1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
23 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 // %i.next = add %i, 1
26 // %c = icmp eq %i.next, %n
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
35 // TODO: More sophistication in the way Formulae are generated and filtered.
37 // TODO: Handle multiple loops at a time.
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 // smaller encoding (on x86 at least).
45 // TODO: When a negated register is used by an add (such as in a list of
46 // multiple base registers, or as the increment expression in an addrec),
47 // we may not actually need both reg and (-1 * reg) in registers; the
48 // negation can be implemented by using a sub instead of an add. The
49 // lack of support for taking this into consideration when making
50 // register pressure decisions is partly worked around by the "Special"
53 //===----------------------------------------------------------------------===//
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/ScalarEvolution.h"
73 #include "llvm/Analysis/ScalarEvolutionExpander.h"
74 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
75 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
76 #include "llvm/Analysis/TargetTransformInfo.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Config/llvm-config.h"
79 #include "llvm/IR/BasicBlock.h"
80 #include "llvm/IR/Constant.h"
81 #include "llvm/IR/Constants.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/GlobalValue.h"
85 #include "llvm/IR/IRBuilder.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/OperandTraits.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
122 using namespace llvm
;
124 #define DEBUG_TYPE "loop-reduce"
126 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
127 /// bail out. This threshold is far beyond the number of users that LSR can
128 /// conceivably solve, so it should not affect generated code, but catches the
129 /// worst cases before LSR burns too much compile time and stack space.
130 static const unsigned MaxIVUsers
= 200;
132 // Temporary flag to cleanup congruent phis after LSR phi expansion.
133 // It's currently disabled until we can determine whether it's truly useful or
134 // not. The flag should be removed after the v3.0 release.
135 // This is now needed for ivchains.
136 static cl::opt
<bool> EnablePhiElim(
137 "enable-lsr-phielim", cl::Hidden
, cl::init(true),
138 cl::desc("Enable LSR phi elimination"));
140 // The flag adds instruction count to solutions cost comparision.
141 static cl::opt
<bool> InsnsCost(
142 "lsr-insns-cost", cl::Hidden
, cl::init(true),
143 cl::desc("Add instruction count to a LSR cost model"));
145 // Flag to choose how to narrow complex lsr solution
146 static cl::opt
<bool> LSRExpNarrow(
147 "lsr-exp-narrow", cl::Hidden
, cl::init(false),
148 cl::desc("Narrow LSR complex solution using"
149 " expectation of registers number"));
151 // Flag to narrow search space by filtering non-optimal formulae with
152 // the same ScaledReg and Scale.
153 static cl::opt
<bool> FilterSameScaledReg(
154 "lsr-filter-same-scaled-reg", cl::Hidden
, cl::init(true),
155 cl::desc("Narrow LSR search space by filtering non-optimal formulae"
156 " with the same ScaledReg and Scale"));
158 static cl::opt
<bool> EnableBackedgeIndexing(
159 "lsr-backedge-indexing", cl::Hidden
, cl::init(true),
160 cl::desc("Enable the generation of cross iteration indexed memops"));
162 static cl::opt
<unsigned> ComplexityLimit(
163 "lsr-complexity-limit", cl::Hidden
,
164 cl::init(std::numeric_limits
<uint16_t>::max()),
165 cl::desc("LSR search space complexity limit"));
167 static cl::opt
<unsigned> SetupCostDepthLimit(
168 "lsr-setupcost-depth-limit", cl::Hidden
, cl::init(7),
169 cl::desc("The limit on recursion depth for LSRs setup cost"));
172 // Stress test IV chain generation.
173 static cl::opt
<bool> StressIVChain(
174 "stress-ivchain", cl::Hidden
, cl::init(false),
175 cl::desc("Stress test LSR IV chains"));
177 static bool StressIVChain
= false;
183 /// Used in situations where the accessed memory type is unknown.
184 static const unsigned UnknownAddressSpace
=
185 std::numeric_limits
<unsigned>::max();
187 Type
*MemTy
= nullptr;
188 unsigned AddrSpace
= UnknownAddressSpace
;
190 MemAccessTy() = default;
191 MemAccessTy(Type
*Ty
, unsigned AS
) : MemTy(Ty
), AddrSpace(AS
) {}
193 bool operator==(MemAccessTy Other
) const {
194 return MemTy
== Other
.MemTy
&& AddrSpace
== Other
.AddrSpace
;
197 bool operator!=(MemAccessTy Other
) const { return !(*this == Other
); }
199 static MemAccessTy
getUnknown(LLVMContext
&Ctx
,
200 unsigned AS
= UnknownAddressSpace
) {
201 return MemAccessTy(Type::getVoidTy(Ctx
), AS
);
204 Type
*getType() { return MemTy
; }
207 /// This class holds data which is used to order reuse candidates.
210 /// This represents the set of LSRUse indices which reference
211 /// a particular register.
212 SmallBitVector UsedByIndices
;
214 void print(raw_ostream
&OS
) const;
218 } // end anonymous namespace
220 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
221 void RegSortData::print(raw_ostream
&OS
) const {
222 OS
<< "[NumUses=" << UsedByIndices
.count() << ']';
225 LLVM_DUMP_METHOD
void RegSortData::dump() const {
226 print(errs()); errs() << '\n';
232 /// Map register candidates to information about how they are used.
233 class RegUseTracker
{
234 using RegUsesTy
= DenseMap
<const SCEV
*, RegSortData
>;
236 RegUsesTy RegUsesMap
;
237 SmallVector
<const SCEV
*, 16> RegSequence
;
240 void countRegister(const SCEV
*Reg
, size_t LUIdx
);
241 void dropRegister(const SCEV
*Reg
, size_t LUIdx
);
242 void swapAndDropUse(size_t LUIdx
, size_t LastLUIdx
);
244 bool isRegUsedByUsesOtherThan(const SCEV
*Reg
, size_t LUIdx
) const;
246 const SmallBitVector
&getUsedByIndices(const SCEV
*Reg
) const;
250 using iterator
= SmallVectorImpl
<const SCEV
*>::iterator
;
251 using const_iterator
= SmallVectorImpl
<const SCEV
*>::const_iterator
;
253 iterator
begin() { return RegSequence
.begin(); }
254 iterator
end() { return RegSequence
.end(); }
255 const_iterator
begin() const { return RegSequence
.begin(); }
256 const_iterator
end() const { return RegSequence
.end(); }
259 } // end anonymous namespace
262 RegUseTracker::countRegister(const SCEV
*Reg
, size_t LUIdx
) {
263 std::pair
<RegUsesTy::iterator
, bool> Pair
=
264 RegUsesMap
.insert(std::make_pair(Reg
, RegSortData()));
265 RegSortData
&RSD
= Pair
.first
->second
;
267 RegSequence
.push_back(Reg
);
268 RSD
.UsedByIndices
.resize(std::max(RSD
.UsedByIndices
.size(), LUIdx
+ 1));
269 RSD
.UsedByIndices
.set(LUIdx
);
273 RegUseTracker::dropRegister(const SCEV
*Reg
, size_t LUIdx
) {
274 RegUsesTy::iterator It
= RegUsesMap
.find(Reg
);
275 assert(It
!= RegUsesMap
.end());
276 RegSortData
&RSD
= It
->second
;
277 assert(RSD
.UsedByIndices
.size() > LUIdx
);
278 RSD
.UsedByIndices
.reset(LUIdx
);
282 RegUseTracker::swapAndDropUse(size_t LUIdx
, size_t LastLUIdx
) {
283 assert(LUIdx
<= LastLUIdx
);
285 // Update RegUses. The data structure is not optimized for this purpose;
286 // we must iterate through it and update each of the bit vectors.
287 for (auto &Pair
: RegUsesMap
) {
288 SmallBitVector
&UsedByIndices
= Pair
.second
.UsedByIndices
;
289 if (LUIdx
< UsedByIndices
.size())
290 UsedByIndices
[LUIdx
] =
291 LastLUIdx
< UsedByIndices
.size() ? UsedByIndices
[LastLUIdx
] : false;
292 UsedByIndices
.resize(std::min(UsedByIndices
.size(), LastLUIdx
));
297 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV
*Reg
, size_t LUIdx
) const {
298 RegUsesTy::const_iterator I
= RegUsesMap
.find(Reg
);
299 if (I
== RegUsesMap
.end())
301 const SmallBitVector
&UsedByIndices
= I
->second
.UsedByIndices
;
302 int i
= UsedByIndices
.find_first();
303 if (i
== -1) return false;
304 if ((size_t)i
!= LUIdx
) return true;
305 return UsedByIndices
.find_next(i
) != -1;
308 const SmallBitVector
&RegUseTracker::getUsedByIndices(const SCEV
*Reg
) const {
309 RegUsesTy::const_iterator I
= RegUsesMap
.find(Reg
);
310 assert(I
!= RegUsesMap
.end() && "Unknown register!");
311 return I
->second
.UsedByIndices
;
314 void RegUseTracker::clear() {
321 /// This class holds information that describes a formula for computing
322 /// satisfying a use. It may include broken-out immediates and scaled registers.
324 /// Global base address used for complex addressing.
325 GlobalValue
*BaseGV
= nullptr;
327 /// Base offset for complex addressing.
328 int64_t BaseOffset
= 0;
330 /// Whether any complex addressing has a base register.
331 bool HasBaseReg
= false;
333 /// The scale of any complex addressing.
336 /// The list of "base" registers for this use. When this is non-empty. The
337 /// canonical representation of a formula is
338 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
339 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
340 /// 3. The reg containing recurrent expr related with currect loop in the
341 /// formula should be put in the ScaledReg.
342 /// #1 enforces that the scaled register is always used when at least two
343 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
344 /// #2 enforces that 1 * reg is reg.
345 /// #3 ensures invariant regs with respect to current loop can be combined
346 /// together in LSR codegen.
347 /// This invariant can be temporarily broken while building a formula.
348 /// However, every formula inserted into the LSRInstance must be in canonical
350 SmallVector
<const SCEV
*, 4> BaseRegs
;
352 /// The 'scaled' register for this use. This should be non-null when Scale is
354 const SCEV
*ScaledReg
= nullptr;
356 /// An additional constant offset which added near the use. This requires a
357 /// temporary register, but the offset itself can live in an add immediate
358 /// field rather than a register.
359 int64_t UnfoldedOffset
= 0;
363 void initialMatch(const SCEV
*S
, Loop
*L
, ScalarEvolution
&SE
);
365 bool isCanonical(const Loop
&L
) const;
367 void canonicalize(const Loop
&L
);
371 bool hasZeroEnd() const;
373 size_t getNumRegs() const;
374 Type
*getType() const;
376 void deleteBaseReg(const SCEV
*&S
);
378 bool referencesReg(const SCEV
*S
) const;
379 bool hasRegsUsedByUsesOtherThan(size_t LUIdx
,
380 const RegUseTracker
&RegUses
) const;
382 void print(raw_ostream
&OS
) const;
386 } // end anonymous namespace
388 /// Recursion helper for initialMatch.
389 static void DoInitialMatch(const SCEV
*S
, Loop
*L
,
390 SmallVectorImpl
<const SCEV
*> &Good
,
391 SmallVectorImpl
<const SCEV
*> &Bad
,
392 ScalarEvolution
&SE
) {
393 // Collect expressions which properly dominate the loop header.
394 if (SE
.properlyDominates(S
, L
->getHeader())) {
399 // Look at add operands.
400 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
401 for (const SCEV
*S
: Add
->operands())
402 DoInitialMatch(S
, L
, Good
, Bad
, SE
);
406 // Look at addrec operands.
407 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
408 if (!AR
->getStart()->isZero() && AR
->isAffine()) {
409 DoInitialMatch(AR
->getStart(), L
, Good
, Bad
, SE
);
410 DoInitialMatch(SE
.getAddRecExpr(SE
.getConstant(AR
->getType(), 0),
411 AR
->getStepRecurrence(SE
),
412 // FIXME: AR->getNoWrapFlags()
413 AR
->getLoop(), SCEV::FlagAnyWrap
),
418 // Handle a multiplication by -1 (negation) if it didn't fold.
419 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
))
420 if (Mul
->getOperand(0)->isAllOnesValue()) {
421 SmallVector
<const SCEV
*, 4> Ops(Mul
->op_begin()+1, Mul
->op_end());
422 const SCEV
*NewMul
= SE
.getMulExpr(Ops
);
424 SmallVector
<const SCEV
*, 4> MyGood
;
425 SmallVector
<const SCEV
*, 4> MyBad
;
426 DoInitialMatch(NewMul
, L
, MyGood
, MyBad
, SE
);
427 const SCEV
*NegOne
= SE
.getSCEV(ConstantInt::getAllOnesValue(
428 SE
.getEffectiveSCEVType(NewMul
->getType())));
429 for (const SCEV
*S
: MyGood
)
430 Good
.push_back(SE
.getMulExpr(NegOne
, S
));
431 for (const SCEV
*S
: MyBad
)
432 Bad
.push_back(SE
.getMulExpr(NegOne
, S
));
436 // Ok, we can't do anything interesting. Just stuff the whole thing into a
437 // register and hope for the best.
441 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
442 /// all loop-invariant and loop-computable values in a single base register.
443 void Formula::initialMatch(const SCEV
*S
, Loop
*L
, ScalarEvolution
&SE
) {
444 SmallVector
<const SCEV
*, 4> Good
;
445 SmallVector
<const SCEV
*, 4> Bad
;
446 DoInitialMatch(S
, L
, Good
, Bad
, SE
);
448 const SCEV
*Sum
= SE
.getAddExpr(Good
);
450 BaseRegs
.push_back(Sum
);
454 const SCEV
*Sum
= SE
.getAddExpr(Bad
);
456 BaseRegs
.push_back(Sum
);
462 /// Check whether or not this formula satisfies the canonical
464 /// \see Formula::BaseRegs.
465 bool Formula::isCanonical(const Loop
&L
) const {
467 return BaseRegs
.size() <= 1;
472 if (Scale
== 1 && BaseRegs
.empty())
475 const SCEVAddRecExpr
*SAR
= dyn_cast
<const SCEVAddRecExpr
>(ScaledReg
);
476 if (SAR
&& SAR
->getLoop() == &L
)
479 // If ScaledReg is not a recurrent expr, or it is but its loop is not current
480 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
481 // loop, we want to swap the reg in BaseRegs with ScaledReg.
483 find_if(make_range(BaseRegs
.begin(), BaseRegs
.end()), [&](const SCEV
*S
) {
484 return isa
<const SCEVAddRecExpr
>(S
) &&
485 (cast
<SCEVAddRecExpr
>(S
)->getLoop() == &L
);
487 return I
== BaseRegs
.end();
490 /// Helper method to morph a formula into its canonical representation.
491 /// \see Formula::BaseRegs.
492 /// Every formula having more than one base register, must use the ScaledReg
493 /// field. Otherwise, we would have to do special cases everywhere in LSR
494 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
495 /// On the other hand, 1*reg should be canonicalized into reg.
496 void Formula::canonicalize(const Loop
&L
) {
499 // So far we did not need this case. This is easy to implement but it is
500 // useless to maintain dead code. Beside it could hurt compile time.
501 assert(!BaseRegs
.empty() && "1*reg => reg, should not be needed.");
503 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
505 ScaledReg
= BaseRegs
.back();
510 // If ScaledReg is an invariant with respect to L, find the reg from
511 // BaseRegs containing the recurrent expr related with Loop L. Swap the
512 // reg with ScaledReg.
513 const SCEVAddRecExpr
*SAR
= dyn_cast
<const SCEVAddRecExpr
>(ScaledReg
);
514 if (!SAR
|| SAR
->getLoop() != &L
) {
515 auto I
= find_if(make_range(BaseRegs
.begin(), BaseRegs
.end()),
517 return isa
<const SCEVAddRecExpr
>(S
) &&
518 (cast
<SCEVAddRecExpr
>(S
)->getLoop() == &L
);
520 if (I
!= BaseRegs
.end())
521 std::swap(ScaledReg
, *I
);
525 /// Get rid of the scale in the formula.
526 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
527 /// \return true if it was possible to get rid of the scale, false otherwise.
528 /// \note After this operation the formula may not be in the canonical form.
529 bool Formula::unscale() {
533 BaseRegs
.push_back(ScaledReg
);
538 bool Formula::hasZeroEnd() const {
539 if (UnfoldedOffset
|| BaseOffset
)
541 if (BaseRegs
.size() != 1 || ScaledReg
)
546 /// Return the total number of register operands used by this formula. This does
547 /// not include register uses implied by non-constant addrec strides.
548 size_t Formula::getNumRegs() const {
549 return !!ScaledReg
+ BaseRegs
.size();
552 /// Return the type of this formula, if it has one, or null otherwise. This type
553 /// is meaningless except for the bit size.
554 Type
*Formula::getType() const {
555 return !BaseRegs
.empty() ? BaseRegs
.front()->getType() :
556 ScaledReg
? ScaledReg
->getType() :
557 BaseGV
? BaseGV
->getType() :
561 /// Delete the given base reg from the BaseRegs list.
562 void Formula::deleteBaseReg(const SCEV
*&S
) {
563 if (&S
!= &BaseRegs
.back())
564 std::swap(S
, BaseRegs
.back());
568 /// Test if this formula references the given register.
569 bool Formula::referencesReg(const SCEV
*S
) const {
570 return S
== ScaledReg
|| is_contained(BaseRegs
, S
);
573 /// Test whether this formula uses registers which are used by uses other than
574 /// the use with the given index.
575 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx
,
576 const RegUseTracker
&RegUses
) const {
578 if (RegUses
.isRegUsedByUsesOtherThan(ScaledReg
, LUIdx
))
580 for (const SCEV
*BaseReg
: BaseRegs
)
581 if (RegUses
.isRegUsedByUsesOtherThan(BaseReg
, LUIdx
))
586 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
587 void Formula::print(raw_ostream
&OS
) const {
590 if (!First
) OS
<< " + "; else First
= false;
591 BaseGV
->printAsOperand(OS
, /*PrintType=*/false);
593 if (BaseOffset
!= 0) {
594 if (!First
) OS
<< " + "; else First
= false;
597 for (const SCEV
*BaseReg
: BaseRegs
) {
598 if (!First
) OS
<< " + "; else First
= false;
599 OS
<< "reg(" << *BaseReg
<< ')';
601 if (HasBaseReg
&& BaseRegs
.empty()) {
602 if (!First
) OS
<< " + "; else First
= false;
603 OS
<< "**error: HasBaseReg**";
604 } else if (!HasBaseReg
&& !BaseRegs
.empty()) {
605 if (!First
) OS
<< " + "; else First
= false;
606 OS
<< "**error: !HasBaseReg**";
609 if (!First
) OS
<< " + "; else First
= false;
610 OS
<< Scale
<< "*reg(";
617 if (UnfoldedOffset
!= 0) {
618 if (!First
) OS
<< " + ";
619 OS
<< "imm(" << UnfoldedOffset
<< ')';
623 LLVM_DUMP_METHOD
void Formula::dump() const {
624 print(errs()); errs() << '\n';
628 /// Return true if the given addrec can be sign-extended without changing its
630 static bool isAddRecSExtable(const SCEVAddRecExpr
*AR
, ScalarEvolution
&SE
) {
632 IntegerType::get(SE
.getContext(), SE
.getTypeSizeInBits(AR
->getType()) + 1);
633 return isa
<SCEVAddRecExpr
>(SE
.getSignExtendExpr(AR
, WideTy
));
636 /// Return true if the given add can be sign-extended without changing its
638 static bool isAddSExtable(const SCEVAddExpr
*A
, ScalarEvolution
&SE
) {
640 IntegerType::get(SE
.getContext(), SE
.getTypeSizeInBits(A
->getType()) + 1);
641 return isa
<SCEVAddExpr
>(SE
.getSignExtendExpr(A
, WideTy
));
644 /// Return true if the given mul can be sign-extended without changing its
646 static bool isMulSExtable(const SCEVMulExpr
*M
, ScalarEvolution
&SE
) {
648 IntegerType::get(SE
.getContext(),
649 SE
.getTypeSizeInBits(M
->getType()) * M
->getNumOperands());
650 return isa
<SCEVMulExpr
>(SE
.getSignExtendExpr(M
, WideTy
));
653 /// Return an expression for LHS /s RHS, if it can be determined and if the
654 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
655 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
656 /// the multiplication may overflow, which is useful when the result will be
657 /// used in a context where the most significant bits are ignored.
658 static const SCEV
*getExactSDiv(const SCEV
*LHS
, const SCEV
*RHS
,
660 bool IgnoreSignificantBits
= false) {
661 // Handle the trivial case, which works for any SCEV type.
663 return SE
.getConstant(LHS
->getType(), 1);
665 // Handle a few RHS special cases.
666 const SCEVConstant
*RC
= dyn_cast
<SCEVConstant
>(RHS
);
668 const APInt
&RA
= RC
->getAPInt();
669 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
671 if (RA
.isAllOnesValue())
672 return SE
.getMulExpr(LHS
, RC
);
673 // Handle x /s 1 as x.
678 // Check for a division of a constant by a constant.
679 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(LHS
)) {
682 const APInt
&LA
= C
->getAPInt();
683 const APInt
&RA
= RC
->getAPInt();
684 if (LA
.srem(RA
) != 0)
686 return SE
.getConstant(LA
.sdiv(RA
));
689 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
690 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
)) {
691 if ((IgnoreSignificantBits
|| isAddRecSExtable(AR
, SE
)) && AR
->isAffine()) {
692 const SCEV
*Step
= getExactSDiv(AR
->getStepRecurrence(SE
), RHS
, SE
,
693 IgnoreSignificantBits
);
694 if (!Step
) return nullptr;
695 const SCEV
*Start
= getExactSDiv(AR
->getStart(), RHS
, SE
,
696 IgnoreSignificantBits
);
697 if (!Start
) return nullptr;
698 // FlagNW is independent of the start value, step direction, and is
699 // preserved with smaller magnitude steps.
700 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
701 return SE
.getAddRecExpr(Start
, Step
, AR
->getLoop(), SCEV::FlagAnyWrap
);
706 // Distribute the sdiv over add operands, if the add doesn't overflow.
707 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(LHS
)) {
708 if (IgnoreSignificantBits
|| isAddSExtable(Add
, SE
)) {
709 SmallVector
<const SCEV
*, 8> Ops
;
710 for (const SCEV
*S
: Add
->operands()) {
711 const SCEV
*Op
= getExactSDiv(S
, RHS
, SE
, IgnoreSignificantBits
);
712 if (!Op
) return nullptr;
715 return SE
.getAddExpr(Ops
);
720 // Check for a multiply operand that we can pull RHS out of.
721 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
722 if (IgnoreSignificantBits
|| isMulSExtable(Mul
, SE
)) {
723 SmallVector
<const SCEV
*, 4> Ops
;
725 for (const SCEV
*S
: Mul
->operands()) {
727 if (const SCEV
*Q
= getExactSDiv(S
, RHS
, SE
,
728 IgnoreSignificantBits
)) {
734 return Found
? SE
.getMulExpr(Ops
) : nullptr;
739 // Otherwise we don't know.
743 /// If S involves the addition of a constant integer value, return that integer
744 /// value, and mutate S to point to a new SCEV with that value excluded.
745 static int64_t ExtractImmediate(const SCEV
*&S
, ScalarEvolution
&SE
) {
746 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
)) {
747 if (C
->getAPInt().getMinSignedBits() <= 64) {
748 S
= SE
.getConstant(C
->getType(), 0);
749 return C
->getValue()->getSExtValue();
751 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
752 SmallVector
<const SCEV
*, 8> NewOps(Add
->op_begin(), Add
->op_end());
753 int64_t Result
= ExtractImmediate(NewOps
.front(), SE
);
755 S
= SE
.getAddExpr(NewOps
);
757 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
758 SmallVector
<const SCEV
*, 8> NewOps(AR
->op_begin(), AR
->op_end());
759 int64_t Result
= ExtractImmediate(NewOps
.front(), SE
);
761 S
= SE
.getAddRecExpr(NewOps
, AR
->getLoop(),
762 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
769 /// If S involves the addition of a GlobalValue address, return that symbol, and
770 /// mutate S to point to a new SCEV with that value excluded.
771 static GlobalValue
*ExtractSymbol(const SCEV
*&S
, ScalarEvolution
&SE
) {
772 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
773 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(U
->getValue())) {
774 S
= SE
.getConstant(GV
->getType(), 0);
777 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
778 SmallVector
<const SCEV
*, 8> NewOps(Add
->op_begin(), Add
->op_end());
779 GlobalValue
*Result
= ExtractSymbol(NewOps
.back(), SE
);
781 S
= SE
.getAddExpr(NewOps
);
783 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
784 SmallVector
<const SCEV
*, 8> NewOps(AR
->op_begin(), AR
->op_end());
785 GlobalValue
*Result
= ExtractSymbol(NewOps
.front(), SE
);
787 S
= SE
.getAddRecExpr(NewOps
, AR
->getLoop(),
788 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
795 /// Returns true if the specified instruction is using the specified value as an
797 static bool isAddressUse(const TargetTransformInfo
&TTI
,
798 Instruction
*Inst
, Value
*OperandVal
) {
799 bool isAddress
= isa
<LoadInst
>(Inst
);
800 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
801 if (SI
->getPointerOperand() == OperandVal
)
803 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
804 // Addressing modes can also be folded into prefetches and a variety
806 switch (II
->getIntrinsicID()) {
807 case Intrinsic::memset
:
808 case Intrinsic::prefetch
:
809 if (II
->getArgOperand(0) == OperandVal
)
812 case Intrinsic::memmove
:
813 case Intrinsic::memcpy
:
814 if (II
->getArgOperand(0) == OperandVal
||
815 II
->getArgOperand(1) == OperandVal
)
819 MemIntrinsicInfo IntrInfo
;
820 if (TTI
.getTgtMemIntrinsic(II
, IntrInfo
)) {
821 if (IntrInfo
.PtrVal
== OperandVal
)
826 } else if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(Inst
)) {
827 if (RMW
->getPointerOperand() == OperandVal
)
829 } else if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(Inst
)) {
830 if (CmpX
->getPointerOperand() == OperandVal
)
836 /// Return the type of the memory being accessed.
837 static MemAccessTy
getAccessType(const TargetTransformInfo
&TTI
,
838 Instruction
*Inst
, Value
*OperandVal
) {
839 MemAccessTy
AccessTy(Inst
->getType(), MemAccessTy::UnknownAddressSpace
);
840 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
841 AccessTy
.MemTy
= SI
->getOperand(0)->getType();
842 AccessTy
.AddrSpace
= SI
->getPointerAddressSpace();
843 } else if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
)) {
844 AccessTy
.AddrSpace
= LI
->getPointerAddressSpace();
845 } else if (const AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(Inst
)) {
846 AccessTy
.AddrSpace
= RMW
->getPointerAddressSpace();
847 } else if (const AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(Inst
)) {
848 AccessTy
.AddrSpace
= CmpX
->getPointerAddressSpace();
849 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
850 switch (II
->getIntrinsicID()) {
851 case Intrinsic::prefetch
:
852 case Intrinsic::memset
:
853 AccessTy
.AddrSpace
= II
->getArgOperand(0)->getType()->getPointerAddressSpace();
854 AccessTy
.MemTy
= OperandVal
->getType();
856 case Intrinsic::memmove
:
857 case Intrinsic::memcpy
:
858 AccessTy
.AddrSpace
= OperandVal
->getType()->getPointerAddressSpace();
859 AccessTy
.MemTy
= OperandVal
->getType();
862 MemIntrinsicInfo IntrInfo
;
863 if (TTI
.getTgtMemIntrinsic(II
, IntrInfo
) && IntrInfo
.PtrVal
) {
865 = IntrInfo
.PtrVal
->getType()->getPointerAddressSpace();
873 // All pointers have the same requirements, so canonicalize them to an
874 // arbitrary pointer type to minimize variation.
875 if (PointerType
*PTy
= dyn_cast
<PointerType
>(AccessTy
.MemTy
))
876 AccessTy
.MemTy
= PointerType::get(IntegerType::get(PTy
->getContext(), 1),
877 PTy
->getAddressSpace());
882 /// Return true if this AddRec is already a phi in its loop.
883 static bool isExistingPhi(const SCEVAddRecExpr
*AR
, ScalarEvolution
&SE
) {
884 for (PHINode
&PN
: AR
->getLoop()->getHeader()->phis()) {
885 if (SE
.isSCEVable(PN
.getType()) &&
886 (SE
.getEffectiveSCEVType(PN
.getType()) ==
887 SE
.getEffectiveSCEVType(AR
->getType())) &&
888 SE
.getSCEV(&PN
) == AR
)
894 /// Check if expanding this expression is likely to incur significant cost. This
895 /// is tricky because SCEV doesn't track which expressions are actually computed
896 /// by the current IR.
898 /// We currently allow expansion of IV increments that involve adds,
899 /// multiplication by constants, and AddRecs from existing phis.
901 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
902 /// obvious multiple of the UDivExpr.
903 static bool isHighCostExpansion(const SCEV
*S
,
904 SmallPtrSetImpl
<const SCEV
*> &Processed
,
905 ScalarEvolution
&SE
) {
906 // Zero/One operand expressions
907 switch (S
->getSCEVType()) {
912 return isHighCostExpansion(cast
<SCEVTruncateExpr
>(S
)->getOperand(),
915 return isHighCostExpansion(cast
<SCEVZeroExtendExpr
>(S
)->getOperand(),
918 return isHighCostExpansion(cast
<SCEVSignExtendExpr
>(S
)->getOperand(),
922 if (!Processed
.insert(S
).second
)
925 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
926 for (const SCEV
*S
: Add
->operands()) {
927 if (isHighCostExpansion(S
, Processed
, SE
))
933 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
934 if (Mul
->getNumOperands() == 2) {
935 // Multiplication by a constant is ok
936 if (isa
<SCEVConstant
>(Mul
->getOperand(0)))
937 return isHighCostExpansion(Mul
->getOperand(1), Processed
, SE
);
939 // If we have the value of one operand, check if an existing
940 // multiplication already generates this expression.
941 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(Mul
->getOperand(1))) {
942 Value
*UVal
= U
->getValue();
943 for (User
*UR
: UVal
->users()) {
944 // If U is a constant, it may be used by a ConstantExpr.
945 Instruction
*UI
= dyn_cast
<Instruction
>(UR
);
946 if (UI
&& UI
->getOpcode() == Instruction::Mul
&&
947 SE
.isSCEVable(UI
->getType())) {
948 return SE
.getSCEV(UI
) == Mul
;
955 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
956 if (isExistingPhi(AR
, SE
))
960 // Fow now, consider any other type of expression (div/mul/min/max) high cost.
964 /// If any of the instructions in the specified set are trivially dead, delete
965 /// them and see if this makes any of their operands subsequently dead.
967 DeleteTriviallyDeadInstructions(SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) {
968 bool Changed
= false;
970 while (!DeadInsts
.empty()) {
971 Value
*V
= DeadInsts
.pop_back_val();
972 Instruction
*I
= dyn_cast_or_null
<Instruction
>(V
);
974 if (!I
|| !isInstructionTriviallyDead(I
))
977 for (Use
&O
: I
->operands())
978 if (Instruction
*U
= dyn_cast
<Instruction
>(O
)) {
981 DeadInsts
.emplace_back(U
);
984 I
->eraseFromParent();
995 } // end anonymous namespace
997 /// Check if the addressing mode defined by \p F is completely
998 /// folded in \p LU at isel time.
999 /// This includes address-mode folding and special icmp tricks.
1000 /// This function returns true if \p LU can accommodate what \p F
1001 /// defines and up to 1 base + 1 scaled + offset.
1002 /// In other words, if \p F has several base registers, this function may
1003 /// still return true. Therefore, users still need to account for
1004 /// additional base registers and/or unfolded offsets to derive an
1005 /// accurate cost model.
1006 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1007 const LSRUse
&LU
, const Formula
&F
);
1009 // Get the cost of the scaling factor used in F for LU.
1010 static unsigned getScalingFactorCost(const TargetTransformInfo
&TTI
,
1011 const LSRUse
&LU
, const Formula
&F
,
1016 /// This class is used to measure and compare candidate formulae.
1018 const Loop
*L
= nullptr;
1019 ScalarEvolution
*SE
= nullptr;
1020 const TargetTransformInfo
*TTI
= nullptr;
1021 TargetTransformInfo::LSRCost C
;
1025 Cost(const Loop
*L
, ScalarEvolution
&SE
, const TargetTransformInfo
&TTI
) :
1026 L(L
), SE(&SE
), TTI(&TTI
) {
1037 bool isLess(Cost
&Other
);
1042 // Once any of the metrics loses, they must all remain losers.
1044 return ((C
.Insns
| C
.NumRegs
| C
.AddRecCost
| C
.NumIVMuls
| C
.NumBaseAdds
1045 | C
.ImmCost
| C
.SetupCost
| C
.ScaleCost
) != ~0u)
1046 || ((C
.Insns
& C
.NumRegs
& C
.AddRecCost
& C
.NumIVMuls
& C
.NumBaseAdds
1047 & C
.ImmCost
& C
.SetupCost
& C
.ScaleCost
) == ~0u);
1052 assert(isValid() && "invalid cost");
1053 return C
.NumRegs
== ~0u;
1056 void RateFormula(const Formula
&F
,
1057 SmallPtrSetImpl
<const SCEV
*> &Regs
,
1058 const DenseSet
<const SCEV
*> &VisitedRegs
,
1060 SmallPtrSetImpl
<const SCEV
*> *LoserRegs
= nullptr);
1062 void print(raw_ostream
&OS
) const;
1066 void RateRegister(const Formula
&F
, const SCEV
*Reg
,
1067 SmallPtrSetImpl
<const SCEV
*> &Regs
);
1068 void RatePrimaryRegister(const Formula
&F
, const SCEV
*Reg
,
1069 SmallPtrSetImpl
<const SCEV
*> &Regs
,
1070 SmallPtrSetImpl
<const SCEV
*> *LoserRegs
);
1073 /// An operand value in an instruction which is to be replaced with some
1074 /// equivalent, possibly strength-reduced, replacement.
1076 /// The instruction which will be updated.
1077 Instruction
*UserInst
= nullptr;
1079 /// The operand of the instruction which will be replaced. The operand may be
1080 /// used more than once; every instance will be replaced.
1081 Value
*OperandValToReplace
= nullptr;
1083 /// If this user is to use the post-incremented value of an induction
1084 /// variable, this set is non-empty and holds the loops associated with the
1085 /// induction variable.
1086 PostIncLoopSet PostIncLoops
;
1088 /// A constant offset to be added to the LSRUse expression. This allows
1089 /// multiple fixups to share the same LSRUse with different offsets, for
1090 /// example in an unrolled loop.
1093 LSRFixup() = default;
1095 bool isUseFullyOutsideLoop(const Loop
*L
) const;
1097 void print(raw_ostream
&OS
) const;
1101 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1102 /// SmallVectors of const SCEV*.
1103 struct UniquifierDenseMapInfo
{
1104 static SmallVector
<const SCEV
*, 4> getEmptyKey() {
1105 SmallVector
<const SCEV
*, 4> V
;
1106 V
.push_back(reinterpret_cast<const SCEV
*>(-1));
1110 static SmallVector
<const SCEV
*, 4> getTombstoneKey() {
1111 SmallVector
<const SCEV
*, 4> V
;
1112 V
.push_back(reinterpret_cast<const SCEV
*>(-2));
1116 static unsigned getHashValue(const SmallVector
<const SCEV
*, 4> &V
) {
1117 return static_cast<unsigned>(hash_combine_range(V
.begin(), V
.end()));
1120 static bool isEqual(const SmallVector
<const SCEV
*, 4> &LHS
,
1121 const SmallVector
<const SCEV
*, 4> &RHS
) {
1126 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1127 /// as uses invented by LSR itself. It includes information about what kinds of
1128 /// things can be folded into the user, information about the user itself, and
1129 /// information about how the use may be satisfied. TODO: Represent multiple
1130 /// users of the same expression in common?
1132 DenseSet
<SmallVector
<const SCEV
*, 4>, UniquifierDenseMapInfo
> Uniquifier
;
1135 /// An enum for a kind of use, indicating what types of scaled and immediate
1136 /// operands it might support.
1138 Basic
, ///< A normal use, with no folding.
1139 Special
, ///< A special case of basic, allowing -1 scales.
1140 Address
, ///< An address use; folding according to TargetLowering
1141 ICmpZero
///< An equality icmp with both operands folded into one.
1142 // TODO: Add a generic icmp too?
1145 using SCEVUseKindPair
= PointerIntPair
<const SCEV
*, 2, KindType
>;
1148 MemAccessTy AccessTy
;
1150 /// The list of operands which are to be replaced.
1151 SmallVector
<LSRFixup
, 8> Fixups
;
1153 /// Keep track of the min and max offsets of the fixups.
1154 int64_t MinOffset
= std::numeric_limits
<int64_t>::max();
1155 int64_t MaxOffset
= std::numeric_limits
<int64_t>::min();
1157 /// This records whether all of the fixups using this LSRUse are outside of
1158 /// the loop, in which case some special-case heuristics may be used.
1159 bool AllFixupsOutsideLoop
= true;
1161 /// RigidFormula is set to true to guarantee that this use will be associated
1162 /// with a single formula--the one that initially matched. Some SCEV
1163 /// expressions cannot be expanded. This allows LSR to consider the registers
1164 /// used by those expressions without the need to expand them later after
1165 /// changing the formula.
1166 bool RigidFormula
= false;
1168 /// This records the widest use type for any fixup using this
1169 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1170 /// fixup widths to be equivalent, because the narrower one may be relying on
1171 /// the implicit truncation to truncate away bogus bits.
1172 Type
*WidestFixupType
= nullptr;
1174 /// A list of ways to build a value that can satisfy this user. After the
1175 /// list is populated, one of these is selected heuristically and used to
1176 /// formulate a replacement for OperandValToReplace in UserInst.
1177 SmallVector
<Formula
, 12> Formulae
;
1179 /// The set of register candidates used by all formulae in this LSRUse.
1180 SmallPtrSet
<const SCEV
*, 4> Regs
;
1182 LSRUse(KindType K
, MemAccessTy AT
) : Kind(K
), AccessTy(AT
) {}
1184 LSRFixup
&getNewFixup() {
1185 Fixups
.push_back(LSRFixup());
1186 return Fixups
.back();
1189 void pushFixup(LSRFixup
&f
) {
1190 Fixups
.push_back(f
);
1191 if (f
.Offset
> MaxOffset
)
1192 MaxOffset
= f
.Offset
;
1193 if (f
.Offset
< MinOffset
)
1194 MinOffset
= f
.Offset
;
1197 bool HasFormulaWithSameRegs(const Formula
&F
) const;
1198 float getNotSelectedProbability(const SCEV
*Reg
) const;
1199 bool InsertFormula(const Formula
&F
, const Loop
&L
);
1200 void DeleteFormula(Formula
&F
);
1201 void RecomputeRegs(size_t LUIdx
, RegUseTracker
&Reguses
);
1203 void print(raw_ostream
&OS
) const;
1207 } // end anonymous namespace
1209 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1210 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1211 GlobalValue
*BaseGV
, int64_t BaseOffset
,
1212 bool HasBaseReg
, int64_t Scale
,
1213 Instruction
*Fixup
= nullptr);
1215 static unsigned getSetupCost(const SCEV
*Reg
, unsigned Depth
) {
1216 if (isa
<SCEVUnknown
>(Reg
) || isa
<SCEVConstant
>(Reg
))
1220 if (const auto *S
= dyn_cast
<SCEVAddRecExpr
>(Reg
))
1221 return getSetupCost(S
->getStart(), Depth
- 1);
1222 if (auto S
= dyn_cast
<SCEVCastExpr
>(Reg
))
1223 return getSetupCost(S
->getOperand(), Depth
- 1);
1224 if (auto S
= dyn_cast
<SCEVNAryExpr
>(Reg
))
1225 return std::accumulate(S
->op_begin(), S
->op_end(), 0,
1226 [&](unsigned i
, const SCEV
*Reg
) {
1227 return i
+ getSetupCost(Reg
, Depth
- 1);
1229 if (auto S
= dyn_cast
<SCEVUDivExpr
>(Reg
))
1230 return getSetupCost(S
->getLHS(), Depth
- 1) +
1231 getSetupCost(S
->getRHS(), Depth
- 1);
1235 /// Tally up interesting quantities from the given register.
1236 void Cost::RateRegister(const Formula
&F
, const SCEV
*Reg
,
1237 SmallPtrSetImpl
<const SCEV
*> &Regs
) {
1238 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Reg
)) {
1239 // If this is an addrec for another loop, it should be an invariant
1240 // with respect to L since L is the innermost loop (at least
1241 // for now LSR only handles innermost loops).
1242 if (AR
->getLoop() != L
) {
1243 // If the AddRec exists, consider it's register free and leave it alone.
1244 if (isExistingPhi(AR
, *SE
))
1247 // It is bad to allow LSR for current loop to add induction variables
1248 // for its sibling loops.
1249 if (!AR
->getLoop()->contains(L
)) {
1254 // Otherwise, it will be an invariant with respect to Loop L.
1259 unsigned LoopCost
= 1;
1260 if (TTI
->isIndexedLoadLegal(TTI
->MIM_PostInc
, AR
->getType()) ||
1261 TTI
->isIndexedStoreLegal(TTI
->MIM_PostInc
, AR
->getType())) {
1263 // If the step size matches the base offset, we could use pre-indexed
1265 if (TTI
->shouldFavorBackedgeIndex(L
)) {
1266 if (auto *Step
= dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(*SE
)))
1267 if (Step
->getAPInt() == F
.BaseOffset
)
1271 if (TTI
->shouldFavorPostInc()) {
1272 const SCEV
*LoopStep
= AR
->getStepRecurrence(*SE
);
1273 if (isa
<SCEVConstant
>(LoopStep
)) {
1274 const SCEV
*LoopStart
= AR
->getStart();
1275 if (!isa
<SCEVConstant
>(LoopStart
) &&
1276 SE
->isLoopInvariant(LoopStart
, L
))
1281 C
.AddRecCost
+= LoopCost
;
1283 // Add the step value register, if it needs one.
1284 // TODO: The non-affine case isn't precisely modeled here.
1285 if (!AR
->isAffine() || !isa
<SCEVConstant
>(AR
->getOperand(1))) {
1286 if (!Regs
.count(AR
->getOperand(1))) {
1287 RateRegister(F
, AR
->getOperand(1), Regs
);
1295 // Rough heuristic; favor registers which don't require extra setup
1296 // instructions in the preheader.
1297 C
.SetupCost
+= getSetupCost(Reg
, SetupCostDepthLimit
);
1298 // Ensure we don't, even with the recusion limit, produce invalid costs.
1299 C
.SetupCost
= std::min
<unsigned>(C
.SetupCost
, 1 << 16);
1301 C
.NumIVMuls
+= isa
<SCEVMulExpr
>(Reg
) &&
1302 SE
->hasComputableLoopEvolution(Reg
, L
);
1305 /// Record this register in the set. If we haven't seen it before, rate
1306 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1307 /// one of those regs an instant loser.
1308 void Cost::RatePrimaryRegister(const Formula
&F
, const SCEV
*Reg
,
1309 SmallPtrSetImpl
<const SCEV
*> &Regs
,
1310 SmallPtrSetImpl
<const SCEV
*> *LoserRegs
) {
1311 if (LoserRegs
&& LoserRegs
->count(Reg
)) {
1315 if (Regs
.insert(Reg
).second
) {
1316 RateRegister(F
, Reg
, Regs
);
1317 if (LoserRegs
&& isLoser())
1318 LoserRegs
->insert(Reg
);
1322 void Cost::RateFormula(const Formula
&F
,
1323 SmallPtrSetImpl
<const SCEV
*> &Regs
,
1324 const DenseSet
<const SCEV
*> &VisitedRegs
,
1326 SmallPtrSetImpl
<const SCEV
*> *LoserRegs
) {
1327 assert(F
.isCanonical(*L
) && "Cost is accurate only for canonical formula");
1328 // Tally up the registers.
1329 unsigned PrevAddRecCost
= C
.AddRecCost
;
1330 unsigned PrevNumRegs
= C
.NumRegs
;
1331 unsigned PrevNumBaseAdds
= C
.NumBaseAdds
;
1332 if (const SCEV
*ScaledReg
= F
.ScaledReg
) {
1333 if (VisitedRegs
.count(ScaledReg
)) {
1337 RatePrimaryRegister(F
, ScaledReg
, Regs
, LoserRegs
);
1341 for (const SCEV
*BaseReg
: F
.BaseRegs
) {
1342 if (VisitedRegs
.count(BaseReg
)) {
1346 RatePrimaryRegister(F
, BaseReg
, Regs
, LoserRegs
);
1351 // Determine how many (unfolded) adds we'll need inside the loop.
1352 size_t NumBaseParts
= F
.getNumRegs();
1353 if (NumBaseParts
> 1)
1354 // Do not count the base and a possible second register if the target
1355 // allows to fold 2 registers.
1357 NumBaseParts
- (1 + (F
.Scale
&& isAMCompletelyFolded(*TTI
, LU
, F
)));
1358 C
.NumBaseAdds
+= (F
.UnfoldedOffset
!= 0);
1360 // Accumulate non-free scaling amounts.
1361 C
.ScaleCost
+= getScalingFactorCost(*TTI
, LU
, F
, *L
);
1363 // Tally up the non-zero immediates.
1364 for (const LSRFixup
&Fixup
: LU
.Fixups
) {
1365 int64_t O
= Fixup
.Offset
;
1366 int64_t Offset
= (uint64_t)O
+ F
.BaseOffset
;
1368 C
.ImmCost
+= 64; // Handle symbolic values conservatively.
1369 // TODO: This should probably be the pointer size.
1370 else if (Offset
!= 0)
1371 C
.ImmCost
+= APInt(64, Offset
, true).getMinSignedBits();
1373 // Check with target if this offset with this instruction is
1374 // specifically not supported.
1375 if (LU
.Kind
== LSRUse::Address
&& Offset
!= 0 &&
1376 !isAMCompletelyFolded(*TTI
, LSRUse::Address
, LU
.AccessTy
, F
.BaseGV
,
1377 Offset
, F
.HasBaseReg
, F
.Scale
, Fixup
.UserInst
))
1381 // If we don't count instruction cost exit here.
1383 assert(isValid() && "invalid cost");
1387 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1388 // additional instruction (at least fill).
1389 // TODO: Need distinguish register class?
1390 unsigned TTIRegNum
= TTI
->getNumberOfRegisters(
1391 TTI
->getRegisterClassForType(false, F
.getType())) - 1;
1392 if (C
.NumRegs
> TTIRegNum
) {
1393 // Cost already exceeded TTIRegNum, then only newly added register can add
1394 // new instructions.
1395 if (PrevNumRegs
> TTIRegNum
)
1396 C
.Insns
+= (C
.NumRegs
- PrevNumRegs
);
1398 C
.Insns
+= (C
.NumRegs
- TTIRegNum
);
1401 // If ICmpZero formula ends with not 0, it could not be replaced by
1402 // just add or sub. We'll need to compare final result of AddRec.
1403 // That means we'll need an additional instruction. But if the target can
1404 // macro-fuse a compare with a branch, don't count this extra instruction.
1405 // For -10 + {0, +, 1}:
1411 if (LU
.Kind
== LSRUse::ICmpZero
&& !F
.hasZeroEnd() &&
1412 !TTI
->canMacroFuseCmp())
1414 // Each new AddRec adds 1 instruction to calculation.
1415 C
.Insns
+= (C
.AddRecCost
- PrevAddRecCost
);
1417 // BaseAdds adds instructions for unfolded registers.
1418 if (LU
.Kind
!= LSRUse::ICmpZero
)
1419 C
.Insns
+= C
.NumBaseAdds
- PrevNumBaseAdds
;
1420 assert(isValid() && "invalid cost");
1423 /// Set this cost to a losing value.
1425 C
.Insns
= std::numeric_limits
<unsigned>::max();
1426 C
.NumRegs
= std::numeric_limits
<unsigned>::max();
1427 C
.AddRecCost
= std::numeric_limits
<unsigned>::max();
1428 C
.NumIVMuls
= std::numeric_limits
<unsigned>::max();
1429 C
.NumBaseAdds
= std::numeric_limits
<unsigned>::max();
1430 C
.ImmCost
= std::numeric_limits
<unsigned>::max();
1431 C
.SetupCost
= std::numeric_limits
<unsigned>::max();
1432 C
.ScaleCost
= std::numeric_limits
<unsigned>::max();
1435 /// Choose the lower cost.
1436 bool Cost::isLess(Cost
&Other
) {
1437 if (InsnsCost
.getNumOccurrences() > 0 && InsnsCost
&&
1438 C
.Insns
!= Other
.C
.Insns
)
1439 return C
.Insns
< Other
.C
.Insns
;
1440 return TTI
->isLSRCostLess(C
, Other
.C
);
1443 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1444 void Cost::print(raw_ostream
&OS
) const {
1446 OS
<< C
.Insns
<< " instruction" << (C
.Insns
== 1 ? " " : "s ");
1447 OS
<< C
.NumRegs
<< " reg" << (C
.NumRegs
== 1 ? "" : "s");
1448 if (C
.AddRecCost
!= 0)
1449 OS
<< ", with addrec cost " << C
.AddRecCost
;
1450 if (C
.NumIVMuls
!= 0)
1451 OS
<< ", plus " << C
.NumIVMuls
<< " IV mul"
1452 << (C
.NumIVMuls
== 1 ? "" : "s");
1453 if (C
.NumBaseAdds
!= 0)
1454 OS
<< ", plus " << C
.NumBaseAdds
<< " base add"
1455 << (C
.NumBaseAdds
== 1 ? "" : "s");
1456 if (C
.ScaleCost
!= 0)
1457 OS
<< ", plus " << C
.ScaleCost
<< " scale cost";
1459 OS
<< ", plus " << C
.ImmCost
<< " imm cost";
1460 if (C
.SetupCost
!= 0)
1461 OS
<< ", plus " << C
.SetupCost
<< " setup cost";
1464 LLVM_DUMP_METHOD
void Cost::dump() const {
1465 print(errs()); errs() << '\n';
1469 /// Test whether this fixup always uses its value outside of the given loop.
1470 bool LSRFixup::isUseFullyOutsideLoop(const Loop
*L
) const {
1471 // PHI nodes use their value in their incoming blocks.
1472 if (const PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
)) {
1473 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
1474 if (PN
->getIncomingValue(i
) == OperandValToReplace
&&
1475 L
->contains(PN
->getIncomingBlock(i
)))
1480 return !L
->contains(UserInst
);
1483 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1484 void LSRFixup::print(raw_ostream
&OS
) const {
1486 // Store is common and interesting enough to be worth special-casing.
1487 if (StoreInst
*Store
= dyn_cast
<StoreInst
>(UserInst
)) {
1489 Store
->getOperand(0)->printAsOperand(OS
, /*PrintType=*/false);
1490 } else if (UserInst
->getType()->isVoidTy())
1491 OS
<< UserInst
->getOpcodeName();
1493 UserInst
->printAsOperand(OS
, /*PrintType=*/false);
1495 OS
<< ", OperandValToReplace=";
1496 OperandValToReplace
->printAsOperand(OS
, /*PrintType=*/false);
1498 for (const Loop
*PIL
: PostIncLoops
) {
1499 OS
<< ", PostIncLoop=";
1500 PIL
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
1504 OS
<< ", Offset=" << Offset
;
1507 LLVM_DUMP_METHOD
void LSRFixup::dump() const {
1508 print(errs()); errs() << '\n';
1512 /// Test whether this use as a formula which has the same registers as the given
1514 bool LSRUse::HasFormulaWithSameRegs(const Formula
&F
) const {
1515 SmallVector
<const SCEV
*, 4> Key
= F
.BaseRegs
;
1516 if (F
.ScaledReg
) Key
.push_back(F
.ScaledReg
);
1517 // Unstable sort by host order ok, because this is only used for uniquifying.
1519 return Uniquifier
.count(Key
);
1522 /// The function returns a probability of selecting formula without Reg.
1523 float LSRUse::getNotSelectedProbability(const SCEV
*Reg
) const {
1525 for (const Formula
&F
: Formulae
)
1526 if (F
.referencesReg(Reg
))
1528 return ((float)(Formulae
.size() - FNum
)) / Formulae
.size();
1531 /// If the given formula has not yet been inserted, add it to the list, and
1532 /// return true. Return false otherwise. The formula must be in canonical form.
1533 bool LSRUse::InsertFormula(const Formula
&F
, const Loop
&L
) {
1534 assert(F
.isCanonical(L
) && "Invalid canonical representation");
1536 if (!Formulae
.empty() && RigidFormula
)
1539 SmallVector
<const SCEV
*, 4> Key
= F
.BaseRegs
;
1540 if (F
.ScaledReg
) Key
.push_back(F
.ScaledReg
);
1541 // Unstable sort by host order ok, because this is only used for uniquifying.
1544 if (!Uniquifier
.insert(Key
).second
)
1547 // Using a register to hold the value of 0 is not profitable.
1548 assert((!F
.ScaledReg
|| !F
.ScaledReg
->isZero()) &&
1549 "Zero allocated in a scaled register!");
1551 for (const SCEV
*BaseReg
: F
.BaseRegs
)
1552 assert(!BaseReg
->isZero() && "Zero allocated in a base register!");
1555 // Add the formula to the list.
1556 Formulae
.push_back(F
);
1558 // Record registers now being used by this use.
1559 Regs
.insert(F
.BaseRegs
.begin(), F
.BaseRegs
.end());
1561 Regs
.insert(F
.ScaledReg
);
1566 /// Remove the given formula from this use's list.
1567 void LSRUse::DeleteFormula(Formula
&F
) {
1568 if (&F
!= &Formulae
.back())
1569 std::swap(F
, Formulae
.back());
1570 Formulae
.pop_back();
1573 /// Recompute the Regs field, and update RegUses.
1574 void LSRUse::RecomputeRegs(size_t LUIdx
, RegUseTracker
&RegUses
) {
1575 // Now that we've filtered out some formulae, recompute the Regs set.
1576 SmallPtrSet
<const SCEV
*, 4> OldRegs
= std::move(Regs
);
1578 for (const Formula
&F
: Formulae
) {
1579 if (F
.ScaledReg
) Regs
.insert(F
.ScaledReg
);
1580 Regs
.insert(F
.BaseRegs
.begin(), F
.BaseRegs
.end());
1583 // Update the RegTracker.
1584 for (const SCEV
*S
: OldRegs
)
1586 RegUses
.dropRegister(S
, LUIdx
);
1589 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1590 void LSRUse::print(raw_ostream
&OS
) const {
1591 OS
<< "LSR Use: Kind=";
1593 case Basic
: OS
<< "Basic"; break;
1594 case Special
: OS
<< "Special"; break;
1595 case ICmpZero
: OS
<< "ICmpZero"; break;
1597 OS
<< "Address of ";
1598 if (AccessTy
.MemTy
->isPointerTy())
1599 OS
<< "pointer"; // the full pointer type could be really verbose
1601 OS
<< *AccessTy
.MemTy
;
1604 OS
<< " in addrspace(" << AccessTy
.AddrSpace
<< ')';
1607 OS
<< ", Offsets={";
1608 bool NeedComma
= false;
1609 for (const LSRFixup
&Fixup
: Fixups
) {
1610 if (NeedComma
) OS
<< ',';
1616 if (AllFixupsOutsideLoop
)
1617 OS
<< ", all-fixups-outside-loop";
1619 if (WidestFixupType
)
1620 OS
<< ", widest fixup type: " << *WidestFixupType
;
1623 LLVM_DUMP_METHOD
void LSRUse::dump() const {
1624 print(errs()); errs() << '\n';
1628 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1629 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1630 GlobalValue
*BaseGV
, int64_t BaseOffset
,
1631 bool HasBaseReg
, int64_t Scale
,
1632 Instruction
*Fixup
/*= nullptr*/) {
1634 case LSRUse::Address
:
1635 return TTI
.isLegalAddressingMode(AccessTy
.MemTy
, BaseGV
, BaseOffset
,
1636 HasBaseReg
, Scale
, AccessTy
.AddrSpace
, Fixup
);
1638 case LSRUse::ICmpZero
:
1639 // There's not even a target hook for querying whether it would be legal to
1640 // fold a GV into an ICmp.
1644 // ICmp only has two operands; don't allow more than two non-trivial parts.
1645 if (Scale
!= 0 && HasBaseReg
&& BaseOffset
!= 0)
1648 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1649 // putting the scaled register in the other operand of the icmp.
1650 if (Scale
!= 0 && Scale
!= -1)
1653 // If we have low-level target information, ask the target if it can fold an
1654 // integer immediate on an icmp.
1655 if (BaseOffset
!= 0) {
1657 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1658 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1659 // Offs is the ICmp immediate.
1661 // The cast does the right thing with
1662 // std::numeric_limits<int64_t>::min().
1663 BaseOffset
= -(uint64_t)BaseOffset
;
1664 return TTI
.isLegalICmpImmediate(BaseOffset
);
1667 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1671 // Only handle single-register values.
1672 return !BaseGV
&& Scale
== 0 && BaseOffset
== 0;
1674 case LSRUse::Special
:
1675 // Special case Basic to handle -1 scales.
1676 return !BaseGV
&& (Scale
== 0 || Scale
== -1) && BaseOffset
== 0;
1679 llvm_unreachable("Invalid LSRUse Kind!");
1682 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1683 int64_t MinOffset
, int64_t MaxOffset
,
1684 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1685 GlobalValue
*BaseGV
, int64_t BaseOffset
,
1686 bool HasBaseReg
, int64_t Scale
) {
1687 // Check for overflow.
1688 if (((int64_t)((uint64_t)BaseOffset
+ MinOffset
) > BaseOffset
) !=
1691 MinOffset
= (uint64_t)BaseOffset
+ MinOffset
;
1692 if (((int64_t)((uint64_t)BaseOffset
+ MaxOffset
) > BaseOffset
) !=
1695 MaxOffset
= (uint64_t)BaseOffset
+ MaxOffset
;
1697 return isAMCompletelyFolded(TTI
, Kind
, AccessTy
, BaseGV
, MinOffset
,
1698 HasBaseReg
, Scale
) &&
1699 isAMCompletelyFolded(TTI
, Kind
, AccessTy
, BaseGV
, MaxOffset
,
1703 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1704 int64_t MinOffset
, int64_t MaxOffset
,
1705 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1706 const Formula
&F
, const Loop
&L
) {
1707 // For the purpose of isAMCompletelyFolded either having a canonical formula
1708 // or a scale not equal to zero is correct.
1709 // Problems may arise from non canonical formulae having a scale == 0.
1710 // Strictly speaking it would best to just rely on canonical formulae.
1711 // However, when we generate the scaled formulae, we first check that the
1712 // scaling factor is profitable before computing the actual ScaledReg for
1713 // compile time sake.
1714 assert((F
.isCanonical(L
) || F
.Scale
!= 0));
1715 return isAMCompletelyFolded(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
,
1716 F
.BaseGV
, F
.BaseOffset
, F
.HasBaseReg
, F
.Scale
);
1719 /// Test whether we know how to expand the current formula.
1720 static bool isLegalUse(const TargetTransformInfo
&TTI
, int64_t MinOffset
,
1721 int64_t MaxOffset
, LSRUse::KindType Kind
,
1722 MemAccessTy AccessTy
, GlobalValue
*BaseGV
,
1723 int64_t BaseOffset
, bool HasBaseReg
, int64_t Scale
) {
1724 // We know how to expand completely foldable formulae.
1725 return isAMCompletelyFolded(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
, BaseGV
,
1726 BaseOffset
, HasBaseReg
, Scale
) ||
1727 // Or formulae that use a base register produced by a sum of base
1730 isAMCompletelyFolded(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
,
1731 BaseGV
, BaseOffset
, true, 0));
1734 static bool isLegalUse(const TargetTransformInfo
&TTI
, int64_t MinOffset
,
1735 int64_t MaxOffset
, LSRUse::KindType Kind
,
1736 MemAccessTy AccessTy
, const Formula
&F
) {
1737 return isLegalUse(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
, F
.BaseGV
,
1738 F
.BaseOffset
, F
.HasBaseReg
, F
.Scale
);
1741 static bool isAMCompletelyFolded(const TargetTransformInfo
&TTI
,
1742 const LSRUse
&LU
, const Formula
&F
) {
1743 // Target may want to look at the user instructions.
1744 if (LU
.Kind
== LSRUse::Address
&& TTI
.LSRWithInstrQueries()) {
1745 for (const LSRFixup
&Fixup
: LU
.Fixups
)
1746 if (!isAMCompletelyFolded(TTI
, LSRUse::Address
, LU
.AccessTy
, F
.BaseGV
,
1747 (F
.BaseOffset
+ Fixup
.Offset
), F
.HasBaseReg
,
1748 F
.Scale
, Fixup
.UserInst
))
1753 return isAMCompletelyFolded(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
,
1754 LU
.AccessTy
, F
.BaseGV
, F
.BaseOffset
, F
.HasBaseReg
,
1758 static unsigned getScalingFactorCost(const TargetTransformInfo
&TTI
,
1759 const LSRUse
&LU
, const Formula
&F
,
1764 // If the use is not completely folded in that instruction, we will have to
1765 // pay an extra cost only for scale != 1.
1766 if (!isAMCompletelyFolded(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
,
1768 return F
.Scale
!= 1;
1771 case LSRUse::Address
: {
1772 // Check the scaling factor cost with both the min and max offsets.
1773 int ScaleCostMinOffset
= TTI
.getScalingFactorCost(
1774 LU
.AccessTy
.MemTy
, F
.BaseGV
, F
.BaseOffset
+ LU
.MinOffset
, F
.HasBaseReg
,
1775 F
.Scale
, LU
.AccessTy
.AddrSpace
);
1776 int ScaleCostMaxOffset
= TTI
.getScalingFactorCost(
1777 LU
.AccessTy
.MemTy
, F
.BaseGV
, F
.BaseOffset
+ LU
.MaxOffset
, F
.HasBaseReg
,
1778 F
.Scale
, LU
.AccessTy
.AddrSpace
);
1780 assert(ScaleCostMinOffset
>= 0 && ScaleCostMaxOffset
>= 0 &&
1781 "Legal addressing mode has an illegal cost!");
1782 return std::max(ScaleCostMinOffset
, ScaleCostMaxOffset
);
1784 case LSRUse::ICmpZero
:
1786 case LSRUse::Special
:
1787 // The use is completely folded, i.e., everything is folded into the
1792 llvm_unreachable("Invalid LSRUse Kind!");
1795 static bool isAlwaysFoldable(const TargetTransformInfo
&TTI
,
1796 LSRUse::KindType Kind
, MemAccessTy AccessTy
,
1797 GlobalValue
*BaseGV
, int64_t BaseOffset
,
1799 // Fast-path: zero is always foldable.
1800 if (BaseOffset
== 0 && !BaseGV
) return true;
1802 // Conservatively, create an address with an immediate and a
1803 // base and a scale.
1804 int64_t Scale
= Kind
== LSRUse::ICmpZero
? -1 : 1;
1806 // Canonicalize a scale of 1 to a base register if the formula doesn't
1807 // already have a base register.
1808 if (!HasBaseReg
&& Scale
== 1) {
1813 return isAMCompletelyFolded(TTI
, Kind
, AccessTy
, BaseGV
, BaseOffset
,
1817 static bool isAlwaysFoldable(const TargetTransformInfo
&TTI
,
1818 ScalarEvolution
&SE
, int64_t MinOffset
,
1819 int64_t MaxOffset
, LSRUse::KindType Kind
,
1820 MemAccessTy AccessTy
, const SCEV
*S
,
1822 // Fast-path: zero is always foldable.
1823 if (S
->isZero()) return true;
1825 // Conservatively, create an address with an immediate and a
1826 // base and a scale.
1827 int64_t BaseOffset
= ExtractImmediate(S
, SE
);
1828 GlobalValue
*BaseGV
= ExtractSymbol(S
, SE
);
1830 // If there's anything else involved, it's not foldable.
1831 if (!S
->isZero()) return false;
1833 // Fast-path: zero is always foldable.
1834 if (BaseOffset
== 0 && !BaseGV
) return true;
1836 // Conservatively, create an address with an immediate and a
1837 // base and a scale.
1838 int64_t Scale
= Kind
== LSRUse::ICmpZero
? -1 : 1;
1840 return isAMCompletelyFolded(TTI
, MinOffset
, MaxOffset
, Kind
, AccessTy
, BaseGV
,
1841 BaseOffset
, HasBaseReg
, Scale
);
1846 /// An individual increment in a Chain of IV increments. Relate an IV user to
1847 /// an expression that computes the IV it uses from the IV used by the previous
1848 /// link in the Chain.
1850 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1851 /// original IVOperand. The head of the chain's IVOperand is only valid during
1852 /// chain collection, before LSR replaces IV users. During chain generation,
1853 /// IncExpr can be used to find the new IVOperand that computes the same
1856 Instruction
*UserInst
;
1858 const SCEV
*IncExpr
;
1860 IVInc(Instruction
*U
, Value
*O
, const SCEV
*E
)
1861 : UserInst(U
), IVOperand(O
), IncExpr(E
) {}
1864 // The list of IV increments in program order. We typically add the head of a
1865 // chain without finding subsequent links.
1867 SmallVector
<IVInc
, 1> Incs
;
1868 const SCEV
*ExprBase
= nullptr;
1870 IVChain() = default;
1871 IVChain(const IVInc
&Head
, const SCEV
*Base
)
1872 : Incs(1, Head
), ExprBase(Base
) {}
1874 using const_iterator
= SmallVectorImpl
<IVInc
>::const_iterator
;
1876 // Return the first increment in the chain.
1877 const_iterator
begin() const {
1878 assert(!Incs
.empty());
1879 return std::next(Incs
.begin());
1881 const_iterator
end() const {
1885 // Returns true if this chain contains any increments.
1886 bool hasIncs() const { return Incs
.size() >= 2; }
1888 // Add an IVInc to the end of this chain.
1889 void add(const IVInc
&X
) { Incs
.push_back(X
); }
1891 // Returns the last UserInst in the chain.
1892 Instruction
*tailUserInst() const { return Incs
.back().UserInst
; }
1894 // Returns true if IncExpr can be profitably added to this chain.
1895 bool isProfitableIncrement(const SCEV
*OperExpr
,
1896 const SCEV
*IncExpr
,
1900 /// Helper for CollectChains to track multiple IV increment uses. Distinguish
1901 /// between FarUsers that definitely cross IV increments and NearUsers that may
1902 /// be used between IV increments.
1904 SmallPtrSet
<Instruction
*, 4> FarUsers
;
1905 SmallPtrSet
<Instruction
*, 4> NearUsers
;
1908 /// This class holds state for the main loop strength reduction logic.
1911 ScalarEvolution
&SE
;
1914 AssumptionCache
&AC
;
1915 TargetLibraryInfo
&LibInfo
;
1916 const TargetTransformInfo
&TTI
;
1918 bool FavorBackedgeIndex
= false;
1919 bool Changed
= false;
1921 /// This is the insert position that the current loop's induction variable
1922 /// increment should be placed. In simple loops, this is the latch block's
1923 /// terminator. But in more complicated cases, this is a position which will
1924 /// dominate all the in-loop post-increment users.
1925 Instruction
*IVIncInsertPos
= nullptr;
1927 /// Interesting factors between use strides.
1929 /// We explicitly use a SetVector which contains a SmallSet, instead of the
1930 /// default, a SmallDenseSet, because we need to use the full range of
1931 /// int64_ts, and there's currently no good way of doing that with
1933 SetVector
<int64_t, SmallVector
<int64_t, 8>, SmallSet
<int64_t, 8>> Factors
;
1935 /// Interesting use types, to facilitate truncation reuse.
1936 SmallSetVector
<Type
*, 4> Types
;
1938 /// The list of interesting uses.
1939 mutable SmallVector
<LSRUse
, 16> Uses
;
1941 /// Track which uses use which register candidates.
1942 RegUseTracker RegUses
;
1944 // Limit the number of chains to avoid quadratic behavior. We don't expect to
1945 // have more than a few IV increment chains in a loop. Missing a Chain falls
1946 // back to normal LSR behavior for those uses.
1947 static const unsigned MaxChains
= 8;
1949 /// IV users can form a chain of IV increments.
1950 SmallVector
<IVChain
, MaxChains
> IVChainVec
;
1952 /// IV users that belong to profitable IVChains.
1953 SmallPtrSet
<Use
*, MaxChains
> IVIncSet
;
1955 void OptimizeShadowIV();
1956 bool FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
);
1957 ICmpInst
*OptimizeMax(ICmpInst
*Cond
, IVStrideUse
* &CondUse
);
1958 void OptimizeLoopTermCond();
1960 void ChainInstruction(Instruction
*UserInst
, Instruction
*IVOper
,
1961 SmallVectorImpl
<ChainUsers
> &ChainUsersVec
);
1962 void FinalizeChain(IVChain
&Chain
);
1963 void CollectChains();
1964 void GenerateIVChain(const IVChain
&Chain
, SCEVExpander
&Rewriter
,
1965 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
);
1967 void CollectInterestingTypesAndFactors();
1968 void CollectFixupsAndInitialFormulae();
1970 // Support for sharing of LSRUses between LSRFixups.
1971 using UseMapTy
= DenseMap
<LSRUse::SCEVUseKindPair
, size_t>;
1974 bool reconcileNewOffset(LSRUse
&LU
, int64_t NewOffset
, bool HasBaseReg
,
1975 LSRUse::KindType Kind
, MemAccessTy AccessTy
);
1977 std::pair
<size_t, int64_t> getUse(const SCEV
*&Expr
, LSRUse::KindType Kind
,
1978 MemAccessTy AccessTy
);
1980 void DeleteUse(LSRUse
&LU
, size_t LUIdx
);
1982 LSRUse
*FindUseWithSimilarFormula(const Formula
&F
, const LSRUse
&OrigLU
);
1984 void InsertInitialFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
);
1985 void InsertSupplementalFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
);
1986 void CountRegisters(const Formula
&F
, size_t LUIdx
);
1987 bool InsertFormula(LSRUse
&LU
, unsigned LUIdx
, const Formula
&F
);
1989 void CollectLoopInvariantFixupsAndFormulae();
1991 void GenerateReassociations(LSRUse
&LU
, unsigned LUIdx
, Formula Base
,
1992 unsigned Depth
= 0);
1994 void GenerateReassociationsImpl(LSRUse
&LU
, unsigned LUIdx
,
1995 const Formula
&Base
, unsigned Depth
,
1996 size_t Idx
, bool IsScaledReg
= false);
1997 void GenerateCombinations(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1998 void GenerateSymbolicOffsetsImpl(LSRUse
&LU
, unsigned LUIdx
,
1999 const Formula
&Base
, size_t Idx
,
2000 bool IsScaledReg
= false);
2001 void GenerateSymbolicOffsets(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
2002 void GenerateConstantOffsetsImpl(LSRUse
&LU
, unsigned LUIdx
,
2003 const Formula
&Base
,
2004 const SmallVectorImpl
<int64_t> &Worklist
,
2005 size_t Idx
, bool IsScaledReg
= false);
2006 void GenerateConstantOffsets(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
2007 void GenerateICmpZeroScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
2008 void GenerateScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
2009 void GenerateTruncates(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
2010 void GenerateCrossUseConstantOffsets();
2011 void GenerateAllReuseFormulae();
2013 void FilterOutUndesirableDedicatedRegisters();
2015 size_t EstimateSearchSpaceComplexity() const;
2016 void NarrowSearchSpaceByDetectingSupersets();
2017 void NarrowSearchSpaceByCollapsingUnrolledCode();
2018 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2019 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2020 void NarrowSearchSpaceByDeletingCostlyFormulas();
2021 void NarrowSearchSpaceByPickingWinnerRegs();
2022 void NarrowSearchSpaceUsingHeuristics();
2024 void SolveRecurse(SmallVectorImpl
<const Formula
*> &Solution
,
2026 SmallVectorImpl
<const Formula
*> &Workspace
,
2027 const Cost
&CurCost
,
2028 const SmallPtrSet
<const SCEV
*, 16> &CurRegs
,
2029 DenseSet
<const SCEV
*> &VisitedRegs
) const;
2030 void Solve(SmallVectorImpl
<const Formula
*> &Solution
) const;
2032 BasicBlock::iterator
2033 HoistInsertPosition(BasicBlock::iterator IP
,
2034 const SmallVectorImpl
<Instruction
*> &Inputs
) const;
2035 BasicBlock::iterator
2036 AdjustInsertPositionForExpand(BasicBlock::iterator IP
,
2039 SCEVExpander
&Rewriter
) const;
2041 Value
*Expand(const LSRUse
&LU
, const LSRFixup
&LF
, const Formula
&F
,
2042 BasicBlock::iterator IP
, SCEVExpander
&Rewriter
,
2043 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const;
2044 void RewriteForPHI(PHINode
*PN
, const LSRUse
&LU
, const LSRFixup
&LF
,
2045 const Formula
&F
, SCEVExpander
&Rewriter
,
2046 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const;
2047 void Rewrite(const LSRUse
&LU
, const LSRFixup
&LF
, const Formula
&F
,
2048 SCEVExpander
&Rewriter
,
2049 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const;
2050 void ImplementSolution(const SmallVectorImpl
<const Formula
*> &Solution
);
2053 LSRInstance(Loop
*L
, IVUsers
&IU
, ScalarEvolution
&SE
, DominatorTree
&DT
,
2054 LoopInfo
&LI
, const TargetTransformInfo
&TTI
, AssumptionCache
&AC
,
2055 TargetLibraryInfo
&LibInfo
);
2057 bool getChanged() const { return Changed
; }
2059 void print_factors_and_types(raw_ostream
&OS
) const;
2060 void print_fixups(raw_ostream
&OS
) const;
2061 void print_uses(raw_ostream
&OS
) const;
2062 void print(raw_ostream
&OS
) const;
2066 } // end anonymous namespace
2068 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2069 /// the cast operation.
2070 void LSRInstance::OptimizeShadowIV() {
2071 const SCEV
*BackedgeTakenCount
= SE
.getBackedgeTakenCount(L
);
2072 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2075 for (IVUsers::const_iterator UI
= IU
.begin(), E
= IU
.end();
2076 UI
!= E
; /* empty */) {
2077 IVUsers::const_iterator CandidateUI
= UI
;
2079 Instruction
*ShadowUse
= CandidateUI
->getUser();
2080 Type
*DestTy
= nullptr;
2081 bool IsSigned
= false;
2083 /* If shadow use is a int->float cast then insert a second IV
2084 to eliminate this cast.
2086 for (unsigned i = 0; i < n; ++i)
2092 for (unsigned i = 0; i < n; ++i, ++d)
2095 if (UIToFPInst
*UCast
= dyn_cast
<UIToFPInst
>(CandidateUI
->getUser())) {
2097 DestTy
= UCast
->getDestTy();
2099 else if (SIToFPInst
*SCast
= dyn_cast
<SIToFPInst
>(CandidateUI
->getUser())) {
2101 DestTy
= SCast
->getDestTy();
2103 if (!DestTy
) continue;
2105 // If target does not support DestTy natively then do not apply
2106 // this transformation.
2107 if (!TTI
.isTypeLegal(DestTy
)) continue;
2109 PHINode
*PH
= dyn_cast
<PHINode
>(ShadowUse
->getOperand(0));
2111 if (PH
->getNumIncomingValues() != 2) continue;
2113 // If the calculation in integers overflows, the result in FP type will
2114 // differ. So we only can do this transformation if we are guaranteed to not
2115 // deal with overflowing values
2116 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(SE
.getSCEV(PH
));
2118 if (IsSigned
&& !AR
->hasNoSignedWrap()) continue;
2119 if (!IsSigned
&& !AR
->hasNoUnsignedWrap()) continue;
2121 Type
*SrcTy
= PH
->getType();
2122 int Mantissa
= DestTy
->getFPMantissaWidth();
2123 if (Mantissa
== -1) continue;
2124 if ((int)SE
.getTypeSizeInBits(SrcTy
) > Mantissa
)
2127 unsigned Entry
, Latch
;
2128 if (PH
->getIncomingBlock(0) == L
->getLoopPreheader()) {
2136 ConstantInt
*Init
= dyn_cast
<ConstantInt
>(PH
->getIncomingValue(Entry
));
2137 if (!Init
) continue;
2138 Constant
*NewInit
= ConstantFP::get(DestTy
, IsSigned
?
2139 (double)Init
->getSExtValue() :
2140 (double)Init
->getZExtValue());
2142 BinaryOperator
*Incr
=
2143 dyn_cast
<BinaryOperator
>(PH
->getIncomingValue(Latch
));
2144 if (!Incr
) continue;
2145 if (Incr
->getOpcode() != Instruction::Add
2146 && Incr
->getOpcode() != Instruction::Sub
)
2149 /* Initialize new IV, double d = 0.0 in above example. */
2150 ConstantInt
*C
= nullptr;
2151 if (Incr
->getOperand(0) == PH
)
2152 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(1));
2153 else if (Incr
->getOperand(1) == PH
)
2154 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(0));
2160 // Ignore negative constants, as the code below doesn't handle them
2161 // correctly. TODO: Remove this restriction.
2162 if (!C
->getValue().isStrictlyPositive()) continue;
2164 /* Add new PHINode. */
2165 PHINode
*NewPH
= PHINode::Create(DestTy
, 2, "IV.S.", PH
);
2167 /* create new increment. '++d' in above example. */
2168 Constant
*CFP
= ConstantFP::get(DestTy
, C
->getZExtValue());
2169 BinaryOperator
*NewIncr
=
2170 BinaryOperator::Create(Incr
->getOpcode() == Instruction::Add
?
2171 Instruction::FAdd
: Instruction::FSub
,
2172 NewPH
, CFP
, "IV.S.next.", Incr
);
2174 NewPH
->addIncoming(NewInit
, PH
->getIncomingBlock(Entry
));
2175 NewPH
->addIncoming(NewIncr
, PH
->getIncomingBlock(Latch
));
2177 /* Remove cast operation */
2178 ShadowUse
->replaceAllUsesWith(NewPH
);
2179 ShadowUse
->eraseFromParent();
2185 /// If Cond has an operand that is an expression of an IV, set the IV user and
2186 /// stride information and return true, otherwise return false.
2187 bool LSRInstance::FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
) {
2188 for (IVStrideUse
&U
: IU
)
2189 if (U
.getUser() == Cond
) {
2190 // NOTE: we could handle setcc instructions with multiple uses here, but
2191 // InstCombine does it as well for simple uses, it's not clear that it
2192 // occurs enough in real life to handle.
2199 /// Rewrite the loop's terminating condition if it uses a max computation.
2201 /// This is a narrow solution to a specific, but acute, problem. For loops
2207 /// } while (++i < n);
2209 /// the trip count isn't just 'n', because 'n' might not be positive. And
2210 /// unfortunately this can come up even for loops where the user didn't use
2211 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2212 /// will commonly be lowered like this:
2218 /// } while (++i < n);
2221 /// and then it's possible for subsequent optimization to obscure the if
2222 /// test in such a way that indvars can't find it.
2224 /// When indvars can't find the if test in loops like this, it creates a
2225 /// max expression, which allows it to give the loop a canonical
2226 /// induction variable:
2229 /// max = n < 1 ? 1 : n;
2232 /// } while (++i != max);
2234 /// Canonical induction variables are necessary because the loop passes
2235 /// are designed around them. The most obvious example of this is the
2236 /// LoopInfo analysis, which doesn't remember trip count values. It
2237 /// expects to be able to rediscover the trip count each time it is
2238 /// needed, and it does this using a simple analysis that only succeeds if
2239 /// the loop has a canonical induction variable.
2241 /// However, when it comes time to generate code, the maximum operation
2242 /// can be quite costly, especially if it's inside of an outer loop.
2244 /// This function solves this problem by detecting this type of loop and
2245 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2246 /// the instructions for the maximum computation.
2247 ICmpInst
*LSRInstance::OptimizeMax(ICmpInst
*Cond
, IVStrideUse
* &CondUse
) {
2248 // Check that the loop matches the pattern we're looking for.
2249 if (Cond
->getPredicate() != CmpInst::ICMP_EQ
&&
2250 Cond
->getPredicate() != CmpInst::ICMP_NE
)
2253 SelectInst
*Sel
= dyn_cast
<SelectInst
>(Cond
->getOperand(1));
2254 if (!Sel
|| !Sel
->hasOneUse()) return Cond
;
2256 const SCEV
*BackedgeTakenCount
= SE
.getBackedgeTakenCount(L
);
2257 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2259 const SCEV
*One
= SE
.getConstant(BackedgeTakenCount
->getType(), 1);
2261 // Add one to the backedge-taken count to get the trip count.
2262 const SCEV
*IterationCount
= SE
.getAddExpr(One
, BackedgeTakenCount
);
2263 if (IterationCount
!= SE
.getSCEV(Sel
)) return Cond
;
2265 // Check for a max calculation that matches the pattern. There's no check
2266 // for ICMP_ULE here because the comparison would be with zero, which
2267 // isn't interesting.
2268 CmpInst::Predicate Pred
= ICmpInst::BAD_ICMP_PREDICATE
;
2269 const SCEVNAryExpr
*Max
= nullptr;
2270 if (const SCEVSMaxExpr
*S
= dyn_cast
<SCEVSMaxExpr
>(BackedgeTakenCount
)) {
2271 Pred
= ICmpInst::ICMP_SLE
;
2273 } else if (const SCEVSMaxExpr
*S
= dyn_cast
<SCEVSMaxExpr
>(IterationCount
)) {
2274 Pred
= ICmpInst::ICMP_SLT
;
2276 } else if (const SCEVUMaxExpr
*U
= dyn_cast
<SCEVUMaxExpr
>(IterationCount
)) {
2277 Pred
= ICmpInst::ICMP_ULT
;
2284 // To handle a max with more than two operands, this optimization would
2285 // require additional checking and setup.
2286 if (Max
->getNumOperands() != 2)
2289 const SCEV
*MaxLHS
= Max
->getOperand(0);
2290 const SCEV
*MaxRHS
= Max
->getOperand(1);
2292 // ScalarEvolution canonicalizes constants to the left. For < and >, look
2293 // for a comparison with 1. For <= and >=, a comparison with zero.
2295 (ICmpInst::isTrueWhenEqual(Pred
) ? !MaxLHS
->isZero() : (MaxLHS
!= One
)))
2298 // Check the relevant induction variable for conformance to
2300 const SCEV
*IV
= SE
.getSCEV(Cond
->getOperand(0));
2301 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(IV
);
2302 if (!AR
|| !AR
->isAffine() ||
2303 AR
->getStart() != One
||
2304 AR
->getStepRecurrence(SE
) != One
)
2307 assert(AR
->getLoop() == L
&&
2308 "Loop condition operand is an addrec in a different loop!");
2310 // Check the right operand of the select, and remember it, as it will
2311 // be used in the new comparison instruction.
2312 Value
*NewRHS
= nullptr;
2313 if (ICmpInst::isTrueWhenEqual(Pred
)) {
2314 // Look for n+1, and grab n.
2315 if (AddOperator
*BO
= dyn_cast
<AddOperator
>(Sel
->getOperand(1)))
2316 if (ConstantInt
*BO1
= dyn_cast
<ConstantInt
>(BO
->getOperand(1)))
2317 if (BO1
->isOne() && SE
.getSCEV(BO
->getOperand(0)) == MaxRHS
)
2318 NewRHS
= BO
->getOperand(0);
2319 if (AddOperator
*BO
= dyn_cast
<AddOperator
>(Sel
->getOperand(2)))
2320 if (ConstantInt
*BO1
= dyn_cast
<ConstantInt
>(BO
->getOperand(1)))
2321 if (BO1
->isOne() && SE
.getSCEV(BO
->getOperand(0)) == MaxRHS
)
2322 NewRHS
= BO
->getOperand(0);
2325 } else if (SE
.getSCEV(Sel
->getOperand(1)) == MaxRHS
)
2326 NewRHS
= Sel
->getOperand(1);
2327 else if (SE
.getSCEV(Sel
->getOperand(2)) == MaxRHS
)
2328 NewRHS
= Sel
->getOperand(2);
2329 else if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(MaxRHS
))
2330 NewRHS
= SU
->getValue();
2332 // Max doesn't match expected pattern.
2335 // Determine the new comparison opcode. It may be signed or unsigned,
2336 // and the original comparison may be either equality or inequality.
2337 if (Cond
->getPredicate() == CmpInst::ICMP_EQ
)
2338 Pred
= CmpInst::getInversePredicate(Pred
);
2340 // Ok, everything looks ok to change the condition into an SLT or SGE and
2341 // delete the max calculation.
2343 new ICmpInst(Cond
, Pred
, Cond
->getOperand(0), NewRHS
, "scmp");
2345 // Delete the max calculation instructions.
2346 Cond
->replaceAllUsesWith(NewCond
);
2347 CondUse
->setUser(NewCond
);
2348 Instruction
*Cmp
= cast
<Instruction
>(Sel
->getOperand(0));
2349 Cond
->eraseFromParent();
2350 Sel
->eraseFromParent();
2351 if (Cmp
->use_empty())
2352 Cmp
->eraseFromParent();
2356 /// Change loop terminating condition to use the postinc iv when possible.
2358 LSRInstance::OptimizeLoopTermCond() {
2359 SmallPtrSet
<Instruction
*, 4> PostIncs
;
2361 // We need a different set of heuristics for rotated and non-rotated loops.
2362 // If a loop is rotated then the latch is also the backedge, so inserting
2363 // post-inc expressions just before the latch is ideal. To reduce live ranges
2364 // it also makes sense to rewrite terminating conditions to use post-inc
2367 // If the loop is not rotated then the latch is not a backedge; the latch
2368 // check is done in the loop head. Adding post-inc expressions before the
2369 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2370 // in the loop body. In this case we do *not* want to use post-inc expressions
2371 // in the latch check, and we want to insert post-inc expressions before
2373 BasicBlock
*LatchBlock
= L
->getLoopLatch();
2374 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
2375 L
->getExitingBlocks(ExitingBlocks
);
2376 if (llvm::all_of(ExitingBlocks
, [&LatchBlock
](const BasicBlock
*BB
) {
2377 return LatchBlock
!= BB
;
2379 // The backedge doesn't exit the loop; treat this as a head-tested loop.
2380 IVIncInsertPos
= LatchBlock
->getTerminator();
2384 // Otherwise treat this as a rotated loop.
2385 for (BasicBlock
*ExitingBlock
: ExitingBlocks
) {
2386 // Get the terminating condition for the loop if possible. If we
2387 // can, we want to change it to use a post-incremented version of its
2388 // induction variable, to allow coalescing the live ranges for the IV into
2389 // one register value.
2391 BranchInst
*TermBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
2394 // FIXME: Overly conservative, termination condition could be an 'or' etc..
2395 if (TermBr
->isUnconditional() || !isa
<ICmpInst
>(TermBr
->getCondition()))
2398 // Search IVUsesByStride to find Cond's IVUse if there is one.
2399 IVStrideUse
*CondUse
= nullptr;
2400 ICmpInst
*Cond
= cast
<ICmpInst
>(TermBr
->getCondition());
2401 if (!FindIVUserForCond(Cond
, CondUse
))
2404 // If the trip count is computed in terms of a max (due to ScalarEvolution
2405 // being unable to find a sufficient guard, for example), change the loop
2406 // comparison to use SLT or ULT instead of NE.
2407 // One consequence of doing this now is that it disrupts the count-down
2408 // optimization. That's not always a bad thing though, because in such
2409 // cases it may still be worthwhile to avoid a max.
2410 Cond
= OptimizeMax(Cond
, CondUse
);
2412 // If this exiting block dominates the latch block, it may also use
2413 // the post-inc value if it won't be shared with other uses.
2414 // Check for dominance.
2415 if (!DT
.dominates(ExitingBlock
, LatchBlock
))
2418 // Conservatively avoid trying to use the post-inc value in non-latch
2419 // exits if there may be pre-inc users in intervening blocks.
2420 if (LatchBlock
!= ExitingBlock
)
2421 for (IVUsers::const_iterator UI
= IU
.begin(), E
= IU
.end(); UI
!= E
; ++UI
)
2422 // Test if the use is reachable from the exiting block. This dominator
2423 // query is a conservative approximation of reachability.
2424 if (&*UI
!= CondUse
&&
2425 !DT
.properlyDominates(UI
->getUser()->getParent(), ExitingBlock
)) {
2426 // Conservatively assume there may be reuse if the quotient of their
2427 // strides could be a legal scale.
2428 const SCEV
*A
= IU
.getStride(*CondUse
, L
);
2429 const SCEV
*B
= IU
.getStride(*UI
, L
);
2430 if (!A
|| !B
) continue;
2431 if (SE
.getTypeSizeInBits(A
->getType()) !=
2432 SE
.getTypeSizeInBits(B
->getType())) {
2433 if (SE
.getTypeSizeInBits(A
->getType()) >
2434 SE
.getTypeSizeInBits(B
->getType()))
2435 B
= SE
.getSignExtendExpr(B
, A
->getType());
2437 A
= SE
.getSignExtendExpr(A
, B
->getType());
2439 if (const SCEVConstant
*D
=
2440 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(B
, A
, SE
))) {
2441 const ConstantInt
*C
= D
->getValue();
2442 // Stride of one or negative one can have reuse with non-addresses.
2443 if (C
->isOne() || C
->isMinusOne())
2444 goto decline_post_inc
;
2445 // Avoid weird situations.
2446 if (C
->getValue().getMinSignedBits() >= 64 ||
2447 C
->getValue().isMinSignedValue())
2448 goto decline_post_inc
;
2449 // Check for possible scaled-address reuse.
2450 if (isAddressUse(TTI
, UI
->getUser(), UI
->getOperandValToReplace())) {
2451 MemAccessTy AccessTy
= getAccessType(
2452 TTI
, UI
->getUser(), UI
->getOperandValToReplace());
2453 int64_t Scale
= C
->getSExtValue();
2454 if (TTI
.isLegalAddressingMode(AccessTy
.MemTy
, /*BaseGV=*/nullptr,
2456 /*HasBaseReg=*/false, Scale
,
2457 AccessTy
.AddrSpace
))
2458 goto decline_post_inc
;
2460 if (TTI
.isLegalAddressingMode(AccessTy
.MemTy
, /*BaseGV=*/nullptr,
2462 /*HasBaseReg=*/false, Scale
,
2463 AccessTy
.AddrSpace
))
2464 goto decline_post_inc
;
2469 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
2472 // It's possible for the setcc instruction to be anywhere in the loop, and
2473 // possible for it to have multiple users. If it is not immediately before
2474 // the exiting block branch, move it.
2475 if (&*++BasicBlock::iterator(Cond
) != TermBr
) {
2476 if (Cond
->hasOneUse()) {
2477 Cond
->moveBefore(TermBr
);
2479 // Clone the terminating condition and insert into the loopend.
2480 ICmpInst
*OldCond
= Cond
;
2481 Cond
= cast
<ICmpInst
>(Cond
->clone());
2482 Cond
->setName(L
->getHeader()->getName() + ".termcond");
2483 ExitingBlock
->getInstList().insert(TermBr
->getIterator(), Cond
);
2485 // Clone the IVUse, as the old use still exists!
2486 CondUse
= &IU
.AddUser(Cond
, CondUse
->getOperandValToReplace());
2487 TermBr
->replaceUsesOfWith(OldCond
, Cond
);
2491 // If we get to here, we know that we can transform the setcc instruction to
2492 // use the post-incremented version of the IV, allowing us to coalesce the
2493 // live ranges for the IV correctly.
2494 CondUse
->transformToPostInc(L
);
2497 PostIncs
.insert(Cond
);
2501 // Determine an insertion point for the loop induction variable increment. It
2502 // must dominate all the post-inc comparisons we just set up, and it must
2503 // dominate the loop latch edge.
2504 IVIncInsertPos
= L
->getLoopLatch()->getTerminator();
2505 for (Instruction
*Inst
: PostIncs
) {
2507 DT
.findNearestCommonDominator(IVIncInsertPos
->getParent(),
2509 if (BB
== Inst
->getParent())
2510 IVIncInsertPos
= Inst
;
2511 else if (BB
!= IVIncInsertPos
->getParent())
2512 IVIncInsertPos
= BB
->getTerminator();
2516 /// Determine if the given use can accommodate a fixup at the given offset and
2517 /// other details. If so, update the use and return true.
2518 bool LSRInstance::reconcileNewOffset(LSRUse
&LU
, int64_t NewOffset
,
2519 bool HasBaseReg
, LSRUse::KindType Kind
,
2520 MemAccessTy AccessTy
) {
2521 int64_t NewMinOffset
= LU
.MinOffset
;
2522 int64_t NewMaxOffset
= LU
.MaxOffset
;
2523 MemAccessTy NewAccessTy
= AccessTy
;
2525 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2526 // something conservative, however this can pessimize in the case that one of
2527 // the uses will have all its uses outside the loop, for example.
2528 if (LU
.Kind
!= Kind
)
2531 // Check for a mismatched access type, and fall back conservatively as needed.
2532 // TODO: Be less conservative when the type is similar and can use the same
2533 // addressing modes.
2534 if (Kind
== LSRUse::Address
) {
2535 if (AccessTy
.MemTy
!= LU
.AccessTy
.MemTy
) {
2536 NewAccessTy
= MemAccessTy::getUnknown(AccessTy
.MemTy
->getContext(),
2537 AccessTy
.AddrSpace
);
2541 // Conservatively assume HasBaseReg is true for now.
2542 if (NewOffset
< LU
.MinOffset
) {
2543 if (!isAlwaysFoldable(TTI
, Kind
, NewAccessTy
, /*BaseGV=*/nullptr,
2544 LU
.MaxOffset
- NewOffset
, HasBaseReg
))
2546 NewMinOffset
= NewOffset
;
2547 } else if (NewOffset
> LU
.MaxOffset
) {
2548 if (!isAlwaysFoldable(TTI
, Kind
, NewAccessTy
, /*BaseGV=*/nullptr,
2549 NewOffset
- LU
.MinOffset
, HasBaseReg
))
2551 NewMaxOffset
= NewOffset
;
2555 LU
.MinOffset
= NewMinOffset
;
2556 LU
.MaxOffset
= NewMaxOffset
;
2557 LU
.AccessTy
= NewAccessTy
;
2561 /// Return an LSRUse index and an offset value for a fixup which needs the given
2562 /// expression, with the given kind and optional access type. Either reuse an
2563 /// existing use or create a new one, as needed.
2564 std::pair
<size_t, int64_t> LSRInstance::getUse(const SCEV
*&Expr
,
2565 LSRUse::KindType Kind
,
2566 MemAccessTy AccessTy
) {
2567 const SCEV
*Copy
= Expr
;
2568 int64_t Offset
= ExtractImmediate(Expr
, SE
);
2570 // Basic uses can't accept any offset, for example.
2571 if (!isAlwaysFoldable(TTI
, Kind
, AccessTy
, /*BaseGV=*/ nullptr,
2572 Offset
, /*HasBaseReg=*/ true)) {
2577 std::pair
<UseMapTy::iterator
, bool> P
=
2578 UseMap
.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr
, Kind
), 0));
2580 // A use already existed with this base.
2581 size_t LUIdx
= P
.first
->second
;
2582 LSRUse
&LU
= Uses
[LUIdx
];
2583 if (reconcileNewOffset(LU
, Offset
, /*HasBaseReg=*/true, Kind
, AccessTy
))
2585 return std::make_pair(LUIdx
, Offset
);
2588 // Create a new use.
2589 size_t LUIdx
= Uses
.size();
2590 P
.first
->second
= LUIdx
;
2591 Uses
.push_back(LSRUse(Kind
, AccessTy
));
2592 LSRUse
&LU
= Uses
[LUIdx
];
2594 LU
.MinOffset
= Offset
;
2595 LU
.MaxOffset
= Offset
;
2596 return std::make_pair(LUIdx
, Offset
);
2599 /// Delete the given use from the Uses list.
2600 void LSRInstance::DeleteUse(LSRUse
&LU
, size_t LUIdx
) {
2601 if (&LU
!= &Uses
.back())
2602 std::swap(LU
, Uses
.back());
2606 RegUses
.swapAndDropUse(LUIdx
, Uses
.size());
2609 /// Look for a use distinct from OrigLU which is has a formula that has the same
2610 /// registers as the given formula.
2612 LSRInstance::FindUseWithSimilarFormula(const Formula
&OrigF
,
2613 const LSRUse
&OrigLU
) {
2614 // Search all uses for the formula. This could be more clever.
2615 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
2616 LSRUse
&LU
= Uses
[LUIdx
];
2617 // Check whether this use is close enough to OrigLU, to see whether it's
2618 // worthwhile looking through its formulae.
2619 // Ignore ICmpZero uses because they may contain formulae generated by
2620 // GenerateICmpZeroScales, in which case adding fixup offsets may
2622 if (&LU
!= &OrigLU
&&
2623 LU
.Kind
!= LSRUse::ICmpZero
&&
2624 LU
.Kind
== OrigLU
.Kind
&& OrigLU
.AccessTy
== LU
.AccessTy
&&
2625 LU
.WidestFixupType
== OrigLU
.WidestFixupType
&&
2626 LU
.HasFormulaWithSameRegs(OrigF
)) {
2627 // Scan through this use's formulae.
2628 for (const Formula
&F
: LU
.Formulae
) {
2629 // Check to see if this formula has the same registers and symbols
2631 if (F
.BaseRegs
== OrigF
.BaseRegs
&&
2632 F
.ScaledReg
== OrigF
.ScaledReg
&&
2633 F
.BaseGV
== OrigF
.BaseGV
&&
2634 F
.Scale
== OrigF
.Scale
&&
2635 F
.UnfoldedOffset
== OrigF
.UnfoldedOffset
) {
2636 if (F
.BaseOffset
== 0)
2638 // This is the formula where all the registers and symbols matched;
2639 // there aren't going to be any others. Since we declined it, we
2640 // can skip the rest of the formulae and proceed to the next LSRUse.
2647 // Nothing looked good.
2651 void LSRInstance::CollectInterestingTypesAndFactors() {
2652 SmallSetVector
<const SCEV
*, 4> Strides
;
2654 // Collect interesting types and strides.
2655 SmallVector
<const SCEV
*, 4> Worklist
;
2656 for (const IVStrideUse
&U
: IU
) {
2657 const SCEV
*Expr
= IU
.getExpr(U
);
2659 // Collect interesting types.
2660 Types
.insert(SE
.getEffectiveSCEVType(Expr
->getType()));
2662 // Add strides for mentioned loops.
2663 Worklist
.push_back(Expr
);
2665 const SCEV
*S
= Worklist
.pop_back_val();
2666 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2667 if (AR
->getLoop() == L
)
2668 Strides
.insert(AR
->getStepRecurrence(SE
));
2669 Worklist
.push_back(AR
->getStart());
2670 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
2671 Worklist
.append(Add
->op_begin(), Add
->op_end());
2673 } while (!Worklist
.empty());
2676 // Compute interesting factors from the set of interesting strides.
2677 for (SmallSetVector
<const SCEV
*, 4>::const_iterator
2678 I
= Strides
.begin(), E
= Strides
.end(); I
!= E
; ++I
)
2679 for (SmallSetVector
<const SCEV
*, 4>::const_iterator NewStrideIter
=
2680 std::next(I
); NewStrideIter
!= E
; ++NewStrideIter
) {
2681 const SCEV
*OldStride
= *I
;
2682 const SCEV
*NewStride
= *NewStrideIter
;
2684 if (SE
.getTypeSizeInBits(OldStride
->getType()) !=
2685 SE
.getTypeSizeInBits(NewStride
->getType())) {
2686 if (SE
.getTypeSizeInBits(OldStride
->getType()) >
2687 SE
.getTypeSizeInBits(NewStride
->getType()))
2688 NewStride
= SE
.getSignExtendExpr(NewStride
, OldStride
->getType());
2690 OldStride
= SE
.getSignExtendExpr(OldStride
, NewStride
->getType());
2692 if (const SCEVConstant
*Factor
=
2693 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(NewStride
, OldStride
,
2695 if (Factor
->getAPInt().getMinSignedBits() <= 64)
2696 Factors
.insert(Factor
->getAPInt().getSExtValue());
2697 } else if (const SCEVConstant
*Factor
=
2698 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(OldStride
,
2701 if (Factor
->getAPInt().getMinSignedBits() <= 64)
2702 Factors
.insert(Factor
->getAPInt().getSExtValue());
2706 // If all uses use the same type, don't bother looking for truncation-based
2708 if (Types
.size() == 1)
2711 LLVM_DEBUG(print_factors_and_types(dbgs()));
2714 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2715 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2716 /// IVStrideUses, we could partially skip this.
2717 static User::op_iterator
2718 findIVOperand(User::op_iterator OI
, User::op_iterator OE
,
2719 Loop
*L
, ScalarEvolution
&SE
) {
2720 for(; OI
!= OE
; ++OI
) {
2721 if (Instruction
*Oper
= dyn_cast
<Instruction
>(*OI
)) {
2722 if (!SE
.isSCEVable(Oper
->getType()))
2725 if (const SCEVAddRecExpr
*AR
=
2726 dyn_cast
<SCEVAddRecExpr
>(SE
.getSCEV(Oper
))) {
2727 if (AR
->getLoop() == L
)
2735 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2736 /// a convenient helper.
2737 static Value
*getWideOperand(Value
*Oper
) {
2738 if (TruncInst
*Trunc
= dyn_cast
<TruncInst
>(Oper
))
2739 return Trunc
->getOperand(0);
2743 /// Return true if we allow an IV chain to include both types.
2744 static bool isCompatibleIVType(Value
*LVal
, Value
*RVal
) {
2745 Type
*LType
= LVal
->getType();
2746 Type
*RType
= RVal
->getType();
2747 return (LType
== RType
) || (LType
->isPointerTy() && RType
->isPointerTy() &&
2748 // Different address spaces means (possibly)
2749 // different types of the pointer implementation,
2750 // e.g. i16 vs i32 so disallow that.
2751 (LType
->getPointerAddressSpace() ==
2752 RType
->getPointerAddressSpace()));
2755 /// Return an approximation of this SCEV expression's "base", or NULL for any
2756 /// constant. Returning the expression itself is conservative. Returning a
2757 /// deeper subexpression is more precise and valid as long as it isn't less
2758 /// complex than another subexpression. For expressions involving multiple
2759 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2760 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2763 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2764 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2765 static const SCEV
*getExprBase(const SCEV
*S
) {
2766 switch (S
->getSCEVType()) {
2767 default: // uncluding scUnknown.
2772 return getExprBase(cast
<SCEVTruncateExpr
>(S
)->getOperand());
2774 return getExprBase(cast
<SCEVZeroExtendExpr
>(S
)->getOperand());
2776 return getExprBase(cast
<SCEVSignExtendExpr
>(S
)->getOperand());
2778 // Skip over scaled operands (scMulExpr) to follow add operands as long as
2779 // there's nothing more complex.
2780 // FIXME: not sure if we want to recognize negation.
2781 const SCEVAddExpr
*Add
= cast
<SCEVAddExpr
>(S
);
2782 for (std::reverse_iterator
<SCEVAddExpr::op_iterator
> I(Add
->op_end()),
2783 E(Add
->op_begin()); I
!= E
; ++I
) {
2784 const SCEV
*SubExpr
= *I
;
2785 if (SubExpr
->getSCEVType() == scAddExpr
)
2786 return getExprBase(SubExpr
);
2788 if (SubExpr
->getSCEVType() != scMulExpr
)
2791 return S
; // all operands are scaled, be conservative.
2794 return getExprBase(cast
<SCEVAddRecExpr
>(S
)->getStart());
2798 /// Return true if the chain increment is profitable to expand into a loop
2799 /// invariant value, which may require its own register. A profitable chain
2800 /// increment will be an offset relative to the same base. We allow such offsets
2801 /// to potentially be used as chain increment as long as it's not obviously
2802 /// expensive to expand using real instructions.
2803 bool IVChain::isProfitableIncrement(const SCEV
*OperExpr
,
2804 const SCEV
*IncExpr
,
2805 ScalarEvolution
&SE
) {
2806 // Aggressively form chains when -stress-ivchain.
2810 // Do not replace a constant offset from IV head with a nonconstant IV
2812 if (!isa
<SCEVConstant
>(IncExpr
)) {
2813 const SCEV
*HeadExpr
= SE
.getSCEV(getWideOperand(Incs
[0].IVOperand
));
2814 if (isa
<SCEVConstant
>(SE
.getMinusSCEV(OperExpr
, HeadExpr
)))
2818 SmallPtrSet
<const SCEV
*, 8> Processed
;
2819 return !isHighCostExpansion(IncExpr
, Processed
, SE
);
2822 /// Return true if the number of registers needed for the chain is estimated to
2823 /// be less than the number required for the individual IV users. First prohibit
2824 /// any IV users that keep the IV live across increments (the Users set should
2825 /// be empty). Next count the number and type of increments in the chain.
2827 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2828 /// effectively use postinc addressing modes. Only consider it profitable it the
2829 /// increments can be computed in fewer registers when chained.
2831 /// TODO: Consider IVInc free if it's already used in another chains.
2833 isProfitableChain(IVChain
&Chain
, SmallPtrSetImpl
<Instruction
*> &Users
,
2834 ScalarEvolution
&SE
) {
2838 if (!Chain
.hasIncs())
2841 if (!Users
.empty()) {
2842 LLVM_DEBUG(dbgs() << "Chain: " << *Chain
.Incs
[0].UserInst
<< " users:\n";
2843 for (Instruction
*Inst
2844 : Users
) { dbgs() << " " << *Inst
<< "\n"; });
2847 assert(!Chain
.Incs
.empty() && "empty IV chains are not allowed");
2849 // The chain itself may require a register, so intialize cost to 1.
2852 // A complete chain likely eliminates the need for keeping the original IV in
2853 // a register. LSR does not currently know how to form a complete chain unless
2854 // the header phi already exists.
2855 if (isa
<PHINode
>(Chain
.tailUserInst())
2856 && SE
.getSCEV(Chain
.tailUserInst()) == Chain
.Incs
[0].IncExpr
) {
2859 const SCEV
*LastIncExpr
= nullptr;
2860 unsigned NumConstIncrements
= 0;
2861 unsigned NumVarIncrements
= 0;
2862 unsigned NumReusedIncrements
= 0;
2863 for (const IVInc
&Inc
: Chain
) {
2864 if (Inc
.IncExpr
->isZero())
2867 // Incrementing by zero or some constant is neutral. We assume constants can
2868 // be folded into an addressing mode or an add's immediate operand.
2869 if (isa
<SCEVConstant
>(Inc
.IncExpr
)) {
2870 ++NumConstIncrements
;
2874 if (Inc
.IncExpr
== LastIncExpr
)
2875 ++NumReusedIncrements
;
2879 LastIncExpr
= Inc
.IncExpr
;
2881 // An IV chain with a single increment is handled by LSR's postinc
2882 // uses. However, a chain with multiple increments requires keeping the IV's
2883 // value live longer than it needs to be if chained.
2884 if (NumConstIncrements
> 1)
2887 // Materializing increment expressions in the preheader that didn't exist in
2888 // the original code may cost a register. For example, sign-extended array
2889 // indices can produce ridiculous increments like this:
2890 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2891 cost
+= NumVarIncrements
;
2893 // Reusing variable increments likely saves a register to hold the multiple of
2895 cost
-= NumReusedIncrements
;
2897 LLVM_DEBUG(dbgs() << "Chain: " << *Chain
.Incs
[0].UserInst
<< " Cost: " << cost
2903 /// Add this IV user to an existing chain or make it the head of a new chain.
2904 void LSRInstance::ChainInstruction(Instruction
*UserInst
, Instruction
*IVOper
,
2905 SmallVectorImpl
<ChainUsers
> &ChainUsersVec
) {
2906 // When IVs are used as types of varying widths, they are generally converted
2907 // to a wider type with some uses remaining narrow under a (free) trunc.
2908 Value
*const NextIV
= getWideOperand(IVOper
);
2909 const SCEV
*const OperExpr
= SE
.getSCEV(NextIV
);
2910 const SCEV
*const OperExprBase
= getExprBase(OperExpr
);
2912 // Visit all existing chains. Check if its IVOper can be computed as a
2913 // profitable loop invariant increment from the last link in the Chain.
2914 unsigned ChainIdx
= 0, NChains
= IVChainVec
.size();
2915 const SCEV
*LastIncExpr
= nullptr;
2916 for (; ChainIdx
< NChains
; ++ChainIdx
) {
2917 IVChain
&Chain
= IVChainVec
[ChainIdx
];
2919 // Prune the solution space aggressively by checking that both IV operands
2920 // are expressions that operate on the same unscaled SCEVUnknown. This
2921 // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2922 // first avoids creating extra SCEV expressions.
2923 if (!StressIVChain
&& Chain
.ExprBase
!= OperExprBase
)
2926 Value
*PrevIV
= getWideOperand(Chain
.Incs
.back().IVOperand
);
2927 if (!isCompatibleIVType(PrevIV
, NextIV
))
2930 // A phi node terminates a chain.
2931 if (isa
<PHINode
>(UserInst
) && isa
<PHINode
>(Chain
.tailUserInst()))
2934 // The increment must be loop-invariant so it can be kept in a register.
2935 const SCEV
*PrevExpr
= SE
.getSCEV(PrevIV
);
2936 const SCEV
*IncExpr
= SE
.getMinusSCEV(OperExpr
, PrevExpr
);
2937 if (!SE
.isLoopInvariant(IncExpr
, L
))
2940 if (Chain
.isProfitableIncrement(OperExpr
, IncExpr
, SE
)) {
2941 LastIncExpr
= IncExpr
;
2945 // If we haven't found a chain, create a new one, unless we hit the max. Don't
2946 // bother for phi nodes, because they must be last in the chain.
2947 if (ChainIdx
== NChains
) {
2948 if (isa
<PHINode
>(UserInst
))
2950 if (NChains
>= MaxChains
&& !StressIVChain
) {
2951 LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2954 LastIncExpr
= OperExpr
;
2955 // IVUsers may have skipped over sign/zero extensions. We don't currently
2956 // attempt to form chains involving extensions unless they can be hoisted
2957 // into this loop's AddRec.
2958 if (!isa
<SCEVAddRecExpr
>(LastIncExpr
))
2961 IVChainVec
.push_back(IVChain(IVInc(UserInst
, IVOper
, LastIncExpr
),
2963 ChainUsersVec
.resize(NChains
);
2964 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx
<< " Head: (" << *UserInst
2965 << ") IV=" << *LastIncExpr
<< "\n");
2967 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx
<< " Inc: (" << *UserInst
2968 << ") IV+" << *LastIncExpr
<< "\n");
2969 // Add this IV user to the end of the chain.
2970 IVChainVec
[ChainIdx
].add(IVInc(UserInst
, IVOper
, LastIncExpr
));
2972 IVChain
&Chain
= IVChainVec
[ChainIdx
];
2974 SmallPtrSet
<Instruction
*,4> &NearUsers
= ChainUsersVec
[ChainIdx
].NearUsers
;
2975 // This chain's NearUsers become FarUsers.
2976 if (!LastIncExpr
->isZero()) {
2977 ChainUsersVec
[ChainIdx
].FarUsers
.insert(NearUsers
.begin(),
2982 // All other uses of IVOperand become near uses of the chain.
2983 // We currently ignore intermediate values within SCEV expressions, assuming
2984 // they will eventually be used be the current chain, or can be computed
2985 // from one of the chain increments. To be more precise we could
2986 // transitively follow its user and only add leaf IV users to the set.
2987 for (User
*U
: IVOper
->users()) {
2988 Instruction
*OtherUse
= dyn_cast
<Instruction
>(U
);
2991 // Uses in the chain will no longer be uses if the chain is formed.
2992 // Include the head of the chain in this iteration (not Chain.begin()).
2993 IVChain::const_iterator IncIter
= Chain
.Incs
.begin();
2994 IVChain::const_iterator IncEnd
= Chain
.Incs
.end();
2995 for( ; IncIter
!= IncEnd
; ++IncIter
) {
2996 if (IncIter
->UserInst
== OtherUse
)
2999 if (IncIter
!= IncEnd
)
3002 if (SE
.isSCEVable(OtherUse
->getType())
3003 && !isa
<SCEVUnknown
>(SE
.getSCEV(OtherUse
))
3004 && IU
.isIVUserOrOperand(OtherUse
)) {
3007 NearUsers
.insert(OtherUse
);
3010 // Since this user is part of the chain, it's no longer considered a use
3012 ChainUsersVec
[ChainIdx
].FarUsers
.erase(UserInst
);
3015 /// Populate the vector of Chains.
3017 /// This decreases ILP at the architecture level. Targets with ample registers,
3018 /// multiple memory ports, and no register renaming probably don't want
3019 /// this. However, such targets should probably disable LSR altogether.
3021 /// The job of LSR is to make a reasonable choice of induction variables across
3022 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3023 /// ILP *within the loop* if the target wants it.
3025 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3026 /// will not reorder memory operations, it will recognize this as a chain, but
3027 /// will generate redundant IV increments. Ideally this would be corrected later
3028 /// by a smart scheduler:
3034 /// TODO: Walk the entire domtree within this loop, not just the path to the
3035 /// loop latch. This will discover chains on side paths, but requires
3036 /// maintaining multiple copies of the Chains state.
3037 void LSRInstance::CollectChains() {
3038 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3039 SmallVector
<ChainUsers
, 8> ChainUsersVec
;
3041 SmallVector
<BasicBlock
*,8> LatchPath
;
3042 BasicBlock
*LoopHeader
= L
->getHeader();
3043 for (DomTreeNode
*Rung
= DT
.getNode(L
->getLoopLatch());
3044 Rung
->getBlock() != LoopHeader
; Rung
= Rung
->getIDom()) {
3045 LatchPath
.push_back(Rung
->getBlock());
3047 LatchPath
.push_back(LoopHeader
);
3049 // Walk the instruction stream from the loop header to the loop latch.
3050 for (BasicBlock
*BB
: reverse(LatchPath
)) {
3051 for (Instruction
&I
: *BB
) {
3052 // Skip instructions that weren't seen by IVUsers analysis.
3053 if (isa
<PHINode
>(I
) || !IU
.isIVUserOrOperand(&I
))
3056 // Ignore users that are part of a SCEV expression. This way we only
3057 // consider leaf IV Users. This effectively rediscovers a portion of
3058 // IVUsers analysis but in program order this time.
3059 if (SE
.isSCEVable(I
.getType()) && !isa
<SCEVUnknown
>(SE
.getSCEV(&I
)))
3062 // Remove this instruction from any NearUsers set it may be in.
3063 for (unsigned ChainIdx
= 0, NChains
= IVChainVec
.size();
3064 ChainIdx
< NChains
; ++ChainIdx
) {
3065 ChainUsersVec
[ChainIdx
].NearUsers
.erase(&I
);
3067 // Search for operands that can be chained.
3068 SmallPtrSet
<Instruction
*, 4> UniqueOperands
;
3069 User::op_iterator IVOpEnd
= I
.op_end();
3070 User::op_iterator IVOpIter
= findIVOperand(I
.op_begin(), IVOpEnd
, L
, SE
);
3071 while (IVOpIter
!= IVOpEnd
) {
3072 Instruction
*IVOpInst
= cast
<Instruction
>(*IVOpIter
);
3073 if (UniqueOperands
.insert(IVOpInst
).second
)
3074 ChainInstruction(&I
, IVOpInst
, ChainUsersVec
);
3075 IVOpIter
= findIVOperand(std::next(IVOpIter
), IVOpEnd
, L
, SE
);
3077 } // Continue walking down the instructions.
3078 } // Continue walking down the domtree.
3079 // Visit phi backedges to determine if the chain can generate the IV postinc.
3080 for (PHINode
&PN
: L
->getHeader()->phis()) {
3081 if (!SE
.isSCEVable(PN
.getType()))
3085 dyn_cast
<Instruction
>(PN
.getIncomingValueForBlock(L
->getLoopLatch()));
3087 ChainInstruction(&PN
, IncV
, ChainUsersVec
);
3089 // Remove any unprofitable chains.
3090 unsigned ChainIdx
= 0;
3091 for (unsigned UsersIdx
= 0, NChains
= IVChainVec
.size();
3092 UsersIdx
< NChains
; ++UsersIdx
) {
3093 if (!isProfitableChain(IVChainVec
[UsersIdx
],
3094 ChainUsersVec
[UsersIdx
].FarUsers
, SE
))
3096 // Preserve the chain at UsesIdx.
3097 if (ChainIdx
!= UsersIdx
)
3098 IVChainVec
[ChainIdx
] = IVChainVec
[UsersIdx
];
3099 FinalizeChain(IVChainVec
[ChainIdx
]);
3102 IVChainVec
.resize(ChainIdx
);
3105 void LSRInstance::FinalizeChain(IVChain
&Chain
) {
3106 assert(!Chain
.Incs
.empty() && "empty IV chains are not allowed");
3107 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain
.Incs
[0].UserInst
<< "\n");
3109 for (const IVInc
&Inc
: Chain
) {
3110 LLVM_DEBUG(dbgs() << " Inc: " << *Inc
.UserInst
<< "\n");
3111 auto UseI
= find(Inc
.UserInst
->operands(), Inc
.IVOperand
);
3112 assert(UseI
!= Inc
.UserInst
->op_end() && "cannot find IV operand");
3113 IVIncSet
.insert(UseI
);
3117 /// Return true if the IVInc can be folded into an addressing mode.
3118 static bool canFoldIVIncExpr(const SCEV
*IncExpr
, Instruction
*UserInst
,
3119 Value
*Operand
, const TargetTransformInfo
&TTI
) {
3120 const SCEVConstant
*IncConst
= dyn_cast
<SCEVConstant
>(IncExpr
);
3121 if (!IncConst
|| !isAddressUse(TTI
, UserInst
, Operand
))
3124 if (IncConst
->getAPInt().getMinSignedBits() > 64)
3127 MemAccessTy AccessTy
= getAccessType(TTI
, UserInst
, Operand
);
3128 int64_t IncOffset
= IncConst
->getValue()->getSExtValue();
3129 if (!isAlwaysFoldable(TTI
, LSRUse::Address
, AccessTy
, /*BaseGV=*/nullptr,
3130 IncOffset
, /*HasBaseReg=*/false))
3136 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3137 /// user's operand from the previous IV user's operand.
3138 void LSRInstance::GenerateIVChain(const IVChain
&Chain
, SCEVExpander
&Rewriter
,
3139 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) {
3140 // Find the new IVOperand for the head of the chain. It may have been replaced
3142 const IVInc
&Head
= Chain
.Incs
[0];
3143 User::op_iterator IVOpEnd
= Head
.UserInst
->op_end();
3144 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3145 User::op_iterator IVOpIter
= findIVOperand(Head
.UserInst
->op_begin(),
3147 Value
*IVSrc
= nullptr;
3148 while (IVOpIter
!= IVOpEnd
) {
3149 IVSrc
= getWideOperand(*IVOpIter
);
3151 // If this operand computes the expression that the chain needs, we may use
3152 // it. (Check this after setting IVSrc which is used below.)
3154 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3155 // narrow for the chain, so we can no longer use it. We do allow using a
3156 // wider phi, assuming the LSR checked for free truncation. In that case we
3157 // should already have a truncate on this operand such that
3158 // getSCEV(IVSrc) == IncExpr.
3159 if (SE
.getSCEV(*IVOpIter
) == Head
.IncExpr
3160 || SE
.getSCEV(IVSrc
) == Head
.IncExpr
) {
3163 IVOpIter
= findIVOperand(std::next(IVOpIter
), IVOpEnd
, L
, SE
);
3165 if (IVOpIter
== IVOpEnd
) {
3166 // Gracefully give up on this chain.
3167 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head
.UserInst
<< "\n");
3170 assert(IVSrc
&& "Failed to find IV chain source");
3172 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc
<< "\n");
3173 Type
*IVTy
= IVSrc
->getType();
3174 Type
*IntTy
= SE
.getEffectiveSCEVType(IVTy
);
3175 const SCEV
*LeftOverExpr
= nullptr;
3176 for (const IVInc
&Inc
: Chain
) {
3177 Instruction
*InsertPt
= Inc
.UserInst
;
3178 if (isa
<PHINode
>(InsertPt
))
3179 InsertPt
= L
->getLoopLatch()->getTerminator();
3181 // IVOper will replace the current IV User's operand. IVSrc is the IV
3182 // value currently held in a register.
3183 Value
*IVOper
= IVSrc
;
3184 if (!Inc
.IncExpr
->isZero()) {
3185 // IncExpr was the result of subtraction of two narrow values, so must
3187 const SCEV
*IncExpr
= SE
.getNoopOrSignExtend(Inc
.IncExpr
, IntTy
);
3188 LeftOverExpr
= LeftOverExpr
?
3189 SE
.getAddExpr(LeftOverExpr
, IncExpr
) : IncExpr
;
3191 if (LeftOverExpr
&& !LeftOverExpr
->isZero()) {
3192 // Expand the IV increment.
3193 Rewriter
.clearPostInc();
3194 Value
*IncV
= Rewriter
.expandCodeFor(LeftOverExpr
, IntTy
, InsertPt
);
3195 const SCEV
*IVOperExpr
= SE
.getAddExpr(SE
.getUnknown(IVSrc
),
3196 SE
.getUnknown(IncV
));
3197 IVOper
= Rewriter
.expandCodeFor(IVOperExpr
, IVTy
, InsertPt
);
3199 // If an IV increment can't be folded, use it as the next IV value.
3200 if (!canFoldIVIncExpr(LeftOverExpr
, Inc
.UserInst
, Inc
.IVOperand
, TTI
)) {
3201 assert(IVTy
== IVOper
->getType() && "inconsistent IV increment type");
3203 LeftOverExpr
= nullptr;
3206 Type
*OperTy
= Inc
.IVOperand
->getType();
3207 if (IVTy
!= OperTy
) {
3208 assert(SE
.getTypeSizeInBits(IVTy
) >= SE
.getTypeSizeInBits(OperTy
) &&
3209 "cannot extend a chained IV");
3210 IRBuilder
<> Builder(InsertPt
);
3211 IVOper
= Builder
.CreateTruncOrBitCast(IVOper
, OperTy
, "lsr.chain");
3213 Inc
.UserInst
->replaceUsesOfWith(Inc
.IVOperand
, IVOper
);
3214 DeadInsts
.emplace_back(Inc
.IVOperand
);
3216 // If LSR created a new, wider phi, we may also replace its postinc. We only
3217 // do this if we also found a wide value for the head of the chain.
3218 if (isa
<PHINode
>(Chain
.tailUserInst())) {
3219 for (PHINode
&Phi
: L
->getHeader()->phis()) {
3220 if (!isCompatibleIVType(&Phi
, IVSrc
))
3222 Instruction
*PostIncV
= dyn_cast
<Instruction
>(
3223 Phi
.getIncomingValueForBlock(L
->getLoopLatch()));
3224 if (!PostIncV
|| (SE
.getSCEV(PostIncV
) != SE
.getSCEV(IVSrc
)))
3226 Value
*IVOper
= IVSrc
;
3227 Type
*PostIncTy
= PostIncV
->getType();
3228 if (IVTy
!= PostIncTy
) {
3229 assert(PostIncTy
->isPointerTy() && "mixing int/ptr IV types");
3230 IRBuilder
<> Builder(L
->getLoopLatch()->getTerminator());
3231 Builder
.SetCurrentDebugLocation(PostIncV
->getDebugLoc());
3232 IVOper
= Builder
.CreatePointerCast(IVSrc
, PostIncTy
, "lsr.chain");
3234 Phi
.replaceUsesOfWith(PostIncV
, IVOper
);
3235 DeadInsts
.emplace_back(PostIncV
);
3240 void LSRInstance::CollectFixupsAndInitialFormulae() {
3241 BranchInst
*ExitBranch
= nullptr;
3242 bool SaveCmp
= TTI
.canSaveCmp(L
, &ExitBranch
, &SE
, &LI
, &DT
, &AC
, &LibInfo
);
3244 for (const IVStrideUse
&U
: IU
) {
3245 Instruction
*UserInst
= U
.getUser();
3246 // Skip IV users that are part of profitable IV Chains.
3247 User::op_iterator UseI
=
3248 find(UserInst
->operands(), U
.getOperandValToReplace());
3249 assert(UseI
!= UserInst
->op_end() && "cannot find IV operand");
3250 if (IVIncSet
.count(UseI
)) {
3251 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI
<< '\n');
3255 LSRUse::KindType Kind
= LSRUse::Basic
;
3256 MemAccessTy AccessTy
;
3257 if (isAddressUse(TTI
, UserInst
, U
.getOperandValToReplace())) {
3258 Kind
= LSRUse::Address
;
3259 AccessTy
= getAccessType(TTI
, UserInst
, U
.getOperandValToReplace());
3262 const SCEV
*S
= IU
.getExpr(U
);
3263 PostIncLoopSet TmpPostIncLoops
= U
.getPostIncLoops();
3265 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3266 // (N - i == 0), and this allows (N - i) to be the expression that we work
3267 // with rather than just N or i, so we can consider the register
3268 // requirements for both N and i at the same time. Limiting this code to
3269 // equality icmps is not a problem because all interesting loops use
3270 // equality icmps, thanks to IndVarSimplify.
3271 if (ICmpInst
*CI
= dyn_cast
<ICmpInst
>(UserInst
)) {
3272 // If CI can be saved in some target, like replaced inside hardware loop
3273 // in PowerPC, no need to generate initial formulae for it.
3274 if (SaveCmp
&& CI
== dyn_cast
<ICmpInst
>(ExitBranch
->getCondition()))
3276 if (CI
->isEquality()) {
3277 // Swap the operands if needed to put the OperandValToReplace on the
3278 // left, for consistency.
3279 Value
*NV
= CI
->getOperand(1);
3280 if (NV
== U
.getOperandValToReplace()) {
3281 CI
->setOperand(1, CI
->getOperand(0));
3282 CI
->setOperand(0, NV
);
3283 NV
= CI
->getOperand(1);
3287 // x == y --> x - y == 0
3288 const SCEV
*N
= SE
.getSCEV(NV
);
3289 if (SE
.isLoopInvariant(N
, L
) && isSafeToExpand(N
, SE
)) {
3290 // S is normalized, so normalize N before folding it into S
3291 // to keep the result normalized.
3292 N
= normalizeForPostIncUse(N
, TmpPostIncLoops
, SE
);
3293 Kind
= LSRUse::ICmpZero
;
3294 S
= SE
.getMinusSCEV(N
, S
);
3297 // -1 and the negations of all interesting strides (except the negation
3298 // of -1) are now also interesting.
3299 for (size_t i
= 0, e
= Factors
.size(); i
!= e
; ++i
)
3300 if (Factors
[i
] != -1)
3301 Factors
.insert(-(uint64_t)Factors
[i
]);
3306 // Get or create an LSRUse.
3307 std::pair
<size_t, int64_t> P
= getUse(S
, Kind
, AccessTy
);
3308 size_t LUIdx
= P
.first
;
3309 int64_t Offset
= P
.second
;
3310 LSRUse
&LU
= Uses
[LUIdx
];
3312 // Record the fixup.
3313 LSRFixup
&LF
= LU
.getNewFixup();
3314 LF
.UserInst
= UserInst
;
3315 LF
.OperandValToReplace
= U
.getOperandValToReplace();
3316 LF
.PostIncLoops
= TmpPostIncLoops
;
3318 LU
.AllFixupsOutsideLoop
&= LF
.isUseFullyOutsideLoop(L
);
3320 if (!LU
.WidestFixupType
||
3321 SE
.getTypeSizeInBits(LU
.WidestFixupType
) <
3322 SE
.getTypeSizeInBits(LF
.OperandValToReplace
->getType()))
3323 LU
.WidestFixupType
= LF
.OperandValToReplace
->getType();
3325 // If this is the first use of this LSRUse, give it a formula.
3326 if (LU
.Formulae
.empty()) {
3327 InsertInitialFormula(S
, LU
, LUIdx
);
3328 CountRegisters(LU
.Formulae
.back(), LUIdx
);
3332 LLVM_DEBUG(print_fixups(dbgs()));
3335 /// Insert a formula for the given expression into the given use, separating out
3336 /// loop-variant portions from loop-invariant and loop-computable portions.
3338 LSRInstance::InsertInitialFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
) {
3339 // Mark uses whose expressions cannot be expanded.
3340 if (!isSafeToExpand(S
, SE
))
3341 LU
.RigidFormula
= true;
3344 F
.initialMatch(S
, L
, SE
);
3345 bool Inserted
= InsertFormula(LU
, LUIdx
, F
);
3346 assert(Inserted
&& "Initial formula already exists!"); (void)Inserted
;
3349 /// Insert a simple single-register formula for the given expression into the
3352 LSRInstance::InsertSupplementalFormula(const SCEV
*S
,
3353 LSRUse
&LU
, size_t LUIdx
) {
3355 F
.BaseRegs
.push_back(S
);
3356 F
.HasBaseReg
= true;
3357 bool Inserted
= InsertFormula(LU
, LUIdx
, F
);
3358 assert(Inserted
&& "Supplemental formula already exists!"); (void)Inserted
;
3361 /// Note which registers are used by the given formula, updating RegUses.
3362 void LSRInstance::CountRegisters(const Formula
&F
, size_t LUIdx
) {
3364 RegUses
.countRegister(F
.ScaledReg
, LUIdx
);
3365 for (const SCEV
*BaseReg
: F
.BaseRegs
)
3366 RegUses
.countRegister(BaseReg
, LUIdx
);
3369 /// If the given formula has not yet been inserted, add it to the list, and
3370 /// return true. Return false otherwise.
3371 bool LSRInstance::InsertFormula(LSRUse
&LU
, unsigned LUIdx
, const Formula
&F
) {
3372 // Do not insert formula that we will not be able to expand.
3373 assert(isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
, F
) &&
3374 "Formula is illegal");
3376 if (!LU
.InsertFormula(F
, *L
))
3379 CountRegisters(F
, LUIdx
);
3383 /// Check for other uses of loop-invariant values which we're tracking. These
3384 /// other uses will pin these values in registers, making them less profitable
3385 /// for elimination.
3386 /// TODO: This currently misses non-constant addrec step registers.
3387 /// TODO: Should this give more weight to users inside the loop?
3389 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3390 SmallVector
<const SCEV
*, 8> Worklist(RegUses
.begin(), RegUses
.end());
3391 SmallPtrSet
<const SCEV
*, 32> Visited
;
3393 while (!Worklist
.empty()) {
3394 const SCEV
*S
= Worklist
.pop_back_val();
3396 // Don't process the same SCEV twice
3397 if (!Visited
.insert(S
).second
)
3400 if (const SCEVNAryExpr
*N
= dyn_cast
<SCEVNAryExpr
>(S
))
3401 Worklist
.append(N
->op_begin(), N
->op_end());
3402 else if (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(S
))
3403 Worklist
.push_back(C
->getOperand());
3404 else if (const SCEVUDivExpr
*D
= dyn_cast
<SCEVUDivExpr
>(S
)) {
3405 Worklist
.push_back(D
->getLHS());
3406 Worklist
.push_back(D
->getRHS());
3407 } else if (const SCEVUnknown
*US
= dyn_cast
<SCEVUnknown
>(S
)) {
3408 const Value
*V
= US
->getValue();
3409 if (const Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
3410 // Look for instructions defined outside the loop.
3411 if (L
->contains(Inst
)) continue;
3412 } else if (isa
<UndefValue
>(V
))
3413 // Undef doesn't have a live range, so it doesn't matter.
3415 for (const Use
&U
: V
->uses()) {
3416 const Instruction
*UserInst
= dyn_cast
<Instruction
>(U
.getUser());
3417 // Ignore non-instructions.
3420 // Ignore instructions in other functions (as can happen with
3422 if (UserInst
->getParent()->getParent() != L
->getHeader()->getParent())
3424 // Ignore instructions not dominated by the loop.
3425 const BasicBlock
*UseBB
= !isa
<PHINode
>(UserInst
) ?
3426 UserInst
->getParent() :
3427 cast
<PHINode
>(UserInst
)->getIncomingBlock(
3428 PHINode::getIncomingValueNumForOperand(U
.getOperandNo()));
3429 if (!DT
.dominates(L
->getHeader(), UseBB
))
3431 // Don't bother if the instruction is in a BB which ends in an EHPad.
3432 if (UseBB
->getTerminator()->isEHPad())
3434 // Don't bother rewriting PHIs in catchswitch blocks.
3435 if (isa
<CatchSwitchInst
>(UserInst
->getParent()->getTerminator()))
3437 // Ignore uses which are part of other SCEV expressions, to avoid
3438 // analyzing them multiple times.
3439 if (SE
.isSCEVable(UserInst
->getType())) {
3440 const SCEV
*UserS
= SE
.getSCEV(const_cast<Instruction
*>(UserInst
));
3441 // If the user is a no-op, look through to its uses.
3442 if (!isa
<SCEVUnknown
>(UserS
))
3446 SE
.getUnknown(const_cast<Instruction
*>(UserInst
)));
3450 // Ignore icmp instructions which are already being analyzed.
3451 if (const ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(UserInst
)) {
3452 unsigned OtherIdx
= !U
.getOperandNo();
3453 Value
*OtherOp
= const_cast<Value
*>(ICI
->getOperand(OtherIdx
));
3454 if (SE
.hasComputableLoopEvolution(SE
.getSCEV(OtherOp
), L
))
3458 std::pair
<size_t, int64_t> P
= getUse(
3459 S
, LSRUse::Basic
, MemAccessTy());
3460 size_t LUIdx
= P
.first
;
3461 int64_t Offset
= P
.second
;
3462 LSRUse
&LU
= Uses
[LUIdx
];
3463 LSRFixup
&LF
= LU
.getNewFixup();
3464 LF
.UserInst
= const_cast<Instruction
*>(UserInst
);
3465 LF
.OperandValToReplace
= U
;
3467 LU
.AllFixupsOutsideLoop
&= LF
.isUseFullyOutsideLoop(L
);
3468 if (!LU
.WidestFixupType
||
3469 SE
.getTypeSizeInBits(LU
.WidestFixupType
) <
3470 SE
.getTypeSizeInBits(LF
.OperandValToReplace
->getType()))
3471 LU
.WidestFixupType
= LF
.OperandValToReplace
->getType();
3472 InsertSupplementalFormula(US
, LU
, LUIdx
);
3473 CountRegisters(LU
.Formulae
.back(), Uses
.size() - 1);
3480 /// Split S into subexpressions which can be pulled out into separate
3481 /// registers. If C is non-null, multiply each subexpression by C.
3483 /// Return remainder expression after factoring the subexpressions captured by
3484 /// Ops. If Ops is complete, return NULL.
3485 static const SCEV
*CollectSubexprs(const SCEV
*S
, const SCEVConstant
*C
,
3486 SmallVectorImpl
<const SCEV
*> &Ops
,
3488 ScalarEvolution
&SE
,
3489 unsigned Depth
= 0) {
3490 // Arbitrarily cap recursion to protect compile time.
3494 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
3495 // Break out add operands.
3496 for (const SCEV
*S
: Add
->operands()) {
3497 const SCEV
*Remainder
= CollectSubexprs(S
, C
, Ops
, L
, SE
, Depth
+1);
3499 Ops
.push_back(C
? SE
.getMulExpr(C
, Remainder
) : Remainder
);
3502 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
3503 // Split a non-zero base out of an addrec.
3504 if (AR
->getStart()->isZero() || !AR
->isAffine())
3507 const SCEV
*Remainder
= CollectSubexprs(AR
->getStart(),
3508 C
, Ops
, L
, SE
, Depth
+1);
3509 // Split the non-zero AddRec unless it is part of a nested recurrence that
3510 // does not pertain to this loop.
3511 if (Remainder
&& (AR
->getLoop() == L
|| !isa
<SCEVAddRecExpr
>(Remainder
))) {
3512 Ops
.push_back(C
? SE
.getMulExpr(C
, Remainder
) : Remainder
);
3513 Remainder
= nullptr;
3515 if (Remainder
!= AR
->getStart()) {
3517 Remainder
= SE
.getConstant(AR
->getType(), 0);
3518 return SE
.getAddRecExpr(Remainder
,
3519 AR
->getStepRecurrence(SE
),
3521 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3524 } else if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
3525 // Break (C * (a + b + c)) into C*a + C*b + C*c.
3526 if (Mul
->getNumOperands() != 2)
3528 if (const SCEVConstant
*Op0
=
3529 dyn_cast
<SCEVConstant
>(Mul
->getOperand(0))) {
3530 C
= C
? cast
<SCEVConstant
>(SE
.getMulExpr(C
, Op0
)) : Op0
;
3531 const SCEV
*Remainder
=
3532 CollectSubexprs(Mul
->getOperand(1), C
, Ops
, L
, SE
, Depth
+1);
3534 Ops
.push_back(SE
.getMulExpr(C
, Remainder
));
3541 /// Return true if the SCEV represents a value that may end up as a
3542 /// post-increment operation.
3543 static bool mayUsePostIncMode(const TargetTransformInfo
&TTI
,
3544 LSRUse
&LU
, const SCEV
*S
, const Loop
*L
,
3545 ScalarEvolution
&SE
) {
3546 if (LU
.Kind
!= LSRUse::Address
||
3547 !LU
.AccessTy
.getType()->isIntOrIntVectorTy())
3549 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
);
3552 const SCEV
*LoopStep
= AR
->getStepRecurrence(SE
);
3553 if (!isa
<SCEVConstant
>(LoopStep
))
3555 if (LU
.AccessTy
.getType()->getScalarSizeInBits() !=
3556 LoopStep
->getType()->getScalarSizeInBits())
3558 // Check if a post-indexed load/store can be used.
3559 if (TTI
.isIndexedLoadLegal(TTI
.MIM_PostInc
, AR
->getType()) ||
3560 TTI
.isIndexedStoreLegal(TTI
.MIM_PostInc
, AR
->getType())) {
3561 const SCEV
*LoopStart
= AR
->getStart();
3562 if (!isa
<SCEVConstant
>(LoopStart
) && SE
.isLoopInvariant(LoopStart
, L
))
3568 /// Helper function for LSRInstance::GenerateReassociations.
3569 void LSRInstance::GenerateReassociationsImpl(LSRUse
&LU
, unsigned LUIdx
,
3570 const Formula
&Base
,
3571 unsigned Depth
, size_t Idx
,
3573 const SCEV
*BaseReg
= IsScaledReg
? Base
.ScaledReg
: Base
.BaseRegs
[Idx
];
3574 // Don't generate reassociations for the base register of a value that
3575 // may generate a post-increment operator. The reason is that the
3576 // reassociations cause extra base+register formula to be created,
3577 // and possibly chosen, but the post-increment is more efficient.
3578 if (TTI
.shouldFavorPostInc() && mayUsePostIncMode(TTI
, LU
, BaseReg
, L
, SE
))
3580 SmallVector
<const SCEV
*, 8> AddOps
;
3581 const SCEV
*Remainder
= CollectSubexprs(BaseReg
, nullptr, AddOps
, L
, SE
);
3583 AddOps
.push_back(Remainder
);
3585 if (AddOps
.size() == 1)
3588 for (SmallVectorImpl
<const SCEV
*>::const_iterator J
= AddOps
.begin(),
3591 // Loop-variant "unknown" values are uninteresting; we won't be able to
3592 // do anything meaningful with them.
3593 if (isa
<SCEVUnknown
>(*J
) && !SE
.isLoopInvariant(*J
, L
))
3596 // Don't pull a constant into a register if the constant could be folded
3597 // into an immediate field.
3598 if (isAlwaysFoldable(TTI
, SE
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
,
3599 LU
.AccessTy
, *J
, Base
.getNumRegs() > 1))
3602 // Collect all operands except *J.
3603 SmallVector
<const SCEV
*, 8> InnerAddOps(
3604 ((const SmallVector
<const SCEV
*, 8> &)AddOps
).begin(), J
);
3605 InnerAddOps
.append(std::next(J
),
3606 ((const SmallVector
<const SCEV
*, 8> &)AddOps
).end());
3608 // Don't leave just a constant behind in a register if the constant could
3609 // be folded into an immediate field.
3610 if (InnerAddOps
.size() == 1 &&
3611 isAlwaysFoldable(TTI
, SE
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
,
3612 LU
.AccessTy
, InnerAddOps
[0], Base
.getNumRegs() > 1))
3615 const SCEV
*InnerSum
= SE
.getAddExpr(InnerAddOps
);
3616 if (InnerSum
->isZero())
3620 // Add the remaining pieces of the add back into the new formula.
3621 const SCEVConstant
*InnerSumSC
= dyn_cast
<SCEVConstant
>(InnerSum
);
3622 if (InnerSumSC
&& SE
.getTypeSizeInBits(InnerSumSC
->getType()) <= 64 &&
3623 TTI
.isLegalAddImmediate((uint64_t)F
.UnfoldedOffset
+
3624 InnerSumSC
->getValue()->getZExtValue())) {
3626 (uint64_t)F
.UnfoldedOffset
+ InnerSumSC
->getValue()->getZExtValue();
3628 F
.ScaledReg
= nullptr;
3630 F
.BaseRegs
.erase(F
.BaseRegs
.begin() + Idx
);
3631 } else if (IsScaledReg
)
3632 F
.ScaledReg
= InnerSum
;
3634 F
.BaseRegs
[Idx
] = InnerSum
;
3636 // Add J as its own register, or an unfolded immediate.
3637 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(*J
);
3638 if (SC
&& SE
.getTypeSizeInBits(SC
->getType()) <= 64 &&
3639 TTI
.isLegalAddImmediate((uint64_t)F
.UnfoldedOffset
+
3640 SC
->getValue()->getZExtValue()))
3642 (uint64_t)F
.UnfoldedOffset
+ SC
->getValue()->getZExtValue();
3644 F
.BaseRegs
.push_back(*J
);
3645 // We may have changed the number of register in base regs, adjust the
3646 // formula accordingly.
3649 if (InsertFormula(LU
, LUIdx
, F
))
3650 // If that formula hadn't been seen before, recurse to find more like
3652 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3653 // Because just Depth is not enough to bound compile time.
3654 // This means that every time AddOps.size() is greater 16^x we will add
3656 GenerateReassociations(LU
, LUIdx
, LU
.Formulae
.back(),
3657 Depth
+ 1 + (Log2_32(AddOps
.size()) >> 2));
3661 /// Split out subexpressions from adds and the bases of addrecs.
3662 void LSRInstance::GenerateReassociations(LSRUse
&LU
, unsigned LUIdx
,
3663 Formula Base
, unsigned Depth
) {
3664 assert(Base
.isCanonical(*L
) && "Input must be in the canonical form");
3665 // Arbitrarily cap recursion to protect compile time.
3669 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
)
3670 GenerateReassociationsImpl(LU
, LUIdx
, Base
, Depth
, i
);
3672 if (Base
.Scale
== 1)
3673 GenerateReassociationsImpl(LU
, LUIdx
, Base
, Depth
,
3674 /* Idx */ -1, /* IsScaledReg */ true);
3677 /// Generate a formula consisting of all of the loop-dominating registers added
3678 /// into a single register.
3679 void LSRInstance::GenerateCombinations(LSRUse
&LU
, unsigned LUIdx
,
3681 // This method is only interesting on a plurality of registers.
3682 if (Base
.BaseRegs
.size() + (Base
.Scale
== 1) +
3683 (Base
.UnfoldedOffset
!= 0) <= 1)
3686 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3687 // processing the formula.
3689 SmallVector
<const SCEV
*, 4> Ops
;
3690 Formula NewBase
= Base
;
3691 NewBase
.BaseRegs
.clear();
3692 Type
*CombinedIntegerType
= nullptr;
3693 for (const SCEV
*BaseReg
: Base
.BaseRegs
) {
3694 if (SE
.properlyDominates(BaseReg
, L
->getHeader()) &&
3695 !SE
.hasComputableLoopEvolution(BaseReg
, L
)) {
3696 if (!CombinedIntegerType
)
3697 CombinedIntegerType
= SE
.getEffectiveSCEVType(BaseReg
->getType());
3698 Ops
.push_back(BaseReg
);
3701 NewBase
.BaseRegs
.push_back(BaseReg
);
3704 // If no register is relevant, we're done.
3705 if (Ops
.size() == 0)
3708 // Utility function for generating the required variants of the combined
3710 auto GenerateFormula
= [&](const SCEV
*Sum
) {
3711 Formula F
= NewBase
;
3713 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3714 // opportunity to fold something. For now, just ignore such cases
3715 // rather than proceed with zero in a register.
3719 F
.BaseRegs
.push_back(Sum
);
3721 (void)InsertFormula(LU
, LUIdx
, F
);
3724 // If we collected at least two registers, generate a formula combining them.
3725 if (Ops
.size() > 1) {
3726 SmallVector
<const SCEV
*, 4> OpsCopy(Ops
); // Don't let SE modify Ops.
3727 GenerateFormula(SE
.getAddExpr(OpsCopy
));
3730 // If we have an unfolded offset, generate a formula combining it with the
3731 // registers collected.
3732 if (NewBase
.UnfoldedOffset
) {
3733 assert(CombinedIntegerType
&& "Missing a type for the unfolded offset");
3734 Ops
.push_back(SE
.getConstant(CombinedIntegerType
, NewBase
.UnfoldedOffset
,
3736 NewBase
.UnfoldedOffset
= 0;
3737 GenerateFormula(SE
.getAddExpr(Ops
));
3741 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3742 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse
&LU
, unsigned LUIdx
,
3743 const Formula
&Base
, size_t Idx
,
3745 const SCEV
*G
= IsScaledReg
? Base
.ScaledReg
: Base
.BaseRegs
[Idx
];
3746 GlobalValue
*GV
= ExtractSymbol(G
, SE
);
3747 if (G
->isZero() || !GV
)
3751 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
, F
))
3756 F
.BaseRegs
[Idx
] = G
;
3757 (void)InsertFormula(LU
, LUIdx
, F
);
3760 /// Generate reuse formulae using symbolic offsets.
3761 void LSRInstance::GenerateSymbolicOffsets(LSRUse
&LU
, unsigned LUIdx
,
3763 // We can't add a symbolic offset if the address already contains one.
3764 if (Base
.BaseGV
) return;
3766 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
)
3767 GenerateSymbolicOffsetsImpl(LU
, LUIdx
, Base
, i
);
3768 if (Base
.Scale
== 1)
3769 GenerateSymbolicOffsetsImpl(LU
, LUIdx
, Base
, /* Idx */ -1,
3770 /* IsScaledReg */ true);
3773 /// Helper function for LSRInstance::GenerateConstantOffsets.
3774 void LSRInstance::GenerateConstantOffsetsImpl(
3775 LSRUse
&LU
, unsigned LUIdx
, const Formula
&Base
,
3776 const SmallVectorImpl
<int64_t> &Worklist
, size_t Idx
, bool IsScaledReg
) {
3778 auto GenerateOffset
= [&](const SCEV
*G
, int64_t Offset
) {
3780 F
.BaseOffset
= (uint64_t)Base
.BaseOffset
- Offset
;
3782 if (isLegalUse(TTI
, LU
.MinOffset
- Offset
, LU
.MaxOffset
- Offset
, LU
.Kind
,
3784 // Add the offset to the base register.
3785 const SCEV
*NewG
= SE
.getAddExpr(SE
.getConstant(G
->getType(), Offset
), G
);
3786 // If it cancelled out, drop the base register, otherwise update it.
3787 if (NewG
->isZero()) {
3790 F
.ScaledReg
= nullptr;
3792 F
.deleteBaseReg(F
.BaseRegs
[Idx
]);
3794 } else if (IsScaledReg
)
3797 F
.BaseRegs
[Idx
] = NewG
;
3799 (void)InsertFormula(LU
, LUIdx
, F
);
3803 const SCEV
*G
= IsScaledReg
? Base
.ScaledReg
: Base
.BaseRegs
[Idx
];
3805 // With constant offsets and constant steps, we can generate pre-inc
3806 // accesses by having the offset equal the step. So, for access #0 with a
3807 // step of 8, we generate a G - 8 base which would require the first access
3808 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3809 // for itself and hopefully becomes the base for other accesses. This means
3810 // means that a single pre-indexed access can be generated to become the new
3811 // base pointer for each iteration of the loop, resulting in no extra add/sub
3812 // instructions for pointer updating.
3813 if (FavorBackedgeIndex
&& LU
.Kind
== LSRUse::Address
) {
3814 if (auto *GAR
= dyn_cast
<SCEVAddRecExpr
>(G
)) {
3816 dyn_cast
<SCEVConstant
>(GAR
->getStepRecurrence(SE
))) {
3817 const APInt
&StepInt
= StepRec
->getAPInt();
3818 int64_t Step
= StepInt
.isNegative() ?
3819 StepInt
.getSExtValue() : StepInt
.getZExtValue();
3821 for (int64_t Offset
: Worklist
) {
3823 GenerateOffset(G
, Offset
);
3828 for (int64_t Offset
: Worklist
)
3829 GenerateOffset(G
, Offset
);
3831 int64_t Imm
= ExtractImmediate(G
, SE
);
3832 if (G
->isZero() || Imm
== 0)
3835 F
.BaseOffset
= (uint64_t)F
.BaseOffset
+ Imm
;
3836 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
, F
))
3841 F
.BaseRegs
[Idx
] = G
;
3842 (void)InsertFormula(LU
, LUIdx
, F
);
3845 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3846 void LSRInstance::GenerateConstantOffsets(LSRUse
&LU
, unsigned LUIdx
,
3848 // TODO: For now, just add the min and max offset, because it usually isn't
3849 // worthwhile looking at everything inbetween.
3850 SmallVector
<int64_t, 2> Worklist
;
3851 Worklist
.push_back(LU
.MinOffset
);
3852 if (LU
.MaxOffset
!= LU
.MinOffset
)
3853 Worklist
.push_back(LU
.MaxOffset
);
3855 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
)
3856 GenerateConstantOffsetsImpl(LU
, LUIdx
, Base
, Worklist
, i
);
3857 if (Base
.Scale
== 1)
3858 GenerateConstantOffsetsImpl(LU
, LUIdx
, Base
, Worklist
, /* Idx */ -1,
3859 /* IsScaledReg */ true);
3862 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3863 /// == y -> x*c == y*c.
3864 void LSRInstance::GenerateICmpZeroScales(LSRUse
&LU
, unsigned LUIdx
,
3866 if (LU
.Kind
!= LSRUse::ICmpZero
) return;
3868 // Determine the integer type for the base formula.
3869 Type
*IntTy
= Base
.getType();
3871 if (SE
.getTypeSizeInBits(IntTy
) > 64) return;
3873 // Don't do this if there is more than one offset.
3874 if (LU
.MinOffset
!= LU
.MaxOffset
) return;
3876 // Check if transformation is valid. It is illegal to multiply pointer.
3877 if (Base
.ScaledReg
&& Base
.ScaledReg
->getType()->isPointerTy())
3879 for (const SCEV
*BaseReg
: Base
.BaseRegs
)
3880 if (BaseReg
->getType()->isPointerTy())
3882 assert(!Base
.BaseGV
&& "ICmpZero use is not legal!");
3884 // Check each interesting stride.
3885 for (int64_t Factor
: Factors
) {
3886 // Check that the multiplication doesn't overflow.
3887 if (Base
.BaseOffset
== std::numeric_limits
<int64_t>::min() && Factor
== -1)
3889 int64_t NewBaseOffset
= (uint64_t)Base
.BaseOffset
* Factor
;
3890 if (NewBaseOffset
/ Factor
!= Base
.BaseOffset
)
3892 // If the offset will be truncated at this use, check that it is in bounds.
3893 if (!IntTy
->isPointerTy() &&
3894 !ConstantInt::isValueValidForType(IntTy
, NewBaseOffset
))
3897 // Check that multiplying with the use offset doesn't overflow.
3898 int64_t Offset
= LU
.MinOffset
;
3899 if (Offset
== std::numeric_limits
<int64_t>::min() && Factor
== -1)
3901 Offset
= (uint64_t)Offset
* Factor
;
3902 if (Offset
/ Factor
!= LU
.MinOffset
)
3904 // If the offset will be truncated at this use, check that it is in bounds.
3905 if (!IntTy
->isPointerTy() &&
3906 !ConstantInt::isValueValidForType(IntTy
, Offset
))
3910 F
.BaseOffset
= NewBaseOffset
;
3912 // Check that this scale is legal.
3913 if (!isLegalUse(TTI
, Offset
, Offset
, LU
.Kind
, LU
.AccessTy
, F
))
3916 // Compensate for the use having MinOffset built into it.
3917 F
.BaseOffset
= (uint64_t)F
.BaseOffset
+ Offset
- LU
.MinOffset
;
3919 const SCEV
*FactorS
= SE
.getConstant(IntTy
, Factor
);
3921 // Check that multiplying with each base register doesn't overflow.
3922 for (size_t i
= 0, e
= F
.BaseRegs
.size(); i
!= e
; ++i
) {
3923 F
.BaseRegs
[i
] = SE
.getMulExpr(F
.BaseRegs
[i
], FactorS
);
3924 if (getExactSDiv(F
.BaseRegs
[i
], FactorS
, SE
) != Base
.BaseRegs
[i
])
3928 // Check that multiplying with the scaled register doesn't overflow.
3930 F
.ScaledReg
= SE
.getMulExpr(F
.ScaledReg
, FactorS
);
3931 if (getExactSDiv(F
.ScaledReg
, FactorS
, SE
) != Base
.ScaledReg
)
3935 // Check that multiplying with the unfolded offset doesn't overflow.
3936 if (F
.UnfoldedOffset
!= 0) {
3937 if (F
.UnfoldedOffset
== std::numeric_limits
<int64_t>::min() &&
3940 F
.UnfoldedOffset
= (uint64_t)F
.UnfoldedOffset
* Factor
;
3941 if (F
.UnfoldedOffset
/ Factor
!= Base
.UnfoldedOffset
)
3943 // If the offset will be truncated, check that it is in bounds.
3944 if (!IntTy
->isPointerTy() &&
3945 !ConstantInt::isValueValidForType(IntTy
, F
.UnfoldedOffset
))
3949 // If we make it here and it's legal, add it.
3950 (void)InsertFormula(LU
, LUIdx
, F
);
3955 /// Generate stride factor reuse formulae by making use of scaled-offset address
3956 /// modes, for example.
3957 void LSRInstance::GenerateScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
) {
3958 // Determine the integer type for the base formula.
3959 Type
*IntTy
= Base
.getType();
3962 // If this Formula already has a scaled register, we can't add another one.
3963 // Try to unscale the formula to generate a better scale.
3964 if (Base
.Scale
!= 0 && !Base
.unscale())
3967 assert(Base
.Scale
== 0 && "unscale did not did its job!");
3969 // Check each interesting stride.
3970 for (int64_t Factor
: Factors
) {
3971 Base
.Scale
= Factor
;
3972 Base
.HasBaseReg
= Base
.BaseRegs
.size() > 1;
3973 // Check whether this scale is going to be legal.
3974 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
,
3976 // As a special-case, handle special out-of-loop Basic users specially.
3977 // TODO: Reconsider this special case.
3978 if (LU
.Kind
== LSRUse::Basic
&&
3979 isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LSRUse::Special
,
3980 LU
.AccessTy
, Base
) &&
3981 LU
.AllFixupsOutsideLoop
)
3982 LU
.Kind
= LSRUse::Special
;
3986 // For an ICmpZero, negating a solitary base register won't lead to
3988 if (LU
.Kind
== LSRUse::ICmpZero
&&
3989 !Base
.HasBaseReg
&& Base
.BaseOffset
== 0 && !Base
.BaseGV
)
3991 // For each addrec base reg, if its loop is current loop, apply the scale.
3992 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
) {
3993 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Base
.BaseRegs
[i
]);
3994 if (AR
&& (AR
->getLoop() == L
|| LU
.AllFixupsOutsideLoop
)) {
3995 const SCEV
*FactorS
= SE
.getConstant(IntTy
, Factor
);
3996 if (FactorS
->isZero())
3998 // Divide out the factor, ignoring high bits, since we'll be
3999 // scaling the value back up in the end.
4000 if (const SCEV
*Quotient
= getExactSDiv(AR
, FactorS
, SE
, true)) {
4001 // TODO: This could be optimized to avoid all the copying.
4003 F
.ScaledReg
= Quotient
;
4004 F
.deleteBaseReg(F
.BaseRegs
[i
]);
4005 // The canonical representation of 1*reg is reg, which is already in
4006 // Base. In that case, do not try to insert the formula, it will be
4008 if (F
.Scale
== 1 && (F
.BaseRegs
.empty() ||
4009 (AR
->getLoop() != L
&& LU
.AllFixupsOutsideLoop
)))
4011 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4012 // non canonical Formula with ScaledReg's loop not being L.
4013 if (F
.Scale
== 1 && LU
.AllFixupsOutsideLoop
)
4015 (void)InsertFormula(LU
, LUIdx
, F
);
4022 /// Generate reuse formulae from different IV types.
4023 void LSRInstance::GenerateTruncates(LSRUse
&LU
, unsigned LUIdx
, Formula Base
) {
4024 // Don't bother truncating symbolic values.
4025 if (Base
.BaseGV
) return;
4027 // Determine the integer type for the base formula.
4028 Type
*DstTy
= Base
.getType();
4030 DstTy
= SE
.getEffectiveSCEVType(DstTy
);
4032 for (Type
*SrcTy
: Types
) {
4033 if (SrcTy
!= DstTy
&& TTI
.isTruncateFree(SrcTy
, DstTy
)) {
4036 // Sometimes SCEV is able to prove zero during ext transform. It may
4037 // happen if SCEV did not do all possible transforms while creating the
4038 // initial node (maybe due to depth limitations), but it can do them while
4041 const SCEV
*NewScaledReg
= SE
.getAnyExtendExpr(F
.ScaledReg
, SrcTy
);
4042 if (NewScaledReg
->isZero())
4044 F
.ScaledReg
= NewScaledReg
;
4046 bool HasZeroBaseReg
= false;
4047 for (const SCEV
*&BaseReg
: F
.BaseRegs
) {
4048 const SCEV
*NewBaseReg
= SE
.getAnyExtendExpr(BaseReg
, SrcTy
);
4049 if (NewBaseReg
->isZero()) {
4050 HasZeroBaseReg
= true;
4053 BaseReg
= NewBaseReg
;
4058 // TODO: This assumes we've done basic processing on all uses and
4059 // have an idea what the register usage is.
4060 if (!F
.hasRegsUsedByUsesOtherThan(LUIdx
, RegUses
))
4064 (void)InsertFormula(LU
, LUIdx
, F
);
4071 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4072 /// modifications so that the search phase doesn't have to worry about the data
4073 /// structures moving underneath it.
4077 const SCEV
*OrigReg
;
4079 WorkItem(size_t LI
, int64_t I
, const SCEV
*R
)
4080 : LUIdx(LI
), Imm(I
), OrigReg(R
) {}
4082 void print(raw_ostream
&OS
) const;
4086 } // end anonymous namespace
4088 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4089 void WorkItem::print(raw_ostream
&OS
) const {
4090 OS
<< "in formulae referencing " << *OrigReg
<< " in use " << LUIdx
4091 << " , add offset " << Imm
;
4094 LLVM_DUMP_METHOD
void WorkItem::dump() const {
4095 print(errs()); errs() << '\n';
4099 /// Look for registers which are a constant distance apart and try to form reuse
4100 /// opportunities between them.
4101 void LSRInstance::GenerateCrossUseConstantOffsets() {
4102 // Group the registers by their value without any added constant offset.
4103 using ImmMapTy
= std::map
<int64_t, const SCEV
*>;
4105 DenseMap
<const SCEV
*, ImmMapTy
> Map
;
4106 DenseMap
<const SCEV
*, SmallBitVector
> UsedByIndicesMap
;
4107 SmallVector
<const SCEV
*, 8> Sequence
;
4108 for (const SCEV
*Use
: RegUses
) {
4109 const SCEV
*Reg
= Use
; // Make a copy for ExtractImmediate to modify.
4110 int64_t Imm
= ExtractImmediate(Reg
, SE
);
4111 auto Pair
= Map
.insert(std::make_pair(Reg
, ImmMapTy()));
4113 Sequence
.push_back(Reg
);
4114 Pair
.first
->second
.insert(std::make_pair(Imm
, Use
));
4115 UsedByIndicesMap
[Reg
] |= RegUses
.getUsedByIndices(Use
);
4118 // Now examine each set of registers with the same base value. Build up
4119 // a list of work to do and do the work in a separate step so that we're
4120 // not adding formulae and register counts while we're searching.
4121 SmallVector
<WorkItem
, 32> WorkItems
;
4122 SmallSet
<std::pair
<size_t, int64_t>, 32> UniqueItems
;
4123 for (const SCEV
*Reg
: Sequence
) {
4124 const ImmMapTy
&Imms
= Map
.find(Reg
)->second
;
4126 // It's not worthwhile looking for reuse if there's only one offset.
4127 if (Imms
.size() == 1)
4130 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg
<< ':';
4131 for (const auto &Entry
4133 << ' ' << Entry
.first
;
4136 // Examine each offset.
4137 for (ImmMapTy::const_iterator J
= Imms
.begin(), JE
= Imms
.end();
4139 const SCEV
*OrigReg
= J
->second
;
4141 int64_t JImm
= J
->first
;
4142 const SmallBitVector
&UsedByIndices
= RegUses
.getUsedByIndices(OrigReg
);
4144 if (!isa
<SCEVConstant
>(OrigReg
) &&
4145 UsedByIndicesMap
[Reg
].count() == 1) {
4146 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4151 // Conservatively examine offsets between this orig reg a few selected
4153 int64_t First
= Imms
.begin()->first
;
4154 int64_t Last
= std::prev(Imms
.end())->first
;
4155 // Compute (First + Last) / 2 without overflow using the fact that
4156 // First + Last = 2 * (First + Last) + (First ^ Last).
4157 int64_t Avg
= (First
& Last
) + ((First
^ Last
) >> 1);
4158 // If the result is negative and First is odd and Last even (or vice versa),
4159 // we rounded towards -inf. Add 1 in that case, to round towards 0.
4160 Avg
= Avg
+ ((First
^ Last
) & ((uint64_t)Avg
>> 63));
4161 ImmMapTy::const_iterator OtherImms
[] = {
4162 Imms
.begin(), std::prev(Imms
.end()),
4163 Imms
.lower_bound(Avg
)};
4164 for (size_t i
= 0, e
= array_lengthof(OtherImms
); i
!= e
; ++i
) {
4165 ImmMapTy::const_iterator M
= OtherImms
[i
];
4166 if (M
== J
|| M
== JE
) continue;
4168 // Compute the difference between the two.
4169 int64_t Imm
= (uint64_t)JImm
- M
->first
;
4170 for (unsigned LUIdx
: UsedByIndices
.set_bits())
4171 // Make a memo of this use, offset, and register tuple.
4172 if (UniqueItems
.insert(std::make_pair(LUIdx
, Imm
)).second
)
4173 WorkItems
.push_back(WorkItem(LUIdx
, Imm
, OrigReg
));
4180 UsedByIndicesMap
.clear();
4181 UniqueItems
.clear();
4183 // Now iterate through the worklist and add new formulae.
4184 for (const WorkItem
&WI
: WorkItems
) {
4185 size_t LUIdx
= WI
.LUIdx
;
4186 LSRUse
&LU
= Uses
[LUIdx
];
4187 int64_t Imm
= WI
.Imm
;
4188 const SCEV
*OrigReg
= WI
.OrigReg
;
4190 Type
*IntTy
= SE
.getEffectiveSCEVType(OrigReg
->getType());
4191 const SCEV
*NegImmS
= SE
.getSCEV(ConstantInt::get(IntTy
, -(uint64_t)Imm
));
4192 unsigned BitWidth
= SE
.getTypeSizeInBits(IntTy
);
4194 // TODO: Use a more targeted data structure.
4195 for (size_t L
= 0, LE
= LU
.Formulae
.size(); L
!= LE
; ++L
) {
4196 Formula F
= LU
.Formulae
[L
];
4197 // FIXME: The code for the scaled and unscaled registers looks
4198 // very similar but slightly different. Investigate if they
4199 // could be merged. That way, we would not have to unscale the
4202 // Use the immediate in the scaled register.
4203 if (F
.ScaledReg
== OrigReg
) {
4204 int64_t Offset
= (uint64_t)F
.BaseOffset
+ Imm
* (uint64_t)F
.Scale
;
4205 // Don't create 50 + reg(-50).
4206 if (F
.referencesReg(SE
.getSCEV(
4207 ConstantInt::get(IntTy
, -(uint64_t)Offset
))))
4210 NewF
.BaseOffset
= Offset
;
4211 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
,
4214 NewF
.ScaledReg
= SE
.getAddExpr(NegImmS
, NewF
.ScaledReg
);
4216 // If the new scale is a constant in a register, and adding the constant
4217 // value to the immediate would produce a value closer to zero than the
4218 // immediate itself, then the formula isn't worthwhile.
4219 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(NewF
.ScaledReg
))
4220 if (C
->getValue()->isNegative() != (NewF
.BaseOffset
< 0) &&
4221 (C
->getAPInt().abs() * APInt(BitWidth
, F
.Scale
))
4222 .ule(std::abs(NewF
.BaseOffset
)))
4226 NewF
.canonicalize(*this->L
);
4227 (void)InsertFormula(LU
, LUIdx
, NewF
);
4229 // Use the immediate in a base register.
4230 for (size_t N
= 0, NE
= F
.BaseRegs
.size(); N
!= NE
; ++N
) {
4231 const SCEV
*BaseReg
= F
.BaseRegs
[N
];
4232 if (BaseReg
!= OrigReg
)
4235 NewF
.BaseOffset
= (uint64_t)NewF
.BaseOffset
+ Imm
;
4236 if (!isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
,
4237 LU
.Kind
, LU
.AccessTy
, NewF
)) {
4238 if (TTI
.shouldFavorPostInc() &&
4239 mayUsePostIncMode(TTI
, LU
, OrigReg
, this->L
, SE
))
4241 if (!TTI
.isLegalAddImmediate((uint64_t)NewF
.UnfoldedOffset
+ Imm
))
4244 NewF
.UnfoldedOffset
= (uint64_t)NewF
.UnfoldedOffset
+ Imm
;
4246 NewF
.BaseRegs
[N
] = SE
.getAddExpr(NegImmS
, BaseReg
);
4248 // If the new formula has a constant in a register, and adding the
4249 // constant value to the immediate would produce a value closer to
4250 // zero than the immediate itself, then the formula isn't worthwhile.
4251 for (const SCEV
*NewReg
: NewF
.BaseRegs
)
4252 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(NewReg
))
4253 if ((C
->getAPInt() + NewF
.BaseOffset
)
4255 .slt(std::abs(NewF
.BaseOffset
)) &&
4256 (C
->getAPInt() + NewF
.BaseOffset
).countTrailingZeros() >=
4257 countTrailingZeros
<uint64_t>(NewF
.BaseOffset
))
4261 NewF
.canonicalize(*this->L
);
4262 (void)InsertFormula(LU
, LUIdx
, NewF
);
4271 /// Generate formulae for each use.
4273 LSRInstance::GenerateAllReuseFormulae() {
4274 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4275 // queries are more precise.
4276 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4277 LSRUse
&LU
= Uses
[LUIdx
];
4278 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4279 GenerateReassociations(LU
, LUIdx
, LU
.Formulae
[i
]);
4280 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4281 GenerateCombinations(LU
, LUIdx
, LU
.Formulae
[i
]);
4283 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4284 LSRUse
&LU
= Uses
[LUIdx
];
4285 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4286 GenerateSymbolicOffsets(LU
, LUIdx
, LU
.Formulae
[i
]);
4287 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4288 GenerateConstantOffsets(LU
, LUIdx
, LU
.Formulae
[i
]);
4289 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4290 GenerateICmpZeroScales(LU
, LUIdx
, LU
.Formulae
[i
]);
4291 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4292 GenerateScales(LU
, LUIdx
, LU
.Formulae
[i
]);
4294 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4295 LSRUse
&LU
= Uses
[LUIdx
];
4296 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
4297 GenerateTruncates(LU
, LUIdx
, LU
.Formulae
[i
]);
4300 GenerateCrossUseConstantOffsets();
4302 LLVM_DEBUG(dbgs() << "\n"
4303 "After generating reuse formulae:\n";
4304 print_uses(dbgs()));
4307 /// If there are multiple formulae with the same set of registers used
4308 /// by other uses, pick the best one and delete the others.
4309 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4310 DenseSet
<const SCEV
*> VisitedRegs
;
4311 SmallPtrSet
<const SCEV
*, 16> Regs
;
4312 SmallPtrSet
<const SCEV
*, 16> LoserRegs
;
4314 bool ChangedFormulae
= false;
4317 // Collect the best formula for each unique set of shared registers. This
4318 // is reset for each use.
4319 using BestFormulaeTy
=
4320 DenseMap
<SmallVector
<const SCEV
*, 4>, size_t, UniquifierDenseMapInfo
>;
4322 BestFormulaeTy BestFormulae
;
4324 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4325 LSRUse
&LU
= Uses
[LUIdx
];
4326 LLVM_DEBUG(dbgs() << "Filtering for use "; LU
.print(dbgs());
4330 for (size_t FIdx
= 0, NumForms
= LU
.Formulae
.size();
4331 FIdx
!= NumForms
; ++FIdx
) {
4332 Formula
&F
= LU
.Formulae
[FIdx
];
4334 // Some formulas are instant losers. For example, they may depend on
4335 // nonexistent AddRecs from other loops. These need to be filtered
4336 // immediately, otherwise heuristics could choose them over others leading
4337 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4338 // avoids the need to recompute this information across formulae using the
4339 // same bad AddRec. Passing LoserRegs is also essential unless we remove
4340 // the corresponding bad register from the Regs set.
4341 Cost
CostF(L
, SE
, TTI
);
4343 CostF
.RateFormula(F
, Regs
, VisitedRegs
, LU
, &LoserRegs
);
4344 if (CostF
.isLoser()) {
4345 // During initial formula generation, undesirable formulae are generated
4346 // by uses within other loops that have some non-trivial address mode or
4347 // use the postinc form of the IV. LSR needs to provide these formulae
4348 // as the basis of rediscovering the desired formula that uses an AddRec
4349 // corresponding to the existing phi. Once all formulae have been
4350 // generated, these initial losers may be pruned.
4351 LLVM_DEBUG(dbgs() << " Filtering loser "; F
.print(dbgs());
4355 SmallVector
<const SCEV
*, 4> Key
;
4356 for (const SCEV
*Reg
: F
.BaseRegs
) {
4357 if (RegUses
.isRegUsedByUsesOtherThan(Reg
, LUIdx
))
4361 RegUses
.isRegUsedByUsesOtherThan(F
.ScaledReg
, LUIdx
))
4362 Key
.push_back(F
.ScaledReg
);
4363 // Unstable sort by host order ok, because this is only used for
4367 std::pair
<BestFormulaeTy::const_iterator
, bool> P
=
4368 BestFormulae
.insert(std::make_pair(Key
, FIdx
));
4372 Formula
&Best
= LU
.Formulae
[P
.first
->second
];
4374 Cost
CostBest(L
, SE
, TTI
);
4376 CostBest
.RateFormula(Best
, Regs
, VisitedRegs
, LU
);
4377 if (CostF
.isLess(CostBest
))
4379 LLVM_DEBUG(dbgs() << " Filtering out formula "; F
.print(dbgs());
4381 " in favor of formula ";
4382 Best
.print(dbgs()); dbgs() << '\n');
4385 ChangedFormulae
= true;
4387 LU
.DeleteFormula(F
);
4393 // Now that we've filtered out some formulae, recompute the Regs set.
4395 LU
.RecomputeRegs(LUIdx
, RegUses
);
4397 // Reset this to prepare for the next use.
4398 BestFormulae
.clear();
4401 LLVM_DEBUG(if (ChangedFormulae
) {
4403 "After filtering out undesirable candidates:\n";
4408 /// Estimate the worst-case number of solutions the solver might have to
4409 /// consider. It almost never considers this many solutions because it prune the
4410 /// search space, but the pruning isn't always sufficient.
4411 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4413 for (const LSRUse
&LU
: Uses
) {
4414 size_t FSize
= LU
.Formulae
.size();
4415 if (FSize
>= ComplexityLimit
) {
4416 Power
= ComplexityLimit
;
4420 if (Power
>= ComplexityLimit
)
4426 /// When one formula uses a superset of the registers of another formula, it
4427 /// won't help reduce register pressure (though it may not necessarily hurt
4428 /// register pressure); remove it to simplify the system.
4429 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4430 if (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
4431 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4433 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4434 "which use a superset of registers used by other "
4437 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4438 LSRUse
&LU
= Uses
[LUIdx
];
4440 for (size_t i
= 0, e
= LU
.Formulae
.size(); i
!= e
; ++i
) {
4441 Formula
&F
= LU
.Formulae
[i
];
4442 // Look for a formula with a constant or GV in a register. If the use
4443 // also has a formula with that same value in an immediate field,
4444 // delete the one that uses a register.
4445 for (SmallVectorImpl
<const SCEV
*>::const_iterator
4446 I
= F
.BaseRegs
.begin(), E
= F
.BaseRegs
.end(); I
!= E
; ++I
) {
4447 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(*I
)) {
4449 //FIXME: Formulas should store bitwidth to do wrapping properly.
4451 NewF
.BaseOffset
+= (uint64_t)C
->getValue()->getSExtValue();
4452 NewF
.BaseRegs
.erase(NewF
.BaseRegs
.begin() +
4453 (I
- F
.BaseRegs
.begin()));
4454 if (LU
.HasFormulaWithSameRegs(NewF
)) {
4455 LLVM_DEBUG(dbgs() << " Deleting "; F
.print(dbgs());
4457 LU
.DeleteFormula(F
);
4463 } else if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(*I
)) {
4464 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(U
->getValue()))
4468 NewF
.BaseRegs
.erase(NewF
.BaseRegs
.begin() +
4469 (I
- F
.BaseRegs
.begin()));
4470 if (LU
.HasFormulaWithSameRegs(NewF
)) {
4471 LLVM_DEBUG(dbgs() << " Deleting "; F
.print(dbgs());
4473 LU
.DeleteFormula(F
);
4484 LU
.RecomputeRegs(LUIdx
, RegUses
);
4487 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4491 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4492 /// allocate a single register for them.
4493 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4494 if (EstimateSearchSpaceComplexity() < ComplexityLimit
)
4498 dbgs() << "The search space is too complex.\n"
4499 "Narrowing the search space by assuming that uses separated "
4500 "by a constant offset will use the same registers.\n");
4502 // This is especially useful for unrolled loops.
4504 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4505 LSRUse
&LU
= Uses
[LUIdx
];
4506 for (const Formula
&F
: LU
.Formulae
) {
4507 if (F
.BaseOffset
== 0 || (F
.Scale
!= 0 && F
.Scale
!= 1))
4510 LSRUse
*LUThatHas
= FindUseWithSimilarFormula(F
, LU
);
4514 if (!reconcileNewOffset(*LUThatHas
, F
.BaseOffset
, /*HasBaseReg=*/ false,
4515 LU
.Kind
, LU
.AccessTy
))
4518 LLVM_DEBUG(dbgs() << " Deleting use "; LU
.print(dbgs()); dbgs() << '\n');
4520 LUThatHas
->AllFixupsOutsideLoop
&= LU
.AllFixupsOutsideLoop
;
4522 // Transfer the fixups of LU to LUThatHas.
4523 for (LSRFixup
&Fixup
: LU
.Fixups
) {
4524 Fixup
.Offset
+= F
.BaseOffset
;
4525 LUThatHas
->pushFixup(Fixup
);
4526 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup
.Offset
<< '\n');
4529 // Delete formulae from the new use which are no longer legal.
4531 for (size_t i
= 0, e
= LUThatHas
->Formulae
.size(); i
!= e
; ++i
) {
4532 Formula
&F
= LUThatHas
->Formulae
[i
];
4533 if (!isLegalUse(TTI
, LUThatHas
->MinOffset
, LUThatHas
->MaxOffset
,
4534 LUThatHas
->Kind
, LUThatHas
->AccessTy
, F
)) {
4535 LLVM_DEBUG(dbgs() << " Deleting "; F
.print(dbgs()); dbgs() << '\n');
4536 LUThatHas
->DeleteFormula(F
);
4544 LUThatHas
->RecomputeRegs(LUThatHas
- &Uses
.front(), RegUses
);
4546 // Delete the old use.
4547 DeleteUse(LU
, LUIdx
);
4554 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4557 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4558 /// we've done more filtering, as it may be able to find more formulae to
4560 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4561 if (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
4562 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4564 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4565 "undesirable dedicated registers.\n");
4567 FilterOutUndesirableDedicatedRegisters();
4569 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4573 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4574 /// Pick the best one and delete the others.
4575 /// This narrowing heuristic is to keep as many formulae with different
4576 /// Scale and ScaledReg pair as possible while narrowing the search space.
4577 /// The benefit is that it is more likely to find out a better solution
4578 /// from a formulae set with more Scale and ScaledReg variations than
4579 /// a formulae set with the same Scale and ScaledReg. The picking winner
4580 /// reg heuristic will often keep the formulae with the same Scale and
4581 /// ScaledReg and filter others, and we want to avoid that if possible.
4582 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4583 if (EstimateSearchSpaceComplexity() < ComplexityLimit
)
4587 dbgs() << "The search space is too complex.\n"
4588 "Narrowing the search space by choosing the best Formula "
4589 "from the Formulae with the same Scale and ScaledReg.\n");
4591 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4592 using BestFormulaeTy
= DenseMap
<std::pair
<const SCEV
*, int64_t>, size_t>;
4594 BestFormulaeTy BestFormulae
;
4596 bool ChangedFormulae
= false;
4598 DenseSet
<const SCEV
*> VisitedRegs
;
4599 SmallPtrSet
<const SCEV
*, 16> Regs
;
4601 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4602 LSRUse
&LU
= Uses
[LUIdx
];
4603 LLVM_DEBUG(dbgs() << "Filtering for use "; LU
.print(dbgs());
4606 // Return true if Formula FA is better than Formula FB.
4607 auto IsBetterThan
= [&](Formula
&FA
, Formula
&FB
) {
4608 // First we will try to choose the Formula with fewer new registers.
4609 // For a register used by current Formula, the more the register is
4610 // shared among LSRUses, the less we increase the register number
4611 // counter of the formula.
4612 size_t FARegNum
= 0;
4613 for (const SCEV
*Reg
: FA
.BaseRegs
) {
4614 const SmallBitVector
&UsedByIndices
= RegUses
.getUsedByIndices(Reg
);
4615 FARegNum
+= (NumUses
- UsedByIndices
.count() + 1);
4617 size_t FBRegNum
= 0;
4618 for (const SCEV
*Reg
: FB
.BaseRegs
) {
4619 const SmallBitVector
&UsedByIndices
= RegUses
.getUsedByIndices(Reg
);
4620 FBRegNum
+= (NumUses
- UsedByIndices
.count() + 1);
4622 if (FARegNum
!= FBRegNum
)
4623 return FARegNum
< FBRegNum
;
4625 // If the new register numbers are the same, choose the Formula with
4627 Cost
CostFA(L
, SE
, TTI
);
4628 Cost
CostFB(L
, SE
, TTI
);
4630 CostFA
.RateFormula(FA
, Regs
, VisitedRegs
, LU
);
4632 CostFB
.RateFormula(FB
, Regs
, VisitedRegs
, LU
);
4633 return CostFA
.isLess(CostFB
);
4637 for (size_t FIdx
= 0, NumForms
= LU
.Formulae
.size(); FIdx
!= NumForms
;
4639 Formula
&F
= LU
.Formulae
[FIdx
];
4642 auto P
= BestFormulae
.insert({{F
.ScaledReg
, F
.Scale
}, FIdx
});
4646 Formula
&Best
= LU
.Formulae
[P
.first
->second
];
4647 if (IsBetterThan(F
, Best
))
4649 LLVM_DEBUG(dbgs() << " Filtering out formula "; F
.print(dbgs());
4651 " in favor of formula ";
4652 Best
.print(dbgs()); dbgs() << '\n');
4654 ChangedFormulae
= true;
4656 LU
.DeleteFormula(F
);
4662 LU
.RecomputeRegs(LUIdx
, RegUses
);
4664 // Reset this to prepare for the next use.
4665 BestFormulae
.clear();
4668 LLVM_DEBUG(if (ChangedFormulae
) {
4670 "After filtering out undesirable candidates:\n";
4675 /// The function delete formulas with high registers number expectation.
4676 /// Assuming we don't know the value of each formula (already delete
4677 /// all inefficient), generate probability of not selecting for each
4681 /// reg(a) + reg({0,+,1})
4682 /// reg(a) + reg({-1,+,1}) + 1
4685 /// reg(b) + reg({0,+,1})
4686 /// reg(b) + reg({-1,+,1}) + 1
4689 /// reg(c) + reg(b) + reg({0,+,1})
4690 /// reg(c) + reg({b,+,1})
4692 /// Probability of not selecting
4694 /// reg(a) (1/3) * 1 * 1
4695 /// reg(b) 1 * (1/3) * (1/2)
4696 /// reg({0,+,1}) (2/3) * (2/3) * (1/2)
4697 /// reg({-1,+,1}) (2/3) * (2/3) * 1
4698 /// reg({a,+,1}) (2/3) * 1 * 1
4699 /// reg({b,+,1}) 1 * (2/3) * (2/3)
4700 /// reg(c) 1 * 1 * 0
4702 /// Now count registers number mathematical expectation for each formula:
4703 /// Note that for each use we exclude probability if not selecting for the use.
4704 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4705 /// probabilty 1/3 of not selecting for Use1).
4707 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted
4708 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted
4711 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted
4712 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted
4713 /// reg({b,+,1}) 2/3
4715 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4716 /// reg(c) + reg({b,+,1}) 1 + 2/3
4717 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4718 if (EstimateSearchSpaceComplexity() < ComplexityLimit
)
4720 // Ok, we have too many of formulae on our hands to conveniently handle.
4721 // Use a rough heuristic to thin out the list.
4723 // Set of Regs wich will be 100% used in final solution.
4724 // Used in each formula of a solution (in example above this is reg(c)).
4725 // We can skip them in calculations.
4726 SmallPtrSet
<const SCEV
*, 4> UniqRegs
;
4727 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4729 // Map each register to probability of not selecting
4730 DenseMap
<const SCEV
*, float> RegNumMap
;
4731 for (const SCEV
*Reg
: RegUses
) {
4732 if (UniqRegs
.count(Reg
))
4735 for (const LSRUse
&LU
: Uses
) {
4736 if (!LU
.Regs
.count(Reg
))
4738 float P
= LU
.getNotSelectedProbability(Reg
);
4742 UniqRegs
.insert(Reg
);
4744 RegNumMap
.insert(std::make_pair(Reg
, PNotSel
));
4748 dbgs() << "Narrowing the search space by deleting costly formulas\n");
4750 // Delete formulas where registers number expectation is high.
4751 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4752 LSRUse
&LU
= Uses
[LUIdx
];
4753 // If nothing to delete - continue.
4754 if (LU
.Formulae
.size() < 2)
4756 // This is temporary solution to test performance. Float should be
4757 // replaced with round independent type (based on integers) to avoid
4758 // different results for different target builds.
4759 float FMinRegNum
= LU
.Formulae
[0].getNumRegs();
4760 float FMinARegNum
= LU
.Formulae
[0].getNumRegs();
4762 for (size_t i
= 0, e
= LU
.Formulae
.size(); i
!= e
; ++i
) {
4763 Formula
&F
= LU
.Formulae
[i
];
4766 for (const SCEV
*BaseReg
: F
.BaseRegs
) {
4767 if (UniqRegs
.count(BaseReg
))
4769 FRegNum
+= RegNumMap
[BaseReg
] / LU
.getNotSelectedProbability(BaseReg
);
4770 if (isa
<SCEVAddRecExpr
>(BaseReg
))
4772 RegNumMap
[BaseReg
] / LU
.getNotSelectedProbability(BaseReg
);
4774 if (const SCEV
*ScaledReg
= F
.ScaledReg
) {
4775 if (!UniqRegs
.count(ScaledReg
)) {
4777 RegNumMap
[ScaledReg
] / LU
.getNotSelectedProbability(ScaledReg
);
4778 if (isa
<SCEVAddRecExpr
>(ScaledReg
))
4780 RegNumMap
[ScaledReg
] / LU
.getNotSelectedProbability(ScaledReg
);
4783 if (FMinRegNum
> FRegNum
||
4784 (FMinRegNum
== FRegNum
&& FMinARegNum
> FARegNum
)) {
4785 FMinRegNum
= FRegNum
;
4786 FMinARegNum
= FARegNum
;
4790 LLVM_DEBUG(dbgs() << " The formula "; LU
.Formulae
[MinIdx
].print(dbgs());
4791 dbgs() << " with min reg num " << FMinRegNum
<< '\n');
4793 std::swap(LU
.Formulae
[MinIdx
], LU
.Formulae
[0]);
4794 while (LU
.Formulae
.size() != 1) {
4795 LLVM_DEBUG(dbgs() << " Deleting "; LU
.Formulae
.back().print(dbgs());
4797 LU
.Formulae
.pop_back();
4799 LU
.RecomputeRegs(LUIdx
, RegUses
);
4800 assert(LU
.Formulae
.size() == 1 && "Should be exactly 1 min regs formula");
4801 Formula
&F
= LU
.Formulae
[0];
4802 LLVM_DEBUG(dbgs() << " Leaving only "; F
.print(dbgs()); dbgs() << '\n');
4803 // When we choose the formula, the regs become unique.
4804 UniqRegs
.insert(F
.BaseRegs
.begin(), F
.BaseRegs
.end());
4806 UniqRegs
.insert(F
.ScaledReg
);
4808 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4811 /// Pick a register which seems likely to be profitable, and then in any use
4812 /// which has any reference to that register, delete all formulae which do not
4813 /// reference that register.
4814 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4815 // With all other options exhausted, loop until the system is simple
4816 // enough to handle.
4817 SmallPtrSet
<const SCEV
*, 4> Taken
;
4818 while (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
4819 // Ok, we have too many of formulae on our hands to conveniently handle.
4820 // Use a rough heuristic to thin out the list.
4821 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4823 // Pick the register which is used by the most LSRUses, which is likely
4824 // to be a good reuse register candidate.
4825 const SCEV
*Best
= nullptr;
4826 unsigned BestNum
= 0;
4827 for (const SCEV
*Reg
: RegUses
) {
4828 if (Taken
.count(Reg
))
4832 BestNum
= RegUses
.getUsedByIndices(Reg
).count();
4834 unsigned Count
= RegUses
.getUsedByIndices(Reg
).count();
4835 if (Count
> BestNum
) {
4841 assert(Best
&& "Failed to find best LSRUse candidate");
4843 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4844 << " will yield profitable reuse.\n");
4847 // In any use with formulae which references this register, delete formulae
4848 // which don't reference it.
4849 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
4850 LSRUse
&LU
= Uses
[LUIdx
];
4851 if (!LU
.Regs
.count(Best
)) continue;
4854 for (size_t i
= 0, e
= LU
.Formulae
.size(); i
!= e
; ++i
) {
4855 Formula
&F
= LU
.Formulae
[i
];
4856 if (!F
.referencesReg(Best
)) {
4857 LLVM_DEBUG(dbgs() << " Deleting "; F
.print(dbgs()); dbgs() << '\n');
4858 LU
.DeleteFormula(F
);
4862 assert(e
!= 0 && "Use has no formulae left! Is Regs inconsistent?");
4868 LU
.RecomputeRegs(LUIdx
, RegUses
);
4871 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4875 /// If there are an extraordinary number of formulae to choose from, use some
4876 /// rough heuristics to prune down the number of formulae. This keeps the main
4877 /// solver from taking an extraordinary amount of time in some worst-case
4879 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4880 NarrowSearchSpaceByDetectingSupersets();
4881 NarrowSearchSpaceByCollapsingUnrolledCode();
4882 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4883 if (FilterSameScaledReg
)
4884 NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4886 NarrowSearchSpaceByDeletingCostlyFormulas();
4888 NarrowSearchSpaceByPickingWinnerRegs();
4891 /// This is the recursive solver.
4892 void LSRInstance::SolveRecurse(SmallVectorImpl
<const Formula
*> &Solution
,
4894 SmallVectorImpl
<const Formula
*> &Workspace
,
4895 const Cost
&CurCost
,
4896 const SmallPtrSet
<const SCEV
*, 16> &CurRegs
,
4897 DenseSet
<const SCEV
*> &VisitedRegs
) const {
4900 // - use more aggressive filtering
4901 // - sort the formula so that the most profitable solutions are found first
4902 // - sort the uses too
4904 // - don't compute a cost, and then compare. compare while computing a cost
4906 // - track register sets with SmallBitVector
4908 const LSRUse
&LU
= Uses
[Workspace
.size()];
4910 // If this use references any register that's already a part of the
4911 // in-progress solution, consider it a requirement that a formula must
4912 // reference that register in order to be considered. This prunes out
4913 // unprofitable searching.
4914 SmallSetVector
<const SCEV
*, 4> ReqRegs
;
4915 for (const SCEV
*S
: CurRegs
)
4916 if (LU
.Regs
.count(S
))
4919 SmallPtrSet
<const SCEV
*, 16> NewRegs
;
4920 Cost
NewCost(L
, SE
, TTI
);
4921 for (const Formula
&F
: LU
.Formulae
) {
4922 // Ignore formulae which may not be ideal in terms of register reuse of
4923 // ReqRegs. The formula should use all required registers before
4924 // introducing new ones.
4925 int NumReqRegsToFind
= std::min(F
.getNumRegs(), ReqRegs
.size());
4926 for (const SCEV
*Reg
: ReqRegs
) {
4927 if ((F
.ScaledReg
&& F
.ScaledReg
== Reg
) ||
4928 is_contained(F
.BaseRegs
, Reg
)) {
4930 if (NumReqRegsToFind
== 0)
4934 if (NumReqRegsToFind
!= 0) {
4935 // If none of the formulae satisfied the required registers, then we could
4936 // clear ReqRegs and try again. Currently, we simply give up in this case.
4940 // Evaluate the cost of the current formula. If it's already worse than
4941 // the current best, prune the search at that point.
4944 NewCost
.RateFormula(F
, NewRegs
, VisitedRegs
, LU
);
4945 if (NewCost
.isLess(SolutionCost
)) {
4946 Workspace
.push_back(&F
);
4947 if (Workspace
.size() != Uses
.size()) {
4948 SolveRecurse(Solution
, SolutionCost
, Workspace
, NewCost
,
4949 NewRegs
, VisitedRegs
);
4950 if (F
.getNumRegs() == 1 && Workspace
.size() == 1)
4951 VisitedRegs
.insert(F
.ScaledReg
? F
.ScaledReg
: F
.BaseRegs
[0]);
4953 LLVM_DEBUG(dbgs() << "New best at "; NewCost
.print(dbgs());
4954 dbgs() << ".\nRegs:\n";
4955 for (const SCEV
*S
: NewRegs
) dbgs()
4956 << "- " << *S
<< "\n";
4959 SolutionCost
= NewCost
;
4960 Solution
= Workspace
;
4962 Workspace
.pop_back();
4967 /// Choose one formula from each use. Return the results in the given Solution
4969 void LSRInstance::Solve(SmallVectorImpl
<const Formula
*> &Solution
) const {
4970 SmallVector
<const Formula
*, 8> Workspace
;
4971 Cost
SolutionCost(L
, SE
, TTI
);
4972 SolutionCost
.Lose();
4973 Cost
CurCost(L
, SE
, TTI
);
4974 SmallPtrSet
<const SCEV
*, 16> CurRegs
;
4975 DenseSet
<const SCEV
*> VisitedRegs
;
4976 Workspace
.reserve(Uses
.size());
4978 // SolveRecurse does all the work.
4979 SolveRecurse(Solution
, SolutionCost
, Workspace
, CurCost
,
4980 CurRegs
, VisitedRegs
);
4981 if (Solution
.empty()) {
4982 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4986 // Ok, we've now made all our decisions.
4987 LLVM_DEBUG(dbgs() << "\n"
4988 "The chosen solution requires ";
4989 SolutionCost
.print(dbgs()); dbgs() << ":\n";
4990 for (size_t i
= 0, e
= Uses
.size(); i
!= e
; ++i
) {
4992 Uses
[i
].print(dbgs());
4995 Solution
[i
]->print(dbgs());
4999 assert(Solution
.size() == Uses
.size() && "Malformed solution!");
5002 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5003 /// we can go while still being dominated by the input positions. This helps
5004 /// canonicalize the insert position, which encourages sharing.
5005 BasicBlock::iterator
5006 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP
,
5007 const SmallVectorImpl
<Instruction
*> &Inputs
)
5009 Instruction
*Tentative
= &*IP
;
5011 bool AllDominate
= true;
5012 Instruction
*BetterPos
= nullptr;
5013 // Don't bother attempting to insert before a catchswitch, their basic block
5014 // cannot have other non-PHI instructions.
5015 if (isa
<CatchSwitchInst
>(Tentative
))
5018 for (Instruction
*Inst
: Inputs
) {
5019 if (Inst
== Tentative
|| !DT
.dominates(Inst
, Tentative
)) {
5020 AllDominate
= false;
5023 // Attempt to find an insert position in the middle of the block,
5024 // instead of at the end, so that it can be used for other expansions.
5025 if (Tentative
->getParent() == Inst
->getParent() &&
5026 (!BetterPos
|| !DT
.dominates(Inst
, BetterPos
)))
5027 BetterPos
= &*std::next(BasicBlock::iterator(Inst
));
5032 IP
= BetterPos
->getIterator();
5034 IP
= Tentative
->getIterator();
5036 const Loop
*IPLoop
= LI
.getLoopFor(IP
->getParent());
5037 unsigned IPLoopDepth
= IPLoop
? IPLoop
->getLoopDepth() : 0;
5040 for (DomTreeNode
*Rung
= DT
.getNode(IP
->getParent()); ; ) {
5041 if (!Rung
) return IP
;
5042 Rung
= Rung
->getIDom();
5043 if (!Rung
) return IP
;
5044 IDom
= Rung
->getBlock();
5046 // Don't climb into a loop though.
5047 const Loop
*IDomLoop
= LI
.getLoopFor(IDom
);
5048 unsigned IDomDepth
= IDomLoop
? IDomLoop
->getLoopDepth() : 0;
5049 if (IDomDepth
<= IPLoopDepth
&&
5050 (IDomDepth
!= IPLoopDepth
|| IDomLoop
== IPLoop
))
5054 Tentative
= IDom
->getTerminator();
5060 /// Determine an input position which will be dominated by the operands and
5061 /// which will dominate the result.
5062 BasicBlock::iterator
5063 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP
,
5066 SCEVExpander
&Rewriter
) const {
5067 // Collect some instructions which must be dominated by the
5068 // expanding replacement. These must be dominated by any operands that
5069 // will be required in the expansion.
5070 SmallVector
<Instruction
*, 4> Inputs
;
5071 if (Instruction
*I
= dyn_cast
<Instruction
>(LF
.OperandValToReplace
))
5072 Inputs
.push_back(I
);
5073 if (LU
.Kind
== LSRUse::ICmpZero
)
5074 if (Instruction
*I
=
5075 dyn_cast
<Instruction
>(cast
<ICmpInst
>(LF
.UserInst
)->getOperand(1)))
5076 Inputs
.push_back(I
);
5077 if (LF
.PostIncLoops
.count(L
)) {
5078 if (LF
.isUseFullyOutsideLoop(L
))
5079 Inputs
.push_back(L
->getLoopLatch()->getTerminator());
5081 Inputs
.push_back(IVIncInsertPos
);
5083 // The expansion must also be dominated by the increment positions of any
5084 // loops it for which it is using post-inc mode.
5085 for (const Loop
*PIL
: LF
.PostIncLoops
) {
5086 if (PIL
== L
) continue;
5088 // Be dominated by the loop exit.
5089 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
5090 PIL
->getExitingBlocks(ExitingBlocks
);
5091 if (!ExitingBlocks
.empty()) {
5092 BasicBlock
*BB
= ExitingBlocks
[0];
5093 for (unsigned i
= 1, e
= ExitingBlocks
.size(); i
!= e
; ++i
)
5094 BB
= DT
.findNearestCommonDominator(BB
, ExitingBlocks
[i
]);
5095 Inputs
.push_back(BB
->getTerminator());
5099 assert(!isa
<PHINode
>(LowestIP
) && !LowestIP
->isEHPad()
5100 && !isa
<DbgInfoIntrinsic
>(LowestIP
) &&
5101 "Insertion point must be a normal instruction");
5103 // Then, climb up the immediate dominator tree as far as we can go while
5104 // still being dominated by the input positions.
5105 BasicBlock::iterator IP
= HoistInsertPosition(LowestIP
, Inputs
);
5107 // Don't insert instructions before PHI nodes.
5108 while (isa
<PHINode
>(IP
)) ++IP
;
5110 // Ignore landingpad instructions.
5111 while (IP
->isEHPad()) ++IP
;
5113 // Ignore debug intrinsics.
5114 while (isa
<DbgInfoIntrinsic
>(IP
)) ++IP
;
5116 // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5117 // IP consistent across expansions and allows the previously inserted
5118 // instructions to be reused by subsequent expansion.
5119 while (Rewriter
.isInsertedInstruction(&*IP
) && IP
!= LowestIP
)
5125 /// Emit instructions for the leading candidate expression for this LSRUse (this
5126 /// is called "expanding").
5127 Value
*LSRInstance::Expand(const LSRUse
&LU
, const LSRFixup
&LF
,
5128 const Formula
&F
, BasicBlock::iterator IP
,
5129 SCEVExpander
&Rewriter
,
5130 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const {
5131 if (LU
.RigidFormula
)
5132 return LF
.OperandValToReplace
;
5134 // Determine an input position which will be dominated by the operands and
5135 // which will dominate the result.
5136 IP
= AdjustInsertPositionForExpand(IP
, LF
, LU
, Rewriter
);
5137 Rewriter
.setInsertPoint(&*IP
);
5139 // Inform the Rewriter if we have a post-increment use, so that it can
5140 // perform an advantageous expansion.
5141 Rewriter
.setPostInc(LF
.PostIncLoops
);
5143 // This is the type that the user actually needs.
5144 Type
*OpTy
= LF
.OperandValToReplace
->getType();
5145 // This will be the type that we'll initially expand to.
5146 Type
*Ty
= F
.getType();
5148 // No type known; just expand directly to the ultimate type.
5150 else if (SE
.getEffectiveSCEVType(Ty
) == SE
.getEffectiveSCEVType(OpTy
))
5151 // Expand directly to the ultimate type if it's the right size.
5153 // This is the type to do integer arithmetic in.
5154 Type
*IntTy
= SE
.getEffectiveSCEVType(Ty
);
5156 // Build up a list of operands to add together to form the full base.
5157 SmallVector
<const SCEV
*, 8> Ops
;
5159 // Expand the BaseRegs portion.
5160 for (const SCEV
*Reg
: F
.BaseRegs
) {
5161 assert(!Reg
->isZero() && "Zero allocated in a base register!");
5163 // If we're expanding for a post-inc user, make the post-inc adjustment.
5164 Reg
= denormalizeForPostIncUse(Reg
, LF
.PostIncLoops
, SE
);
5165 Ops
.push_back(SE
.getUnknown(Rewriter
.expandCodeFor(Reg
, nullptr)));
5168 // Expand the ScaledReg portion.
5169 Value
*ICmpScaledV
= nullptr;
5171 const SCEV
*ScaledS
= F
.ScaledReg
;
5173 // If we're expanding for a post-inc user, make the post-inc adjustment.
5174 PostIncLoopSet
&Loops
= const_cast<PostIncLoopSet
&>(LF
.PostIncLoops
);
5175 ScaledS
= denormalizeForPostIncUse(ScaledS
, Loops
, SE
);
5177 if (LU
.Kind
== LSRUse::ICmpZero
) {
5178 // Expand ScaleReg as if it was part of the base regs.
5181 SE
.getUnknown(Rewriter
.expandCodeFor(ScaledS
, nullptr)));
5183 // An interesting way of "folding" with an icmp is to use a negated
5184 // scale, which we'll implement by inserting it into the other operand
5186 assert(F
.Scale
== -1 &&
5187 "The only scale supported by ICmpZero uses is -1!");
5188 ICmpScaledV
= Rewriter
.expandCodeFor(ScaledS
, nullptr);
5191 // Otherwise just expand the scaled register and an explicit scale,
5192 // which is expected to be matched as part of the address.
5194 // Flush the operand list to suppress SCEVExpander hoisting address modes.
5195 // Unless the addressing mode will not be folded.
5196 if (!Ops
.empty() && LU
.Kind
== LSRUse::Address
&&
5197 isAMCompletelyFolded(TTI
, LU
, F
)) {
5198 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), nullptr);
5200 Ops
.push_back(SE
.getUnknown(FullV
));
5202 ScaledS
= SE
.getUnknown(Rewriter
.expandCodeFor(ScaledS
, nullptr));
5205 SE
.getMulExpr(ScaledS
, SE
.getConstant(ScaledS
->getType(), F
.Scale
));
5206 Ops
.push_back(ScaledS
);
5210 // Expand the GV portion.
5212 // Flush the operand list to suppress SCEVExpander hoisting.
5214 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), Ty
);
5216 Ops
.push_back(SE
.getUnknown(FullV
));
5218 Ops
.push_back(SE
.getUnknown(F
.BaseGV
));
5221 // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5222 // unfolded offsets. LSR assumes they both live next to their uses.
5224 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), Ty
);
5226 Ops
.push_back(SE
.getUnknown(FullV
));
5229 // Expand the immediate portion.
5230 int64_t Offset
= (uint64_t)F
.BaseOffset
+ LF
.Offset
;
5232 if (LU
.Kind
== LSRUse::ICmpZero
) {
5233 // The other interesting way of "folding" with an ICmpZero is to use a
5234 // negated immediate.
5236 ICmpScaledV
= ConstantInt::get(IntTy
, -(uint64_t)Offset
);
5238 Ops
.push_back(SE
.getUnknown(ICmpScaledV
));
5239 ICmpScaledV
= ConstantInt::get(IntTy
, Offset
);
5242 // Just add the immediate values. These again are expected to be matched
5243 // as part of the address.
5244 Ops
.push_back(SE
.getUnknown(ConstantInt::getSigned(IntTy
, Offset
)));
5248 // Expand the unfolded offset portion.
5249 int64_t UnfoldedOffset
= F
.UnfoldedOffset
;
5250 if (UnfoldedOffset
!= 0) {
5251 // Just add the immediate values.
5252 Ops
.push_back(SE
.getUnknown(ConstantInt::getSigned(IntTy
,
5256 // Emit instructions summing all the operands.
5257 const SCEV
*FullS
= Ops
.empty() ?
5258 SE
.getConstant(IntTy
, 0) :
5260 Value
*FullV
= Rewriter
.expandCodeFor(FullS
, Ty
);
5262 // We're done expanding now, so reset the rewriter.
5263 Rewriter
.clearPostInc();
5265 // An ICmpZero Formula represents an ICmp which we're handling as a
5266 // comparison against zero. Now that we've expanded an expression for that
5267 // form, update the ICmp's other operand.
5268 if (LU
.Kind
== LSRUse::ICmpZero
) {
5269 ICmpInst
*CI
= cast
<ICmpInst
>(LF
.UserInst
);
5270 DeadInsts
.emplace_back(CI
->getOperand(1));
5271 assert(!F
.BaseGV
&& "ICmp does not support folding a global value and "
5272 "a scale at the same time!");
5273 if (F
.Scale
== -1) {
5274 if (ICmpScaledV
->getType() != OpTy
) {
5276 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV
, false,
5278 ICmpScaledV
, OpTy
, "tmp", CI
);
5281 CI
->setOperand(1, ICmpScaledV
);
5283 // A scale of 1 means that the scale has been expanded as part of the
5285 assert((F
.Scale
== 0 || F
.Scale
== 1) &&
5286 "ICmp does not support folding a global value and "
5287 "a scale at the same time!");
5288 Constant
*C
= ConstantInt::getSigned(SE
.getEffectiveSCEVType(OpTy
),
5290 if (C
->getType() != OpTy
)
5291 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
5295 CI
->setOperand(1, C
);
5302 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5303 /// effectively happens in their predecessor blocks, so the expression may need
5304 /// to be expanded in multiple places.
5305 void LSRInstance::RewriteForPHI(
5306 PHINode
*PN
, const LSRUse
&LU
, const LSRFixup
&LF
, const Formula
&F
,
5307 SCEVExpander
&Rewriter
, SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const {
5308 DenseMap
<BasicBlock
*, Value
*> Inserted
;
5309 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
5310 if (PN
->getIncomingValue(i
) == LF
.OperandValToReplace
) {
5311 bool needUpdateFixups
= false;
5312 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
5314 // If this is a critical edge, split the edge so that we do not insert
5315 // the code on all predecessor/successor paths. We do this unless this
5316 // is the canonical backedge for this loop, which complicates post-inc
5318 if (e
!= 1 && BB
->getTerminator()->getNumSuccessors() > 1 &&
5319 !isa
<IndirectBrInst
>(BB
->getTerminator()) &&
5320 !isa
<CatchSwitchInst
>(BB
->getTerminator())) {
5321 BasicBlock
*Parent
= PN
->getParent();
5322 Loop
*PNLoop
= LI
.getLoopFor(Parent
);
5323 if (!PNLoop
|| Parent
!= PNLoop
->getHeader()) {
5324 // Split the critical edge.
5325 BasicBlock
*NewBB
= nullptr;
5326 if (!Parent
->isLandingPad()) {
5327 NewBB
= SplitCriticalEdge(BB
, Parent
,
5328 CriticalEdgeSplittingOptions(&DT
, &LI
)
5329 .setMergeIdenticalEdges()
5330 .setKeepOneInputPHIs());
5332 SmallVector
<BasicBlock
*, 2> NewBBs
;
5333 SplitLandingPadPredecessors(Parent
, BB
, "", "", NewBBs
, &DT
, &LI
);
5336 // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5337 // phi predecessors are identical. The simple thing to do is skip
5338 // splitting in this case rather than complicate the API.
5340 // If PN is outside of the loop and BB is in the loop, we want to
5341 // move the block to be immediately before the PHI block, not
5342 // immediately after BB.
5343 if (L
->contains(BB
) && !L
->contains(PN
))
5344 NewBB
->moveBefore(PN
->getParent());
5346 // Splitting the edge can reduce the number of PHI entries we have.
5347 e
= PN
->getNumIncomingValues();
5349 i
= PN
->getBasicBlockIndex(BB
);
5351 needUpdateFixups
= true;
5356 std::pair
<DenseMap
<BasicBlock
*, Value
*>::iterator
, bool> Pair
=
5357 Inserted
.insert(std::make_pair(BB
, static_cast<Value
*>(nullptr)));
5359 PN
->setIncomingValue(i
, Pair
.first
->second
);
5361 Value
*FullV
= Expand(LU
, LF
, F
, BB
->getTerminator()->getIterator(),
5362 Rewriter
, DeadInsts
);
5364 // If this is reuse-by-noop-cast, insert the noop cast.
5365 Type
*OpTy
= LF
.OperandValToReplace
->getType();
5366 if (FullV
->getType() != OpTy
)
5368 CastInst::Create(CastInst::getCastOpcode(FullV
, false,
5370 FullV
, LF
.OperandValToReplace
->getType(),
5371 "tmp", BB
->getTerminator());
5373 PN
->setIncomingValue(i
, FullV
);
5374 Pair
.first
->second
= FullV
;
5377 // If LSR splits critical edge and phi node has other pending
5378 // fixup operands, we need to update those pending fixups. Otherwise
5379 // formulae will not be implemented completely and some instructions
5380 // will not be eliminated.
5381 if (needUpdateFixups
) {
5382 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
)
5383 for (LSRFixup
&Fixup
: Uses
[LUIdx
].Fixups
)
5384 // If fixup is supposed to rewrite some operand in the phi
5385 // that was just updated, it may be already moved to
5386 // another phi node. Such fixup requires update.
5387 if (Fixup
.UserInst
== PN
) {
5388 // Check if the operand we try to replace still exists in the
5390 bool foundInOriginalPHI
= false;
5391 for (const auto &val
: PN
->incoming_values())
5392 if (val
== Fixup
.OperandValToReplace
) {
5393 foundInOriginalPHI
= true;
5397 // If fixup operand found in original PHI - nothing to do.
5398 if (foundInOriginalPHI
)
5401 // Otherwise it might be moved to another PHI and requires update.
5402 // If fixup operand not found in any of the incoming blocks that
5403 // means we have already rewritten it - nothing to do.
5404 for (const auto &Block
: PN
->blocks())
5405 for (BasicBlock::iterator I
= Block
->begin(); isa
<PHINode
>(I
);
5407 PHINode
*NewPN
= cast
<PHINode
>(I
);
5408 for (const auto &val
: NewPN
->incoming_values())
5409 if (val
== Fixup
.OperandValToReplace
)
5410 Fixup
.UserInst
= NewPN
;
5417 /// Emit instructions for the leading candidate expression for this LSRUse (this
5418 /// is called "expanding"), and update the UserInst to reference the newly
5420 void LSRInstance::Rewrite(const LSRUse
&LU
, const LSRFixup
&LF
,
5421 const Formula
&F
, SCEVExpander
&Rewriter
,
5422 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
) const {
5423 // First, find an insertion point that dominates UserInst. For PHI nodes,
5424 // find the nearest block which dominates all the relevant uses.
5425 if (PHINode
*PN
= dyn_cast
<PHINode
>(LF
.UserInst
)) {
5426 RewriteForPHI(PN
, LU
, LF
, F
, Rewriter
, DeadInsts
);
5429 Expand(LU
, LF
, F
, LF
.UserInst
->getIterator(), Rewriter
, DeadInsts
);
5431 // If this is reuse-by-noop-cast, insert the noop cast.
5432 Type
*OpTy
= LF
.OperandValToReplace
->getType();
5433 if (FullV
->getType() != OpTy
) {
5435 CastInst::Create(CastInst::getCastOpcode(FullV
, false, OpTy
, false),
5436 FullV
, OpTy
, "tmp", LF
.UserInst
);
5440 // Update the user. ICmpZero is handled specially here (for now) because
5441 // Expand may have updated one of the operands of the icmp already, and
5442 // its new value may happen to be equal to LF.OperandValToReplace, in
5443 // which case doing replaceUsesOfWith leads to replacing both operands
5444 // with the same value. TODO: Reorganize this.
5445 if (LU
.Kind
== LSRUse::ICmpZero
)
5446 LF
.UserInst
->setOperand(0, FullV
);
5448 LF
.UserInst
->replaceUsesOfWith(LF
.OperandValToReplace
, FullV
);
5451 DeadInsts
.emplace_back(LF
.OperandValToReplace
);
5454 /// Rewrite all the fixup locations with new values, following the chosen
5456 void LSRInstance::ImplementSolution(
5457 const SmallVectorImpl
<const Formula
*> &Solution
) {
5458 // Keep track of instructions we may have made dead, so that
5459 // we can remove them after we are done working.
5460 SmallVector
<WeakTrackingVH
, 16> DeadInsts
;
5462 SCEVExpander
Rewriter(SE
, L
->getHeader()->getModule()->getDataLayout(),
5465 Rewriter
.setDebugType(DEBUG_TYPE
);
5467 Rewriter
.disableCanonicalMode();
5468 Rewriter
.enableLSRMode();
5469 Rewriter
.setIVIncInsertPos(L
, IVIncInsertPos
);
5471 // Mark phi nodes that terminate chains so the expander tries to reuse them.
5472 for (const IVChain
&Chain
: IVChainVec
) {
5473 if (PHINode
*PN
= dyn_cast
<PHINode
>(Chain
.tailUserInst()))
5474 Rewriter
.setChainedPhi(PN
);
5477 // Expand the new value definitions and update the users.
5478 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
)
5479 for (const LSRFixup
&Fixup
: Uses
[LUIdx
].Fixups
) {
5480 Rewrite(Uses
[LUIdx
], Fixup
, *Solution
[LUIdx
], Rewriter
, DeadInsts
);
5484 for (const IVChain
&Chain
: IVChainVec
) {
5485 GenerateIVChain(Chain
, Rewriter
, DeadInsts
);
5488 // Clean up after ourselves. This must be done before deleting any
5492 Changed
|= DeleteTriviallyDeadInstructions(DeadInsts
);
5495 LSRInstance::LSRInstance(Loop
*L
, IVUsers
&IU
, ScalarEvolution
&SE
,
5496 DominatorTree
&DT
, LoopInfo
&LI
,
5497 const TargetTransformInfo
&TTI
, AssumptionCache
&AC
,
5498 TargetLibraryInfo
&LibInfo
)
5499 : IU(IU
), SE(SE
), DT(DT
), LI(LI
), AC(AC
), LibInfo(LibInfo
), TTI(TTI
), L(L
),
5500 FavorBackedgeIndex(EnableBackedgeIndexing
&&
5501 TTI
.shouldFavorBackedgeIndex(L
)) {
5502 // If LoopSimplify form is not available, stay out of trouble.
5503 if (!L
->isLoopSimplifyForm())
5506 // If there's no interesting work to be done, bail early.
5507 if (IU
.empty()) return;
5509 // If there's too much analysis to be done, bail early. We won't be able to
5510 // model the problem anyway.
5511 unsigned NumUsers
= 0;
5512 for (const IVStrideUse
&U
: IU
) {
5513 if (++NumUsers
> MaxIVUsers
) {
5515 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5519 // Bail out if we have a PHI on an EHPad that gets a value from a
5520 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is
5521 // no good place to stick any instructions.
5522 if (auto *PN
= dyn_cast
<PHINode
>(U
.getUser())) {
5523 auto *FirstNonPHI
= PN
->getParent()->getFirstNonPHI();
5524 if (isa
<FuncletPadInst
>(FirstNonPHI
) ||
5525 isa
<CatchSwitchInst
>(FirstNonPHI
))
5526 for (BasicBlock
*PredBB
: PN
->blocks())
5527 if (isa
<CatchSwitchInst
>(PredBB
->getFirstNonPHI()))
5533 // All dominating loops must have preheaders, or SCEVExpander may not be able
5534 // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5536 // IVUsers analysis should only create users that are dominated by simple loop
5537 // headers. Since this loop should dominate all of its users, its user list
5538 // should be empty if this loop itself is not within a simple loop nest.
5539 for (DomTreeNode
*Rung
= DT
.getNode(L
->getLoopPreheader());
5540 Rung
; Rung
= Rung
->getIDom()) {
5541 BasicBlock
*BB
= Rung
->getBlock();
5542 const Loop
*DomLoop
= LI
.getLoopFor(BB
);
5543 if (DomLoop
&& DomLoop
->getHeader() == BB
) {
5544 assert(DomLoop
->getLoopPreheader() && "LSR needs a simplified loop nest");
5549 LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5550 L
->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5553 // First, perform some low-level loop optimizations.
5555 OptimizeLoopTermCond();
5557 // If loop preparation eliminates all interesting IV users, bail.
5558 if (IU
.empty()) return;
5560 // Skip nested loops until we can model them better with formulae.
5562 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L
<< "\n");
5566 // Start collecting data and preparing for the solver.
5568 CollectInterestingTypesAndFactors();
5569 CollectFixupsAndInitialFormulae();
5570 CollectLoopInvariantFixupsAndFormulae();
5575 LLVM_DEBUG(dbgs() << "LSR found " << Uses
.size() << " uses:\n";
5576 print_uses(dbgs()));
5578 // Now use the reuse data to generate a bunch of interesting ways
5579 // to formulate the values needed for the uses.
5580 GenerateAllReuseFormulae();
5582 FilterOutUndesirableDedicatedRegisters();
5583 NarrowSearchSpaceUsingHeuristics();
5585 SmallVector
<const Formula
*, 8> Solution
;
5588 // Release memory that is no longer needed.
5593 if (Solution
.empty())
5597 // Formulae should be legal.
5598 for (const LSRUse
&LU
: Uses
) {
5599 for (const Formula
&F
: LU
.Formulae
)
5600 assert(isLegalUse(TTI
, LU
.MinOffset
, LU
.MaxOffset
, LU
.Kind
, LU
.AccessTy
,
5601 F
) && "Illegal formula generated!");
5605 // Now that we've decided what we want, make it so.
5606 ImplementSolution(Solution
);
5609 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5610 void LSRInstance::print_factors_and_types(raw_ostream
&OS
) const {
5611 if (Factors
.empty() && Types
.empty()) return;
5613 OS
<< "LSR has identified the following interesting factors and types: ";
5616 for (int64_t Factor
: Factors
) {
5617 if (!First
) OS
<< ", ";
5619 OS
<< '*' << Factor
;
5622 for (Type
*Ty
: Types
) {
5623 if (!First
) OS
<< ", ";
5625 OS
<< '(' << *Ty
<< ')';
5630 void LSRInstance::print_fixups(raw_ostream
&OS
) const {
5631 OS
<< "LSR is examining the following fixup sites:\n";
5632 for (const LSRUse
&LU
: Uses
)
5633 for (const LSRFixup
&LF
: LU
.Fixups
) {
5640 void LSRInstance::print_uses(raw_ostream
&OS
) const {
5641 OS
<< "LSR is examining the following uses:\n";
5642 for (const LSRUse
&LU
: Uses
) {
5646 for (const Formula
&F
: LU
.Formulae
) {
5654 void LSRInstance::print(raw_ostream
&OS
) const {
5655 print_factors_and_types(OS
);
5660 LLVM_DUMP_METHOD
void LSRInstance::dump() const {
5661 print(errs()); errs() << '\n';
5667 class LoopStrengthReduce
: public LoopPass
{
5669 static char ID
; // Pass ID, replacement for typeid
5671 LoopStrengthReduce();
5674 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
;
5675 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
5678 } // end anonymous namespace
5680 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID
) {
5681 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5684 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage
&AU
) const {
5685 // We split critical edges, so we change the CFG. However, we do update
5686 // many analyses if they are around.
5687 AU
.addPreservedID(LoopSimplifyID
);
5689 AU
.addRequired
<LoopInfoWrapperPass
>();
5690 AU
.addPreserved
<LoopInfoWrapperPass
>();
5691 AU
.addRequiredID(LoopSimplifyID
);
5692 AU
.addRequired
<DominatorTreeWrapperPass
>();
5693 AU
.addPreserved
<DominatorTreeWrapperPass
>();
5694 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
5695 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
5696 AU
.addRequired
<AssumptionCacheTracker
>();
5697 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
5698 // Requiring LoopSimplify a second time here prevents IVUsers from running
5699 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5700 AU
.addRequiredID(LoopSimplifyID
);
5701 AU
.addRequired
<IVUsersWrapperPass
>();
5702 AU
.addPreserved
<IVUsersWrapperPass
>();
5703 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
5706 static bool ReduceLoopStrength(Loop
*L
, IVUsers
&IU
, ScalarEvolution
&SE
,
5707 DominatorTree
&DT
, LoopInfo
&LI
,
5708 const TargetTransformInfo
&TTI
,
5709 AssumptionCache
&AC
,
5710 TargetLibraryInfo
&LibInfo
) {
5712 bool Changed
= false;
5714 // Run the main LSR transformation.
5715 Changed
|= LSRInstance(L
, IU
, SE
, DT
, LI
, TTI
, AC
, LibInfo
).getChanged();
5717 // Remove any extra phis created by processing inner loops.
5718 Changed
|= DeleteDeadPHIs(L
->getHeader());
5719 if (EnablePhiElim
&& L
->isLoopSimplifyForm()) {
5720 SmallVector
<WeakTrackingVH
, 16> DeadInsts
;
5721 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
5722 SCEVExpander
Rewriter(SE
, DL
, "lsr");
5724 Rewriter
.setDebugType(DEBUG_TYPE
);
5726 unsigned numFolded
= Rewriter
.replaceCongruentIVs(L
, &DT
, DeadInsts
, &TTI
);
5729 DeleteTriviallyDeadInstructions(DeadInsts
);
5730 DeleteDeadPHIs(L
->getHeader());
5736 bool LoopStrengthReduce::runOnLoop(Loop
*L
, LPPassManager
& /*LPM*/) {
5740 auto &IU
= getAnalysis
<IVUsersWrapperPass
>().getIU();
5741 auto &SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
5742 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
5743 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
5744 const auto &TTI
= getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(
5745 *L
->getHeader()->getParent());
5746 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(
5747 *L
->getHeader()->getParent());
5748 auto &LibInfo
= getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(
5749 *L
->getHeader()->getParent());
5750 return ReduceLoopStrength(L
, IU
, SE
, DT
, LI
, TTI
, AC
, LibInfo
);
5753 PreservedAnalyses
LoopStrengthReducePass::run(Loop
&L
, LoopAnalysisManager
&AM
,
5754 LoopStandardAnalysisResults
&AR
,
5756 if (!ReduceLoopStrength(&L
, AM
.getResult
<IVUsersAnalysis
>(L
, AR
), AR
.SE
,
5757 AR
.DT
, AR
.LI
, AR
.TTI
, AR
.AC
, AR
.TLI
))
5758 return PreservedAnalyses::all();
5760 return getLoopPassPreservedAnalyses();
5763 char LoopStrengthReduce::ID
= 0;
5765 INITIALIZE_PASS_BEGIN(LoopStrengthReduce
, "loop-reduce",
5766 "Loop Strength Reduction", false, false)
5767 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
5768 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
5769 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
5770 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass
)
5771 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
5772 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
5773 INITIALIZE_PASS_END(LoopStrengthReduce
, "loop-reduce",
5774 "Loop Strength Reduction", false, false)
5776 Pass
*llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }