1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
13 // for (i = 0; i < n; i++) {
20 // for (i = 0; i < n; i++) {
21 // guard(n - 1 < len);
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
30 // for (i = 0; i < n; i++) {
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49 // for (int i = b; i != e; i++)
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
77 // Informal proof that the transformation above is correct:
79 // By the definition of guards we can rewrite the guard condition to:
82 // Let's prove that for each iteration of the loop:
84 // And the condition above can be simplified to G(Start) && M.
89 // Induction step. Assuming G(0) && M => G(I) on the subsequent
92 // B(I) is true because it's the backedge condition.
93 // G(I) is true because the backedge is guarded by this condition.
95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
97 // Note that we can use anything stronger than M, i.e. any condition which
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
102 // * The loop has a single latch with the condition of the form:
103 // B(X) = latchStart + X <pred> latchLimit,
104 // where <pred> is u<, u<=, s<, or s<=.
105 // * The guard condition is of the form
106 // G(X) = guardStart + X u< guardLimit
108 // For the ult latch comparison case M is:
109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 // guardStart + X + 1 u< guardLimit
112 // The only way the antecedent can be true and the consequent can be false is
114 // X == guardLimit - 1 - guardStart
115 // (and guardLimit is non-zero, but we won't use this latter fact).
116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 // latchStart + guardLimit - 1 - guardStart u< latchLimit
118 // and its negation is
119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
121 // In other words, if
122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart
124 // (the ranges below are written in ConstantRange notation, where [A, B) is the
125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
127 // forall X . guardStart + X u< guardLimit &&
128 // latchStart + X u< latchLimit =>
129 // guardStart + X + 1 u< guardLimit
130 // == forall X . guardStart + X u< guardLimit &&
131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 // guardStart + X + 1 u< guardLimit
133 // == forall X . (guardStart + X) in [0, guardLimit) &&
134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 // (guardStart + X + 1) in [0, guardLimit)
136 // == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 // X in [-latchStart, guardLimit - 1 - guardStart) =>
138 // X in [-guardStart - 1, guardLimit - guardStart - 1)
141 // So the widened condition is:
142 // guardStart u< guardLimit &&
143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 // Similarly for ule condition the widened condition is:
145 // guardStart u< guardLimit &&
146 // latchStart + guardLimit - 1 - guardStart u> latchLimit
147 // For slt condition the widened condition is:
148 // guardStart u< guardLimit &&
149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 // For sle condition the widened condition is:
151 // guardStart u< guardLimit &&
152 // latchStart + guardLimit - 1 - guardStart s> latchLimit
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
156 // * The loop has a single latch with the condition of the form:
157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 // * The guard condition is of the form
159 // G(X) = X - 1 u< guardLimit
161 // For the ugt latch comparison case M is:
162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
164 // The only way the antecedent can be true and the consequent can be false is if
166 // If X == 1 then the second half of the antecedent is
167 // 1 u> latchLimit, and its negation is latchLimit u>= 1.
169 // So the widened condition is:
170 // guardStart u< guardLimit && latchLimit u>= 1.
171 // Similarly for sgt condition the widened condition is:
172 // guardStart u< guardLimit && latchLimit s>= 1.
173 // For uge condition the widened condition is:
174 // guardStart u< guardLimit && latchLimit u> 1.
175 // For sge condition the widened condition is:
176 // guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/ScalarEvolution.h"
187 #include "llvm/Analysis/ScalarEvolutionExpander.h"
188 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
189 #include "llvm/IR/Function.h"
190 #include "llvm/IR/GlobalValue.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/Pass.h"
195 #include "llvm/Support/Debug.h"
196 #include "llvm/Transforms/Scalar.h"
197 #include "llvm/Transforms/Utils/Local.h"
198 #include "llvm/Transforms/Utils/LoopUtils.h"
200 #define DEBUG_TYPE "loop-predication"
202 STATISTIC(TotalConsidered
, "Number of guards considered");
203 STATISTIC(TotalWidened
, "Number of checks widened");
205 using namespace llvm
;
207 static cl::opt
<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
208 cl::Hidden
, cl::init(true));
210 static cl::opt
<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
211 cl::Hidden
, cl::init(true));
214 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
215 cl::Hidden
, cl::init(false));
217 // This is the scale factor for the latch probability. We use this during
218 // profitability analysis to find other exiting blocks that have a much higher
219 // probability of exiting the loop instead of loop exiting via latch.
220 // This value should be greater than 1 for a sane profitability check.
221 static cl::opt
<float> LatchExitProbabilityScale(
222 "loop-predication-latch-probability-scale", cl::Hidden
, cl::init(2.0),
223 cl::desc("scale factor for the latch probability. Value should be greater "
224 "than 1. Lower values are ignored"));
226 static cl::opt
<bool> PredicateWidenableBranchGuards(
227 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden
,
228 cl::desc("Whether or not we should predicate guards "
229 "expressed as widenable branches to deoptimize blocks"),
233 /// Represents an induction variable check:
234 /// icmp Pred, <induction variable>, <loop invariant limit>
236 ICmpInst::Predicate Pred
;
237 const SCEVAddRecExpr
*IV
;
239 LoopICmp(ICmpInst::Predicate Pred
, const SCEVAddRecExpr
*IV
,
241 : Pred(Pred
), IV(IV
), Limit(Limit
) {}
244 dbgs() << "LoopICmp Pred = " << Pred
<< ", IV = " << *IV
245 << ", Limit = " << *Limit
<< "\n";
249 class LoopPredication
{
252 BranchProbabilityInfo
*BPI
;
255 const DataLayout
*DL
;
256 BasicBlock
*Preheader
;
259 bool isSupportedStep(const SCEV
* Step
);
260 Optional
<LoopICmp
> parseLoopICmp(ICmpInst
*ICI
);
261 Optional
<LoopICmp
> parseLoopLatchICmp();
263 /// Return an insertion point suitable for inserting a safe to speculate
264 /// instruction whose only user will be 'User' which has operands 'Ops'. A
265 /// trivial result would be the at the User itself, but we try to return a
266 /// loop invariant location if possible.
267 Instruction
*findInsertPt(Instruction
*User
, ArrayRef
<Value
*> Ops
);
268 /// Same as above, *except* that this uses the SCEV definition of invariant
269 /// which is that an expression *can be made* invariant via SCEVExpander.
270 /// Thus, this version is only suitable for finding an insert point to be be
271 /// passed to SCEVExpander!
272 Instruction
*findInsertPt(Instruction
*User
, ArrayRef
<const SCEV
*> Ops
);
274 /// Return true if the value is known to produce a single fixed value across
275 /// all iterations on which it executes. Note that this does not imply
276 /// speculation safety. That must be established seperately.
277 bool isLoopInvariantValue(const SCEV
* S
);
279 Value
*expandCheck(SCEVExpander
&Expander
, Instruction
*Guard
,
280 ICmpInst::Predicate Pred
, const SCEV
*LHS
,
283 Optional
<Value
*> widenICmpRangeCheck(ICmpInst
*ICI
, SCEVExpander
&Expander
,
285 Optional
<Value
*> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck
,
287 SCEVExpander
&Expander
,
289 Optional
<Value
*> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck
,
291 SCEVExpander
&Expander
,
293 unsigned collectChecks(SmallVectorImpl
<Value
*> &Checks
, Value
*Condition
,
294 SCEVExpander
&Expander
, Instruction
*Guard
);
295 bool widenGuardConditions(IntrinsicInst
*II
, SCEVExpander
&Expander
);
296 bool widenWidenableBranchGuardConditions(BranchInst
*Guard
, SCEVExpander
&Expander
);
297 // If the loop always exits through another block in the loop, we should not
298 // predicate based on the latch check. For example, the latch check can be a
299 // very coarse grained check and there can be more fine grained exit checks
300 // within the loop. We identify such unprofitable loops through BPI.
301 bool isLoopProfitableToPredicate();
304 LoopPredication(AliasAnalysis
*AA
, ScalarEvolution
*SE
,
305 BranchProbabilityInfo
*BPI
)
306 : AA(AA
), SE(SE
), BPI(BPI
){};
307 bool runOnLoop(Loop
*L
);
310 class LoopPredicationLegacyPass
: public LoopPass
{
313 LoopPredicationLegacyPass() : LoopPass(ID
) {
314 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
317 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
318 AU
.addRequired
<BranchProbabilityInfoWrapperPass
>();
319 getLoopAnalysisUsage(AU
);
322 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
325 auto *SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
326 BranchProbabilityInfo
&BPI
=
327 getAnalysis
<BranchProbabilityInfoWrapperPass
>().getBPI();
328 auto *AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
329 LoopPredication
LP(AA
, SE
, &BPI
);
330 return LP
.runOnLoop(L
);
334 char LoopPredicationLegacyPass::ID
= 0;
335 } // end namespace llvm
337 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass
, "loop-predication",
338 "Loop predication", false, false)
339 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass
)
340 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
341 INITIALIZE_PASS_END(LoopPredicationLegacyPass
, "loop-predication",
342 "Loop predication", false, false)
344 Pass
*llvm::createLoopPredicationPass() {
345 return new LoopPredicationLegacyPass();
348 PreservedAnalyses
LoopPredicationPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
349 LoopStandardAnalysisResults
&AR
,
352 AM
.getResult
<FunctionAnalysisManagerLoopProxy
>(L
, AR
).getManager();
353 Function
*F
= L
.getHeader()->getParent();
354 auto *BPI
= FAM
.getCachedResult
<BranchProbabilityAnalysis
>(*F
);
355 LoopPredication
LP(&AR
.AA
, &AR
.SE
, BPI
);
356 if (!LP
.runOnLoop(&L
))
357 return PreservedAnalyses::all();
359 return getLoopPassPreservedAnalyses();
363 LoopPredication::parseLoopICmp(ICmpInst
*ICI
) {
364 auto Pred
= ICI
->getPredicate();
365 auto *LHS
= ICI
->getOperand(0);
366 auto *RHS
= ICI
->getOperand(1);
368 const SCEV
*LHSS
= SE
->getSCEV(LHS
);
369 if (isa
<SCEVCouldNotCompute
>(LHSS
))
371 const SCEV
*RHSS
= SE
->getSCEV(RHS
);
372 if (isa
<SCEVCouldNotCompute
>(RHSS
))
375 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
376 if (SE
->isLoopInvariant(LHSS
, L
)) {
378 std::swap(LHSS
, RHSS
);
379 Pred
= ICmpInst::getSwappedPredicate(Pred
);
382 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHSS
);
383 if (!AR
|| AR
->getLoop() != L
)
386 return LoopICmp(Pred
, AR
, RHSS
);
389 Value
*LoopPredication::expandCheck(SCEVExpander
&Expander
,
391 ICmpInst::Predicate Pred
, const SCEV
*LHS
,
393 Type
*Ty
= LHS
->getType();
394 assert(Ty
== RHS
->getType() && "expandCheck operands have different types?");
396 if (SE
->isLoopInvariant(LHS
, L
) && SE
->isLoopInvariant(RHS
, L
)) {
397 IRBuilder
<> Builder(Guard
);
398 if (SE
->isLoopEntryGuardedByCond(L
, Pred
, LHS
, RHS
))
399 return Builder
.getTrue();
400 if (SE
->isLoopEntryGuardedByCond(L
, ICmpInst::getInversePredicate(Pred
),
402 return Builder
.getFalse();
405 Value
*LHSV
= Expander
.expandCodeFor(LHS
, Ty
, findInsertPt(Guard
, {LHS
}));
406 Value
*RHSV
= Expander
.expandCodeFor(RHS
, Ty
, findInsertPt(Guard
, {RHS
}));
407 IRBuilder
<> Builder(findInsertPt(Guard
, {LHSV
, RHSV
}));
408 return Builder
.CreateICmp(Pred
, LHSV
, RHSV
);
412 // Returns true if its safe to truncate the IV to RangeCheckType.
413 // When the IV type is wider than the range operand type, we can still do loop
414 // predication, by generating SCEVs for the range and latch that are of the
415 // same type. We achieve this by generating a SCEV truncate expression for the
416 // latch IV. This is done iff truncation of the IV is a safe operation,
417 // without loss of information.
418 // Another way to achieve this is by generating a wider type SCEV for the
419 // range check operand, however, this needs a more involved check that
420 // operands do not overflow. This can lead to loss of information when the
421 // range operand is of the form: add i32 %offset, %iv. We need to prove that
422 // sext(x + y) is same as sext(x) + sext(y).
423 // This function returns true if we can safely represent the IV type in
424 // the RangeCheckType without loss of information.
425 static bool isSafeToTruncateWideIVType(const DataLayout
&DL
,
427 const LoopICmp LatchCheck
,
428 Type
*RangeCheckType
) {
429 if (!EnableIVTruncation
)
431 assert(DL
.getTypeSizeInBits(LatchCheck
.IV
->getType()) >
432 DL
.getTypeSizeInBits(RangeCheckType
) &&
433 "Expected latch check IV type to be larger than range check operand "
435 // The start and end values of the IV should be known. This is to guarantee
436 // that truncating the wide type will not lose information.
437 auto *Limit
= dyn_cast
<SCEVConstant
>(LatchCheck
.Limit
);
438 auto *Start
= dyn_cast
<SCEVConstant
>(LatchCheck
.IV
->getStart());
439 if (!Limit
|| !Start
)
441 // This check makes sure that the IV does not change sign during loop
442 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
443 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
444 // IV wraps around, and the truncation of the IV would lose the range of
445 // iterations between 2^32 and 2^64.
447 if (!SE
.isMonotonicPredicate(LatchCheck
.IV
, LatchCheck
.Pred
, Increasing
))
449 // The active bits should be less than the bits in the RangeCheckType. This
450 // guarantees that truncating the latch check to RangeCheckType is a safe
452 auto RangeCheckTypeBitSize
= DL
.getTypeSizeInBits(RangeCheckType
);
453 return Start
->getAPInt().getActiveBits() < RangeCheckTypeBitSize
&&
454 Limit
->getAPInt().getActiveBits() < RangeCheckTypeBitSize
;
458 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
459 // the requested type if safe to do so. May involve the use of a new IV.
460 static Optional
<LoopICmp
> generateLoopLatchCheck(const DataLayout
&DL
,
462 const LoopICmp LatchCheck
,
463 Type
*RangeCheckType
) {
465 auto *LatchType
= LatchCheck
.IV
->getType();
466 if (RangeCheckType
== LatchType
)
468 // For now, bail out if latch type is narrower than range type.
469 if (DL
.getTypeSizeInBits(LatchType
) < DL
.getTypeSizeInBits(RangeCheckType
))
471 if (!isSafeToTruncateWideIVType(DL
, SE
, LatchCheck
, RangeCheckType
))
473 // We can now safely identify the truncated version of the IV and limit for
475 LoopICmp NewLatchCheck
;
476 NewLatchCheck
.Pred
= LatchCheck
.Pred
;
477 NewLatchCheck
.IV
= dyn_cast
<SCEVAddRecExpr
>(
478 SE
.getTruncateExpr(LatchCheck
.IV
, RangeCheckType
));
479 if (!NewLatchCheck
.IV
)
481 NewLatchCheck
.Limit
= SE
.getTruncateExpr(LatchCheck
.Limit
, RangeCheckType
);
482 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
483 << "can be represented as range check type:"
484 << *RangeCheckType
<< "\n");
485 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck
.IV
<< "\n");
486 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck
.Limit
<< "\n");
487 return NewLatchCheck
;
490 bool LoopPredication::isSupportedStep(const SCEV
* Step
) {
491 return Step
->isOne() || (Step
->isAllOnesValue() && EnableCountDownLoop
);
494 Instruction
*LoopPredication::findInsertPt(Instruction
*Use
,
495 ArrayRef
<Value
*> Ops
) {
496 for (Value
*Op
: Ops
)
497 if (!L
->isLoopInvariant(Op
))
499 return Preheader
->getTerminator();
502 Instruction
*LoopPredication::findInsertPt(Instruction
*Use
,
503 ArrayRef
<const SCEV
*> Ops
) {
504 // Subtlety: SCEV considers things to be invariant if the value produced is
505 // the same across iterations. This is not the same as being able to
506 // evaluate outside the loop, which is what we actually need here.
507 for (const SCEV
*Op
: Ops
)
508 if (!SE
->isLoopInvariant(Op
, L
) ||
509 !isSafeToExpandAt(Op
, Preheader
->getTerminator(), *SE
))
511 return Preheader
->getTerminator();
514 bool LoopPredication::isLoopInvariantValue(const SCEV
* S
) {
515 // Handling expressions which produce invariant results, but *haven't* yet
516 // been removed from the loop serves two important purposes.
517 // 1) Most importantly, it resolves a pass ordering cycle which would
518 // otherwise need us to iteration licm, loop-predication, and either
519 // loop-unswitch or loop-peeling to make progress on examples with lots of
520 // predicable range checks in a row. (Since, in the general case, we can't
521 // hoist the length checks until the dominating checks have been discharged
522 // as we can't prove doing so is safe.)
523 // 2) As a nice side effect, this exposes the value of peeling or unswitching
524 // much more obviously in the IR. Otherwise, the cost modeling for other
525 // transforms would end up needing to duplicate all of this logic to model a
526 // check which becomes predictable based on a modeled peel or unswitch.
528 // The cost of doing so in the worst case is an extra fill from the stack in
529 // the loop to materialize the loop invariant test value instead of checking
530 // against the original IV which is presumable in a register inside the loop.
531 // Such cases are presumably rare, and hint at missing oppurtunities for
534 if (SE
->isLoopInvariant(S
, L
))
535 // Note: This the SCEV variant, so the original Value* may be within the
536 // loop even though SCEV has proven it is loop invariant.
539 // Handle a particular important case which SCEV doesn't yet know about which
540 // shows up in range checks on arrays with immutable lengths.
541 // TODO: This should be sunk inside SCEV.
542 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
))
543 if (const auto *LI
= dyn_cast
<LoadInst
>(U
->getValue()))
544 if (LI
->isUnordered() && L
->hasLoopInvariantOperands(LI
))
545 if (AA
->pointsToConstantMemory(LI
->getOperand(0)) ||
546 LI
->hasMetadata(LLVMContext::MD_invariant_load
))
551 Optional
<Value
*> LoopPredication::widenICmpRangeCheckIncrementingLoop(
552 LoopICmp LatchCheck
, LoopICmp RangeCheck
,
553 SCEVExpander
&Expander
, Instruction
*Guard
) {
554 auto *Ty
= RangeCheck
.IV
->getType();
555 // Generate the widened condition for the forward loop:
556 // guardStart u< guardLimit &&
557 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
558 // where <pred> depends on the latch condition predicate. See the file
559 // header comment for the reasoning.
560 // guardLimit - guardStart + latchStart - 1
561 const SCEV
*GuardStart
= RangeCheck
.IV
->getStart();
562 const SCEV
*GuardLimit
= RangeCheck
.Limit
;
563 const SCEV
*LatchStart
= LatchCheck
.IV
->getStart();
564 const SCEV
*LatchLimit
= LatchCheck
.Limit
;
565 // Subtlety: We need all the values to be *invariant* across all iterations,
566 // but we only need to check expansion safety for those which *aren't*
567 // already guaranteed to dominate the guard.
568 if (!isLoopInvariantValue(GuardStart
) ||
569 !isLoopInvariantValue(GuardLimit
) ||
570 !isLoopInvariantValue(LatchStart
) ||
571 !isLoopInvariantValue(LatchLimit
)) {
572 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
575 if (!isSafeToExpandAt(LatchStart
, Guard
, *SE
) ||
576 !isSafeToExpandAt(LatchLimit
, Guard
, *SE
)) {
577 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
581 // guardLimit - guardStart + latchStart - 1
583 SE
->getAddExpr(SE
->getMinusSCEV(GuardLimit
, GuardStart
),
584 SE
->getMinusSCEV(LatchStart
, SE
->getOne(Ty
)));
585 auto LimitCheckPred
=
586 ICmpInst::getFlippedStrictnessPredicate(LatchCheck
.Pred
);
588 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit
<< "\n");
589 LLVM_DEBUG(dbgs() << "RHS: " << *RHS
<< "\n");
590 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred
<< "\n");
593 expandCheck(Expander
, Guard
, LimitCheckPred
, LatchLimit
, RHS
);
594 auto *FirstIterationCheck
= expandCheck(Expander
, Guard
, RangeCheck
.Pred
,
595 GuardStart
, GuardLimit
);
596 IRBuilder
<> Builder(findInsertPt(Guard
, {FirstIterationCheck
, LimitCheck
}));
597 return Builder
.CreateAnd(FirstIterationCheck
, LimitCheck
);
600 Optional
<Value
*> LoopPredication::widenICmpRangeCheckDecrementingLoop(
601 LoopICmp LatchCheck
, LoopICmp RangeCheck
,
602 SCEVExpander
&Expander
, Instruction
*Guard
) {
603 auto *Ty
= RangeCheck
.IV
->getType();
604 const SCEV
*GuardStart
= RangeCheck
.IV
->getStart();
605 const SCEV
*GuardLimit
= RangeCheck
.Limit
;
606 const SCEV
*LatchStart
= LatchCheck
.IV
->getStart();
607 const SCEV
*LatchLimit
= LatchCheck
.Limit
;
608 // Subtlety: We need all the values to be *invariant* across all iterations,
609 // but we only need to check expansion safety for those which *aren't*
610 // already guaranteed to dominate the guard.
611 if (!isLoopInvariantValue(GuardStart
) ||
612 !isLoopInvariantValue(GuardLimit
) ||
613 !isLoopInvariantValue(LatchStart
) ||
614 !isLoopInvariantValue(LatchLimit
)) {
615 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
618 if (!isSafeToExpandAt(LatchStart
, Guard
, *SE
) ||
619 !isSafeToExpandAt(LatchLimit
, Guard
, *SE
)) {
620 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
623 // The decrement of the latch check IV should be the same as the
625 auto *PostDecLatchCheckIV
= LatchCheck
.IV
->getPostIncExpr(*SE
);
626 if (RangeCheck
.IV
!= PostDecLatchCheckIV
) {
627 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
628 << *PostDecLatchCheckIV
629 << " and RangeCheckIV: " << *RangeCheck
.IV
<< "\n");
633 // Generate the widened condition for CountDownLoop:
634 // guardStart u< guardLimit &&
635 // latchLimit <pred> 1.
636 // See the header comment for reasoning of the checks.
637 auto LimitCheckPred
=
638 ICmpInst::getFlippedStrictnessPredicate(LatchCheck
.Pred
);
639 auto *FirstIterationCheck
= expandCheck(Expander
, Guard
,
641 GuardStart
, GuardLimit
);
642 auto *LimitCheck
= expandCheck(Expander
, Guard
, LimitCheckPred
, LatchLimit
,
644 IRBuilder
<> Builder(findInsertPt(Guard
, {FirstIterationCheck
, LimitCheck
}));
645 return Builder
.CreateAnd(FirstIterationCheck
, LimitCheck
);
648 static void normalizePredicate(ScalarEvolution
*SE
, Loop
*L
,
650 // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
651 // ULT/UGE form for ease of handling by our caller.
652 if (ICmpInst::isEquality(RC
.Pred
) &&
653 RC
.IV
->getStepRecurrence(*SE
)->isOne() &&
654 SE
->isKnownPredicate(ICmpInst::ICMP_ULE
, RC
.IV
->getStart(), RC
.Limit
))
655 RC
.Pred
= RC
.Pred
== ICmpInst::ICMP_NE
?
656 ICmpInst::ICMP_ULT
: ICmpInst::ICMP_UGE
;
660 /// If ICI can be widened to a loop invariant condition emits the loop
661 /// invariant condition in the loop preheader and return it, otherwise
663 Optional
<Value
*> LoopPredication::widenICmpRangeCheck(ICmpInst
*ICI
,
664 SCEVExpander
&Expander
,
665 Instruction
*Guard
) {
666 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
667 LLVM_DEBUG(ICI
->dump());
669 // parseLoopStructure guarantees that the latch condition is:
670 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
671 // We are looking for the range checks of the form:
673 auto RangeCheck
= parseLoopICmp(ICI
);
675 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
678 LLVM_DEBUG(dbgs() << "Guard check:\n");
679 LLVM_DEBUG(RangeCheck
->dump());
680 if (RangeCheck
->Pred
!= ICmpInst::ICMP_ULT
) {
681 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
682 << RangeCheck
->Pred
<< ")!\n");
685 auto *RangeCheckIV
= RangeCheck
->IV
;
686 if (!RangeCheckIV
->isAffine()) {
687 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
690 auto *Step
= RangeCheckIV
->getStepRecurrence(*SE
);
691 // We cannot just compare with latch IV step because the latch and range IVs
692 // may have different types.
693 if (!isSupportedStep(Step
)) {
694 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
697 auto *Ty
= RangeCheckIV
->getType();
698 auto CurrLatchCheckOpt
= generateLoopLatchCheck(*DL
, *SE
, LatchCheck
, Ty
);
699 if (!CurrLatchCheckOpt
) {
700 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
701 "corresponding to range type: "
706 LoopICmp CurrLatchCheck
= *CurrLatchCheckOpt
;
707 // At this point, the range and latch step should have the same type, but need
708 // not have the same value (we support both 1 and -1 steps).
709 assert(Step
->getType() ==
710 CurrLatchCheck
.IV
->getStepRecurrence(*SE
)->getType() &&
711 "Range and latch steps should be of same type!");
712 if (Step
!= CurrLatchCheck
.IV
->getStepRecurrence(*SE
)) {
713 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
718 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck
, *RangeCheck
,
721 assert(Step
->isAllOnesValue() && "Step should be -1!");
722 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck
, *RangeCheck
,
727 unsigned LoopPredication::collectChecks(SmallVectorImpl
<Value
*> &Checks
,
729 SCEVExpander
&Expander
,
730 Instruction
*Guard
) {
731 unsigned NumWidened
= 0;
732 // The guard condition is expected to be in form of:
733 // cond1 && cond2 && cond3 ...
734 // Iterate over subconditions looking for icmp conditions which can be
735 // widened across loop iterations. Widening these conditions remember the
736 // resulting list of subconditions in Checks vector.
737 SmallVector
<Value
*, 4> Worklist(1, Condition
);
738 SmallPtrSet
<Value
*, 4> Visited
;
739 Value
*WideableCond
= nullptr;
741 Value
*Condition
= Worklist
.pop_back_val();
742 if (!Visited
.insert(Condition
).second
)
746 using namespace llvm::PatternMatch
;
747 if (match(Condition
, m_And(m_Value(LHS
), m_Value(RHS
)))) {
748 Worklist
.push_back(LHS
);
749 Worklist
.push_back(RHS
);
754 m_Intrinsic
<Intrinsic::experimental_widenable_condition
>())) {
755 // Pick any, we don't care which
756 WideableCond
= Condition
;
760 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(Condition
)) {
761 if (auto NewRangeCheck
= widenICmpRangeCheck(ICI
, Expander
,
763 Checks
.push_back(NewRangeCheck
.getValue());
769 // Save the condition as is if we can't widen it
770 Checks
.push_back(Condition
);
771 } while (!Worklist
.empty());
772 // At the moment, our matching logic for wideable conditions implicitly
773 // assumes we preserve the form: (br (and Cond, WC())). FIXME
774 // Note that if there were multiple calls to wideable condition in the
775 // traversal, we only need to keep one, and which one is arbitrary.
777 Checks
.push_back(WideableCond
);
781 bool LoopPredication::widenGuardConditions(IntrinsicInst
*Guard
,
782 SCEVExpander
&Expander
) {
783 LLVM_DEBUG(dbgs() << "Processing guard:\n");
784 LLVM_DEBUG(Guard
->dump());
787 SmallVector
<Value
*, 4> Checks
;
788 unsigned NumWidened
= collectChecks(Checks
, Guard
->getOperand(0), Expander
,
793 TotalWidened
+= NumWidened
;
795 // Emit the new guard condition
796 IRBuilder
<> Builder(findInsertPt(Guard
, Checks
));
797 Value
*AllChecks
= Builder
.CreateAnd(Checks
);
798 auto *OldCond
= Guard
->getOperand(0);
799 Guard
->setOperand(0, AllChecks
);
800 RecursivelyDeleteTriviallyDeadInstructions(OldCond
);
802 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened
<< "\n");
806 bool LoopPredication::widenWidenableBranchGuardConditions(
807 BranchInst
*BI
, SCEVExpander
&Expander
) {
808 assert(isGuardAsWidenableBranch(BI
) && "Must be!");
809 LLVM_DEBUG(dbgs() << "Processing guard:\n");
810 LLVM_DEBUG(BI
->dump());
813 SmallVector
<Value
*, 4> Checks
;
814 unsigned NumWidened
= collectChecks(Checks
, BI
->getCondition(),
819 TotalWidened
+= NumWidened
;
821 // Emit the new guard condition
822 IRBuilder
<> Builder(findInsertPt(BI
, Checks
));
823 Value
*AllChecks
= Builder
.CreateAnd(Checks
);
824 auto *OldCond
= BI
->getCondition();
825 BI
->setCondition(AllChecks
);
826 assert(isGuardAsWidenableBranch(BI
) &&
827 "Stopped being a guard after transform?");
828 RecursivelyDeleteTriviallyDeadInstructions(OldCond
);
830 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened
<< "\n");
834 Optional
<LoopICmp
> LoopPredication::parseLoopLatchICmp() {
835 using namespace PatternMatch
;
837 BasicBlock
*LoopLatch
= L
->getLoopLatch();
839 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
843 auto *BI
= dyn_cast
<BranchInst
>(LoopLatch
->getTerminator());
844 if (!BI
|| !BI
->isConditional()) {
845 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
848 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
850 (TrueDest
== L
->getHeader() || BI
->getSuccessor(1) == L
->getHeader()) &&
851 "One of the latch's destinations must be the header");
853 auto *ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition());
855 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
858 auto Result
= parseLoopICmp(ICI
);
860 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
864 if (TrueDest
!= L
->getHeader())
865 Result
->Pred
= ICmpInst::getInversePredicate(Result
->Pred
);
867 // Check affine first, so if it's not we don't try to compute the step
869 if (!Result
->IV
->isAffine()) {
870 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
874 auto *Step
= Result
->IV
->getStepRecurrence(*SE
);
875 if (!isSupportedStep(Step
)) {
876 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step
<< ")!\n");
880 auto IsUnsupportedPredicate
= [](const SCEV
*Step
, ICmpInst::Predicate Pred
) {
882 return Pred
!= ICmpInst::ICMP_ULT
&& Pred
!= ICmpInst::ICMP_SLT
&&
883 Pred
!= ICmpInst::ICMP_ULE
&& Pred
!= ICmpInst::ICMP_SLE
;
885 assert(Step
->isAllOnesValue() && "Step should be -1!");
886 return Pred
!= ICmpInst::ICMP_UGT
&& Pred
!= ICmpInst::ICMP_SGT
&&
887 Pred
!= ICmpInst::ICMP_UGE
&& Pred
!= ICmpInst::ICMP_SGE
;
891 normalizePredicate(SE
, L
, *Result
);
892 if (IsUnsupportedPredicate(Step
, Result
->Pred
)) {
893 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result
->Pred
902 bool LoopPredication::isLoopProfitableToPredicate() {
903 if (SkipProfitabilityChecks
|| !BPI
)
906 SmallVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 8> ExitEdges
;
907 L
->getExitEdges(ExitEdges
);
908 // If there is only one exiting edge in the loop, it is always profitable to
909 // predicate the loop.
910 if (ExitEdges
.size() == 1)
913 // Calculate the exiting probabilities of all exiting edges from the loop,
914 // starting with the LatchExitProbability.
915 // Heuristic for profitability: If any of the exiting blocks' probability of
916 // exiting the loop is larger than exiting through the latch block, it's not
917 // profitable to predicate the loop.
918 auto *LatchBlock
= L
->getLoopLatch();
919 assert(LatchBlock
&& "Should have a single latch at this point!");
920 auto *LatchTerm
= LatchBlock
->getTerminator();
921 assert(LatchTerm
->getNumSuccessors() == 2 &&
922 "expected to be an exiting block with 2 succs!");
923 unsigned LatchBrExitIdx
=
924 LatchTerm
->getSuccessor(0) == L
->getHeader() ? 1 : 0;
925 BranchProbability LatchExitProbability
=
926 BPI
->getEdgeProbability(LatchBlock
, LatchBrExitIdx
);
928 // Protect against degenerate inputs provided by the user. Providing a value
929 // less than one, can invert the definition of profitable loop predication.
930 float ScaleFactor
= LatchExitProbabilityScale
;
931 if (ScaleFactor
< 1) {
934 << "Ignored user setting for loop-predication-latch-probability-scale: "
935 << LatchExitProbabilityScale
<< "\n");
936 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
939 const auto LatchProbabilityThreshold
=
940 LatchExitProbability
* ScaleFactor
;
942 for (const auto &ExitEdge
: ExitEdges
) {
943 BranchProbability ExitingBlockProbability
=
944 BPI
->getEdgeProbability(ExitEdge
.first
, ExitEdge
.second
);
945 // Some exiting edge has higher probability than the latch exiting edge.
946 // No longer profitable to predicate.
947 if (ExitingBlockProbability
> LatchProbabilityThreshold
)
950 // Using BPI, we have concluded that the most probable way to exit from the
951 // loop is through the latch (or there's no profile information and all
952 // exits are equally likely).
956 bool LoopPredication::runOnLoop(Loop
*Loop
) {
959 LLVM_DEBUG(dbgs() << "Analyzing ");
960 LLVM_DEBUG(L
->dump());
962 Module
*M
= L
->getHeader()->getModule();
964 // There is nothing to do if the module doesn't use guards
966 M
->getFunction(Intrinsic::getName(Intrinsic::experimental_guard
));
967 bool HasIntrinsicGuards
= GuardDecl
&& !GuardDecl
->use_empty();
968 auto *WCDecl
= M
->getFunction(
969 Intrinsic::getName(Intrinsic::experimental_widenable_condition
));
970 bool HasWidenableConditions
=
971 PredicateWidenableBranchGuards
&& WCDecl
&& !WCDecl
->use_empty();
972 if (!HasIntrinsicGuards
&& !HasWidenableConditions
)
975 DL
= &M
->getDataLayout();
977 Preheader
= L
->getLoopPreheader();
981 auto LatchCheckOpt
= parseLoopLatchICmp();
984 LatchCheck
= *LatchCheckOpt
;
986 LLVM_DEBUG(dbgs() << "Latch check:\n");
987 LLVM_DEBUG(LatchCheck
.dump());
989 if (!isLoopProfitableToPredicate()) {
990 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
993 // Collect all the guards into a vector and process later, so as not
994 // to invalidate the instruction iterator.
995 SmallVector
<IntrinsicInst
*, 4> Guards
;
996 SmallVector
<BranchInst
*, 4> GuardsAsWidenableBranches
;
997 for (const auto BB
: L
->blocks()) {
1000 Guards
.push_back(cast
<IntrinsicInst
>(&I
));
1001 if (PredicateWidenableBranchGuards
&&
1002 isGuardAsWidenableBranch(BB
->getTerminator()))
1003 GuardsAsWidenableBranches
.push_back(
1004 cast
<BranchInst
>(BB
->getTerminator()));
1007 if (Guards
.empty() && GuardsAsWidenableBranches
.empty())
1010 SCEVExpander
Expander(*SE
, *DL
, "loop-predication");
1012 bool Changed
= false;
1013 for (auto *Guard
: Guards
)
1014 Changed
|= widenGuardConditions(Guard
, Expander
);
1015 for (auto *Guard
: GuardsAsWidenableBranches
)
1016 Changed
|= widenWidenableBranchGuardConditions(Guard
, Expander
);