[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Scalar / LoopStrengthReduce.cpp
blob7f119175c4a820ea75c4b83ba46564d793a2e5e2
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
23 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 // ...
25 // %i.next = add %i, 1
26 // %c = icmp eq %i.next, %n
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
35 // TODO: More sophistication in the way Formulae are generated and filtered.
37 // TODO: Handle multiple loops at a time.
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 // of a GlobalValue?
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 // smaller encoding (on x86 at least).
45 // TODO: When a negated register is used by an add (such as in a list of
46 // multiple base registers, or as the increment expression in an addrec),
47 // we may not actually need both reg and (-1 * reg) in registers; the
48 // negation can be implemented by using a sub instead of an add. The
49 // lack of support for taking this into consideration when making
50 // register pressure decisions is partly worked around by the "Special"
51 // use kind.
53 //===----------------------------------------------------------------------===//
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/ScalarEvolution.h"
73 #include "llvm/Analysis/ScalarEvolutionExpander.h"
74 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
75 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
76 #include "llvm/Analysis/TargetTransformInfo.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Config/llvm-config.h"
79 #include "llvm/IR/BasicBlock.h"
80 #include "llvm/IR/Constant.h"
81 #include "llvm/IR/Constants.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/GlobalValue.h"
85 #include "llvm/IR/IRBuilder.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/OperandTraits.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstdlib>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <map>
120 #include <utility>
122 using namespace llvm;
124 #define DEBUG_TYPE "loop-reduce"
126 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
127 /// bail out. This threshold is far beyond the number of users that LSR can
128 /// conceivably solve, so it should not affect generated code, but catches the
129 /// worst cases before LSR burns too much compile time and stack space.
130 static const unsigned MaxIVUsers = 200;
132 // Temporary flag to cleanup congruent phis after LSR phi expansion.
133 // It's currently disabled until we can determine whether it's truly useful or
134 // not. The flag should be removed after the v3.0 release.
135 // This is now needed for ivchains.
136 static cl::opt<bool> EnablePhiElim(
137 "enable-lsr-phielim", cl::Hidden, cl::init(true),
138 cl::desc("Enable LSR phi elimination"));
140 // The flag adds instruction count to solutions cost comparision.
141 static cl::opt<bool> InsnsCost(
142 "lsr-insns-cost", cl::Hidden, cl::init(true),
143 cl::desc("Add instruction count to a LSR cost model"));
145 // Flag to choose how to narrow complex lsr solution
146 static cl::opt<bool> LSRExpNarrow(
147 "lsr-exp-narrow", cl::Hidden, cl::init(false),
148 cl::desc("Narrow LSR complex solution using"
149 " expectation of registers number"));
151 // Flag to narrow search space by filtering non-optimal formulae with
152 // the same ScaledReg and Scale.
153 static cl::opt<bool> FilterSameScaledReg(
154 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
155 cl::desc("Narrow LSR search space by filtering non-optimal formulae"
156 " with the same ScaledReg and Scale"));
158 static cl::opt<bool> EnableBackedgeIndexing(
159 "lsr-backedge-indexing", cl::Hidden, cl::init(true),
160 cl::desc("Enable the generation of cross iteration indexed memops"));
162 static cl::opt<unsigned> ComplexityLimit(
163 "lsr-complexity-limit", cl::Hidden,
164 cl::init(std::numeric_limits<uint16_t>::max()),
165 cl::desc("LSR search space complexity limit"));
167 static cl::opt<unsigned> SetupCostDepthLimit(
168 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
169 cl::desc("The limit on recursion depth for LSRs setup cost"));
171 #ifndef NDEBUG
172 // Stress test IV chain generation.
173 static cl::opt<bool> StressIVChain(
174 "stress-ivchain", cl::Hidden, cl::init(false),
175 cl::desc("Stress test LSR IV chains"));
176 #else
177 static bool StressIVChain = false;
178 #endif
180 namespace {
182 struct MemAccessTy {
183 /// Used in situations where the accessed memory type is unknown.
184 static const unsigned UnknownAddressSpace =
185 std::numeric_limits<unsigned>::max();
187 Type *MemTy = nullptr;
188 unsigned AddrSpace = UnknownAddressSpace;
190 MemAccessTy() = default;
191 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
193 bool operator==(MemAccessTy Other) const {
194 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
197 bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
199 static MemAccessTy getUnknown(LLVMContext &Ctx,
200 unsigned AS = UnknownAddressSpace) {
201 return MemAccessTy(Type::getVoidTy(Ctx), AS);
204 Type *getType() { return MemTy; }
207 /// This class holds data which is used to order reuse candidates.
208 class RegSortData {
209 public:
210 /// This represents the set of LSRUse indices which reference
211 /// a particular register.
212 SmallBitVector UsedByIndices;
214 void print(raw_ostream &OS) const;
215 void dump() const;
218 } // end anonymous namespace
220 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
221 void RegSortData::print(raw_ostream &OS) const {
222 OS << "[NumUses=" << UsedByIndices.count() << ']';
225 LLVM_DUMP_METHOD void RegSortData::dump() const {
226 print(errs()); errs() << '\n';
228 #endif
230 namespace {
232 /// Map register candidates to information about how they are used.
233 class RegUseTracker {
234 using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
236 RegUsesTy RegUsesMap;
237 SmallVector<const SCEV *, 16> RegSequence;
239 public:
240 void countRegister(const SCEV *Reg, size_t LUIdx);
241 void dropRegister(const SCEV *Reg, size_t LUIdx);
242 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
244 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
246 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
248 void clear();
250 using iterator = SmallVectorImpl<const SCEV *>::iterator;
251 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
253 iterator begin() { return RegSequence.begin(); }
254 iterator end() { return RegSequence.end(); }
255 const_iterator begin() const { return RegSequence.begin(); }
256 const_iterator end() const { return RegSequence.end(); }
259 } // end anonymous namespace
261 void
262 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
263 std::pair<RegUsesTy::iterator, bool> Pair =
264 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
265 RegSortData &RSD = Pair.first->second;
266 if (Pair.second)
267 RegSequence.push_back(Reg);
268 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
269 RSD.UsedByIndices.set(LUIdx);
272 void
273 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
274 RegUsesTy::iterator It = RegUsesMap.find(Reg);
275 assert(It != RegUsesMap.end());
276 RegSortData &RSD = It->second;
277 assert(RSD.UsedByIndices.size() > LUIdx);
278 RSD.UsedByIndices.reset(LUIdx);
281 void
282 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
283 assert(LUIdx <= LastLUIdx);
285 // Update RegUses. The data structure is not optimized for this purpose;
286 // we must iterate through it and update each of the bit vectors.
287 for (auto &Pair : RegUsesMap) {
288 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
289 if (LUIdx < UsedByIndices.size())
290 UsedByIndices[LUIdx] =
291 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
292 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
296 bool
297 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
298 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
299 if (I == RegUsesMap.end())
300 return false;
301 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
302 int i = UsedByIndices.find_first();
303 if (i == -1) return false;
304 if ((size_t)i != LUIdx) return true;
305 return UsedByIndices.find_next(i) != -1;
308 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
309 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
310 assert(I != RegUsesMap.end() && "Unknown register!");
311 return I->second.UsedByIndices;
314 void RegUseTracker::clear() {
315 RegUsesMap.clear();
316 RegSequence.clear();
319 namespace {
321 /// This class holds information that describes a formula for computing
322 /// satisfying a use. It may include broken-out immediates and scaled registers.
323 struct Formula {
324 /// Global base address used for complex addressing.
325 GlobalValue *BaseGV = nullptr;
327 /// Base offset for complex addressing.
328 int64_t BaseOffset = 0;
330 /// Whether any complex addressing has a base register.
331 bool HasBaseReg = false;
333 /// The scale of any complex addressing.
334 int64_t Scale = 0;
336 /// The list of "base" registers for this use. When this is non-empty. The
337 /// canonical representation of a formula is
338 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
339 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
340 /// 3. The reg containing recurrent expr related with currect loop in the
341 /// formula should be put in the ScaledReg.
342 /// #1 enforces that the scaled register is always used when at least two
343 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
344 /// #2 enforces that 1 * reg is reg.
345 /// #3 ensures invariant regs with respect to current loop can be combined
346 /// together in LSR codegen.
347 /// This invariant can be temporarily broken while building a formula.
348 /// However, every formula inserted into the LSRInstance must be in canonical
349 /// form.
350 SmallVector<const SCEV *, 4> BaseRegs;
352 /// The 'scaled' register for this use. This should be non-null when Scale is
353 /// not zero.
354 const SCEV *ScaledReg = nullptr;
356 /// An additional constant offset which added near the use. This requires a
357 /// temporary register, but the offset itself can live in an add immediate
358 /// field rather than a register.
359 int64_t UnfoldedOffset = 0;
361 Formula() = default;
363 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
365 bool isCanonical(const Loop &L) const;
367 void canonicalize(const Loop &L);
369 bool unscale();
371 bool hasZeroEnd() const;
373 size_t getNumRegs() const;
374 Type *getType() const;
376 void deleteBaseReg(const SCEV *&S);
378 bool referencesReg(const SCEV *S) const;
379 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
380 const RegUseTracker &RegUses) const;
382 void print(raw_ostream &OS) const;
383 void dump() const;
386 } // end anonymous namespace
388 /// Recursion helper for initialMatch.
389 static void DoInitialMatch(const SCEV *S, Loop *L,
390 SmallVectorImpl<const SCEV *> &Good,
391 SmallVectorImpl<const SCEV *> &Bad,
392 ScalarEvolution &SE) {
393 // Collect expressions which properly dominate the loop header.
394 if (SE.properlyDominates(S, L->getHeader())) {
395 Good.push_back(S);
396 return;
399 // Look at add operands.
400 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
401 for (const SCEV *S : Add->operands())
402 DoInitialMatch(S, L, Good, Bad, SE);
403 return;
406 // Look at addrec operands.
407 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
408 if (!AR->getStart()->isZero() && AR->isAffine()) {
409 DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
410 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
411 AR->getStepRecurrence(SE),
412 // FIXME: AR->getNoWrapFlags()
413 AR->getLoop(), SCEV::FlagAnyWrap),
414 L, Good, Bad, SE);
415 return;
418 // Handle a multiplication by -1 (negation) if it didn't fold.
419 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
420 if (Mul->getOperand(0)->isAllOnesValue()) {
421 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
422 const SCEV *NewMul = SE.getMulExpr(Ops);
424 SmallVector<const SCEV *, 4> MyGood;
425 SmallVector<const SCEV *, 4> MyBad;
426 DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
427 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
428 SE.getEffectiveSCEVType(NewMul->getType())));
429 for (const SCEV *S : MyGood)
430 Good.push_back(SE.getMulExpr(NegOne, S));
431 for (const SCEV *S : MyBad)
432 Bad.push_back(SE.getMulExpr(NegOne, S));
433 return;
436 // Ok, we can't do anything interesting. Just stuff the whole thing into a
437 // register and hope for the best.
438 Bad.push_back(S);
441 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
442 /// all loop-invariant and loop-computable values in a single base register.
443 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
444 SmallVector<const SCEV *, 4> Good;
445 SmallVector<const SCEV *, 4> Bad;
446 DoInitialMatch(S, L, Good, Bad, SE);
447 if (!Good.empty()) {
448 const SCEV *Sum = SE.getAddExpr(Good);
449 if (!Sum->isZero())
450 BaseRegs.push_back(Sum);
451 HasBaseReg = true;
453 if (!Bad.empty()) {
454 const SCEV *Sum = SE.getAddExpr(Bad);
455 if (!Sum->isZero())
456 BaseRegs.push_back(Sum);
457 HasBaseReg = true;
459 canonicalize(*L);
462 /// Check whether or not this formula satisfies the canonical
463 /// representation.
464 /// \see Formula::BaseRegs.
465 bool Formula::isCanonical(const Loop &L) const {
466 if (!ScaledReg)
467 return BaseRegs.size() <= 1;
469 if (Scale != 1)
470 return true;
472 if (Scale == 1 && BaseRegs.empty())
473 return false;
475 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
476 if (SAR && SAR->getLoop() == &L)
477 return true;
479 // If ScaledReg is not a recurrent expr, or it is but its loop is not current
480 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
481 // loop, we want to swap the reg in BaseRegs with ScaledReg.
482 auto I =
483 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
484 return isa<const SCEVAddRecExpr>(S) &&
485 (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
487 return I == BaseRegs.end();
490 /// Helper method to morph a formula into its canonical representation.
491 /// \see Formula::BaseRegs.
492 /// Every formula having more than one base register, must use the ScaledReg
493 /// field. Otherwise, we would have to do special cases everywhere in LSR
494 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
495 /// On the other hand, 1*reg should be canonicalized into reg.
496 void Formula::canonicalize(const Loop &L) {
497 if (isCanonical(L))
498 return;
499 // So far we did not need this case. This is easy to implement but it is
500 // useless to maintain dead code. Beside it could hurt compile time.
501 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
503 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
504 if (!ScaledReg) {
505 ScaledReg = BaseRegs.back();
506 BaseRegs.pop_back();
507 Scale = 1;
510 // If ScaledReg is an invariant with respect to L, find the reg from
511 // BaseRegs containing the recurrent expr related with Loop L. Swap the
512 // reg with ScaledReg.
513 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
514 if (!SAR || SAR->getLoop() != &L) {
515 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
516 [&](const SCEV *S) {
517 return isa<const SCEVAddRecExpr>(S) &&
518 (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
520 if (I != BaseRegs.end())
521 std::swap(ScaledReg, *I);
525 /// Get rid of the scale in the formula.
526 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
527 /// \return true if it was possible to get rid of the scale, false otherwise.
528 /// \note After this operation the formula may not be in the canonical form.
529 bool Formula::unscale() {
530 if (Scale != 1)
531 return false;
532 Scale = 0;
533 BaseRegs.push_back(ScaledReg);
534 ScaledReg = nullptr;
535 return true;
538 bool Formula::hasZeroEnd() const {
539 if (UnfoldedOffset || BaseOffset)
540 return false;
541 if (BaseRegs.size() != 1 || ScaledReg)
542 return false;
543 return true;
546 /// Return the total number of register operands used by this formula. This does
547 /// not include register uses implied by non-constant addrec strides.
548 size_t Formula::getNumRegs() const {
549 return !!ScaledReg + BaseRegs.size();
552 /// Return the type of this formula, if it has one, or null otherwise. This type
553 /// is meaningless except for the bit size.
554 Type *Formula::getType() const {
555 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
556 ScaledReg ? ScaledReg->getType() :
557 BaseGV ? BaseGV->getType() :
558 nullptr;
561 /// Delete the given base reg from the BaseRegs list.
562 void Formula::deleteBaseReg(const SCEV *&S) {
563 if (&S != &BaseRegs.back())
564 std::swap(S, BaseRegs.back());
565 BaseRegs.pop_back();
568 /// Test if this formula references the given register.
569 bool Formula::referencesReg(const SCEV *S) const {
570 return S == ScaledReg || is_contained(BaseRegs, S);
573 /// Test whether this formula uses registers which are used by uses other than
574 /// the use with the given index.
575 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
576 const RegUseTracker &RegUses) const {
577 if (ScaledReg)
578 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
579 return true;
580 for (const SCEV *BaseReg : BaseRegs)
581 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
582 return true;
583 return false;
586 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
587 void Formula::print(raw_ostream &OS) const {
588 bool First = true;
589 if (BaseGV) {
590 if (!First) OS << " + "; else First = false;
591 BaseGV->printAsOperand(OS, /*PrintType=*/false);
593 if (BaseOffset != 0) {
594 if (!First) OS << " + "; else First = false;
595 OS << BaseOffset;
597 for (const SCEV *BaseReg : BaseRegs) {
598 if (!First) OS << " + "; else First = false;
599 OS << "reg(" << *BaseReg << ')';
601 if (HasBaseReg && BaseRegs.empty()) {
602 if (!First) OS << " + "; else First = false;
603 OS << "**error: HasBaseReg**";
604 } else if (!HasBaseReg && !BaseRegs.empty()) {
605 if (!First) OS << " + "; else First = false;
606 OS << "**error: !HasBaseReg**";
608 if (Scale != 0) {
609 if (!First) OS << " + "; else First = false;
610 OS << Scale << "*reg(";
611 if (ScaledReg)
612 OS << *ScaledReg;
613 else
614 OS << "<unknown>";
615 OS << ')';
617 if (UnfoldedOffset != 0) {
618 if (!First) OS << " + ";
619 OS << "imm(" << UnfoldedOffset << ')';
623 LLVM_DUMP_METHOD void Formula::dump() const {
624 print(errs()); errs() << '\n';
626 #endif
628 /// Return true if the given addrec can be sign-extended without changing its
629 /// value.
630 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
631 Type *WideTy =
632 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
633 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
636 /// Return true if the given add can be sign-extended without changing its
637 /// value.
638 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
639 Type *WideTy =
640 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
641 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
644 /// Return true if the given mul can be sign-extended without changing its
645 /// value.
646 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
647 Type *WideTy =
648 IntegerType::get(SE.getContext(),
649 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
650 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
653 /// Return an expression for LHS /s RHS, if it can be determined and if the
654 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
655 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
656 /// the multiplication may overflow, which is useful when the result will be
657 /// used in a context where the most significant bits are ignored.
658 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
659 ScalarEvolution &SE,
660 bool IgnoreSignificantBits = false) {
661 // Handle the trivial case, which works for any SCEV type.
662 if (LHS == RHS)
663 return SE.getConstant(LHS->getType(), 1);
665 // Handle a few RHS special cases.
666 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
667 if (RC) {
668 const APInt &RA = RC->getAPInt();
669 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
670 // some folding.
671 if (RA.isAllOnesValue())
672 return SE.getMulExpr(LHS, RC);
673 // Handle x /s 1 as x.
674 if (RA == 1)
675 return LHS;
678 // Check for a division of a constant by a constant.
679 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
680 if (!RC)
681 return nullptr;
682 const APInt &LA = C->getAPInt();
683 const APInt &RA = RC->getAPInt();
684 if (LA.srem(RA) != 0)
685 return nullptr;
686 return SE.getConstant(LA.sdiv(RA));
689 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
690 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
691 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
692 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
693 IgnoreSignificantBits);
694 if (!Step) return nullptr;
695 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
696 IgnoreSignificantBits);
697 if (!Start) return nullptr;
698 // FlagNW is independent of the start value, step direction, and is
699 // preserved with smaller magnitude steps.
700 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
701 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
703 return nullptr;
706 // Distribute the sdiv over add operands, if the add doesn't overflow.
707 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
708 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
709 SmallVector<const SCEV *, 8> Ops;
710 for (const SCEV *S : Add->operands()) {
711 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
712 if (!Op) return nullptr;
713 Ops.push_back(Op);
715 return SE.getAddExpr(Ops);
717 return nullptr;
720 // Check for a multiply operand that we can pull RHS out of.
721 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
722 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
723 SmallVector<const SCEV *, 4> Ops;
724 bool Found = false;
725 for (const SCEV *S : Mul->operands()) {
726 if (!Found)
727 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
728 IgnoreSignificantBits)) {
729 S = Q;
730 Found = true;
732 Ops.push_back(S);
734 return Found ? SE.getMulExpr(Ops) : nullptr;
736 return nullptr;
739 // Otherwise we don't know.
740 return nullptr;
743 /// If S involves the addition of a constant integer value, return that integer
744 /// value, and mutate S to point to a new SCEV with that value excluded.
745 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
746 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
747 if (C->getAPInt().getMinSignedBits() <= 64) {
748 S = SE.getConstant(C->getType(), 0);
749 return C->getValue()->getSExtValue();
751 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
752 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
753 int64_t Result = ExtractImmediate(NewOps.front(), SE);
754 if (Result != 0)
755 S = SE.getAddExpr(NewOps);
756 return Result;
757 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
758 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
759 int64_t Result = ExtractImmediate(NewOps.front(), SE);
760 if (Result != 0)
761 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
762 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
763 SCEV::FlagAnyWrap);
764 return Result;
766 return 0;
769 /// If S involves the addition of a GlobalValue address, return that symbol, and
770 /// mutate S to point to a new SCEV with that value excluded.
771 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
772 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
773 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
774 S = SE.getConstant(GV->getType(), 0);
775 return GV;
777 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
778 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
779 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
780 if (Result)
781 S = SE.getAddExpr(NewOps);
782 return Result;
783 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
784 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
785 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
786 if (Result)
787 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
788 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
789 SCEV::FlagAnyWrap);
790 return Result;
792 return nullptr;
795 /// Returns true if the specified instruction is using the specified value as an
796 /// address.
797 static bool isAddressUse(const TargetTransformInfo &TTI,
798 Instruction *Inst, Value *OperandVal) {
799 bool isAddress = isa<LoadInst>(Inst);
800 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
801 if (SI->getPointerOperand() == OperandVal)
802 isAddress = true;
803 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
804 // Addressing modes can also be folded into prefetches and a variety
805 // of intrinsics.
806 switch (II->getIntrinsicID()) {
807 case Intrinsic::memset:
808 case Intrinsic::prefetch:
809 if (II->getArgOperand(0) == OperandVal)
810 isAddress = true;
811 break;
812 case Intrinsic::memmove:
813 case Intrinsic::memcpy:
814 if (II->getArgOperand(0) == OperandVal ||
815 II->getArgOperand(1) == OperandVal)
816 isAddress = true;
817 break;
818 default: {
819 MemIntrinsicInfo IntrInfo;
820 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
821 if (IntrInfo.PtrVal == OperandVal)
822 isAddress = true;
826 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
827 if (RMW->getPointerOperand() == OperandVal)
828 isAddress = true;
829 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
830 if (CmpX->getPointerOperand() == OperandVal)
831 isAddress = true;
833 return isAddress;
836 /// Return the type of the memory being accessed.
837 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
838 Instruction *Inst, Value *OperandVal) {
839 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
840 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
841 AccessTy.MemTy = SI->getOperand(0)->getType();
842 AccessTy.AddrSpace = SI->getPointerAddressSpace();
843 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
844 AccessTy.AddrSpace = LI->getPointerAddressSpace();
845 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
846 AccessTy.AddrSpace = RMW->getPointerAddressSpace();
847 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
848 AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
849 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
850 switch (II->getIntrinsicID()) {
851 case Intrinsic::prefetch:
852 case Intrinsic::memset:
853 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
854 AccessTy.MemTy = OperandVal->getType();
855 break;
856 case Intrinsic::memmove:
857 case Intrinsic::memcpy:
858 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
859 AccessTy.MemTy = OperandVal->getType();
860 break;
861 default: {
862 MemIntrinsicInfo IntrInfo;
863 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
864 AccessTy.AddrSpace
865 = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
868 break;
873 // All pointers have the same requirements, so canonicalize them to an
874 // arbitrary pointer type to minimize variation.
875 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
876 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
877 PTy->getAddressSpace());
879 return AccessTy;
882 /// Return true if this AddRec is already a phi in its loop.
883 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
884 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
885 if (SE.isSCEVable(PN.getType()) &&
886 (SE.getEffectiveSCEVType(PN.getType()) ==
887 SE.getEffectiveSCEVType(AR->getType())) &&
888 SE.getSCEV(&PN) == AR)
889 return true;
891 return false;
894 /// Check if expanding this expression is likely to incur significant cost. This
895 /// is tricky because SCEV doesn't track which expressions are actually computed
896 /// by the current IR.
898 /// We currently allow expansion of IV increments that involve adds,
899 /// multiplication by constants, and AddRecs from existing phis.
901 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
902 /// obvious multiple of the UDivExpr.
903 static bool isHighCostExpansion(const SCEV *S,
904 SmallPtrSetImpl<const SCEV*> &Processed,
905 ScalarEvolution &SE) {
906 // Zero/One operand expressions
907 switch (S->getSCEVType()) {
908 case scUnknown:
909 case scConstant:
910 return false;
911 case scTruncate:
912 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
913 Processed, SE);
914 case scZeroExtend:
915 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
916 Processed, SE);
917 case scSignExtend:
918 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
919 Processed, SE);
922 if (!Processed.insert(S).second)
923 return false;
925 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
926 for (const SCEV *S : Add->operands()) {
927 if (isHighCostExpansion(S, Processed, SE))
928 return true;
930 return false;
933 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
934 if (Mul->getNumOperands() == 2) {
935 // Multiplication by a constant is ok
936 if (isa<SCEVConstant>(Mul->getOperand(0)))
937 return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
939 // If we have the value of one operand, check if an existing
940 // multiplication already generates this expression.
941 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
942 Value *UVal = U->getValue();
943 for (User *UR : UVal->users()) {
944 // If U is a constant, it may be used by a ConstantExpr.
945 Instruction *UI = dyn_cast<Instruction>(UR);
946 if (UI && UI->getOpcode() == Instruction::Mul &&
947 SE.isSCEVable(UI->getType())) {
948 return SE.getSCEV(UI) == Mul;
955 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
956 if (isExistingPhi(AR, SE))
957 return false;
960 // Fow now, consider any other type of expression (div/mul/min/max) high cost.
961 return true;
964 /// If any of the instructions in the specified set are trivially dead, delete
965 /// them and see if this makes any of their operands subsequently dead.
966 static bool
967 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
968 bool Changed = false;
970 while (!DeadInsts.empty()) {
971 Value *V = DeadInsts.pop_back_val();
972 Instruction *I = dyn_cast_or_null<Instruction>(V);
974 if (!I || !isInstructionTriviallyDead(I))
975 continue;
977 for (Use &O : I->operands())
978 if (Instruction *U = dyn_cast<Instruction>(O)) {
979 O = nullptr;
980 if (U->use_empty())
981 DeadInsts.emplace_back(U);
984 I->eraseFromParent();
985 Changed = true;
988 return Changed;
991 namespace {
993 class LSRUse;
995 } // end anonymous namespace
997 /// Check if the addressing mode defined by \p F is completely
998 /// folded in \p LU at isel time.
999 /// This includes address-mode folding and special icmp tricks.
1000 /// This function returns true if \p LU can accommodate what \p F
1001 /// defines and up to 1 base + 1 scaled + offset.
1002 /// In other words, if \p F has several base registers, this function may
1003 /// still return true. Therefore, users still need to account for
1004 /// additional base registers and/or unfolded offsets to derive an
1005 /// accurate cost model.
1006 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1007 const LSRUse &LU, const Formula &F);
1009 // Get the cost of the scaling factor used in F for LU.
1010 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1011 const LSRUse &LU, const Formula &F,
1012 const Loop &L);
1014 namespace {
1016 /// This class is used to measure and compare candidate formulae.
1017 class Cost {
1018 const Loop *L = nullptr;
1019 ScalarEvolution *SE = nullptr;
1020 const TargetTransformInfo *TTI = nullptr;
1021 TargetTransformInfo::LSRCost C;
1023 public:
1024 Cost() = delete;
1025 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1026 L(L), SE(&SE), TTI(&TTI) {
1027 C.Insns = 0;
1028 C.NumRegs = 0;
1029 C.AddRecCost = 0;
1030 C.NumIVMuls = 0;
1031 C.NumBaseAdds = 0;
1032 C.ImmCost = 0;
1033 C.SetupCost = 0;
1034 C.ScaleCost = 0;
1037 bool isLess(Cost &Other);
1039 void Lose();
1041 #ifndef NDEBUG
1042 // Once any of the metrics loses, they must all remain losers.
1043 bool isValid() {
1044 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1045 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1046 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1047 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1049 #endif
1051 bool isLoser() {
1052 assert(isValid() && "invalid cost");
1053 return C.NumRegs == ~0u;
1056 void RateFormula(const Formula &F,
1057 SmallPtrSetImpl<const SCEV *> &Regs,
1058 const DenseSet<const SCEV *> &VisitedRegs,
1059 const LSRUse &LU,
1060 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1062 void print(raw_ostream &OS) const;
1063 void dump() const;
1065 private:
1066 void RateRegister(const Formula &F, const SCEV *Reg,
1067 SmallPtrSetImpl<const SCEV *> &Regs);
1068 void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1069 SmallPtrSetImpl<const SCEV *> &Regs,
1070 SmallPtrSetImpl<const SCEV *> *LoserRegs);
1073 /// An operand value in an instruction which is to be replaced with some
1074 /// equivalent, possibly strength-reduced, replacement.
1075 struct LSRFixup {
1076 /// The instruction which will be updated.
1077 Instruction *UserInst = nullptr;
1079 /// The operand of the instruction which will be replaced. The operand may be
1080 /// used more than once; every instance will be replaced.
1081 Value *OperandValToReplace = nullptr;
1083 /// If this user is to use the post-incremented value of an induction
1084 /// variable, this set is non-empty and holds the loops associated with the
1085 /// induction variable.
1086 PostIncLoopSet PostIncLoops;
1088 /// A constant offset to be added to the LSRUse expression. This allows
1089 /// multiple fixups to share the same LSRUse with different offsets, for
1090 /// example in an unrolled loop.
1091 int64_t Offset = 0;
1093 LSRFixup() = default;
1095 bool isUseFullyOutsideLoop(const Loop *L) const;
1097 void print(raw_ostream &OS) const;
1098 void dump() const;
1101 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1102 /// SmallVectors of const SCEV*.
1103 struct UniquifierDenseMapInfo {
1104 static SmallVector<const SCEV *, 4> getEmptyKey() {
1105 SmallVector<const SCEV *, 4> V;
1106 V.push_back(reinterpret_cast<const SCEV *>(-1));
1107 return V;
1110 static SmallVector<const SCEV *, 4> getTombstoneKey() {
1111 SmallVector<const SCEV *, 4> V;
1112 V.push_back(reinterpret_cast<const SCEV *>(-2));
1113 return V;
1116 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1117 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1120 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1121 const SmallVector<const SCEV *, 4> &RHS) {
1122 return LHS == RHS;
1126 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1127 /// as uses invented by LSR itself. It includes information about what kinds of
1128 /// things can be folded into the user, information about the user itself, and
1129 /// information about how the use may be satisfied. TODO: Represent multiple
1130 /// users of the same expression in common?
1131 class LSRUse {
1132 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1134 public:
1135 /// An enum for a kind of use, indicating what types of scaled and immediate
1136 /// operands it might support.
1137 enum KindType {
1138 Basic, ///< A normal use, with no folding.
1139 Special, ///< A special case of basic, allowing -1 scales.
1140 Address, ///< An address use; folding according to TargetLowering
1141 ICmpZero ///< An equality icmp with both operands folded into one.
1142 // TODO: Add a generic icmp too?
1145 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1147 KindType Kind;
1148 MemAccessTy AccessTy;
1150 /// The list of operands which are to be replaced.
1151 SmallVector<LSRFixup, 8> Fixups;
1153 /// Keep track of the min and max offsets of the fixups.
1154 int64_t MinOffset = std::numeric_limits<int64_t>::max();
1155 int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1157 /// This records whether all of the fixups using this LSRUse are outside of
1158 /// the loop, in which case some special-case heuristics may be used.
1159 bool AllFixupsOutsideLoop = true;
1161 /// RigidFormula is set to true to guarantee that this use will be associated
1162 /// with a single formula--the one that initially matched. Some SCEV
1163 /// expressions cannot be expanded. This allows LSR to consider the registers
1164 /// used by those expressions without the need to expand them later after
1165 /// changing the formula.
1166 bool RigidFormula = false;
1168 /// This records the widest use type for any fixup using this
1169 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1170 /// fixup widths to be equivalent, because the narrower one may be relying on
1171 /// the implicit truncation to truncate away bogus bits.
1172 Type *WidestFixupType = nullptr;
1174 /// A list of ways to build a value that can satisfy this user. After the
1175 /// list is populated, one of these is selected heuristically and used to
1176 /// formulate a replacement for OperandValToReplace in UserInst.
1177 SmallVector<Formula, 12> Formulae;
1179 /// The set of register candidates used by all formulae in this LSRUse.
1180 SmallPtrSet<const SCEV *, 4> Regs;
1182 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1184 LSRFixup &getNewFixup() {
1185 Fixups.push_back(LSRFixup());
1186 return Fixups.back();
1189 void pushFixup(LSRFixup &f) {
1190 Fixups.push_back(f);
1191 if (f.Offset > MaxOffset)
1192 MaxOffset = f.Offset;
1193 if (f.Offset < MinOffset)
1194 MinOffset = f.Offset;
1197 bool HasFormulaWithSameRegs(const Formula &F) const;
1198 float getNotSelectedProbability(const SCEV *Reg) const;
1199 bool InsertFormula(const Formula &F, const Loop &L);
1200 void DeleteFormula(Formula &F);
1201 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1203 void print(raw_ostream &OS) const;
1204 void dump() const;
1207 } // end anonymous namespace
1209 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1210 LSRUse::KindType Kind, MemAccessTy AccessTy,
1211 GlobalValue *BaseGV, int64_t BaseOffset,
1212 bool HasBaseReg, int64_t Scale,
1213 Instruction *Fixup = nullptr);
1215 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1216 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1217 return 1;
1218 if (Depth == 0)
1219 return 0;
1220 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1221 return getSetupCost(S->getStart(), Depth - 1);
1222 if (auto S = dyn_cast<SCEVCastExpr>(Reg))
1223 return getSetupCost(S->getOperand(), Depth - 1);
1224 if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1225 return std::accumulate(S->op_begin(), S->op_end(), 0,
1226 [&](unsigned i, const SCEV *Reg) {
1227 return i + getSetupCost(Reg, Depth - 1);
1229 if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1230 return getSetupCost(S->getLHS(), Depth - 1) +
1231 getSetupCost(S->getRHS(), Depth - 1);
1232 return 0;
1235 /// Tally up interesting quantities from the given register.
1236 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1237 SmallPtrSetImpl<const SCEV *> &Regs) {
1238 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1239 // If this is an addrec for another loop, it should be an invariant
1240 // with respect to L since L is the innermost loop (at least
1241 // for now LSR only handles innermost loops).
1242 if (AR->getLoop() != L) {
1243 // If the AddRec exists, consider it's register free and leave it alone.
1244 if (isExistingPhi(AR, *SE))
1245 return;
1247 // It is bad to allow LSR for current loop to add induction variables
1248 // for its sibling loops.
1249 if (!AR->getLoop()->contains(L)) {
1250 Lose();
1251 return;
1254 // Otherwise, it will be an invariant with respect to Loop L.
1255 ++C.NumRegs;
1256 return;
1259 unsigned LoopCost = 1;
1260 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1261 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1263 // If the step size matches the base offset, we could use pre-indexed
1264 // addressing.
1265 if (TTI->shouldFavorBackedgeIndex(L)) {
1266 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1267 if (Step->getAPInt() == F.BaseOffset)
1268 LoopCost = 0;
1271 if (TTI->shouldFavorPostInc()) {
1272 const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1273 if (isa<SCEVConstant>(LoopStep)) {
1274 const SCEV *LoopStart = AR->getStart();
1275 if (!isa<SCEVConstant>(LoopStart) &&
1276 SE->isLoopInvariant(LoopStart, L))
1277 LoopCost = 0;
1281 C.AddRecCost += LoopCost;
1283 // Add the step value register, if it needs one.
1284 // TODO: The non-affine case isn't precisely modeled here.
1285 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1286 if (!Regs.count(AR->getOperand(1))) {
1287 RateRegister(F, AR->getOperand(1), Regs);
1288 if (isLoser())
1289 return;
1293 ++C.NumRegs;
1295 // Rough heuristic; favor registers which don't require extra setup
1296 // instructions in the preheader.
1297 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1298 // Ensure we don't, even with the recusion limit, produce invalid costs.
1299 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1301 C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1302 SE->hasComputableLoopEvolution(Reg, L);
1305 /// Record this register in the set. If we haven't seen it before, rate
1306 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1307 /// one of those regs an instant loser.
1308 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1309 SmallPtrSetImpl<const SCEV *> &Regs,
1310 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1311 if (LoserRegs && LoserRegs->count(Reg)) {
1312 Lose();
1313 return;
1315 if (Regs.insert(Reg).second) {
1316 RateRegister(F, Reg, Regs);
1317 if (LoserRegs && isLoser())
1318 LoserRegs->insert(Reg);
1322 void Cost::RateFormula(const Formula &F,
1323 SmallPtrSetImpl<const SCEV *> &Regs,
1324 const DenseSet<const SCEV *> &VisitedRegs,
1325 const LSRUse &LU,
1326 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1327 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1328 // Tally up the registers.
1329 unsigned PrevAddRecCost = C.AddRecCost;
1330 unsigned PrevNumRegs = C.NumRegs;
1331 unsigned PrevNumBaseAdds = C.NumBaseAdds;
1332 if (const SCEV *ScaledReg = F.ScaledReg) {
1333 if (VisitedRegs.count(ScaledReg)) {
1334 Lose();
1335 return;
1337 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1338 if (isLoser())
1339 return;
1341 for (const SCEV *BaseReg : F.BaseRegs) {
1342 if (VisitedRegs.count(BaseReg)) {
1343 Lose();
1344 return;
1346 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1347 if (isLoser())
1348 return;
1351 // Determine how many (unfolded) adds we'll need inside the loop.
1352 size_t NumBaseParts = F.getNumRegs();
1353 if (NumBaseParts > 1)
1354 // Do not count the base and a possible second register if the target
1355 // allows to fold 2 registers.
1356 C.NumBaseAdds +=
1357 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1358 C.NumBaseAdds += (F.UnfoldedOffset != 0);
1360 // Accumulate non-free scaling amounts.
1361 C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1363 // Tally up the non-zero immediates.
1364 for (const LSRFixup &Fixup : LU.Fixups) {
1365 int64_t O = Fixup.Offset;
1366 int64_t Offset = (uint64_t)O + F.BaseOffset;
1367 if (F.BaseGV)
1368 C.ImmCost += 64; // Handle symbolic values conservatively.
1369 // TODO: This should probably be the pointer size.
1370 else if (Offset != 0)
1371 C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1373 // Check with target if this offset with this instruction is
1374 // specifically not supported.
1375 if (LU.Kind == LSRUse::Address && Offset != 0 &&
1376 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1377 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1378 C.NumBaseAdds++;
1381 // If we don't count instruction cost exit here.
1382 if (!InsnsCost) {
1383 assert(isValid() && "invalid cost");
1384 return;
1387 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1388 // additional instruction (at least fill).
1389 // TODO: Need distinguish register class?
1390 unsigned TTIRegNum = TTI->getNumberOfRegisters(
1391 TTI->getRegisterClassForType(false, F.getType())) - 1;
1392 if (C.NumRegs > TTIRegNum) {
1393 // Cost already exceeded TTIRegNum, then only newly added register can add
1394 // new instructions.
1395 if (PrevNumRegs > TTIRegNum)
1396 C.Insns += (C.NumRegs - PrevNumRegs);
1397 else
1398 C.Insns += (C.NumRegs - TTIRegNum);
1401 // If ICmpZero formula ends with not 0, it could not be replaced by
1402 // just add or sub. We'll need to compare final result of AddRec.
1403 // That means we'll need an additional instruction. But if the target can
1404 // macro-fuse a compare with a branch, don't count this extra instruction.
1405 // For -10 + {0, +, 1}:
1406 // i = i + 1;
1407 // cmp i, 10
1409 // For {-10, +, 1}:
1410 // i = i + 1;
1411 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1412 !TTI->canMacroFuseCmp())
1413 C.Insns++;
1414 // Each new AddRec adds 1 instruction to calculation.
1415 C.Insns += (C.AddRecCost - PrevAddRecCost);
1417 // BaseAdds adds instructions for unfolded registers.
1418 if (LU.Kind != LSRUse::ICmpZero)
1419 C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1420 assert(isValid() && "invalid cost");
1423 /// Set this cost to a losing value.
1424 void Cost::Lose() {
1425 C.Insns = std::numeric_limits<unsigned>::max();
1426 C.NumRegs = std::numeric_limits<unsigned>::max();
1427 C.AddRecCost = std::numeric_limits<unsigned>::max();
1428 C.NumIVMuls = std::numeric_limits<unsigned>::max();
1429 C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1430 C.ImmCost = std::numeric_limits<unsigned>::max();
1431 C.SetupCost = std::numeric_limits<unsigned>::max();
1432 C.ScaleCost = std::numeric_limits<unsigned>::max();
1435 /// Choose the lower cost.
1436 bool Cost::isLess(Cost &Other) {
1437 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1438 C.Insns != Other.C.Insns)
1439 return C.Insns < Other.C.Insns;
1440 return TTI->isLSRCostLess(C, Other.C);
1443 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1444 void Cost::print(raw_ostream &OS) const {
1445 if (InsnsCost)
1446 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1447 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1448 if (C.AddRecCost != 0)
1449 OS << ", with addrec cost " << C.AddRecCost;
1450 if (C.NumIVMuls != 0)
1451 OS << ", plus " << C.NumIVMuls << " IV mul"
1452 << (C.NumIVMuls == 1 ? "" : "s");
1453 if (C.NumBaseAdds != 0)
1454 OS << ", plus " << C.NumBaseAdds << " base add"
1455 << (C.NumBaseAdds == 1 ? "" : "s");
1456 if (C.ScaleCost != 0)
1457 OS << ", plus " << C.ScaleCost << " scale cost";
1458 if (C.ImmCost != 0)
1459 OS << ", plus " << C.ImmCost << " imm cost";
1460 if (C.SetupCost != 0)
1461 OS << ", plus " << C.SetupCost << " setup cost";
1464 LLVM_DUMP_METHOD void Cost::dump() const {
1465 print(errs()); errs() << '\n';
1467 #endif
1469 /// Test whether this fixup always uses its value outside of the given loop.
1470 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1471 // PHI nodes use their value in their incoming blocks.
1472 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1473 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1474 if (PN->getIncomingValue(i) == OperandValToReplace &&
1475 L->contains(PN->getIncomingBlock(i)))
1476 return false;
1477 return true;
1480 return !L->contains(UserInst);
1483 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1484 void LSRFixup::print(raw_ostream &OS) const {
1485 OS << "UserInst=";
1486 // Store is common and interesting enough to be worth special-casing.
1487 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1488 OS << "store ";
1489 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1490 } else if (UserInst->getType()->isVoidTy())
1491 OS << UserInst->getOpcodeName();
1492 else
1493 UserInst->printAsOperand(OS, /*PrintType=*/false);
1495 OS << ", OperandValToReplace=";
1496 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1498 for (const Loop *PIL : PostIncLoops) {
1499 OS << ", PostIncLoop=";
1500 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1503 if (Offset != 0)
1504 OS << ", Offset=" << Offset;
1507 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1508 print(errs()); errs() << '\n';
1510 #endif
1512 /// Test whether this use as a formula which has the same registers as the given
1513 /// formula.
1514 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1515 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1516 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1517 // Unstable sort by host order ok, because this is only used for uniquifying.
1518 llvm::sort(Key);
1519 return Uniquifier.count(Key);
1522 /// The function returns a probability of selecting formula without Reg.
1523 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1524 unsigned FNum = 0;
1525 for (const Formula &F : Formulae)
1526 if (F.referencesReg(Reg))
1527 FNum++;
1528 return ((float)(Formulae.size() - FNum)) / Formulae.size();
1531 /// If the given formula has not yet been inserted, add it to the list, and
1532 /// return true. Return false otherwise. The formula must be in canonical form.
1533 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1534 assert(F.isCanonical(L) && "Invalid canonical representation");
1536 if (!Formulae.empty() && RigidFormula)
1537 return false;
1539 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1540 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1541 // Unstable sort by host order ok, because this is only used for uniquifying.
1542 llvm::sort(Key);
1544 if (!Uniquifier.insert(Key).second)
1545 return false;
1547 // Using a register to hold the value of 0 is not profitable.
1548 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1549 "Zero allocated in a scaled register!");
1550 #ifndef NDEBUG
1551 for (const SCEV *BaseReg : F.BaseRegs)
1552 assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1553 #endif
1555 // Add the formula to the list.
1556 Formulae.push_back(F);
1558 // Record registers now being used by this use.
1559 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1560 if (F.ScaledReg)
1561 Regs.insert(F.ScaledReg);
1563 return true;
1566 /// Remove the given formula from this use's list.
1567 void LSRUse::DeleteFormula(Formula &F) {
1568 if (&F != &Formulae.back())
1569 std::swap(F, Formulae.back());
1570 Formulae.pop_back();
1573 /// Recompute the Regs field, and update RegUses.
1574 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1575 // Now that we've filtered out some formulae, recompute the Regs set.
1576 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1577 Regs.clear();
1578 for (const Formula &F : Formulae) {
1579 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1580 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1583 // Update the RegTracker.
1584 for (const SCEV *S : OldRegs)
1585 if (!Regs.count(S))
1586 RegUses.dropRegister(S, LUIdx);
1589 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1590 void LSRUse::print(raw_ostream &OS) const {
1591 OS << "LSR Use: Kind=";
1592 switch (Kind) {
1593 case Basic: OS << "Basic"; break;
1594 case Special: OS << "Special"; break;
1595 case ICmpZero: OS << "ICmpZero"; break;
1596 case Address:
1597 OS << "Address of ";
1598 if (AccessTy.MemTy->isPointerTy())
1599 OS << "pointer"; // the full pointer type could be really verbose
1600 else {
1601 OS << *AccessTy.MemTy;
1604 OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1607 OS << ", Offsets={";
1608 bool NeedComma = false;
1609 for (const LSRFixup &Fixup : Fixups) {
1610 if (NeedComma) OS << ',';
1611 OS << Fixup.Offset;
1612 NeedComma = true;
1614 OS << '}';
1616 if (AllFixupsOutsideLoop)
1617 OS << ", all-fixups-outside-loop";
1619 if (WidestFixupType)
1620 OS << ", widest fixup type: " << *WidestFixupType;
1623 LLVM_DUMP_METHOD void LSRUse::dump() const {
1624 print(errs()); errs() << '\n';
1626 #endif
1628 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1629 LSRUse::KindType Kind, MemAccessTy AccessTy,
1630 GlobalValue *BaseGV, int64_t BaseOffset,
1631 bool HasBaseReg, int64_t Scale,
1632 Instruction *Fixup/*= nullptr*/) {
1633 switch (Kind) {
1634 case LSRUse::Address:
1635 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1636 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1638 case LSRUse::ICmpZero:
1639 // There's not even a target hook for querying whether it would be legal to
1640 // fold a GV into an ICmp.
1641 if (BaseGV)
1642 return false;
1644 // ICmp only has two operands; don't allow more than two non-trivial parts.
1645 if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1646 return false;
1648 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1649 // putting the scaled register in the other operand of the icmp.
1650 if (Scale != 0 && Scale != -1)
1651 return false;
1653 // If we have low-level target information, ask the target if it can fold an
1654 // integer immediate on an icmp.
1655 if (BaseOffset != 0) {
1656 // We have one of:
1657 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1658 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1659 // Offs is the ICmp immediate.
1660 if (Scale == 0)
1661 // The cast does the right thing with
1662 // std::numeric_limits<int64_t>::min().
1663 BaseOffset = -(uint64_t)BaseOffset;
1664 return TTI.isLegalICmpImmediate(BaseOffset);
1667 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1668 return true;
1670 case LSRUse::Basic:
1671 // Only handle single-register values.
1672 return !BaseGV && Scale == 0 && BaseOffset == 0;
1674 case LSRUse::Special:
1675 // Special case Basic to handle -1 scales.
1676 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1679 llvm_unreachable("Invalid LSRUse Kind!");
1682 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1683 int64_t MinOffset, int64_t MaxOffset,
1684 LSRUse::KindType Kind, MemAccessTy AccessTy,
1685 GlobalValue *BaseGV, int64_t BaseOffset,
1686 bool HasBaseReg, int64_t Scale) {
1687 // Check for overflow.
1688 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1689 (MinOffset > 0))
1690 return false;
1691 MinOffset = (uint64_t)BaseOffset + MinOffset;
1692 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1693 (MaxOffset > 0))
1694 return false;
1695 MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1697 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1698 HasBaseReg, Scale) &&
1699 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1700 HasBaseReg, Scale);
1703 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1704 int64_t MinOffset, int64_t MaxOffset,
1705 LSRUse::KindType Kind, MemAccessTy AccessTy,
1706 const Formula &F, const Loop &L) {
1707 // For the purpose of isAMCompletelyFolded either having a canonical formula
1708 // or a scale not equal to zero is correct.
1709 // Problems may arise from non canonical formulae having a scale == 0.
1710 // Strictly speaking it would best to just rely on canonical formulae.
1711 // However, when we generate the scaled formulae, we first check that the
1712 // scaling factor is profitable before computing the actual ScaledReg for
1713 // compile time sake.
1714 assert((F.isCanonical(L) || F.Scale != 0));
1715 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1716 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1719 /// Test whether we know how to expand the current formula.
1720 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1721 int64_t MaxOffset, LSRUse::KindType Kind,
1722 MemAccessTy AccessTy, GlobalValue *BaseGV,
1723 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1724 // We know how to expand completely foldable formulae.
1725 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1726 BaseOffset, HasBaseReg, Scale) ||
1727 // Or formulae that use a base register produced by a sum of base
1728 // registers.
1729 (Scale == 1 &&
1730 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1731 BaseGV, BaseOffset, true, 0));
1734 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1735 int64_t MaxOffset, LSRUse::KindType Kind,
1736 MemAccessTy AccessTy, const Formula &F) {
1737 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1738 F.BaseOffset, F.HasBaseReg, F.Scale);
1741 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1742 const LSRUse &LU, const Formula &F) {
1743 // Target may want to look at the user instructions.
1744 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1745 for (const LSRFixup &Fixup : LU.Fixups)
1746 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1747 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1748 F.Scale, Fixup.UserInst))
1749 return false;
1750 return true;
1753 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1754 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1755 F.Scale);
1758 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1759 const LSRUse &LU, const Formula &F,
1760 const Loop &L) {
1761 if (!F.Scale)
1762 return 0;
1764 // If the use is not completely folded in that instruction, we will have to
1765 // pay an extra cost only for scale != 1.
1766 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1767 LU.AccessTy, F, L))
1768 return F.Scale != 1;
1770 switch (LU.Kind) {
1771 case LSRUse::Address: {
1772 // Check the scaling factor cost with both the min and max offsets.
1773 int ScaleCostMinOffset = TTI.getScalingFactorCost(
1774 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1775 F.Scale, LU.AccessTy.AddrSpace);
1776 int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1777 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1778 F.Scale, LU.AccessTy.AddrSpace);
1780 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1781 "Legal addressing mode has an illegal cost!");
1782 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1784 case LSRUse::ICmpZero:
1785 case LSRUse::Basic:
1786 case LSRUse::Special:
1787 // The use is completely folded, i.e., everything is folded into the
1788 // instruction.
1789 return 0;
1792 llvm_unreachable("Invalid LSRUse Kind!");
1795 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1796 LSRUse::KindType Kind, MemAccessTy AccessTy,
1797 GlobalValue *BaseGV, int64_t BaseOffset,
1798 bool HasBaseReg) {
1799 // Fast-path: zero is always foldable.
1800 if (BaseOffset == 0 && !BaseGV) return true;
1802 // Conservatively, create an address with an immediate and a
1803 // base and a scale.
1804 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1806 // Canonicalize a scale of 1 to a base register if the formula doesn't
1807 // already have a base register.
1808 if (!HasBaseReg && Scale == 1) {
1809 Scale = 0;
1810 HasBaseReg = true;
1813 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1814 HasBaseReg, Scale);
1817 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1818 ScalarEvolution &SE, int64_t MinOffset,
1819 int64_t MaxOffset, LSRUse::KindType Kind,
1820 MemAccessTy AccessTy, const SCEV *S,
1821 bool HasBaseReg) {
1822 // Fast-path: zero is always foldable.
1823 if (S->isZero()) return true;
1825 // Conservatively, create an address with an immediate and a
1826 // base and a scale.
1827 int64_t BaseOffset = ExtractImmediate(S, SE);
1828 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1830 // If there's anything else involved, it's not foldable.
1831 if (!S->isZero()) return false;
1833 // Fast-path: zero is always foldable.
1834 if (BaseOffset == 0 && !BaseGV) return true;
1836 // Conservatively, create an address with an immediate and a
1837 // base and a scale.
1838 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1840 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1841 BaseOffset, HasBaseReg, Scale);
1844 namespace {
1846 /// An individual increment in a Chain of IV increments. Relate an IV user to
1847 /// an expression that computes the IV it uses from the IV used by the previous
1848 /// link in the Chain.
1850 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1851 /// original IVOperand. The head of the chain's IVOperand is only valid during
1852 /// chain collection, before LSR replaces IV users. During chain generation,
1853 /// IncExpr can be used to find the new IVOperand that computes the same
1854 /// expression.
1855 struct IVInc {
1856 Instruction *UserInst;
1857 Value* IVOperand;
1858 const SCEV *IncExpr;
1860 IVInc(Instruction *U, Value *O, const SCEV *E)
1861 : UserInst(U), IVOperand(O), IncExpr(E) {}
1864 // The list of IV increments in program order. We typically add the head of a
1865 // chain without finding subsequent links.
1866 struct IVChain {
1867 SmallVector<IVInc, 1> Incs;
1868 const SCEV *ExprBase = nullptr;
1870 IVChain() = default;
1871 IVChain(const IVInc &Head, const SCEV *Base)
1872 : Incs(1, Head), ExprBase(Base) {}
1874 using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1876 // Return the first increment in the chain.
1877 const_iterator begin() const {
1878 assert(!Incs.empty());
1879 return std::next(Incs.begin());
1881 const_iterator end() const {
1882 return Incs.end();
1885 // Returns true if this chain contains any increments.
1886 bool hasIncs() const { return Incs.size() >= 2; }
1888 // Add an IVInc to the end of this chain.
1889 void add(const IVInc &X) { Incs.push_back(X); }
1891 // Returns the last UserInst in the chain.
1892 Instruction *tailUserInst() const { return Incs.back().UserInst; }
1894 // Returns true if IncExpr can be profitably added to this chain.
1895 bool isProfitableIncrement(const SCEV *OperExpr,
1896 const SCEV *IncExpr,
1897 ScalarEvolution&);
1900 /// Helper for CollectChains to track multiple IV increment uses. Distinguish
1901 /// between FarUsers that definitely cross IV increments and NearUsers that may
1902 /// be used between IV increments.
1903 struct ChainUsers {
1904 SmallPtrSet<Instruction*, 4> FarUsers;
1905 SmallPtrSet<Instruction*, 4> NearUsers;
1908 /// This class holds state for the main loop strength reduction logic.
1909 class LSRInstance {
1910 IVUsers &IU;
1911 ScalarEvolution &SE;
1912 DominatorTree &DT;
1913 LoopInfo &LI;
1914 AssumptionCache &AC;
1915 TargetLibraryInfo &LibInfo;
1916 const TargetTransformInfo &TTI;
1917 Loop *const L;
1918 bool FavorBackedgeIndex = false;
1919 bool Changed = false;
1921 /// This is the insert position that the current loop's induction variable
1922 /// increment should be placed. In simple loops, this is the latch block's
1923 /// terminator. But in more complicated cases, this is a position which will
1924 /// dominate all the in-loop post-increment users.
1925 Instruction *IVIncInsertPos = nullptr;
1927 /// Interesting factors between use strides.
1929 /// We explicitly use a SetVector which contains a SmallSet, instead of the
1930 /// default, a SmallDenseSet, because we need to use the full range of
1931 /// int64_ts, and there's currently no good way of doing that with
1932 /// SmallDenseSet.
1933 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1935 /// Interesting use types, to facilitate truncation reuse.
1936 SmallSetVector<Type *, 4> Types;
1938 /// The list of interesting uses.
1939 mutable SmallVector<LSRUse, 16> Uses;
1941 /// Track which uses use which register candidates.
1942 RegUseTracker RegUses;
1944 // Limit the number of chains to avoid quadratic behavior. We don't expect to
1945 // have more than a few IV increment chains in a loop. Missing a Chain falls
1946 // back to normal LSR behavior for those uses.
1947 static const unsigned MaxChains = 8;
1949 /// IV users can form a chain of IV increments.
1950 SmallVector<IVChain, MaxChains> IVChainVec;
1952 /// IV users that belong to profitable IVChains.
1953 SmallPtrSet<Use*, MaxChains> IVIncSet;
1955 void OptimizeShadowIV();
1956 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1957 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1958 void OptimizeLoopTermCond();
1960 void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1961 SmallVectorImpl<ChainUsers> &ChainUsersVec);
1962 void FinalizeChain(IVChain &Chain);
1963 void CollectChains();
1964 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1965 SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1967 void CollectInterestingTypesAndFactors();
1968 void CollectFixupsAndInitialFormulae();
1970 // Support for sharing of LSRUses between LSRFixups.
1971 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1972 UseMapTy UseMap;
1974 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1975 LSRUse::KindType Kind, MemAccessTy AccessTy);
1977 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1978 MemAccessTy AccessTy);
1980 void DeleteUse(LSRUse &LU, size_t LUIdx);
1982 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1984 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1985 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1986 void CountRegisters(const Formula &F, size_t LUIdx);
1987 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1989 void CollectLoopInvariantFixupsAndFormulae();
1991 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1992 unsigned Depth = 0);
1994 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1995 const Formula &Base, unsigned Depth,
1996 size_t Idx, bool IsScaledReg = false);
1997 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1998 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1999 const Formula &Base, size_t Idx,
2000 bool IsScaledReg = false);
2001 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2002 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2003 const Formula &Base,
2004 const SmallVectorImpl<int64_t> &Worklist,
2005 size_t Idx, bool IsScaledReg = false);
2006 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2007 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2008 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2009 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2010 void GenerateCrossUseConstantOffsets();
2011 void GenerateAllReuseFormulae();
2013 void FilterOutUndesirableDedicatedRegisters();
2015 size_t EstimateSearchSpaceComplexity() const;
2016 void NarrowSearchSpaceByDetectingSupersets();
2017 void NarrowSearchSpaceByCollapsingUnrolledCode();
2018 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2019 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2020 void NarrowSearchSpaceByDeletingCostlyFormulas();
2021 void NarrowSearchSpaceByPickingWinnerRegs();
2022 void NarrowSearchSpaceUsingHeuristics();
2024 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2025 Cost &SolutionCost,
2026 SmallVectorImpl<const Formula *> &Workspace,
2027 const Cost &CurCost,
2028 const SmallPtrSet<const SCEV *, 16> &CurRegs,
2029 DenseSet<const SCEV *> &VisitedRegs) const;
2030 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2032 BasicBlock::iterator
2033 HoistInsertPosition(BasicBlock::iterator IP,
2034 const SmallVectorImpl<Instruction *> &Inputs) const;
2035 BasicBlock::iterator
2036 AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2037 const LSRFixup &LF,
2038 const LSRUse &LU,
2039 SCEVExpander &Rewriter) const;
2041 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2042 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2043 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2044 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2045 const Formula &F, SCEVExpander &Rewriter,
2046 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2047 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2048 SCEVExpander &Rewriter,
2049 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2050 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2052 public:
2053 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2054 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2055 TargetLibraryInfo &LibInfo);
2057 bool getChanged() const { return Changed; }
2059 void print_factors_and_types(raw_ostream &OS) const;
2060 void print_fixups(raw_ostream &OS) const;
2061 void print_uses(raw_ostream &OS) const;
2062 void print(raw_ostream &OS) const;
2063 void dump() const;
2066 } // end anonymous namespace
2068 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2069 /// the cast operation.
2070 void LSRInstance::OptimizeShadowIV() {
2071 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2072 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2073 return;
2075 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2076 UI != E; /* empty */) {
2077 IVUsers::const_iterator CandidateUI = UI;
2078 ++UI;
2079 Instruction *ShadowUse = CandidateUI->getUser();
2080 Type *DestTy = nullptr;
2081 bool IsSigned = false;
2083 /* If shadow use is a int->float cast then insert a second IV
2084 to eliminate this cast.
2086 for (unsigned i = 0; i < n; ++i)
2087 foo((double)i);
2089 is transformed into
2091 double d = 0.0;
2092 for (unsigned i = 0; i < n; ++i, ++d)
2093 foo(d);
2095 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2096 IsSigned = false;
2097 DestTy = UCast->getDestTy();
2099 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2100 IsSigned = true;
2101 DestTy = SCast->getDestTy();
2103 if (!DestTy) continue;
2105 // If target does not support DestTy natively then do not apply
2106 // this transformation.
2107 if (!TTI.isTypeLegal(DestTy)) continue;
2109 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2110 if (!PH) continue;
2111 if (PH->getNumIncomingValues() != 2) continue;
2113 // If the calculation in integers overflows, the result in FP type will
2114 // differ. So we only can do this transformation if we are guaranteed to not
2115 // deal with overflowing values
2116 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2117 if (!AR) continue;
2118 if (IsSigned && !AR->hasNoSignedWrap()) continue;
2119 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2121 Type *SrcTy = PH->getType();
2122 int Mantissa = DestTy->getFPMantissaWidth();
2123 if (Mantissa == -1) continue;
2124 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2125 continue;
2127 unsigned Entry, Latch;
2128 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2129 Entry = 0;
2130 Latch = 1;
2131 } else {
2132 Entry = 1;
2133 Latch = 0;
2136 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2137 if (!Init) continue;
2138 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2139 (double)Init->getSExtValue() :
2140 (double)Init->getZExtValue());
2142 BinaryOperator *Incr =
2143 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2144 if (!Incr) continue;
2145 if (Incr->getOpcode() != Instruction::Add
2146 && Incr->getOpcode() != Instruction::Sub)
2147 continue;
2149 /* Initialize new IV, double d = 0.0 in above example. */
2150 ConstantInt *C = nullptr;
2151 if (Incr->getOperand(0) == PH)
2152 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2153 else if (Incr->getOperand(1) == PH)
2154 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2155 else
2156 continue;
2158 if (!C) continue;
2160 // Ignore negative constants, as the code below doesn't handle them
2161 // correctly. TODO: Remove this restriction.
2162 if (!C->getValue().isStrictlyPositive()) continue;
2164 /* Add new PHINode. */
2165 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2167 /* create new increment. '++d' in above example. */
2168 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2169 BinaryOperator *NewIncr =
2170 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2171 Instruction::FAdd : Instruction::FSub,
2172 NewPH, CFP, "IV.S.next.", Incr);
2174 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2175 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2177 /* Remove cast operation */
2178 ShadowUse->replaceAllUsesWith(NewPH);
2179 ShadowUse->eraseFromParent();
2180 Changed = true;
2181 break;
2185 /// If Cond has an operand that is an expression of an IV, set the IV user and
2186 /// stride information and return true, otherwise return false.
2187 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2188 for (IVStrideUse &U : IU)
2189 if (U.getUser() == Cond) {
2190 // NOTE: we could handle setcc instructions with multiple uses here, but
2191 // InstCombine does it as well for simple uses, it's not clear that it
2192 // occurs enough in real life to handle.
2193 CondUse = &U;
2194 return true;
2196 return false;
2199 /// Rewrite the loop's terminating condition if it uses a max computation.
2201 /// This is a narrow solution to a specific, but acute, problem. For loops
2202 /// like this:
2204 /// i = 0;
2205 /// do {
2206 /// p[i] = 0.0;
2207 /// } while (++i < n);
2209 /// the trip count isn't just 'n', because 'n' might not be positive. And
2210 /// unfortunately this can come up even for loops where the user didn't use
2211 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2212 /// will commonly be lowered like this:
2214 /// if (n > 0) {
2215 /// i = 0;
2216 /// do {
2217 /// p[i] = 0.0;
2218 /// } while (++i < n);
2219 /// }
2221 /// and then it's possible for subsequent optimization to obscure the if
2222 /// test in such a way that indvars can't find it.
2224 /// When indvars can't find the if test in loops like this, it creates a
2225 /// max expression, which allows it to give the loop a canonical
2226 /// induction variable:
2228 /// i = 0;
2229 /// max = n < 1 ? 1 : n;
2230 /// do {
2231 /// p[i] = 0.0;
2232 /// } while (++i != max);
2234 /// Canonical induction variables are necessary because the loop passes
2235 /// are designed around them. The most obvious example of this is the
2236 /// LoopInfo analysis, which doesn't remember trip count values. It
2237 /// expects to be able to rediscover the trip count each time it is
2238 /// needed, and it does this using a simple analysis that only succeeds if
2239 /// the loop has a canonical induction variable.
2241 /// However, when it comes time to generate code, the maximum operation
2242 /// can be quite costly, especially if it's inside of an outer loop.
2244 /// This function solves this problem by detecting this type of loop and
2245 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2246 /// the instructions for the maximum computation.
2247 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2248 // Check that the loop matches the pattern we're looking for.
2249 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2250 Cond->getPredicate() != CmpInst::ICMP_NE)
2251 return Cond;
2253 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2254 if (!Sel || !Sel->hasOneUse()) return Cond;
2256 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2257 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2258 return Cond;
2259 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2261 // Add one to the backedge-taken count to get the trip count.
2262 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2263 if (IterationCount != SE.getSCEV(Sel)) return Cond;
2265 // Check for a max calculation that matches the pattern. There's no check
2266 // for ICMP_ULE here because the comparison would be with zero, which
2267 // isn't interesting.
2268 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2269 const SCEVNAryExpr *Max = nullptr;
2270 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2271 Pred = ICmpInst::ICMP_SLE;
2272 Max = S;
2273 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2274 Pred = ICmpInst::ICMP_SLT;
2275 Max = S;
2276 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2277 Pred = ICmpInst::ICMP_ULT;
2278 Max = U;
2279 } else {
2280 // No match; bail.
2281 return Cond;
2284 // To handle a max with more than two operands, this optimization would
2285 // require additional checking and setup.
2286 if (Max->getNumOperands() != 2)
2287 return Cond;
2289 const SCEV *MaxLHS = Max->getOperand(0);
2290 const SCEV *MaxRHS = Max->getOperand(1);
2292 // ScalarEvolution canonicalizes constants to the left. For < and >, look
2293 // for a comparison with 1. For <= and >=, a comparison with zero.
2294 if (!MaxLHS ||
2295 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2296 return Cond;
2298 // Check the relevant induction variable for conformance to
2299 // the pattern.
2300 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2301 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2302 if (!AR || !AR->isAffine() ||
2303 AR->getStart() != One ||
2304 AR->getStepRecurrence(SE) != One)
2305 return Cond;
2307 assert(AR->getLoop() == L &&
2308 "Loop condition operand is an addrec in a different loop!");
2310 // Check the right operand of the select, and remember it, as it will
2311 // be used in the new comparison instruction.
2312 Value *NewRHS = nullptr;
2313 if (ICmpInst::isTrueWhenEqual(Pred)) {
2314 // Look for n+1, and grab n.
2315 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2316 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2317 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2318 NewRHS = BO->getOperand(0);
2319 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2320 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2321 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2322 NewRHS = BO->getOperand(0);
2323 if (!NewRHS)
2324 return Cond;
2325 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2326 NewRHS = Sel->getOperand(1);
2327 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2328 NewRHS = Sel->getOperand(2);
2329 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2330 NewRHS = SU->getValue();
2331 else
2332 // Max doesn't match expected pattern.
2333 return Cond;
2335 // Determine the new comparison opcode. It may be signed or unsigned,
2336 // and the original comparison may be either equality or inequality.
2337 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2338 Pred = CmpInst::getInversePredicate(Pred);
2340 // Ok, everything looks ok to change the condition into an SLT or SGE and
2341 // delete the max calculation.
2342 ICmpInst *NewCond =
2343 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2345 // Delete the max calculation instructions.
2346 Cond->replaceAllUsesWith(NewCond);
2347 CondUse->setUser(NewCond);
2348 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2349 Cond->eraseFromParent();
2350 Sel->eraseFromParent();
2351 if (Cmp->use_empty())
2352 Cmp->eraseFromParent();
2353 return NewCond;
2356 /// Change loop terminating condition to use the postinc iv when possible.
2357 void
2358 LSRInstance::OptimizeLoopTermCond() {
2359 SmallPtrSet<Instruction *, 4> PostIncs;
2361 // We need a different set of heuristics for rotated and non-rotated loops.
2362 // If a loop is rotated then the latch is also the backedge, so inserting
2363 // post-inc expressions just before the latch is ideal. To reduce live ranges
2364 // it also makes sense to rewrite terminating conditions to use post-inc
2365 // expressions.
2367 // If the loop is not rotated then the latch is not a backedge; the latch
2368 // check is done in the loop head. Adding post-inc expressions before the
2369 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2370 // in the loop body. In this case we do *not* want to use post-inc expressions
2371 // in the latch check, and we want to insert post-inc expressions before
2372 // the backedge.
2373 BasicBlock *LatchBlock = L->getLoopLatch();
2374 SmallVector<BasicBlock*, 8> ExitingBlocks;
2375 L->getExitingBlocks(ExitingBlocks);
2376 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2377 return LatchBlock != BB;
2378 })) {
2379 // The backedge doesn't exit the loop; treat this as a head-tested loop.
2380 IVIncInsertPos = LatchBlock->getTerminator();
2381 return;
2384 // Otherwise treat this as a rotated loop.
2385 for (BasicBlock *ExitingBlock : ExitingBlocks) {
2386 // Get the terminating condition for the loop if possible. If we
2387 // can, we want to change it to use a post-incremented version of its
2388 // induction variable, to allow coalescing the live ranges for the IV into
2389 // one register value.
2391 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2392 if (!TermBr)
2393 continue;
2394 // FIXME: Overly conservative, termination condition could be an 'or' etc..
2395 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2396 continue;
2398 // Search IVUsesByStride to find Cond's IVUse if there is one.
2399 IVStrideUse *CondUse = nullptr;
2400 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2401 if (!FindIVUserForCond(Cond, CondUse))
2402 continue;
2404 // If the trip count is computed in terms of a max (due to ScalarEvolution
2405 // being unable to find a sufficient guard, for example), change the loop
2406 // comparison to use SLT or ULT instead of NE.
2407 // One consequence of doing this now is that it disrupts the count-down
2408 // optimization. That's not always a bad thing though, because in such
2409 // cases it may still be worthwhile to avoid a max.
2410 Cond = OptimizeMax(Cond, CondUse);
2412 // If this exiting block dominates the latch block, it may also use
2413 // the post-inc value if it won't be shared with other uses.
2414 // Check for dominance.
2415 if (!DT.dominates(ExitingBlock, LatchBlock))
2416 continue;
2418 // Conservatively avoid trying to use the post-inc value in non-latch
2419 // exits if there may be pre-inc users in intervening blocks.
2420 if (LatchBlock != ExitingBlock)
2421 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2422 // Test if the use is reachable from the exiting block. This dominator
2423 // query is a conservative approximation of reachability.
2424 if (&*UI != CondUse &&
2425 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2426 // Conservatively assume there may be reuse if the quotient of their
2427 // strides could be a legal scale.
2428 const SCEV *A = IU.getStride(*CondUse, L);
2429 const SCEV *B = IU.getStride(*UI, L);
2430 if (!A || !B) continue;
2431 if (SE.getTypeSizeInBits(A->getType()) !=
2432 SE.getTypeSizeInBits(B->getType())) {
2433 if (SE.getTypeSizeInBits(A->getType()) >
2434 SE.getTypeSizeInBits(B->getType()))
2435 B = SE.getSignExtendExpr(B, A->getType());
2436 else
2437 A = SE.getSignExtendExpr(A, B->getType());
2439 if (const SCEVConstant *D =
2440 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2441 const ConstantInt *C = D->getValue();
2442 // Stride of one or negative one can have reuse with non-addresses.
2443 if (C->isOne() || C->isMinusOne())
2444 goto decline_post_inc;
2445 // Avoid weird situations.
2446 if (C->getValue().getMinSignedBits() >= 64 ||
2447 C->getValue().isMinSignedValue())
2448 goto decline_post_inc;
2449 // Check for possible scaled-address reuse.
2450 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2451 MemAccessTy AccessTy = getAccessType(
2452 TTI, UI->getUser(), UI->getOperandValToReplace());
2453 int64_t Scale = C->getSExtValue();
2454 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2455 /*BaseOffset=*/0,
2456 /*HasBaseReg=*/false, Scale,
2457 AccessTy.AddrSpace))
2458 goto decline_post_inc;
2459 Scale = -Scale;
2460 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2461 /*BaseOffset=*/0,
2462 /*HasBaseReg=*/false, Scale,
2463 AccessTy.AddrSpace))
2464 goto decline_post_inc;
2469 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
2470 << *Cond << '\n');
2472 // It's possible for the setcc instruction to be anywhere in the loop, and
2473 // possible for it to have multiple users. If it is not immediately before
2474 // the exiting block branch, move it.
2475 if (&*++BasicBlock::iterator(Cond) != TermBr) {
2476 if (Cond->hasOneUse()) {
2477 Cond->moveBefore(TermBr);
2478 } else {
2479 // Clone the terminating condition and insert into the loopend.
2480 ICmpInst *OldCond = Cond;
2481 Cond = cast<ICmpInst>(Cond->clone());
2482 Cond->setName(L->getHeader()->getName() + ".termcond");
2483 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2485 // Clone the IVUse, as the old use still exists!
2486 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2487 TermBr->replaceUsesOfWith(OldCond, Cond);
2491 // If we get to here, we know that we can transform the setcc instruction to
2492 // use the post-incremented version of the IV, allowing us to coalesce the
2493 // live ranges for the IV correctly.
2494 CondUse->transformToPostInc(L);
2495 Changed = true;
2497 PostIncs.insert(Cond);
2498 decline_post_inc:;
2501 // Determine an insertion point for the loop induction variable increment. It
2502 // must dominate all the post-inc comparisons we just set up, and it must
2503 // dominate the loop latch edge.
2504 IVIncInsertPos = L->getLoopLatch()->getTerminator();
2505 for (Instruction *Inst : PostIncs) {
2506 BasicBlock *BB =
2507 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2508 Inst->getParent());
2509 if (BB == Inst->getParent())
2510 IVIncInsertPos = Inst;
2511 else if (BB != IVIncInsertPos->getParent())
2512 IVIncInsertPos = BB->getTerminator();
2516 /// Determine if the given use can accommodate a fixup at the given offset and
2517 /// other details. If so, update the use and return true.
2518 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2519 bool HasBaseReg, LSRUse::KindType Kind,
2520 MemAccessTy AccessTy) {
2521 int64_t NewMinOffset = LU.MinOffset;
2522 int64_t NewMaxOffset = LU.MaxOffset;
2523 MemAccessTy NewAccessTy = AccessTy;
2525 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2526 // something conservative, however this can pessimize in the case that one of
2527 // the uses will have all its uses outside the loop, for example.
2528 if (LU.Kind != Kind)
2529 return false;
2531 // Check for a mismatched access type, and fall back conservatively as needed.
2532 // TODO: Be less conservative when the type is similar and can use the same
2533 // addressing modes.
2534 if (Kind == LSRUse::Address) {
2535 if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2536 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2537 AccessTy.AddrSpace);
2541 // Conservatively assume HasBaseReg is true for now.
2542 if (NewOffset < LU.MinOffset) {
2543 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2544 LU.MaxOffset - NewOffset, HasBaseReg))
2545 return false;
2546 NewMinOffset = NewOffset;
2547 } else if (NewOffset > LU.MaxOffset) {
2548 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2549 NewOffset - LU.MinOffset, HasBaseReg))
2550 return false;
2551 NewMaxOffset = NewOffset;
2554 // Update the use.
2555 LU.MinOffset = NewMinOffset;
2556 LU.MaxOffset = NewMaxOffset;
2557 LU.AccessTy = NewAccessTy;
2558 return true;
2561 /// Return an LSRUse index and an offset value for a fixup which needs the given
2562 /// expression, with the given kind and optional access type. Either reuse an
2563 /// existing use or create a new one, as needed.
2564 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2565 LSRUse::KindType Kind,
2566 MemAccessTy AccessTy) {
2567 const SCEV *Copy = Expr;
2568 int64_t Offset = ExtractImmediate(Expr, SE);
2570 // Basic uses can't accept any offset, for example.
2571 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2572 Offset, /*HasBaseReg=*/ true)) {
2573 Expr = Copy;
2574 Offset = 0;
2577 std::pair<UseMapTy::iterator, bool> P =
2578 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2579 if (!P.second) {
2580 // A use already existed with this base.
2581 size_t LUIdx = P.first->second;
2582 LSRUse &LU = Uses[LUIdx];
2583 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2584 // Reuse this use.
2585 return std::make_pair(LUIdx, Offset);
2588 // Create a new use.
2589 size_t LUIdx = Uses.size();
2590 P.first->second = LUIdx;
2591 Uses.push_back(LSRUse(Kind, AccessTy));
2592 LSRUse &LU = Uses[LUIdx];
2594 LU.MinOffset = Offset;
2595 LU.MaxOffset = Offset;
2596 return std::make_pair(LUIdx, Offset);
2599 /// Delete the given use from the Uses list.
2600 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2601 if (&LU != &Uses.back())
2602 std::swap(LU, Uses.back());
2603 Uses.pop_back();
2605 // Update RegUses.
2606 RegUses.swapAndDropUse(LUIdx, Uses.size());
2609 /// Look for a use distinct from OrigLU which is has a formula that has the same
2610 /// registers as the given formula.
2611 LSRUse *
2612 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2613 const LSRUse &OrigLU) {
2614 // Search all uses for the formula. This could be more clever.
2615 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2616 LSRUse &LU = Uses[LUIdx];
2617 // Check whether this use is close enough to OrigLU, to see whether it's
2618 // worthwhile looking through its formulae.
2619 // Ignore ICmpZero uses because they may contain formulae generated by
2620 // GenerateICmpZeroScales, in which case adding fixup offsets may
2621 // be invalid.
2622 if (&LU != &OrigLU &&
2623 LU.Kind != LSRUse::ICmpZero &&
2624 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2625 LU.WidestFixupType == OrigLU.WidestFixupType &&
2626 LU.HasFormulaWithSameRegs(OrigF)) {
2627 // Scan through this use's formulae.
2628 for (const Formula &F : LU.Formulae) {
2629 // Check to see if this formula has the same registers and symbols
2630 // as OrigF.
2631 if (F.BaseRegs == OrigF.BaseRegs &&
2632 F.ScaledReg == OrigF.ScaledReg &&
2633 F.BaseGV == OrigF.BaseGV &&
2634 F.Scale == OrigF.Scale &&
2635 F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2636 if (F.BaseOffset == 0)
2637 return &LU;
2638 // This is the formula where all the registers and symbols matched;
2639 // there aren't going to be any others. Since we declined it, we
2640 // can skip the rest of the formulae and proceed to the next LSRUse.
2641 break;
2647 // Nothing looked good.
2648 return nullptr;
2651 void LSRInstance::CollectInterestingTypesAndFactors() {
2652 SmallSetVector<const SCEV *, 4> Strides;
2654 // Collect interesting types and strides.
2655 SmallVector<const SCEV *, 4> Worklist;
2656 for (const IVStrideUse &U : IU) {
2657 const SCEV *Expr = IU.getExpr(U);
2659 // Collect interesting types.
2660 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2662 // Add strides for mentioned loops.
2663 Worklist.push_back(Expr);
2664 do {
2665 const SCEV *S = Worklist.pop_back_val();
2666 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2667 if (AR->getLoop() == L)
2668 Strides.insert(AR->getStepRecurrence(SE));
2669 Worklist.push_back(AR->getStart());
2670 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2671 Worklist.append(Add->op_begin(), Add->op_end());
2673 } while (!Worklist.empty());
2676 // Compute interesting factors from the set of interesting strides.
2677 for (SmallSetVector<const SCEV *, 4>::const_iterator
2678 I = Strides.begin(), E = Strides.end(); I != E; ++I)
2679 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2680 std::next(I); NewStrideIter != E; ++NewStrideIter) {
2681 const SCEV *OldStride = *I;
2682 const SCEV *NewStride = *NewStrideIter;
2684 if (SE.getTypeSizeInBits(OldStride->getType()) !=
2685 SE.getTypeSizeInBits(NewStride->getType())) {
2686 if (SE.getTypeSizeInBits(OldStride->getType()) >
2687 SE.getTypeSizeInBits(NewStride->getType()))
2688 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2689 else
2690 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2692 if (const SCEVConstant *Factor =
2693 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2694 SE, true))) {
2695 if (Factor->getAPInt().getMinSignedBits() <= 64)
2696 Factors.insert(Factor->getAPInt().getSExtValue());
2697 } else if (const SCEVConstant *Factor =
2698 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2699 NewStride,
2700 SE, true))) {
2701 if (Factor->getAPInt().getMinSignedBits() <= 64)
2702 Factors.insert(Factor->getAPInt().getSExtValue());
2706 // If all uses use the same type, don't bother looking for truncation-based
2707 // reuse.
2708 if (Types.size() == 1)
2709 Types.clear();
2711 LLVM_DEBUG(print_factors_and_types(dbgs()));
2714 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2715 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2716 /// IVStrideUses, we could partially skip this.
2717 static User::op_iterator
2718 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2719 Loop *L, ScalarEvolution &SE) {
2720 for(; OI != OE; ++OI) {
2721 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2722 if (!SE.isSCEVable(Oper->getType()))
2723 continue;
2725 if (const SCEVAddRecExpr *AR =
2726 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2727 if (AR->getLoop() == L)
2728 break;
2732 return OI;
2735 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2736 /// a convenient helper.
2737 static Value *getWideOperand(Value *Oper) {
2738 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2739 return Trunc->getOperand(0);
2740 return Oper;
2743 /// Return true if we allow an IV chain to include both types.
2744 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2745 Type *LType = LVal->getType();
2746 Type *RType = RVal->getType();
2747 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2748 // Different address spaces means (possibly)
2749 // different types of the pointer implementation,
2750 // e.g. i16 vs i32 so disallow that.
2751 (LType->getPointerAddressSpace() ==
2752 RType->getPointerAddressSpace()));
2755 /// Return an approximation of this SCEV expression's "base", or NULL for any
2756 /// constant. Returning the expression itself is conservative. Returning a
2757 /// deeper subexpression is more precise and valid as long as it isn't less
2758 /// complex than another subexpression. For expressions involving multiple
2759 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2760 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2761 /// IVInc==b-a.
2763 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2764 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2765 static const SCEV *getExprBase(const SCEV *S) {
2766 switch (S->getSCEVType()) {
2767 default: // uncluding scUnknown.
2768 return S;
2769 case scConstant:
2770 return nullptr;
2771 case scTruncate:
2772 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2773 case scZeroExtend:
2774 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2775 case scSignExtend:
2776 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2777 case scAddExpr: {
2778 // Skip over scaled operands (scMulExpr) to follow add operands as long as
2779 // there's nothing more complex.
2780 // FIXME: not sure if we want to recognize negation.
2781 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2782 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2783 E(Add->op_begin()); I != E; ++I) {
2784 const SCEV *SubExpr = *I;
2785 if (SubExpr->getSCEVType() == scAddExpr)
2786 return getExprBase(SubExpr);
2788 if (SubExpr->getSCEVType() != scMulExpr)
2789 return SubExpr;
2791 return S; // all operands are scaled, be conservative.
2793 case scAddRecExpr:
2794 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2798 /// Return true if the chain increment is profitable to expand into a loop
2799 /// invariant value, which may require its own register. A profitable chain
2800 /// increment will be an offset relative to the same base. We allow such offsets
2801 /// to potentially be used as chain increment as long as it's not obviously
2802 /// expensive to expand using real instructions.
2803 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2804 const SCEV *IncExpr,
2805 ScalarEvolution &SE) {
2806 // Aggressively form chains when -stress-ivchain.
2807 if (StressIVChain)
2808 return true;
2810 // Do not replace a constant offset from IV head with a nonconstant IV
2811 // increment.
2812 if (!isa<SCEVConstant>(IncExpr)) {
2813 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2814 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2815 return false;
2818 SmallPtrSet<const SCEV*, 8> Processed;
2819 return !isHighCostExpansion(IncExpr, Processed, SE);
2822 /// Return true if the number of registers needed for the chain is estimated to
2823 /// be less than the number required for the individual IV users. First prohibit
2824 /// any IV users that keep the IV live across increments (the Users set should
2825 /// be empty). Next count the number and type of increments in the chain.
2827 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2828 /// effectively use postinc addressing modes. Only consider it profitable it the
2829 /// increments can be computed in fewer registers when chained.
2831 /// TODO: Consider IVInc free if it's already used in another chains.
2832 static bool
2833 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2834 ScalarEvolution &SE) {
2835 if (StressIVChain)
2836 return true;
2838 if (!Chain.hasIncs())
2839 return false;
2841 if (!Users.empty()) {
2842 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2843 for (Instruction *Inst
2844 : Users) { dbgs() << " " << *Inst << "\n"; });
2845 return false;
2847 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2849 // The chain itself may require a register, so intialize cost to 1.
2850 int cost = 1;
2852 // A complete chain likely eliminates the need for keeping the original IV in
2853 // a register. LSR does not currently know how to form a complete chain unless
2854 // the header phi already exists.
2855 if (isa<PHINode>(Chain.tailUserInst())
2856 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2857 --cost;
2859 const SCEV *LastIncExpr = nullptr;
2860 unsigned NumConstIncrements = 0;
2861 unsigned NumVarIncrements = 0;
2862 unsigned NumReusedIncrements = 0;
2863 for (const IVInc &Inc : Chain) {
2864 if (Inc.IncExpr->isZero())
2865 continue;
2867 // Incrementing by zero or some constant is neutral. We assume constants can
2868 // be folded into an addressing mode or an add's immediate operand.
2869 if (isa<SCEVConstant>(Inc.IncExpr)) {
2870 ++NumConstIncrements;
2871 continue;
2874 if (Inc.IncExpr == LastIncExpr)
2875 ++NumReusedIncrements;
2876 else
2877 ++NumVarIncrements;
2879 LastIncExpr = Inc.IncExpr;
2881 // An IV chain with a single increment is handled by LSR's postinc
2882 // uses. However, a chain with multiple increments requires keeping the IV's
2883 // value live longer than it needs to be if chained.
2884 if (NumConstIncrements > 1)
2885 --cost;
2887 // Materializing increment expressions in the preheader that didn't exist in
2888 // the original code may cost a register. For example, sign-extended array
2889 // indices can produce ridiculous increments like this:
2890 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2891 cost += NumVarIncrements;
2893 // Reusing variable increments likely saves a register to hold the multiple of
2894 // the stride.
2895 cost -= NumReusedIncrements;
2897 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2898 << "\n");
2900 return cost < 0;
2903 /// Add this IV user to an existing chain or make it the head of a new chain.
2904 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2905 SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2906 // When IVs are used as types of varying widths, they are generally converted
2907 // to a wider type with some uses remaining narrow under a (free) trunc.
2908 Value *const NextIV = getWideOperand(IVOper);
2909 const SCEV *const OperExpr = SE.getSCEV(NextIV);
2910 const SCEV *const OperExprBase = getExprBase(OperExpr);
2912 // Visit all existing chains. Check if its IVOper can be computed as a
2913 // profitable loop invariant increment from the last link in the Chain.
2914 unsigned ChainIdx = 0, NChains = IVChainVec.size();
2915 const SCEV *LastIncExpr = nullptr;
2916 for (; ChainIdx < NChains; ++ChainIdx) {
2917 IVChain &Chain = IVChainVec[ChainIdx];
2919 // Prune the solution space aggressively by checking that both IV operands
2920 // are expressions that operate on the same unscaled SCEVUnknown. This
2921 // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2922 // first avoids creating extra SCEV expressions.
2923 if (!StressIVChain && Chain.ExprBase != OperExprBase)
2924 continue;
2926 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2927 if (!isCompatibleIVType(PrevIV, NextIV))
2928 continue;
2930 // A phi node terminates a chain.
2931 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2932 continue;
2934 // The increment must be loop-invariant so it can be kept in a register.
2935 const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2936 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2937 if (!SE.isLoopInvariant(IncExpr, L))
2938 continue;
2940 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2941 LastIncExpr = IncExpr;
2942 break;
2945 // If we haven't found a chain, create a new one, unless we hit the max. Don't
2946 // bother for phi nodes, because they must be last in the chain.
2947 if (ChainIdx == NChains) {
2948 if (isa<PHINode>(UserInst))
2949 return;
2950 if (NChains >= MaxChains && !StressIVChain) {
2951 LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2952 return;
2954 LastIncExpr = OperExpr;
2955 // IVUsers may have skipped over sign/zero extensions. We don't currently
2956 // attempt to form chains involving extensions unless they can be hoisted
2957 // into this loop's AddRec.
2958 if (!isa<SCEVAddRecExpr>(LastIncExpr))
2959 return;
2960 ++NChains;
2961 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2962 OperExprBase));
2963 ChainUsersVec.resize(NChains);
2964 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2965 << ") IV=" << *LastIncExpr << "\n");
2966 } else {
2967 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst
2968 << ") IV+" << *LastIncExpr << "\n");
2969 // Add this IV user to the end of the chain.
2970 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2972 IVChain &Chain = IVChainVec[ChainIdx];
2974 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2975 // This chain's NearUsers become FarUsers.
2976 if (!LastIncExpr->isZero()) {
2977 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2978 NearUsers.end());
2979 NearUsers.clear();
2982 // All other uses of IVOperand become near uses of the chain.
2983 // We currently ignore intermediate values within SCEV expressions, assuming
2984 // they will eventually be used be the current chain, or can be computed
2985 // from one of the chain increments. To be more precise we could
2986 // transitively follow its user and only add leaf IV users to the set.
2987 for (User *U : IVOper->users()) {
2988 Instruction *OtherUse = dyn_cast<Instruction>(U);
2989 if (!OtherUse)
2990 continue;
2991 // Uses in the chain will no longer be uses if the chain is formed.
2992 // Include the head of the chain in this iteration (not Chain.begin()).
2993 IVChain::const_iterator IncIter = Chain.Incs.begin();
2994 IVChain::const_iterator IncEnd = Chain.Incs.end();
2995 for( ; IncIter != IncEnd; ++IncIter) {
2996 if (IncIter->UserInst == OtherUse)
2997 break;
2999 if (IncIter != IncEnd)
3000 continue;
3002 if (SE.isSCEVable(OtherUse->getType())
3003 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3004 && IU.isIVUserOrOperand(OtherUse)) {
3005 continue;
3007 NearUsers.insert(OtherUse);
3010 // Since this user is part of the chain, it's no longer considered a use
3011 // of the chain.
3012 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3015 /// Populate the vector of Chains.
3017 /// This decreases ILP at the architecture level. Targets with ample registers,
3018 /// multiple memory ports, and no register renaming probably don't want
3019 /// this. However, such targets should probably disable LSR altogether.
3021 /// The job of LSR is to make a reasonable choice of induction variables across
3022 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3023 /// ILP *within the loop* if the target wants it.
3025 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3026 /// will not reorder memory operations, it will recognize this as a chain, but
3027 /// will generate redundant IV increments. Ideally this would be corrected later
3028 /// by a smart scheduler:
3029 /// = A[i]
3030 /// = A[i+x]
3031 /// A[i] =
3032 /// A[i+x] =
3034 /// TODO: Walk the entire domtree within this loop, not just the path to the
3035 /// loop latch. This will discover chains on side paths, but requires
3036 /// maintaining multiple copies of the Chains state.
3037 void LSRInstance::CollectChains() {
3038 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3039 SmallVector<ChainUsers, 8> ChainUsersVec;
3041 SmallVector<BasicBlock *,8> LatchPath;
3042 BasicBlock *LoopHeader = L->getHeader();
3043 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3044 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3045 LatchPath.push_back(Rung->getBlock());
3047 LatchPath.push_back(LoopHeader);
3049 // Walk the instruction stream from the loop header to the loop latch.
3050 for (BasicBlock *BB : reverse(LatchPath)) {
3051 for (Instruction &I : *BB) {
3052 // Skip instructions that weren't seen by IVUsers analysis.
3053 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3054 continue;
3056 // Ignore users that are part of a SCEV expression. This way we only
3057 // consider leaf IV Users. This effectively rediscovers a portion of
3058 // IVUsers analysis but in program order this time.
3059 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3060 continue;
3062 // Remove this instruction from any NearUsers set it may be in.
3063 for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3064 ChainIdx < NChains; ++ChainIdx) {
3065 ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3067 // Search for operands that can be chained.
3068 SmallPtrSet<Instruction*, 4> UniqueOperands;
3069 User::op_iterator IVOpEnd = I.op_end();
3070 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3071 while (IVOpIter != IVOpEnd) {
3072 Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3073 if (UniqueOperands.insert(IVOpInst).second)
3074 ChainInstruction(&I, IVOpInst, ChainUsersVec);
3075 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3077 } // Continue walking down the instructions.
3078 } // Continue walking down the domtree.
3079 // Visit phi backedges to determine if the chain can generate the IV postinc.
3080 for (PHINode &PN : L->getHeader()->phis()) {
3081 if (!SE.isSCEVable(PN.getType()))
3082 continue;
3084 Instruction *IncV =
3085 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3086 if (IncV)
3087 ChainInstruction(&PN, IncV, ChainUsersVec);
3089 // Remove any unprofitable chains.
3090 unsigned ChainIdx = 0;
3091 for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3092 UsersIdx < NChains; ++UsersIdx) {
3093 if (!isProfitableChain(IVChainVec[UsersIdx],
3094 ChainUsersVec[UsersIdx].FarUsers, SE))
3095 continue;
3096 // Preserve the chain at UsesIdx.
3097 if (ChainIdx != UsersIdx)
3098 IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3099 FinalizeChain(IVChainVec[ChainIdx]);
3100 ++ChainIdx;
3102 IVChainVec.resize(ChainIdx);
3105 void LSRInstance::FinalizeChain(IVChain &Chain) {
3106 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3107 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3109 for (const IVInc &Inc : Chain) {
3110 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n");
3111 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3112 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3113 IVIncSet.insert(UseI);
3117 /// Return true if the IVInc can be folded into an addressing mode.
3118 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3119 Value *Operand, const TargetTransformInfo &TTI) {
3120 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3121 if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3122 return false;
3124 if (IncConst->getAPInt().getMinSignedBits() > 64)
3125 return false;
3127 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3128 int64_t IncOffset = IncConst->getValue()->getSExtValue();
3129 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3130 IncOffset, /*HasBaseReg=*/false))
3131 return false;
3133 return true;
3136 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3137 /// user's operand from the previous IV user's operand.
3138 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3139 SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3140 // Find the new IVOperand for the head of the chain. It may have been replaced
3141 // by LSR.
3142 const IVInc &Head = Chain.Incs[0];
3143 User::op_iterator IVOpEnd = Head.UserInst->op_end();
3144 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3145 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3146 IVOpEnd, L, SE);
3147 Value *IVSrc = nullptr;
3148 while (IVOpIter != IVOpEnd) {
3149 IVSrc = getWideOperand(*IVOpIter);
3151 // If this operand computes the expression that the chain needs, we may use
3152 // it. (Check this after setting IVSrc which is used below.)
3154 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3155 // narrow for the chain, so we can no longer use it. We do allow using a
3156 // wider phi, assuming the LSR checked for free truncation. In that case we
3157 // should already have a truncate on this operand such that
3158 // getSCEV(IVSrc) == IncExpr.
3159 if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3160 || SE.getSCEV(IVSrc) == Head.IncExpr) {
3161 break;
3163 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3165 if (IVOpIter == IVOpEnd) {
3166 // Gracefully give up on this chain.
3167 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3168 return;
3170 assert(IVSrc && "Failed to find IV chain source");
3172 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3173 Type *IVTy = IVSrc->getType();
3174 Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3175 const SCEV *LeftOverExpr = nullptr;
3176 for (const IVInc &Inc : Chain) {
3177 Instruction *InsertPt = Inc.UserInst;
3178 if (isa<PHINode>(InsertPt))
3179 InsertPt = L->getLoopLatch()->getTerminator();
3181 // IVOper will replace the current IV User's operand. IVSrc is the IV
3182 // value currently held in a register.
3183 Value *IVOper = IVSrc;
3184 if (!Inc.IncExpr->isZero()) {
3185 // IncExpr was the result of subtraction of two narrow values, so must
3186 // be signed.
3187 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3188 LeftOverExpr = LeftOverExpr ?
3189 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3191 if (LeftOverExpr && !LeftOverExpr->isZero()) {
3192 // Expand the IV increment.
3193 Rewriter.clearPostInc();
3194 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3195 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3196 SE.getUnknown(IncV));
3197 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3199 // If an IV increment can't be folded, use it as the next IV value.
3200 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3201 assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3202 IVSrc = IVOper;
3203 LeftOverExpr = nullptr;
3206 Type *OperTy = Inc.IVOperand->getType();
3207 if (IVTy != OperTy) {
3208 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3209 "cannot extend a chained IV");
3210 IRBuilder<> Builder(InsertPt);
3211 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3213 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3214 DeadInsts.emplace_back(Inc.IVOperand);
3216 // If LSR created a new, wider phi, we may also replace its postinc. We only
3217 // do this if we also found a wide value for the head of the chain.
3218 if (isa<PHINode>(Chain.tailUserInst())) {
3219 for (PHINode &Phi : L->getHeader()->phis()) {
3220 if (!isCompatibleIVType(&Phi, IVSrc))
3221 continue;
3222 Instruction *PostIncV = dyn_cast<Instruction>(
3223 Phi.getIncomingValueForBlock(L->getLoopLatch()));
3224 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3225 continue;
3226 Value *IVOper = IVSrc;
3227 Type *PostIncTy = PostIncV->getType();
3228 if (IVTy != PostIncTy) {
3229 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3230 IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3231 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3232 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3234 Phi.replaceUsesOfWith(PostIncV, IVOper);
3235 DeadInsts.emplace_back(PostIncV);
3240 void LSRInstance::CollectFixupsAndInitialFormulae() {
3241 BranchInst *ExitBranch = nullptr;
3242 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &LibInfo);
3244 for (const IVStrideUse &U : IU) {
3245 Instruction *UserInst = U.getUser();
3246 // Skip IV users that are part of profitable IV Chains.
3247 User::op_iterator UseI =
3248 find(UserInst->operands(), U.getOperandValToReplace());
3249 assert(UseI != UserInst->op_end() && "cannot find IV operand");
3250 if (IVIncSet.count(UseI)) {
3251 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3252 continue;
3255 LSRUse::KindType Kind = LSRUse::Basic;
3256 MemAccessTy AccessTy;
3257 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3258 Kind = LSRUse::Address;
3259 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3262 const SCEV *S = IU.getExpr(U);
3263 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3265 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3266 // (N - i == 0), and this allows (N - i) to be the expression that we work
3267 // with rather than just N or i, so we can consider the register
3268 // requirements for both N and i at the same time. Limiting this code to
3269 // equality icmps is not a problem because all interesting loops use
3270 // equality icmps, thanks to IndVarSimplify.
3271 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3272 // If CI can be saved in some target, like replaced inside hardware loop
3273 // in PowerPC, no need to generate initial formulae for it.
3274 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3275 continue;
3276 if (CI->isEquality()) {
3277 // Swap the operands if needed to put the OperandValToReplace on the
3278 // left, for consistency.
3279 Value *NV = CI->getOperand(1);
3280 if (NV == U.getOperandValToReplace()) {
3281 CI->setOperand(1, CI->getOperand(0));
3282 CI->setOperand(0, NV);
3283 NV = CI->getOperand(1);
3284 Changed = true;
3287 // x == y --> x - y == 0
3288 const SCEV *N = SE.getSCEV(NV);
3289 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3290 // S is normalized, so normalize N before folding it into S
3291 // to keep the result normalized.
3292 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3293 Kind = LSRUse::ICmpZero;
3294 S = SE.getMinusSCEV(N, S);
3297 // -1 and the negations of all interesting strides (except the negation
3298 // of -1) are now also interesting.
3299 for (size_t i = 0, e = Factors.size(); i != e; ++i)
3300 if (Factors[i] != -1)
3301 Factors.insert(-(uint64_t)Factors[i]);
3302 Factors.insert(-1);
3306 // Get or create an LSRUse.
3307 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3308 size_t LUIdx = P.first;
3309 int64_t Offset = P.second;
3310 LSRUse &LU = Uses[LUIdx];
3312 // Record the fixup.
3313 LSRFixup &LF = LU.getNewFixup();
3314 LF.UserInst = UserInst;
3315 LF.OperandValToReplace = U.getOperandValToReplace();
3316 LF.PostIncLoops = TmpPostIncLoops;
3317 LF.Offset = Offset;
3318 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3320 if (!LU.WidestFixupType ||
3321 SE.getTypeSizeInBits(LU.WidestFixupType) <
3322 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3323 LU.WidestFixupType = LF.OperandValToReplace->getType();
3325 // If this is the first use of this LSRUse, give it a formula.
3326 if (LU.Formulae.empty()) {
3327 InsertInitialFormula(S, LU, LUIdx);
3328 CountRegisters(LU.Formulae.back(), LUIdx);
3332 LLVM_DEBUG(print_fixups(dbgs()));
3335 /// Insert a formula for the given expression into the given use, separating out
3336 /// loop-variant portions from loop-invariant and loop-computable portions.
3337 void
3338 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3339 // Mark uses whose expressions cannot be expanded.
3340 if (!isSafeToExpand(S, SE))
3341 LU.RigidFormula = true;
3343 Formula F;
3344 F.initialMatch(S, L, SE);
3345 bool Inserted = InsertFormula(LU, LUIdx, F);
3346 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3349 /// Insert a simple single-register formula for the given expression into the
3350 /// given use.
3351 void
3352 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3353 LSRUse &LU, size_t LUIdx) {
3354 Formula F;
3355 F.BaseRegs.push_back(S);
3356 F.HasBaseReg = true;
3357 bool Inserted = InsertFormula(LU, LUIdx, F);
3358 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3361 /// Note which registers are used by the given formula, updating RegUses.
3362 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3363 if (F.ScaledReg)
3364 RegUses.countRegister(F.ScaledReg, LUIdx);
3365 for (const SCEV *BaseReg : F.BaseRegs)
3366 RegUses.countRegister(BaseReg, LUIdx);
3369 /// If the given formula has not yet been inserted, add it to the list, and
3370 /// return true. Return false otherwise.
3371 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3372 // Do not insert formula that we will not be able to expand.
3373 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3374 "Formula is illegal");
3376 if (!LU.InsertFormula(F, *L))
3377 return false;
3379 CountRegisters(F, LUIdx);
3380 return true;
3383 /// Check for other uses of loop-invariant values which we're tracking. These
3384 /// other uses will pin these values in registers, making them less profitable
3385 /// for elimination.
3386 /// TODO: This currently misses non-constant addrec step registers.
3387 /// TODO: Should this give more weight to users inside the loop?
3388 void
3389 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3390 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3391 SmallPtrSet<const SCEV *, 32> Visited;
3393 while (!Worklist.empty()) {
3394 const SCEV *S = Worklist.pop_back_val();
3396 // Don't process the same SCEV twice
3397 if (!Visited.insert(S).second)
3398 continue;
3400 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3401 Worklist.append(N->op_begin(), N->op_end());
3402 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3403 Worklist.push_back(C->getOperand());
3404 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3405 Worklist.push_back(D->getLHS());
3406 Worklist.push_back(D->getRHS());
3407 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3408 const Value *V = US->getValue();
3409 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3410 // Look for instructions defined outside the loop.
3411 if (L->contains(Inst)) continue;
3412 } else if (isa<UndefValue>(V))
3413 // Undef doesn't have a live range, so it doesn't matter.
3414 continue;
3415 for (const Use &U : V->uses()) {
3416 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3417 // Ignore non-instructions.
3418 if (!UserInst)
3419 continue;
3420 // Ignore instructions in other functions (as can happen with
3421 // Constants).
3422 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3423 continue;
3424 // Ignore instructions not dominated by the loop.
3425 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3426 UserInst->getParent() :
3427 cast<PHINode>(UserInst)->getIncomingBlock(
3428 PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3429 if (!DT.dominates(L->getHeader(), UseBB))
3430 continue;
3431 // Don't bother if the instruction is in a BB which ends in an EHPad.
3432 if (UseBB->getTerminator()->isEHPad())
3433 continue;
3434 // Don't bother rewriting PHIs in catchswitch blocks.
3435 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3436 continue;
3437 // Ignore uses which are part of other SCEV expressions, to avoid
3438 // analyzing them multiple times.
3439 if (SE.isSCEVable(UserInst->getType())) {
3440 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3441 // If the user is a no-op, look through to its uses.
3442 if (!isa<SCEVUnknown>(UserS))
3443 continue;
3444 if (UserS == US) {
3445 Worklist.push_back(
3446 SE.getUnknown(const_cast<Instruction *>(UserInst)));
3447 continue;
3450 // Ignore icmp instructions which are already being analyzed.
3451 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3452 unsigned OtherIdx = !U.getOperandNo();
3453 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3454 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3455 continue;
3458 std::pair<size_t, int64_t> P = getUse(
3459 S, LSRUse::Basic, MemAccessTy());
3460 size_t LUIdx = P.first;
3461 int64_t Offset = P.second;
3462 LSRUse &LU = Uses[LUIdx];
3463 LSRFixup &LF = LU.getNewFixup();
3464 LF.UserInst = const_cast<Instruction *>(UserInst);
3465 LF.OperandValToReplace = U;
3466 LF.Offset = Offset;
3467 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3468 if (!LU.WidestFixupType ||
3469 SE.getTypeSizeInBits(LU.WidestFixupType) <
3470 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3471 LU.WidestFixupType = LF.OperandValToReplace->getType();
3472 InsertSupplementalFormula(US, LU, LUIdx);
3473 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3474 break;
3480 /// Split S into subexpressions which can be pulled out into separate
3481 /// registers. If C is non-null, multiply each subexpression by C.
3483 /// Return remainder expression after factoring the subexpressions captured by
3484 /// Ops. If Ops is complete, return NULL.
3485 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3486 SmallVectorImpl<const SCEV *> &Ops,
3487 const Loop *L,
3488 ScalarEvolution &SE,
3489 unsigned Depth = 0) {
3490 // Arbitrarily cap recursion to protect compile time.
3491 if (Depth >= 3)
3492 return S;
3494 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3495 // Break out add operands.
3496 for (const SCEV *S : Add->operands()) {
3497 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3498 if (Remainder)
3499 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3501 return nullptr;
3502 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3503 // Split a non-zero base out of an addrec.
3504 if (AR->getStart()->isZero() || !AR->isAffine())
3505 return S;
3507 const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3508 C, Ops, L, SE, Depth+1);
3509 // Split the non-zero AddRec unless it is part of a nested recurrence that
3510 // does not pertain to this loop.
3511 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3512 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3513 Remainder = nullptr;
3515 if (Remainder != AR->getStart()) {
3516 if (!Remainder)
3517 Remainder = SE.getConstant(AR->getType(), 0);
3518 return SE.getAddRecExpr(Remainder,
3519 AR->getStepRecurrence(SE),
3520 AR->getLoop(),
3521 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3522 SCEV::FlagAnyWrap);
3524 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3525 // Break (C * (a + b + c)) into C*a + C*b + C*c.
3526 if (Mul->getNumOperands() != 2)
3527 return S;
3528 if (const SCEVConstant *Op0 =
3529 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3530 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3531 const SCEV *Remainder =
3532 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3533 if (Remainder)
3534 Ops.push_back(SE.getMulExpr(C, Remainder));
3535 return nullptr;
3538 return S;
3541 /// Return true if the SCEV represents a value that may end up as a
3542 /// post-increment operation.
3543 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3544 LSRUse &LU, const SCEV *S, const Loop *L,
3545 ScalarEvolution &SE) {
3546 if (LU.Kind != LSRUse::Address ||
3547 !LU.AccessTy.getType()->isIntOrIntVectorTy())
3548 return false;
3549 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3550 if (!AR)
3551 return false;
3552 const SCEV *LoopStep = AR->getStepRecurrence(SE);
3553 if (!isa<SCEVConstant>(LoopStep))
3554 return false;
3555 if (LU.AccessTy.getType()->getScalarSizeInBits() !=
3556 LoopStep->getType()->getScalarSizeInBits())
3557 return false;
3558 // Check if a post-indexed load/store can be used.
3559 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3560 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3561 const SCEV *LoopStart = AR->getStart();
3562 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3563 return true;
3565 return false;
3568 /// Helper function for LSRInstance::GenerateReassociations.
3569 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3570 const Formula &Base,
3571 unsigned Depth, size_t Idx,
3572 bool IsScaledReg) {
3573 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3574 // Don't generate reassociations for the base register of a value that
3575 // may generate a post-increment operator. The reason is that the
3576 // reassociations cause extra base+register formula to be created,
3577 // and possibly chosen, but the post-increment is more efficient.
3578 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3579 return;
3580 SmallVector<const SCEV *, 8> AddOps;
3581 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3582 if (Remainder)
3583 AddOps.push_back(Remainder);
3585 if (AddOps.size() == 1)
3586 return;
3588 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3589 JE = AddOps.end();
3590 J != JE; ++J) {
3591 // Loop-variant "unknown" values are uninteresting; we won't be able to
3592 // do anything meaningful with them.
3593 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3594 continue;
3596 // Don't pull a constant into a register if the constant could be folded
3597 // into an immediate field.
3598 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3599 LU.AccessTy, *J, Base.getNumRegs() > 1))
3600 continue;
3602 // Collect all operands except *J.
3603 SmallVector<const SCEV *, 8> InnerAddOps(
3604 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3605 InnerAddOps.append(std::next(J),
3606 ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3608 // Don't leave just a constant behind in a register if the constant could
3609 // be folded into an immediate field.
3610 if (InnerAddOps.size() == 1 &&
3611 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3612 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3613 continue;
3615 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3616 if (InnerSum->isZero())
3617 continue;
3618 Formula F = Base;
3620 // Add the remaining pieces of the add back into the new formula.
3621 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3622 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3623 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3624 InnerSumSC->getValue()->getZExtValue())) {
3625 F.UnfoldedOffset =
3626 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3627 if (IsScaledReg)
3628 F.ScaledReg = nullptr;
3629 else
3630 F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3631 } else if (IsScaledReg)
3632 F.ScaledReg = InnerSum;
3633 else
3634 F.BaseRegs[Idx] = InnerSum;
3636 // Add J as its own register, or an unfolded immediate.
3637 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3638 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3639 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3640 SC->getValue()->getZExtValue()))
3641 F.UnfoldedOffset =
3642 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3643 else
3644 F.BaseRegs.push_back(*J);
3645 // We may have changed the number of register in base regs, adjust the
3646 // formula accordingly.
3647 F.canonicalize(*L);
3649 if (InsertFormula(LU, LUIdx, F))
3650 // If that formula hadn't been seen before, recurse to find more like
3651 // it.
3652 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3653 // Because just Depth is not enough to bound compile time.
3654 // This means that every time AddOps.size() is greater 16^x we will add
3655 // x to Depth.
3656 GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3657 Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3661 /// Split out subexpressions from adds and the bases of addrecs.
3662 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3663 Formula Base, unsigned Depth) {
3664 assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3665 // Arbitrarily cap recursion to protect compile time.
3666 if (Depth >= 3)
3667 return;
3669 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3670 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3672 if (Base.Scale == 1)
3673 GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3674 /* Idx */ -1, /* IsScaledReg */ true);
3677 /// Generate a formula consisting of all of the loop-dominating registers added
3678 /// into a single register.
3679 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3680 Formula Base) {
3681 // This method is only interesting on a plurality of registers.
3682 if (Base.BaseRegs.size() + (Base.Scale == 1) +
3683 (Base.UnfoldedOffset != 0) <= 1)
3684 return;
3686 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3687 // processing the formula.
3688 Base.unscale();
3689 SmallVector<const SCEV *, 4> Ops;
3690 Formula NewBase = Base;
3691 NewBase.BaseRegs.clear();
3692 Type *CombinedIntegerType = nullptr;
3693 for (const SCEV *BaseReg : Base.BaseRegs) {
3694 if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3695 !SE.hasComputableLoopEvolution(BaseReg, L)) {
3696 if (!CombinedIntegerType)
3697 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3698 Ops.push_back(BaseReg);
3700 else
3701 NewBase.BaseRegs.push_back(BaseReg);
3704 // If no register is relevant, we're done.
3705 if (Ops.size() == 0)
3706 return;
3708 // Utility function for generating the required variants of the combined
3709 // registers.
3710 auto GenerateFormula = [&](const SCEV *Sum) {
3711 Formula F = NewBase;
3713 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3714 // opportunity to fold something. For now, just ignore such cases
3715 // rather than proceed with zero in a register.
3716 if (Sum->isZero())
3717 return;
3719 F.BaseRegs.push_back(Sum);
3720 F.canonicalize(*L);
3721 (void)InsertFormula(LU, LUIdx, F);
3724 // If we collected at least two registers, generate a formula combining them.
3725 if (Ops.size() > 1) {
3726 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3727 GenerateFormula(SE.getAddExpr(OpsCopy));
3730 // If we have an unfolded offset, generate a formula combining it with the
3731 // registers collected.
3732 if (NewBase.UnfoldedOffset) {
3733 assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3734 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3735 true));
3736 NewBase.UnfoldedOffset = 0;
3737 GenerateFormula(SE.getAddExpr(Ops));
3741 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3742 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3743 const Formula &Base, size_t Idx,
3744 bool IsScaledReg) {
3745 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3746 GlobalValue *GV = ExtractSymbol(G, SE);
3747 if (G->isZero() || !GV)
3748 return;
3749 Formula F = Base;
3750 F.BaseGV = GV;
3751 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3752 return;
3753 if (IsScaledReg)
3754 F.ScaledReg = G;
3755 else
3756 F.BaseRegs[Idx] = G;
3757 (void)InsertFormula(LU, LUIdx, F);
3760 /// Generate reuse formulae using symbolic offsets.
3761 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3762 Formula Base) {
3763 // We can't add a symbolic offset if the address already contains one.
3764 if (Base.BaseGV) return;
3766 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3767 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3768 if (Base.Scale == 1)
3769 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3770 /* IsScaledReg */ true);
3773 /// Helper function for LSRInstance::GenerateConstantOffsets.
3774 void LSRInstance::GenerateConstantOffsetsImpl(
3775 LSRUse &LU, unsigned LUIdx, const Formula &Base,
3776 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3778 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3779 Formula F = Base;
3780 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3782 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3783 LU.AccessTy, F)) {
3784 // Add the offset to the base register.
3785 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3786 // If it cancelled out, drop the base register, otherwise update it.
3787 if (NewG->isZero()) {
3788 if (IsScaledReg) {
3789 F.Scale = 0;
3790 F.ScaledReg = nullptr;
3791 } else
3792 F.deleteBaseReg(F.BaseRegs[Idx]);
3793 F.canonicalize(*L);
3794 } else if (IsScaledReg)
3795 F.ScaledReg = NewG;
3796 else
3797 F.BaseRegs[Idx] = NewG;
3799 (void)InsertFormula(LU, LUIdx, F);
3803 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3805 // With constant offsets and constant steps, we can generate pre-inc
3806 // accesses by having the offset equal the step. So, for access #0 with a
3807 // step of 8, we generate a G - 8 base which would require the first access
3808 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3809 // for itself and hopefully becomes the base for other accesses. This means
3810 // means that a single pre-indexed access can be generated to become the new
3811 // base pointer for each iteration of the loop, resulting in no extra add/sub
3812 // instructions for pointer updating.
3813 if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3814 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3815 if (auto *StepRec =
3816 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3817 const APInt &StepInt = StepRec->getAPInt();
3818 int64_t Step = StepInt.isNegative() ?
3819 StepInt.getSExtValue() : StepInt.getZExtValue();
3821 for (int64_t Offset : Worklist) {
3822 Offset -= Step;
3823 GenerateOffset(G, Offset);
3828 for (int64_t Offset : Worklist)
3829 GenerateOffset(G, Offset);
3831 int64_t Imm = ExtractImmediate(G, SE);
3832 if (G->isZero() || Imm == 0)
3833 return;
3834 Formula F = Base;
3835 F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3836 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3837 return;
3838 if (IsScaledReg)
3839 F.ScaledReg = G;
3840 else
3841 F.BaseRegs[Idx] = G;
3842 (void)InsertFormula(LU, LUIdx, F);
3845 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3846 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3847 Formula Base) {
3848 // TODO: For now, just add the min and max offset, because it usually isn't
3849 // worthwhile looking at everything inbetween.
3850 SmallVector<int64_t, 2> Worklist;
3851 Worklist.push_back(LU.MinOffset);
3852 if (LU.MaxOffset != LU.MinOffset)
3853 Worklist.push_back(LU.MaxOffset);
3855 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3856 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3857 if (Base.Scale == 1)
3858 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3859 /* IsScaledReg */ true);
3862 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3863 /// == y -> x*c == y*c.
3864 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3865 Formula Base) {
3866 if (LU.Kind != LSRUse::ICmpZero) return;
3868 // Determine the integer type for the base formula.
3869 Type *IntTy = Base.getType();
3870 if (!IntTy) return;
3871 if (SE.getTypeSizeInBits(IntTy) > 64) return;
3873 // Don't do this if there is more than one offset.
3874 if (LU.MinOffset != LU.MaxOffset) return;
3876 // Check if transformation is valid. It is illegal to multiply pointer.
3877 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3878 return;
3879 for (const SCEV *BaseReg : Base.BaseRegs)
3880 if (BaseReg->getType()->isPointerTy())
3881 return;
3882 assert(!Base.BaseGV && "ICmpZero use is not legal!");
3884 // Check each interesting stride.
3885 for (int64_t Factor : Factors) {
3886 // Check that the multiplication doesn't overflow.
3887 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3888 continue;
3889 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3890 if (NewBaseOffset / Factor != Base.BaseOffset)
3891 continue;
3892 // If the offset will be truncated at this use, check that it is in bounds.
3893 if (!IntTy->isPointerTy() &&
3894 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3895 continue;
3897 // Check that multiplying with the use offset doesn't overflow.
3898 int64_t Offset = LU.MinOffset;
3899 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3900 continue;
3901 Offset = (uint64_t)Offset * Factor;
3902 if (Offset / Factor != LU.MinOffset)
3903 continue;
3904 // If the offset will be truncated at this use, check that it is in bounds.
3905 if (!IntTy->isPointerTy() &&
3906 !ConstantInt::isValueValidForType(IntTy, Offset))
3907 continue;
3909 Formula F = Base;
3910 F.BaseOffset = NewBaseOffset;
3912 // Check that this scale is legal.
3913 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3914 continue;
3916 // Compensate for the use having MinOffset built into it.
3917 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3919 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3921 // Check that multiplying with each base register doesn't overflow.
3922 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3923 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3924 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3925 goto next;
3928 // Check that multiplying with the scaled register doesn't overflow.
3929 if (F.ScaledReg) {
3930 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3931 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3932 continue;
3935 // Check that multiplying with the unfolded offset doesn't overflow.
3936 if (F.UnfoldedOffset != 0) {
3937 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3938 Factor == -1)
3939 continue;
3940 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3941 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3942 continue;
3943 // If the offset will be truncated, check that it is in bounds.
3944 if (!IntTy->isPointerTy() &&
3945 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3946 continue;
3949 // If we make it here and it's legal, add it.
3950 (void)InsertFormula(LU, LUIdx, F);
3951 next:;
3955 /// Generate stride factor reuse formulae by making use of scaled-offset address
3956 /// modes, for example.
3957 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3958 // Determine the integer type for the base formula.
3959 Type *IntTy = Base.getType();
3960 if (!IntTy) return;
3962 // If this Formula already has a scaled register, we can't add another one.
3963 // Try to unscale the formula to generate a better scale.
3964 if (Base.Scale != 0 && !Base.unscale())
3965 return;
3967 assert(Base.Scale == 0 && "unscale did not did its job!");
3969 // Check each interesting stride.
3970 for (int64_t Factor : Factors) {
3971 Base.Scale = Factor;
3972 Base.HasBaseReg = Base.BaseRegs.size() > 1;
3973 // Check whether this scale is going to be legal.
3974 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3975 Base)) {
3976 // As a special-case, handle special out-of-loop Basic users specially.
3977 // TODO: Reconsider this special case.
3978 if (LU.Kind == LSRUse::Basic &&
3979 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3980 LU.AccessTy, Base) &&
3981 LU.AllFixupsOutsideLoop)
3982 LU.Kind = LSRUse::Special;
3983 else
3984 continue;
3986 // For an ICmpZero, negating a solitary base register won't lead to
3987 // new solutions.
3988 if (LU.Kind == LSRUse::ICmpZero &&
3989 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3990 continue;
3991 // For each addrec base reg, if its loop is current loop, apply the scale.
3992 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3993 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3994 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3995 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3996 if (FactorS->isZero())
3997 continue;
3998 // Divide out the factor, ignoring high bits, since we'll be
3999 // scaling the value back up in the end.
4000 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
4001 // TODO: This could be optimized to avoid all the copying.
4002 Formula F = Base;
4003 F.ScaledReg = Quotient;
4004 F.deleteBaseReg(F.BaseRegs[i]);
4005 // The canonical representation of 1*reg is reg, which is already in
4006 // Base. In that case, do not try to insert the formula, it will be
4007 // rejected anyway.
4008 if (F.Scale == 1 && (F.BaseRegs.empty() ||
4009 (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4010 continue;
4011 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4012 // non canonical Formula with ScaledReg's loop not being L.
4013 if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4014 F.canonicalize(*L);
4015 (void)InsertFormula(LU, LUIdx, F);
4022 /// Generate reuse formulae from different IV types.
4023 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4024 // Don't bother truncating symbolic values.
4025 if (Base.BaseGV) return;
4027 // Determine the integer type for the base formula.
4028 Type *DstTy = Base.getType();
4029 if (!DstTy) return;
4030 DstTy = SE.getEffectiveSCEVType(DstTy);
4032 for (Type *SrcTy : Types) {
4033 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4034 Formula F = Base;
4036 // Sometimes SCEV is able to prove zero during ext transform. It may
4037 // happen if SCEV did not do all possible transforms while creating the
4038 // initial node (maybe due to depth limitations), but it can do them while
4039 // taking ext.
4040 if (F.ScaledReg) {
4041 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4042 if (NewScaledReg->isZero())
4043 continue;
4044 F.ScaledReg = NewScaledReg;
4046 bool HasZeroBaseReg = false;
4047 for (const SCEV *&BaseReg : F.BaseRegs) {
4048 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4049 if (NewBaseReg->isZero()) {
4050 HasZeroBaseReg = true;
4051 break;
4053 BaseReg = NewBaseReg;
4055 if (HasZeroBaseReg)
4056 continue;
4058 // TODO: This assumes we've done basic processing on all uses and
4059 // have an idea what the register usage is.
4060 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4061 continue;
4063 F.canonicalize(*L);
4064 (void)InsertFormula(LU, LUIdx, F);
4069 namespace {
4071 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4072 /// modifications so that the search phase doesn't have to worry about the data
4073 /// structures moving underneath it.
4074 struct WorkItem {
4075 size_t LUIdx;
4076 int64_t Imm;
4077 const SCEV *OrigReg;
4079 WorkItem(size_t LI, int64_t I, const SCEV *R)
4080 : LUIdx(LI), Imm(I), OrigReg(R) {}
4082 void print(raw_ostream &OS) const;
4083 void dump() const;
4086 } // end anonymous namespace
4088 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4089 void WorkItem::print(raw_ostream &OS) const {
4090 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4091 << " , add offset " << Imm;
4094 LLVM_DUMP_METHOD void WorkItem::dump() const {
4095 print(errs()); errs() << '\n';
4097 #endif
4099 /// Look for registers which are a constant distance apart and try to form reuse
4100 /// opportunities between them.
4101 void LSRInstance::GenerateCrossUseConstantOffsets() {
4102 // Group the registers by their value without any added constant offset.
4103 using ImmMapTy = std::map<int64_t, const SCEV *>;
4105 DenseMap<const SCEV *, ImmMapTy> Map;
4106 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4107 SmallVector<const SCEV *, 8> Sequence;
4108 for (const SCEV *Use : RegUses) {
4109 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4110 int64_t Imm = ExtractImmediate(Reg, SE);
4111 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4112 if (Pair.second)
4113 Sequence.push_back(Reg);
4114 Pair.first->second.insert(std::make_pair(Imm, Use));
4115 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4118 // Now examine each set of registers with the same base value. Build up
4119 // a list of work to do and do the work in a separate step so that we're
4120 // not adding formulae and register counts while we're searching.
4121 SmallVector<WorkItem, 32> WorkItems;
4122 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4123 for (const SCEV *Reg : Sequence) {
4124 const ImmMapTy &Imms = Map.find(Reg)->second;
4126 // It's not worthwhile looking for reuse if there's only one offset.
4127 if (Imms.size() == 1)
4128 continue;
4130 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4131 for (const auto &Entry
4132 : Imms) dbgs()
4133 << ' ' << Entry.first;
4134 dbgs() << '\n');
4136 // Examine each offset.
4137 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4138 J != JE; ++J) {
4139 const SCEV *OrigReg = J->second;
4141 int64_t JImm = J->first;
4142 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4144 if (!isa<SCEVConstant>(OrigReg) &&
4145 UsedByIndicesMap[Reg].count() == 1) {
4146 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4147 << '\n');
4148 continue;
4151 // Conservatively examine offsets between this orig reg a few selected
4152 // other orig regs.
4153 int64_t First = Imms.begin()->first;
4154 int64_t Last = std::prev(Imms.end())->first;
4155 // Compute (First + Last) / 2 without overflow using the fact that
4156 // First + Last = 2 * (First + Last) + (First ^ Last).
4157 int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4158 // If the result is negative and First is odd and Last even (or vice versa),
4159 // we rounded towards -inf. Add 1 in that case, to round towards 0.
4160 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4161 ImmMapTy::const_iterator OtherImms[] = {
4162 Imms.begin(), std::prev(Imms.end()),
4163 Imms.lower_bound(Avg)};
4164 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4165 ImmMapTy::const_iterator M = OtherImms[i];
4166 if (M == J || M == JE) continue;
4168 // Compute the difference between the two.
4169 int64_t Imm = (uint64_t)JImm - M->first;
4170 for (unsigned LUIdx : UsedByIndices.set_bits())
4171 // Make a memo of this use, offset, and register tuple.
4172 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4173 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4178 Map.clear();
4179 Sequence.clear();
4180 UsedByIndicesMap.clear();
4181 UniqueItems.clear();
4183 // Now iterate through the worklist and add new formulae.
4184 for (const WorkItem &WI : WorkItems) {
4185 size_t LUIdx = WI.LUIdx;
4186 LSRUse &LU = Uses[LUIdx];
4187 int64_t Imm = WI.Imm;
4188 const SCEV *OrigReg = WI.OrigReg;
4190 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4191 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4192 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4194 // TODO: Use a more targeted data structure.
4195 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4196 Formula F = LU.Formulae[L];
4197 // FIXME: The code for the scaled and unscaled registers looks
4198 // very similar but slightly different. Investigate if they
4199 // could be merged. That way, we would not have to unscale the
4200 // Formula.
4201 F.unscale();
4202 // Use the immediate in the scaled register.
4203 if (F.ScaledReg == OrigReg) {
4204 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4205 // Don't create 50 + reg(-50).
4206 if (F.referencesReg(SE.getSCEV(
4207 ConstantInt::get(IntTy, -(uint64_t)Offset))))
4208 continue;
4209 Formula NewF = F;
4210 NewF.BaseOffset = Offset;
4211 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4212 NewF))
4213 continue;
4214 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4216 // If the new scale is a constant in a register, and adding the constant
4217 // value to the immediate would produce a value closer to zero than the
4218 // immediate itself, then the formula isn't worthwhile.
4219 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4220 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4221 (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4222 .ule(std::abs(NewF.BaseOffset)))
4223 continue;
4225 // OK, looks good.
4226 NewF.canonicalize(*this->L);
4227 (void)InsertFormula(LU, LUIdx, NewF);
4228 } else {
4229 // Use the immediate in a base register.
4230 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4231 const SCEV *BaseReg = F.BaseRegs[N];
4232 if (BaseReg != OrigReg)
4233 continue;
4234 Formula NewF = F;
4235 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4236 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4237 LU.Kind, LU.AccessTy, NewF)) {
4238 if (TTI.shouldFavorPostInc() &&
4239 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4240 continue;
4241 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4242 continue;
4243 NewF = F;
4244 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4246 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4248 // If the new formula has a constant in a register, and adding the
4249 // constant value to the immediate would produce a value closer to
4250 // zero than the immediate itself, then the formula isn't worthwhile.
4251 for (const SCEV *NewReg : NewF.BaseRegs)
4252 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4253 if ((C->getAPInt() + NewF.BaseOffset)
4254 .abs()
4255 .slt(std::abs(NewF.BaseOffset)) &&
4256 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4257 countTrailingZeros<uint64_t>(NewF.BaseOffset))
4258 goto skip_formula;
4260 // Ok, looks good.
4261 NewF.canonicalize(*this->L);
4262 (void)InsertFormula(LU, LUIdx, NewF);
4263 break;
4264 skip_formula:;
4271 /// Generate formulae for each use.
4272 void
4273 LSRInstance::GenerateAllReuseFormulae() {
4274 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4275 // queries are more precise.
4276 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4277 LSRUse &LU = Uses[LUIdx];
4278 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4279 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4280 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4281 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4283 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4284 LSRUse &LU = Uses[LUIdx];
4285 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4286 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4287 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4288 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4289 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4290 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4291 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4292 GenerateScales(LU, LUIdx, LU.Formulae[i]);
4294 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4295 LSRUse &LU = Uses[LUIdx];
4296 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4297 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4300 GenerateCrossUseConstantOffsets();
4302 LLVM_DEBUG(dbgs() << "\n"
4303 "After generating reuse formulae:\n";
4304 print_uses(dbgs()));
4307 /// If there are multiple formulae with the same set of registers used
4308 /// by other uses, pick the best one and delete the others.
4309 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4310 DenseSet<const SCEV *> VisitedRegs;
4311 SmallPtrSet<const SCEV *, 16> Regs;
4312 SmallPtrSet<const SCEV *, 16> LoserRegs;
4313 #ifndef NDEBUG
4314 bool ChangedFormulae = false;
4315 #endif
4317 // Collect the best formula for each unique set of shared registers. This
4318 // is reset for each use.
4319 using BestFormulaeTy =
4320 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4322 BestFormulaeTy BestFormulae;
4324 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4325 LSRUse &LU = Uses[LUIdx];
4326 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4327 dbgs() << '\n');
4329 bool Any = false;
4330 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4331 FIdx != NumForms; ++FIdx) {
4332 Formula &F = LU.Formulae[FIdx];
4334 // Some formulas are instant losers. For example, they may depend on
4335 // nonexistent AddRecs from other loops. These need to be filtered
4336 // immediately, otherwise heuristics could choose them over others leading
4337 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4338 // avoids the need to recompute this information across formulae using the
4339 // same bad AddRec. Passing LoserRegs is also essential unless we remove
4340 // the corresponding bad register from the Regs set.
4341 Cost CostF(L, SE, TTI);
4342 Regs.clear();
4343 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4344 if (CostF.isLoser()) {
4345 // During initial formula generation, undesirable formulae are generated
4346 // by uses within other loops that have some non-trivial address mode or
4347 // use the postinc form of the IV. LSR needs to provide these formulae
4348 // as the basis of rediscovering the desired formula that uses an AddRec
4349 // corresponding to the existing phi. Once all formulae have been
4350 // generated, these initial losers may be pruned.
4351 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
4352 dbgs() << "\n");
4354 else {
4355 SmallVector<const SCEV *, 4> Key;
4356 for (const SCEV *Reg : F.BaseRegs) {
4357 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4358 Key.push_back(Reg);
4360 if (F.ScaledReg &&
4361 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4362 Key.push_back(F.ScaledReg);
4363 // Unstable sort by host order ok, because this is only used for
4364 // uniquifying.
4365 llvm::sort(Key);
4367 std::pair<BestFormulaeTy::const_iterator, bool> P =
4368 BestFormulae.insert(std::make_pair(Key, FIdx));
4369 if (P.second)
4370 continue;
4372 Formula &Best = LU.Formulae[P.first->second];
4374 Cost CostBest(L, SE, TTI);
4375 Regs.clear();
4376 CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4377 if (CostF.isLess(CostBest))
4378 std::swap(F, Best);
4379 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4380 dbgs() << "\n"
4381 " in favor of formula ";
4382 Best.print(dbgs()); dbgs() << '\n');
4384 #ifndef NDEBUG
4385 ChangedFormulae = true;
4386 #endif
4387 LU.DeleteFormula(F);
4388 --FIdx;
4389 --NumForms;
4390 Any = true;
4393 // Now that we've filtered out some formulae, recompute the Regs set.
4394 if (Any)
4395 LU.RecomputeRegs(LUIdx, RegUses);
4397 // Reset this to prepare for the next use.
4398 BestFormulae.clear();
4401 LLVM_DEBUG(if (ChangedFormulae) {
4402 dbgs() << "\n"
4403 "After filtering out undesirable candidates:\n";
4404 print_uses(dbgs());
4408 /// Estimate the worst-case number of solutions the solver might have to
4409 /// consider. It almost never considers this many solutions because it prune the
4410 /// search space, but the pruning isn't always sufficient.
4411 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4412 size_t Power = 1;
4413 for (const LSRUse &LU : Uses) {
4414 size_t FSize = LU.Formulae.size();
4415 if (FSize >= ComplexityLimit) {
4416 Power = ComplexityLimit;
4417 break;
4419 Power *= FSize;
4420 if (Power >= ComplexityLimit)
4421 break;
4423 return Power;
4426 /// When one formula uses a superset of the registers of another formula, it
4427 /// won't help reduce register pressure (though it may not necessarily hurt
4428 /// register pressure); remove it to simplify the system.
4429 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4430 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4431 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4433 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4434 "which use a superset of registers used by other "
4435 "formulae.\n");
4437 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4438 LSRUse &LU = Uses[LUIdx];
4439 bool Any = false;
4440 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4441 Formula &F = LU.Formulae[i];
4442 // Look for a formula with a constant or GV in a register. If the use
4443 // also has a formula with that same value in an immediate field,
4444 // delete the one that uses a register.
4445 for (SmallVectorImpl<const SCEV *>::const_iterator
4446 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4447 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4448 Formula NewF = F;
4449 //FIXME: Formulas should store bitwidth to do wrapping properly.
4450 // See PR41034.
4451 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4452 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4453 (I - F.BaseRegs.begin()));
4454 if (LU.HasFormulaWithSameRegs(NewF)) {
4455 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4456 dbgs() << '\n');
4457 LU.DeleteFormula(F);
4458 --i;
4459 --e;
4460 Any = true;
4461 break;
4463 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4464 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4465 if (!F.BaseGV) {
4466 Formula NewF = F;
4467 NewF.BaseGV = GV;
4468 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4469 (I - F.BaseRegs.begin()));
4470 if (LU.HasFormulaWithSameRegs(NewF)) {
4471 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4472 dbgs() << '\n');
4473 LU.DeleteFormula(F);
4474 --i;
4475 --e;
4476 Any = true;
4477 break;
4483 if (Any)
4484 LU.RecomputeRegs(LUIdx, RegUses);
4487 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4491 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4492 /// allocate a single register for them.
4493 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4494 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4495 return;
4497 LLVM_DEBUG(
4498 dbgs() << "The search space is too complex.\n"
4499 "Narrowing the search space by assuming that uses separated "
4500 "by a constant offset will use the same registers.\n");
4502 // This is especially useful for unrolled loops.
4504 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4505 LSRUse &LU = Uses[LUIdx];
4506 for (const Formula &F : LU.Formulae) {
4507 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4508 continue;
4510 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4511 if (!LUThatHas)
4512 continue;
4514 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4515 LU.Kind, LU.AccessTy))
4516 continue;
4518 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4520 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4522 // Transfer the fixups of LU to LUThatHas.
4523 for (LSRFixup &Fixup : LU.Fixups) {
4524 Fixup.Offset += F.BaseOffset;
4525 LUThatHas->pushFixup(Fixup);
4526 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4529 // Delete formulae from the new use which are no longer legal.
4530 bool Any = false;
4531 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4532 Formula &F = LUThatHas->Formulae[i];
4533 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4534 LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4535 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4536 LUThatHas->DeleteFormula(F);
4537 --i;
4538 --e;
4539 Any = true;
4543 if (Any)
4544 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4546 // Delete the old use.
4547 DeleteUse(LU, LUIdx);
4548 --LUIdx;
4549 --NumUses;
4550 break;
4554 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4557 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4558 /// we've done more filtering, as it may be able to find more formulae to
4559 /// eliminate.
4560 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4561 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4562 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4564 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4565 "undesirable dedicated registers.\n");
4567 FilterOutUndesirableDedicatedRegisters();
4569 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4573 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4574 /// Pick the best one and delete the others.
4575 /// This narrowing heuristic is to keep as many formulae with different
4576 /// Scale and ScaledReg pair as possible while narrowing the search space.
4577 /// The benefit is that it is more likely to find out a better solution
4578 /// from a formulae set with more Scale and ScaledReg variations than
4579 /// a formulae set with the same Scale and ScaledReg. The picking winner
4580 /// reg heuristic will often keep the formulae with the same Scale and
4581 /// ScaledReg and filter others, and we want to avoid that if possible.
4582 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4583 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4584 return;
4586 LLVM_DEBUG(
4587 dbgs() << "The search space is too complex.\n"
4588 "Narrowing the search space by choosing the best Formula "
4589 "from the Formulae with the same Scale and ScaledReg.\n");
4591 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4592 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4594 BestFormulaeTy BestFormulae;
4595 #ifndef NDEBUG
4596 bool ChangedFormulae = false;
4597 #endif
4598 DenseSet<const SCEV *> VisitedRegs;
4599 SmallPtrSet<const SCEV *, 16> Regs;
4601 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4602 LSRUse &LU = Uses[LUIdx];
4603 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4604 dbgs() << '\n');
4606 // Return true if Formula FA is better than Formula FB.
4607 auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4608 // First we will try to choose the Formula with fewer new registers.
4609 // For a register used by current Formula, the more the register is
4610 // shared among LSRUses, the less we increase the register number
4611 // counter of the formula.
4612 size_t FARegNum = 0;
4613 for (const SCEV *Reg : FA.BaseRegs) {
4614 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4615 FARegNum += (NumUses - UsedByIndices.count() + 1);
4617 size_t FBRegNum = 0;
4618 for (const SCEV *Reg : FB.BaseRegs) {
4619 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4620 FBRegNum += (NumUses - UsedByIndices.count() + 1);
4622 if (FARegNum != FBRegNum)
4623 return FARegNum < FBRegNum;
4625 // If the new register numbers are the same, choose the Formula with
4626 // less Cost.
4627 Cost CostFA(L, SE, TTI);
4628 Cost CostFB(L, SE, TTI);
4629 Regs.clear();
4630 CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4631 Regs.clear();
4632 CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4633 return CostFA.isLess(CostFB);
4636 bool Any = false;
4637 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4638 ++FIdx) {
4639 Formula &F = LU.Formulae[FIdx];
4640 if (!F.ScaledReg)
4641 continue;
4642 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4643 if (P.second)
4644 continue;
4646 Formula &Best = LU.Formulae[P.first->second];
4647 if (IsBetterThan(F, Best))
4648 std::swap(F, Best);
4649 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4650 dbgs() << "\n"
4651 " in favor of formula ";
4652 Best.print(dbgs()); dbgs() << '\n');
4653 #ifndef NDEBUG
4654 ChangedFormulae = true;
4655 #endif
4656 LU.DeleteFormula(F);
4657 --FIdx;
4658 --NumForms;
4659 Any = true;
4661 if (Any)
4662 LU.RecomputeRegs(LUIdx, RegUses);
4664 // Reset this to prepare for the next use.
4665 BestFormulae.clear();
4668 LLVM_DEBUG(if (ChangedFormulae) {
4669 dbgs() << "\n"
4670 "After filtering out undesirable candidates:\n";
4671 print_uses(dbgs());
4675 /// The function delete formulas with high registers number expectation.
4676 /// Assuming we don't know the value of each formula (already delete
4677 /// all inefficient), generate probability of not selecting for each
4678 /// register.
4679 /// For example,
4680 /// Use1:
4681 /// reg(a) + reg({0,+,1})
4682 /// reg(a) + reg({-1,+,1}) + 1
4683 /// reg({a,+,1})
4684 /// Use2:
4685 /// reg(b) + reg({0,+,1})
4686 /// reg(b) + reg({-1,+,1}) + 1
4687 /// reg({b,+,1})
4688 /// Use3:
4689 /// reg(c) + reg(b) + reg({0,+,1})
4690 /// reg(c) + reg({b,+,1})
4692 /// Probability of not selecting
4693 /// Use1 Use2 Use3
4694 /// reg(a) (1/3) * 1 * 1
4695 /// reg(b) 1 * (1/3) * (1/2)
4696 /// reg({0,+,1}) (2/3) * (2/3) * (1/2)
4697 /// reg({-1,+,1}) (2/3) * (2/3) * 1
4698 /// reg({a,+,1}) (2/3) * 1 * 1
4699 /// reg({b,+,1}) 1 * (2/3) * (2/3)
4700 /// reg(c) 1 * 1 * 0
4702 /// Now count registers number mathematical expectation for each formula:
4703 /// Note that for each use we exclude probability if not selecting for the use.
4704 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4705 /// probabilty 1/3 of not selecting for Use1).
4706 /// Use1:
4707 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted
4708 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted
4709 /// reg({a,+,1}) 1
4710 /// Use2:
4711 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted
4712 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted
4713 /// reg({b,+,1}) 2/3
4714 /// Use3:
4715 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4716 /// reg(c) + reg({b,+,1}) 1 + 2/3
4717 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4718 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4719 return;
4720 // Ok, we have too many of formulae on our hands to conveniently handle.
4721 // Use a rough heuristic to thin out the list.
4723 // Set of Regs wich will be 100% used in final solution.
4724 // Used in each formula of a solution (in example above this is reg(c)).
4725 // We can skip them in calculations.
4726 SmallPtrSet<const SCEV *, 4> UniqRegs;
4727 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4729 // Map each register to probability of not selecting
4730 DenseMap <const SCEV *, float> RegNumMap;
4731 for (const SCEV *Reg : RegUses) {
4732 if (UniqRegs.count(Reg))
4733 continue;
4734 float PNotSel = 1;
4735 for (const LSRUse &LU : Uses) {
4736 if (!LU.Regs.count(Reg))
4737 continue;
4738 float P = LU.getNotSelectedProbability(Reg);
4739 if (P != 0.0)
4740 PNotSel *= P;
4741 else
4742 UniqRegs.insert(Reg);
4744 RegNumMap.insert(std::make_pair(Reg, PNotSel));
4747 LLVM_DEBUG(
4748 dbgs() << "Narrowing the search space by deleting costly formulas\n");
4750 // Delete formulas where registers number expectation is high.
4751 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4752 LSRUse &LU = Uses[LUIdx];
4753 // If nothing to delete - continue.
4754 if (LU.Formulae.size() < 2)
4755 continue;
4756 // This is temporary solution to test performance. Float should be
4757 // replaced with round independent type (based on integers) to avoid
4758 // different results for different target builds.
4759 float FMinRegNum = LU.Formulae[0].getNumRegs();
4760 float FMinARegNum = LU.Formulae[0].getNumRegs();
4761 size_t MinIdx = 0;
4762 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4763 Formula &F = LU.Formulae[i];
4764 float FRegNum = 0;
4765 float FARegNum = 0;
4766 for (const SCEV *BaseReg : F.BaseRegs) {
4767 if (UniqRegs.count(BaseReg))
4768 continue;
4769 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4770 if (isa<SCEVAddRecExpr>(BaseReg))
4771 FARegNum +=
4772 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4774 if (const SCEV *ScaledReg = F.ScaledReg) {
4775 if (!UniqRegs.count(ScaledReg)) {
4776 FRegNum +=
4777 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4778 if (isa<SCEVAddRecExpr>(ScaledReg))
4779 FARegNum +=
4780 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4783 if (FMinRegNum > FRegNum ||
4784 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4785 FMinRegNum = FRegNum;
4786 FMinARegNum = FARegNum;
4787 MinIdx = i;
4790 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs());
4791 dbgs() << " with min reg num " << FMinRegNum << '\n');
4792 if (MinIdx != 0)
4793 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4794 while (LU.Formulae.size() != 1) {
4795 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs());
4796 dbgs() << '\n');
4797 LU.Formulae.pop_back();
4799 LU.RecomputeRegs(LUIdx, RegUses);
4800 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4801 Formula &F = LU.Formulae[0];
4802 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n');
4803 // When we choose the formula, the regs become unique.
4804 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4805 if (F.ScaledReg)
4806 UniqRegs.insert(F.ScaledReg);
4808 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4811 /// Pick a register which seems likely to be profitable, and then in any use
4812 /// which has any reference to that register, delete all formulae which do not
4813 /// reference that register.
4814 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4815 // With all other options exhausted, loop until the system is simple
4816 // enough to handle.
4817 SmallPtrSet<const SCEV *, 4> Taken;
4818 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4819 // Ok, we have too many of formulae on our hands to conveniently handle.
4820 // Use a rough heuristic to thin out the list.
4821 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4823 // Pick the register which is used by the most LSRUses, which is likely
4824 // to be a good reuse register candidate.
4825 const SCEV *Best = nullptr;
4826 unsigned BestNum = 0;
4827 for (const SCEV *Reg : RegUses) {
4828 if (Taken.count(Reg))
4829 continue;
4830 if (!Best) {
4831 Best = Reg;
4832 BestNum = RegUses.getUsedByIndices(Reg).count();
4833 } else {
4834 unsigned Count = RegUses.getUsedByIndices(Reg).count();
4835 if (Count > BestNum) {
4836 Best = Reg;
4837 BestNum = Count;
4841 assert(Best && "Failed to find best LSRUse candidate");
4843 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4844 << " will yield profitable reuse.\n");
4845 Taken.insert(Best);
4847 // In any use with formulae which references this register, delete formulae
4848 // which don't reference it.
4849 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4850 LSRUse &LU = Uses[LUIdx];
4851 if (!LU.Regs.count(Best)) continue;
4853 bool Any = false;
4854 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4855 Formula &F = LU.Formulae[i];
4856 if (!F.referencesReg(Best)) {
4857 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4858 LU.DeleteFormula(F);
4859 --e;
4860 --i;
4861 Any = true;
4862 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4863 continue;
4867 if (Any)
4868 LU.RecomputeRegs(LUIdx, RegUses);
4871 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4875 /// If there are an extraordinary number of formulae to choose from, use some
4876 /// rough heuristics to prune down the number of formulae. This keeps the main
4877 /// solver from taking an extraordinary amount of time in some worst-case
4878 /// scenarios.
4879 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4880 NarrowSearchSpaceByDetectingSupersets();
4881 NarrowSearchSpaceByCollapsingUnrolledCode();
4882 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4883 if (FilterSameScaledReg)
4884 NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4885 if (LSRExpNarrow)
4886 NarrowSearchSpaceByDeletingCostlyFormulas();
4887 else
4888 NarrowSearchSpaceByPickingWinnerRegs();
4891 /// This is the recursive solver.
4892 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4893 Cost &SolutionCost,
4894 SmallVectorImpl<const Formula *> &Workspace,
4895 const Cost &CurCost,
4896 const SmallPtrSet<const SCEV *, 16> &CurRegs,
4897 DenseSet<const SCEV *> &VisitedRegs) const {
4898 // Some ideas:
4899 // - prune more:
4900 // - use more aggressive filtering
4901 // - sort the formula so that the most profitable solutions are found first
4902 // - sort the uses too
4903 // - search faster:
4904 // - don't compute a cost, and then compare. compare while computing a cost
4905 // and bail early.
4906 // - track register sets with SmallBitVector
4908 const LSRUse &LU = Uses[Workspace.size()];
4910 // If this use references any register that's already a part of the
4911 // in-progress solution, consider it a requirement that a formula must
4912 // reference that register in order to be considered. This prunes out
4913 // unprofitable searching.
4914 SmallSetVector<const SCEV *, 4> ReqRegs;
4915 for (const SCEV *S : CurRegs)
4916 if (LU.Regs.count(S))
4917 ReqRegs.insert(S);
4919 SmallPtrSet<const SCEV *, 16> NewRegs;
4920 Cost NewCost(L, SE, TTI);
4921 for (const Formula &F : LU.Formulae) {
4922 // Ignore formulae which may not be ideal in terms of register reuse of
4923 // ReqRegs. The formula should use all required registers before
4924 // introducing new ones.
4925 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4926 for (const SCEV *Reg : ReqRegs) {
4927 if ((F.ScaledReg && F.ScaledReg == Reg) ||
4928 is_contained(F.BaseRegs, Reg)) {
4929 --NumReqRegsToFind;
4930 if (NumReqRegsToFind == 0)
4931 break;
4934 if (NumReqRegsToFind != 0) {
4935 // If none of the formulae satisfied the required registers, then we could
4936 // clear ReqRegs and try again. Currently, we simply give up in this case.
4937 continue;
4940 // Evaluate the cost of the current formula. If it's already worse than
4941 // the current best, prune the search at that point.
4942 NewCost = CurCost;
4943 NewRegs = CurRegs;
4944 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
4945 if (NewCost.isLess(SolutionCost)) {
4946 Workspace.push_back(&F);
4947 if (Workspace.size() != Uses.size()) {
4948 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4949 NewRegs, VisitedRegs);
4950 if (F.getNumRegs() == 1 && Workspace.size() == 1)
4951 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4952 } else {
4953 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4954 dbgs() << ".\nRegs:\n";
4955 for (const SCEV *S : NewRegs) dbgs()
4956 << "- " << *S << "\n";
4957 dbgs() << '\n');
4959 SolutionCost = NewCost;
4960 Solution = Workspace;
4962 Workspace.pop_back();
4967 /// Choose one formula from each use. Return the results in the given Solution
4968 /// vector.
4969 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4970 SmallVector<const Formula *, 8> Workspace;
4971 Cost SolutionCost(L, SE, TTI);
4972 SolutionCost.Lose();
4973 Cost CurCost(L, SE, TTI);
4974 SmallPtrSet<const SCEV *, 16> CurRegs;
4975 DenseSet<const SCEV *> VisitedRegs;
4976 Workspace.reserve(Uses.size());
4978 // SolveRecurse does all the work.
4979 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4980 CurRegs, VisitedRegs);
4981 if (Solution.empty()) {
4982 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4983 return;
4986 // Ok, we've now made all our decisions.
4987 LLVM_DEBUG(dbgs() << "\n"
4988 "The chosen solution requires ";
4989 SolutionCost.print(dbgs()); dbgs() << ":\n";
4990 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4991 dbgs() << " ";
4992 Uses[i].print(dbgs());
4993 dbgs() << "\n"
4994 " ";
4995 Solution[i]->print(dbgs());
4996 dbgs() << '\n';
4999 assert(Solution.size() == Uses.size() && "Malformed solution!");
5002 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5003 /// we can go while still being dominated by the input positions. This helps
5004 /// canonicalize the insert position, which encourages sharing.
5005 BasicBlock::iterator
5006 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5007 const SmallVectorImpl<Instruction *> &Inputs)
5008 const {
5009 Instruction *Tentative = &*IP;
5010 while (true) {
5011 bool AllDominate = true;
5012 Instruction *BetterPos = nullptr;
5013 // Don't bother attempting to insert before a catchswitch, their basic block
5014 // cannot have other non-PHI instructions.
5015 if (isa<CatchSwitchInst>(Tentative))
5016 return IP;
5018 for (Instruction *Inst : Inputs) {
5019 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5020 AllDominate = false;
5021 break;
5023 // Attempt to find an insert position in the middle of the block,
5024 // instead of at the end, so that it can be used for other expansions.
5025 if (Tentative->getParent() == Inst->getParent() &&
5026 (!BetterPos || !DT.dominates(Inst, BetterPos)))
5027 BetterPos = &*std::next(BasicBlock::iterator(Inst));
5029 if (!AllDominate)
5030 break;
5031 if (BetterPos)
5032 IP = BetterPos->getIterator();
5033 else
5034 IP = Tentative->getIterator();
5036 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5037 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5039 BasicBlock *IDom;
5040 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5041 if (!Rung) return IP;
5042 Rung = Rung->getIDom();
5043 if (!Rung) return IP;
5044 IDom = Rung->getBlock();
5046 // Don't climb into a loop though.
5047 const Loop *IDomLoop = LI.getLoopFor(IDom);
5048 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5049 if (IDomDepth <= IPLoopDepth &&
5050 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5051 break;
5054 Tentative = IDom->getTerminator();
5057 return IP;
5060 /// Determine an input position which will be dominated by the operands and
5061 /// which will dominate the result.
5062 BasicBlock::iterator
5063 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5064 const LSRFixup &LF,
5065 const LSRUse &LU,
5066 SCEVExpander &Rewriter) const {
5067 // Collect some instructions which must be dominated by the
5068 // expanding replacement. These must be dominated by any operands that
5069 // will be required in the expansion.
5070 SmallVector<Instruction *, 4> Inputs;
5071 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5072 Inputs.push_back(I);
5073 if (LU.Kind == LSRUse::ICmpZero)
5074 if (Instruction *I =
5075 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5076 Inputs.push_back(I);
5077 if (LF.PostIncLoops.count(L)) {
5078 if (LF.isUseFullyOutsideLoop(L))
5079 Inputs.push_back(L->getLoopLatch()->getTerminator());
5080 else
5081 Inputs.push_back(IVIncInsertPos);
5083 // The expansion must also be dominated by the increment positions of any
5084 // loops it for which it is using post-inc mode.
5085 for (const Loop *PIL : LF.PostIncLoops) {
5086 if (PIL == L) continue;
5088 // Be dominated by the loop exit.
5089 SmallVector<BasicBlock *, 4> ExitingBlocks;
5090 PIL->getExitingBlocks(ExitingBlocks);
5091 if (!ExitingBlocks.empty()) {
5092 BasicBlock *BB = ExitingBlocks[0];
5093 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5094 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5095 Inputs.push_back(BB->getTerminator());
5099 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5100 && !isa<DbgInfoIntrinsic>(LowestIP) &&
5101 "Insertion point must be a normal instruction");
5103 // Then, climb up the immediate dominator tree as far as we can go while
5104 // still being dominated by the input positions.
5105 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5107 // Don't insert instructions before PHI nodes.
5108 while (isa<PHINode>(IP)) ++IP;
5110 // Ignore landingpad instructions.
5111 while (IP->isEHPad()) ++IP;
5113 // Ignore debug intrinsics.
5114 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5116 // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5117 // IP consistent across expansions and allows the previously inserted
5118 // instructions to be reused by subsequent expansion.
5119 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5120 ++IP;
5122 return IP;
5125 /// Emit instructions for the leading candidate expression for this LSRUse (this
5126 /// is called "expanding").
5127 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5128 const Formula &F, BasicBlock::iterator IP,
5129 SCEVExpander &Rewriter,
5130 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5131 if (LU.RigidFormula)
5132 return LF.OperandValToReplace;
5134 // Determine an input position which will be dominated by the operands and
5135 // which will dominate the result.
5136 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5137 Rewriter.setInsertPoint(&*IP);
5139 // Inform the Rewriter if we have a post-increment use, so that it can
5140 // perform an advantageous expansion.
5141 Rewriter.setPostInc(LF.PostIncLoops);
5143 // This is the type that the user actually needs.
5144 Type *OpTy = LF.OperandValToReplace->getType();
5145 // This will be the type that we'll initially expand to.
5146 Type *Ty = F.getType();
5147 if (!Ty)
5148 // No type known; just expand directly to the ultimate type.
5149 Ty = OpTy;
5150 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5151 // Expand directly to the ultimate type if it's the right size.
5152 Ty = OpTy;
5153 // This is the type to do integer arithmetic in.
5154 Type *IntTy = SE.getEffectiveSCEVType(Ty);
5156 // Build up a list of operands to add together to form the full base.
5157 SmallVector<const SCEV *, 8> Ops;
5159 // Expand the BaseRegs portion.
5160 for (const SCEV *Reg : F.BaseRegs) {
5161 assert(!Reg->isZero() && "Zero allocated in a base register!");
5163 // If we're expanding for a post-inc user, make the post-inc adjustment.
5164 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5165 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5168 // Expand the ScaledReg portion.
5169 Value *ICmpScaledV = nullptr;
5170 if (F.Scale != 0) {
5171 const SCEV *ScaledS = F.ScaledReg;
5173 // If we're expanding for a post-inc user, make the post-inc adjustment.
5174 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5175 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5177 if (LU.Kind == LSRUse::ICmpZero) {
5178 // Expand ScaleReg as if it was part of the base regs.
5179 if (F.Scale == 1)
5180 Ops.push_back(
5181 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5182 else {
5183 // An interesting way of "folding" with an icmp is to use a negated
5184 // scale, which we'll implement by inserting it into the other operand
5185 // of the icmp.
5186 assert(F.Scale == -1 &&
5187 "The only scale supported by ICmpZero uses is -1!");
5188 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5190 } else {
5191 // Otherwise just expand the scaled register and an explicit scale,
5192 // which is expected to be matched as part of the address.
5194 // Flush the operand list to suppress SCEVExpander hoisting address modes.
5195 // Unless the addressing mode will not be folded.
5196 if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5197 isAMCompletelyFolded(TTI, LU, F)) {
5198 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5199 Ops.clear();
5200 Ops.push_back(SE.getUnknown(FullV));
5202 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5203 if (F.Scale != 1)
5204 ScaledS =
5205 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5206 Ops.push_back(ScaledS);
5210 // Expand the GV portion.
5211 if (F.BaseGV) {
5212 // Flush the operand list to suppress SCEVExpander hoisting.
5213 if (!Ops.empty()) {
5214 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5215 Ops.clear();
5216 Ops.push_back(SE.getUnknown(FullV));
5218 Ops.push_back(SE.getUnknown(F.BaseGV));
5221 // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5222 // unfolded offsets. LSR assumes they both live next to their uses.
5223 if (!Ops.empty()) {
5224 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5225 Ops.clear();
5226 Ops.push_back(SE.getUnknown(FullV));
5229 // Expand the immediate portion.
5230 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5231 if (Offset != 0) {
5232 if (LU.Kind == LSRUse::ICmpZero) {
5233 // The other interesting way of "folding" with an ICmpZero is to use a
5234 // negated immediate.
5235 if (!ICmpScaledV)
5236 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5237 else {
5238 Ops.push_back(SE.getUnknown(ICmpScaledV));
5239 ICmpScaledV = ConstantInt::get(IntTy, Offset);
5241 } else {
5242 // Just add the immediate values. These again are expected to be matched
5243 // as part of the address.
5244 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5248 // Expand the unfolded offset portion.
5249 int64_t UnfoldedOffset = F.UnfoldedOffset;
5250 if (UnfoldedOffset != 0) {
5251 // Just add the immediate values.
5252 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5253 UnfoldedOffset)));
5256 // Emit instructions summing all the operands.
5257 const SCEV *FullS = Ops.empty() ?
5258 SE.getConstant(IntTy, 0) :
5259 SE.getAddExpr(Ops);
5260 Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5262 // We're done expanding now, so reset the rewriter.
5263 Rewriter.clearPostInc();
5265 // An ICmpZero Formula represents an ICmp which we're handling as a
5266 // comparison against zero. Now that we've expanded an expression for that
5267 // form, update the ICmp's other operand.
5268 if (LU.Kind == LSRUse::ICmpZero) {
5269 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5270 DeadInsts.emplace_back(CI->getOperand(1));
5271 assert(!F.BaseGV && "ICmp does not support folding a global value and "
5272 "a scale at the same time!");
5273 if (F.Scale == -1) {
5274 if (ICmpScaledV->getType() != OpTy) {
5275 Instruction *Cast =
5276 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5277 OpTy, false),
5278 ICmpScaledV, OpTy, "tmp", CI);
5279 ICmpScaledV = Cast;
5281 CI->setOperand(1, ICmpScaledV);
5282 } else {
5283 // A scale of 1 means that the scale has been expanded as part of the
5284 // base regs.
5285 assert((F.Scale == 0 || F.Scale == 1) &&
5286 "ICmp does not support folding a global value and "
5287 "a scale at the same time!");
5288 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5289 -(uint64_t)Offset);
5290 if (C->getType() != OpTy)
5291 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5292 OpTy, false),
5293 C, OpTy);
5295 CI->setOperand(1, C);
5299 return FullV;
5302 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5303 /// effectively happens in their predecessor blocks, so the expression may need
5304 /// to be expanded in multiple places.
5305 void LSRInstance::RewriteForPHI(
5306 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5307 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5308 DenseMap<BasicBlock *, Value *> Inserted;
5309 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5310 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5311 bool needUpdateFixups = false;
5312 BasicBlock *BB = PN->getIncomingBlock(i);
5314 // If this is a critical edge, split the edge so that we do not insert
5315 // the code on all predecessor/successor paths. We do this unless this
5316 // is the canonical backedge for this loop, which complicates post-inc
5317 // users.
5318 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5319 !isa<IndirectBrInst>(BB->getTerminator()) &&
5320 !isa<CatchSwitchInst>(BB->getTerminator())) {
5321 BasicBlock *Parent = PN->getParent();
5322 Loop *PNLoop = LI.getLoopFor(Parent);
5323 if (!PNLoop || Parent != PNLoop->getHeader()) {
5324 // Split the critical edge.
5325 BasicBlock *NewBB = nullptr;
5326 if (!Parent->isLandingPad()) {
5327 NewBB = SplitCriticalEdge(BB, Parent,
5328 CriticalEdgeSplittingOptions(&DT, &LI)
5329 .setMergeIdenticalEdges()
5330 .setKeepOneInputPHIs());
5331 } else {
5332 SmallVector<BasicBlock*, 2> NewBBs;
5333 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5334 NewBB = NewBBs[0];
5336 // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5337 // phi predecessors are identical. The simple thing to do is skip
5338 // splitting in this case rather than complicate the API.
5339 if (NewBB) {
5340 // If PN is outside of the loop and BB is in the loop, we want to
5341 // move the block to be immediately before the PHI block, not
5342 // immediately after BB.
5343 if (L->contains(BB) && !L->contains(PN))
5344 NewBB->moveBefore(PN->getParent());
5346 // Splitting the edge can reduce the number of PHI entries we have.
5347 e = PN->getNumIncomingValues();
5348 BB = NewBB;
5349 i = PN->getBasicBlockIndex(BB);
5351 needUpdateFixups = true;
5356 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5357 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5358 if (!Pair.second)
5359 PN->setIncomingValue(i, Pair.first->second);
5360 else {
5361 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5362 Rewriter, DeadInsts);
5364 // If this is reuse-by-noop-cast, insert the noop cast.
5365 Type *OpTy = LF.OperandValToReplace->getType();
5366 if (FullV->getType() != OpTy)
5367 FullV =
5368 CastInst::Create(CastInst::getCastOpcode(FullV, false,
5369 OpTy, false),
5370 FullV, LF.OperandValToReplace->getType(),
5371 "tmp", BB->getTerminator());
5373 PN->setIncomingValue(i, FullV);
5374 Pair.first->second = FullV;
5377 // If LSR splits critical edge and phi node has other pending
5378 // fixup operands, we need to update those pending fixups. Otherwise
5379 // formulae will not be implemented completely and some instructions
5380 // will not be eliminated.
5381 if (needUpdateFixups) {
5382 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5383 for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5384 // If fixup is supposed to rewrite some operand in the phi
5385 // that was just updated, it may be already moved to
5386 // another phi node. Such fixup requires update.
5387 if (Fixup.UserInst == PN) {
5388 // Check if the operand we try to replace still exists in the
5389 // original phi.
5390 bool foundInOriginalPHI = false;
5391 for (const auto &val : PN->incoming_values())
5392 if (val == Fixup.OperandValToReplace) {
5393 foundInOriginalPHI = true;
5394 break;
5397 // If fixup operand found in original PHI - nothing to do.
5398 if (foundInOriginalPHI)
5399 continue;
5401 // Otherwise it might be moved to another PHI and requires update.
5402 // If fixup operand not found in any of the incoming blocks that
5403 // means we have already rewritten it - nothing to do.
5404 for (const auto &Block : PN->blocks())
5405 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5406 ++I) {
5407 PHINode *NewPN = cast<PHINode>(I);
5408 for (const auto &val : NewPN->incoming_values())
5409 if (val == Fixup.OperandValToReplace)
5410 Fixup.UserInst = NewPN;
5417 /// Emit instructions for the leading candidate expression for this LSRUse (this
5418 /// is called "expanding"), and update the UserInst to reference the newly
5419 /// expanded value.
5420 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5421 const Formula &F, SCEVExpander &Rewriter,
5422 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5423 // First, find an insertion point that dominates UserInst. For PHI nodes,
5424 // find the nearest block which dominates all the relevant uses.
5425 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5426 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5427 } else {
5428 Value *FullV =
5429 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5431 // If this is reuse-by-noop-cast, insert the noop cast.
5432 Type *OpTy = LF.OperandValToReplace->getType();
5433 if (FullV->getType() != OpTy) {
5434 Instruction *Cast =
5435 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5436 FullV, OpTy, "tmp", LF.UserInst);
5437 FullV = Cast;
5440 // Update the user. ICmpZero is handled specially here (for now) because
5441 // Expand may have updated one of the operands of the icmp already, and
5442 // its new value may happen to be equal to LF.OperandValToReplace, in
5443 // which case doing replaceUsesOfWith leads to replacing both operands
5444 // with the same value. TODO: Reorganize this.
5445 if (LU.Kind == LSRUse::ICmpZero)
5446 LF.UserInst->setOperand(0, FullV);
5447 else
5448 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5451 DeadInsts.emplace_back(LF.OperandValToReplace);
5454 /// Rewrite all the fixup locations with new values, following the chosen
5455 /// solution.
5456 void LSRInstance::ImplementSolution(
5457 const SmallVectorImpl<const Formula *> &Solution) {
5458 // Keep track of instructions we may have made dead, so that
5459 // we can remove them after we are done working.
5460 SmallVector<WeakTrackingVH, 16> DeadInsts;
5462 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5463 "lsr");
5464 #ifndef NDEBUG
5465 Rewriter.setDebugType(DEBUG_TYPE);
5466 #endif
5467 Rewriter.disableCanonicalMode();
5468 Rewriter.enableLSRMode();
5469 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5471 // Mark phi nodes that terminate chains so the expander tries to reuse them.
5472 for (const IVChain &Chain : IVChainVec) {
5473 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5474 Rewriter.setChainedPhi(PN);
5477 // Expand the new value definitions and update the users.
5478 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5479 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5480 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5481 Changed = true;
5484 for (const IVChain &Chain : IVChainVec) {
5485 GenerateIVChain(Chain, Rewriter, DeadInsts);
5486 Changed = true;
5488 // Clean up after ourselves. This must be done before deleting any
5489 // instructions.
5490 Rewriter.clear();
5492 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5495 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5496 DominatorTree &DT, LoopInfo &LI,
5497 const TargetTransformInfo &TTI, AssumptionCache &AC,
5498 TargetLibraryInfo &LibInfo)
5499 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), LibInfo(LibInfo), TTI(TTI), L(L),
5500 FavorBackedgeIndex(EnableBackedgeIndexing &&
5501 TTI.shouldFavorBackedgeIndex(L)) {
5502 // If LoopSimplify form is not available, stay out of trouble.
5503 if (!L->isLoopSimplifyForm())
5504 return;
5506 // If there's no interesting work to be done, bail early.
5507 if (IU.empty()) return;
5509 // If there's too much analysis to be done, bail early. We won't be able to
5510 // model the problem anyway.
5511 unsigned NumUsers = 0;
5512 for (const IVStrideUse &U : IU) {
5513 if (++NumUsers > MaxIVUsers) {
5514 (void)U;
5515 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5516 << "\n");
5517 return;
5519 // Bail out if we have a PHI on an EHPad that gets a value from a
5520 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is
5521 // no good place to stick any instructions.
5522 if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5523 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5524 if (isa<FuncletPadInst>(FirstNonPHI) ||
5525 isa<CatchSwitchInst>(FirstNonPHI))
5526 for (BasicBlock *PredBB : PN->blocks())
5527 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5528 return;
5532 #ifndef NDEBUG
5533 // All dominating loops must have preheaders, or SCEVExpander may not be able
5534 // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5536 // IVUsers analysis should only create users that are dominated by simple loop
5537 // headers. Since this loop should dominate all of its users, its user list
5538 // should be empty if this loop itself is not within a simple loop nest.
5539 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5540 Rung; Rung = Rung->getIDom()) {
5541 BasicBlock *BB = Rung->getBlock();
5542 const Loop *DomLoop = LI.getLoopFor(BB);
5543 if (DomLoop && DomLoop->getHeader() == BB) {
5544 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5547 #endif // DEBUG
5549 LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5550 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5551 dbgs() << ":\n");
5553 // First, perform some low-level loop optimizations.
5554 OptimizeShadowIV();
5555 OptimizeLoopTermCond();
5557 // If loop preparation eliminates all interesting IV users, bail.
5558 if (IU.empty()) return;
5560 // Skip nested loops until we can model them better with formulae.
5561 if (!L->empty()) {
5562 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5563 return;
5566 // Start collecting data and preparing for the solver.
5567 CollectChains();
5568 CollectInterestingTypesAndFactors();
5569 CollectFixupsAndInitialFormulae();
5570 CollectLoopInvariantFixupsAndFormulae();
5572 if (Uses.empty())
5573 return;
5575 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5576 print_uses(dbgs()));
5578 // Now use the reuse data to generate a bunch of interesting ways
5579 // to formulate the values needed for the uses.
5580 GenerateAllReuseFormulae();
5582 FilterOutUndesirableDedicatedRegisters();
5583 NarrowSearchSpaceUsingHeuristics();
5585 SmallVector<const Formula *, 8> Solution;
5586 Solve(Solution);
5588 // Release memory that is no longer needed.
5589 Factors.clear();
5590 Types.clear();
5591 RegUses.clear();
5593 if (Solution.empty())
5594 return;
5596 #ifndef NDEBUG
5597 // Formulae should be legal.
5598 for (const LSRUse &LU : Uses) {
5599 for (const Formula &F : LU.Formulae)
5600 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5601 F) && "Illegal formula generated!");
5603 #endif
5605 // Now that we've decided what we want, make it so.
5606 ImplementSolution(Solution);
5609 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5610 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5611 if (Factors.empty() && Types.empty()) return;
5613 OS << "LSR has identified the following interesting factors and types: ";
5614 bool First = true;
5616 for (int64_t Factor : Factors) {
5617 if (!First) OS << ", ";
5618 First = false;
5619 OS << '*' << Factor;
5622 for (Type *Ty : Types) {
5623 if (!First) OS << ", ";
5624 First = false;
5625 OS << '(' << *Ty << ')';
5627 OS << '\n';
5630 void LSRInstance::print_fixups(raw_ostream &OS) const {
5631 OS << "LSR is examining the following fixup sites:\n";
5632 for (const LSRUse &LU : Uses)
5633 for (const LSRFixup &LF : LU.Fixups) {
5634 dbgs() << " ";
5635 LF.print(OS);
5636 OS << '\n';
5640 void LSRInstance::print_uses(raw_ostream &OS) const {
5641 OS << "LSR is examining the following uses:\n";
5642 for (const LSRUse &LU : Uses) {
5643 dbgs() << " ";
5644 LU.print(OS);
5645 OS << '\n';
5646 for (const Formula &F : LU.Formulae) {
5647 OS << " ";
5648 F.print(OS);
5649 OS << '\n';
5654 void LSRInstance::print(raw_ostream &OS) const {
5655 print_factors_and_types(OS);
5656 print_fixups(OS);
5657 print_uses(OS);
5660 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5661 print(errs()); errs() << '\n';
5663 #endif
5665 namespace {
5667 class LoopStrengthReduce : public LoopPass {
5668 public:
5669 static char ID; // Pass ID, replacement for typeid
5671 LoopStrengthReduce();
5673 private:
5674 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5675 void getAnalysisUsage(AnalysisUsage &AU) const override;
5678 } // end anonymous namespace
5680 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5681 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5684 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5685 // We split critical edges, so we change the CFG. However, we do update
5686 // many analyses if they are around.
5687 AU.addPreservedID(LoopSimplifyID);
5689 AU.addRequired<LoopInfoWrapperPass>();
5690 AU.addPreserved<LoopInfoWrapperPass>();
5691 AU.addRequiredID(LoopSimplifyID);
5692 AU.addRequired<DominatorTreeWrapperPass>();
5693 AU.addPreserved<DominatorTreeWrapperPass>();
5694 AU.addRequired<ScalarEvolutionWrapperPass>();
5695 AU.addPreserved<ScalarEvolutionWrapperPass>();
5696 AU.addRequired<AssumptionCacheTracker>();
5697 AU.addRequired<TargetLibraryInfoWrapperPass>();
5698 // Requiring LoopSimplify a second time here prevents IVUsers from running
5699 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5700 AU.addRequiredID(LoopSimplifyID);
5701 AU.addRequired<IVUsersWrapperPass>();
5702 AU.addPreserved<IVUsersWrapperPass>();
5703 AU.addRequired<TargetTransformInfoWrapperPass>();
5706 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5707 DominatorTree &DT, LoopInfo &LI,
5708 const TargetTransformInfo &TTI,
5709 AssumptionCache &AC,
5710 TargetLibraryInfo &LibInfo) {
5712 bool Changed = false;
5714 // Run the main LSR transformation.
5715 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI, AC, LibInfo).getChanged();
5717 // Remove any extra phis created by processing inner loops.
5718 Changed |= DeleteDeadPHIs(L->getHeader());
5719 if (EnablePhiElim && L->isLoopSimplifyForm()) {
5720 SmallVector<WeakTrackingVH, 16> DeadInsts;
5721 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5722 SCEVExpander Rewriter(SE, DL, "lsr");
5723 #ifndef NDEBUG
5724 Rewriter.setDebugType(DEBUG_TYPE);
5725 #endif
5726 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5727 if (numFolded) {
5728 Changed = true;
5729 DeleteTriviallyDeadInstructions(DeadInsts);
5730 DeleteDeadPHIs(L->getHeader());
5733 return Changed;
5736 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5737 if (skipLoop(L))
5738 return false;
5740 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5741 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5742 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5743 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5744 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5745 *L->getHeader()->getParent());
5746 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5747 *L->getHeader()->getParent());
5748 auto &LibInfo = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5749 *L->getHeader()->getParent());
5750 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, LibInfo);
5753 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5754 LoopStandardAnalysisResults &AR,
5755 LPMUpdater &) {
5756 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5757 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI))
5758 return PreservedAnalyses::all();
5760 return getLoopPassPreservedAnalyses();
5763 char LoopStrengthReduce::ID = 0;
5765 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5766 "Loop Strength Reduction", false, false)
5767 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5768 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5769 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5770 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5771 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5772 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5773 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5774 "Loop Strength Reduction", false, false)
5776 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }