[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Scalar / LoopFuse.cpp
blob9f93c68e6128debb08d121b4090889b6f77baa40
1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the loop fusion pass.
11 /// The implementation is largely based on the following document:
12 ///
13 /// Code Transformations to Augment the Scope of Loop Fusion in a
14 /// Production Compiler
15 /// Christopher Mark Barton
16 /// MSc Thesis
17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18 ///
19 /// The general approach taken is to collect sets of control flow equivalent
20 /// loops and test whether they can be fused. The necessary conditions for
21 /// fusion are:
22 /// 1. The loops must be adjacent (there cannot be any statements between
23 /// the two loops).
24 /// 2. The loops must be conforming (they must execute the same number of
25 /// iterations).
26 /// 3. The loops must be control flow equivalent (if one loop executes, the
27 /// other is guaranteed to execute).
28 /// 4. There cannot be any negative distance dependencies between the loops.
29 /// If all of these conditions are satisfied, it is safe to fuse the loops.
30 ///
31 /// This implementation creates FusionCandidates that represent the loop and the
32 /// necessary information needed by fusion. It then operates on the fusion
33 /// candidates, first confirming that the candidate is eligible for fusion. The
34 /// candidates are then collected into control flow equivalent sets, sorted in
35 /// dominance order. Each set of control flow equivalent candidates is then
36 /// traversed, attempting to fuse pairs of candidates in the set. If all
37 /// requirements for fusion are met, the two candidates are fused, creating a
38 /// new (fused) candidate which is then added back into the set to consider for
39 /// additional fusion.
40 ///
41 /// This implementation currently does not make any modifications to remove
42 /// conditions for fusion. Code transformations to make loops conform to each of
43 /// the conditions for fusion are discussed in more detail in the document
44 /// above. These can be added to the current implementation in the future.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/Transforms/Scalar/LoopFuse.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/DomTreeUpdater.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
53 #include "llvm/Analysis/PostDominators.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/Verifier.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Scalar.h"
62 #include "llvm/Transforms/Utils.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 using namespace llvm;
67 #define DEBUG_TYPE "loop-fusion"
69 STATISTIC(FuseCounter, "Loops fused");
70 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
71 STATISTIC(InvalidPreheader, "Loop has invalid preheader");
72 STATISTIC(InvalidHeader, "Loop has invalid header");
73 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
74 STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
75 STATISTIC(InvalidLatch, "Loop has invalid latch");
76 STATISTIC(InvalidLoop, "Loop is invalid");
77 STATISTIC(AddressTakenBB, "Basic block has address taken");
78 STATISTIC(MayThrowException, "Loop may throw an exception");
79 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
80 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
81 STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
82 STATISTIC(UnknownTripCount, "Loop has unknown trip count");
83 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
84 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
85 STATISTIC(NonAdjacent, "Loops are not adjacent");
86 STATISTIC(NonEmptyPreheader, "Loop has a non-empty preheader");
87 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
88 STATISTIC(NonIdenticalGuards, "Candidates have different guards");
89 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block");
90 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block");
92 enum FusionDependenceAnalysisChoice {
93 FUSION_DEPENDENCE_ANALYSIS_SCEV,
94 FUSION_DEPENDENCE_ANALYSIS_DA,
95 FUSION_DEPENDENCE_ANALYSIS_ALL,
98 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
99 "loop-fusion-dependence-analysis",
100 cl::desc("Which dependence analysis should loop fusion use?"),
101 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
102 "Use the scalar evolution interface"),
103 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
104 "Use the dependence analysis interface"),
105 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
106 "Use all available analyses")),
107 cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
109 #ifndef NDEBUG
110 static cl::opt<bool>
111 VerboseFusionDebugging("loop-fusion-verbose-debug",
112 cl::desc("Enable verbose debugging for Loop Fusion"),
113 cl::Hidden, cl::init(false), cl::ZeroOrMore);
114 #endif
116 namespace {
117 /// This class is used to represent a candidate for loop fusion. When it is
118 /// constructed, it checks the conditions for loop fusion to ensure that it
119 /// represents a valid candidate. It caches several parts of a loop that are
120 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
121 /// of continually querying the underlying Loop to retrieve these values. It is
122 /// assumed these will not change throughout loop fusion.
124 /// The invalidate method should be used to indicate that the FusionCandidate is
125 /// no longer a valid candidate for fusion. Similarly, the isValid() method can
126 /// be used to ensure that the FusionCandidate is still valid for fusion.
127 struct FusionCandidate {
128 /// Cache of parts of the loop used throughout loop fusion. These should not
129 /// need to change throughout the analysis and transformation.
130 /// These parts are cached to avoid repeatedly looking up in the Loop class.
132 /// Preheader of the loop this candidate represents
133 BasicBlock *Preheader;
134 /// Header of the loop this candidate represents
135 BasicBlock *Header;
136 /// Blocks in the loop that exit the loop
137 BasicBlock *ExitingBlock;
138 /// The successor block of this loop (where the exiting blocks go to)
139 BasicBlock *ExitBlock;
140 /// Latch of the loop
141 BasicBlock *Latch;
142 /// The loop that this fusion candidate represents
143 Loop *L;
144 /// Vector of instructions in this loop that read from memory
145 SmallVector<Instruction *, 16> MemReads;
146 /// Vector of instructions in this loop that write to memory
147 SmallVector<Instruction *, 16> MemWrites;
148 /// Are all of the members of this fusion candidate still valid
149 bool Valid;
150 /// Guard branch of the loop, if it exists
151 BranchInst *GuardBranch;
153 /// Dominator and PostDominator trees are needed for the
154 /// FusionCandidateCompare function, required by FusionCandidateSet to
155 /// determine where the FusionCandidate should be inserted into the set. These
156 /// are used to establish ordering of the FusionCandidates based on dominance.
157 const DominatorTree *DT;
158 const PostDominatorTree *PDT;
160 OptimizationRemarkEmitter &ORE;
162 FusionCandidate(Loop *L, const DominatorTree *DT,
163 const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE)
164 : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
165 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
166 Latch(L->getLoopLatch()), L(L), Valid(true), GuardBranch(nullptr),
167 DT(DT), PDT(PDT), ORE(ORE) {
169 // TODO: This is temporary while we fuse both rotated and non-rotated
170 // loops. Once we switch to only fusing rotated loops, the initialization of
171 // GuardBranch can be moved into the initialization list above.
172 if (isRotated())
173 GuardBranch = L->getLoopGuardBranch();
175 // Walk over all blocks in the loop and check for conditions that may
176 // prevent fusion. For each block, walk over all instructions and collect
177 // the memory reads and writes If any instructions that prevent fusion are
178 // found, invalidate this object and return.
179 for (BasicBlock *BB : L->blocks()) {
180 if (BB->hasAddressTaken()) {
181 invalidate();
182 reportInvalidCandidate(AddressTakenBB);
183 return;
186 for (Instruction &I : *BB) {
187 if (I.mayThrow()) {
188 invalidate();
189 reportInvalidCandidate(MayThrowException);
190 return;
192 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
193 if (SI->isVolatile()) {
194 invalidate();
195 reportInvalidCandidate(ContainsVolatileAccess);
196 return;
199 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
200 if (LI->isVolatile()) {
201 invalidate();
202 reportInvalidCandidate(ContainsVolatileAccess);
203 return;
206 if (I.mayWriteToMemory())
207 MemWrites.push_back(&I);
208 if (I.mayReadFromMemory())
209 MemReads.push_back(&I);
214 /// Check if all members of the class are valid.
215 bool isValid() const {
216 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
217 !L->isInvalid() && Valid;
220 /// Verify that all members are in sync with the Loop object.
221 void verify() const {
222 assert(isValid() && "Candidate is not valid!!");
223 assert(!L->isInvalid() && "Loop is invalid!");
224 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
225 assert(Header == L->getHeader() && "Header is out of sync");
226 assert(ExitingBlock == L->getExitingBlock() &&
227 "Exiting Blocks is out of sync");
228 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
229 assert(Latch == L->getLoopLatch() && "Latch is out of sync");
232 /// Get the entry block for this fusion candidate.
234 /// If this fusion candidate represents a guarded loop, the entry block is the
235 /// loop guard block. If it represents an unguarded loop, the entry block is
236 /// the preheader of the loop.
237 BasicBlock *getEntryBlock() const {
238 if (GuardBranch)
239 return GuardBranch->getParent();
240 else
241 return Preheader;
244 /// Given a guarded loop, get the successor of the guard that is not in the
245 /// loop.
247 /// This method returns the successor of the loop guard that is not located
248 /// within the loop (i.e., the successor of the guard that is not the
249 /// preheader).
250 /// This method is only valid for guarded loops.
251 BasicBlock *getNonLoopBlock() const {
252 assert(GuardBranch && "Only valid on guarded loops.");
253 assert(GuardBranch->isConditional() &&
254 "Expecting guard to be a conditional branch.");
255 return (GuardBranch->getSuccessor(0) == Preheader)
256 ? GuardBranch->getSuccessor(1)
257 : GuardBranch->getSuccessor(0);
260 bool isRotated() const {
261 assert(L && "Expecting loop to be valid.");
262 assert(Latch && "Expecting latch to be valid.");
263 return L->isLoopExiting(Latch);
266 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
267 LLVM_DUMP_METHOD void dump() const {
268 dbgs() << "\tGuardBranch: "
269 << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
270 << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
271 << "\n"
272 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
273 << "\tExitingBB: "
274 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
275 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
276 << "\n"
277 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
278 << "\tEntryBlock: "
279 << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
280 << "\n";
282 #endif
284 /// Determine if a fusion candidate (representing a loop) is eligible for
285 /// fusion. Note that this only checks whether a single loop can be fused - it
286 /// does not check whether it is *legal* to fuse two loops together.
287 bool isEligibleForFusion(ScalarEvolution &SE) const {
288 if (!isValid()) {
289 LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
290 if (!Preheader)
291 ++InvalidPreheader;
292 if (!Header)
293 ++InvalidHeader;
294 if (!ExitingBlock)
295 ++InvalidExitingBlock;
296 if (!ExitBlock)
297 ++InvalidExitBlock;
298 if (!Latch)
299 ++InvalidLatch;
300 if (L->isInvalid())
301 ++InvalidLoop;
303 return false;
306 // Require ScalarEvolution to be able to determine a trip count.
307 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
308 LLVM_DEBUG(dbgs() << "Loop " << L->getName()
309 << " trip count not computable!\n");
310 return reportInvalidCandidate(UnknownTripCount);
313 if (!L->isLoopSimplifyForm()) {
314 LLVM_DEBUG(dbgs() << "Loop " << L->getName()
315 << " is not in simplified form!\n");
316 return reportInvalidCandidate(NotSimplifiedForm);
319 return true;
322 private:
323 // This is only used internally for now, to clear the MemWrites and MemReads
324 // list and setting Valid to false. I can't envision other uses of this right
325 // now, since once FusionCandidates are put into the FusionCandidateSet they
326 // are immutable. Thus, any time we need to change/update a FusionCandidate,
327 // we must create a new one and insert it into the FusionCandidateSet to
328 // ensure the FusionCandidateSet remains ordered correctly.
329 void invalidate() {
330 MemWrites.clear();
331 MemReads.clear();
332 Valid = false;
335 bool reportInvalidCandidate(llvm::Statistic &Stat) const {
336 using namespace ore;
337 assert(L && Preheader && "Fusion candidate not initialized properly!");
338 ++Stat;
339 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
340 L->getStartLoc(), Preheader)
341 << "[" << Preheader->getParent()->getName() << "]: "
342 << "Loop is not a candidate for fusion: " << Stat.getDesc());
343 return false;
347 struct FusionCandidateCompare {
348 /// Comparison functor to sort two Control Flow Equivalent fusion candidates
349 /// into dominance order.
350 /// If LHS dominates RHS and RHS post-dominates LHS, return true;
351 /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
352 bool operator()(const FusionCandidate &LHS,
353 const FusionCandidate &RHS) const {
354 const DominatorTree *DT = LHS.DT;
356 BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
357 BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
359 // Do not save PDT to local variable as it is only used in asserts and thus
360 // will trigger an unused variable warning if building without asserts.
361 assert(DT && LHS.PDT && "Expecting valid dominator tree");
363 // Do this compare first so if LHS == RHS, function returns false.
364 if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
365 // RHS dominates LHS
366 // Verify LHS post-dominates RHS
367 assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
368 return false;
371 if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
372 // Verify RHS Postdominates LHS
373 assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
374 return true;
377 // If LHS does not dominate RHS and RHS does not dominate LHS then there is
378 // no dominance relationship between the two FusionCandidates. Thus, they
379 // should not be in the same set together.
380 llvm_unreachable(
381 "No dominance relationship between these fusion candidates!");
385 using LoopVector = SmallVector<Loop *, 4>;
387 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
388 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
389 // dominates FC1 and FC1 post-dominates FC0.
390 // std::set was chosen because we want a sorted data structure with stable
391 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
392 // loops by moving intervening code around. When this intervening code contains
393 // loops, those loops will be moved also. The corresponding FusionCandidates
394 // will also need to be moved accordingly. As this is done, having stable
395 // iterators will simplify the logic. Similarly, having an efficient insert that
396 // keeps the FusionCandidateSet sorted will also simplify the implementation.
397 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
398 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
400 #if !defined(NDEBUG)
401 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
402 const FusionCandidate &FC) {
403 if (FC.isValid())
404 OS << FC.Preheader->getName();
405 else
406 OS << "<Invalid>";
408 return OS;
411 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
412 const FusionCandidateSet &CandSet) {
413 for (const FusionCandidate &FC : CandSet)
414 OS << FC << '\n';
416 return OS;
419 static void
420 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
421 dbgs() << "Fusion Candidates: \n";
422 for (const auto &CandidateSet : FusionCandidates) {
423 dbgs() << "*** Fusion Candidate Set ***\n";
424 dbgs() << CandidateSet;
425 dbgs() << "****************************\n";
428 #endif
430 /// Collect all loops in function at the same nest level, starting at the
431 /// outermost level.
433 /// This data structure collects all loops at the same nest level for a
434 /// given function (specified by the LoopInfo object). It starts at the
435 /// outermost level.
436 struct LoopDepthTree {
437 using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
438 using iterator = LoopsOnLevelTy::iterator;
439 using const_iterator = LoopsOnLevelTy::const_iterator;
441 LoopDepthTree(LoopInfo &LI) : Depth(1) {
442 if (!LI.empty())
443 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
446 /// Test whether a given loop has been removed from the function, and thus is
447 /// no longer valid.
448 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
450 /// Record that a given loop has been removed from the function and is no
451 /// longer valid.
452 void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
454 /// Descend the tree to the next (inner) nesting level
455 void descend() {
456 LoopsOnLevelTy LoopsOnNextLevel;
458 for (const LoopVector &LV : *this)
459 for (Loop *L : LV)
460 if (!isRemovedLoop(L) && L->begin() != L->end())
461 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
463 LoopsOnLevel = LoopsOnNextLevel;
464 RemovedLoops.clear();
465 Depth++;
468 bool empty() const { return size() == 0; }
469 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
470 unsigned getDepth() const { return Depth; }
472 iterator begin() { return LoopsOnLevel.begin(); }
473 iterator end() { return LoopsOnLevel.end(); }
474 const_iterator begin() const { return LoopsOnLevel.begin(); }
475 const_iterator end() const { return LoopsOnLevel.end(); }
477 private:
478 /// Set of loops that have been removed from the function and are no longer
479 /// valid.
480 SmallPtrSet<const Loop *, 8> RemovedLoops;
482 /// Depth of the current level, starting at 1 (outermost loops).
483 unsigned Depth;
485 /// Vector of loops at the current depth level that have the same parent loop
486 LoopsOnLevelTy LoopsOnLevel;
489 #ifndef NDEBUG
490 static void printLoopVector(const LoopVector &LV) {
491 dbgs() << "****************************\n";
492 for (auto L : LV)
493 printLoop(*L, dbgs());
494 dbgs() << "****************************\n";
496 #endif
498 struct LoopFuser {
499 private:
500 // Sets of control flow equivalent fusion candidates for a given nest level.
501 FusionCandidateCollection FusionCandidates;
503 LoopDepthTree LDT;
504 DomTreeUpdater DTU;
506 LoopInfo &LI;
507 DominatorTree &DT;
508 DependenceInfo &DI;
509 ScalarEvolution &SE;
510 PostDominatorTree &PDT;
511 OptimizationRemarkEmitter &ORE;
513 public:
514 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
515 ScalarEvolution &SE, PostDominatorTree &PDT,
516 OptimizationRemarkEmitter &ORE, const DataLayout &DL)
517 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
518 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {}
520 /// This is the main entry point for loop fusion. It will traverse the
521 /// specified function and collect candidate loops to fuse, starting at the
522 /// outermost nesting level and working inwards.
523 bool fuseLoops(Function &F) {
524 #ifndef NDEBUG
525 if (VerboseFusionDebugging) {
526 LI.print(dbgs());
528 #endif
530 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
531 << "\n");
532 bool Changed = false;
534 while (!LDT.empty()) {
535 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
536 << LDT.getDepth() << "\n";);
538 for (const LoopVector &LV : LDT) {
539 assert(LV.size() > 0 && "Empty loop set was build!");
541 // Skip singleton loop sets as they do not offer fusion opportunities on
542 // this level.
543 if (LV.size() == 1)
544 continue;
545 #ifndef NDEBUG
546 if (VerboseFusionDebugging) {
547 LLVM_DEBUG({
548 dbgs() << " Visit loop set (#" << LV.size() << "):\n";
549 printLoopVector(LV);
552 #endif
554 collectFusionCandidates(LV);
555 Changed |= fuseCandidates();
558 // Finished analyzing candidates at this level.
559 // Descend to the next level and clear all of the candidates currently
560 // collected. Note that it will not be possible to fuse any of the
561 // existing candidates with new candidates because the new candidates will
562 // be at a different nest level and thus not be control flow equivalent
563 // with all of the candidates collected so far.
564 LLVM_DEBUG(dbgs() << "Descend one level!\n");
565 LDT.descend();
566 FusionCandidates.clear();
569 if (Changed)
570 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
572 #ifndef NDEBUG
573 assert(DT.verify());
574 assert(PDT.verify());
575 LI.verify(DT);
576 SE.verify();
577 #endif
579 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
580 return Changed;
583 private:
584 /// Determine if two fusion candidates are control flow equivalent.
586 /// Two fusion candidates are control flow equivalent if when one executes,
587 /// the other is guaranteed to execute. This is determined using dominators
588 /// and post-dominators: if A dominates B and B post-dominates A then A and B
589 /// are control-flow equivalent.
590 bool isControlFlowEquivalent(const FusionCandidate &FC0,
591 const FusionCandidate &FC1) const {
592 assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
594 BasicBlock *FC0EntryBlock = FC0.getEntryBlock();
595 BasicBlock *FC1EntryBlock = FC1.getEntryBlock();
597 if (DT.dominates(FC0EntryBlock, FC1EntryBlock))
598 return PDT.dominates(FC1EntryBlock, FC0EntryBlock);
600 if (DT.dominates(FC1EntryBlock, FC0EntryBlock))
601 return PDT.dominates(FC0EntryBlock, FC1EntryBlock);
603 return false;
606 /// Iterate over all loops in the given loop set and identify the loops that
607 /// are eligible for fusion. Place all eligible fusion candidates into Control
608 /// Flow Equivalent sets, sorted by dominance.
609 void collectFusionCandidates(const LoopVector &LV) {
610 for (Loop *L : LV) {
611 FusionCandidate CurrCand(L, &DT, &PDT, ORE);
612 if (!CurrCand.isEligibleForFusion(SE))
613 continue;
615 // Go through each list in FusionCandidates and determine if L is control
616 // flow equivalent with the first loop in that list. If it is, append LV.
617 // If not, go to the next list.
618 // If no suitable list is found, start another list and add it to
619 // FusionCandidates.
620 bool FoundSet = false;
622 for (auto &CurrCandSet : FusionCandidates) {
623 if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
624 CurrCandSet.insert(CurrCand);
625 FoundSet = true;
626 #ifndef NDEBUG
627 if (VerboseFusionDebugging)
628 LLVM_DEBUG(dbgs() << "Adding " << CurrCand
629 << " to existing candidate set\n");
630 #endif
631 break;
634 if (!FoundSet) {
635 // No set was found. Create a new set and add to FusionCandidates
636 #ifndef NDEBUG
637 if (VerboseFusionDebugging)
638 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
639 #endif
640 FusionCandidateSet NewCandSet;
641 NewCandSet.insert(CurrCand);
642 FusionCandidates.push_back(NewCandSet);
644 NumFusionCandidates++;
648 /// Determine if it is beneficial to fuse two loops.
650 /// For now, this method simply returns true because we want to fuse as much
651 /// as possible (primarily to test the pass). This method will evolve, over
652 /// time, to add heuristics for profitability of fusion.
653 bool isBeneficialFusion(const FusionCandidate &FC0,
654 const FusionCandidate &FC1) {
655 return true;
658 /// Determine if two fusion candidates have the same trip count (i.e., they
659 /// execute the same number of iterations).
661 /// Note that for now this method simply returns a boolean value because there
662 /// are no mechanisms in loop fusion to handle different trip counts. In the
663 /// future, this behaviour can be extended to adjust one of the loops to make
664 /// the trip counts equal (e.g., loop peeling). When this is added, this
665 /// interface may need to change to return more information than just a
666 /// boolean value.
667 bool identicalTripCounts(const FusionCandidate &FC0,
668 const FusionCandidate &FC1) const {
669 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
670 if (isa<SCEVCouldNotCompute>(TripCount0)) {
671 UncomputableTripCount++;
672 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
673 return false;
676 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
677 if (isa<SCEVCouldNotCompute>(TripCount1)) {
678 UncomputableTripCount++;
679 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
680 return false;
682 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
683 << *TripCount1 << " are "
684 << (TripCount0 == TripCount1 ? "identical" : "different")
685 << "\n");
687 return (TripCount0 == TripCount1);
690 /// Walk each set of control flow equivalent fusion candidates and attempt to
691 /// fuse them. This does a single linear traversal of all candidates in the
692 /// set. The conditions for legal fusion are checked at this point. If a pair
693 /// of fusion candidates passes all legality checks, they are fused together
694 /// and a new fusion candidate is created and added to the FusionCandidateSet.
695 /// The original fusion candidates are then removed, as they are no longer
696 /// valid.
697 bool fuseCandidates() {
698 bool Fused = false;
699 LLVM_DEBUG(printFusionCandidates(FusionCandidates));
700 for (auto &CandidateSet : FusionCandidates) {
701 if (CandidateSet.size() < 2)
702 continue;
704 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
705 << CandidateSet << "\n");
707 for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
708 assert(!LDT.isRemovedLoop(FC0->L) &&
709 "Should not have removed loops in CandidateSet!");
710 auto FC1 = FC0;
711 for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
712 assert(!LDT.isRemovedLoop(FC1->L) &&
713 "Should not have removed loops in CandidateSet!");
715 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
716 dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
718 FC0->verify();
719 FC1->verify();
721 if (!identicalTripCounts(*FC0, *FC1)) {
722 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
723 "counts. Not fusing.\n");
724 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
725 NonEqualTripCount);
726 continue;
729 if (!isAdjacent(*FC0, *FC1)) {
730 LLVM_DEBUG(dbgs()
731 << "Fusion candidates are not adjacent. Not fusing.\n");
732 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
733 continue;
736 // Ensure that FC0 and FC1 have identical guards.
737 // If one (or both) are not guarded, this check is not necessary.
738 if (FC0->GuardBranch && FC1->GuardBranch &&
739 !haveIdenticalGuards(*FC0, *FC1)) {
740 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
741 "guards. Not Fusing.\n");
742 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
743 NonIdenticalGuards);
744 continue;
747 // The following three checks look for empty blocks in FC0 and FC1. If
748 // any of these blocks are non-empty, we do not fuse. This is done
749 // because we currently do not have the safety checks to determine if
750 // it is safe to move the blocks past other blocks in the loop. Once
751 // these checks are added, these conditions can be relaxed.
752 if (!isEmptyPreheader(*FC1)) {
753 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
754 "preheader. Not fusing.\n");
755 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
756 NonEmptyPreheader);
757 continue;
760 if (FC0->GuardBranch && !isEmptyExitBlock(*FC0)) {
761 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty exit "
762 "block. Not fusing.\n");
763 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
764 NonEmptyExitBlock);
765 continue;
768 if (FC1->GuardBranch && !isEmptyGuardBlock(*FC1)) {
769 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty guard "
770 "block. Not fusing.\n");
771 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
772 NonEmptyGuardBlock);
773 continue;
776 // Check the dependencies across the loops and do not fuse if it would
777 // violate them.
778 if (!dependencesAllowFusion(*FC0, *FC1)) {
779 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
780 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
781 InvalidDependencies);
782 continue;
785 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
786 LLVM_DEBUG(dbgs()
787 << "\tFusion appears to be "
788 << (BeneficialToFuse ? "" : "un") << "profitable!\n");
789 if (!BeneficialToFuse) {
790 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
791 FusionNotBeneficial);
792 continue;
794 // All analysis has completed and has determined that fusion is legal
795 // and profitable. At this point, start transforming the code and
796 // perform fusion.
798 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
799 << *FC1 << "\n");
801 // Report fusion to the Optimization Remarks.
802 // Note this needs to be done *before* performFusion because
803 // performFusion will change the original loops, making it not
804 // possible to identify them after fusion is complete.
805 reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter);
807 FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE);
808 FusedCand.verify();
809 assert(FusedCand.isEligibleForFusion(SE) &&
810 "Fused candidate should be eligible for fusion!");
812 // Notify the loop-depth-tree that these loops are not valid objects
813 LDT.removeLoop(FC1->L);
815 CandidateSet.erase(FC0);
816 CandidateSet.erase(FC1);
818 auto InsertPos = CandidateSet.insert(FusedCand);
820 assert(InsertPos.second &&
821 "Unable to insert TargetCandidate in CandidateSet!");
823 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
824 // of the FC1 loop will attempt to fuse the new (fused) loop with the
825 // remaining candidates in the current candidate set.
826 FC0 = FC1 = InsertPos.first;
828 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
829 << "\n");
831 Fused = true;
835 return Fused;
838 /// Rewrite all additive recurrences in a SCEV to use a new loop.
839 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
840 public:
841 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
842 bool UseMax = true)
843 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
844 NewL(NewL) {}
846 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
847 const Loop *ExprL = Expr->getLoop();
848 SmallVector<const SCEV *, 2> Operands;
849 if (ExprL == &OldL) {
850 Operands.append(Expr->op_begin(), Expr->op_end());
851 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
854 if (OldL.contains(ExprL)) {
855 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
856 if (!UseMax || !Pos || !Expr->isAffine()) {
857 Valid = false;
858 return Expr;
860 return visit(Expr->getStart());
863 for (const SCEV *Op : Expr->operands())
864 Operands.push_back(visit(Op));
865 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
868 bool wasValidSCEV() const { return Valid; }
870 private:
871 bool Valid, UseMax;
872 const Loop &OldL, &NewL;
875 /// Return false if the access functions of \p I0 and \p I1 could cause
876 /// a negative dependence.
877 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
878 Instruction &I1, bool EqualIsInvalid) {
879 Value *Ptr0 = getLoadStorePointerOperand(&I0);
880 Value *Ptr1 = getLoadStorePointerOperand(&I1);
881 if (!Ptr0 || !Ptr1)
882 return false;
884 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
885 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
886 #ifndef NDEBUG
887 if (VerboseFusionDebugging)
888 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs "
889 << *SCEVPtr1 << "\n");
890 #endif
891 AddRecLoopReplacer Rewriter(SE, L0, L1);
892 SCEVPtr0 = Rewriter.visit(SCEVPtr0);
893 #ifndef NDEBUG
894 if (VerboseFusionDebugging)
895 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0
896 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
897 #endif
898 if (!Rewriter.wasValidSCEV())
899 return false;
901 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
902 // L0) and the other is not. We could check if it is monotone and test
903 // the beginning and end value instead.
905 BasicBlock *L0Header = L0.getHeader();
906 auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
907 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
908 if (!AddRec)
909 return false;
910 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
911 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
913 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
914 return false;
916 ICmpInst::Predicate Pred =
917 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
918 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
919 #ifndef NDEBUG
920 if (VerboseFusionDebugging)
921 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0
922 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1
923 << "\n");
924 #endif
925 return IsAlwaysGE;
928 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
929 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
930 /// specified by @p DepChoice are used to determine this.
931 bool dependencesAllowFusion(const FusionCandidate &FC0,
932 const FusionCandidate &FC1, Instruction &I0,
933 Instruction &I1, bool AnyDep,
934 FusionDependenceAnalysisChoice DepChoice) {
935 #ifndef NDEBUG
936 if (VerboseFusionDebugging) {
937 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
938 << DepChoice << "\n");
940 #endif
941 switch (DepChoice) {
942 case FUSION_DEPENDENCE_ANALYSIS_SCEV:
943 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
944 case FUSION_DEPENDENCE_ANALYSIS_DA: {
945 auto DepResult = DI.depends(&I0, &I1, true);
946 if (!DepResult)
947 return true;
948 #ifndef NDEBUG
949 if (VerboseFusionDebugging) {
950 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
951 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
952 << (DepResult->isOrdered() ? "true" : "false")
953 << "]\n");
954 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
955 << "\n");
957 #endif
959 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
960 LLVM_DEBUG(
961 dbgs() << "TODO: Implement pred/succ dependence handling!\n");
963 // TODO: Can we actually use the dependence info analysis here?
964 return false;
967 case FUSION_DEPENDENCE_ANALYSIS_ALL:
968 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
969 FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
970 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
971 FUSION_DEPENDENCE_ANALYSIS_DA);
974 llvm_unreachable("Unknown fusion dependence analysis choice!");
977 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
978 bool dependencesAllowFusion(const FusionCandidate &FC0,
979 const FusionCandidate &FC1) {
980 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
981 << "\n");
982 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
983 assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
985 for (Instruction *WriteL0 : FC0.MemWrites) {
986 for (Instruction *WriteL1 : FC1.MemWrites)
987 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
988 /* AnyDep */ false,
989 FusionDependenceAnalysis)) {
990 InvalidDependencies++;
991 return false;
993 for (Instruction *ReadL1 : FC1.MemReads)
994 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
995 /* AnyDep */ false,
996 FusionDependenceAnalysis)) {
997 InvalidDependencies++;
998 return false;
1002 for (Instruction *WriteL1 : FC1.MemWrites) {
1003 for (Instruction *WriteL0 : FC0.MemWrites)
1004 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1005 /* AnyDep */ false,
1006 FusionDependenceAnalysis)) {
1007 InvalidDependencies++;
1008 return false;
1010 for (Instruction *ReadL0 : FC0.MemReads)
1011 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
1012 /* AnyDep */ false,
1013 FusionDependenceAnalysis)) {
1014 InvalidDependencies++;
1015 return false;
1019 // Walk through all uses in FC1. For each use, find the reaching def. If the
1020 // def is located in FC0 then it is is not safe to fuse.
1021 for (BasicBlock *BB : FC1.L->blocks())
1022 for (Instruction &I : *BB)
1023 for (auto &Op : I.operands())
1024 if (Instruction *Def = dyn_cast<Instruction>(Op))
1025 if (FC0.L->contains(Def->getParent())) {
1026 InvalidDependencies++;
1027 return false;
1030 return true;
1033 /// Determine if two fusion candidates are adjacent in the CFG.
1035 /// This method will determine if there are additional basic blocks in the CFG
1036 /// between the exit of \p FC0 and the entry of \p FC1.
1037 /// If the two candidates are guarded loops, then it checks whether the
1038 /// non-loop successor of the \p FC0 guard branch is the entry block of \p
1039 /// FC1. If not, then the loops are not adjacent. If the two candidates are
1040 /// not guarded loops, then it checks whether the exit block of \p FC0 is the
1041 /// preheader of \p FC1.
1042 bool isAdjacent(const FusionCandidate &FC0,
1043 const FusionCandidate &FC1) const {
1044 // If the successor of the guard branch is FC1, then the loops are adjacent
1045 if (FC0.GuardBranch)
1046 return FC0.getNonLoopBlock() == FC1.getEntryBlock();
1047 else
1048 return FC0.ExitBlock == FC1.getEntryBlock();
1051 /// Determine if two fusion candidates have identical guards
1053 /// This method will determine if two fusion candidates have the same guards.
1054 /// The guards are considered the same if:
1055 /// 1. The instructions to compute the condition used in the compare are
1056 /// identical.
1057 /// 2. The successors of the guard have the same flow into/around the loop.
1058 /// If the compare instructions are identical, then the first successor of the
1059 /// guard must go to the same place (either the preheader of the loop or the
1060 /// NonLoopBlock). In other words, the the first successor of both loops must
1061 /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
1062 /// the NonLoopBlock). The same must be true for the second successor.
1063 bool haveIdenticalGuards(const FusionCandidate &FC0,
1064 const FusionCandidate &FC1) const {
1065 assert(FC0.GuardBranch && FC1.GuardBranch &&
1066 "Expecting FC0 and FC1 to be guarded loops.");
1068 if (auto FC0CmpInst =
1069 dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
1070 if (auto FC1CmpInst =
1071 dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
1072 if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
1073 return false;
1075 // The compare instructions are identical.
1076 // Now make sure the successor of the guards have the same flow into/around
1077 // the loop
1078 if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
1079 return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
1080 else
1081 return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
1084 /// Check that the guard for \p FC *only* contains the cmp/branch for the
1085 /// guard.
1086 /// Once we are able to handle intervening code, any code in the guard block
1087 /// for FC1 will need to be treated as intervening code and checked whether
1088 /// it can safely move around the loops.
1089 bool isEmptyGuardBlock(const FusionCandidate &FC) const {
1090 assert(FC.GuardBranch && "Expecting a fusion candidate with guard branch.");
1091 if (auto *CmpInst = dyn_cast<Instruction>(FC.GuardBranch->getCondition())) {
1092 auto *GuardBlock = FC.GuardBranch->getParent();
1093 // If the generation of the cmp value is in GuardBlock, then the size of
1094 // the guard block should be 2 (cmp + branch). If the generation of the
1095 // cmp value is in a different block, then the size of the guard block
1096 // should only be 1.
1097 if (CmpInst->getParent() == GuardBlock)
1098 return GuardBlock->size() == 2;
1099 else
1100 return GuardBlock->size() == 1;
1103 return false;
1106 bool isEmptyPreheader(const FusionCandidate &FC) const {
1107 assert(FC.Preheader && "Expecting a valid preheader");
1108 return FC.Preheader->size() == 1;
1111 bool isEmptyExitBlock(const FusionCandidate &FC) const {
1112 assert(FC.ExitBlock && "Expecting a valid exit block");
1113 return FC.ExitBlock->size() == 1;
1116 /// Fuse two fusion candidates, creating a new fused loop.
1118 /// This method contains the mechanics of fusing two loops, represented by \p
1119 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
1120 /// postdominates \p FC0 (making them control flow equivalent). It also
1121 /// assumes that the other conditions for fusion have been met: adjacent,
1122 /// identical trip counts, and no negative distance dependencies exist that
1123 /// would prevent fusion. Thus, there is no checking for these conditions in
1124 /// this method.
1126 /// Fusion is performed by rewiring the CFG to update successor blocks of the
1127 /// components of tho loop. Specifically, the following changes are done:
1129 /// 1. The preheader of \p FC1 is removed as it is no longer necessary
1130 /// (because it is currently only a single statement block).
1131 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1.
1132 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0.
1133 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0.
1135 /// All of these modifications are done with dominator tree updates, thus
1136 /// keeping the dominator (and post dominator) information up-to-date.
1138 /// This can be improved in the future by actually merging blocks during
1139 /// fusion. For example, the preheader of \p FC1 can be merged with the
1140 /// preheader of \p FC0. This would allow loops with more than a single
1141 /// statement in the preheader to be fused. Similarly, the latch blocks of the
1142 /// two loops could also be fused into a single block. This will require
1143 /// analysis to prove it is safe to move the contents of the block past
1144 /// existing code, which currently has not been implemented.
1145 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1146 assert(FC0.isValid() && FC1.isValid() &&
1147 "Expecting valid fusion candidates");
1149 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
1150 dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
1152 // Fusing guarded loops is handled slightly differently than non-guarded
1153 // loops and has been broken out into a separate method instead of trying to
1154 // intersperse the logic within a single method.
1155 if (FC0.GuardBranch)
1156 return fuseGuardedLoops(FC0, FC1);
1158 assert(FC1.Preheader == FC0.ExitBlock);
1159 assert(FC1.Preheader->size() == 1 &&
1160 FC1.Preheader->getSingleSuccessor() == FC1.Header);
1162 // Remember the phi nodes originally in the header of FC0 in order to rewire
1163 // them later. However, this is only necessary if the new loop carried
1164 // values might not dominate the exiting branch. While we do not generally
1165 // test if this is the case but simply insert intermediate phi nodes, we
1166 // need to make sure these intermediate phi nodes have different
1167 // predecessors. To this end, we filter the special case where the exiting
1168 // block is the latch block of the first loop. Nothing needs to be done
1169 // anyway as all loop carried values dominate the latch and thereby also the
1170 // exiting branch.
1171 SmallVector<PHINode *, 8> OriginalFC0PHIs;
1172 if (FC0.ExitingBlock != FC0.Latch)
1173 for (PHINode &PHI : FC0.Header->phis())
1174 OriginalFC0PHIs.push_back(&PHI);
1176 // Replace incoming blocks for header PHIs first.
1177 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1178 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1180 // Then modify the control flow and update DT and PDT.
1181 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1183 // The old exiting block of the first loop (FC0) has to jump to the header
1184 // of the second as we need to execute the code in the second header block
1185 // regardless of the trip count. That is, if the trip count is 0, so the
1186 // back edge is never taken, we still have to execute both loop headers,
1187 // especially (but not only!) if the second is a do-while style loop.
1188 // However, doing so might invalidate the phi nodes of the first loop as
1189 // the new values do only need to dominate their latch and not the exiting
1190 // predicate. To remedy this potential problem we always introduce phi
1191 // nodes in the header of the second loop later that select the loop carried
1192 // value, if the second header was reached through an old latch of the
1193 // first, or undef otherwise. This is sound as exiting the first implies the
1194 // second will exit too, __without__ taking the back-edge. [Their
1195 // trip-counts are equal after all.
1196 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1197 // to FC1.Header? I think this is basically what the three sequences are
1198 // trying to accomplish; however, doing this directly in the CFG may mean
1199 // the DT/PDT becomes invalid
1200 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1201 FC1.Header);
1202 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1203 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1204 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1205 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1207 // The pre-header of L1 is not necessary anymore.
1208 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1209 FC1.Preheader->getTerminator()->eraseFromParent();
1210 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1211 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1212 DominatorTree::Delete, FC1.Preheader, FC1.Header));
1214 // Moves the phi nodes from the second to the first loops header block.
1215 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1216 if (SE.isSCEVable(PHI->getType()))
1217 SE.forgetValue(PHI);
1218 if (PHI->hasNUsesOrMore(1))
1219 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1220 else
1221 PHI->eraseFromParent();
1224 // Introduce new phi nodes in the second loop header to ensure
1225 // exiting the first and jumping to the header of the second does not break
1226 // the SSA property of the phis originally in the first loop. See also the
1227 // comment above.
1228 Instruction *L1HeaderIP = &FC1.Header->front();
1229 for (PHINode *LCPHI : OriginalFC0PHIs) {
1230 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1231 assert(L1LatchBBIdx >= 0 &&
1232 "Expected loop carried value to be rewired at this point!");
1234 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1236 PHINode *L1HeaderPHI = PHINode::Create(
1237 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1238 L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1239 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1240 FC0.ExitingBlock);
1242 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1245 // Replace latch terminator destinations.
1246 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1247 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1249 // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1250 // performed the updates above.
1251 if (FC0.Latch != FC0.ExitingBlock)
1252 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1253 DominatorTree::Insert, FC0.Latch, FC1.Header));
1255 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1256 FC0.Latch, FC0.Header));
1257 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1258 FC1.Latch, FC0.Header));
1259 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1260 FC1.Latch, FC1.Header));
1262 // Update DT/PDT
1263 DTU.applyUpdates(TreeUpdates);
1265 LI.removeBlock(FC1.Preheader);
1266 DTU.deleteBB(FC1.Preheader);
1267 DTU.flush();
1269 // Is there a way to keep SE up-to-date so we don't need to forget the loops
1270 // and rebuild the information in subsequent passes of fusion?
1271 SE.forgetLoop(FC1.L);
1272 SE.forgetLoop(FC0.L);
1274 // Merge the loops.
1275 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1276 FC1.L->block_end());
1277 for (BasicBlock *BB : Blocks) {
1278 FC0.L->addBlockEntry(BB);
1279 FC1.L->removeBlockFromLoop(BB);
1280 if (LI.getLoopFor(BB) != FC1.L)
1281 continue;
1282 LI.changeLoopFor(BB, FC0.L);
1284 while (!FC1.L->empty()) {
1285 const auto &ChildLoopIt = FC1.L->begin();
1286 Loop *ChildLoop = *ChildLoopIt;
1287 FC1.L->removeChildLoop(ChildLoopIt);
1288 FC0.L->addChildLoop(ChildLoop);
1291 // Delete the now empty loop L1.
1292 LI.erase(FC1.L);
1294 #ifndef NDEBUG
1295 assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1296 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1297 assert(PDT.verify());
1298 LI.verify(DT);
1299 SE.verify();
1300 #endif
1302 LLVM_DEBUG(dbgs() << "Fusion done:\n");
1304 return FC0.L;
1307 /// Report details on loop fusion opportunities.
1309 /// This template function can be used to report both successful and missed
1310 /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1311 /// be one of:
1312 /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1313 /// given two valid fusion candidates.
1314 /// - OptimizationRemark to report successful fusion of two fusion
1315 /// candidates.
1316 /// The remarks will be printed using the form:
1317 /// <path/filename>:<line number>:<column number>: [<function name>]:
1318 /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1319 template <typename RemarkKind>
1320 void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1321 llvm::Statistic &Stat) {
1322 assert(FC0.Preheader && FC1.Preheader &&
1323 "Expecting valid fusion candidates");
1324 using namespace ore;
1325 ++Stat;
1326 ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1327 FC0.Preheader)
1328 << "[" << FC0.Preheader->getParent()->getName()
1329 << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1330 << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1331 << ": " << Stat.getDesc());
1334 /// Fuse two guarded fusion candidates, creating a new fused loop.
1336 /// Fusing guarded loops is handled much the same way as fusing non-guarded
1337 /// loops. The rewiring of the CFG is slightly different though, because of
1338 /// the presence of the guards around the loops and the exit blocks after the
1339 /// loop body. As such, the new loop is rewired as follows:
1340 /// 1. Keep the guard branch from FC0 and use the non-loop block target
1341 /// from the FC1 guard branch.
1342 /// 2. Remove the exit block from FC0 (this exit block should be empty
1343 /// right now).
1344 /// 3. Remove the guard branch for FC1
1345 /// 4. Remove the preheader for FC1.
1346 /// The exit block successor for the latch of FC0 is updated to be the header
1347 /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
1348 /// be the header of FC0, thus creating the fused loop.
1349 Loop *fuseGuardedLoops(const FusionCandidate &FC0,
1350 const FusionCandidate &FC1) {
1351 assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
1353 BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
1354 BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
1355 BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
1356 BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
1358 assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
1360 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1362 ////////////////////////////////////////////////////////////////////////////
1363 // Update the Loop Guard
1364 ////////////////////////////////////////////////////////////////////////////
1365 // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
1366 // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
1367 // Thus, one path from the guard goes to the preheader for FC0 (and thus
1368 // executes the new fused loop) and the other path goes to the NonLoopBlock
1369 // for FC1 (where FC1 guard would have gone if FC1 was not executed).
1370 FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
1371 FC0.ExitBlock->getTerminator()->replaceUsesOfWith(FC1GuardBlock,
1372 FC1.Header);
1374 // The guard of FC1 is not necessary anymore.
1375 FC1.GuardBranch->eraseFromParent();
1376 new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
1378 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1379 DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
1380 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1381 DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
1382 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1383 DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
1384 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1385 DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
1387 assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
1388 "Expecting guard block to have no predecessors");
1389 assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
1390 "Expecting guard block to have no successors");
1392 // Remember the phi nodes originally in the header of FC0 in order to rewire
1393 // them later. However, this is only necessary if the new loop carried
1394 // values might not dominate the exiting branch. While we do not generally
1395 // test if this is the case but simply insert intermediate phi nodes, we
1396 // need to make sure these intermediate phi nodes have different
1397 // predecessors. To this end, we filter the special case where the exiting
1398 // block is the latch block of the first loop. Nothing needs to be done
1399 // anyway as all loop carried values dominate the latch and thereby also the
1400 // exiting branch.
1401 // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
1402 // (because the loops are rotated. Thus, nothing will ever be added to
1403 // OriginalFC0PHIs.
1404 SmallVector<PHINode *, 8> OriginalFC0PHIs;
1405 if (FC0.ExitingBlock != FC0.Latch)
1406 for (PHINode &PHI : FC0.Header->phis())
1407 OriginalFC0PHIs.push_back(&PHI);
1409 assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
1411 // Replace incoming blocks for header PHIs first.
1412 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1413 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1415 // The old exiting block of the first loop (FC0) has to jump to the header
1416 // of the second as we need to execute the code in the second header block
1417 // regardless of the trip count. That is, if the trip count is 0, so the
1418 // back edge is never taken, we still have to execute both loop headers,
1419 // especially (but not only!) if the second is a do-while style loop.
1420 // However, doing so might invalidate the phi nodes of the first loop as
1421 // the new values do only need to dominate their latch and not the exiting
1422 // predicate. To remedy this potential problem we always introduce phi
1423 // nodes in the header of the second loop later that select the loop carried
1424 // value, if the second header was reached through an old latch of the
1425 // first, or undef otherwise. This is sound as exiting the first implies the
1426 // second will exit too, __without__ taking the back-edge (their
1427 // trip-counts are equal after all).
1428 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1429 FC1.Header);
1431 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1432 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1433 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1434 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1436 // Remove FC0 Exit Block
1437 // The exit block for FC0 is no longer needed since control will flow
1438 // directly to the header of FC1. Since it is an empty block, it can be
1439 // removed at this point.
1440 // TODO: In the future, we can handle non-empty exit blocks my merging any
1441 // instructions from FC0 exit block into FC1 exit block prior to removing
1442 // the block.
1443 assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) &&
1444 "Expecting exit block to be empty");
1445 FC0.ExitBlock->getTerminator()->eraseFromParent();
1446 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1448 // Remove FC1 Preheader
1449 // The pre-header of L1 is not necessary anymore.
1450 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1451 FC1.Preheader->getTerminator()->eraseFromParent();
1452 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1453 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1454 DominatorTree::Delete, FC1.Preheader, FC1.Header));
1456 // Moves the phi nodes from the second to the first loops header block.
1457 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1458 if (SE.isSCEVable(PHI->getType()))
1459 SE.forgetValue(PHI);
1460 if (PHI->hasNUsesOrMore(1))
1461 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1462 else
1463 PHI->eraseFromParent();
1466 // Introduce new phi nodes in the second loop header to ensure
1467 // exiting the first and jumping to the header of the second does not break
1468 // the SSA property of the phis originally in the first loop. See also the
1469 // comment above.
1470 Instruction *L1HeaderIP = &FC1.Header->front();
1471 for (PHINode *LCPHI : OriginalFC0PHIs) {
1472 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1473 assert(L1LatchBBIdx >= 0 &&
1474 "Expected loop carried value to be rewired at this point!");
1476 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1478 PHINode *L1HeaderPHI = PHINode::Create(
1479 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1480 L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1481 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1482 FC0.ExitingBlock);
1484 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1487 // Update the latches
1489 // Replace latch terminator destinations.
1490 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1491 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1493 // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1494 // performed the updates above.
1495 if (FC0.Latch != FC0.ExitingBlock)
1496 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1497 DominatorTree::Insert, FC0.Latch, FC1.Header));
1499 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1500 FC0.Latch, FC0.Header));
1501 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1502 FC1.Latch, FC0.Header));
1503 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1504 FC1.Latch, FC1.Header));
1506 // All done
1507 // Apply the updates to the Dominator Tree and cleanup.
1509 assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
1510 "FC1GuardBlock has successors!!");
1511 assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
1512 "FC1GuardBlock has predecessors!!");
1514 // Update DT/PDT
1515 DTU.applyUpdates(TreeUpdates);
1517 LI.removeBlock(FC1.Preheader);
1518 DTU.deleteBB(FC1.Preheader);
1519 DTU.deleteBB(FC0.ExitBlock);
1520 DTU.flush();
1522 // Is there a way to keep SE up-to-date so we don't need to forget the loops
1523 // and rebuild the information in subsequent passes of fusion?
1524 SE.forgetLoop(FC1.L);
1525 SE.forgetLoop(FC0.L);
1527 // Merge the loops.
1528 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1529 FC1.L->block_end());
1530 for (BasicBlock *BB : Blocks) {
1531 FC0.L->addBlockEntry(BB);
1532 FC1.L->removeBlockFromLoop(BB);
1533 if (LI.getLoopFor(BB) != FC1.L)
1534 continue;
1535 LI.changeLoopFor(BB, FC0.L);
1537 while (!FC1.L->empty()) {
1538 const auto &ChildLoopIt = FC1.L->begin();
1539 Loop *ChildLoop = *ChildLoopIt;
1540 FC1.L->removeChildLoop(ChildLoopIt);
1541 FC0.L->addChildLoop(ChildLoop);
1544 // Delete the now empty loop L1.
1545 LI.erase(FC1.L);
1547 #ifndef NDEBUG
1548 assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1549 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1550 assert(PDT.verify());
1551 LI.verify(DT);
1552 SE.verify();
1553 #endif
1555 LLVM_DEBUG(dbgs() << "Fusion done:\n");
1557 return FC0.L;
1561 struct LoopFuseLegacy : public FunctionPass {
1563 static char ID;
1565 LoopFuseLegacy() : FunctionPass(ID) {
1566 initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1569 void getAnalysisUsage(AnalysisUsage &AU) const override {
1570 AU.addRequiredID(LoopSimplifyID);
1571 AU.addRequired<ScalarEvolutionWrapperPass>();
1572 AU.addRequired<LoopInfoWrapperPass>();
1573 AU.addRequired<DominatorTreeWrapperPass>();
1574 AU.addRequired<PostDominatorTreeWrapperPass>();
1575 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1576 AU.addRequired<DependenceAnalysisWrapperPass>();
1578 AU.addPreserved<ScalarEvolutionWrapperPass>();
1579 AU.addPreserved<LoopInfoWrapperPass>();
1580 AU.addPreserved<DominatorTreeWrapperPass>();
1581 AU.addPreserved<PostDominatorTreeWrapperPass>();
1584 bool runOnFunction(Function &F) override {
1585 if (skipFunction(F))
1586 return false;
1587 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1588 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1589 auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1590 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1591 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1592 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1594 const DataLayout &DL = F.getParent()->getDataLayout();
1595 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1596 return LF.fuseLoops(F);
1599 } // namespace
1601 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
1602 auto &LI = AM.getResult<LoopAnalysis>(F);
1603 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1604 auto &DI = AM.getResult<DependenceAnalysis>(F);
1605 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1606 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1607 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1609 const DataLayout &DL = F.getParent()->getDataLayout();
1610 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1611 bool Changed = LF.fuseLoops(F);
1612 if (!Changed)
1613 return PreservedAnalyses::all();
1615 PreservedAnalyses PA;
1616 PA.preserve<DominatorTreeAnalysis>();
1617 PA.preserve<PostDominatorTreeAnalysis>();
1618 PA.preserve<ScalarEvolutionAnalysis>();
1619 PA.preserve<LoopAnalysis>();
1620 return PA;
1623 char LoopFuseLegacy::ID = 0;
1625 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
1626 false)
1627 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1628 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1629 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1630 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1631 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1632 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1633 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
1635 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }