1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass hoists and/or decomposes/recomposes integer division and remainder
10 // instructions to enable CFG improvements and better codegen.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/DivRemPairs.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/DebugCounter.h"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
29 using namespace llvm::PatternMatch
;
31 #define DEBUG_TYPE "div-rem-pairs"
32 STATISTIC(NumPairs
, "Number of div/rem pairs");
33 STATISTIC(NumRecomposed
, "Number of instructions recomposed");
34 STATISTIC(NumHoisted
, "Number of instructions hoisted");
35 STATISTIC(NumDecomposed
, "Number of instructions decomposed");
36 DEBUG_COUNTER(DRPCounter
, "div-rem-pairs-transform",
37 "Controls transformations in div-rem-pairs pass");
40 struct ExpandedMatch
{
46 /// See if we can match: (which is the form we expand into)
47 /// X - ((X ?/ Y) * Y)
48 /// which is equivalent to:
50 static llvm::Optional
<ExpandedMatch
> matchExpandedRem(Instruction
&I
) {
51 Value
*Dividend
, *XroundedDownToMultipleOfY
;
52 if (!match(&I
, m_Sub(m_Value(Dividend
), m_Value(XroundedDownToMultipleOfY
))))
57 // Look for ((X / Y) * Y)
59 XroundedDownToMultipleOfY
,
60 m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend
), m_Value(Divisor
)),
62 m_Deferred(Divisor
))))
66 M
.Key
.SignedOp
= Div
->getOpcode() == Instruction::SDiv
;
67 M
.Key
.Dividend
= Dividend
;
68 M
.Key
.Divisor
= Divisor
;
73 /// A thin wrapper to store two values that we matched as div-rem pair.
74 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
75 struct DivRemPairWorklistEntry
{
76 /// The actual udiv/sdiv instruction. Source of truth.
77 AssertingVH
<Instruction
> DivInst
;
79 /// The instruction that we have matched as a remainder instruction.
80 /// Should only be used as Value, don't introspect it.
81 AssertingVH
<Instruction
> RemInst
;
83 DivRemPairWorklistEntry(Instruction
*DivInst_
, Instruction
*RemInst_
)
84 : DivInst(DivInst_
), RemInst(RemInst_
) {
85 assert((DivInst
->getOpcode() == Instruction::UDiv
||
86 DivInst
->getOpcode() == Instruction::SDiv
) &&
88 assert(DivInst
->getType() == RemInst
->getType() && "Types should match.");
89 // We can't check anything else about remainder instruction,
90 // it's not strictly required to be a urem/srem.
93 /// The type for this pair, identical for both the div and rem.
94 Type
*getType() const { return DivInst
->getType(); }
96 /// Is this pair signed or unsigned?
97 bool isSigned() const { return DivInst
->getOpcode() == Instruction::SDiv
; }
99 /// In this pair, what are the divident and divisor?
100 Value
*getDividend() const { return DivInst
->getOperand(0); }
101 Value
*getDivisor() const { return DivInst
->getOperand(1); }
103 bool isRemExpanded() const {
104 switch (RemInst
->getOpcode()) {
105 case Instruction::SRem
:
106 case Instruction::URem
:
107 return false; // single 'rem' instruction - unexpanded form.
109 return true; // anything else means we have remainder in expanded form.
113 using DivRemWorklistTy
= SmallVector
<DivRemPairWorklistEntry
, 4>;
115 /// Find matching pairs of integer div/rem ops (they have the same numerator,
116 /// denominator, and signedness). Place those pairs into a worklist for further
117 /// processing. This indirection is needed because we have to use TrackingVH<>
118 /// because we will be doing RAUW, and if one of the rem instructions we change
119 /// happens to be an input to another div/rem in the maps, we'd have problems.
120 static DivRemWorklistTy
getWorklist(Function
&F
) {
121 // Insert all divide and remainder instructions into maps keyed by their
122 // operands and opcode (signed or unsigned).
123 DenseMap
<DivRemMapKey
, Instruction
*> DivMap
;
124 // Use a MapVector for RemMap so that instructions are moved/inserted in a
125 // deterministic order.
126 MapVector
<DivRemMapKey
, Instruction
*> RemMap
;
129 if (I
.getOpcode() == Instruction::SDiv
)
130 DivMap
[DivRemMapKey(true, I
.getOperand(0), I
.getOperand(1))] = &I
;
131 else if (I
.getOpcode() == Instruction::UDiv
)
132 DivMap
[DivRemMapKey(false, I
.getOperand(0), I
.getOperand(1))] = &I
;
133 else if (I
.getOpcode() == Instruction::SRem
)
134 RemMap
[DivRemMapKey(true, I
.getOperand(0), I
.getOperand(1))] = &I
;
135 else if (I
.getOpcode() == Instruction::URem
)
136 RemMap
[DivRemMapKey(false, I
.getOperand(0), I
.getOperand(1))] = &I
;
137 else if (auto Match
= matchExpandedRem(I
))
138 RemMap
[Match
->Key
] = Match
->Value
;
142 // We'll accumulate the matching pairs of div-rem instructions here.
143 DivRemWorklistTy Worklist
;
145 // We can iterate over either map because we are only looking for matched
146 // pairs. Choose remainders for efficiency because they are usually even more
147 // rare than division.
148 for (auto &RemPair
: RemMap
) {
149 // Find the matching division instruction from the division map.
150 Instruction
*DivInst
= DivMap
[RemPair
.first
];
154 // We have a matching pair of div/rem instructions.
156 Instruction
*RemInst
= RemPair
.second
;
158 // Place it in the worklist.
159 Worklist
.emplace_back(DivInst
, RemInst
);
165 /// Find matching pairs of integer div/rem ops (they have the same numerator,
166 /// denominator, and signedness). If they exist in different basic blocks, bring
167 /// them together by hoisting or replace the common division operation that is
168 /// implicit in the remainder:
169 /// X % Y <--> X - ((X / Y) * Y).
171 /// We can largely ignore the normal safety and cost constraints on speculation
172 /// of these ops when we find a matching pair. This is because we are already
173 /// guaranteed that any exceptions and most cost are already incurred by the
174 /// first member of the pair.
176 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
177 /// SimplifyCFG, but it's split off on its own because it's different enough
178 /// that it doesn't quite match the stated objectives of those passes.
179 static bool optimizeDivRem(Function
&F
, const TargetTransformInfo
&TTI
,
180 const DominatorTree
&DT
) {
181 bool Changed
= false;
183 // Get the matching pairs of div-rem instructions. We want this extra
184 // indirection to avoid dealing with having to RAUW the keys of the maps.
185 DivRemWorklistTy Worklist
= getWorklist(F
);
187 // Process each entry in the worklist.
188 for (DivRemPairWorklistEntry
&E
: Worklist
) {
189 if (!DebugCounter::shouldExecute(DRPCounter
))
192 bool HasDivRemOp
= TTI
.hasDivRemOp(E
.getType(), E
.isSigned());
194 auto &DivInst
= E
.DivInst
;
195 auto &RemInst
= E
.RemInst
;
197 const bool RemOriginallyWasInExpandedForm
= E
.isRemExpanded();
198 (void)RemOriginallyWasInExpandedForm
; // suppress unused variable warning
200 if (HasDivRemOp
&& E
.isRemExpanded()) {
201 // The target supports div+rem but the rem is expanded.
202 // We should recompose it first.
203 Value
*X
= E
.getDividend();
204 Value
*Y
= E
.getDivisor();
205 Instruction
*RealRem
= E
.isSigned() ? BinaryOperator::CreateSRem(X
, Y
)
206 : BinaryOperator::CreateURem(X
, Y
);
207 // Note that we place it right next to the original expanded instruction,
208 // and letting further handling to move it if needed.
209 RealRem
->setName(RemInst
->getName() + ".recomposed");
210 RealRem
->insertAfter(RemInst
);
211 Instruction
*OrigRemInst
= RemInst
;
212 // Update AssertingVH<> with new instruction so it doesn't assert.
214 // And replace the original instruction with the new one.
215 OrigRemInst
->replaceAllUsesWith(RealRem
);
216 OrigRemInst
->eraseFromParent();
218 // Note that we have left ((X / Y) * Y) around.
219 // If it had other uses we could rewrite it as X - X % Y
222 assert((!E
.isRemExpanded() || !HasDivRemOp
) &&
223 "*If* the target supports div-rem, then by now the RemInst *is* "
224 "Instruction::[US]Rem.");
226 // If the target supports div+rem and the instructions are in the same block
227 // already, there's nothing to do. The backend should handle this. If the
228 // target does not support div+rem, then we will decompose the rem.
229 if (HasDivRemOp
&& RemInst
->getParent() == DivInst
->getParent())
232 bool DivDominates
= DT
.dominates(DivInst
, RemInst
);
233 if (!DivDominates
&& !DT
.dominates(RemInst
, DivInst
)) {
234 // We have matching div-rem pair, but they are in two different blocks,
235 // neither of which dominates one another.
236 // FIXME: We could hoist both ops to the common predecessor block?
240 // The target does not have a single div/rem operation,
241 // and the rem is already in expanded form. Nothing to do.
242 if (!HasDivRemOp
&& E
.isRemExpanded())
246 // The target has a single div/rem operation. Hoist the lower instruction
247 // to make the matched pair visible to the backend.
249 RemInst
->moveAfter(DivInst
);
251 DivInst
->moveAfter(RemInst
);
254 // The target does not have a single div/rem operation,
255 // and the rem is *not* in a already-expanded form.
256 // Decompose the remainder calculation as:
257 // X % Y --> X - ((X / Y) * Y).
259 assert(!RemOriginallyWasInExpandedForm
&&
260 "We should not be expanding if the rem was in expanded form to "
263 Value
*X
= E
.getDividend();
264 Value
*Y
= E
.getDivisor();
265 Instruction
*Mul
= BinaryOperator::CreateMul(DivInst
, Y
);
266 Instruction
*Sub
= BinaryOperator::CreateSub(X
, Mul
);
268 // If the remainder dominates, then hoist the division up to that block:
271 // %rem = srem %x, %y
273 // %div = sdiv %x, %y
276 // %div = sdiv %x, %y
277 // %mul = mul %div, %y
278 // %rem = sub %x, %mul
280 // If the division dominates, it's already in the right place. The mul+sub
281 // will be in a different block because we don't assume that they are
282 // cheap to speculatively execute:
285 // %div = sdiv %x, %y
287 // %rem = srem %x, %y
290 // %div = sdiv %x, %y
292 // %mul = mul %div, %y
293 // %rem = sub %x, %mul
295 // If the div and rem are in the same block, we do the same transform,
296 // but any code movement would be within the same block.
299 DivInst
->moveBefore(RemInst
);
300 Mul
->insertAfter(RemInst
);
301 Sub
->insertAfter(Mul
);
303 // Now kill the explicit remainder. We have replaced it with:
304 // (sub X, (mul (div X, Y), Y)
305 Sub
->setName(RemInst
->getName() + ".decomposed");
306 Instruction
*OrigRemInst
= RemInst
;
307 // Update AssertingVH<> with new instruction so it doesn't assert.
309 // And replace the original instruction with the new one.
310 OrigRemInst
->replaceAllUsesWith(Sub
);
311 OrigRemInst
->eraseFromParent();
320 // Pass manager boilerplate below here.
323 struct DivRemPairsLegacyPass
: public FunctionPass
{
325 DivRemPairsLegacyPass() : FunctionPass(ID
) {
326 initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry());
329 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
330 AU
.addRequired
<DominatorTreeWrapperPass
>();
331 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
332 AU
.setPreservesCFG();
333 AU
.addPreserved
<DominatorTreeWrapperPass
>();
334 AU
.addPreserved
<GlobalsAAWrapperPass
>();
335 FunctionPass::getAnalysisUsage(AU
);
338 bool runOnFunction(Function
&F
) override
{
341 auto &TTI
= getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
342 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
343 return optimizeDivRem(F
, TTI
, DT
);
348 char DivRemPairsLegacyPass::ID
= 0;
349 INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass
, "div-rem-pairs",
350 "Hoist/decompose integer division and remainder", false,
352 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
353 INITIALIZE_PASS_END(DivRemPairsLegacyPass
, "div-rem-pairs",
354 "Hoist/decompose integer division and remainder", false,
356 FunctionPass
*llvm::createDivRemPairsPass() {
357 return new DivRemPairsLegacyPass();
360 PreservedAnalyses
DivRemPairsPass::run(Function
&F
,
361 FunctionAnalysisManager
&FAM
) {
362 TargetTransformInfo
&TTI
= FAM
.getResult
<TargetIRAnalysis
>(F
);
363 DominatorTree
&DT
= FAM
.getResult
<DominatorTreeAnalysis
>(F
);
364 if (!optimizeDivRem(F
, TTI
, DT
))
365 return PreservedAnalyses::all();
366 // TODO: This pass just hoists/replaces math ops - all analyses are preserved?
367 PreservedAnalyses PA
;
368 PA
.preserveSet
<CFGAnalyses
>();
369 PA
.preserve
<GlobalsAA
>();