[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Scalar / CallSiteSplitting.cpp
blobc3fba923104fb152bc080f248829c2a6078214af
1 //===- CallSiteSplitting.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that tries to split a call-site to pass
10 // more constrained arguments if its argument is predicated in the control flow
11 // so that we can expose better context to the later passes (e.g, inliner, jump
12 // threading, or IPA-CP based function cloning, etc.).
13 // As of now we support two cases :
15 // 1) Try to a split call-site with constrained arguments, if any constraints
16 // on any argument can be found by following the single predecessors of the
17 // all site's predecessors. Currently this pass only handles call-sites with 2
18 // predecessors. For example, in the code below, we try to split the call-site
19 // since we can predicate the argument(ptr) based on the OR condition.
21 // Split from :
22 // if (!ptr || c)
23 // callee(ptr);
24 // to :
25 // if (!ptr)
26 // callee(null) // set the known constant value
27 // else if (c)
28 // callee(nonnull ptr) // set non-null attribute in the argument
30 // 2) We can also split a call-site based on constant incoming values of a PHI
31 // For example,
32 // from :
33 // Header:
34 // %c = icmp eq i32 %i1, %i2
35 // br i1 %c, label %Tail, label %TBB
36 // TBB:
37 // br label Tail%
38 // Tail:
39 // %p = phi i32 [ 0, %Header], [ 1, %TBB]
40 // call void @bar(i32 %p)
41 // to
42 // Header:
43 // %c = icmp eq i32 %i1, %i2
44 // br i1 %c, label %Tail-split0, label %TBB
45 // TBB:
46 // br label %Tail-split1
47 // Tail-split0:
48 // call void @bar(i32 0)
49 // br label %Tail
50 // Tail-split1:
51 // call void @bar(i32 1)
52 // br label %Tail
53 // Tail:
54 // %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ]
56 //===----------------------------------------------------------------------===//
58 #include "llvm/Transforms/Scalar/CallSiteSplitting.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/Analysis/TargetLibraryInfo.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Transforms/Utils/Local.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Transforms/Scalar.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
70 using namespace llvm;
71 using namespace PatternMatch;
73 #define DEBUG_TYPE "callsite-splitting"
75 STATISTIC(NumCallSiteSplit, "Number of call-site split");
77 /// Only allow instructions before a call, if their CodeSize cost is below
78 /// DuplicationThreshold. Those instructions need to be duplicated in all
79 /// split blocks.
80 static cl::opt<unsigned>
81 DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden,
82 cl::desc("Only allow instructions before a call, if "
83 "their cost is below DuplicationThreshold"),
84 cl::init(5));
86 static void addNonNullAttribute(CallSite CS, Value *Op) {
87 unsigned ArgNo = 0;
88 for (auto &I : CS.args()) {
89 if (&*I == Op)
90 CS.addParamAttr(ArgNo, Attribute::NonNull);
91 ++ArgNo;
95 static void setConstantInArgument(CallSite CS, Value *Op,
96 Constant *ConstValue) {
97 unsigned ArgNo = 0;
98 for (auto &I : CS.args()) {
99 if (&*I == Op) {
100 // It is possible we have already added the non-null attribute to the
101 // parameter by using an earlier constraining condition.
102 CS.removeParamAttr(ArgNo, Attribute::NonNull);
103 CS.setArgument(ArgNo, ConstValue);
105 ++ArgNo;
109 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallSite CS) {
110 assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand.");
111 Value *Op0 = Cmp->getOperand(0);
112 unsigned ArgNo = 0;
113 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E;
114 ++I, ++ArgNo) {
115 // Don't consider constant or arguments that are already known non-null.
116 if (isa<Constant>(*I) || CS.paramHasAttr(ArgNo, Attribute::NonNull))
117 continue;
119 if (*I == Op0)
120 return true;
122 return false;
125 typedef std::pair<ICmpInst *, unsigned> ConditionTy;
126 typedef SmallVector<ConditionTy, 2> ConditionsTy;
128 /// If From has a conditional jump to To, add the condition to Conditions,
129 /// if it is relevant to any argument at CS.
130 static void recordCondition(CallSite CS, BasicBlock *From, BasicBlock *To,
131 ConditionsTy &Conditions) {
132 auto *BI = dyn_cast<BranchInst>(From->getTerminator());
133 if (!BI || !BI->isConditional())
134 return;
136 CmpInst::Predicate Pred;
137 Value *Cond = BI->getCondition();
138 if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant())))
139 return;
141 ICmpInst *Cmp = cast<ICmpInst>(Cond);
142 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
143 if (isCondRelevantToAnyCallArgument(Cmp, CS))
144 Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To
145 ? Pred
146 : Cmp->getInversePredicate()});
149 /// Record ICmp conditions relevant to any argument in CS following Pred's
150 /// single predecessors. If there are conflicting conditions along a path, like
151 /// x == 1 and x == 0, the first condition will be used. We stop once we reach
152 /// an edge to StopAt.
153 static void recordConditions(CallSite CS, BasicBlock *Pred,
154 ConditionsTy &Conditions, BasicBlock *StopAt) {
155 BasicBlock *From = Pred;
156 BasicBlock *To = Pred;
157 SmallPtrSet<BasicBlock *, 4> Visited;
158 while (To != StopAt && !Visited.count(From->getSinglePredecessor()) &&
159 (From = From->getSinglePredecessor())) {
160 recordCondition(CS, From, To, Conditions);
161 Visited.insert(From);
162 To = From;
166 static void addConditions(CallSite CS, const ConditionsTy &Conditions) {
167 for (auto &Cond : Conditions) {
168 Value *Arg = Cond.first->getOperand(0);
169 Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1));
170 if (Cond.second == ICmpInst::ICMP_EQ)
171 setConstantInArgument(CS, Arg, ConstVal);
172 else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) {
173 assert(Cond.second == ICmpInst::ICMP_NE);
174 addNonNullAttribute(CS, Arg);
179 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) {
180 SmallVector<BasicBlock *, 2> Preds(predecessors((BB)));
181 assert(Preds.size() == 2 && "Expected exactly 2 predecessors!");
182 return Preds;
185 static bool canSplitCallSite(CallSite CS, TargetTransformInfo &TTI) {
186 if (CS.isConvergent() || CS.cannotDuplicate())
187 return false;
189 // FIXME: As of now we handle only CallInst. InvokeInst could be handled
190 // without too much effort.
191 Instruction *Instr = CS.getInstruction();
192 if (!isa<CallInst>(Instr))
193 return false;
195 BasicBlock *CallSiteBB = Instr->getParent();
196 // Need 2 predecessors and cannot split an edge from an IndirectBrInst.
197 SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB));
198 if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) ||
199 isa<IndirectBrInst>(Preds[1]->getTerminator()))
200 return false;
202 // BasicBlock::canSplitPredecessors is more aggressive, so checking for
203 // BasicBlock::isEHPad as well.
204 if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad())
205 return false;
207 // Allow splitting a call-site only when the CodeSize cost of the
208 // instructions before the call is less then DuplicationThreshold. The
209 // instructions before the call will be duplicated in the split blocks and
210 // corresponding uses will be updated.
211 unsigned Cost = 0;
212 for (auto &InstBeforeCall :
213 llvm::make_range(CallSiteBB->begin(), Instr->getIterator())) {
214 Cost += TTI.getInstructionCost(&InstBeforeCall,
215 TargetTransformInfo::TCK_CodeSize);
216 if (Cost >= DuplicationThreshold)
217 return false;
220 return true;
223 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before,
224 Value *V) {
225 Instruction *Copy = I->clone();
226 Copy->setName(I->getName());
227 Copy->insertBefore(Before);
228 if (V)
229 Copy->setOperand(0, V);
230 return Copy;
233 /// Copy mandatory `musttail` return sequence that follows original `CI`, and
234 /// link it up to `NewCI` value instead:
236 /// * (optional) `bitcast NewCI to ...`
237 /// * `ret bitcast or NewCI`
239 /// Insert this sequence right before `SplitBB`'s terminator, which will be
240 /// cleaned up later in `splitCallSite` below.
241 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI,
242 Instruction *NewCI) {
243 bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy();
244 auto II = std::next(CI->getIterator());
246 BitCastInst* BCI = dyn_cast<BitCastInst>(&*II);
247 if (BCI)
248 ++II;
250 ReturnInst* RI = dyn_cast<ReturnInst>(&*II);
251 assert(RI && "`musttail` call must be followed by `ret` instruction");
253 Instruction *TI = SplitBB->getTerminator();
254 Value *V = NewCI;
255 if (BCI)
256 V = cloneInstForMustTail(BCI, TI, V);
257 cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V);
259 // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug
260 // that prevents doing this now.
263 /// For each (predecessor, conditions from predecessors) pair, it will split the
264 /// basic block containing the call site, hook it up to the predecessor and
265 /// replace the call instruction with new call instructions, which contain
266 /// constraints based on the conditions from their predecessors.
267 /// For example, in the IR below with an OR condition, the call-site can
268 /// be split. In this case, Preds for Tail is [(Header, a == null),
269 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing
270 /// CallInst1, which has constraints based on the conditions from Head and
271 /// CallInst2, which has constraints based on the conditions coming from TBB.
273 /// From :
275 /// Header:
276 /// %c = icmp eq i32* %a, null
277 /// br i1 %c %Tail, %TBB
278 /// TBB:
279 /// %c2 = icmp eq i32* %b, null
280 /// br i1 %c %Tail, %End
281 /// Tail:
282 /// %ca = call i1 @callee (i32* %a, i32* %b)
284 /// to :
286 /// Header: // PredBB1 is Header
287 /// %c = icmp eq i32* %a, null
288 /// br i1 %c %Tail-split1, %TBB
289 /// TBB: // PredBB2 is TBB
290 /// %c2 = icmp eq i32* %b, null
291 /// br i1 %c %Tail-split2, %End
292 /// Tail-split1:
293 /// %ca1 = call @callee (i32* null, i32* %b) // CallInst1
294 /// br %Tail
295 /// Tail-split2:
296 /// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2
297 /// br %Tail
298 /// Tail:
299 /// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2]
301 /// Note that in case any arguments at the call-site are constrained by its
302 /// predecessors, new call-sites with more constrained arguments will be
303 /// created in createCallSitesOnPredicatedArgument().
304 static void splitCallSite(
305 CallSite CS,
306 const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds,
307 DomTreeUpdater &DTU) {
308 Instruction *Instr = CS.getInstruction();
309 BasicBlock *TailBB = Instr->getParent();
310 bool IsMustTailCall = CS.isMustTailCall();
312 PHINode *CallPN = nullptr;
314 // `musttail` calls must be followed by optional `bitcast`, and `ret`. The
315 // split blocks will be terminated right after that so there're no users for
316 // this phi in a `TailBB`.
317 if (!IsMustTailCall && !Instr->use_empty()) {
318 CallPN = PHINode::Create(Instr->getType(), Preds.size(), "phi.call");
319 CallPN->setDebugLoc(Instr->getDebugLoc());
322 LLVM_DEBUG(dbgs() << "split call-site : " << *Instr << " into \n");
324 assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2.");
325 // ValueToValueMapTy is neither copy nor moveable, so we use a simple array
326 // here.
327 ValueToValueMapTy ValueToValueMaps[2];
328 for (unsigned i = 0; i < Preds.size(); i++) {
329 BasicBlock *PredBB = Preds[i].first;
330 BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween(
331 TailBB, PredBB, &*std::next(Instr->getIterator()), ValueToValueMaps[i],
332 DTU);
333 assert(SplitBlock && "Unexpected new basic block split.");
335 Instruction *NewCI =
336 &*std::prev(SplitBlock->getTerminator()->getIterator());
337 CallSite NewCS(NewCI);
338 addConditions(NewCS, Preds[i].second);
340 // Handle PHIs used as arguments in the call-site.
341 for (PHINode &PN : TailBB->phis()) {
342 unsigned ArgNo = 0;
343 for (auto &CI : CS.args()) {
344 if (&*CI == &PN) {
345 NewCS.setArgument(ArgNo, PN.getIncomingValueForBlock(SplitBlock));
347 ++ArgNo;
350 LLVM_DEBUG(dbgs() << " " << *NewCI << " in " << SplitBlock->getName()
351 << "\n");
352 if (CallPN)
353 CallPN->addIncoming(NewCI, SplitBlock);
355 // Clone and place bitcast and return instructions before `TI`
356 if (IsMustTailCall)
357 copyMustTailReturn(SplitBlock, Instr, NewCI);
360 NumCallSiteSplit++;
362 // FIXME: remove TI in `copyMustTailReturn`
363 if (IsMustTailCall) {
364 // Remove superfluous `br` terminators from the end of the Split blocks
365 // NOTE: Removing terminator removes the SplitBlock from the TailBB's
366 // predecessors. Therefore we must get complete list of Splits before
367 // attempting removal.
368 SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB)));
369 assert(Splits.size() == 2 && "Expected exactly 2 splits!");
370 for (unsigned i = 0; i < Splits.size(); i++) {
371 Splits[i]->getTerminator()->eraseFromParent();
372 DTU.applyUpdatesPermissive({{DominatorTree::Delete, Splits[i], TailBB}});
375 // Erase the tail block once done with musttail patching
376 DTU.deleteBB(TailBB);
377 return;
380 auto *OriginalBegin = &*TailBB->begin();
381 // Replace users of the original call with a PHI mering call-sites split.
382 if (CallPN) {
383 CallPN->insertBefore(OriginalBegin);
384 Instr->replaceAllUsesWith(CallPN);
387 // Remove instructions moved to split blocks from TailBB, from the duplicated
388 // call instruction to the beginning of the basic block. If an instruction
389 // has any uses, add a new PHI node to combine the values coming from the
390 // split blocks. The new PHI nodes are placed before the first original
391 // instruction, so we do not end up deleting them. By using reverse-order, we
392 // do not introduce unnecessary PHI nodes for def-use chains from the call
393 // instruction to the beginning of the block.
394 auto I = Instr->getReverseIterator();
395 while (I != TailBB->rend()) {
396 Instruction *CurrentI = &*I++;
397 if (!CurrentI->use_empty()) {
398 // If an existing PHI has users after the call, there is no need to create
399 // a new one.
400 if (isa<PHINode>(CurrentI))
401 continue;
402 PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size());
403 NewPN->setDebugLoc(CurrentI->getDebugLoc());
404 for (auto &Mapping : ValueToValueMaps)
405 NewPN->addIncoming(Mapping[CurrentI],
406 cast<Instruction>(Mapping[CurrentI])->getParent());
407 NewPN->insertBefore(&*TailBB->begin());
408 CurrentI->replaceAllUsesWith(NewPN);
410 CurrentI->eraseFromParent();
411 // We are done once we handled the first original instruction in TailBB.
412 if (CurrentI == OriginalBegin)
413 break;
417 // Return true if the call-site has an argument which is a PHI with only
418 // constant incoming values.
419 static bool isPredicatedOnPHI(CallSite CS) {
420 Instruction *Instr = CS.getInstruction();
421 BasicBlock *Parent = Instr->getParent();
422 if (Instr != Parent->getFirstNonPHIOrDbg())
423 return false;
425 for (auto &BI : *Parent) {
426 if (PHINode *PN = dyn_cast<PHINode>(&BI)) {
427 for (auto &I : CS.args())
428 if (&*I == PN) {
429 assert(PN->getNumIncomingValues() == 2 &&
430 "Unexpected number of incoming values");
431 if (PN->getIncomingBlock(0) == PN->getIncomingBlock(1))
432 return false;
433 if (PN->getIncomingValue(0) == PN->getIncomingValue(1))
434 continue;
435 if (isa<Constant>(PN->getIncomingValue(0)) &&
436 isa<Constant>(PN->getIncomingValue(1)))
437 return true;
440 break;
442 return false;
445 using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>;
447 // Check if any of the arguments in CS are predicated on a PHI node and return
448 // the set of predecessors we should use for splitting.
449 static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallSite CS) {
450 if (!isPredicatedOnPHI(CS))
451 return {};
453 auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
454 return {{Preds[0], {}}, {Preds[1], {}}};
457 // Checks if any of the arguments in CS are predicated in a predecessor and
458 // returns a list of predecessors with the conditions that hold on their edges
459 // to CS.
460 static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallSite CS,
461 DomTreeUpdater &DTU) {
462 auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
463 if (Preds[0] == Preds[1])
464 return {};
466 // We can stop recording conditions once we reached the immediate dominator
467 // for the block containing the call site. Conditions in predecessors of the
468 // that node will be the same for all paths to the call site and splitting
469 // is not beneficial.
470 assert(DTU.hasDomTree() && "We need a DTU with a valid DT!");
471 auto *CSDTNode = DTU.getDomTree().getNode(CS.getInstruction()->getParent());
472 BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr;
474 SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS;
475 for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) {
476 ConditionsTy Conditions;
477 // Record condition on edge BB(CS) <- Pred
478 recordCondition(CS, Pred, CS.getInstruction()->getParent(), Conditions);
479 // Record conditions following Pred's single predecessors.
480 recordConditions(CS, Pred, Conditions, StopAt);
481 PredsCS.push_back({Pred, Conditions});
484 if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) {
485 return P.second.empty();
487 return {};
489 return PredsCS;
492 static bool tryToSplitCallSite(CallSite CS, TargetTransformInfo &TTI,
493 DomTreeUpdater &DTU) {
494 // Check if we can split the call site.
495 if (!CS.arg_size() || !canSplitCallSite(CS, TTI))
496 return false;
498 auto PredsWithConds = shouldSplitOnPredicatedArgument(CS, DTU);
499 if (PredsWithConds.empty())
500 PredsWithConds = shouldSplitOnPHIPredicatedArgument(CS);
501 if (PredsWithConds.empty())
502 return false;
504 splitCallSite(CS, PredsWithConds, DTU);
505 return true;
508 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI,
509 TargetTransformInfo &TTI, DominatorTree &DT) {
511 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy);
512 bool Changed = false;
513 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) {
514 BasicBlock &BB = *BI++;
515 auto II = BB.getFirstNonPHIOrDbg()->getIterator();
516 auto IE = BB.getTerminator()->getIterator();
517 // Iterate until we reach the terminator instruction. tryToSplitCallSite
518 // can replace BB's terminator in case BB is a successor of itself. In that
519 // case, IE will be invalidated and we also have to check the current
520 // terminator.
521 while (II != IE && &*II != BB.getTerminator()) {
522 Instruction *I = &*II++;
523 CallSite CS(cast<Value>(I));
524 if (!CS || isa<IntrinsicInst>(I) || isInstructionTriviallyDead(I, &TLI))
525 continue;
527 Function *Callee = CS.getCalledFunction();
528 if (!Callee || Callee->isDeclaration())
529 continue;
531 // Successful musttail call-site splits result in erased CI and erased BB.
532 // Check if such path is possible before attempting the splitting.
533 bool IsMustTail = CS.isMustTailCall();
535 Changed |= tryToSplitCallSite(CS, TTI, DTU);
537 // There're no interesting instructions after this. The call site
538 // itself might have been erased on splitting.
539 if (IsMustTail)
540 break;
543 return Changed;
546 namespace {
547 struct CallSiteSplittingLegacyPass : public FunctionPass {
548 static char ID;
549 CallSiteSplittingLegacyPass() : FunctionPass(ID) {
550 initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
553 void getAnalysisUsage(AnalysisUsage &AU) const override {
554 AU.addRequired<TargetLibraryInfoWrapperPass>();
555 AU.addRequired<TargetTransformInfoWrapperPass>();
556 AU.addRequired<DominatorTreeWrapperPass>();
557 AU.addPreserved<DominatorTreeWrapperPass>();
558 FunctionPass::getAnalysisUsage(AU);
561 bool runOnFunction(Function &F) override {
562 if (skipFunction(F))
563 return false;
565 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
566 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
567 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
568 return doCallSiteSplitting(F, TLI, TTI, DT);
571 } // namespace
573 char CallSiteSplittingLegacyPass::ID = 0;
574 INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting",
575 "Call-site splitting", false, false)
576 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
577 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
578 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
579 INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting",
580 "Call-site splitting", false, false)
581 FunctionPass *llvm::createCallSiteSplittingPass() {
582 return new CallSiteSplittingLegacyPass();
585 PreservedAnalyses CallSiteSplittingPass::run(Function &F,
586 FunctionAnalysisManager &AM) {
587 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
588 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
589 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
591 if (!doCallSiteSplitting(F, TLI, TTI, DT))
592 return PreservedAnalyses::all();
593 PreservedAnalyses PA;
594 PA.preserve<DominatorTreeAnalysis>();
595 return PA;