1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Aggressive Dead Code Elimination pass. This pass
10 // optimistically assumes that all instructions are dead until proven otherwise,
11 // allowing it to eliminate dead computations that other DCE passes do not
12 // catch, particularly involving loop computations.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Scalar/ADCE.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
29 #include "llvm/Analysis/PostDominators.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InstIterator.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/PassManager.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/Pass.h"
46 #include "llvm/ProfileData/InstrProf.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Scalar.h"
58 #define DEBUG_TYPE "adce"
60 STATISTIC(NumRemoved
, "Number of instructions removed");
61 STATISTIC(NumBranchesRemoved
, "Number of branch instructions removed");
63 // This is a temporary option until we change the interface to this pass based
64 // on optimization level.
65 static cl::opt
<bool> RemoveControlFlowFlag("adce-remove-control-flow",
66 cl::init(true), cl::Hidden
);
68 // This option enables removing of may-be-infinite loops which have no other
70 static cl::opt
<bool> RemoveLoops("adce-remove-loops", cl::init(false),
75 /// Information about Instructions
77 /// True if the associated instruction is live.
80 /// Quick access to information for block containing associated Instruction.
81 struct BlockInfoType
*Block
= nullptr;
84 /// Information about basic blocks relevant to dead code elimination.
85 struct BlockInfoType
{
86 /// True when this block contains a live instructions.
89 /// True when this block ends in an unconditional branch.
90 bool UnconditionalBranch
= false;
92 /// True when this block is known to have live PHI nodes.
93 bool HasLivePhiNodes
= false;
95 /// Control dependence sources need to be live for this block.
98 /// Quick access to the LiveInfo for the terminator,
99 /// holds the value &InstInfo[Terminator]
100 InstInfoType
*TerminatorLiveInfo
= nullptr;
102 /// Corresponding BasicBlock.
103 BasicBlock
*BB
= nullptr;
105 /// Cache of BB->getTerminator().
106 Instruction
*Terminator
= nullptr;
108 /// Post-order numbering of reverse control flow graph.
111 bool terminatorIsLive() const { return TerminatorLiveInfo
->Live
; }
114 class AggressiveDeadCodeElimination
{
117 // ADCE does not use DominatorTree per se, but it updates it to preserve the
120 PostDominatorTree
&PDT
;
122 /// Mapping of blocks to associated information, an element in BlockInfoVec.
123 /// Use MapVector to get deterministic iteration order.
124 MapVector
<BasicBlock
*, BlockInfoType
> BlockInfo
;
125 bool isLive(BasicBlock
*BB
) { return BlockInfo
[BB
].Live
; }
127 /// Mapping of instructions to associated information.
128 DenseMap
<Instruction
*, InstInfoType
> InstInfo
;
129 bool isLive(Instruction
*I
) { return InstInfo
[I
].Live
; }
131 /// Instructions known to be live where we need to mark
132 /// reaching definitions as live.
133 SmallVector
<Instruction
*, 128> Worklist
;
135 /// Debug info scopes around a live instruction.
136 SmallPtrSet
<const Metadata
*, 32> AliveScopes
;
138 /// Set of blocks with not known to have live terminators.
139 SmallSetVector
<BasicBlock
*, 16> BlocksWithDeadTerminators
;
141 /// The set of blocks which we have determined whose control
142 /// dependence sources must be live and which have not had
143 /// those dependences analyzed.
144 SmallPtrSet
<BasicBlock
*, 16> NewLiveBlocks
;
146 /// Set up auxiliary data structures for Instructions and BasicBlocks and
147 /// initialize the Worklist to the set of must-be-live Instruscions.
150 /// Return true for operations which are always treated as live.
151 bool isAlwaysLive(Instruction
&I
);
153 /// Return true for instrumentation instructions for value profiling.
154 bool isInstrumentsConstant(Instruction
&I
);
156 /// Propagate liveness to reaching definitions.
157 void markLiveInstructions();
159 /// Mark an instruction as live.
160 void markLive(Instruction
*I
);
162 /// Mark a block as live.
163 void markLive(BlockInfoType
&BB
);
164 void markLive(BasicBlock
*BB
) { markLive(BlockInfo
[BB
]); }
166 /// Mark terminators of control predecessors of a PHI node live.
167 void markPhiLive(PHINode
*PN
);
169 /// Record the Debug Scopes which surround live debug information.
170 void collectLiveScopes(const DILocalScope
&LS
);
171 void collectLiveScopes(const DILocation
&DL
);
173 /// Analyze dead branches to find those whose branches are the sources
174 /// of control dependences impacting a live block. Those branches are
176 void markLiveBranchesFromControlDependences();
178 /// Remove instructions not marked live, return if any instruction was
180 bool removeDeadInstructions();
182 /// Identify connected sections of the control flow graph which have
183 /// dead terminators and rewrite the control flow graph to remove them.
184 void updateDeadRegions();
186 /// Set the BlockInfo::PostOrder field based on a post-order
187 /// numbering of the reverse control flow graph.
188 void computeReversePostOrder();
190 /// Make the terminator of this block an unconditional branch to \p Target.
191 void makeUnconditional(BasicBlock
*BB
, BasicBlock
*Target
);
194 AggressiveDeadCodeElimination(Function
&F
, DominatorTree
*DT
,
195 PostDominatorTree
&PDT
)
196 : F(F
), DT(DT
), PDT(PDT
) {}
198 bool performDeadCodeElimination();
201 } // end anonymous namespace
203 bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
205 markLiveInstructions();
206 return removeDeadInstructions();
209 static bool isUnconditionalBranch(Instruction
*Term
) {
210 auto *BR
= dyn_cast
<BranchInst
>(Term
);
211 return BR
&& BR
->isUnconditional();
214 void AggressiveDeadCodeElimination::initialize() {
215 auto NumBlocks
= F
.size();
217 // We will have an entry in the map for each block so we grow the
218 // structure to twice that size to keep the load factor low in the hash table.
219 BlockInfo
.reserve(NumBlocks
);
222 // Iterate over blocks and initialize BlockInfoVec entries, count
223 // instructions to size the InstInfo hash table.
225 NumInsts
+= BB
.size();
226 auto &Info
= BlockInfo
[&BB
];
228 Info
.Terminator
= BB
.getTerminator();
229 Info
.UnconditionalBranch
= isUnconditionalBranch(Info
.Terminator
);
232 // Initialize instruction map and set pointers to block info.
233 InstInfo
.reserve(NumInsts
);
234 for (auto &BBInfo
: BlockInfo
)
235 for (Instruction
&I
: *BBInfo
.second
.BB
)
236 InstInfo
[&I
].Block
= &BBInfo
.second
;
238 // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
239 // add any more elements to either after this point.
240 for (auto &BBInfo
: BlockInfo
)
241 BBInfo
.second
.TerminatorLiveInfo
= &InstInfo
[BBInfo
.second
.Terminator
];
243 // Collect the set of "root" instructions that are known live.
244 for (Instruction
&I
: instructions(F
))
248 if (!RemoveControlFlowFlag
)
252 // This stores state for the depth-first iterator. In addition
253 // to recording which nodes have been visited we also record whether
254 // a node is currently on the "stack" of active ancestors of the current
256 using StatusMap
= DenseMap
<BasicBlock
*, bool>;
258 class DFState
: public StatusMap
{
260 std::pair
<StatusMap::iterator
, bool> insert(BasicBlock
*BB
) {
261 return StatusMap::insert(std::make_pair(BB
, true));
264 // Invoked after we have visited all children of a node.
265 void completed(BasicBlock
*BB
) { (*this)[BB
] = false; }
267 // Return true if \p BB is currently on the active stack
269 bool onStack(BasicBlock
*BB
) {
270 auto Iter
= find(BB
);
271 return Iter
!= end() && Iter
->second
;
275 State
.reserve(F
.size());
276 // Iterate over blocks in depth-first pre-order and
277 // treat all edges to a block already seen as loop back edges
278 // and mark the branch live it if there is a back edge.
279 for (auto *BB
: depth_first_ext(&F
.getEntryBlock(), State
)) {
280 Instruction
*Term
= BB
->getTerminator();
284 for (auto *Succ
: successors(BB
))
285 if (State
.onStack(Succ
)) {
293 // Mark blocks live if there is no path from the block to a
294 // return of the function.
295 // We do this by seeing which of the postdomtree root children exit the
296 // program, and for all others, mark the subtree live.
297 for (auto &PDTChild
: children
<DomTreeNode
*>(PDT
.getRootNode())) {
298 auto *BB
= PDTChild
->getBlock();
299 auto &Info
= BlockInfo
[BB
];
300 // Real function return
301 if (isa
<ReturnInst
>(Info
.Terminator
)) {
302 LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB
->getName()
307 // This child is something else, like an infinite loop.
308 for (auto DFNode
: depth_first(PDTChild
))
309 markLive(BlockInfo
[DFNode
->getBlock()].Terminator
);
312 // Treat the entry block as always live
313 auto *BB
= &F
.getEntryBlock();
314 auto &EntryInfo
= BlockInfo
[BB
];
315 EntryInfo
.Live
= true;
316 if (EntryInfo
.UnconditionalBranch
)
317 markLive(EntryInfo
.Terminator
);
319 // Build initial collection of blocks with dead terminators
320 for (auto &BBInfo
: BlockInfo
)
321 if (!BBInfo
.second
.terminatorIsLive())
322 BlocksWithDeadTerminators
.insert(BBInfo
.second
.BB
);
325 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction
&I
) {
326 // TODO -- use llvm::isInstructionTriviallyDead
327 if (I
.isEHPad() || I
.mayHaveSideEffects()) {
328 // Skip any value profile instrumentation calls if they are
329 // instrumenting constants.
330 if (isInstrumentsConstant(I
))
334 if (!I
.isTerminator())
336 if (RemoveControlFlowFlag
&& (isa
<BranchInst
>(I
) || isa
<SwitchInst
>(I
)))
341 // Check if this instruction is a runtime call for value profiling and
342 // if it's instrumenting a constant.
343 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction
&I
) {
344 // TODO -- move this test into llvm::isInstructionTriviallyDead
345 if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
))
346 if (Function
*Callee
= CI
->getCalledFunction())
347 if (Callee
->getName().equals(getInstrProfValueProfFuncName()))
348 if (isa
<Constant
>(CI
->getArgOperand(0)))
353 void AggressiveDeadCodeElimination::markLiveInstructions() {
354 // Propagate liveness backwards to operands.
356 // Worklist holds newly discovered live instructions
357 // where we need to mark the inputs as live.
358 while (!Worklist
.empty()) {
359 Instruction
*LiveInst
= Worklist
.pop_back_val();
360 LLVM_DEBUG(dbgs() << "work live: "; LiveInst
->dump(););
362 for (Use
&OI
: LiveInst
->operands())
363 if (Instruction
*Inst
= dyn_cast
<Instruction
>(OI
))
366 if (auto *PN
= dyn_cast
<PHINode
>(LiveInst
))
370 // After data flow liveness has been identified, examine which branch
371 // decisions are required to determine live instructions are executed.
372 markLiveBranchesFromControlDependences();
374 } while (!Worklist
.empty());
377 void AggressiveDeadCodeElimination::markLive(Instruction
*I
) {
378 auto &Info
= InstInfo
[I
];
382 LLVM_DEBUG(dbgs() << "mark live: "; I
->dump());
384 Worklist
.push_back(I
);
386 // Collect the live debug info scopes attached to this instruction.
387 if (const DILocation
*DL
= I
->getDebugLoc())
388 collectLiveScopes(*DL
);
390 // Mark the containing block live
391 auto &BBInfo
= *Info
.Block
;
392 if (BBInfo
.Terminator
== I
) {
393 BlocksWithDeadTerminators
.remove(BBInfo
.BB
);
394 // For live terminators, mark destination blocks
395 // live to preserve this control flow edges.
396 if (!BBInfo
.UnconditionalBranch
)
397 for (auto *BB
: successors(I
->getParent()))
403 void AggressiveDeadCodeElimination::markLive(BlockInfoType
&BBInfo
) {
406 LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo
.BB
->getName() << '\n');
408 if (!BBInfo
.CFLive
) {
409 BBInfo
.CFLive
= true;
410 NewLiveBlocks
.insert(BBInfo
.BB
);
413 // Mark unconditional branches at the end of live
414 // blocks as live since there is no work to do for them later
415 if (BBInfo
.UnconditionalBranch
)
416 markLive(BBInfo
.Terminator
);
419 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope
&LS
) {
420 if (!AliveScopes
.insert(&LS
).second
)
423 if (isa
<DISubprogram
>(LS
))
426 // Tail-recurse through the scope chain.
427 collectLiveScopes(cast
<DILocalScope
>(*LS
.getScope()));
430 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation
&DL
) {
431 // Even though DILocations are not scopes, shove them into AliveScopes so we
432 // don't revisit them.
433 if (!AliveScopes
.insert(&DL
).second
)
436 // Collect live scopes from the scope chain.
437 collectLiveScopes(*DL
.getScope());
439 // Tail-recurse through the inlined-at chain.
440 if (const DILocation
*IA
= DL
.getInlinedAt())
441 collectLiveScopes(*IA
);
444 void AggressiveDeadCodeElimination::markPhiLive(PHINode
*PN
) {
445 auto &Info
= BlockInfo
[PN
->getParent()];
446 // Only need to check this once per block.
447 if (Info
.HasLivePhiNodes
)
449 Info
.HasLivePhiNodes
= true;
451 // If a predecessor block is not live, mark it as control-flow live
452 // which will trigger marking live branches upon which
453 // that block is control dependent.
454 for (auto *PredBB
: predecessors(Info
.BB
)) {
455 auto &Info
= BlockInfo
[PredBB
];
458 NewLiveBlocks
.insert(PredBB
);
463 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
464 if (BlocksWithDeadTerminators
.empty())
468 dbgs() << "new live blocks:\n";
469 for (auto *BB
: NewLiveBlocks
)
470 dbgs() << "\t" << BB
->getName() << '\n';
471 dbgs() << "dead terminator blocks:\n";
472 for (auto *BB
: BlocksWithDeadTerminators
)
473 dbgs() << "\t" << BB
->getName() << '\n';
476 // The dominance frontier of a live block X in the reverse
477 // control graph is the set of blocks upon which X is control
478 // dependent. The following sequence computes the set of blocks
479 // which currently have dead terminators that are control
480 // dependence sources of a block which is in NewLiveBlocks.
482 const SmallPtrSet
<BasicBlock
*, 16> BWDT
{
483 BlocksWithDeadTerminators
.begin(),
484 BlocksWithDeadTerminators
.end()
486 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
487 ReverseIDFCalculator
IDFs(PDT
);
488 IDFs
.setDefiningBlocks(NewLiveBlocks
);
489 IDFs
.setLiveInBlocks(BWDT
);
490 IDFs
.calculate(IDFBlocks
);
491 NewLiveBlocks
.clear();
493 // Dead terminators which control live blocks are now marked live.
494 for (auto *BB
: IDFBlocks
) {
495 LLVM_DEBUG(dbgs() << "live control in: " << BB
->getName() << '\n');
496 markLive(BB
->getTerminator());
500 //===----------------------------------------------------------------------===//
502 // Routines to update the CFG and SSA information before removing dead code.
504 //===----------------------------------------------------------------------===//
505 bool AggressiveDeadCodeElimination::removeDeadInstructions() {
506 // Updates control and dataflow around dead blocks
510 for (Instruction
&I
: instructions(F
)) {
511 // Check if the instruction is alive.
515 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(&I
)) {
516 // Check if the scope of this variable location is alive.
517 if (AliveScopes
.count(DII
->getDebugLoc()->getScope()))
520 // If intrinsic is pointing at a live SSA value, there may be an
521 // earlier optimization bug: if we know the location of the variable,
522 // why isn't the scope of the location alive?
523 if (Value
*V
= DII
->getVariableLocation())
524 if (Instruction
*II
= dyn_cast
<Instruction
>(V
))
526 dbgs() << "Dropping debug info for " << *DII
<< "\n";
531 // The inverse of the live set is the dead set. These are those instructions
532 // that have no side effects and do not influence the control flow or return
533 // value of the function, and may therefore be deleted safely.
534 // NOTE: We reuse the Worklist vector here for memory efficiency.
535 for (Instruction
&I
: instructions(F
)) {
536 // Check if the instruction is alive.
540 if (auto *DII
= dyn_cast
<DbgInfoIntrinsic
>(&I
)) {
541 // Check if the scope of this variable location is alive.
542 if (AliveScopes
.count(DII
->getDebugLoc()->getScope()))
545 // Fallthrough and drop the intrinsic.
548 // Prepare to delete.
549 Worklist
.push_back(&I
);
550 I
.dropAllReferences();
553 for (Instruction
*&I
: Worklist
) {
555 I
->eraseFromParent();
558 return !Worklist
.empty();
561 // A dead region is the set of dead blocks with a common live post-dominator.
562 void AggressiveDeadCodeElimination::updateDeadRegions() {
564 dbgs() << "final dead terminator blocks: " << '\n';
565 for (auto *BB
: BlocksWithDeadTerminators
)
566 dbgs() << '\t' << BB
->getName()
567 << (BlockInfo
[BB
].Live
? " LIVE\n" : "\n");
570 // Don't compute the post ordering unless we needed it.
571 bool HavePostOrder
= false;
573 for (auto *BB
: BlocksWithDeadTerminators
) {
574 auto &Info
= BlockInfo
[BB
];
575 if (Info
.UnconditionalBranch
) {
576 InstInfo
[Info
.Terminator
].Live
= true;
580 if (!HavePostOrder
) {
581 computeReversePostOrder();
582 HavePostOrder
= true;
585 // Add an unconditional branch to the successor closest to the
586 // end of the function which insures a path to the exit for each
588 BlockInfoType
*PreferredSucc
= nullptr;
589 for (auto *Succ
: successors(BB
)) {
590 auto *Info
= &BlockInfo
[Succ
];
591 if (!PreferredSucc
|| PreferredSucc
->PostOrder
< Info
->PostOrder
)
592 PreferredSucc
= Info
;
594 assert((PreferredSucc
&& PreferredSucc
->PostOrder
> 0) &&
595 "Failed to find safe successor for dead branch");
597 // Collect removed successors to update the (Post)DominatorTrees.
598 SmallPtrSet
<BasicBlock
*, 4> RemovedSuccessors
;
600 for (auto *Succ
: successors(BB
)) {
601 if (!First
|| Succ
!= PreferredSucc
->BB
) {
602 Succ
->removePredecessor(BB
);
603 RemovedSuccessors
.insert(Succ
);
607 makeUnconditional(BB
, PreferredSucc
->BB
);
609 // Inform the dominators about the deleted CFG edges.
610 SmallVector
<DominatorTree::UpdateType
, 4> DeletedEdges
;
611 for (auto *Succ
: RemovedSuccessors
) {
612 // It might have happened that the same successor appeared multiple times
613 // and the CFG edge wasn't really removed.
614 if (Succ
!= PreferredSucc
->BB
) {
615 LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
616 << BB
->getName() << " -> " << Succ
->getName()
618 DeletedEdges
.push_back({DominatorTree::Delete
, BB
, Succ
});
622 DomTreeUpdater(DT
, &PDT
, DomTreeUpdater::UpdateStrategy::Eager
)
623 .applyUpdates(DeletedEdges
);
625 NumBranchesRemoved
+= 1;
629 // reverse top-sort order
630 void AggressiveDeadCodeElimination::computeReversePostOrder() {
631 // This provides a post-order numbering of the reverse control flow graph
632 // Note that it is incomplete in the presence of infinite loops but we don't
633 // need numbers blocks which don't reach the end of the functions since
634 // all branches in those blocks are forced live.
636 // For each block without successors, extend the DFS from the block
637 // backward through the graph
638 SmallPtrSet
<BasicBlock
*, 16> Visited
;
639 unsigned PostOrder
= 0;
641 if (succ_begin(&BB
) != succ_end(&BB
))
643 for (BasicBlock
*Block
: inverse_post_order_ext(&BB
,Visited
))
644 BlockInfo
[Block
].PostOrder
= PostOrder
++;
648 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock
*BB
,
649 BasicBlock
*Target
) {
650 Instruction
*PredTerm
= BB
->getTerminator();
651 // Collect the live debug info scopes attached to this instruction.
652 if (const DILocation
*DL
= PredTerm
->getDebugLoc())
653 collectLiveScopes(*DL
);
655 // Just mark live an existing unconditional branch
656 if (isUnconditionalBranch(PredTerm
)) {
657 PredTerm
->setSuccessor(0, Target
);
658 InstInfo
[PredTerm
].Live
= true;
661 LLVM_DEBUG(dbgs() << "making unconditional " << BB
->getName() << '\n');
662 NumBranchesRemoved
+= 1;
663 IRBuilder
<> Builder(PredTerm
);
664 auto *NewTerm
= Builder
.CreateBr(Target
);
665 InstInfo
[NewTerm
].Live
= true;
666 if (const DILocation
*DL
= PredTerm
->getDebugLoc())
667 NewTerm
->setDebugLoc(DL
);
669 InstInfo
.erase(PredTerm
);
670 PredTerm
->eraseFromParent();
673 //===----------------------------------------------------------------------===//
675 // Pass Manager integration code
677 //===----------------------------------------------------------------------===//
678 PreservedAnalyses
ADCEPass::run(Function
&F
, FunctionAnalysisManager
&FAM
) {
679 // ADCE does not need DominatorTree, but require DominatorTree here
680 // to update analysis if it is already available.
681 auto *DT
= FAM
.getCachedResult
<DominatorTreeAnalysis
>(F
);
682 auto &PDT
= FAM
.getResult
<PostDominatorTreeAnalysis
>(F
);
683 if (!AggressiveDeadCodeElimination(F
, DT
, PDT
).performDeadCodeElimination())
684 return PreservedAnalyses::all();
686 PreservedAnalyses PA
;
687 PA
.preserveSet
<CFGAnalyses
>();
688 PA
.preserve
<GlobalsAA
>();
689 PA
.preserve
<DominatorTreeAnalysis
>();
690 PA
.preserve
<PostDominatorTreeAnalysis
>();
696 struct ADCELegacyPass
: public FunctionPass
{
697 static char ID
; // Pass identification, replacement for typeid
699 ADCELegacyPass() : FunctionPass(ID
) {
700 initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
703 bool runOnFunction(Function
&F
) override
{
707 // ADCE does not need DominatorTree, but require DominatorTree here
708 // to update analysis if it is already available.
709 auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
710 auto *DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
711 auto &PDT
= getAnalysis
<PostDominatorTreeWrapperPass
>().getPostDomTree();
712 return AggressiveDeadCodeElimination(F
, DT
, PDT
)
713 .performDeadCodeElimination();
716 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
717 AU
.addRequired
<PostDominatorTreeWrapperPass
>();
718 if (!RemoveControlFlowFlag
)
719 AU
.setPreservesCFG();
721 AU
.addPreserved
<DominatorTreeWrapperPass
>();
722 AU
.addPreserved
<PostDominatorTreeWrapperPass
>();
724 AU
.addPreserved
<GlobalsAAWrapperPass
>();
728 } // end anonymous namespace
730 char ADCELegacyPass::ID
= 0;
732 INITIALIZE_PASS_BEGIN(ADCELegacyPass
, "adce",
733 "Aggressive Dead Code Elimination", false, false)
734 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass
)
735 INITIALIZE_PASS_END(ADCELegacyPass
, "adce", "Aggressive Dead Code Elimination",
738 FunctionPass
*llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }