[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Scalar / LoopPredication.cpp
blob885c0e8f4b8b8fc04e6d5cc121b0148a69866e47
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
13 // for (i = 0; i < n; i++) {
14 // guard(i < len);
15 // ...
16 // }
18 // to
20 // for (i = 0; i < n; i++) {
21 // guard(n - 1 < len);
22 // ...
23 // }
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
29 // if (n - 1 < len)
30 // for (i = 0; i < n; i++) {
31 // ...
32 // }
33 // else
34 // deoptimize
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49 // for (int i = b; i != e; i++)
50 // guard(i u< len)
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
55 // if (B(0)) {
56 // do {
57 // I = PHI(0, I.INC)
58 // I.INC = I + Step
59 // guard(G(I));
60 // } while (B(I));
61 // }
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
67 // if (B(0)) {
68 // do {
69 // I = PHI(0, I.INC)
70 // I.INC = I + Step
71 // guard(G(0) && M);
72 // } while (B(I));
73 // }
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
77 // Informal proof that the transformation above is correct:
79 // By the definition of guards we can rewrite the guard condition to:
80 // G(I) && G(0) && M
82 // Let's prove that for each iteration of the loop:
83 // G(0) && M => G(I)
84 // And the condition above can be simplified to G(Start) && M.
86 // Induction base.
87 // G(0) && M => G(0)
89 // Induction step. Assuming G(0) && M => G(I) on the subsequent
90 // iteration:
92 // B(I) is true because it's the backedge condition.
93 // G(I) is true because the backedge is guarded by this condition.
95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 // * The loop has a single latch with the condition of the form:
103 // B(X) = latchStart + X <pred> latchLimit,
104 // where <pred> is u<, u<=, s<, or s<=.
105 // * The guard condition is of the form
106 // G(X) = guardStart + X u< guardLimit
108 // For the ult latch comparison case M is:
109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 // guardStart + X + 1 u< guardLimit
112 // The only way the antecedent can be true and the consequent can be false is
113 // if
114 // X == guardLimit - 1 - guardStart
115 // (and guardLimit is non-zero, but we won't use this latter fact).
116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 // latchStart + guardLimit - 1 - guardStart u< latchLimit
118 // and its negation is
119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
121 // In other words, if
122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 // then:
124 // (the ranges below are written in ConstantRange notation, where [A, B) is the
125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
127 // forall X . guardStart + X u< guardLimit &&
128 // latchStart + X u< latchLimit =>
129 // guardStart + X + 1 u< guardLimit
130 // == forall X . guardStart + X u< guardLimit &&
131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 // guardStart + X + 1 u< guardLimit
133 // == forall X . (guardStart + X) in [0, guardLimit) &&
134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 // (guardStart + X + 1) in [0, guardLimit)
136 // == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 // X in [-latchStart, guardLimit - 1 - guardStart) =>
138 // X in [-guardStart - 1, guardLimit - guardStart - 1)
139 // == true
141 // So the widened condition is:
142 // guardStart u< guardLimit &&
143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 // Similarly for ule condition the widened condition is:
145 // guardStart u< guardLimit &&
146 // latchStart + guardLimit - 1 - guardStart u> latchLimit
147 // For slt condition the widened condition is:
148 // guardStart u< guardLimit &&
149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 // For sle condition the widened condition is:
151 // guardStart u< guardLimit &&
152 // latchStart + guardLimit - 1 - guardStart s> latchLimit
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 // * The loop has a single latch with the condition of the form:
157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 // * The guard condition is of the form
159 // G(X) = X - 1 u< guardLimit
161 // For the ugt latch comparison case M is:
162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
164 // The only way the antecedent can be true and the consequent can be false is if
165 // X == 1.
166 // If X == 1 then the second half of the antecedent is
167 // 1 u> latchLimit, and its negation is latchLimit u>= 1.
169 // So the widened condition is:
170 // guardStart u< guardLimit && latchLimit u>= 1.
171 // Similarly for sgt condition the widened condition is:
172 // guardStart u< guardLimit && latchLimit s>= 1.
173 // For uge condition the widened condition is:
174 // guardStart u< guardLimit && latchLimit u> 1.
175 // For sge condition the widened condition is:
176 // guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/ScalarEvolution.h"
187 #include "llvm/Analysis/ScalarEvolutionExpander.h"
188 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
189 #include "llvm/IR/Function.h"
190 #include "llvm/IR/GlobalValue.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/Pass.h"
195 #include "llvm/Support/Debug.h"
196 #include "llvm/Transforms/Scalar.h"
197 #include "llvm/Transforms/Utils/Local.h"
198 #include "llvm/Transforms/Utils/LoopUtils.h"
200 #define DEBUG_TYPE "loop-predication"
202 STATISTIC(TotalConsidered, "Number of guards considered");
203 STATISTIC(TotalWidened, "Number of checks widened");
205 using namespace llvm;
207 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
208 cl::Hidden, cl::init(true));
210 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
211 cl::Hidden, cl::init(true));
213 static cl::opt<bool>
214 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
215 cl::Hidden, cl::init(false));
217 // This is the scale factor for the latch probability. We use this during
218 // profitability analysis to find other exiting blocks that have a much higher
219 // probability of exiting the loop instead of loop exiting via latch.
220 // This value should be greater than 1 for a sane profitability check.
221 static cl::opt<float> LatchExitProbabilityScale(
222 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
223 cl::desc("scale factor for the latch probability. Value should be greater "
224 "than 1. Lower values are ignored"));
226 static cl::opt<bool> PredicateWidenableBranchGuards(
227 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
228 cl::desc("Whether or not we should predicate guards "
229 "expressed as widenable branches to deoptimize blocks"),
230 cl::init(true));
232 namespace {
233 /// Represents an induction variable check:
234 /// icmp Pred, <induction variable>, <loop invariant limit>
235 struct LoopICmp {
236 ICmpInst::Predicate Pred;
237 const SCEVAddRecExpr *IV;
238 const SCEV *Limit;
239 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
240 const SCEV *Limit)
241 : Pred(Pred), IV(IV), Limit(Limit) {}
242 LoopICmp() {}
243 void dump() {
244 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
245 << ", Limit = " << *Limit << "\n";
249 class LoopPredication {
250 AliasAnalysis *AA;
251 ScalarEvolution *SE;
252 BranchProbabilityInfo *BPI;
254 Loop *L;
255 const DataLayout *DL;
256 BasicBlock *Preheader;
257 LoopICmp LatchCheck;
259 bool isSupportedStep(const SCEV* Step);
260 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
261 Optional<LoopICmp> parseLoopLatchICmp();
263 /// Return an insertion point suitable for inserting a safe to speculate
264 /// instruction whose only user will be 'User' which has operands 'Ops'. A
265 /// trivial result would be the at the User itself, but we try to return a
266 /// loop invariant location if possible.
267 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
268 /// Same as above, *except* that this uses the SCEV definition of invariant
269 /// which is that an expression *can be made* invariant via SCEVExpander.
270 /// Thus, this version is only suitable for finding an insert point to be be
271 /// passed to SCEVExpander!
272 Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
274 /// Return true if the value is known to produce a single fixed value across
275 /// all iterations on which it executes. Note that this does not imply
276 /// speculation safety. That must be established seperately.
277 bool isLoopInvariantValue(const SCEV* S);
279 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
280 ICmpInst::Predicate Pred, const SCEV *LHS,
281 const SCEV *RHS);
283 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
284 Instruction *Guard);
285 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
286 LoopICmp RangeCheck,
287 SCEVExpander &Expander,
288 Instruction *Guard);
289 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
290 LoopICmp RangeCheck,
291 SCEVExpander &Expander,
292 Instruction *Guard);
293 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
294 SCEVExpander &Expander, Instruction *Guard);
295 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
296 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
297 // If the loop always exits through another block in the loop, we should not
298 // predicate based on the latch check. For example, the latch check can be a
299 // very coarse grained check and there can be more fine grained exit checks
300 // within the loop. We identify such unprofitable loops through BPI.
301 bool isLoopProfitableToPredicate();
303 public:
304 LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE,
305 BranchProbabilityInfo *BPI)
306 : AA(AA), SE(SE), BPI(BPI){};
307 bool runOnLoop(Loop *L);
310 class LoopPredicationLegacyPass : public LoopPass {
311 public:
312 static char ID;
313 LoopPredicationLegacyPass() : LoopPass(ID) {
314 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
317 void getAnalysisUsage(AnalysisUsage &AU) const override {
318 AU.addRequired<BranchProbabilityInfoWrapperPass>();
319 getLoopAnalysisUsage(AU);
322 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
323 if (skipLoop(L))
324 return false;
325 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
326 BranchProbabilityInfo &BPI =
327 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
328 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
329 LoopPredication LP(AA, SE, &BPI);
330 return LP.runOnLoop(L);
334 char LoopPredicationLegacyPass::ID = 0;
335 } // end namespace llvm
337 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
338 "Loop predication", false, false)
339 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
340 INITIALIZE_PASS_DEPENDENCY(LoopPass)
341 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
342 "Loop predication", false, false)
344 Pass *llvm::createLoopPredicationPass() {
345 return new LoopPredicationLegacyPass();
348 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
349 LoopStandardAnalysisResults &AR,
350 LPMUpdater &U) {
351 const auto &FAM =
352 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
353 Function *F = L.getHeader()->getParent();
354 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
355 LoopPredication LP(&AR.AA, &AR.SE, BPI);
356 if (!LP.runOnLoop(&L))
357 return PreservedAnalyses::all();
359 return getLoopPassPreservedAnalyses();
362 Optional<LoopICmp>
363 LoopPredication::parseLoopICmp(ICmpInst *ICI) {
364 auto Pred = ICI->getPredicate();
365 auto *LHS = ICI->getOperand(0);
366 auto *RHS = ICI->getOperand(1);
368 const SCEV *LHSS = SE->getSCEV(LHS);
369 if (isa<SCEVCouldNotCompute>(LHSS))
370 return None;
371 const SCEV *RHSS = SE->getSCEV(RHS);
372 if (isa<SCEVCouldNotCompute>(RHSS))
373 return None;
375 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
376 if (SE->isLoopInvariant(LHSS, L)) {
377 std::swap(LHS, RHS);
378 std::swap(LHSS, RHSS);
379 Pred = ICmpInst::getSwappedPredicate(Pred);
382 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
383 if (!AR || AR->getLoop() != L)
384 return None;
386 return LoopICmp(Pred, AR, RHSS);
389 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
390 Instruction *Guard,
391 ICmpInst::Predicate Pred, const SCEV *LHS,
392 const SCEV *RHS) {
393 Type *Ty = LHS->getType();
394 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
396 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
397 IRBuilder<> Builder(Guard);
398 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
399 return Builder.getTrue();
400 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
401 LHS, RHS))
402 return Builder.getFalse();
405 Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
406 Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
407 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
408 return Builder.CreateICmp(Pred, LHSV, RHSV);
412 // Returns true if its safe to truncate the IV to RangeCheckType.
413 // When the IV type is wider than the range operand type, we can still do loop
414 // predication, by generating SCEVs for the range and latch that are of the
415 // same type. We achieve this by generating a SCEV truncate expression for the
416 // latch IV. This is done iff truncation of the IV is a safe operation,
417 // without loss of information.
418 // Another way to achieve this is by generating a wider type SCEV for the
419 // range check operand, however, this needs a more involved check that
420 // operands do not overflow. This can lead to loss of information when the
421 // range operand is of the form: add i32 %offset, %iv. We need to prove that
422 // sext(x + y) is same as sext(x) + sext(y).
423 // This function returns true if we can safely represent the IV type in
424 // the RangeCheckType without loss of information.
425 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
426 ScalarEvolution &SE,
427 const LoopICmp LatchCheck,
428 Type *RangeCheckType) {
429 if (!EnableIVTruncation)
430 return false;
431 assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) >
432 DL.getTypeSizeInBits(RangeCheckType) &&
433 "Expected latch check IV type to be larger than range check operand "
434 "type!");
435 // The start and end values of the IV should be known. This is to guarantee
436 // that truncating the wide type will not lose information.
437 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
438 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
439 if (!Limit || !Start)
440 return false;
441 // This check makes sure that the IV does not change sign during loop
442 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
443 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
444 // IV wraps around, and the truncation of the IV would lose the range of
445 // iterations between 2^32 and 2^64.
446 bool Increasing;
447 if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
448 return false;
449 // The active bits should be less than the bits in the RangeCheckType. This
450 // guarantees that truncating the latch check to RangeCheckType is a safe
451 // operation.
452 auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType);
453 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
454 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
458 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
459 // the requested type if safe to do so. May involve the use of a new IV.
460 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
461 ScalarEvolution &SE,
462 const LoopICmp LatchCheck,
463 Type *RangeCheckType) {
465 auto *LatchType = LatchCheck.IV->getType();
466 if (RangeCheckType == LatchType)
467 return LatchCheck;
468 // For now, bail out if latch type is narrower than range type.
469 if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType))
470 return None;
471 if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
472 return None;
473 // We can now safely identify the truncated version of the IV and limit for
474 // RangeCheckType.
475 LoopICmp NewLatchCheck;
476 NewLatchCheck.Pred = LatchCheck.Pred;
477 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
478 SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
479 if (!NewLatchCheck.IV)
480 return None;
481 NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
482 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
483 << "can be represented as range check type:"
484 << *RangeCheckType << "\n");
485 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
486 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
487 return NewLatchCheck;
490 bool LoopPredication::isSupportedStep(const SCEV* Step) {
491 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
494 Instruction *LoopPredication::findInsertPt(Instruction *Use,
495 ArrayRef<Value*> Ops) {
496 for (Value *Op : Ops)
497 if (!L->isLoopInvariant(Op))
498 return Use;
499 return Preheader->getTerminator();
502 Instruction *LoopPredication::findInsertPt(Instruction *Use,
503 ArrayRef<const SCEV*> Ops) {
504 // Subtlety: SCEV considers things to be invariant if the value produced is
505 // the same across iterations. This is not the same as being able to
506 // evaluate outside the loop, which is what we actually need here.
507 for (const SCEV *Op : Ops)
508 if (!SE->isLoopInvariant(Op, L) ||
509 !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
510 return Use;
511 return Preheader->getTerminator();
514 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
515 // Handling expressions which produce invariant results, but *haven't* yet
516 // been removed from the loop serves two important purposes.
517 // 1) Most importantly, it resolves a pass ordering cycle which would
518 // otherwise need us to iteration licm, loop-predication, and either
519 // loop-unswitch or loop-peeling to make progress on examples with lots of
520 // predicable range checks in a row. (Since, in the general case, we can't
521 // hoist the length checks until the dominating checks have been discharged
522 // as we can't prove doing so is safe.)
523 // 2) As a nice side effect, this exposes the value of peeling or unswitching
524 // much more obviously in the IR. Otherwise, the cost modeling for other
525 // transforms would end up needing to duplicate all of this logic to model a
526 // check which becomes predictable based on a modeled peel or unswitch.
528 // The cost of doing so in the worst case is an extra fill from the stack in
529 // the loop to materialize the loop invariant test value instead of checking
530 // against the original IV which is presumable in a register inside the loop.
531 // Such cases are presumably rare, and hint at missing oppurtunities for
532 // other passes.
534 if (SE->isLoopInvariant(S, L))
535 // Note: This the SCEV variant, so the original Value* may be within the
536 // loop even though SCEV has proven it is loop invariant.
537 return true;
539 // Handle a particular important case which SCEV doesn't yet know about which
540 // shows up in range checks on arrays with immutable lengths.
541 // TODO: This should be sunk inside SCEV.
542 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
543 if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
544 if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
545 if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
546 LI->hasMetadata(LLVMContext::MD_invariant_load))
547 return true;
548 return false;
551 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
552 LoopICmp LatchCheck, LoopICmp RangeCheck,
553 SCEVExpander &Expander, Instruction *Guard) {
554 auto *Ty = RangeCheck.IV->getType();
555 // Generate the widened condition for the forward loop:
556 // guardStart u< guardLimit &&
557 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
558 // where <pred> depends on the latch condition predicate. See the file
559 // header comment for the reasoning.
560 // guardLimit - guardStart + latchStart - 1
561 const SCEV *GuardStart = RangeCheck.IV->getStart();
562 const SCEV *GuardLimit = RangeCheck.Limit;
563 const SCEV *LatchStart = LatchCheck.IV->getStart();
564 const SCEV *LatchLimit = LatchCheck.Limit;
565 // Subtlety: We need all the values to be *invariant* across all iterations,
566 // but we only need to check expansion safety for those which *aren't*
567 // already guaranteed to dominate the guard.
568 if (!isLoopInvariantValue(GuardStart) ||
569 !isLoopInvariantValue(GuardLimit) ||
570 !isLoopInvariantValue(LatchStart) ||
571 !isLoopInvariantValue(LatchLimit)) {
572 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
573 return None;
575 if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
576 !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
577 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
578 return None;
581 // guardLimit - guardStart + latchStart - 1
582 const SCEV *RHS =
583 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
584 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
585 auto LimitCheckPred =
586 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
588 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
589 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
590 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
592 auto *LimitCheck =
593 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
594 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
595 GuardStart, GuardLimit);
596 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
597 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
600 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
601 LoopICmp LatchCheck, LoopICmp RangeCheck,
602 SCEVExpander &Expander, Instruction *Guard) {
603 auto *Ty = RangeCheck.IV->getType();
604 const SCEV *GuardStart = RangeCheck.IV->getStart();
605 const SCEV *GuardLimit = RangeCheck.Limit;
606 const SCEV *LatchStart = LatchCheck.IV->getStart();
607 const SCEV *LatchLimit = LatchCheck.Limit;
608 // Subtlety: We need all the values to be *invariant* across all iterations,
609 // but we only need to check expansion safety for those which *aren't*
610 // already guaranteed to dominate the guard.
611 if (!isLoopInvariantValue(GuardStart) ||
612 !isLoopInvariantValue(GuardLimit) ||
613 !isLoopInvariantValue(LatchStart) ||
614 !isLoopInvariantValue(LatchLimit)) {
615 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
616 return None;
618 if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
619 !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
620 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
621 return None;
623 // The decrement of the latch check IV should be the same as the
624 // rangeCheckIV.
625 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
626 if (RangeCheck.IV != PostDecLatchCheckIV) {
627 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
628 << *PostDecLatchCheckIV
629 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
630 return None;
633 // Generate the widened condition for CountDownLoop:
634 // guardStart u< guardLimit &&
635 // latchLimit <pred> 1.
636 // See the header comment for reasoning of the checks.
637 auto LimitCheckPred =
638 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
639 auto *FirstIterationCheck = expandCheck(Expander, Guard,
640 ICmpInst::ICMP_ULT,
641 GuardStart, GuardLimit);
642 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
643 SE->getOne(Ty));
644 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
645 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
648 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
649 LoopICmp& RC) {
650 // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
651 // ULT/UGE form for ease of handling by our caller.
652 if (ICmpInst::isEquality(RC.Pred) &&
653 RC.IV->getStepRecurrence(*SE)->isOne() &&
654 SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
655 RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
656 ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
660 /// If ICI can be widened to a loop invariant condition emits the loop
661 /// invariant condition in the loop preheader and return it, otherwise
662 /// returns None.
663 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
664 SCEVExpander &Expander,
665 Instruction *Guard) {
666 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
667 LLVM_DEBUG(ICI->dump());
669 // parseLoopStructure guarantees that the latch condition is:
670 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
671 // We are looking for the range checks of the form:
672 // i u< guardLimit
673 auto RangeCheck = parseLoopICmp(ICI);
674 if (!RangeCheck) {
675 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
676 return None;
678 LLVM_DEBUG(dbgs() << "Guard check:\n");
679 LLVM_DEBUG(RangeCheck->dump());
680 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
681 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
682 << RangeCheck->Pred << ")!\n");
683 return None;
685 auto *RangeCheckIV = RangeCheck->IV;
686 if (!RangeCheckIV->isAffine()) {
687 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
688 return None;
690 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
691 // We cannot just compare with latch IV step because the latch and range IVs
692 // may have different types.
693 if (!isSupportedStep(Step)) {
694 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
695 return None;
697 auto *Ty = RangeCheckIV->getType();
698 auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
699 if (!CurrLatchCheckOpt) {
700 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
701 "corresponding to range type: "
702 << *Ty << "\n");
703 return None;
706 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
707 // At this point, the range and latch step should have the same type, but need
708 // not have the same value (we support both 1 and -1 steps).
709 assert(Step->getType() ==
710 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
711 "Range and latch steps should be of same type!");
712 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
713 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
714 return None;
717 if (Step->isOne())
718 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
719 Expander, Guard);
720 else {
721 assert(Step->isAllOnesValue() && "Step should be -1!");
722 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
723 Expander, Guard);
727 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
728 Value *Condition,
729 SCEVExpander &Expander,
730 Instruction *Guard) {
731 unsigned NumWidened = 0;
732 // The guard condition is expected to be in form of:
733 // cond1 && cond2 && cond3 ...
734 // Iterate over subconditions looking for icmp conditions which can be
735 // widened across loop iterations. Widening these conditions remember the
736 // resulting list of subconditions in Checks vector.
737 SmallVector<Value *, 4> Worklist(1, Condition);
738 SmallPtrSet<Value *, 4> Visited;
739 Value *WideableCond = nullptr;
740 do {
741 Value *Condition = Worklist.pop_back_val();
742 if (!Visited.insert(Condition).second)
743 continue;
745 Value *LHS, *RHS;
746 using namespace llvm::PatternMatch;
747 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
748 Worklist.push_back(LHS);
749 Worklist.push_back(RHS);
750 continue;
753 if (match(Condition,
754 m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
755 // Pick any, we don't care which
756 WideableCond = Condition;
757 continue;
760 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
761 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
762 Guard)) {
763 Checks.push_back(NewRangeCheck.getValue());
764 NumWidened++;
765 continue;
769 // Save the condition as is if we can't widen it
770 Checks.push_back(Condition);
771 } while (!Worklist.empty());
772 // At the moment, our matching logic for wideable conditions implicitly
773 // assumes we preserve the form: (br (and Cond, WC())). FIXME
774 // Note that if there were multiple calls to wideable condition in the
775 // traversal, we only need to keep one, and which one is arbitrary.
776 if (WideableCond)
777 Checks.push_back(WideableCond);
778 return NumWidened;
781 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
782 SCEVExpander &Expander) {
783 LLVM_DEBUG(dbgs() << "Processing guard:\n");
784 LLVM_DEBUG(Guard->dump());
786 TotalConsidered++;
787 SmallVector<Value *, 4> Checks;
788 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
789 Guard);
790 if (NumWidened == 0)
791 return false;
793 TotalWidened += NumWidened;
795 // Emit the new guard condition
796 IRBuilder<> Builder(findInsertPt(Guard, Checks));
797 Value *AllChecks = Builder.CreateAnd(Checks);
798 auto *OldCond = Guard->getOperand(0);
799 Guard->setOperand(0, AllChecks);
800 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
802 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
803 return true;
806 bool LoopPredication::widenWidenableBranchGuardConditions(
807 BranchInst *BI, SCEVExpander &Expander) {
808 assert(isGuardAsWidenableBranch(BI) && "Must be!");
809 LLVM_DEBUG(dbgs() << "Processing guard:\n");
810 LLVM_DEBUG(BI->dump());
812 TotalConsidered++;
813 SmallVector<Value *, 4> Checks;
814 unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
815 Expander, BI);
816 if (NumWidened == 0)
817 return false;
819 TotalWidened += NumWidened;
821 // Emit the new guard condition
822 IRBuilder<> Builder(findInsertPt(BI, Checks));
823 Value *AllChecks = Builder.CreateAnd(Checks);
824 auto *OldCond = BI->getCondition();
825 BI->setCondition(AllChecks);
826 assert(isGuardAsWidenableBranch(BI) &&
827 "Stopped being a guard after transform?");
828 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
830 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
831 return true;
834 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
835 using namespace PatternMatch;
837 BasicBlock *LoopLatch = L->getLoopLatch();
838 if (!LoopLatch) {
839 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
840 return None;
843 auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
844 if (!BI || !BI->isConditional()) {
845 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
846 return None;
848 BasicBlock *TrueDest = BI->getSuccessor(0);
849 assert(
850 (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
851 "One of the latch's destinations must be the header");
853 auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
854 if (!ICI) {
855 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
856 return None;
858 auto Result = parseLoopICmp(ICI);
859 if (!Result) {
860 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
861 return None;
864 if (TrueDest != L->getHeader())
865 Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
867 // Check affine first, so if it's not we don't try to compute the step
868 // recurrence.
869 if (!Result->IV->isAffine()) {
870 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
871 return None;
874 auto *Step = Result->IV->getStepRecurrence(*SE);
875 if (!isSupportedStep(Step)) {
876 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
877 return None;
880 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
881 if (Step->isOne()) {
882 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
883 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
884 } else {
885 assert(Step->isAllOnesValue() && "Step should be -1!");
886 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
887 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
891 normalizePredicate(SE, L, *Result);
892 if (IsUnsupportedPredicate(Step, Result->Pred)) {
893 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
894 << ")!\n");
895 return None;
898 return Result;
902 bool LoopPredication::isLoopProfitableToPredicate() {
903 if (SkipProfitabilityChecks || !BPI)
904 return true;
906 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
907 L->getExitEdges(ExitEdges);
908 // If there is only one exiting edge in the loop, it is always profitable to
909 // predicate the loop.
910 if (ExitEdges.size() == 1)
911 return true;
913 // Calculate the exiting probabilities of all exiting edges from the loop,
914 // starting with the LatchExitProbability.
915 // Heuristic for profitability: If any of the exiting blocks' probability of
916 // exiting the loop is larger than exiting through the latch block, it's not
917 // profitable to predicate the loop.
918 auto *LatchBlock = L->getLoopLatch();
919 assert(LatchBlock && "Should have a single latch at this point!");
920 auto *LatchTerm = LatchBlock->getTerminator();
921 assert(LatchTerm->getNumSuccessors() == 2 &&
922 "expected to be an exiting block with 2 succs!");
923 unsigned LatchBrExitIdx =
924 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
925 BranchProbability LatchExitProbability =
926 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
928 // Protect against degenerate inputs provided by the user. Providing a value
929 // less than one, can invert the definition of profitable loop predication.
930 float ScaleFactor = LatchExitProbabilityScale;
931 if (ScaleFactor < 1) {
932 LLVM_DEBUG(
933 dbgs()
934 << "Ignored user setting for loop-predication-latch-probability-scale: "
935 << LatchExitProbabilityScale << "\n");
936 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
937 ScaleFactor = 1.0;
939 const auto LatchProbabilityThreshold =
940 LatchExitProbability * ScaleFactor;
942 for (const auto &ExitEdge : ExitEdges) {
943 BranchProbability ExitingBlockProbability =
944 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
945 // Some exiting edge has higher probability than the latch exiting edge.
946 // No longer profitable to predicate.
947 if (ExitingBlockProbability > LatchProbabilityThreshold)
948 return false;
950 // Using BPI, we have concluded that the most probable way to exit from the
951 // loop is through the latch (or there's no profile information and all
952 // exits are equally likely).
953 return true;
956 bool LoopPredication::runOnLoop(Loop *Loop) {
957 L = Loop;
959 LLVM_DEBUG(dbgs() << "Analyzing ");
960 LLVM_DEBUG(L->dump());
962 Module *M = L->getHeader()->getModule();
964 // There is nothing to do if the module doesn't use guards
965 auto *GuardDecl =
966 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
967 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
968 auto *WCDecl = M->getFunction(
969 Intrinsic::getName(Intrinsic::experimental_widenable_condition));
970 bool HasWidenableConditions =
971 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
972 if (!HasIntrinsicGuards && !HasWidenableConditions)
973 return false;
975 DL = &M->getDataLayout();
977 Preheader = L->getLoopPreheader();
978 if (!Preheader)
979 return false;
981 auto LatchCheckOpt = parseLoopLatchICmp();
982 if (!LatchCheckOpt)
983 return false;
984 LatchCheck = *LatchCheckOpt;
986 LLVM_DEBUG(dbgs() << "Latch check:\n");
987 LLVM_DEBUG(LatchCheck.dump());
989 if (!isLoopProfitableToPredicate()) {
990 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
991 return false;
993 // Collect all the guards into a vector and process later, so as not
994 // to invalidate the instruction iterator.
995 SmallVector<IntrinsicInst *, 4> Guards;
996 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
997 for (const auto BB : L->blocks()) {
998 for (auto &I : *BB)
999 if (isGuard(&I))
1000 Guards.push_back(cast<IntrinsicInst>(&I));
1001 if (PredicateWidenableBranchGuards &&
1002 isGuardAsWidenableBranch(BB->getTerminator()))
1003 GuardsAsWidenableBranches.push_back(
1004 cast<BranchInst>(BB->getTerminator()));
1007 if (Guards.empty() && GuardsAsWidenableBranches.empty())
1008 return false;
1010 SCEVExpander Expander(*SE, *DL, "loop-predication");
1012 bool Changed = false;
1013 for (auto *Guard : Guards)
1014 Changed |= widenGuardConditions(Guard, Expander);
1015 for (auto *Guard : GuardsAsWidenableBranches)
1016 Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1018 return Changed;