
3213 kAsanStackUseAfterReturnMagic
);
3214 copyToShadow(ShadowAfterReturn
, ShadowAfterReturn
, IRBPoison
,
3216 Value
*SavedFlagPtrPtr
= IRBPoison
.CreateAdd(
3218 ConstantInt::get(IntptrTy
, ClassSize
- ASan
.LongSize
/ 8));
3219 Value
*SavedFlagPtr
= IRBPoison
.CreateLoad(
3220 IntptrTy
, IRBPoison
.CreateIntToPtr(SavedFlagPtrPtr
, IntptrPtrTy
));
3221 IRBPoison
.CreateStore(
3222 Constant::getNullValue(IRBPoison
.getInt8Ty()),
3223 IRBPoison
.CreateIntToPtr(SavedFlagPtr
, IRBPoison
.getInt8PtrTy()));
3225 // For larger frames call __asan_stack_free_*.
3226 IRBPoison
.CreateCall(
3227 AsanStackFreeFunc
[StackMallocIdx
],
3228 {FakeStack
, ConstantInt::get(IntptrTy
, LocalStackSize
)});
3231 IRBuilder
<> IRBElse(ElseTerm
);
3232 copyToShadow(ShadowAfterScope
, ShadowClean
, IRBElse
, ShadowBase
);
3234 copyToShadow(ShadowAfterScope
, ShadowClean
, IRBRet
, ShadowBase
);
3238 // We are done. Remove the old unused alloca instructions.
3239 for (auto AI
: AllocaVec
) AI
->eraseFromParent();
3242 void FunctionStackPoisoner::poisonAlloca(Value
*V
, uint64_t Size
,
3243 IRBuilder
<> &IRB
, bool DoPoison
) {
3244 // For now just insert the call to ASan runtime.
3245 Value
*AddrArg
= IRB
.CreatePointerCast(V
, IntptrTy
);
3246 Value
*SizeArg
= ConstantInt::get(IntptrTy
, Size
);
3248 DoPoison
? AsanPoisonStackMemoryFunc
: AsanUnpoisonStackMemoryFunc
,
3249 {AddrArg
, SizeArg
});
3252 // Handling llvm.lifetime intrinsics for a given %alloca:
3253 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3254 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3255 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3256 // could be poisoned by previous llvm.lifetime.end instruction, as the
3257 // variable may go in and out of scope several times, e.g. in loops).
3258 // (3) if we poisoned at least one %alloca in a function,
3259 // unpoison the whole stack frame at function exit.
3260 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst
*AI
) {
3261 IRBuilder
<> IRB(AI
);
3263 const unsigned Align
= std::max(kAllocaRzSize
, AI
->getAlignment());
3264 const uint64_t AllocaRedzoneMask
= kAllocaRzSize
- 1;
3266 Value
*Zero
= Constant::getNullValue(IntptrTy
);
3267 Value
*AllocaRzSize
= ConstantInt::get(IntptrTy
, kAllocaRzSize
);
3268 Value
*AllocaRzMask
= ConstantInt::get(IntptrTy
, AllocaRedzoneMask
);
3270 // Since we need to extend alloca with additional memory to locate
3271 // redzones, and OldSize is number of allocated blocks with
3272 // ElementSize size, get allocated memory size in bytes by
3273 // OldSize * ElementSize.
3274 const unsigned ElementSize
=
3275 F
.getParent()->getDataLayout().getTypeAllocSize(AI
->getAllocatedType());
3277 IRB
.CreateMul(IRB
.CreateIntCast(AI
->getArraySize(), IntptrTy
, false),
3278 ConstantInt::get(IntptrTy
, ElementSize
));
3280 // PartialSize = OldSize % 32
3281 Value
*PartialSize
= IRB
.CreateAnd(OldSize
, AllocaRzMask
);
3283 // Misalign = kAllocaRzSize - PartialSize;
3284 Value
*Misalign
= IRB
.CreateSub(AllocaRzSize
, PartialSize
);
3286 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3287 Value
*Cond
= IRB
.CreateICmpNE(Misalign
, AllocaRzSize
);
3288 Value
*PartialPadding
= IRB
.CreateSelect(Cond
, Misalign
, Zero
);
3290 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
3291 // Align is added to locate left redzone, PartialPadding for possible
3292 // partial redzone and kAllocaRzSize for right redzone respectively.
3293 Value
*AdditionalChunkSize
= IRB
.CreateAdd(
3294 ConstantInt::get(IntptrTy
, Align
+ kAllocaRzSize
), PartialPadding
);
3296 Value
*NewSize
= IRB
.CreateAdd(OldSize
, AdditionalChunkSize
);
3298 // Insert new alloca with new NewSize and Align params.
3299 AllocaInst
*NewAlloca
= IRB
.CreateAlloca(IRB
.getInt8Ty(), NewSize
);
3300 NewAlloca
->setAlignment(MaybeAlign(Align
));
3302 // NewAddress = Address + Align
3303 Value
*NewAddress
= IRB
.CreateAdd(IRB
.CreatePtrToInt(NewAlloca
, IntptrTy
),
3304 ConstantInt::get(IntptrTy
, Align
));
3306 // Insert __asan_alloca_poison call for new created alloca.
3307 IRB
.CreateCall(AsanAllocaPoisonFunc
, {NewAddress
, OldSize
});
3309 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3310 // for unpoisoning stuff.
3311 IRB
.CreateStore(IRB
.CreatePtrToInt(NewAlloca
, IntptrTy
), DynamicAllocaLayout
);
3313 Value
*NewAddressPtr
= IRB
.CreateIntToPtr(NewAddress
, AI
->getType());
3315 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3316 AI
->replaceAllUsesWith(NewAddressPtr
);
3318 // We are done. Erase old alloca from parent.
3319 AI
->eraseFromParent();
3322 // isSafeAccess returns true if Addr is always inbounds with respect to its
3323 // base object. For example, it is a field access or an array access with
3324 // constant inbounds index.
3325 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor
&ObjSizeVis
,
3326 Value
*Addr
, uint64_t TypeSize
) const {
3327 SizeOffsetType SizeOffset
= ObjSizeVis
.compute(Addr
);
3328 if (!ObjSizeVis
.bothKnown(SizeOffset
)) return false;
3329 uint64_t Size
= SizeOffset
.first
.getZExtValue();
3330 int64_t Offset
= SizeOffset
.second
.getSExtValue();
3331 // Three checks are required to ensure safety:
3332 // . Offset >= 0 (since the offset is given from the base ptr)
3333 // . Size >= Offset (unsigned)
3334 // . Size - Offset >= NeededSize (unsigned)
3335 return Offset
>= 0 && Size
>= uint64_t(Offset
) &&
3336 Size
- uint64_t(Offset
) >= TypeSize
/ 8;