[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Scalar / LoopSink.cpp
blob65e0dee0225ae0adff5d7dce9a71f92c9c78da91
1 //===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass does the inverse transformation of what LICM does.
10 // It traverses all of the instructions in the loop's preheader and sinks
11 // them to the loop body where frequency is lower than the loop's preheader.
12 // This pass is a reverse-transformation of LICM. It differs from the Sink
13 // pass in the following ways:
15 // * It only handles sinking of instructions from the loop's preheader to the
16 // loop's body
17 // * It uses alias set tracker to get more accurate alias info
18 // * It uses block frequency info to find the optimal sinking locations
20 // Overall algorithm:
22 // For I in Preheader:
23 // InsertBBs = BBs that uses I
24 // For BB in sorted(LoopBBs):
25 // DomBBs = BBs in InsertBBs that are dominated by BB
26 // if freq(DomBBs) > freq(BB)
27 // InsertBBs = UseBBs - DomBBs + BB
28 // For BB in InsertBBs:
29 // Insert I at BB's beginning
31 //===----------------------------------------------------------------------===//
33 #include "llvm/Transforms/Scalar/LoopSink.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AliasSetTracker.h"
37 #include "llvm/Analysis/BasicAliasAnalysis.h"
38 #include "llvm/Analysis/BlockFrequencyInfo.h"
39 #include "llvm/Analysis/Loads.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/LoopPass.h"
42 #include "llvm/Analysis/ScalarEvolution.h"
43 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Transforms/Scalar.h"
51 #include "llvm/Transforms/Scalar/LoopPassManager.h"
52 #include "llvm/Transforms/Utils/LoopUtils.h"
53 using namespace llvm;
55 #define DEBUG_TYPE "loopsink"
57 STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
58 STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
60 static cl::opt<unsigned> SinkFrequencyPercentThreshold(
61 "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
62 cl::desc("Do not sink instructions that require cloning unless they "
63 "execute less than this percent of the time."));
65 static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
66 "max-uses-for-sinking", cl::Hidden, cl::init(30),
67 cl::desc("Do not sink instructions that have too many uses."));
69 /// Return adjusted total frequency of \p BBs.
70 ///
71 /// * If there is only one BB, sinking instruction will not introduce code
72 /// size increase. Thus there is no need to adjust the frequency.
73 /// * If there are more than one BB, sinking would lead to code size increase.
74 /// In this case, we add some "tax" to the total frequency to make it harder
75 /// to sink. E.g.
76 /// Freq(Preheader) = 100
77 /// Freq(BBs) = sum(50, 49) = 99
78 /// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
79 /// BBs as the difference is too small to justify the code size increase.
80 /// To model this, The adjusted Freq(BBs) will be:
81 /// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
82 static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
83 BlockFrequencyInfo &BFI) {
84 BlockFrequency T = 0;
85 for (BasicBlock *B : BBs)
86 T += BFI.getBlockFreq(B);
87 if (BBs.size() > 1)
88 T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
89 return T;
92 /// Return a set of basic blocks to insert sinked instructions.
93 ///
94 /// The returned set of basic blocks (BBsToSinkInto) should satisfy:
95 ///
96 /// * Inside the loop \p L
97 /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
98 /// that domintates the UseBB
99 /// * Has minimum total frequency that is no greater than preheader frequency
101 /// The purpose of the function is to find the optimal sinking points to
102 /// minimize execution cost, which is defined as "sum of frequency of
103 /// BBsToSinkInto".
104 /// As a result, the returned BBsToSinkInto needs to have minimum total
105 /// frequency.
106 /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
107 /// frequency, the optimal solution is not sinking (return empty set).
109 /// \p ColdLoopBBs is used to help find the optimal sinking locations.
110 /// It stores a list of BBs that is:
112 /// * Inside the loop \p L
113 /// * Has a frequency no larger than the loop's preheader
114 /// * Sorted by BB frequency
116 /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
117 /// To avoid expensive computation, we cap the maximum UseBBs.size() in its
118 /// caller.
119 static SmallPtrSet<BasicBlock *, 2>
120 findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
121 const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
122 DominatorTree &DT, BlockFrequencyInfo &BFI) {
123 SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
124 if (UseBBs.size() == 0)
125 return BBsToSinkInto;
127 BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
128 SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
130 // For every iteration:
131 // * Pick the ColdestBB from ColdLoopBBs
132 // * Find the set BBsDominatedByColdestBB that satisfy:
133 // - BBsDominatedByColdestBB is a subset of BBsToSinkInto
134 // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
135 // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
136 // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
137 // BBsToSinkInto
138 for (BasicBlock *ColdestBB : ColdLoopBBs) {
139 BBsDominatedByColdestBB.clear();
140 for (BasicBlock *SinkedBB : BBsToSinkInto)
141 if (DT.dominates(ColdestBB, SinkedBB))
142 BBsDominatedByColdestBB.insert(SinkedBB);
143 if (BBsDominatedByColdestBB.size() == 0)
144 continue;
145 if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
146 BFI.getBlockFreq(ColdestBB)) {
147 for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
148 BBsToSinkInto.erase(DominatedBB);
150 BBsToSinkInto.insert(ColdestBB);
154 // Can't sink into blocks that have no valid insertion point.
155 for (BasicBlock *BB : BBsToSinkInto) {
156 if (BB->getFirstInsertionPt() == BB->end()) {
157 BBsToSinkInto.clear();
158 break;
162 // If the total frequency of BBsToSinkInto is larger than preheader frequency,
163 // do not sink.
164 if (adjustedSumFreq(BBsToSinkInto, BFI) >
165 BFI.getBlockFreq(L.getLoopPreheader()))
166 BBsToSinkInto.clear();
167 return BBsToSinkInto;
170 // Sinks \p I from the loop \p L's preheader to its uses. Returns true if
171 // sinking is successful.
172 // \p LoopBlockNumber is used to sort the insertion blocks to ensure
173 // determinism.
174 static bool sinkInstruction(Loop &L, Instruction &I,
175 const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
176 const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber,
177 LoopInfo &LI, DominatorTree &DT,
178 BlockFrequencyInfo &BFI) {
179 // Compute the set of blocks in loop L which contain a use of I.
180 SmallPtrSet<BasicBlock *, 2> BBs;
181 for (auto &U : I.uses()) {
182 Instruction *UI = cast<Instruction>(U.getUser());
183 // We cannot sink I to PHI-uses.
184 if (dyn_cast<PHINode>(UI))
185 return false;
186 // We cannot sink I if it has uses outside of the loop.
187 if (!L.contains(LI.getLoopFor(UI->getParent())))
188 return false;
189 BBs.insert(UI->getParent());
192 // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
193 // BBs.size() to avoid expensive computation.
194 // FIXME: Handle code size growth for min_size and opt_size.
195 if (BBs.size() > MaxNumberOfUseBBsForSinking)
196 return false;
198 // Find the set of BBs that we should insert a copy of I.
199 SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
200 findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
201 if (BBsToSinkInto.empty())
202 return false;
204 // Return if any of the candidate blocks to sink into is non-cold.
205 if (BBsToSinkInto.size() > 1) {
206 for (auto *BB : BBsToSinkInto)
207 if (!LoopBlockNumber.count(BB))
208 return false;
211 // Copy the final BBs into a vector and sort them using the total ordering
212 // of the loop block numbers as iterating the set doesn't give a useful
213 // order. No need to stable sort as the block numbers are a total ordering.
214 SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
215 SortedBBsToSinkInto.insert(SortedBBsToSinkInto.begin(), BBsToSinkInto.begin(),
216 BBsToSinkInto.end());
217 llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) {
218 return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second;
221 BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
222 // FIXME: Optimize the efficiency for cloned value replacement. The current
223 // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
224 for (BasicBlock *N : makeArrayRef(SortedBBsToSinkInto).drop_front(1)) {
225 assert(LoopBlockNumber.find(N)->second >
226 LoopBlockNumber.find(MoveBB)->second &&
227 "BBs not sorted!");
228 // Clone I and replace its uses.
229 Instruction *IC = I.clone();
230 IC->setName(I.getName());
231 IC->insertBefore(&*N->getFirstInsertionPt());
232 // Replaces uses of I with IC in N
233 I.replaceUsesWithIf(IC, [N](Use &U) {
234 return cast<Instruction>(U.getUser())->getParent() == N;
236 // Replaces uses of I with IC in blocks dominated by N
237 replaceDominatedUsesWith(&I, IC, DT, N);
238 LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
239 << '\n');
240 NumLoopSunkCloned++;
242 LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
243 NumLoopSunk++;
244 I.moveBefore(&*MoveBB->getFirstInsertionPt());
246 return true;
249 /// Sinks instructions from loop's preheader to the loop body if the
250 /// sum frequency of inserted copy is smaller than preheader's frequency.
251 static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
252 DominatorTree &DT,
253 BlockFrequencyInfo &BFI,
254 ScalarEvolution *SE) {
255 BasicBlock *Preheader = L.getLoopPreheader();
256 if (!Preheader)
257 return false;
259 // Enable LoopSink only when runtime profile is available.
260 // With static profile, the sinking decision may be sub-optimal.
261 if (!Preheader->getParent()->hasProfileData())
262 return false;
264 const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
265 // If there are no basic blocks with lower frequency than the preheader then
266 // we can avoid the detailed analysis as we will never find profitable sinking
267 // opportunities.
268 if (all_of(L.blocks(), [&](const BasicBlock *BB) {
269 return BFI.getBlockFreq(BB) > PreheaderFreq;
271 return false;
273 bool Changed = false;
274 AliasSetTracker CurAST(AA);
276 // Compute alias set.
277 for (BasicBlock *BB : L.blocks())
278 CurAST.add(*BB);
279 CurAST.add(*Preheader);
281 // Sort loop's basic blocks by frequency
282 SmallVector<BasicBlock *, 10> ColdLoopBBs;
283 SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
284 int i = 0;
285 for (BasicBlock *B : L.blocks())
286 if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
287 ColdLoopBBs.push_back(B);
288 LoopBlockNumber[B] = ++i;
290 llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) {
291 return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
294 // Traverse preheader's instructions in reverse order becaue if A depends
295 // on B (A appears after B), A needs to be sinked first before B can be
296 // sinked.
297 for (auto II = Preheader->rbegin(), E = Preheader->rend(); II != E;) {
298 Instruction *I = &*II++;
299 // No need to check for instruction's operands are loop invariant.
300 assert(L.hasLoopInvariantOperands(I) &&
301 "Insts in a loop's preheader should have loop invariant operands!");
302 if (!canSinkOrHoistInst(*I, &AA, &DT, &L, &CurAST, nullptr, false))
303 continue;
304 if (sinkInstruction(L, *I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI))
305 Changed = true;
308 if (Changed && SE)
309 SE->forgetLoopDispositions(&L);
310 return Changed;
313 PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
314 LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
315 // Nothing to do if there are no loops.
316 if (LI.empty())
317 return PreservedAnalyses::all();
319 AAResults &AA = FAM.getResult<AAManager>(F);
320 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
321 BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
323 // We want to do a postorder walk over the loops. Since loops are a tree this
324 // is equivalent to a reversed preorder walk and preorder is easy to compute
325 // without recursion. Since we reverse the preorder, we will visit siblings
326 // in reverse program order. This isn't expected to matter at all but is more
327 // consistent with sinking algorithms which generally work bottom-up.
328 SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
330 bool Changed = false;
331 do {
332 Loop &L = *PreorderLoops.pop_back_val();
334 // Note that we don't pass SCEV here because it is only used to invalidate
335 // loops in SCEV and we don't preserve (or request) SCEV at all making that
336 // unnecessary.
337 Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI,
338 /*ScalarEvolution*/ nullptr);
339 } while (!PreorderLoops.empty());
341 if (!Changed)
342 return PreservedAnalyses::all();
344 PreservedAnalyses PA;
345 PA.preserveSet<CFGAnalyses>();
346 return PA;
349 namespace {
350 struct LegacyLoopSinkPass : public LoopPass {
351 static char ID;
352 LegacyLoopSinkPass() : LoopPass(ID) {
353 initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
356 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
357 if (skipLoop(L))
358 return false;
360 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
361 return sinkLoopInvariantInstructions(
362 *L, getAnalysis<AAResultsWrapperPass>().getAAResults(),
363 getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
364 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
365 getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
366 SE ? &SE->getSE() : nullptr);
369 void getAnalysisUsage(AnalysisUsage &AU) const override {
370 AU.setPreservesCFG();
371 AU.addRequired<BlockFrequencyInfoWrapperPass>();
372 getLoopAnalysisUsage(AU);
377 char LegacyLoopSinkPass::ID = 0;
378 INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
379 false)
380 INITIALIZE_PASS_DEPENDENCY(LoopPass)
381 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
382 INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
384 Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }