[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Scalar / DivRemPairs.cpp
blob934853507478bb865cd6e32f019128f18edbc1ba
1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass hoists and/or decomposes/recomposes integer division and remainder
10 // instructions to enable CFG improvements and better codegen.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/DivRemPairs.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/DebugCounter.h"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
28 using namespace llvm;
29 using namespace llvm::PatternMatch;
31 #define DEBUG_TYPE "div-rem-pairs"
32 STATISTIC(NumPairs, "Number of div/rem pairs");
33 STATISTIC(NumRecomposed, "Number of instructions recomposed");
34 STATISTIC(NumHoisted, "Number of instructions hoisted");
35 STATISTIC(NumDecomposed, "Number of instructions decomposed");
36 DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform",
37 "Controls transformations in div-rem-pairs pass");
39 namespace {
40 struct ExpandedMatch {
41 DivRemMapKey Key;
42 Instruction *Value;
44 } // namespace
46 /// See if we can match: (which is the form we expand into)
47 /// X - ((X ?/ Y) * Y)
48 /// which is equivalent to:
49 /// X ?% Y
50 static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) {
51 Value *Dividend, *XroundedDownToMultipleOfY;
52 if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY))))
53 return llvm::None;
55 Value *Divisor;
56 Instruction *Div;
57 // Look for ((X / Y) * Y)
58 if (!match(
59 XroundedDownToMultipleOfY,
60 m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)),
61 m_Instruction(Div)),
62 m_Deferred(Divisor))))
63 return llvm::None;
65 ExpandedMatch M;
66 M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv;
67 M.Key.Dividend = Dividend;
68 M.Key.Divisor = Divisor;
69 M.Value = &I;
70 return M;
73 /// A thin wrapper to store two values that we matched as div-rem pair.
74 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
75 struct DivRemPairWorklistEntry {
76 /// The actual udiv/sdiv instruction. Source of truth.
77 AssertingVH<Instruction> DivInst;
79 /// The instruction that we have matched as a remainder instruction.
80 /// Should only be used as Value, don't introspect it.
81 AssertingVH<Instruction> RemInst;
83 DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_)
84 : DivInst(DivInst_), RemInst(RemInst_) {
85 assert((DivInst->getOpcode() == Instruction::UDiv ||
86 DivInst->getOpcode() == Instruction::SDiv) &&
87 "Not a division.");
88 assert(DivInst->getType() == RemInst->getType() && "Types should match.");
89 // We can't check anything else about remainder instruction,
90 // it's not strictly required to be a urem/srem.
93 /// The type for this pair, identical for both the div and rem.
94 Type *getType() const { return DivInst->getType(); }
96 /// Is this pair signed or unsigned?
97 bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; }
99 /// In this pair, what are the divident and divisor?
100 Value *getDividend() const { return DivInst->getOperand(0); }
101 Value *getDivisor() const { return DivInst->getOperand(1); }
103 bool isRemExpanded() const {
104 switch (RemInst->getOpcode()) {
105 case Instruction::SRem:
106 case Instruction::URem:
107 return false; // single 'rem' instruction - unexpanded form.
108 default:
109 return true; // anything else means we have remainder in expanded form.
113 using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>;
115 /// Find matching pairs of integer div/rem ops (they have the same numerator,
116 /// denominator, and signedness). Place those pairs into a worklist for further
117 /// processing. This indirection is needed because we have to use TrackingVH<>
118 /// because we will be doing RAUW, and if one of the rem instructions we change
119 /// happens to be an input to another div/rem in the maps, we'd have problems.
120 static DivRemWorklistTy getWorklist(Function &F) {
121 // Insert all divide and remainder instructions into maps keyed by their
122 // operands and opcode (signed or unsigned).
123 DenseMap<DivRemMapKey, Instruction *> DivMap;
124 // Use a MapVector for RemMap so that instructions are moved/inserted in a
125 // deterministic order.
126 MapVector<DivRemMapKey, Instruction *> RemMap;
127 for (auto &BB : F) {
128 for (auto &I : BB) {
129 if (I.getOpcode() == Instruction::SDiv)
130 DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
131 else if (I.getOpcode() == Instruction::UDiv)
132 DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
133 else if (I.getOpcode() == Instruction::SRem)
134 RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
135 else if (I.getOpcode() == Instruction::URem)
136 RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
137 else if (auto Match = matchExpandedRem(I))
138 RemMap[Match->Key] = Match->Value;
142 // We'll accumulate the matching pairs of div-rem instructions here.
143 DivRemWorklistTy Worklist;
145 // We can iterate over either map because we are only looking for matched
146 // pairs. Choose remainders for efficiency because they are usually even more
147 // rare than division.
148 for (auto &RemPair : RemMap) {
149 // Find the matching division instruction from the division map.
150 Instruction *DivInst = DivMap[RemPair.first];
151 if (!DivInst)
152 continue;
154 // We have a matching pair of div/rem instructions.
155 NumPairs++;
156 Instruction *RemInst = RemPair.second;
158 // Place it in the worklist.
159 Worklist.emplace_back(DivInst, RemInst);
162 return Worklist;
165 /// Find matching pairs of integer div/rem ops (they have the same numerator,
166 /// denominator, and signedness). If they exist in different basic blocks, bring
167 /// them together by hoisting or replace the common division operation that is
168 /// implicit in the remainder:
169 /// X % Y <--> X - ((X / Y) * Y).
171 /// We can largely ignore the normal safety and cost constraints on speculation
172 /// of these ops when we find a matching pair. This is because we are already
173 /// guaranteed that any exceptions and most cost are already incurred by the
174 /// first member of the pair.
176 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
177 /// SimplifyCFG, but it's split off on its own because it's different enough
178 /// that it doesn't quite match the stated objectives of those passes.
179 static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI,
180 const DominatorTree &DT) {
181 bool Changed = false;
183 // Get the matching pairs of div-rem instructions. We want this extra
184 // indirection to avoid dealing with having to RAUW the keys of the maps.
185 DivRemWorklistTy Worklist = getWorklist(F);
187 // Process each entry in the worklist.
188 for (DivRemPairWorklistEntry &E : Worklist) {
189 if (!DebugCounter::shouldExecute(DRPCounter))
190 continue;
192 bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned());
194 auto &DivInst = E.DivInst;
195 auto &RemInst = E.RemInst;
197 const bool RemOriginallyWasInExpandedForm = E.isRemExpanded();
198 (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning
200 if (HasDivRemOp && E.isRemExpanded()) {
201 // The target supports div+rem but the rem is expanded.
202 // We should recompose it first.
203 Value *X = E.getDividend();
204 Value *Y = E.getDivisor();
205 Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y)
206 : BinaryOperator::CreateURem(X, Y);
207 // Note that we place it right next to the original expanded instruction,
208 // and letting further handling to move it if needed.
209 RealRem->setName(RemInst->getName() + ".recomposed");
210 RealRem->insertAfter(RemInst);
211 Instruction *OrigRemInst = RemInst;
212 // Update AssertingVH<> with new instruction so it doesn't assert.
213 RemInst = RealRem;
214 // And replace the original instruction with the new one.
215 OrigRemInst->replaceAllUsesWith(RealRem);
216 OrigRemInst->eraseFromParent();
217 NumRecomposed++;
218 // Note that we have left ((X / Y) * Y) around.
219 // If it had other uses we could rewrite it as X - X % Y
222 assert((!E.isRemExpanded() || !HasDivRemOp) &&
223 "*If* the target supports div-rem, then by now the RemInst *is* "
224 "Instruction::[US]Rem.");
226 // If the target supports div+rem and the instructions are in the same block
227 // already, there's nothing to do. The backend should handle this. If the
228 // target does not support div+rem, then we will decompose the rem.
229 if (HasDivRemOp && RemInst->getParent() == DivInst->getParent())
230 continue;
232 bool DivDominates = DT.dominates(DivInst, RemInst);
233 if (!DivDominates && !DT.dominates(RemInst, DivInst)) {
234 // We have matching div-rem pair, but they are in two different blocks,
235 // neither of which dominates one another.
236 // FIXME: We could hoist both ops to the common predecessor block?
237 continue;
240 // The target does not have a single div/rem operation,
241 // and the rem is already in expanded form. Nothing to do.
242 if (!HasDivRemOp && E.isRemExpanded())
243 continue;
245 if (HasDivRemOp) {
246 // The target has a single div/rem operation. Hoist the lower instruction
247 // to make the matched pair visible to the backend.
248 if (DivDominates)
249 RemInst->moveAfter(DivInst);
250 else
251 DivInst->moveAfter(RemInst);
252 NumHoisted++;
253 } else {
254 // The target does not have a single div/rem operation,
255 // and the rem is *not* in a already-expanded form.
256 // Decompose the remainder calculation as:
257 // X % Y --> X - ((X / Y) * Y).
259 assert(!RemOriginallyWasInExpandedForm &&
260 "We should not be expanding if the rem was in expanded form to "
261 "begin with.");
263 Value *X = E.getDividend();
264 Value *Y = E.getDivisor();
265 Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y);
266 Instruction *Sub = BinaryOperator::CreateSub(X, Mul);
268 // If the remainder dominates, then hoist the division up to that block:
270 // bb1:
271 // %rem = srem %x, %y
272 // bb2:
273 // %div = sdiv %x, %y
274 // -->
275 // bb1:
276 // %div = sdiv %x, %y
277 // %mul = mul %div, %y
278 // %rem = sub %x, %mul
280 // If the division dominates, it's already in the right place. The mul+sub
281 // will be in a different block because we don't assume that they are
282 // cheap to speculatively execute:
284 // bb1:
285 // %div = sdiv %x, %y
286 // bb2:
287 // %rem = srem %x, %y
288 // -->
289 // bb1:
290 // %div = sdiv %x, %y
291 // bb2:
292 // %mul = mul %div, %y
293 // %rem = sub %x, %mul
295 // If the div and rem are in the same block, we do the same transform,
296 // but any code movement would be within the same block.
298 if (!DivDominates)
299 DivInst->moveBefore(RemInst);
300 Mul->insertAfter(RemInst);
301 Sub->insertAfter(Mul);
303 // Now kill the explicit remainder. We have replaced it with:
304 // (sub X, (mul (div X, Y), Y)
305 Sub->setName(RemInst->getName() + ".decomposed");
306 Instruction *OrigRemInst = RemInst;
307 // Update AssertingVH<> with new instruction so it doesn't assert.
308 RemInst = Sub;
309 // And replace the original instruction with the new one.
310 OrigRemInst->replaceAllUsesWith(Sub);
311 OrigRemInst->eraseFromParent();
312 NumDecomposed++;
314 Changed = true;
317 return Changed;
320 // Pass manager boilerplate below here.
322 namespace {
323 struct DivRemPairsLegacyPass : public FunctionPass {
324 static char ID;
325 DivRemPairsLegacyPass() : FunctionPass(ID) {
326 initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry());
329 void getAnalysisUsage(AnalysisUsage &AU) const override {
330 AU.addRequired<DominatorTreeWrapperPass>();
331 AU.addRequired<TargetTransformInfoWrapperPass>();
332 AU.setPreservesCFG();
333 AU.addPreserved<DominatorTreeWrapperPass>();
334 AU.addPreserved<GlobalsAAWrapperPass>();
335 FunctionPass::getAnalysisUsage(AU);
338 bool runOnFunction(Function &F) override {
339 if (skipFunction(F))
340 return false;
341 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
342 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
343 return optimizeDivRem(F, TTI, DT);
346 } // namespace
348 char DivRemPairsLegacyPass::ID = 0;
349 INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs",
350 "Hoist/decompose integer division and remainder", false,
351 false)
352 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
353 INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs",
354 "Hoist/decompose integer division and remainder", false,
355 false)
356 FunctionPass *llvm::createDivRemPairsPass() {
357 return new DivRemPairsLegacyPass();
360 PreservedAnalyses DivRemPairsPass::run(Function &F,
361 FunctionAnalysisManager &FAM) {
362 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
363 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
364 if (!optimizeDivRem(F, TTI, DT))
365 return PreservedAnalyses::all();
366 // TODO: This pass just hoists/replaces math ops - all analyses are preserved?
367 PreservedAnalyses PA;
368 PA.preserveSet<CFGAnalyses>();
369 PA.preserve<GlobalsAA>();
370 return PA;