[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Scalar / LoopInstSimplify.cpp
blob368b9d4e8df17dddfe32084afe3c48092add9fa1
1 //===- LoopInstSimplify.cpp - Loop Instruction Simplification Pass --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs lightweight instruction simplification on loop bodies.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Scalar/LoopInstSimplify.h"
14 #include "llvm/ADT/PointerIntPair.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/MemorySSA.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PassManager.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Transforms/Scalar.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include <algorithm>
42 #include <utility>
44 using namespace llvm;
46 #define DEBUG_TYPE "loop-instsimplify"
48 STATISTIC(NumSimplified, "Number of redundant instructions simplified");
50 static bool simplifyLoopInst(Loop &L, DominatorTree &DT, LoopInfo &LI,
51 AssumptionCache &AC, const TargetLibraryInfo &TLI,
52 MemorySSAUpdater *MSSAU) {
53 const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
54 SimplifyQuery SQ(DL, &TLI, &DT, &AC);
56 // On the first pass over the loop body we try to simplify every instruction.
57 // On subsequent passes, we can restrict this to only simplifying instructions
58 // where the inputs have been updated. We end up needing two sets: one
59 // containing the instructions we are simplifying in *this* pass, and one for
60 // the instructions we will want to simplify in the *next* pass. We use
61 // pointers so we can swap between two stably allocated sets.
62 SmallPtrSet<const Instruction *, 8> S1, S2, *ToSimplify = &S1, *Next = &S2;
64 // Track the PHI nodes that have already been visited during each iteration so
65 // that we can identify when it is necessary to iterate.
66 SmallPtrSet<PHINode *, 4> VisitedPHIs;
68 // While simplifying we may discover dead code or cause code to become dead.
69 // Keep track of all such instructions and we will delete them at the end.
70 SmallVector<Instruction *, 8> DeadInsts;
72 // First we want to create an RPO traversal of the loop body. By processing in
73 // RPO we can ensure that definitions are processed prior to uses (for non PHI
74 // uses) in all cases. This ensures we maximize the simplifications in each
75 // iteration over the loop and minimizes the possible causes for continuing to
76 // iterate.
77 LoopBlocksRPO RPOT(&L);
78 RPOT.perform(&LI);
79 MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
81 bool Changed = false;
82 for (;;) {
83 if (MSSAU && VerifyMemorySSA)
84 MSSA->verifyMemorySSA();
85 for (BasicBlock *BB : RPOT) {
86 for (Instruction &I : *BB) {
87 if (auto *PI = dyn_cast<PHINode>(&I))
88 VisitedPHIs.insert(PI);
90 if (I.use_empty()) {
91 if (isInstructionTriviallyDead(&I, &TLI))
92 DeadInsts.push_back(&I);
93 continue;
96 // We special case the first iteration which we can detect due to the
97 // empty `ToSimplify` set.
98 bool IsFirstIteration = ToSimplify->empty();
100 if (!IsFirstIteration && !ToSimplify->count(&I))
101 continue;
103 Value *V = SimplifyInstruction(&I, SQ.getWithInstruction(&I));
104 if (!V || !LI.replacementPreservesLCSSAForm(&I, V))
105 continue;
107 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
108 UI != UE;) {
109 Use &U = *UI++;
110 auto *UserI = cast<Instruction>(U.getUser());
111 U.set(V);
113 // If the instruction is used by a PHI node we have already processed
114 // we'll need to iterate on the loop body to converge, so add it to
115 // the next set.
116 if (auto *UserPI = dyn_cast<PHINode>(UserI))
117 if (VisitedPHIs.count(UserPI)) {
118 Next->insert(UserPI);
119 continue;
122 // If we are only simplifying targeted instructions and the user is an
123 // instruction in the loop body, add it to our set of targeted
124 // instructions. Because we process defs before uses (outside of PHIs)
125 // we won't have visited it yet.
127 // We also skip any uses outside of the loop being simplified. Those
128 // should always be PHI nodes due to LCSSA form, and we don't want to
129 // try to simplify those away.
130 assert((L.contains(UserI) || isa<PHINode>(UserI)) &&
131 "Uses outside the loop should be PHI nodes due to LCSSA!");
132 if (!IsFirstIteration && L.contains(UserI))
133 ToSimplify->insert(UserI);
136 if (MSSAU)
137 if (Instruction *SimpleI = dyn_cast_or_null<Instruction>(V))
138 if (MemoryAccess *MA = MSSA->getMemoryAccess(&I))
139 if (MemoryAccess *ReplacementMA = MSSA->getMemoryAccess(SimpleI))
140 MA->replaceAllUsesWith(ReplacementMA);
142 assert(I.use_empty() && "Should always have replaced all uses!");
143 if (isInstructionTriviallyDead(&I, &TLI))
144 DeadInsts.push_back(&I);
145 ++NumSimplified;
146 Changed = true;
150 // Delete any dead instructions found thus far now that we've finished an
151 // iteration over all instructions in all the loop blocks.
152 if (!DeadInsts.empty()) {
153 Changed = true;
154 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, &TLI, MSSAU);
157 if (MSSAU && VerifyMemorySSA)
158 MSSA->verifyMemorySSA();
160 // If we never found a PHI that needs to be simplified in the next
161 // iteration, we're done.
162 if (Next->empty())
163 break;
165 // Otherwise, put the next set in place for the next iteration and reset it
166 // and the visited PHIs for that iteration.
167 std::swap(Next, ToSimplify);
168 Next->clear();
169 VisitedPHIs.clear();
170 DeadInsts.clear();
173 return Changed;
176 namespace {
178 class LoopInstSimplifyLegacyPass : public LoopPass {
179 public:
180 static char ID; // Pass ID, replacement for typeid
182 LoopInstSimplifyLegacyPass() : LoopPass(ID) {
183 initializeLoopInstSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
186 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
187 if (skipLoop(L))
188 return false;
189 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
190 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
191 AssumptionCache &AC =
192 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
193 *L->getHeader()->getParent());
194 const TargetLibraryInfo &TLI =
195 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
196 *L->getHeader()->getParent());
197 MemorySSA *MSSA = nullptr;
198 Optional<MemorySSAUpdater> MSSAU;
199 if (EnableMSSALoopDependency) {
200 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
201 MSSAU = MemorySSAUpdater(MSSA);
204 return simplifyLoopInst(*L, DT, LI, AC, TLI,
205 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
208 void getAnalysisUsage(AnalysisUsage &AU) const override {
209 AU.addRequired<AssumptionCacheTracker>();
210 AU.addRequired<DominatorTreeWrapperPass>();
211 AU.addRequired<TargetLibraryInfoWrapperPass>();
212 AU.setPreservesCFG();
213 if (EnableMSSALoopDependency) {
214 AU.addRequired<MemorySSAWrapperPass>();
215 AU.addPreserved<MemorySSAWrapperPass>();
217 getLoopAnalysisUsage(AU);
221 } // end anonymous namespace
223 PreservedAnalyses LoopInstSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
224 LoopStandardAnalysisResults &AR,
225 LPMUpdater &) {
226 Optional<MemorySSAUpdater> MSSAU;
227 if (AR.MSSA) {
228 MSSAU = MemorySSAUpdater(AR.MSSA);
229 AR.MSSA->verifyMemorySSA();
231 if (!simplifyLoopInst(L, AR.DT, AR.LI, AR.AC, AR.TLI,
232 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
233 return PreservedAnalyses::all();
235 auto PA = getLoopPassPreservedAnalyses();
236 PA.preserveSet<CFGAnalyses>();
237 if (AR.MSSA)
238 PA.preserve<MemorySSAAnalysis>();
239 return PA;
242 char LoopInstSimplifyLegacyPass::ID = 0;
244 INITIALIZE_PASS_BEGIN(LoopInstSimplifyLegacyPass, "loop-instsimplify",
245 "Simplify instructions in loops", false, false)
246 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
247 INITIALIZE_PASS_DEPENDENCY(LoopPass)
248 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
249 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
250 INITIALIZE_PASS_END(LoopInstSimplifyLegacyPass, "loop-instsimplify",
251 "Simplify instructions in loops", false, false)
253 Pass *llvm::createLoopInstSimplifyPass() {
254 return new LoopInstSimplifyLegacyPass();