1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements a simple loop unroller. It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Scalar/LoopPassManager.h"
57 #include "llvm/Transforms/Utils.h"
58 #include "llvm/Transforms/Utils/LoopSimplify.h"
59 #include "llvm/Transforms/Utils/LoopUtils.h"
60 #include "llvm/Transforms/Utils/SizeOpts.h"
61 #include "llvm/Transforms/Utils/UnrollLoop.h"
72 #define DEBUG_TYPE "loop-unroll"
74 cl::opt
<bool> llvm::ForgetSCEVInLoopUnroll(
75 "forget-scev-loop-unroll", cl::init(false), cl::Hidden
,
76 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
77 " the current top-most loop. This is somtimes preferred to reduce"
80 static cl::opt
<unsigned>
81 UnrollThreshold("unroll-threshold", cl::Hidden
,
82 cl::desc("The cost threshold for loop unrolling"));
84 static cl::opt
<unsigned> UnrollPartialThreshold(
85 "unroll-partial-threshold", cl::Hidden
,
86 cl::desc("The cost threshold for partial loop unrolling"));
88 static cl::opt
<unsigned> UnrollMaxPercentThresholdBoost(
89 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden
,
90 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
91 "to the threshold when aggressively unrolling a loop due to the "
92 "dynamic cost savings. If completely unrolling a loop will reduce "
93 "the total runtime from X to Y, we boost the loop unroll "
94 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
95 "X/Y). This limit avoids excessive code bloat."));
97 static cl::opt
<unsigned> UnrollMaxIterationsCountToAnalyze(
98 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden
,
99 cl::desc("Don't allow loop unrolling to simulate more than this number of"
100 "iterations when checking full unroll profitability"));
102 static cl::opt
<unsigned> UnrollCount(
103 "unroll-count", cl::Hidden
,
104 cl::desc("Use this unroll count for all loops including those with "
105 "unroll_count pragma values, for testing purposes"));
107 static cl::opt
<unsigned> UnrollMaxCount(
108 "unroll-max-count", cl::Hidden
,
109 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
110 "testing purposes"));
112 static cl::opt
<unsigned> UnrollFullMaxCount(
113 "unroll-full-max-count", cl::Hidden
,
115 "Set the max unroll count for full unrolling, for testing purposes"));
117 static cl::opt
<unsigned> UnrollPeelCount(
118 "unroll-peel-count", cl::Hidden
,
119 cl::desc("Set the unroll peeling count, for testing purposes"));
122 UnrollAllowPartial("unroll-allow-partial", cl::Hidden
,
123 cl::desc("Allows loops to be partially unrolled until "
124 "-unroll-threshold loop size is reached."));
126 static cl::opt
<bool> UnrollAllowRemainder(
127 "unroll-allow-remainder", cl::Hidden
,
128 cl::desc("Allow generation of a loop remainder (extra iterations) "
129 "when unrolling a loop."));
132 UnrollRuntime("unroll-runtime", cl::ZeroOrMore
, cl::Hidden
,
133 cl::desc("Unroll loops with run-time trip counts"));
135 static cl::opt
<unsigned> UnrollMaxUpperBound(
136 "unroll-max-upperbound", cl::init(8), cl::Hidden
,
138 "The max of trip count upper bound that is considered in unrolling"));
140 static cl::opt
<unsigned> PragmaUnrollThreshold(
141 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden
,
142 cl::desc("Unrolled size limit for loops with an unroll(full) or "
143 "unroll_count pragma."));
145 static cl::opt
<unsigned> FlatLoopTripCountThreshold(
146 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden
,
147 cl::desc("If the runtime tripcount for the loop is lower than the "
148 "threshold, the loop is considered as flat and will be less "
149 "aggressively unrolled."));
152 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden
,
153 cl::desc("Allows loops to be peeled when the dynamic "
154 "trip count is known to be low."));
156 static cl::opt
<bool> UnrollUnrollRemainder(
157 "unroll-remainder", cl::Hidden
,
158 cl::desc("Allow the loop remainder to be unrolled."));
160 // This option isn't ever intended to be enabled, it serves to allow
161 // experiments to check the assumptions about when this kind of revisit is
163 static cl::opt
<bool> UnrollRevisitChildLoops(
164 "unroll-revisit-child-loops", cl::Hidden
,
165 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
166 "This shouldn't typically be needed as child loops (or their "
167 "clones) were already visited."));
169 /// A magic value for use with the Threshold parameter to indicate
170 /// that the loop unroll should be performed regardless of how much
171 /// code expansion would result.
172 static const unsigned NoThreshold
= std::numeric_limits
<unsigned>::max();
174 /// Gather the various unrolling parameters based on the defaults, compiler
175 /// flags, TTI overrides and user specified parameters.
176 TargetTransformInfo::UnrollingPreferences
llvm::gatherUnrollingPreferences(
177 Loop
*L
, ScalarEvolution
&SE
, const TargetTransformInfo
&TTI
,
178 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
, int OptLevel
,
179 Optional
<unsigned> UserThreshold
, Optional
<unsigned> UserCount
,
180 Optional
<bool> UserAllowPartial
, Optional
<bool> UserRuntime
,
181 Optional
<bool> UserUpperBound
, Optional
<bool> UserAllowPeeling
,
182 Optional
<bool> UserAllowProfileBasedPeeling
,
183 Optional
<unsigned> UserFullUnrollMaxCount
) {
184 TargetTransformInfo::UnrollingPreferences UP
;
186 // Set up the defaults
187 UP
.Threshold
= OptLevel
> 2 ? 300 : 150;
188 UP
.MaxPercentThresholdBoost
= 400;
189 UP
.OptSizeThreshold
= 0;
190 UP
.PartialThreshold
= 150;
191 UP
.PartialOptSizeThreshold
= 0;
194 UP
.DefaultUnrollRuntimeCount
= 8;
195 UP
.MaxCount
= std::numeric_limits
<unsigned>::max();
196 UP
.FullUnrollMaxCount
= std::numeric_limits
<unsigned>::max();
200 UP
.AllowRemainder
= true;
201 UP
.UnrollRemainder
= false;
202 UP
.AllowExpensiveTripCount
= false;
204 UP
.UpperBound
= false;
205 UP
.AllowPeeling
= true;
206 UP
.UnrollAndJam
= false;
207 UP
.PeelProfiledIterations
= true;
208 UP
.UnrollAndJamInnerLoopThreshold
= 60;
210 // Override with any target specific settings
211 TTI
.getUnrollingPreferences(L
, SE
, UP
);
213 // Apply size attributes
214 bool OptForSize
= L
->getHeader()->getParent()->hasOptSize() ||
215 llvm::shouldOptimizeForSize(L
->getHeader(), PSI
, BFI
);
217 UP
.Threshold
= UP
.OptSizeThreshold
;
218 UP
.PartialThreshold
= UP
.PartialOptSizeThreshold
;
219 UP
.MaxPercentThresholdBoost
= 100;
222 // Apply any user values specified by cl::opt
223 if (UnrollThreshold
.getNumOccurrences() > 0)
224 UP
.Threshold
= UnrollThreshold
;
225 if (UnrollPartialThreshold
.getNumOccurrences() > 0)
226 UP
.PartialThreshold
= UnrollPartialThreshold
;
227 if (UnrollMaxPercentThresholdBoost
.getNumOccurrences() > 0)
228 UP
.MaxPercentThresholdBoost
= UnrollMaxPercentThresholdBoost
;
229 if (UnrollMaxCount
.getNumOccurrences() > 0)
230 UP
.MaxCount
= UnrollMaxCount
;
231 if (UnrollFullMaxCount
.getNumOccurrences() > 0)
232 UP
.FullUnrollMaxCount
= UnrollFullMaxCount
;
233 if (UnrollPeelCount
.getNumOccurrences() > 0)
234 UP
.PeelCount
= UnrollPeelCount
;
235 if (UnrollAllowPartial
.getNumOccurrences() > 0)
236 UP
.Partial
= UnrollAllowPartial
;
237 if (UnrollAllowRemainder
.getNumOccurrences() > 0)
238 UP
.AllowRemainder
= UnrollAllowRemainder
;
239 if (UnrollRuntime
.getNumOccurrences() > 0)
240 UP
.Runtime
= UnrollRuntime
;
241 if (UnrollMaxUpperBound
== 0)
242 UP
.UpperBound
= false;
243 if (UnrollAllowPeeling
.getNumOccurrences() > 0)
244 UP
.AllowPeeling
= UnrollAllowPeeling
;
245 if (UnrollUnrollRemainder
.getNumOccurrences() > 0)
246 UP
.UnrollRemainder
= UnrollUnrollRemainder
;
248 // Apply user values provided by argument
249 if (UserThreshold
.hasValue()) {
250 UP
.Threshold
= *UserThreshold
;
251 UP
.PartialThreshold
= *UserThreshold
;
253 if (UserCount
.hasValue())
254 UP
.Count
= *UserCount
;
255 if (UserAllowPartial
.hasValue())
256 UP
.Partial
= *UserAllowPartial
;
257 if (UserRuntime
.hasValue())
258 UP
.Runtime
= *UserRuntime
;
259 if (UserUpperBound
.hasValue())
260 UP
.UpperBound
= *UserUpperBound
;
261 if (UserAllowPeeling
.hasValue())
262 UP
.AllowPeeling
= *UserAllowPeeling
;
263 if (UserAllowProfileBasedPeeling
.hasValue())
264 UP
.PeelProfiledIterations
= *UserAllowProfileBasedPeeling
;
265 if (UserFullUnrollMaxCount
.hasValue())
266 UP
.FullUnrollMaxCount
= *UserFullUnrollMaxCount
;
273 /// A struct to densely store the state of an instruction after unrolling at
276 /// This is designed to work like a tuple of <Instruction *, int> for the
277 /// purposes of hashing and lookup, but to be able to associate two boolean
278 /// states with each key.
279 struct UnrolledInstState
{
283 unsigned IsCounted
: 1;
286 /// Hashing and equality testing for a set of the instruction states.
287 struct UnrolledInstStateKeyInfo
{
288 using PtrInfo
= DenseMapInfo
<Instruction
*>;
289 using PairInfo
= DenseMapInfo
<std::pair
<Instruction
*, int>>;
291 static inline UnrolledInstState
getEmptyKey() {
292 return {PtrInfo::getEmptyKey(), 0, 0, 0};
295 static inline UnrolledInstState
getTombstoneKey() {
296 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
299 static inline unsigned getHashValue(const UnrolledInstState
&S
) {
300 return PairInfo::getHashValue({S
.I
, S
.Iteration
});
303 static inline bool isEqual(const UnrolledInstState
&LHS
,
304 const UnrolledInstState
&RHS
) {
305 return PairInfo::isEqual({LHS
.I
, LHS
.Iteration
}, {RHS
.I
, RHS
.Iteration
});
309 struct EstimatedUnrollCost
{
310 /// The estimated cost after unrolling.
311 unsigned UnrolledCost
;
313 /// The estimated dynamic cost of executing the instructions in the
315 unsigned RolledDynamicCost
;
318 } // end anonymous namespace
320 /// Figure out if the loop is worth full unrolling.
322 /// Complete loop unrolling can make some loads constant, and we need to know
323 /// if that would expose any further optimization opportunities. This routine
324 /// estimates this optimization. It computes cost of unrolled loop
325 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
326 /// dynamic cost we mean that we won't count costs of blocks that are known not
327 /// to be executed (i.e. if we have a branch in the loop and we know that at the
328 /// given iteration its condition would be resolved to true, we won't add up the
329 /// cost of the 'false'-block).
330 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
331 /// the analysis failed (no benefits expected from the unrolling, or the loop is
332 /// too big to analyze), the returned value is None.
333 static Optional
<EstimatedUnrollCost
> analyzeLoopUnrollCost(
334 const Loop
*L
, unsigned TripCount
, DominatorTree
&DT
, ScalarEvolution
&SE
,
335 const SmallPtrSetImpl
<const Value
*> &EphValues
,
336 const TargetTransformInfo
&TTI
, unsigned MaxUnrolledLoopSize
) {
337 // We want to be able to scale offsets by the trip count and add more offsets
338 // to them without checking for overflows, and we already don't want to
339 // analyze *massive* trip counts, so we force the max to be reasonably small.
340 assert(UnrollMaxIterationsCountToAnalyze
<
341 (unsigned)(std::numeric_limits
<int>::max() / 2) &&
342 "The unroll iterations max is too large!");
344 // Only analyze inner loops. We can't properly estimate cost of nested loops
345 // and we won't visit inner loops again anyway.
349 // Don't simulate loops with a big or unknown tripcount
350 if (!UnrollMaxIterationsCountToAnalyze
|| !TripCount
||
351 TripCount
> UnrollMaxIterationsCountToAnalyze
)
354 SmallSetVector
<BasicBlock
*, 16> BBWorklist
;
355 SmallSetVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 4> ExitWorklist
;
356 DenseMap
<Value
*, Constant
*> SimplifiedValues
;
357 SmallVector
<std::pair
<Value
*, Constant
*>, 4> SimplifiedInputValues
;
359 // The estimated cost of the unrolled form of the loop. We try to estimate
360 // this by simplifying as much as we can while computing the estimate.
361 unsigned UnrolledCost
= 0;
363 // We also track the estimated dynamic (that is, actually executed) cost in
364 // the rolled form. This helps identify cases when the savings from unrolling
365 // aren't just exposing dead control flows, but actual reduced dynamic
366 // instructions due to the simplifications which we expect to occur after
368 unsigned RolledDynamicCost
= 0;
370 // We track the simplification of each instruction in each iteration. We use
371 // this to recursively merge costs into the unrolled cost on-demand so that
372 // we don't count the cost of any dead code. This is essentially a map from
373 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
374 DenseSet
<UnrolledInstState
, UnrolledInstStateKeyInfo
> InstCostMap
;
376 // A small worklist used to accumulate cost of instructions from each
377 // observable and reached root in the loop.
378 SmallVector
<Instruction
*, 16> CostWorklist
;
380 // PHI-used worklist used between iterations while accumulating cost.
381 SmallVector
<Instruction
*, 4> PHIUsedList
;
383 // Helper function to accumulate cost for instructions in the loop.
384 auto AddCostRecursively
= [&](Instruction
&RootI
, int Iteration
) {
385 assert(Iteration
>= 0 && "Cannot have a negative iteration!");
386 assert(CostWorklist
.empty() && "Must start with an empty cost list");
387 assert(PHIUsedList
.empty() && "Must start with an empty phi used list");
388 CostWorklist
.push_back(&RootI
);
389 for (;; --Iteration
) {
391 Instruction
*I
= CostWorklist
.pop_back_val();
393 // InstCostMap only uses I and Iteration as a key, the other two values
394 // don't matter here.
395 auto CostIter
= InstCostMap
.find({I
, Iteration
, 0, 0});
396 if (CostIter
== InstCostMap
.end())
397 // If an input to a PHI node comes from a dead path through the loop
398 // we may have no cost data for it here. What that actually means is
401 auto &Cost
= *CostIter
;
403 // Already counted this instruction.
406 // Mark that we are counting the cost of this instruction now.
407 Cost
.IsCounted
= true;
409 // If this is a PHI node in the loop header, just add it to the PHI set.
410 if (auto *PhiI
= dyn_cast
<PHINode
>(I
))
411 if (PhiI
->getParent() == L
->getHeader()) {
412 assert(Cost
.IsFree
&& "Loop PHIs shouldn't be evaluated as they "
413 "inherently simplify during unrolling.");
417 // Push the incoming value from the backedge into the PHI used list
418 // if it is an in-loop instruction. We'll use this to populate the
419 // cost worklist for the next iteration (as we count backwards).
420 if (auto *OpI
= dyn_cast
<Instruction
>(
421 PhiI
->getIncomingValueForBlock(L
->getLoopLatch())))
422 if (L
->contains(OpI
))
423 PHIUsedList
.push_back(OpI
);
427 // First accumulate the cost of this instruction.
429 UnrolledCost
+= TTI
.getUserCost(I
);
430 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
431 << Iteration
<< "): ");
432 LLVM_DEBUG(I
->dump());
435 // We must count the cost of every operand which is not free,
436 // recursively. If we reach a loop PHI node, simply add it to the set
437 // to be considered on the next iteration (backwards!).
438 for (Value
*Op
: I
->operands()) {
439 // Check whether this operand is free due to being a constant or
441 auto *OpI
= dyn_cast
<Instruction
>(Op
);
442 if (!OpI
|| !L
->contains(OpI
))
445 // Otherwise accumulate its cost.
446 CostWorklist
.push_back(OpI
);
448 } while (!CostWorklist
.empty());
450 if (PHIUsedList
.empty())
451 // We've exhausted the search.
454 assert(Iteration
> 0 &&
455 "Cannot track PHI-used values past the first iteration!");
456 CostWorklist
.append(PHIUsedList
.begin(), PHIUsedList
.end());
461 // Ensure that we don't violate the loop structure invariants relied on by
463 assert(L
->isLoopSimplifyForm() && "Must put loop into normal form first.");
464 assert(L
->isLCSSAForm(DT
) &&
465 "Must have loops in LCSSA form to track live-out values.");
467 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
469 // Simulate execution of each iteration of the loop counting instructions,
470 // which would be simplified.
471 // Since the same load will take different values on different iterations,
472 // we literally have to go through all loop's iterations.
473 for (unsigned Iteration
= 0; Iteration
< TripCount
; ++Iteration
) {
474 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration
<< "\n");
476 // Prepare for the iteration by collecting any simplified entry or backedge
478 for (Instruction
&I
: *L
->getHeader()) {
479 auto *PHI
= dyn_cast
<PHINode
>(&I
);
483 // The loop header PHI nodes must have exactly two input: one from the
484 // loop preheader and one from the loop latch.
486 PHI
->getNumIncomingValues() == 2 &&
487 "Must have an incoming value only for the preheader and the latch.");
489 Value
*V
= PHI
->getIncomingValueForBlock(
490 Iteration
== 0 ? L
->getLoopPreheader() : L
->getLoopLatch());
491 Constant
*C
= dyn_cast
<Constant
>(V
);
492 if (Iteration
!= 0 && !C
)
493 C
= SimplifiedValues
.lookup(V
);
495 SimplifiedInputValues
.push_back({PHI
, C
});
498 // Now clear and re-populate the map for the next iteration.
499 SimplifiedValues
.clear();
500 while (!SimplifiedInputValues
.empty())
501 SimplifiedValues
.insert(SimplifiedInputValues
.pop_back_val());
503 UnrolledInstAnalyzer
Analyzer(Iteration
, SimplifiedValues
, SE
, L
);
506 BBWorklist
.insert(L
->getHeader());
507 // Note that we *must not* cache the size, this loop grows the worklist.
508 for (unsigned Idx
= 0; Idx
!= BBWorklist
.size(); ++Idx
) {
509 BasicBlock
*BB
= BBWorklist
[Idx
];
511 // Visit all instructions in the given basic block and try to simplify
512 // it. We don't change the actual IR, just count optimization
514 for (Instruction
&I
: *BB
) {
515 // These won't get into the final code - don't even try calculating the
517 if (isa
<DbgInfoIntrinsic
>(I
) || EphValues
.count(&I
))
520 // Track this instruction's expected baseline cost when executing the
522 RolledDynamicCost
+= TTI
.getUserCost(&I
);
524 // Visit the instruction to analyze its loop cost after unrolling,
525 // and if the visitor returns true, mark the instruction as free after
526 // unrolling and continue.
527 bool IsFree
= Analyzer
.visit(I
);
528 bool Inserted
= InstCostMap
.insert({&I
, (int)Iteration
,
530 /*IsCounted*/ false}).second
;
532 assert(Inserted
&& "Cannot have a state for an unvisited instruction!");
537 // Can't properly model a cost of a call.
538 // FIXME: With a proper cost model we should be able to do it.
539 if (auto *CI
= dyn_cast
<CallInst
>(&I
)) {
540 const Function
*Callee
= CI
->getCalledFunction();
541 if (!Callee
|| TTI
.isLoweredToCall(Callee
)) {
542 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
547 // If the instruction might have a side-effect recursively account for
548 // the cost of it and all the instructions leading up to it.
549 if (I
.mayHaveSideEffects())
550 AddCostRecursively(I
, Iteration
);
552 // If unrolled body turns out to be too big, bail out.
553 if (UnrolledCost
> MaxUnrolledLoopSize
) {
554 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
555 << " UnrolledCost: " << UnrolledCost
556 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
562 Instruction
*TI
= BB
->getTerminator();
564 // Add in the live successors by first checking whether we have terminator
565 // that may be simplified based on the values simplified by this call.
566 BasicBlock
*KnownSucc
= nullptr;
567 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
568 if (BI
->isConditional()) {
569 if (Constant
*SimpleCond
=
570 SimplifiedValues
.lookup(BI
->getCondition())) {
571 // Just take the first successor if condition is undef
572 if (isa
<UndefValue
>(SimpleCond
))
573 KnownSucc
= BI
->getSuccessor(0);
574 else if (ConstantInt
*SimpleCondVal
=
575 dyn_cast
<ConstantInt
>(SimpleCond
))
576 KnownSucc
= BI
->getSuccessor(SimpleCondVal
->isZero() ? 1 : 0);
579 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
580 if (Constant
*SimpleCond
=
581 SimplifiedValues
.lookup(SI
->getCondition())) {
582 // Just take the first successor if condition is undef
583 if (isa
<UndefValue
>(SimpleCond
))
584 KnownSucc
= SI
->getSuccessor(0);
585 else if (ConstantInt
*SimpleCondVal
=
586 dyn_cast
<ConstantInt
>(SimpleCond
))
587 KnownSucc
= SI
->findCaseValue(SimpleCondVal
)->getCaseSuccessor();
591 if (L
->contains(KnownSucc
))
592 BBWorklist
.insert(KnownSucc
);
594 ExitWorklist
.insert({BB
, KnownSucc
});
598 // Add BB's successors to the worklist.
599 for (BasicBlock
*Succ
: successors(BB
))
600 if (L
->contains(Succ
))
601 BBWorklist
.insert(Succ
);
603 ExitWorklist
.insert({BB
, Succ
});
604 AddCostRecursively(*TI
, Iteration
);
607 // If we found no optimization opportunities on the first iteration, we
608 // won't find them on later ones too.
609 if (UnrolledCost
== RolledDynamicCost
) {
610 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
611 << " UnrolledCost: " << UnrolledCost
<< "\n");
616 while (!ExitWorklist
.empty()) {
617 BasicBlock
*ExitingBB
, *ExitBB
;
618 std::tie(ExitingBB
, ExitBB
) = ExitWorklist
.pop_back_val();
620 for (Instruction
&I
: *ExitBB
) {
621 auto *PN
= dyn_cast
<PHINode
>(&I
);
625 Value
*Op
= PN
->getIncomingValueForBlock(ExitingBB
);
626 if (auto *OpI
= dyn_cast
<Instruction
>(Op
))
627 if (L
->contains(OpI
))
628 AddCostRecursively(*OpI
, TripCount
- 1);
632 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
633 << "UnrolledCost: " << UnrolledCost
<< ", "
634 << "RolledDynamicCost: " << RolledDynamicCost
<< "\n");
635 return {{UnrolledCost
, RolledDynamicCost
}};
638 /// ApproximateLoopSize - Approximate the size of the loop.
639 unsigned llvm::ApproximateLoopSize(
640 const Loop
*L
, unsigned &NumCalls
, bool &NotDuplicatable
, bool &Convergent
,
641 const TargetTransformInfo
&TTI
,
642 const SmallPtrSetImpl
<const Value
*> &EphValues
, unsigned BEInsns
) {
644 for (BasicBlock
*BB
: L
->blocks())
645 Metrics
.analyzeBasicBlock(BB
, TTI
, EphValues
);
646 NumCalls
= Metrics
.NumInlineCandidates
;
647 NotDuplicatable
= Metrics
.notDuplicatable
;
648 Convergent
= Metrics
.convergent
;
650 unsigned LoopSize
= Metrics
.NumInsts
;
652 // Don't allow an estimate of size zero. This would allows unrolling of loops
653 // with huge iteration counts, which is a compile time problem even if it's
654 // not a problem for code quality. Also, the code using this size may assume
655 // that each loop has at least three instructions (likely a conditional
656 // branch, a comparison feeding that branch, and some kind of loop increment
657 // feeding that comparison instruction).
658 LoopSize
= std::max(LoopSize
, BEInsns
+ 1);
663 // Returns the loop hint metadata node with the given name (for example,
664 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
666 static MDNode
*GetUnrollMetadataForLoop(const Loop
*L
, StringRef Name
) {
667 if (MDNode
*LoopID
= L
->getLoopID())
668 return GetUnrollMetadata(LoopID
, Name
);
672 // Returns true if the loop has an unroll(full) pragma.
673 static bool HasUnrollFullPragma(const Loop
*L
) {
674 return GetUnrollMetadataForLoop(L
, "llvm.loop.unroll.full");
677 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
678 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
679 static bool HasUnrollEnablePragma(const Loop
*L
) {
680 return GetUnrollMetadataForLoop(L
, "llvm.loop.unroll.enable");
683 // Returns true if the loop has an runtime unroll(disable) pragma.
684 static bool HasRuntimeUnrollDisablePragma(const Loop
*L
) {
685 return GetUnrollMetadataForLoop(L
, "llvm.loop.unroll.runtime.disable");
688 // If loop has an unroll_count pragma return the (necessarily
689 // positive) value from the pragma. Otherwise return 0.
690 static unsigned UnrollCountPragmaValue(const Loop
*L
) {
691 MDNode
*MD
= GetUnrollMetadataForLoop(L
, "llvm.loop.unroll.count");
693 assert(MD
->getNumOperands() == 2 &&
694 "Unroll count hint metadata should have two operands.");
696 mdconst::extract
<ConstantInt
>(MD
->getOperand(1))->getZExtValue();
697 assert(Count
>= 1 && "Unroll count must be positive.");
703 // Computes the boosting factor for complete unrolling.
704 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
705 // be beneficial to fully unroll the loop even if unrolledcost is large. We
706 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
707 // the unroll threshold.
708 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost
&Cost
,
709 unsigned MaxPercentThresholdBoost
) {
710 if (Cost
.RolledDynamicCost
>= std::numeric_limits
<unsigned>::max() / 100)
712 else if (Cost
.UnrolledCost
!= 0)
713 // The boosting factor is RolledDynamicCost / UnrolledCost
714 return std::min(100 * Cost
.RolledDynamicCost
/ Cost
.UnrolledCost
,
715 MaxPercentThresholdBoost
);
717 return MaxPercentThresholdBoost
;
720 // Returns loop size estimation for unrolled loop.
721 static uint64_t getUnrolledLoopSize(
723 TargetTransformInfo::UnrollingPreferences
&UP
) {
724 assert(LoopSize
>= UP
.BEInsns
&& "LoopSize should not be less than BEInsns!");
725 return (uint64_t)(LoopSize
- UP
.BEInsns
) * UP
.Count
+ UP
.BEInsns
;
728 // Returns true if unroll count was set explicitly.
729 // Calculates unroll count and writes it to UP.Count.
730 // Unless IgnoreUser is true, will also use metadata and command-line options
731 // that are specific to to the LoopUnroll pass (which, for instance, are
732 // irrelevant for the LoopUnrollAndJam pass).
733 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
734 // many LoopUnroll-specific options. The shared functionality should be
735 // refactored into it own function.
736 bool llvm::computeUnrollCount(
737 Loop
*L
, const TargetTransformInfo
&TTI
, DominatorTree
&DT
, LoopInfo
*LI
,
738 ScalarEvolution
&SE
, const SmallPtrSetImpl
<const Value
*> &EphValues
,
739 OptimizationRemarkEmitter
*ORE
, unsigned &TripCount
, unsigned MaxTripCount
,
740 bool MaxOrZero
, unsigned &TripMultiple
, unsigned LoopSize
,
741 TargetTransformInfo::UnrollingPreferences
&UP
, bool &UseUpperBound
) {
743 // Check for explicit Count.
744 // 1st priority is unroll count set by "unroll-count" option.
745 bool UserUnrollCount
= UnrollCount
.getNumOccurrences() > 0;
746 if (UserUnrollCount
) {
747 UP
.Count
= UnrollCount
;
748 UP
.AllowExpensiveTripCount
= true;
750 if (UP
.AllowRemainder
&& getUnrolledLoopSize(LoopSize
, UP
) < UP
.Threshold
)
754 // 2nd priority is unroll count set by pragma.
755 unsigned PragmaCount
= UnrollCountPragmaValue(L
);
756 if (PragmaCount
> 0) {
757 UP
.Count
= PragmaCount
;
759 UP
.AllowExpensiveTripCount
= true;
761 if ((UP
.AllowRemainder
|| (TripMultiple
% PragmaCount
== 0)) &&
762 getUnrolledLoopSize(LoopSize
, UP
) < PragmaUnrollThreshold
)
765 bool PragmaFullUnroll
= HasUnrollFullPragma(L
);
766 if (PragmaFullUnroll
&& TripCount
!= 0) {
767 UP
.Count
= TripCount
;
768 if (getUnrolledLoopSize(LoopSize
, UP
) < PragmaUnrollThreshold
)
772 bool PragmaEnableUnroll
= HasUnrollEnablePragma(L
);
773 bool ExplicitUnroll
= PragmaCount
> 0 || PragmaFullUnroll
||
774 PragmaEnableUnroll
|| UserUnrollCount
;
776 if (ExplicitUnroll
&& TripCount
!= 0) {
777 // If the loop has an unrolling pragma, we want to be more aggressive with
778 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
779 // value which is larger than the default limits.
780 UP
.Threshold
= std::max
<unsigned>(UP
.Threshold
, PragmaUnrollThreshold
);
781 UP
.PartialThreshold
=
782 std::max
<unsigned>(UP
.PartialThreshold
, PragmaUnrollThreshold
);
785 // 3rd priority is full unroll count.
786 // Full unroll makes sense only when TripCount or its upper bound could be
787 // statically calculated.
788 // Also we need to check if we exceed FullUnrollMaxCount.
789 // If using the upper bound to unroll, TripMultiple should be set to 1 because
790 // we do not know when loop may exit.
792 // We can unroll by the upper bound amount if it's generally allowed or if
793 // we know that the loop is executed either the upper bound or zero times.
794 // (MaxOrZero unrolling keeps only the first loop test, so the number of
795 // loop tests remains the same compared to the non-unrolled version, whereas
796 // the generic upper bound unrolling keeps all but the last loop test so the
797 // number of loop tests goes up which may end up being worse on targets with
798 // constrained branch predictor resources so is controlled by an option.)
799 // In addition we only unroll small upper bounds.
800 unsigned FullUnrollMaxTripCount
= MaxTripCount
;
801 if (!(UP
.UpperBound
|| MaxOrZero
) ||
802 FullUnrollMaxTripCount
> UnrollMaxUpperBound
)
803 FullUnrollMaxTripCount
= 0;
805 // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
806 // compute the former when the latter is zero.
807 unsigned ExactTripCount
= TripCount
;
808 assert((ExactTripCount
== 0 || FullUnrollMaxTripCount
== 0) &&
809 "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");
811 unsigned FullUnrollTripCount
=
812 ExactTripCount
? ExactTripCount
: FullUnrollMaxTripCount
;
813 UP
.Count
= FullUnrollTripCount
;
814 if (FullUnrollTripCount
&& FullUnrollTripCount
<= UP
.FullUnrollMaxCount
) {
815 // When computing the unrolled size, note that BEInsns are not replicated
816 // like the rest of the loop body.
817 if (getUnrolledLoopSize(LoopSize
, UP
) < UP
.Threshold
) {
818 UseUpperBound
= (FullUnrollMaxTripCount
== FullUnrollTripCount
);
819 TripCount
= FullUnrollTripCount
;
820 TripMultiple
= UP
.UpperBound
? 1 : TripMultiple
;
821 return ExplicitUnroll
;
823 // The loop isn't that small, but we still can fully unroll it if that
824 // helps to remove a significant number of instructions.
825 // To check that, run additional analysis on the loop.
826 if (Optional
<EstimatedUnrollCost
> Cost
= analyzeLoopUnrollCost(
827 L
, FullUnrollTripCount
, DT
, SE
, EphValues
, TTI
,
828 UP
.Threshold
* UP
.MaxPercentThresholdBoost
/ 100)) {
830 getFullUnrollBoostingFactor(*Cost
, UP
.MaxPercentThresholdBoost
);
831 if (Cost
->UnrolledCost
< UP
.Threshold
* Boost
/ 100) {
832 UseUpperBound
= (FullUnrollMaxTripCount
== FullUnrollTripCount
);
833 TripCount
= FullUnrollTripCount
;
834 TripMultiple
= UP
.UpperBound
? 1 : TripMultiple
;
835 return ExplicitUnroll
;
841 // 4th priority is loop peeling.
842 computePeelCount(L
, LoopSize
, UP
, TripCount
, SE
);
846 return ExplicitUnroll
;
849 // 5th priority is partial unrolling.
850 // Try partial unroll only when TripCount could be statically calculated.
852 UP
.Partial
|= ExplicitUnroll
;
854 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
855 << "-unroll-allow-partial not given\n");
860 UP
.Count
= TripCount
;
861 if (UP
.PartialThreshold
!= NoThreshold
) {
862 // Reduce unroll count to be modulo of TripCount for partial unrolling.
863 if (getUnrolledLoopSize(LoopSize
, UP
) > UP
.PartialThreshold
)
865 (std::max(UP
.PartialThreshold
, UP
.BEInsns
+ 1) - UP
.BEInsns
) /
866 (LoopSize
- UP
.BEInsns
);
867 if (UP
.Count
> UP
.MaxCount
)
868 UP
.Count
= UP
.MaxCount
;
869 while (UP
.Count
!= 0 && TripCount
% UP
.Count
!= 0)
871 if (UP
.AllowRemainder
&& UP
.Count
<= 1) {
872 // If there is no Count that is modulo of TripCount, set Count to
873 // largest power-of-two factor that satisfies the threshold limit.
874 // As we'll create fixup loop, do the type of unrolling only if
875 // remainder loop is allowed.
876 UP
.Count
= UP
.DefaultUnrollRuntimeCount
;
877 while (UP
.Count
!= 0 &&
878 getUnrolledLoopSize(LoopSize
, UP
) > UP
.PartialThreshold
)
882 if (PragmaEnableUnroll
)
884 return OptimizationRemarkMissed(DEBUG_TYPE
,
885 "UnrollAsDirectedTooLarge",
886 L
->getStartLoc(), L
->getHeader())
887 << "Unable to unroll loop as directed by unroll(enable) "
889 "because unrolled size is too large.";
894 UP
.Count
= TripCount
;
896 if (UP
.Count
> UP
.MaxCount
)
897 UP
.Count
= UP
.MaxCount
;
898 if ((PragmaFullUnroll
|| PragmaEnableUnroll
) && TripCount
&&
899 UP
.Count
!= TripCount
)
901 return OptimizationRemarkMissed(DEBUG_TYPE
,
902 "FullUnrollAsDirectedTooLarge",
903 L
->getStartLoc(), L
->getHeader())
904 << "Unable to fully unroll loop as directed by unroll pragma "
906 "unrolled size is too large.";
908 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP
.Count
910 return ExplicitUnroll
;
912 assert(TripCount
== 0 &&
913 "All cases when TripCount is constant should be covered here.");
914 if (PragmaFullUnroll
)
916 return OptimizationRemarkMissed(
917 DEBUG_TYPE
, "CantFullUnrollAsDirectedRuntimeTripCount",
918 L
->getStartLoc(), L
->getHeader())
919 << "Unable to fully unroll loop as directed by unroll(full) "
921 "because loop has a runtime trip count.";
924 // 6th priority is runtime unrolling.
925 // Don't unroll a runtime trip count loop when it is disabled.
926 if (HasRuntimeUnrollDisablePragma(L
)) {
931 // Don't unroll a small upper bound loop unless user or TTI asked to do so.
932 if (MaxTripCount
&& !UP
.Force
&& MaxTripCount
< UnrollMaxUpperBound
) {
937 // Check if the runtime trip count is too small when profile is available.
938 if (L
->getHeader()->getParent()->hasProfileData()) {
939 if (auto ProfileTripCount
= getLoopEstimatedTripCount(L
)) {
940 if (*ProfileTripCount
< FlatLoopTripCountThreshold
)
943 UP
.AllowExpensiveTripCount
= true;
947 // Reduce count based on the type of unrolling and the threshold values.
948 UP
.Runtime
|= PragmaEnableUnroll
|| PragmaCount
> 0 || UserUnrollCount
;
951 dbgs() << " will not try to unroll loop with runtime trip count "
952 << "-unroll-runtime not given\n");
957 UP
.Count
= UP
.DefaultUnrollRuntimeCount
;
959 // Reduce unroll count to be the largest power-of-two factor of
960 // the original count which satisfies the threshold limit.
961 while (UP
.Count
!= 0 &&
962 getUnrolledLoopSize(LoopSize
, UP
) > UP
.PartialThreshold
)
966 unsigned OrigCount
= UP
.Count
;
969 if (!UP
.AllowRemainder
&& UP
.Count
!= 0 && (TripMultiple
% UP
.Count
) != 0) {
970 while (UP
.Count
!= 0 && TripMultiple
% UP
.Count
!= 0)
973 dbgs() << "Remainder loop is restricted (that could architecture "
974 "specific or because the loop contains a convergent "
975 "instruction), so unroll count must divide the trip "
977 << TripMultiple
<< ". Reducing unroll count from " << OrigCount
978 << " to " << UP
.Count
<< ".\n");
982 if (PragmaCount
> 0 && !UP
.AllowRemainder
)
984 return OptimizationRemarkMissed(DEBUG_TYPE
,
985 "DifferentUnrollCountFromDirected",
986 L
->getStartLoc(), L
->getHeader())
987 << "Unable to unroll loop the number of times directed by "
988 "unroll_count pragma because remainder loop is restricted "
989 "(that could architecture specific or because the loop "
990 "contains a convergent instruction) and so must have an "
992 "count that divides the loop trip multiple of "
993 << NV("TripMultiple", TripMultiple
) << ". Unrolling instead "
994 << NV("UnrollCount", UP
.Count
) << " time(s).";
998 if (UP
.Count
> UP
.MaxCount
)
999 UP
.Count
= UP
.MaxCount
;
1001 if (MaxTripCount
&& UP
.Count
> MaxTripCount
)
1002 UP
.Count
= MaxTripCount
;
1004 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP
.Count
1008 return ExplicitUnroll
;
1011 static LoopUnrollResult
tryToUnrollLoop(
1012 Loop
*L
, DominatorTree
&DT
, LoopInfo
*LI
, ScalarEvolution
&SE
,
1013 const TargetTransformInfo
&TTI
, AssumptionCache
&AC
,
1014 OptimizationRemarkEmitter
&ORE
, BlockFrequencyInfo
*BFI
,
1015 ProfileSummaryInfo
*PSI
, bool PreserveLCSSA
, int OptLevel
,
1016 bool OnlyWhenForced
, bool ForgetAllSCEV
, Optional
<unsigned> ProvidedCount
,
1017 Optional
<unsigned> ProvidedThreshold
, Optional
<bool> ProvidedAllowPartial
,
1018 Optional
<bool> ProvidedRuntime
, Optional
<bool> ProvidedUpperBound
,
1019 Optional
<bool> ProvidedAllowPeeling
,
1020 Optional
<bool> ProvidedAllowProfileBasedPeeling
,
1021 Optional
<unsigned> ProvidedFullUnrollMaxCount
) {
1022 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1023 << L
->getHeader()->getParent()->getName() << "] Loop %"
1024 << L
->getHeader()->getName() << "\n");
1025 TransformationMode TM
= hasUnrollTransformation(L
);
1026 if (TM
& TM_Disable
)
1027 return LoopUnrollResult::Unmodified
;
1028 if (!L
->isLoopSimplifyForm()) {
1030 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
1031 return LoopUnrollResult::Unmodified
;
1034 // When automtatic unrolling is disabled, do not unroll unless overridden for
1036 if (OnlyWhenForced
&& !(TM
& TM_Enable
))
1037 return LoopUnrollResult::Unmodified
;
1039 bool OptForSize
= L
->getHeader()->getParent()->hasOptSize();
1040 unsigned NumInlineCandidates
;
1041 bool NotDuplicatable
;
1043 TargetTransformInfo::UnrollingPreferences UP
= gatherUnrollingPreferences(
1044 L
, SE
, TTI
, BFI
, PSI
, OptLevel
, ProvidedThreshold
, ProvidedCount
,
1045 ProvidedAllowPartial
, ProvidedRuntime
, ProvidedUpperBound
,
1046 ProvidedAllowPeeling
, ProvidedAllowProfileBasedPeeling
,
1047 ProvidedFullUnrollMaxCount
);
1049 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1050 // as threshold later on.
1051 if (UP
.Threshold
== 0 && (!UP
.Partial
|| UP
.PartialThreshold
== 0) &&
1053 return LoopUnrollResult::Unmodified
;
1055 SmallPtrSet
<const Value
*, 32> EphValues
;
1056 CodeMetrics::collectEphemeralValues(L
, &AC
, EphValues
);
1059 ApproximateLoopSize(L
, NumInlineCandidates
, NotDuplicatable
, Convergent
,
1060 TTI
, EphValues
, UP
.BEInsns
);
1061 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize
<< "\n");
1062 if (NotDuplicatable
) {
1063 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
1064 << " instructions.\n");
1065 return LoopUnrollResult::Unmodified
;
1068 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1069 // later), to (fully) unroll loops, if it does not increase code size.
1071 UP
.Threshold
= std::max(UP
.Threshold
, LoopSize
+ 1);
1073 if (NumInlineCandidates
!= 0) {
1074 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1075 return LoopUnrollResult::Unmodified
;
1078 // Find trip count and trip multiple if count is not available
1079 unsigned TripCount
= 0;
1080 unsigned TripMultiple
= 1;
1081 // If there are multiple exiting blocks but one of them is the latch, use the
1082 // latch for the trip count estimation. Otherwise insist on a single exiting
1083 // block for the trip count estimation.
1084 BasicBlock
*ExitingBlock
= L
->getLoopLatch();
1085 if (!ExitingBlock
|| !L
->isLoopExiting(ExitingBlock
))
1086 ExitingBlock
= L
->getExitingBlock();
1088 TripCount
= SE
.getSmallConstantTripCount(L
, ExitingBlock
);
1089 TripMultiple
= SE
.getSmallConstantTripMultiple(L
, ExitingBlock
);
1092 // If the loop contains a convergent operation, the prelude we'd add
1093 // to do the first few instructions before we hit the unrolled loop
1094 // is unsafe -- it adds a control-flow dependency to the convergent
1095 // operation. Therefore restrict remainder loop (try unrollig without).
1097 // TODO: This is quite conservative. In practice, convergent_op()
1098 // is likely to be called unconditionally in the loop. In this
1099 // case, the program would be ill-formed (on most architectures)
1100 // unless n were the same on all threads in a thread group.
1101 // Assuming n is the same on all threads, any kind of unrolling is
1102 // safe. But currently llvm's notion of convergence isn't powerful
1103 // enough to express this.
1105 UP
.AllowRemainder
= false;
1107 // Try to find the trip count upper bound if we cannot find the exact trip
1109 unsigned MaxTripCount
= 0;
1110 bool MaxOrZero
= false;
1112 MaxTripCount
= SE
.getSmallConstantMaxTripCount(L
);
1113 MaxOrZero
= SE
.isBackedgeTakenCountMaxOrZero(L
);
1116 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1117 // fully unroll the loop.
1118 bool UseUpperBound
= false;
1119 bool IsCountSetExplicitly
= computeUnrollCount(
1120 L
, TTI
, DT
, LI
, SE
, EphValues
, &ORE
, TripCount
, MaxTripCount
, MaxOrZero
,
1121 TripMultiple
, LoopSize
, UP
, UseUpperBound
);
1123 return LoopUnrollResult::Unmodified
;
1124 // Unroll factor (Count) must be less or equal to TripCount.
1125 if (TripCount
&& UP
.Count
> TripCount
)
1126 UP
.Count
= TripCount
;
1128 // Save loop properties before it is transformed.
1129 MDNode
*OrigLoopID
= L
->getLoopID();
1132 Loop
*RemainderLoop
= nullptr;
1133 LoopUnrollResult UnrollResult
= UnrollLoop(
1135 {UP
.Count
, TripCount
, UP
.Force
, UP
.Runtime
, UP
.AllowExpensiveTripCount
,
1136 UseUpperBound
, MaxOrZero
, TripMultiple
, UP
.PeelCount
, UP
.UnrollRemainder
,
1138 LI
, &SE
, &DT
, &AC
, &ORE
, PreserveLCSSA
, &RemainderLoop
);
1139 if (UnrollResult
== LoopUnrollResult::Unmodified
)
1140 return LoopUnrollResult::Unmodified
;
1142 if (RemainderLoop
) {
1143 Optional
<MDNode
*> RemainderLoopID
=
1144 makeFollowupLoopID(OrigLoopID
, {LLVMLoopUnrollFollowupAll
,
1145 LLVMLoopUnrollFollowupRemainder
});
1146 if (RemainderLoopID
.hasValue())
1147 RemainderLoop
->setLoopID(RemainderLoopID
.getValue());
1150 if (UnrollResult
!= LoopUnrollResult::FullyUnrolled
) {
1151 Optional
<MDNode
*> NewLoopID
=
1152 makeFollowupLoopID(OrigLoopID
, {LLVMLoopUnrollFollowupAll
,
1153 LLVMLoopUnrollFollowupUnrolled
});
1154 if (NewLoopID
.hasValue()) {
1155 L
->setLoopID(NewLoopID
.getValue());
1157 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1159 return UnrollResult
;
1163 // If loop has an unroll count pragma or unrolled by explicitly set count
1164 // mark loop as unrolled to prevent unrolling beyond that requested.
1165 // If the loop was peeled, we already "used up" the profile information
1166 // we had, so we don't want to unroll or peel again.
1167 if (UnrollResult
!= LoopUnrollResult::FullyUnrolled
&&
1168 (IsCountSetExplicitly
|| (UP
.PeelProfiledIterations
&& UP
.PeelCount
)))
1169 L
->setLoopAlreadyUnrolled();
1171 return UnrollResult
;
1176 class LoopUnroll
: public LoopPass
{
1178 static char ID
; // Pass ID, replacement for typeid
1182 /// If false, use a cost model to determine whether unrolling of a loop is
1183 /// profitable. If true, only loops that explicitly request unrolling via
1184 /// metadata are considered. All other loops are skipped.
1185 bool OnlyWhenForced
;
1187 /// If false, when SCEV is invalidated, only forget everything in the
1188 /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1189 /// Otherwise, forgetAllLoops and rebuild when needed next.
1192 Optional
<unsigned> ProvidedCount
;
1193 Optional
<unsigned> ProvidedThreshold
;
1194 Optional
<bool> ProvidedAllowPartial
;
1195 Optional
<bool> ProvidedRuntime
;
1196 Optional
<bool> ProvidedUpperBound
;
1197 Optional
<bool> ProvidedAllowPeeling
;
1198 Optional
<bool> ProvidedAllowProfileBasedPeeling
;
1199 Optional
<unsigned> ProvidedFullUnrollMaxCount
;
1201 LoopUnroll(int OptLevel
= 2, bool OnlyWhenForced
= false,
1202 bool ForgetAllSCEV
= false, Optional
<unsigned> Threshold
= None
,
1203 Optional
<unsigned> Count
= None
,
1204 Optional
<bool> AllowPartial
= None
, Optional
<bool> Runtime
= None
,
1205 Optional
<bool> UpperBound
= None
,
1206 Optional
<bool> AllowPeeling
= None
,
1207 Optional
<bool> AllowProfileBasedPeeling
= None
,
1208 Optional
<unsigned> ProvidedFullUnrollMaxCount
= None
)
1209 : LoopPass(ID
), OptLevel(OptLevel
), OnlyWhenForced(OnlyWhenForced
),
1210 ForgetAllSCEV(ForgetAllSCEV
), ProvidedCount(std::move(Count
)),
1211 ProvidedThreshold(Threshold
), ProvidedAllowPartial(AllowPartial
),
1212 ProvidedRuntime(Runtime
), ProvidedUpperBound(UpperBound
),
1213 ProvidedAllowPeeling(AllowPeeling
),
1214 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling
),
1215 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount
) {
1216 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1219 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
1223 Function
&F
= *L
->getHeader()->getParent();
1225 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1226 LoopInfo
*LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1227 ScalarEvolution
&SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
1228 const TargetTransformInfo
&TTI
=
1229 getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
1230 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
1231 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1232 // pass. Function analyses need to be preserved across loop transformations
1233 // but ORE cannot be preserved (see comment before the pass definition).
1234 OptimizationRemarkEmitter
ORE(&F
);
1235 bool PreserveLCSSA
= mustPreserveAnalysisID(LCSSAID
);
1237 LoopUnrollResult Result
= tryToUnrollLoop(
1238 L
, DT
, LI
, SE
, TTI
, AC
, ORE
, nullptr, nullptr, PreserveLCSSA
, OptLevel
,
1239 OnlyWhenForced
, ForgetAllSCEV
, ProvidedCount
, ProvidedThreshold
,
1240 ProvidedAllowPartial
, ProvidedRuntime
, ProvidedUpperBound
,
1241 ProvidedAllowPeeling
, ProvidedAllowProfileBasedPeeling
,
1242 ProvidedFullUnrollMaxCount
);
1244 if (Result
== LoopUnrollResult::FullyUnrolled
)
1245 LPM
.markLoopAsDeleted(*L
);
1247 return Result
!= LoopUnrollResult::Unmodified
;
1250 /// This transformation requires natural loop information & requires that
1251 /// loop preheaders be inserted into the CFG...
1252 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1253 AU
.addRequired
<AssumptionCacheTracker
>();
1254 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
1255 // FIXME: Loop passes are required to preserve domtree, and for now we just
1256 // recreate dom info if anything gets unrolled.
1257 getLoopAnalysisUsage(AU
);
1261 } // end anonymous namespace
1263 char LoopUnroll::ID
= 0;
1265 INITIALIZE_PASS_BEGIN(LoopUnroll
, "loop-unroll", "Unroll loops", false, false)
1266 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
1267 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
1268 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
1269 INITIALIZE_PASS_END(LoopUnroll
, "loop-unroll", "Unroll loops", false, false)
1271 Pass
*llvm::createLoopUnrollPass(int OptLevel
, bool OnlyWhenForced
,
1272 bool ForgetAllSCEV
, int Threshold
, int Count
,
1273 int AllowPartial
, int Runtime
, int UpperBound
,
1275 // TODO: It would make more sense for this function to take the optionals
1276 // directly, but that's dangerous since it would silently break out of tree
1278 return new LoopUnroll(
1279 OptLevel
, OnlyWhenForced
, ForgetAllSCEV
,
1280 Threshold
== -1 ? None
: Optional
<unsigned>(Threshold
),
1281 Count
== -1 ? None
: Optional
<unsigned>(Count
),
1282 AllowPartial
== -1 ? None
: Optional
<bool>(AllowPartial
),
1283 Runtime
== -1 ? None
: Optional
<bool>(Runtime
),
1284 UpperBound
== -1 ? None
: Optional
<bool>(UpperBound
),
1285 AllowPeeling
== -1 ? None
: Optional
<bool>(AllowPeeling
));
1288 Pass
*llvm::createSimpleLoopUnrollPass(int OptLevel
, bool OnlyWhenForced
,
1289 bool ForgetAllSCEV
) {
1290 return createLoopUnrollPass(OptLevel
, OnlyWhenForced
, ForgetAllSCEV
, -1, -1,
1294 PreservedAnalyses
LoopFullUnrollPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
1295 LoopStandardAnalysisResults
&AR
,
1296 LPMUpdater
&Updater
) {
1298 AM
.getResult
<FunctionAnalysisManagerLoopProxy
>(L
, AR
).getManager();
1299 Function
*F
= L
.getHeader()->getParent();
1301 auto *ORE
= FAM
.getCachedResult
<OptimizationRemarkEmitterAnalysis
>(*F
);
1302 // FIXME: This should probably be optional rather than required.
1305 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1306 "cached at a higher level");
1308 // Keep track of the previous loop structure so we can identify new loops
1309 // created by unrolling.
1310 Loop
*ParentL
= L
.getParentLoop();
1311 SmallPtrSet
<Loop
*, 4> OldLoops
;
1313 OldLoops
.insert(ParentL
->begin(), ParentL
->end());
1315 OldLoops
.insert(AR
.LI
.begin(), AR
.LI
.end());
1317 std::string LoopName
= L
.getName();
1319 bool Changed
= tryToUnrollLoop(&L
, AR
.DT
, &AR
.LI
, AR
.SE
, AR
.TTI
, AR
.AC
, *ORE
,
1320 /*BFI*/ nullptr, /*PSI*/ nullptr,
1321 /*PreserveLCSSA*/ true, OptLevel
,
1322 OnlyWhenForced
, ForgetSCEV
, /*Count*/ None
,
1323 /*Threshold*/ None
, /*AllowPartial*/ false,
1324 /*Runtime*/ false, /*UpperBound*/ false,
1325 /*AllowPeeling*/ false,
1326 /*AllowProfileBasedPeeling*/ false,
1327 /*FullUnrollMaxCount*/ None
) !=
1328 LoopUnrollResult::Unmodified
;
1330 return PreservedAnalyses::all();
1332 // The parent must not be damaged by unrolling!
1335 ParentL
->verifyLoop();
1338 // Unrolling can do several things to introduce new loops into a loop nest:
1339 // - Full unrolling clones child loops within the current loop but then
1340 // removes the current loop making all of the children appear to be new
1343 // When a new loop appears as a sibling loop after fully unrolling,
1344 // its nesting structure has fundamentally changed and we want to revisit
1345 // it to reflect that.
1347 // When unrolling has removed the current loop, we need to tell the
1348 // infrastructure that it is gone.
1350 // Finally, we support a debugging/testing mode where we revisit child loops
1351 // as well. These are not expected to require further optimizations as either
1352 // they or the loop they were cloned from have been directly visited already.
1353 // But the debugging mode allows us to check this assumption.
1354 bool IsCurrentLoopValid
= false;
1355 SmallVector
<Loop
*, 4> SibLoops
;
1357 SibLoops
.append(ParentL
->begin(), ParentL
->end());
1359 SibLoops
.append(AR
.LI
.begin(), AR
.LI
.end());
1360 erase_if(SibLoops
, [&](Loop
*SibLoop
) {
1361 if (SibLoop
== &L
) {
1362 IsCurrentLoopValid
= true;
1366 // Otherwise erase the loop from the list if it was in the old loops.
1367 return OldLoops
.count(SibLoop
) != 0;
1369 Updater
.addSiblingLoops(SibLoops
);
1371 if (!IsCurrentLoopValid
) {
1372 Updater
.markLoopAsDeleted(L
, LoopName
);
1374 // We can only walk child loops if the current loop remained valid.
1375 if (UnrollRevisitChildLoops
) {
1376 // Walk *all* of the child loops.
1377 SmallVector
<Loop
*, 4> ChildLoops(L
.begin(), L
.end());
1378 Updater
.addChildLoops(ChildLoops
);
1382 return getLoopPassPreservedAnalyses();
1385 template <typename RangeT
>
1386 static SmallVector
<Loop
*, 8> appendLoopsToWorklist(RangeT
&&Loops
) {
1387 SmallVector
<Loop
*, 8> Worklist
;
1388 // We use an internal worklist to build up the preorder traversal without
1390 SmallVector
<Loop
*, 4> PreOrderLoops
, PreOrderWorklist
;
1392 for (Loop
*RootL
: Loops
) {
1393 assert(PreOrderLoops
.empty() && "Must start with an empty preorder walk.");
1394 assert(PreOrderWorklist
.empty() &&
1395 "Must start with an empty preorder walk worklist.");
1396 PreOrderWorklist
.push_back(RootL
);
1398 Loop
*L
= PreOrderWorklist
.pop_back_val();
1399 PreOrderWorklist
.append(L
->begin(), L
->end());
1400 PreOrderLoops
.push_back(L
);
1401 } while (!PreOrderWorklist
.empty());
1403 Worklist
.append(PreOrderLoops
.begin(), PreOrderLoops
.end());
1404 PreOrderLoops
.clear();
1409 PreservedAnalyses
LoopUnrollPass::run(Function
&F
,
1410 FunctionAnalysisManager
&AM
) {
1411 auto &SE
= AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
1412 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
1413 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
1414 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
1415 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
1416 auto &ORE
= AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
1418 LoopAnalysisManager
*LAM
= nullptr;
1419 if (auto *LAMProxy
= AM
.getCachedResult
<LoopAnalysisManagerFunctionProxy
>(F
))
1420 LAM
= &LAMProxy
->getManager();
1422 const ModuleAnalysisManager
&MAM
=
1423 AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
).getManager();
1424 ProfileSummaryInfo
*PSI
=
1425 MAM
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
1426 auto *BFI
= (PSI
&& PSI
->hasProfileSummary()) ?
1427 &AM
.getResult
<BlockFrequencyAnalysis
>(F
) : nullptr;
1429 bool Changed
= false;
1431 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1432 // Since simplification may add new inner loops, it has to run before the
1433 // legality and profitability checks. This means running the loop unroller
1434 // will simplify all loops, regardless of whether anything end up being
1436 for (auto &L
: LI
) {
1438 simplifyLoop(L
, &DT
, &LI
, &SE
, &AC
, nullptr, false /* PreserveLCSSA */);
1439 Changed
|= formLCSSARecursively(*L
, DT
, &LI
, &SE
);
1442 SmallVector
<Loop
*, 8> Worklist
= appendLoopsToWorklist(LI
);
1444 while (!Worklist
.empty()) {
1445 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1446 // from back to front so that we work forward across the CFG, which
1447 // for unrolling is only needed to get optimization remarks emitted in
1449 Loop
&L
= *Worklist
.pop_back_val();
1451 Loop
*ParentL
= L
.getParentLoop();
1454 // Check if the profile summary indicates that the profiled application
1455 // has a huge working set size, in which case we disable peeling to avoid
1456 // bloating it further.
1457 Optional
<bool> LocalAllowPeeling
= UnrollOpts
.AllowPeeling
;
1458 if (PSI
&& PSI
->hasHugeWorkingSetSize())
1459 LocalAllowPeeling
= false;
1460 std::string LoopName
= L
.getName();
1461 // The API here is quite complex to call and we allow to select some
1462 // flavors of unrolling during construction time (by setting UnrollOpts).
1463 LoopUnrollResult Result
= tryToUnrollLoop(
1464 &L
, DT
, &LI
, SE
, TTI
, AC
, ORE
, BFI
, PSI
,
1465 /*PreserveLCSSA*/ true, UnrollOpts
.OptLevel
, UnrollOpts
.OnlyWhenForced
,
1466 UnrollOpts
.ForgetSCEV
, /*Count*/ None
,
1467 /*Threshold*/ None
, UnrollOpts
.AllowPartial
, UnrollOpts
.AllowRuntime
,
1468 UnrollOpts
.AllowUpperBound
, LocalAllowPeeling
,
1469 UnrollOpts
.AllowProfileBasedPeeling
, UnrollOpts
.FullUnrollMaxCount
);
1470 Changed
|= Result
!= LoopUnrollResult::Unmodified
;
1472 // The parent must not be damaged by unrolling!
1474 if (Result
!= LoopUnrollResult::Unmodified
&& ParentL
)
1475 ParentL
->verifyLoop();
1478 // Clear any cached analysis results for L if we removed it completely.
1479 if (LAM
&& Result
== LoopUnrollResult::FullyUnrolled
)
1480 LAM
->clear(L
, LoopName
);
1484 return PreservedAnalyses::all();
1486 return getLoopPassPreservedAnalyses();