[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Scalar / AlignmentFromAssumptions.cpp
blob0e9f03a060611bff79956c0a7811c71ce1e427c3
1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2 // Set Load/Store Alignments From Assumptions
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a ScalarEvolution-based transformation to set
11 // the alignments of load, stores and memory intrinsics based on the truth
12 // expressions of assume intrinsics. The primary motivation is to handle
13 // complex alignment assumptions that apply to vector loads and stores that
14 // appear after vectorization and unrolling.
16 //===----------------------------------------------------------------------===//
18 #define AA_NAME "alignment-from-assumptions"
19 #define DEBUG_TYPE AA_NAME
20 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/GlobalsModRef.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Scalar.h"
37 using namespace llvm;
39 STATISTIC(NumLoadAlignChanged,
40 "Number of loads changed by alignment assumptions");
41 STATISTIC(NumStoreAlignChanged,
42 "Number of stores changed by alignment assumptions");
43 STATISTIC(NumMemIntAlignChanged,
44 "Number of memory intrinsics changed by alignment assumptions");
46 namespace {
47 struct AlignmentFromAssumptions : public FunctionPass {
48 static char ID; // Pass identification, replacement for typeid
49 AlignmentFromAssumptions() : FunctionPass(ID) {
50 initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
53 bool runOnFunction(Function &F) override;
55 void getAnalysisUsage(AnalysisUsage &AU) const override {
56 AU.addRequired<AssumptionCacheTracker>();
57 AU.addRequired<ScalarEvolutionWrapperPass>();
58 AU.addRequired<DominatorTreeWrapperPass>();
60 AU.setPreservesCFG();
61 AU.addPreserved<AAResultsWrapperPass>();
62 AU.addPreserved<GlobalsAAWrapperPass>();
63 AU.addPreserved<LoopInfoWrapperPass>();
64 AU.addPreserved<DominatorTreeWrapperPass>();
65 AU.addPreserved<ScalarEvolutionWrapperPass>();
68 AlignmentFromAssumptionsPass Impl;
72 char AlignmentFromAssumptions::ID = 0;
73 static const char aip_name[] = "Alignment from assumptions";
74 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
75 aip_name, false, false)
76 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
77 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
78 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
79 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
80 aip_name, false, false)
82 FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
83 return new AlignmentFromAssumptions();
86 // Given an expression for the (constant) alignment, AlignSCEV, and an
87 // expression for the displacement between a pointer and the aligned address,
88 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
89 // to a constant. Using SCEV to compute alignment handles the case where
90 // DiffSCEV is a recurrence with constant start such that the aligned offset
91 // is constant. e.g. {16,+,32} % 32 -> 16.
92 static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
93 const SCEV *AlignSCEV,
94 ScalarEvolution *SE) {
95 // DiffUnits = Diff % int64_t(Alignment)
96 const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV);
98 LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
99 << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
101 if (const SCEVConstant *ConstDUSCEV =
102 dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
103 int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
105 // If the displacement is an exact multiple of the alignment, then the
106 // displaced pointer has the same alignment as the aligned pointer, so
107 // return the alignment value.
108 if (!DiffUnits)
109 return (unsigned)
110 cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
112 // If the displacement is not an exact multiple, but the remainder is a
113 // constant, then return this remainder (but only if it is a power of 2).
114 uint64_t DiffUnitsAbs = std::abs(DiffUnits);
115 if (isPowerOf2_64(DiffUnitsAbs))
116 return (unsigned) DiffUnitsAbs;
119 return 0;
122 // There is an address given by an offset OffSCEV from AASCEV which has an
123 // alignment AlignSCEV. Use that information, if possible, to compute a new
124 // alignment for Ptr.
125 static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
126 const SCEV *OffSCEV, Value *Ptr,
127 ScalarEvolution *SE) {
128 const SCEV *PtrSCEV = SE->getSCEV(Ptr);
129 const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
131 // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
132 // sign-extended OffSCEV to i64, so make sure they agree again.
133 DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
135 // What we really want to know is the overall offset to the aligned
136 // address. This address is displaced by the provided offset.
137 DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
139 LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
140 << *AlignSCEV << " and offset " << *OffSCEV
141 << " using diff " << *DiffSCEV << "\n");
143 unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
144 LLVM_DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
146 if (NewAlignment) {
147 return NewAlignment;
148 } else if (const SCEVAddRecExpr *DiffARSCEV =
149 dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
150 // The relative offset to the alignment assumption did not yield a constant,
151 // but we should try harder: if we assume that a is 32-byte aligned, then in
152 // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
153 // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
154 // As a result, the new alignment will not be a constant, but can still
155 // be improved over the default (of 4) to 16.
157 const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
158 const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
160 LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
161 << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
163 // Now compute the new alignment using the displacement to the value in the
164 // first iteration, and also the alignment using the per-iteration delta.
165 // If these are the same, then use that answer. Otherwise, use the smaller
166 // one, but only if it divides the larger one.
167 NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
168 unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
170 LLVM_DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
171 LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
173 if (!NewAlignment || !NewIncAlignment) {
174 return 0;
175 } else if (NewAlignment > NewIncAlignment) {
176 if (NewAlignment % NewIncAlignment == 0) {
177 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewIncAlignment
178 << "\n");
179 return NewIncAlignment;
181 } else if (NewIncAlignment > NewAlignment) {
182 if (NewIncAlignment % NewAlignment == 0) {
183 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
184 << "\n");
185 return NewAlignment;
187 } else if (NewIncAlignment == NewAlignment) {
188 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
189 << "\n");
190 return NewAlignment;
194 return 0;
197 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
198 Value *&AAPtr,
199 const SCEV *&AlignSCEV,
200 const SCEV *&OffSCEV) {
201 // An alignment assume must be a statement about the least-significant
202 // bits of the pointer being zero, possibly with some offset.
203 ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
204 if (!ICI)
205 return false;
207 // This must be an expression of the form: x & m == 0.
208 if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
209 return false;
211 // Swap things around so that the RHS is 0.
212 Value *CmpLHS = ICI->getOperand(0);
213 Value *CmpRHS = ICI->getOperand(1);
214 const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
215 const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
216 if (CmpLHSSCEV->isZero())
217 std::swap(CmpLHS, CmpRHS);
218 else if (!CmpRHSSCEV->isZero())
219 return false;
221 BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
222 if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
223 return false;
225 // Swap things around so that the right operand of the and is a constant
226 // (the mask); we cannot deal with variable masks.
227 Value *AndLHS = CmpBO->getOperand(0);
228 Value *AndRHS = CmpBO->getOperand(1);
229 const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
230 const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
231 if (isa<SCEVConstant>(AndLHSSCEV)) {
232 std::swap(AndLHS, AndRHS);
233 std::swap(AndLHSSCEV, AndRHSSCEV);
236 const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
237 if (!MaskSCEV)
238 return false;
240 // The mask must have some trailing ones (otherwise the condition is
241 // trivial and tells us nothing about the alignment of the left operand).
242 unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes();
243 if (!TrailingOnes)
244 return false;
246 // Cap the alignment at the maximum with which LLVM can deal (and make sure
247 // we don't overflow the shift).
248 uint64_t Alignment;
249 TrailingOnes = std::min(TrailingOnes,
250 unsigned(sizeof(unsigned) * CHAR_BIT - 1));
251 Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
253 Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
254 AlignSCEV = SE->getConstant(Int64Ty, Alignment);
256 // The LHS might be a ptrtoint instruction, or it might be the pointer
257 // with an offset.
258 AAPtr = nullptr;
259 OffSCEV = nullptr;
260 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
261 AAPtr = PToI->getPointerOperand();
262 OffSCEV = SE->getZero(Int64Ty);
263 } else if (const SCEVAddExpr* AndLHSAddSCEV =
264 dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
265 // Try to find the ptrtoint; subtract it and the rest is the offset.
266 for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
267 JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
268 if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
269 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
270 AAPtr = PToI->getPointerOperand();
271 OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
272 break;
276 if (!AAPtr)
277 return false;
279 // Sign extend the offset to 64 bits (so that it is like all of the other
280 // expressions).
281 unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
282 if (OffSCEVBits < 64)
283 OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
284 else if (OffSCEVBits > 64)
285 return false;
287 AAPtr = AAPtr->stripPointerCasts();
288 return true;
291 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) {
292 Value *AAPtr;
293 const SCEV *AlignSCEV, *OffSCEV;
294 if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
295 return false;
297 // Skip ConstantPointerNull and UndefValue. Assumptions on these shouldn't
298 // affect other users.
299 if (isa<ConstantData>(AAPtr))
300 return false;
302 const SCEV *AASCEV = SE->getSCEV(AAPtr);
304 // Apply the assumption to all other users of the specified pointer.
305 SmallPtrSet<Instruction *, 32> Visited;
306 SmallVector<Instruction*, 16> WorkList;
307 for (User *J : AAPtr->users()) {
308 if (J == ACall)
309 continue;
311 if (Instruction *K = dyn_cast<Instruction>(J))
312 if (isValidAssumeForContext(ACall, K, DT))
313 WorkList.push_back(K);
316 while (!WorkList.empty()) {
317 Instruction *J = WorkList.pop_back_val();
319 if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
320 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
321 LI->getPointerOperand(), SE);
323 if (NewAlignment > LI->getAlignment()) {
324 LI->setAlignment(MaybeAlign(NewAlignment));
325 ++NumLoadAlignChanged;
327 } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
328 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
329 SI->getPointerOperand(), SE);
331 if (NewAlignment > SI->getAlignment()) {
332 SI->setAlignment(MaybeAlign(NewAlignment));
333 ++NumStoreAlignChanged;
335 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
336 unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
337 MI->getDest(), SE);
339 LLVM_DEBUG(dbgs() << "\tmem inst: " << NewDestAlignment << "\n";);
340 if (NewDestAlignment > MI->getDestAlignment()) {
341 MI->setDestAlignment(NewDestAlignment);
342 ++NumMemIntAlignChanged;
345 // For memory transfers, there is also a source alignment that
346 // can be set.
347 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
348 unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
349 MTI->getSource(), SE);
351 LLVM_DEBUG(dbgs() << "\tmem trans: " << NewSrcAlignment << "\n";);
353 if (NewSrcAlignment > MTI->getSourceAlignment()) {
354 MTI->setSourceAlignment(NewSrcAlignment);
355 ++NumMemIntAlignChanged;
360 // Now that we've updated that use of the pointer, look for other uses of
361 // the pointer to update.
362 Visited.insert(J);
363 for (User *UJ : J->users()) {
364 Instruction *K = cast<Instruction>(UJ);
365 if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
366 WorkList.push_back(K);
370 return true;
373 bool AlignmentFromAssumptions::runOnFunction(Function &F) {
374 if (skipFunction(F))
375 return false;
377 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
378 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
379 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
381 return Impl.runImpl(F, AC, SE, DT);
384 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
385 ScalarEvolution *SE_,
386 DominatorTree *DT_) {
387 SE = SE_;
388 DT = DT_;
390 bool Changed = false;
391 for (auto &AssumeVH : AC.assumptions())
392 if (AssumeVH)
393 Changed |= processAssumption(cast<CallInst>(AssumeVH));
395 return Changed;
398 PreservedAnalyses
399 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
401 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
402 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
403 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
404 if (!runImpl(F, AC, &SE, &DT))
405 return PreservedAnalyses::all();
407 PreservedAnalyses PA;
408 PA.preserveSet<CFGAnalyses>();
409 PA.preserve<AAManager>();
410 PA.preserve<ScalarEvolutionAnalysis>();
411 PA.preserve<GlobalsAA>();
412 return PA;