1 //===- InferAddressSpace.cpp - --------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
25 // For example, the Clang translates the following CUDA code
26 // __shared__ float a[10];
29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 // %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 // CUDA: Compiling and optimizing for a GPU platform
48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 // %generic.input = addrspacecast float addrspace(3)* %input to float*
60 // %y = phi [ %generic.input, %y2 ]
61 // %y2 = getelementptr %y, 1
63 // br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 // uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "undef" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
82 // For instance, our algorithm first converts %y to
83 // %y' = phi float addrspace(3)* [ %input, undef ]
84 // Then, it converts %y2 to
85 // %y2' = getelementptr %y', 1
86 // Finally, it fixes the undef in %y' so that
87 // %y' = phi float addrspace(3)* [ %input, %y2' ]
89 //===----------------------------------------------------------------------===//
91 #include "llvm/ADT/ArrayRef.h"
92 #include "llvm/ADT/DenseMap.h"
93 #include "llvm/ADT/DenseSet.h"
94 #include "llvm/ADT/None.h"
95 #include "llvm/ADT/Optional.h"
96 #include "llvm/ADT/SetVector.h"
97 #include "llvm/ADT/SmallVector.h"
98 #include "llvm/Analysis/TargetTransformInfo.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/Function.h"
104 #include "llvm/IR/IRBuilder.h"
105 #include "llvm/IR/InstIterator.h"
106 #include "llvm/IR/Instruction.h"
107 #include "llvm/IR/Instructions.h"
108 #include "llvm/IR/IntrinsicInst.h"
109 #include "llvm/IR/Intrinsics.h"
110 #include "llvm/IR/LLVMContext.h"
111 #include "llvm/IR/Operator.h"
112 #include "llvm/IR/Type.h"
113 #include "llvm/IR/Use.h"
114 #include "llvm/IR/User.h"
115 #include "llvm/IR/Value.h"
116 #include "llvm/IR/ValueHandle.h"
117 #include "llvm/Pass.h"
118 #include "llvm/Support/Casting.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/raw_ostream.h"
123 #include "llvm/Transforms/Scalar.h"
124 #include "llvm/Transforms/Utils/ValueMapper.h"
131 #define DEBUG_TYPE "infer-address-spaces"
133 using namespace llvm
;
135 static const unsigned UninitializedAddressSpace
=
136 std::numeric_limits
<unsigned>::max();
140 using ValueToAddrSpaceMapTy
= DenseMap
<const Value
*, unsigned>;
142 /// InferAddressSpaces
143 class InferAddressSpaces
: public FunctionPass
{
144 const TargetTransformInfo
*TTI
;
146 /// Target specific address space which uses of should be replaced if
148 unsigned FlatAddrSpace
;
153 InferAddressSpaces() :
154 FunctionPass(ID
), FlatAddrSpace(UninitializedAddressSpace
) {}
155 InferAddressSpaces(unsigned AS
) : FunctionPass(ID
), FlatAddrSpace(AS
) {}
157 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
158 AU
.setPreservesCFG();
159 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
162 bool runOnFunction(Function
&F
) override
;
165 // Returns the new address space of V if updated; otherwise, returns None.
167 updateAddressSpace(const Value
&V
,
168 const ValueToAddrSpaceMapTy
&InferredAddrSpace
) const;
170 // Tries to infer the specific address space of each address expression in
172 void inferAddressSpaces(ArrayRef
<WeakTrackingVH
> Postorder
,
173 ValueToAddrSpaceMapTy
*InferredAddrSpace
) const;
175 bool isSafeToCastConstAddrSpace(Constant
*C
, unsigned NewAS
) const;
177 // Changes the flat address expressions in function F to point to specific
178 // address spaces if InferredAddrSpace says so. Postorder is the postorder of
179 // all flat expressions in the use-def graph of function F.
180 bool rewriteWithNewAddressSpaces(
181 const TargetTransformInfo
&TTI
, ArrayRef
<WeakTrackingVH
> Postorder
,
182 const ValueToAddrSpaceMapTy
&InferredAddrSpace
, Function
*F
) const;
184 void appendsFlatAddressExpressionToPostorderStack(
185 Value
*V
, std::vector
<std::pair
<Value
*, bool>> &PostorderStack
,
186 DenseSet
<Value
*> &Visited
) const;
188 bool rewriteIntrinsicOperands(IntrinsicInst
*II
,
189 Value
*OldV
, Value
*NewV
) const;
190 void collectRewritableIntrinsicOperands(
192 std::vector
<std::pair
<Value
*, bool>> &PostorderStack
,
193 DenseSet
<Value
*> &Visited
) const;
195 std::vector
<WeakTrackingVH
> collectFlatAddressExpressions(Function
&F
) const;
197 Value
*cloneValueWithNewAddressSpace(
198 Value
*V
, unsigned NewAddrSpace
,
199 const ValueToValueMapTy
&ValueWithNewAddrSpace
,
200 SmallVectorImpl
<const Use
*> *UndefUsesToFix
) const;
201 unsigned joinAddressSpaces(unsigned AS1
, unsigned AS2
) const;
204 } // end anonymous namespace
206 char InferAddressSpaces::ID
= 0;
210 void initializeInferAddressSpacesPass(PassRegistry
&);
212 } // end namespace llvm
214 INITIALIZE_PASS(InferAddressSpaces
, DEBUG_TYPE
, "Infer address spaces",
217 // Returns true if V is an address expression.
218 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
219 // getelementptr operators.
220 static bool isAddressExpression(const Value
&V
) {
221 if (!isa
<Operator
>(V
))
224 const Operator
&Op
= cast
<Operator
>(V
);
225 switch (Op
.getOpcode()) {
226 case Instruction::PHI
:
227 assert(Op
.getType()->isPointerTy());
229 case Instruction::BitCast
:
230 case Instruction::AddrSpaceCast
:
231 case Instruction::GetElementPtr
:
233 case Instruction::Select
:
234 return Op
.getType()->isPointerTy();
240 // Returns the pointer operands of V.
242 // Precondition: V is an address expression.
243 static SmallVector
<Value
*, 2> getPointerOperands(const Value
&V
) {
244 const Operator
&Op
= cast
<Operator
>(V
);
245 switch (Op
.getOpcode()) {
246 case Instruction::PHI
: {
247 auto IncomingValues
= cast
<PHINode
>(Op
).incoming_values();
248 return SmallVector
<Value
*, 2>(IncomingValues
.begin(),
249 IncomingValues
.end());
251 case Instruction::BitCast
:
252 case Instruction::AddrSpaceCast
:
253 case Instruction::GetElementPtr
:
254 return {Op
.getOperand(0)};
255 case Instruction::Select
:
256 return {Op
.getOperand(1), Op
.getOperand(2)};
258 llvm_unreachable("Unexpected instruction type.");
262 // TODO: Move logic to TTI?
263 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst
*II
,
266 Module
*M
= II
->getParent()->getParent()->getParent();
268 switch (II
->getIntrinsicID()) {
269 case Intrinsic::objectsize
: {
270 Type
*DestTy
= II
->getType();
271 Type
*SrcTy
= NewV
->getType();
273 Intrinsic::getDeclaration(M
, II
->getIntrinsicID(), {DestTy
, SrcTy
});
274 II
->setArgOperand(0, NewV
);
275 II
->setCalledFunction(NewDecl
);
279 return TTI
->rewriteIntrinsicWithAddressSpace(II
, OldV
, NewV
);
283 void InferAddressSpaces::collectRewritableIntrinsicOperands(
284 IntrinsicInst
*II
, std::vector
<std::pair
<Value
*, bool>> &PostorderStack
,
285 DenseSet
<Value
*> &Visited
) const {
286 auto IID
= II
->getIntrinsicID();
288 case Intrinsic::objectsize
:
289 appendsFlatAddressExpressionToPostorderStack(II
->getArgOperand(0),
290 PostorderStack
, Visited
);
293 SmallVector
<int, 2> OpIndexes
;
294 if (TTI
->collectFlatAddressOperands(OpIndexes
, IID
)) {
295 for (int Idx
: OpIndexes
) {
296 appendsFlatAddressExpressionToPostorderStack(II
->getArgOperand(Idx
),
297 PostorderStack
, Visited
);
304 // Returns all flat address expressions in function F. The elements are
305 // If V is an unvisited flat address expression, appends V to PostorderStack
306 // and marks it as visited.
307 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
308 Value
*V
, std::vector
<std::pair
<Value
*, bool>> &PostorderStack
,
309 DenseSet
<Value
*> &Visited
) const {
310 assert(V
->getType()->isPointerTy());
312 // Generic addressing expressions may be hidden in nested constant
314 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
315 // TODO: Look in non-address parts, like icmp operands.
316 if (isAddressExpression(*CE
) && Visited
.insert(CE
).second
)
317 PostorderStack
.push_back(std::make_pair(CE
, false));
322 if (isAddressExpression(*V
) &&
323 V
->getType()->getPointerAddressSpace() == FlatAddrSpace
) {
324 if (Visited
.insert(V
).second
) {
325 PostorderStack
.push_back(std::make_pair(V
, false));
327 Operator
*Op
= cast
<Operator
>(V
);
328 for (unsigned I
= 0, E
= Op
->getNumOperands(); I
!= E
; ++I
) {
329 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Op
->getOperand(I
))) {
330 if (isAddressExpression(*CE
) && Visited
.insert(CE
).second
)
331 PostorderStack
.emplace_back(CE
, false);
338 // Returns all flat address expressions in function F. The elements are ordered
339 // ordered in postorder.
340 std::vector
<WeakTrackingVH
>
341 InferAddressSpaces::collectFlatAddressExpressions(Function
&F
) const {
342 // This function implements a non-recursive postorder traversal of a partial
343 // use-def graph of function F.
344 std::vector
<std::pair
<Value
*, bool>> PostorderStack
;
345 // The set of visited expressions.
346 DenseSet
<Value
*> Visited
;
348 auto PushPtrOperand
= [&](Value
*Ptr
) {
349 appendsFlatAddressExpressionToPostorderStack(Ptr
, PostorderStack
,
353 // Look at operations that may be interesting accelerate by moving to a known
354 // address space. We aim at generating after loads and stores, but pure
355 // addressing calculations may also be faster.
356 for (Instruction
&I
: instructions(F
)) {
357 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
358 if (!GEP
->getType()->isVectorTy())
359 PushPtrOperand(GEP
->getPointerOperand());
360 } else if (auto *LI
= dyn_cast
<LoadInst
>(&I
))
361 PushPtrOperand(LI
->getPointerOperand());
362 else if (auto *SI
= dyn_cast
<StoreInst
>(&I
))
363 PushPtrOperand(SI
->getPointerOperand());
364 else if (auto *RMW
= dyn_cast
<AtomicRMWInst
>(&I
))
365 PushPtrOperand(RMW
->getPointerOperand());
366 else if (auto *CmpX
= dyn_cast
<AtomicCmpXchgInst
>(&I
))
367 PushPtrOperand(CmpX
->getPointerOperand());
368 else if (auto *MI
= dyn_cast
<MemIntrinsic
>(&I
)) {
369 // For memset/memcpy/memmove, any pointer operand can be replaced.
370 PushPtrOperand(MI
->getRawDest());
372 // Handle 2nd operand for memcpy/memmove.
373 if (auto *MTI
= dyn_cast
<MemTransferInst
>(MI
))
374 PushPtrOperand(MTI
->getRawSource());
375 } else if (auto *II
= dyn_cast
<IntrinsicInst
>(&I
))
376 collectRewritableIntrinsicOperands(II
, PostorderStack
, Visited
);
377 else if (ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(&I
)) {
378 // FIXME: Handle vectors of pointers
379 if (Cmp
->getOperand(0)->getType()->isPointerTy()) {
380 PushPtrOperand(Cmp
->getOperand(0));
381 PushPtrOperand(Cmp
->getOperand(1));
383 } else if (auto *ASC
= dyn_cast
<AddrSpaceCastInst
>(&I
)) {
384 if (!ASC
->getType()->isVectorTy())
385 PushPtrOperand(ASC
->getPointerOperand());
389 std::vector
<WeakTrackingVH
> Postorder
; // The resultant postorder.
390 while (!PostorderStack
.empty()) {
391 Value
*TopVal
= PostorderStack
.back().first
;
392 // If the operands of the expression on the top are already explored,
393 // adds that expression to the resultant postorder.
394 if (PostorderStack
.back().second
) {
395 if (TopVal
->getType()->getPointerAddressSpace() == FlatAddrSpace
)
396 Postorder
.push_back(TopVal
);
397 PostorderStack
.pop_back();
400 // Otherwise, adds its operands to the stack and explores them.
401 PostorderStack
.back().second
= true;
402 for (Value
*PtrOperand
: getPointerOperands(*TopVal
)) {
403 appendsFlatAddressExpressionToPostorderStack(PtrOperand
, PostorderStack
,
410 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
411 // of OperandUse.get() in the new address space. If the clone is not ready yet,
412 // returns an undef in the new address space as a placeholder.
413 static Value
*operandWithNewAddressSpaceOrCreateUndef(
414 const Use
&OperandUse
, unsigned NewAddrSpace
,
415 const ValueToValueMapTy
&ValueWithNewAddrSpace
,
416 SmallVectorImpl
<const Use
*> *UndefUsesToFix
) {
417 Value
*Operand
= OperandUse
.get();
420 Operand
->getType()->getPointerElementType()->getPointerTo(NewAddrSpace
);
422 if (Constant
*C
= dyn_cast
<Constant
>(Operand
))
423 return ConstantExpr::getAddrSpaceCast(C
, NewPtrTy
);
425 if (Value
*NewOperand
= ValueWithNewAddrSpace
.lookup(Operand
))
428 UndefUsesToFix
->push_back(&OperandUse
);
429 return UndefValue::get(NewPtrTy
);
432 // Returns a clone of `I` with its operands converted to those specified in
433 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
434 // operand whose address space needs to be modified might not exist in
435 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
436 // adds that operand use to UndefUsesToFix so that caller can fix them later.
438 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
439 // from a pointer whose type already matches. Therefore, this function returns a
440 // Value* instead of an Instruction*.
441 static Value
*cloneInstructionWithNewAddressSpace(
442 Instruction
*I
, unsigned NewAddrSpace
,
443 const ValueToValueMapTy
&ValueWithNewAddrSpace
,
444 SmallVectorImpl
<const Use
*> *UndefUsesToFix
) {
446 I
->getType()->getPointerElementType()->getPointerTo(NewAddrSpace
);
448 if (I
->getOpcode() == Instruction::AddrSpaceCast
) {
449 Value
*Src
= I
->getOperand(0);
450 // Because `I` is flat, the source address space must be specific.
451 // Therefore, the inferred address space must be the source space, according
453 assert(Src
->getType()->getPointerAddressSpace() == NewAddrSpace
);
454 if (Src
->getType() != NewPtrType
)
455 return new BitCastInst(Src
, NewPtrType
);
459 // Computes the converted pointer operands.
460 SmallVector
<Value
*, 4> NewPointerOperands
;
461 for (const Use
&OperandUse
: I
->operands()) {
462 if (!OperandUse
.get()->getType()->isPointerTy())
463 NewPointerOperands
.push_back(nullptr);
465 NewPointerOperands
.push_back(operandWithNewAddressSpaceOrCreateUndef(
466 OperandUse
, NewAddrSpace
, ValueWithNewAddrSpace
, UndefUsesToFix
));
469 switch (I
->getOpcode()) {
470 case Instruction::BitCast
:
471 return new BitCastInst(NewPointerOperands
[0], NewPtrType
);
472 case Instruction::PHI
: {
473 assert(I
->getType()->isPointerTy());
474 PHINode
*PHI
= cast
<PHINode
>(I
);
475 PHINode
*NewPHI
= PHINode::Create(NewPtrType
, PHI
->getNumIncomingValues());
476 for (unsigned Index
= 0; Index
< PHI
->getNumIncomingValues(); ++Index
) {
477 unsigned OperandNo
= PHINode::getOperandNumForIncomingValue(Index
);
478 NewPHI
->addIncoming(NewPointerOperands
[OperandNo
],
479 PHI
->getIncomingBlock(Index
));
483 case Instruction::GetElementPtr
: {
484 GetElementPtrInst
*GEP
= cast
<GetElementPtrInst
>(I
);
485 GetElementPtrInst
*NewGEP
= GetElementPtrInst::Create(
486 GEP
->getSourceElementType(), NewPointerOperands
[0],
487 SmallVector
<Value
*, 4>(GEP
->idx_begin(), GEP
->idx_end()));
488 NewGEP
->setIsInBounds(GEP
->isInBounds());
491 case Instruction::Select
:
492 assert(I
->getType()->isPointerTy());
493 return SelectInst::Create(I
->getOperand(0), NewPointerOperands
[1],
494 NewPointerOperands
[2], "", nullptr, I
);
496 llvm_unreachable("Unexpected opcode");
500 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
501 // constant expression `CE` with its operands replaced as specified in
502 // ValueWithNewAddrSpace.
503 static Value
*cloneConstantExprWithNewAddressSpace(
504 ConstantExpr
*CE
, unsigned NewAddrSpace
,
505 const ValueToValueMapTy
&ValueWithNewAddrSpace
) {
507 CE
->getType()->getPointerElementType()->getPointerTo(NewAddrSpace
);
509 if (CE
->getOpcode() == Instruction::AddrSpaceCast
) {
510 // Because CE is flat, the source address space must be specific.
511 // Therefore, the inferred address space must be the source space according
513 assert(CE
->getOperand(0)->getType()->getPointerAddressSpace() ==
515 return ConstantExpr::getBitCast(CE
->getOperand(0), TargetType
);
518 if (CE
->getOpcode() == Instruction::BitCast
) {
519 if (Value
*NewOperand
= ValueWithNewAddrSpace
.lookup(CE
->getOperand(0)))
520 return ConstantExpr::getBitCast(cast
<Constant
>(NewOperand
), TargetType
);
521 return ConstantExpr::getAddrSpaceCast(CE
, TargetType
);
524 if (CE
->getOpcode() == Instruction::Select
) {
525 Constant
*Src0
= CE
->getOperand(1);
526 Constant
*Src1
= CE
->getOperand(2);
527 if (Src0
->getType()->getPointerAddressSpace() ==
528 Src1
->getType()->getPointerAddressSpace()) {
530 return ConstantExpr::getSelect(
531 CE
->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0
, TargetType
),
532 ConstantExpr::getAddrSpaceCast(Src1
, TargetType
));
536 // Computes the operands of the new constant expression.
538 SmallVector
<Constant
*, 4> NewOperands
;
539 for (unsigned Index
= 0; Index
< CE
->getNumOperands(); ++Index
) {
540 Constant
*Operand
= CE
->getOperand(Index
);
541 // If the address space of `Operand` needs to be modified, the new operand
542 // with the new address space should already be in ValueWithNewAddrSpace
543 // because (1) the constant expressions we consider (i.e. addrspacecast,
544 // bitcast, and getelementptr) do not incur cycles in the data flow graph
545 // and (2) this function is called on constant expressions in postorder.
546 if (Value
*NewOperand
= ValueWithNewAddrSpace
.lookup(Operand
)) {
548 NewOperands
.push_back(cast
<Constant
>(NewOperand
));
551 if (auto CExpr
= dyn_cast
<ConstantExpr
>(Operand
))
552 if (Value
*NewOperand
= cloneConstantExprWithNewAddressSpace(
553 CExpr
, NewAddrSpace
, ValueWithNewAddrSpace
)) {
555 NewOperands
.push_back(cast
<Constant
>(NewOperand
));
558 // Otherwise, reuses the old operand.
559 NewOperands
.push_back(Operand
);
562 // If !IsNew, we will replace the Value with itself. However, replaced values
563 // are assumed to wrapped in a addrspace cast later so drop it now.
567 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
568 // Needs to specify the source type while constructing a getelementptr
569 // constant expression.
570 return CE
->getWithOperands(
571 NewOperands
, TargetType
, /*OnlyIfReduced=*/false,
572 NewOperands
[0]->getType()->getPointerElementType());
575 return CE
->getWithOperands(NewOperands
, TargetType
);
578 // Returns a clone of the value `V`, with its operands replaced as specified in
579 // ValueWithNewAddrSpace. This function is called on every flat address
580 // expression whose address space needs to be modified, in postorder.
582 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
583 Value
*InferAddressSpaces::cloneValueWithNewAddressSpace(
584 Value
*V
, unsigned NewAddrSpace
,
585 const ValueToValueMapTy
&ValueWithNewAddrSpace
,
586 SmallVectorImpl
<const Use
*> *UndefUsesToFix
) const {
587 // All values in Postorder are flat address expressions.
588 assert(isAddressExpression(*V
) &&
589 V
->getType()->getPointerAddressSpace() == FlatAddrSpace
);
591 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
592 Value
*NewV
= cloneInstructionWithNewAddressSpace(
593 I
, NewAddrSpace
, ValueWithNewAddrSpace
, UndefUsesToFix
);
594 if (Instruction
*NewI
= dyn_cast
<Instruction
>(NewV
)) {
595 if (NewI
->getParent() == nullptr) {
596 NewI
->insertBefore(I
);
603 return cloneConstantExprWithNewAddressSpace(
604 cast
<ConstantExpr
>(V
), NewAddrSpace
, ValueWithNewAddrSpace
);
607 // Defines the join operation on the address space lattice (see the file header
609 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1
,
610 unsigned AS2
) const {
611 if (AS1
== FlatAddrSpace
|| AS2
== FlatAddrSpace
)
612 return FlatAddrSpace
;
614 if (AS1
== UninitializedAddressSpace
)
616 if (AS2
== UninitializedAddressSpace
)
619 // The join of two different specific address spaces is flat.
620 return (AS1
== AS2
) ? AS1
: FlatAddrSpace
;
623 bool InferAddressSpaces::runOnFunction(Function
&F
) {
627 TTI
= &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
629 if (FlatAddrSpace
== UninitializedAddressSpace
) {
630 FlatAddrSpace
= TTI
->getFlatAddressSpace();
631 if (FlatAddrSpace
== UninitializedAddressSpace
)
635 // Collects all flat address expressions in postorder.
636 std::vector
<WeakTrackingVH
> Postorder
= collectFlatAddressExpressions(F
);
638 // Runs a data-flow analysis to refine the address spaces of every expression
640 ValueToAddrSpaceMapTy InferredAddrSpace
;
641 inferAddressSpaces(Postorder
, &InferredAddrSpace
);
643 // Changes the address spaces of the flat address expressions who are inferred
644 // to point to a specific address space.
645 return rewriteWithNewAddressSpaces(*TTI
, Postorder
, InferredAddrSpace
, &F
);
648 // Constants need to be tracked through RAUW to handle cases with nested
649 // constant expressions, so wrap values in WeakTrackingVH.
650 void InferAddressSpaces::inferAddressSpaces(
651 ArrayRef
<WeakTrackingVH
> Postorder
,
652 ValueToAddrSpaceMapTy
*InferredAddrSpace
) const {
653 SetVector
<Value
*> Worklist(Postorder
.begin(), Postorder
.end());
654 // Initially, all expressions are in the uninitialized address space.
655 for (Value
*V
: Postorder
)
656 (*InferredAddrSpace
)[V
] = UninitializedAddressSpace
;
658 while (!Worklist
.empty()) {
659 Value
*V
= Worklist
.pop_back_val();
661 // Tries to update the address space of the stack top according to the
662 // address spaces of its operands.
663 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << *V
<< '\n');
664 Optional
<unsigned> NewAS
= updateAddressSpace(*V
, *InferredAddrSpace
);
665 if (!NewAS
.hasValue())
667 // If any updates are made, grabs its users to the worklist because
668 // their address spaces can also be possibly updated.
669 LLVM_DEBUG(dbgs() << " to " << NewAS
.getValue() << '\n');
670 (*InferredAddrSpace
)[V
] = NewAS
.getValue();
672 for (Value
*User
: V
->users()) {
673 // Skip if User is already in the worklist.
674 if (Worklist
.count(User
))
677 auto Pos
= InferredAddrSpace
->find(User
);
678 // Our algorithm only updates the address spaces of flat address
679 // expressions, which are those in InferredAddrSpace.
680 if (Pos
== InferredAddrSpace
->end())
683 // Function updateAddressSpace moves the address space down a lattice
684 // path. Therefore, nothing to do if User is already inferred as flat (the
685 // bottom element in the lattice).
686 if (Pos
->second
== FlatAddrSpace
)
689 Worklist
.insert(User
);
694 Optional
<unsigned> InferAddressSpaces::updateAddressSpace(
695 const Value
&V
, const ValueToAddrSpaceMapTy
&InferredAddrSpace
) const {
696 assert(InferredAddrSpace
.count(&V
));
698 // The new inferred address space equals the join of the address spaces
699 // of all its pointer operands.
700 unsigned NewAS
= UninitializedAddressSpace
;
702 const Operator
&Op
= cast
<Operator
>(V
);
703 if (Op
.getOpcode() == Instruction::Select
) {
704 Value
*Src0
= Op
.getOperand(1);
705 Value
*Src1
= Op
.getOperand(2);
707 auto I
= InferredAddrSpace
.find(Src0
);
708 unsigned Src0AS
= (I
!= InferredAddrSpace
.end()) ?
709 I
->second
: Src0
->getType()->getPointerAddressSpace();
711 auto J
= InferredAddrSpace
.find(Src1
);
712 unsigned Src1AS
= (J
!= InferredAddrSpace
.end()) ?
713 J
->second
: Src1
->getType()->getPointerAddressSpace();
715 auto *C0
= dyn_cast
<Constant
>(Src0
);
716 auto *C1
= dyn_cast
<Constant
>(Src1
);
718 // If one of the inputs is a constant, we may be able to do a constant
719 // addrspacecast of it. Defer inferring the address space until the input
720 // address space is known.
721 if ((C1
&& Src0AS
== UninitializedAddressSpace
) ||
722 (C0
&& Src1AS
== UninitializedAddressSpace
))
725 if (C0
&& isSafeToCastConstAddrSpace(C0
, Src1AS
))
727 else if (C1
&& isSafeToCastConstAddrSpace(C1
, Src0AS
))
730 NewAS
= joinAddressSpaces(Src0AS
, Src1AS
);
732 for (Value
*PtrOperand
: getPointerOperands(V
)) {
733 auto I
= InferredAddrSpace
.find(PtrOperand
);
734 unsigned OperandAS
= I
!= InferredAddrSpace
.end() ?
735 I
->second
: PtrOperand
->getType()->getPointerAddressSpace();
737 // join(flat, *) = flat. So we can break if NewAS is already flat.
738 NewAS
= joinAddressSpaces(NewAS
, OperandAS
);
739 if (NewAS
== FlatAddrSpace
)
744 unsigned OldAS
= InferredAddrSpace
.lookup(&V
);
745 assert(OldAS
!= FlatAddrSpace
);
751 /// \p returns true if \p U is the pointer operand of a memory instruction with
752 /// a single pointer operand that can have its address space changed by simply
753 /// mutating the use to a new value. If the memory instruction is volatile,
754 /// return true only if the target allows the memory instruction to be volatile
755 /// in the new address space.
756 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo
&TTI
,
757 Use
&U
, unsigned AddrSpace
) {
758 User
*Inst
= U
.getUser();
759 unsigned OpNo
= U
.getOperandNo();
760 bool VolatileIsAllowed
= false;
761 if (auto *I
= dyn_cast
<Instruction
>(Inst
))
762 VolatileIsAllowed
= TTI
.hasVolatileVariant(I
, AddrSpace
);
764 if (auto *LI
= dyn_cast
<LoadInst
>(Inst
))
765 return OpNo
== LoadInst::getPointerOperandIndex() &&
766 (VolatileIsAllowed
|| !LI
->isVolatile());
768 if (auto *SI
= dyn_cast
<StoreInst
>(Inst
))
769 return OpNo
== StoreInst::getPointerOperandIndex() &&
770 (VolatileIsAllowed
|| !SI
->isVolatile());
772 if (auto *RMW
= dyn_cast
<AtomicRMWInst
>(Inst
))
773 return OpNo
== AtomicRMWInst::getPointerOperandIndex() &&
774 (VolatileIsAllowed
|| !RMW
->isVolatile());
776 if (auto *CmpX
= dyn_cast
<AtomicCmpXchgInst
>(Inst
))
777 return OpNo
== AtomicCmpXchgInst::getPointerOperandIndex() &&
778 (VolatileIsAllowed
|| !CmpX
->isVolatile());
783 /// Update memory intrinsic uses that require more complex processing than
784 /// simple memory instructions. Thse require re-mangling and may have multiple
785 /// pointer operands.
786 static bool handleMemIntrinsicPtrUse(MemIntrinsic
*MI
, Value
*OldV
,
789 MDNode
*TBAA
= MI
->getMetadata(LLVMContext::MD_tbaa
);
790 MDNode
*ScopeMD
= MI
->getMetadata(LLVMContext::MD_alias_scope
);
791 MDNode
*NoAliasMD
= MI
->getMetadata(LLVMContext::MD_noalias
);
793 if (auto *MSI
= dyn_cast
<MemSetInst
>(MI
)) {
794 B
.CreateMemSet(NewV
, MSI
->getValue(),
795 MSI
->getLength(), MSI
->getDestAlignment(),
797 TBAA
, ScopeMD
, NoAliasMD
);
798 } else if (auto *MTI
= dyn_cast
<MemTransferInst
>(MI
)) {
799 Value
*Src
= MTI
->getRawSource();
800 Value
*Dest
= MTI
->getRawDest();
802 // Be careful in case this is a self-to-self copy.
809 if (isa
<MemCpyInst
>(MTI
)) {
810 MDNode
*TBAAStruct
= MTI
->getMetadata(LLVMContext::MD_tbaa_struct
);
811 B
.CreateMemCpy(Dest
, MTI
->getDestAlignment(),
812 Src
, MTI
->getSourceAlignment(),
815 TBAA
, TBAAStruct
, ScopeMD
, NoAliasMD
);
817 assert(isa
<MemMoveInst
>(MTI
));
818 B
.CreateMemMove(Dest
, MTI
->getDestAlignment(),
819 Src
, MTI
->getSourceAlignment(),
822 TBAA
, ScopeMD
, NoAliasMD
);
825 llvm_unreachable("unhandled MemIntrinsic");
827 MI
->eraseFromParent();
831 // \p returns true if it is OK to change the address space of constant \p C with
832 // a ConstantExpr addrspacecast.
833 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant
*C
, unsigned NewAS
) const {
834 assert(NewAS
!= UninitializedAddressSpace
);
836 unsigned SrcAS
= C
->getType()->getPointerAddressSpace();
837 if (SrcAS
== NewAS
|| isa
<UndefValue
>(C
))
840 // Prevent illegal casts between different non-flat address spaces.
841 if (SrcAS
!= FlatAddrSpace
&& NewAS
!= FlatAddrSpace
)
844 if (isa
<ConstantPointerNull
>(C
))
847 if (auto *Op
= dyn_cast
<Operator
>(C
)) {
848 // If we already have a constant addrspacecast, it should be safe to cast it
850 if (Op
->getOpcode() == Instruction::AddrSpaceCast
)
851 return isSafeToCastConstAddrSpace(cast
<Constant
>(Op
->getOperand(0)), NewAS
);
853 if (Op
->getOpcode() == Instruction::IntToPtr
&&
854 Op
->getType()->getPointerAddressSpace() == FlatAddrSpace
)
861 static Value::use_iterator
skipToNextUser(Value::use_iterator I
,
862 Value::use_iterator End
) {
863 User
*CurUser
= I
->getUser();
866 while (I
!= End
&& I
->getUser() == CurUser
)
872 bool InferAddressSpaces::rewriteWithNewAddressSpaces(
873 const TargetTransformInfo
&TTI
, ArrayRef
<WeakTrackingVH
> Postorder
,
874 const ValueToAddrSpaceMapTy
&InferredAddrSpace
, Function
*F
) const {
875 // For each address expression to be modified, creates a clone of it with its
876 // pointer operands converted to the new address space. Since the pointer
877 // operands are converted, the clone is naturally in the new address space by
879 ValueToValueMapTy ValueWithNewAddrSpace
;
880 SmallVector
<const Use
*, 32> UndefUsesToFix
;
881 for (Value
* V
: Postorder
) {
882 unsigned NewAddrSpace
= InferredAddrSpace
.lookup(V
);
883 if (V
->getType()->getPointerAddressSpace() != NewAddrSpace
) {
884 ValueWithNewAddrSpace
[V
] = cloneValueWithNewAddressSpace(
885 V
, NewAddrSpace
, ValueWithNewAddrSpace
, &UndefUsesToFix
);
889 if (ValueWithNewAddrSpace
.empty())
892 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
893 for (const Use
*UndefUse
: UndefUsesToFix
) {
894 User
*V
= UndefUse
->getUser();
895 User
*NewV
= cast
<User
>(ValueWithNewAddrSpace
.lookup(V
));
896 unsigned OperandNo
= UndefUse
->getOperandNo();
897 assert(isa
<UndefValue
>(NewV
->getOperand(OperandNo
)));
898 NewV
->setOperand(OperandNo
, ValueWithNewAddrSpace
.lookup(UndefUse
->get()));
901 SmallVector
<Instruction
*, 16> DeadInstructions
;
903 // Replaces the uses of the old address expressions with the new ones.
904 for (const WeakTrackingVH
&WVH
: Postorder
) {
905 assert(WVH
&& "value was unexpectedly deleted");
907 Value
*NewV
= ValueWithNewAddrSpace
.lookup(V
);
911 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V
<< "\n with\n "
914 if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
915 Constant
*Replace
= ConstantExpr::getAddrSpaceCast(cast
<Constant
>(NewV
),
918 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
919 << ": " << *Replace
<< '\n');
920 C
->replaceAllUsesWith(Replace
);
925 Value::use_iterator I
, E
, Next
;
926 for (I
= V
->use_begin(), E
= V
->use_end(); I
!= E
; ) {
929 // Some users may see the same pointer operand in multiple operands. Skip
930 // to the next instruction.
931 I
= skipToNextUser(I
, E
);
933 if (isSimplePointerUseValidToReplace(
934 TTI
, U
, V
->getType()->getPointerAddressSpace())) {
935 // If V is used as the pointer operand of a compatible memory operation,
936 // sets the pointer operand to NewV. This replacement does not change
937 // the element type, so the resultant load/store is still valid.
942 User
*CurUser
= U
.getUser();
943 // Handle more complex cases like intrinsic that need to be remangled.
944 if (auto *MI
= dyn_cast
<MemIntrinsic
>(CurUser
)) {
945 if (!MI
->isVolatile() && handleMemIntrinsicPtrUse(MI
, V
, NewV
))
949 if (auto *II
= dyn_cast
<IntrinsicInst
>(CurUser
)) {
950 if (rewriteIntrinsicOperands(II
, V
, NewV
))
954 if (isa
<Instruction
>(CurUser
)) {
955 if (ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(CurUser
)) {
956 // If we can infer that both pointers are in the same addrspace,
958 // %cmp = icmp eq float* %p, %q
960 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
962 unsigned NewAS
= NewV
->getType()->getPointerAddressSpace();
963 int SrcIdx
= U
.getOperandNo();
964 int OtherIdx
= (SrcIdx
== 0) ? 1 : 0;
965 Value
*OtherSrc
= Cmp
->getOperand(OtherIdx
);
967 if (Value
*OtherNewV
= ValueWithNewAddrSpace
.lookup(OtherSrc
)) {
968 if (OtherNewV
->getType()->getPointerAddressSpace() == NewAS
) {
969 Cmp
->setOperand(OtherIdx
, OtherNewV
);
970 Cmp
->setOperand(SrcIdx
, NewV
);
975 // Even if the type mismatches, we can cast the constant.
976 if (auto *KOtherSrc
= dyn_cast
<Constant
>(OtherSrc
)) {
977 if (isSafeToCastConstAddrSpace(KOtherSrc
, NewAS
)) {
978 Cmp
->setOperand(SrcIdx
, NewV
);
979 Cmp
->setOperand(OtherIdx
,
980 ConstantExpr::getAddrSpaceCast(KOtherSrc
, NewV
->getType()));
986 if (AddrSpaceCastInst
*ASC
= dyn_cast
<AddrSpaceCastInst
>(CurUser
)) {
987 unsigned NewAS
= NewV
->getType()->getPointerAddressSpace();
988 if (ASC
->getDestAddressSpace() == NewAS
) {
989 if (ASC
->getType()->getPointerElementType() !=
990 NewV
->getType()->getPointerElementType()) {
991 NewV
= CastInst::Create(Instruction::BitCast
, NewV
,
992 ASC
->getType(), "", ASC
);
994 ASC
->replaceAllUsesWith(NewV
);
995 DeadInstructions
.push_back(ASC
);
1000 // Otherwise, replaces the use with flat(NewV).
1001 if (Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
1002 // Don't create a copy of the original addrspacecast.
1003 if (U
== V
&& isa
<AddrSpaceCastInst
>(V
))
1006 BasicBlock::iterator InsertPos
= std::next(Inst
->getIterator());
1007 while (isa
<PHINode
>(InsertPos
))
1009 U
.set(new AddrSpaceCastInst(NewV
, V
->getType(), "", &*InsertPos
));
1011 U
.set(ConstantExpr::getAddrSpaceCast(cast
<Constant
>(NewV
),
1017 if (V
->use_empty()) {
1018 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
1019 DeadInstructions
.push_back(I
);
1023 for (Instruction
*I
: DeadInstructions
)
1024 RecursivelyDeleteTriviallyDeadInstructions(I
);
1029 FunctionPass
*llvm::createInferAddressSpacesPass(unsigned AddressSpace
) {
1030 return new InferAddressSpaces(AddressSpace
);