1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass turns chains of integer comparisons into memcmp (the memcmp is
10 // later typically inlined as a chain of efficient hardware comparisons). This
11 // typically benefits c++ member or nonmember operator==().
13 // The basic idea is to replace a longer chain of integer comparisons loaded
14 // from contiguous memory locations into a shorter chain of larger integer
15 // comparisons. Benefits are double:
16 // - There are less jumps, and therefore less opportunities for mispredictions
17 // and I-cache misses.
18 // - Code size is smaller, both because jumps are removed and because the
19 // encoding of a 2*n byte compare is smaller than that of two n-byte
29 // bool operator==(const S& o) const {
30 // return a == o.a && b == o.b && c == o.c && d == o.d;
36 // bool S::operator==(const S& o) const {
37 // return memcmp(this, &o, 8) == 0;
40 // Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
42 //===----------------------------------------------------------------------===//
44 #include "llvm/Transforms/Scalar/MergeICmps.h"
45 #include "llvm/Analysis/DomTreeUpdater.h"
46 #include "llvm/Analysis/GlobalsModRef.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/Analysis/TargetTransformInfo.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/IRBuilder.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/BuildLibCalls.h"
66 #define DEBUG_TYPE "mergeicmps"
68 // Returns true if the instruction is a simple load or a simple store
69 static bool isSimpleLoadOrStore(const Instruction
*I
) {
70 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
71 return LI
->isSimple();
72 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
73 return SI
->isSimple();
77 // A BCE atom "Binary Compare Expression Atom" represents an integer load
78 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example
82 BCEAtom(GetElementPtrInst
*GEP
, LoadInst
*LoadI
, int BaseId
, APInt Offset
)
83 : GEP(GEP
), LoadI(LoadI
), BaseId(BaseId
), Offset(Offset
) {}
85 BCEAtom(const BCEAtom
&) = delete;
86 BCEAtom
&operator=(const BCEAtom
&) = delete;
88 BCEAtom(BCEAtom
&&that
) = default;
89 BCEAtom
&operator=(BCEAtom
&&that
) {
95 Offset
= std::move(that
.Offset
);
99 // We want to order BCEAtoms by (Base, Offset). However we cannot use
100 // the pointer values for Base because these are non-deterministic.
101 // To make sure that the sort order is stable, we first assign to each atom
102 // base value an index based on its order of appearance in the chain of
103 // comparisons. We call this index `BaseOrdering`. For example, for:
104 // b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
105 // | block 1 | | block 2 | | block 3 |
106 // b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
107 // which is before block 2.
108 // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
109 bool operator<(const BCEAtom
&O
) const {
110 return BaseId
!= O
.BaseId
? BaseId
< O
.BaseId
: Offset
.slt(O
.Offset
);
113 GetElementPtrInst
*GEP
= nullptr;
114 LoadInst
*LoadI
= nullptr;
119 // A class that assigns increasing ids to values in the order in which they are
120 // seen. See comment in `BCEAtom::operator<()``.
121 class BaseIdentifier
{
123 // Returns the id for value `Base`, after assigning one if `Base` has not been
125 int getBaseId(const Value
*Base
) {
126 assert(Base
&& "invalid base");
127 const auto Insertion
= BaseToIndex
.try_emplace(Base
, Order
);
128 if (Insertion
.second
)
130 return Insertion
.first
->second
;
135 DenseMap
<const Value
*, int> BaseToIndex
;
138 // If this value is a load from a constant offset w.r.t. a base address, and
139 // there are no other users of the load or address, returns the base address and
141 BCEAtom
visitICmpLoadOperand(Value
*const Val
, BaseIdentifier
&BaseId
) {
142 auto *const LoadI
= dyn_cast
<LoadInst
>(Val
);
145 LLVM_DEBUG(dbgs() << "load\n");
146 if (LoadI
->isUsedOutsideOfBlock(LoadI
->getParent())) {
147 LLVM_DEBUG(dbgs() << "used outside of block\n");
150 // Do not optimize atomic loads to non-atomic memcmp
151 if (!LoadI
->isSimple()) {
152 LLVM_DEBUG(dbgs() << "volatile or atomic\n");
155 Value
*const Addr
= LoadI
->getOperand(0);
156 auto *const GEP
= dyn_cast
<GetElementPtrInst
>(Addr
);
159 LLVM_DEBUG(dbgs() << "GEP\n");
160 if (GEP
->isUsedOutsideOfBlock(LoadI
->getParent())) {
161 LLVM_DEBUG(dbgs() << "used outside of block\n");
164 const auto &DL
= GEP
->getModule()->getDataLayout();
165 if (!isDereferenceablePointer(GEP
, LoadI
->getType(), DL
)) {
166 LLVM_DEBUG(dbgs() << "not dereferenceable\n");
167 // We need to make sure that we can do comparison in any order, so we
168 // require memory to be unconditionnally dereferencable.
171 APInt Offset
= APInt(DL
.getPointerTypeSizeInBits(GEP
->getType()), 0);
172 if (!GEP
->accumulateConstantOffset(DL
, Offset
))
174 return BCEAtom(GEP
, LoadI
, BaseId
.getBaseId(GEP
->getPointerOperand()),
178 // A basic block with a comparison between two BCE atoms, e.g. `a == o.a` in the
179 // example at the top.
180 // The block might do extra work besides the atom comparison, in which case
181 // doesOtherWork() returns true. Under some conditions, the block can be
182 // split into the atom comparison part and the "other work" part
184 // Note: the terminology is misleading: the comparison is symmetric, so there
185 // is no real {l/r}hs. What we want though is to have the same base on the
186 // left (resp. right), so that we can detect consecutive loads. To ensure this
187 // we put the smallest atom on the left.
192 BCECmpBlock(BCEAtom L
, BCEAtom R
, int SizeBits
)
193 : Lhs_(std::move(L
)), Rhs_(std::move(R
)), SizeBits_(SizeBits
) {
194 if (Rhs_
< Lhs_
) std::swap(Rhs_
, Lhs_
);
197 bool IsValid() const { return Lhs_
.BaseId
!= 0 && Rhs_
.BaseId
!= 0; }
199 // Assert the block is consistent: If valid, it should also have
200 // non-null members besides Lhs_ and Rhs_.
201 void AssertConsistent() const {
209 const BCEAtom
&Lhs() const { return Lhs_
; }
210 const BCEAtom
&Rhs() const { return Rhs_
; }
211 int SizeBits() const { return SizeBits_
; }
213 // Returns true if the block does other works besides comparison.
214 bool doesOtherWork() const;
216 // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
217 // instructions in the block.
218 bool canSplit(AliasAnalysis
&AA
) const;
220 // Return true if this all the relevant instructions in the BCE-cmp-block can
221 // be sunk below this instruction. By doing this, we know we can separate the
222 // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
224 bool canSinkBCECmpInst(const Instruction
*, DenseSet
<Instruction
*> &,
225 AliasAnalysis
&AA
) const;
227 // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
228 // instructions. Split the old block and move all non-BCE-cmp-insts into the
230 void split(BasicBlock
*NewParent
, AliasAnalysis
&AA
) const;
232 // The basic block where this comparison happens.
233 BasicBlock
*BB
= nullptr;
234 // The ICMP for this comparison.
235 ICmpInst
*CmpI
= nullptr;
236 // The terminating branch.
237 BranchInst
*BranchI
= nullptr;
238 // The block requires splitting.
239 bool RequireSplit
= false;
247 bool BCECmpBlock::canSinkBCECmpInst(const Instruction
*Inst
,
248 DenseSet
<Instruction
*> &BlockInsts
,
249 AliasAnalysis
&AA
) const {
250 // If this instruction has side effects and its in middle of the BCE cmp block
251 // instructions, then bail for now.
252 if (Inst
->mayHaveSideEffects()) {
253 // Bail if this is not a simple load or store
254 if (!isSimpleLoadOrStore(Inst
))
256 // Disallow stores that might alias the BCE operands
257 MemoryLocation LLoc
= MemoryLocation::get(Lhs_
.LoadI
);
258 MemoryLocation RLoc
= MemoryLocation::get(Rhs_
.LoadI
);
259 if (isModSet(AA
.getModRefInfo(Inst
, LLoc
)) ||
260 isModSet(AA
.getModRefInfo(Inst
, RLoc
)))
263 // Make sure this instruction does not use any of the BCE cmp block
264 // instructions as operand.
265 for (auto BI
: BlockInsts
) {
266 if (is_contained(Inst
->operands(), BI
))
272 void BCECmpBlock::split(BasicBlock
*NewParent
, AliasAnalysis
&AA
) const {
273 DenseSet
<Instruction
*> BlockInsts(
274 {Lhs_
.GEP
, Rhs_
.GEP
, Lhs_
.LoadI
, Rhs_
.LoadI
, CmpI
, BranchI
});
275 llvm::SmallVector
<Instruction
*, 4> OtherInsts
;
276 for (Instruction
&Inst
: *BB
) {
277 if (BlockInsts
.count(&Inst
))
279 assert(canSinkBCECmpInst(&Inst
, BlockInsts
, AA
) &&
280 "Split unsplittable block");
281 // This is a non-BCE-cmp-block instruction. And it can be separated
282 // from the BCE-cmp-block instruction.
283 OtherInsts
.push_back(&Inst
);
286 // Do the actual spliting.
287 for (Instruction
*Inst
: reverse(OtherInsts
)) {
288 Inst
->moveBefore(&*NewParent
->begin());
292 bool BCECmpBlock::canSplit(AliasAnalysis
&AA
) const {
293 DenseSet
<Instruction
*> BlockInsts(
294 {Lhs_
.GEP
, Rhs_
.GEP
, Lhs_
.LoadI
, Rhs_
.LoadI
, CmpI
, BranchI
});
295 for (Instruction
&Inst
: *BB
) {
296 if (!BlockInsts
.count(&Inst
)) {
297 if (!canSinkBCECmpInst(&Inst
, BlockInsts
, AA
))
304 bool BCECmpBlock::doesOtherWork() const {
306 // All the instructions we care about in the BCE cmp block.
307 DenseSet
<Instruction
*> BlockInsts(
308 {Lhs_
.GEP
, Rhs_
.GEP
, Lhs_
.LoadI
, Rhs_
.LoadI
, CmpI
, BranchI
});
309 // TODO(courbet): Can we allow some other things ? This is very conservative.
310 // We might be able to get away with anything does not have any side
311 // effects outside of the basic block.
312 // Note: The GEPs and/or loads are not necessarily in the same block.
313 for (const Instruction
&Inst
: *BB
) {
314 if (!BlockInsts
.count(&Inst
))
320 // Visit the given comparison. If this is a comparison between two valid
321 // BCE atoms, returns the comparison.
322 BCECmpBlock
visitICmp(const ICmpInst
*const CmpI
,
323 const ICmpInst::Predicate ExpectedPredicate
,
324 BaseIdentifier
&BaseId
) {
325 // The comparison can only be used once:
326 // - For intermediate blocks, as a branch condition.
327 // - For the final block, as an incoming value for the Phi.
328 // If there are any other uses of the comparison, we cannot merge it with
329 // other comparisons as we would create an orphan use of the value.
330 if (!CmpI
->hasOneUse()) {
331 LLVM_DEBUG(dbgs() << "cmp has several uses\n");
334 if (CmpI
->getPredicate() != ExpectedPredicate
)
336 LLVM_DEBUG(dbgs() << "cmp "
337 << (ExpectedPredicate
== ICmpInst::ICMP_EQ
? "eq" : "ne")
339 auto Lhs
= visitICmpLoadOperand(CmpI
->getOperand(0), BaseId
);
342 auto Rhs
= visitICmpLoadOperand(CmpI
->getOperand(1), BaseId
);
345 const auto &DL
= CmpI
->getModule()->getDataLayout();
346 return BCECmpBlock(std::move(Lhs
), std::move(Rhs
),
347 DL
.getTypeSizeInBits(CmpI
->getOperand(0)->getType()));
350 // Visit the given comparison block. If this is a comparison between two valid
351 // BCE atoms, returns the comparison.
352 BCECmpBlock
visitCmpBlock(Value
*const Val
, BasicBlock
*const Block
,
353 const BasicBlock
*const PhiBlock
,
354 BaseIdentifier
&BaseId
) {
355 if (Block
->empty()) return {};
356 auto *const BranchI
= dyn_cast
<BranchInst
>(Block
->getTerminator());
357 if (!BranchI
) return {};
358 LLVM_DEBUG(dbgs() << "branch\n");
359 if (BranchI
->isUnconditional()) {
360 // In this case, we expect an incoming value which is the result of the
361 // comparison. This is the last link in the chain of comparisons (note
362 // that this does not mean that this is the last incoming value, blocks
363 // can be reordered).
364 auto *const CmpI
= dyn_cast
<ICmpInst
>(Val
);
365 if (!CmpI
) return {};
366 LLVM_DEBUG(dbgs() << "icmp\n");
367 auto Result
= visitICmp(CmpI
, ICmpInst::ICMP_EQ
, BaseId
);
369 Result
.BranchI
= BranchI
;
372 // In this case, we expect a constant incoming value (the comparison is
374 const auto *const Const
= dyn_cast
<ConstantInt
>(Val
);
375 LLVM_DEBUG(dbgs() << "const\n");
376 if (!Const
->isZero()) return {};
377 LLVM_DEBUG(dbgs() << "false\n");
378 auto *const CmpI
= dyn_cast
<ICmpInst
>(BranchI
->getCondition());
379 if (!CmpI
) return {};
380 LLVM_DEBUG(dbgs() << "icmp\n");
381 assert(BranchI
->getNumSuccessors() == 2 && "expecting a cond branch");
382 BasicBlock
*const FalseBlock
= BranchI
->getSuccessor(1);
383 auto Result
= visitICmp(
384 CmpI
, FalseBlock
== PhiBlock
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
,
387 Result
.BranchI
= BranchI
;
393 static inline void enqueueBlock(std::vector
<BCECmpBlock
> &Comparisons
,
394 BCECmpBlock
&&Comparison
) {
395 LLVM_DEBUG(dbgs() << "Block '" << Comparison
.BB
->getName()
396 << "': Found cmp of " << Comparison
.SizeBits()
397 << " bits between " << Comparison
.Lhs().BaseId
<< " + "
398 << Comparison
.Lhs().Offset
<< " and "
399 << Comparison
.Rhs().BaseId
<< " + "
400 << Comparison
.Rhs().Offset
<< "\n");
401 LLVM_DEBUG(dbgs() << "\n");
402 Comparisons
.push_back(std::move(Comparison
));
405 // A chain of comparisons.
408 BCECmpChain(const std::vector
<BasicBlock
*> &Blocks
, PHINode
&Phi
,
411 int size() const { return Comparisons_
.size(); }
413 #ifdef MERGEICMPS_DOT_ON
415 #endif // MERGEICMPS_DOT_ON
417 bool simplify(const TargetLibraryInfo
&TLI
, AliasAnalysis
&AA
,
418 DomTreeUpdater
&DTU
);
421 static bool IsContiguous(const BCECmpBlock
&First
,
422 const BCECmpBlock
&Second
) {
423 return First
.Lhs().BaseId
== Second
.Lhs().BaseId
&&
424 First
.Rhs().BaseId
== Second
.Rhs().BaseId
&&
425 First
.Lhs().Offset
+ First
.SizeBits() / 8 == Second
.Lhs().Offset
&&
426 First
.Rhs().Offset
+ First
.SizeBits() / 8 == Second
.Rhs().Offset
;
430 std::vector
<BCECmpBlock
> Comparisons_
;
431 // The original entry block (before sorting);
432 BasicBlock
*EntryBlock_
;
435 BCECmpChain::BCECmpChain(const std::vector
<BasicBlock
*> &Blocks
, PHINode
&Phi
,
438 assert(!Blocks
.empty() && "a chain should have at least one block");
439 // Now look inside blocks to check for BCE comparisons.
440 std::vector
<BCECmpBlock
> Comparisons
;
441 BaseIdentifier BaseId
;
442 for (size_t BlockIdx
= 0; BlockIdx
< Blocks
.size(); ++BlockIdx
) {
443 BasicBlock
*const Block
= Blocks
[BlockIdx
];
444 assert(Block
&& "invalid block");
445 BCECmpBlock Comparison
= visitCmpBlock(Phi
.getIncomingValueForBlock(Block
),
446 Block
, Phi
.getParent(), BaseId
);
447 Comparison
.BB
= Block
;
448 if (!Comparison
.IsValid()) {
449 LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
452 if (Comparison
.doesOtherWork()) {
453 LLVM_DEBUG(dbgs() << "block '" << Comparison
.BB
->getName()
454 << "' does extra work besides compare\n");
455 if (Comparisons
.empty()) {
456 // This is the initial block in the chain, in case this block does other
457 // work, we can try to split the block and move the irrelevant
458 // instructions to the predecessor.
460 // If this is not the initial block in the chain, splitting it wont
463 // As once split, there will still be instructions before the BCE cmp
464 // instructions that do other work in program order, i.e. within the
465 // chain before sorting. Unless we can abort the chain at this point
468 // NOTE: we only handle blocks a with single predecessor for now.
469 if (Comparison
.canSplit(AA
)) {
471 << "Split initial block '" << Comparison
.BB
->getName()
472 << "' that does extra work besides compare\n");
473 Comparison
.RequireSplit
= true;
474 enqueueBlock(Comparisons
, std::move(Comparison
));
477 << "ignoring initial block '" << Comparison
.BB
->getName()
478 << "' that does extra work besides compare\n");
482 // TODO(courbet): Right now we abort the whole chain. We could be
483 // merging only the blocks that don't do other work and resume the
484 // chain from there. For example:
485 // if (a[0] == b[0]) { // bb1
486 // if (a[1] == b[1]) { // bb2
487 // some_value = 3; //bb3
488 // if (a[2] == b[2]) { //bb3
489 // do a ton of stuff //bb4
496 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
500 // +------------+-----------+----------> bb_phi
502 // We can only merge the first two comparisons, because bb3* does
503 // "other work" (setting some_value to 3).
504 // We could still merge bb1 and bb2 though.
507 enqueueBlock(Comparisons
, std::move(Comparison
));
510 // It is possible we have no suitable comparison to merge.
511 if (Comparisons
.empty()) {
512 LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
515 EntryBlock_
= Comparisons
[0].BB
;
516 Comparisons_
= std::move(Comparisons
);
517 #ifdef MERGEICMPS_DOT_ON
518 errs() << "BEFORE REORDERING:\n\n";
520 #endif // MERGEICMPS_DOT_ON
521 // Reorder blocks by LHS. We can do that without changing the
522 // semantics because we are only accessing dereferencable memory.
523 llvm::sort(Comparisons_
,
524 [](const BCECmpBlock
&LhsBlock
, const BCECmpBlock
&RhsBlock
) {
525 return std::tie(LhsBlock
.Lhs(), LhsBlock
.Rhs()) <
526 std::tie(RhsBlock
.Lhs(), RhsBlock
.Rhs());
528 #ifdef MERGEICMPS_DOT_ON
529 errs() << "AFTER REORDERING:\n\n";
531 #endif // MERGEICMPS_DOT_ON
534 #ifdef MERGEICMPS_DOT_ON
535 void BCECmpChain::dump() const {
536 errs() << "digraph dag {\n";
537 errs() << " graph [bgcolor=transparent];\n";
538 errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
539 errs() << " edge [color=black];\n";
540 for (size_t I
= 0; I
< Comparisons_
.size(); ++I
) {
541 const auto &Comparison
= Comparisons_
[I
];
542 errs() << " \"" << I
<< "\" [label=\"%"
543 << Comparison
.Lhs().Base()->getName() << " + "
544 << Comparison
.Lhs().Offset
<< " == %"
545 << Comparison
.Rhs().Base()->getName() << " + "
546 << Comparison
.Rhs().Offset
<< " (" << (Comparison
.SizeBits() / 8)
548 const Value
*const Val
= Phi_
.getIncomingValueForBlock(Comparison
.BB
);
549 if (I
> 0) errs() << " \"" << (I
- 1) << "\" -> \"" << I
<< "\";\n";
550 errs() << " \"" << I
<< "\" -> \"Phi\" [label=\"" << *Val
<< "\"];\n";
552 errs() << " \"Phi\" [label=\"Phi\"];\n";
555 #endif // MERGEICMPS_DOT_ON
559 // A class to compute the name of a set of merged basic blocks.
560 // This is optimized for the common case of no block names.
561 class MergedBlockName
{
562 // Storage for the uncommon case of several named blocks.
563 SmallString
<16> Scratch
;
566 explicit MergedBlockName(ArrayRef
<BCECmpBlock
> Comparisons
)
567 : Name(makeName(Comparisons
)) {}
568 const StringRef Name
;
571 StringRef
makeName(ArrayRef
<BCECmpBlock
> Comparisons
) {
572 assert(!Comparisons
.empty() && "no basic block");
573 // Fast path: only one block, or no names at all.
574 if (Comparisons
.size() == 1)
575 return Comparisons
[0].BB
->getName();
576 const int size
= std::accumulate(Comparisons
.begin(), Comparisons
.end(), 0,
577 [](int i
, const BCECmpBlock
&Cmp
) {
578 return i
+ Cmp
.BB
->getName().size();
581 return StringRef("", 0);
583 // Slow path: at least two blocks, at least one block with a name.
585 // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for
587 Scratch
.reserve(size
+ Comparisons
.size() - 1);
588 const auto append
= [this](StringRef str
) {
589 Scratch
.append(str
.begin(), str
.end());
591 append(Comparisons
[0].BB
->getName());
592 for (int I
= 1, E
= Comparisons
.size(); I
< E
; ++I
) {
593 const BasicBlock
*const BB
= Comparisons
[I
].BB
;
594 if (!BB
->getName().empty()) {
596 append(BB
->getName());
599 return StringRef(Scratch
);
604 // Merges the given contiguous comparison blocks into one memcmp block.
605 static BasicBlock
*mergeComparisons(ArrayRef
<BCECmpBlock
> Comparisons
,
606 BasicBlock
*const InsertBefore
,
607 BasicBlock
*const NextCmpBlock
,
608 PHINode
&Phi
, const TargetLibraryInfo
&TLI
,
609 AliasAnalysis
&AA
, DomTreeUpdater
&DTU
) {
610 assert(!Comparisons
.empty() && "merging zero comparisons");
611 LLVMContext
&Context
= NextCmpBlock
->getContext();
612 const BCECmpBlock
&FirstCmp
= Comparisons
[0];
614 // Create a new cmp block before next cmp block.
615 BasicBlock
*const BB
=
616 BasicBlock::Create(Context
, MergedBlockName(Comparisons
).Name
,
617 NextCmpBlock
->getParent(), InsertBefore
);
618 IRBuilder
<> Builder(BB
);
619 // Add the GEPs from the first BCECmpBlock.
620 Value
*const Lhs
= Builder
.Insert(FirstCmp
.Lhs().GEP
->clone());
621 Value
*const Rhs
= Builder
.Insert(FirstCmp
.Rhs().GEP
->clone());
623 Value
*IsEqual
= nullptr;
624 LLVM_DEBUG(dbgs() << "Merging " << Comparisons
.size() << " comparisons -> "
625 << BB
->getName() << "\n");
626 if (Comparisons
.size() == 1) {
627 LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
628 Value
*const LhsLoad
=
629 Builder
.CreateLoad(FirstCmp
.Lhs().LoadI
->getType(), Lhs
);
630 Value
*const RhsLoad
=
631 Builder
.CreateLoad(FirstCmp
.Rhs().LoadI
->getType(), Rhs
);
632 // There are no blocks to merge, just do the comparison.
633 IsEqual
= Builder
.CreateICmpEQ(LhsLoad
, RhsLoad
);
635 // If there is one block that requires splitting, we do it now, i.e.
636 // just before we know we will collapse the chain. The instructions
637 // can be executed before any of the instructions in the chain.
639 std::find_if(Comparisons
.begin(), Comparisons
.end(),
640 [](const BCECmpBlock
&B
) { return B
.RequireSplit
; });
641 if (ToSplit
!= Comparisons
.end()) {
642 LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n");
643 ToSplit
->split(BB
, AA
);
646 const unsigned TotalSizeBits
= std::accumulate(
647 Comparisons
.begin(), Comparisons
.end(), 0u,
648 [](int Size
, const BCECmpBlock
&C
) { return Size
+ C
.SizeBits(); });
650 // Create memcmp() == 0.
651 const auto &DL
= Phi
.getModule()->getDataLayout();
652 Value
*const MemCmpCall
= emitMemCmp(
654 ConstantInt::get(DL
.getIntPtrType(Context
), TotalSizeBits
/ 8), Builder
,
656 IsEqual
= Builder
.CreateICmpEQ(
657 MemCmpCall
, ConstantInt::get(Type::getInt32Ty(Context
), 0));
660 BasicBlock
*const PhiBB
= Phi
.getParent();
661 // Add a branch to the next basic block in the chain.
662 if (NextCmpBlock
== PhiBB
) {
663 // Continue to phi, passing it the comparison result.
664 Builder
.CreateBr(PhiBB
);
665 Phi
.addIncoming(IsEqual
, BB
);
666 DTU
.applyUpdates({{DominatorTree::Insert
, BB
, PhiBB
}});
668 // Continue to next block if equal, exit to phi else.
669 Builder
.CreateCondBr(IsEqual
, NextCmpBlock
, PhiBB
);
670 Phi
.addIncoming(ConstantInt::getFalse(Context
), BB
);
671 DTU
.applyUpdates({{DominatorTree::Insert
, BB
, NextCmpBlock
},
672 {DominatorTree::Insert
, BB
, PhiBB
}});
677 bool BCECmpChain::simplify(const TargetLibraryInfo
&TLI
, AliasAnalysis
&AA
,
678 DomTreeUpdater
&DTU
) {
679 assert(Comparisons_
.size() >= 2 && "simplifying trivial BCECmpChain");
680 // First pass to check if there is at least one merge. If not, we don't do
681 // anything and we keep analysis passes intact.
682 const auto AtLeastOneMerged
= [this]() {
683 for (size_t I
= 1; I
< Comparisons_
.size(); ++I
) {
684 if (IsContiguous(Comparisons_
[I
- 1], Comparisons_
[I
]))
689 if (!AtLeastOneMerged())
692 LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block "
693 << EntryBlock_
->getName() << "\n");
695 // Effectively merge blocks. We go in the reverse direction from the phi block
696 // so that the next block is always available to branch to.
697 const auto mergeRange
= [this, &TLI
, &AA
, &DTU
](int I
, int Num
,
698 BasicBlock
*InsertBefore
,
700 return mergeComparisons(makeArrayRef(Comparisons_
).slice(I
, Num
),
701 InsertBefore
, Next
, Phi_
, TLI
, AA
, DTU
);
704 BasicBlock
*NextCmpBlock
= Phi_
.getParent();
705 for (int I
= static_cast<int>(Comparisons_
.size()) - 2; I
>= 0; --I
) {
706 if (IsContiguous(Comparisons_
[I
], Comparisons_
[I
+ 1])) {
707 LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_
[I
].BB
->getName()
708 << " into " << Comparisons_
[I
+ 1].BB
->getName()
712 NextCmpBlock
= mergeRange(I
+ 1, NumMerged
, NextCmpBlock
, NextCmpBlock
);
716 // Insert the entry block for the new chain before the old entry block.
717 // If the old entry block was the function entry, this ensures that the new
718 // entry can become the function entry.
719 NextCmpBlock
= mergeRange(0, NumMerged
, EntryBlock_
, NextCmpBlock
);
721 // Replace the original cmp chain with the new cmp chain by pointing all
722 // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp
723 // blocks in the old chain unreachable.
724 while (!pred_empty(EntryBlock_
)) {
725 BasicBlock
* const Pred
= *pred_begin(EntryBlock_
);
726 LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred
->getName()
728 Pred
->getTerminator()->replaceUsesOfWith(EntryBlock_
, NextCmpBlock
);
729 DTU
.applyUpdates({{DominatorTree::Delete
, Pred
, EntryBlock_
},
730 {DominatorTree::Insert
, Pred
, NextCmpBlock
}});
733 // If the old cmp chain was the function entry, we need to update the function
735 const bool ChainEntryIsFnEntry
=
736 (EntryBlock_
== &EntryBlock_
->getParent()->getEntryBlock());
737 if (ChainEntryIsFnEntry
&& DTU
.hasDomTree()) {
738 LLVM_DEBUG(dbgs() << "Changing function entry from "
739 << EntryBlock_
->getName() << " to "
740 << NextCmpBlock
->getName() << "\n");
741 DTU
.getDomTree().setNewRoot(NextCmpBlock
);
742 DTU
.applyUpdates({{DominatorTree::Delete
, NextCmpBlock
, EntryBlock_
}});
744 EntryBlock_
= nullptr;
746 // Delete merged blocks. This also removes incoming values in phi.
747 SmallVector
<BasicBlock
*, 16> DeadBlocks
;
748 for (auto &Cmp
: Comparisons_
) {
749 LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp
.BB
->getName() << "\n");
750 DeadBlocks
.push_back(Cmp
.BB
);
752 DeleteDeadBlocks(DeadBlocks
, &DTU
);
754 Comparisons_
.clear();
758 std::vector
<BasicBlock
*> getOrderedBlocks(PHINode
&Phi
,
759 BasicBlock
*const LastBlock
,
761 // Walk up from the last block to find other blocks.
762 std::vector
<BasicBlock
*> Blocks(NumBlocks
);
763 assert(LastBlock
&& "invalid last block");
764 BasicBlock
*CurBlock
= LastBlock
;
765 for (int BlockIndex
= NumBlocks
- 1; BlockIndex
> 0; --BlockIndex
) {
766 if (CurBlock
->hasAddressTaken()) {
767 // Somebody is jumping to the block through an address, all bets are
769 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
770 << " has its address taken\n");
773 Blocks
[BlockIndex
] = CurBlock
;
774 auto *SinglePredecessor
= CurBlock
->getSinglePredecessor();
775 if (!SinglePredecessor
) {
776 // The block has two or more predecessors.
777 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
778 << " has two or more predecessors\n");
781 if (Phi
.getBasicBlockIndex(SinglePredecessor
) < 0) {
782 // The block does not link back to the phi.
783 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
784 << " does not link back to the phi\n");
787 CurBlock
= SinglePredecessor
;
789 Blocks
[0] = CurBlock
;
793 bool processPhi(PHINode
&Phi
, const TargetLibraryInfo
&TLI
, AliasAnalysis
&AA
,
794 DomTreeUpdater
&DTU
) {
795 LLVM_DEBUG(dbgs() << "processPhi()\n");
796 if (Phi
.getNumIncomingValues() <= 1) {
797 LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
800 // We are looking for something that has the following structure:
801 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
805 // +------------+-----------+----------> bb_phi
807 // - The last basic block (bb4 here) must branch unconditionally to bb_phi.
808 // It's the only block that contributes a non-constant value to the Phi.
809 // - All other blocks (b1, b2, b3) must have exactly two successors, one of
810 // them being the phi block.
811 // - All intermediate blocks (bb2, bb3) must have only one predecessor.
812 // - Blocks cannot do other work besides the comparison, see doesOtherWork()
814 // The blocks are not necessarily ordered in the phi, so we start from the
815 // last block and reconstruct the order.
816 BasicBlock
*LastBlock
= nullptr;
817 for (unsigned I
= 0; I
< Phi
.getNumIncomingValues(); ++I
) {
818 if (isa
<ConstantInt
>(Phi
.getIncomingValue(I
))) continue;
820 // There are several non-constant values.
821 LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
824 if (!isa
<ICmpInst
>(Phi
.getIncomingValue(I
)) ||
825 cast
<ICmpInst
>(Phi
.getIncomingValue(I
))->getParent() !=
826 Phi
.getIncomingBlock(I
)) {
827 // Non-constant incoming value is not from a cmp instruction or not
828 // produced by the last block. We could end up processing the value
829 // producing block more than once.
831 // This is an uncommon case, so we bail.
834 << "skip: non-constant value not from cmp or not from last block.\n");
837 LastBlock
= Phi
.getIncomingBlock(I
);
840 // There is no non-constant block.
841 LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
844 if (LastBlock
->getSingleSuccessor() != Phi
.getParent()) {
845 LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
850 getOrderedBlocks(Phi
, LastBlock
, Phi
.getNumIncomingValues());
851 if (Blocks
.empty()) return false;
852 BCECmpChain
CmpChain(Blocks
, Phi
, AA
);
854 if (CmpChain
.size() < 2) {
855 LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
859 return CmpChain
.simplify(TLI
, AA
, DTU
);
862 static bool runImpl(Function
&F
, const TargetLibraryInfo
&TLI
,
863 const TargetTransformInfo
&TTI
, AliasAnalysis
&AA
,
865 LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F
.getName() << "\n");
867 // We only try merging comparisons if the target wants to expand memcmp later.
868 // The rationale is to avoid turning small chains into memcmp calls.
869 if (!TTI
.enableMemCmpExpansion(F
.hasOptSize(), true))
872 // If we don't have memcmp avaiable we can't emit calls to it.
873 if (!TLI
.has(LibFunc_memcmp
))
876 DomTreeUpdater
DTU(DT
, /*PostDominatorTree*/ nullptr,
877 DomTreeUpdater::UpdateStrategy::Eager
);
879 bool MadeChange
= false;
881 for (auto BBIt
= ++F
.begin(); BBIt
!= F
.end(); ++BBIt
) {
882 // A Phi operation is always first in a basic block.
883 if (auto *const Phi
= dyn_cast
<PHINode
>(&*BBIt
->begin()))
884 MadeChange
|= processPhi(*Phi
, TLI
, AA
, DTU
);
890 class MergeICmpsLegacyPass
: public FunctionPass
{
894 MergeICmpsLegacyPass() : FunctionPass(ID
) {
895 initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry());
898 bool runOnFunction(Function
&F
) override
{
899 if (skipFunction(F
)) return false;
900 const auto &TLI
= getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
901 const auto &TTI
= getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
902 // MergeICmps does not need the DominatorTree, but we update it if it's
903 // already available.
904 auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
905 auto &AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
906 return runImpl(F
, TLI
, TTI
, AA
, DTWP
? &DTWP
->getDomTree() : nullptr);
910 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
911 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
912 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
913 AU
.addRequired
<AAResultsWrapperPass
>();
914 AU
.addPreserved
<GlobalsAAWrapperPass
>();
915 AU
.addPreserved
<DominatorTreeWrapperPass
>();
921 char MergeICmpsLegacyPass::ID
= 0;
922 INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass
, "mergeicmps",
923 "Merge contiguous icmps into a memcmp", false, false)
924 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
925 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
926 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
927 INITIALIZE_PASS_END(MergeICmpsLegacyPass
, "mergeicmps",
928 "Merge contiguous icmps into a memcmp", false, false)
930 Pass
*llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); }
932 PreservedAnalyses
MergeICmpsPass::run(Function
&F
,
933 FunctionAnalysisManager
&AM
) {
934 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
935 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
936 auto &AA
= AM
.getResult
<AAManager
>(F
);
937 auto *DT
= AM
.getCachedResult
<DominatorTreeAnalysis
>(F
);
938 const bool MadeChanges
= runImpl(F
, TLI
, TTI
, AA
, DT
);
940 return PreservedAnalyses::all();
941 PreservedAnalyses PA
;
942 PA
.preserve
<GlobalsAA
>();
943 PA
.preserve
<DominatorTreeAnalysis
>();