[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Scalar / MergeICmps.cpp
blob98a45b391319ea2eb69f50eda989d8450f96884f
1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns chains of integer comparisons into memcmp (the memcmp is
10 // later typically inlined as a chain of efficient hardware comparisons). This
11 // typically benefits c++ member or nonmember operator==().
13 // The basic idea is to replace a longer chain of integer comparisons loaded
14 // from contiguous memory locations into a shorter chain of larger integer
15 // comparisons. Benefits are double:
16 // - There are less jumps, and therefore less opportunities for mispredictions
17 // and I-cache misses.
18 // - Code size is smaller, both because jumps are removed and because the
19 // encoding of a 2*n byte compare is smaller than that of two n-byte
20 // compares.
22 // Example:
24 // struct S {
25 // int a;
26 // char b;
27 // char c;
28 // uint16_t d;
29 // bool operator==(const S& o) const {
30 // return a == o.a && b == o.b && c == o.c && d == o.d;
31 // }
32 // };
34 // Is optimized as :
36 // bool S::operator==(const S& o) const {
37 // return memcmp(this, &o, 8) == 0;
38 // }
40 // Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
42 //===----------------------------------------------------------------------===//
44 #include "llvm/Transforms/Scalar/MergeICmps.h"
45 #include "llvm/Analysis/DomTreeUpdater.h"
46 #include "llvm/Analysis/GlobalsModRef.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/Analysis/TargetTransformInfo.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/IRBuilder.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/BuildLibCalls.h"
57 #include <algorithm>
58 #include <numeric>
59 #include <utility>
60 #include <vector>
62 using namespace llvm;
64 namespace {
66 #define DEBUG_TYPE "mergeicmps"
68 // Returns true if the instruction is a simple load or a simple store
69 static bool isSimpleLoadOrStore(const Instruction *I) {
70 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
71 return LI->isSimple();
72 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
73 return SI->isSimple();
74 return false;
77 // A BCE atom "Binary Compare Expression Atom" represents an integer load
78 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example
79 // at the top.
80 struct BCEAtom {
81 BCEAtom() = default;
82 BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset)
83 : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {}
85 BCEAtom(const BCEAtom &) = delete;
86 BCEAtom &operator=(const BCEAtom &) = delete;
88 BCEAtom(BCEAtom &&that) = default;
89 BCEAtom &operator=(BCEAtom &&that) {
90 if (this == &that)
91 return *this;
92 GEP = that.GEP;
93 LoadI = that.LoadI;
94 BaseId = that.BaseId;
95 Offset = std::move(that.Offset);
96 return *this;
99 // We want to order BCEAtoms by (Base, Offset). However we cannot use
100 // the pointer values for Base because these are non-deterministic.
101 // To make sure that the sort order is stable, we first assign to each atom
102 // base value an index based on its order of appearance in the chain of
103 // comparisons. We call this index `BaseOrdering`. For example, for:
104 // b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
105 // | block 1 | | block 2 | | block 3 |
106 // b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
107 // which is before block 2.
108 // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
109 bool operator<(const BCEAtom &O) const {
110 return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset);
113 GetElementPtrInst *GEP = nullptr;
114 LoadInst *LoadI = nullptr;
115 unsigned BaseId = 0;
116 APInt Offset;
119 // A class that assigns increasing ids to values in the order in which they are
120 // seen. See comment in `BCEAtom::operator<()``.
121 class BaseIdentifier {
122 public:
123 // Returns the id for value `Base`, after assigning one if `Base` has not been
124 // seen before.
125 int getBaseId(const Value *Base) {
126 assert(Base && "invalid base");
127 const auto Insertion = BaseToIndex.try_emplace(Base, Order);
128 if (Insertion.second)
129 ++Order;
130 return Insertion.first->second;
133 private:
134 unsigned Order = 1;
135 DenseMap<const Value*, int> BaseToIndex;
138 // If this value is a load from a constant offset w.r.t. a base address, and
139 // there are no other users of the load or address, returns the base address and
140 // the offset.
141 BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) {
142 auto *const LoadI = dyn_cast<LoadInst>(Val);
143 if (!LoadI)
144 return {};
145 LLVM_DEBUG(dbgs() << "load\n");
146 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
147 LLVM_DEBUG(dbgs() << "used outside of block\n");
148 return {};
150 // Do not optimize atomic loads to non-atomic memcmp
151 if (!LoadI->isSimple()) {
152 LLVM_DEBUG(dbgs() << "volatile or atomic\n");
153 return {};
155 Value *const Addr = LoadI->getOperand(0);
156 auto *const GEP = dyn_cast<GetElementPtrInst>(Addr);
157 if (!GEP)
158 return {};
159 LLVM_DEBUG(dbgs() << "GEP\n");
160 if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
161 LLVM_DEBUG(dbgs() << "used outside of block\n");
162 return {};
164 const auto &DL = GEP->getModule()->getDataLayout();
165 if (!isDereferenceablePointer(GEP, LoadI->getType(), DL)) {
166 LLVM_DEBUG(dbgs() << "not dereferenceable\n");
167 // We need to make sure that we can do comparison in any order, so we
168 // require memory to be unconditionnally dereferencable.
169 return {};
171 APInt Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
172 if (!GEP->accumulateConstantOffset(DL, Offset))
173 return {};
174 return BCEAtom(GEP, LoadI, BaseId.getBaseId(GEP->getPointerOperand()),
175 Offset);
178 // A basic block with a comparison between two BCE atoms, e.g. `a == o.a` in the
179 // example at the top.
180 // The block might do extra work besides the atom comparison, in which case
181 // doesOtherWork() returns true. Under some conditions, the block can be
182 // split into the atom comparison part and the "other work" part
183 // (see canSplit()).
184 // Note: the terminology is misleading: the comparison is symmetric, so there
185 // is no real {l/r}hs. What we want though is to have the same base on the
186 // left (resp. right), so that we can detect consecutive loads. To ensure this
187 // we put the smallest atom on the left.
188 class BCECmpBlock {
189 public:
190 BCECmpBlock() {}
192 BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits)
193 : Lhs_(std::move(L)), Rhs_(std::move(R)), SizeBits_(SizeBits) {
194 if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_);
197 bool IsValid() const { return Lhs_.BaseId != 0 && Rhs_.BaseId != 0; }
199 // Assert the block is consistent: If valid, it should also have
200 // non-null members besides Lhs_ and Rhs_.
201 void AssertConsistent() const {
202 if (IsValid()) {
203 assert(BB);
204 assert(CmpI);
205 assert(BranchI);
209 const BCEAtom &Lhs() const { return Lhs_; }
210 const BCEAtom &Rhs() const { return Rhs_; }
211 int SizeBits() const { return SizeBits_; }
213 // Returns true if the block does other works besides comparison.
214 bool doesOtherWork() const;
216 // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
217 // instructions in the block.
218 bool canSplit(AliasAnalysis &AA) const;
220 // Return true if this all the relevant instructions in the BCE-cmp-block can
221 // be sunk below this instruction. By doing this, we know we can separate the
222 // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
223 // block.
224 bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &,
225 AliasAnalysis &AA) const;
227 // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
228 // instructions. Split the old block and move all non-BCE-cmp-insts into the
229 // new parent block.
230 void split(BasicBlock *NewParent, AliasAnalysis &AA) const;
232 // The basic block where this comparison happens.
233 BasicBlock *BB = nullptr;
234 // The ICMP for this comparison.
235 ICmpInst *CmpI = nullptr;
236 // The terminating branch.
237 BranchInst *BranchI = nullptr;
238 // The block requires splitting.
239 bool RequireSplit = false;
241 private:
242 BCEAtom Lhs_;
243 BCEAtom Rhs_;
244 int SizeBits_ = 0;
247 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
248 DenseSet<Instruction *> &BlockInsts,
249 AliasAnalysis &AA) const {
250 // If this instruction has side effects and its in middle of the BCE cmp block
251 // instructions, then bail for now.
252 if (Inst->mayHaveSideEffects()) {
253 // Bail if this is not a simple load or store
254 if (!isSimpleLoadOrStore(Inst))
255 return false;
256 // Disallow stores that might alias the BCE operands
257 MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI);
258 MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI);
259 if (isModSet(AA.getModRefInfo(Inst, LLoc)) ||
260 isModSet(AA.getModRefInfo(Inst, RLoc)))
261 return false;
263 // Make sure this instruction does not use any of the BCE cmp block
264 // instructions as operand.
265 for (auto BI : BlockInsts) {
266 if (is_contained(Inst->operands(), BI))
267 return false;
269 return true;
272 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const {
273 DenseSet<Instruction *> BlockInsts(
274 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
275 llvm::SmallVector<Instruction *, 4> OtherInsts;
276 for (Instruction &Inst : *BB) {
277 if (BlockInsts.count(&Inst))
278 continue;
279 assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) &&
280 "Split unsplittable block");
281 // This is a non-BCE-cmp-block instruction. And it can be separated
282 // from the BCE-cmp-block instruction.
283 OtherInsts.push_back(&Inst);
286 // Do the actual spliting.
287 for (Instruction *Inst : reverse(OtherInsts)) {
288 Inst->moveBefore(&*NewParent->begin());
292 bool BCECmpBlock::canSplit(AliasAnalysis &AA) const {
293 DenseSet<Instruction *> BlockInsts(
294 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
295 for (Instruction &Inst : *BB) {
296 if (!BlockInsts.count(&Inst)) {
297 if (!canSinkBCECmpInst(&Inst, BlockInsts, AA))
298 return false;
301 return true;
304 bool BCECmpBlock::doesOtherWork() const {
305 AssertConsistent();
306 // All the instructions we care about in the BCE cmp block.
307 DenseSet<Instruction *> BlockInsts(
308 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
309 // TODO(courbet): Can we allow some other things ? This is very conservative.
310 // We might be able to get away with anything does not have any side
311 // effects outside of the basic block.
312 // Note: The GEPs and/or loads are not necessarily in the same block.
313 for (const Instruction &Inst : *BB) {
314 if (!BlockInsts.count(&Inst))
315 return true;
317 return false;
320 // Visit the given comparison. If this is a comparison between two valid
321 // BCE atoms, returns the comparison.
322 BCECmpBlock visitICmp(const ICmpInst *const CmpI,
323 const ICmpInst::Predicate ExpectedPredicate,
324 BaseIdentifier &BaseId) {
325 // The comparison can only be used once:
326 // - For intermediate blocks, as a branch condition.
327 // - For the final block, as an incoming value for the Phi.
328 // If there are any other uses of the comparison, we cannot merge it with
329 // other comparisons as we would create an orphan use of the value.
330 if (!CmpI->hasOneUse()) {
331 LLVM_DEBUG(dbgs() << "cmp has several uses\n");
332 return {};
334 if (CmpI->getPredicate() != ExpectedPredicate)
335 return {};
336 LLVM_DEBUG(dbgs() << "cmp "
337 << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
338 << "\n");
339 auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId);
340 if (!Lhs.BaseId)
341 return {};
342 auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId);
343 if (!Rhs.BaseId)
344 return {};
345 const auto &DL = CmpI->getModule()->getDataLayout();
346 return BCECmpBlock(std::move(Lhs), std::move(Rhs),
347 DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()));
350 // Visit the given comparison block. If this is a comparison between two valid
351 // BCE atoms, returns the comparison.
352 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block,
353 const BasicBlock *const PhiBlock,
354 BaseIdentifier &BaseId) {
355 if (Block->empty()) return {};
356 auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
357 if (!BranchI) return {};
358 LLVM_DEBUG(dbgs() << "branch\n");
359 if (BranchI->isUnconditional()) {
360 // In this case, we expect an incoming value which is the result of the
361 // comparison. This is the last link in the chain of comparisons (note
362 // that this does not mean that this is the last incoming value, blocks
363 // can be reordered).
364 auto *const CmpI = dyn_cast<ICmpInst>(Val);
365 if (!CmpI) return {};
366 LLVM_DEBUG(dbgs() << "icmp\n");
367 auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ, BaseId);
368 Result.CmpI = CmpI;
369 Result.BranchI = BranchI;
370 return Result;
371 } else {
372 // In this case, we expect a constant incoming value (the comparison is
373 // chained).
374 const auto *const Const = dyn_cast<ConstantInt>(Val);
375 LLVM_DEBUG(dbgs() << "const\n");
376 if (!Const->isZero()) return {};
377 LLVM_DEBUG(dbgs() << "false\n");
378 auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition());
379 if (!CmpI) return {};
380 LLVM_DEBUG(dbgs() << "icmp\n");
381 assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
382 BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
383 auto Result = visitICmp(
384 CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
385 BaseId);
386 Result.CmpI = CmpI;
387 Result.BranchI = BranchI;
388 return Result;
390 return {};
393 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
394 BCECmpBlock &&Comparison) {
395 LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
396 << "': Found cmp of " << Comparison.SizeBits()
397 << " bits between " << Comparison.Lhs().BaseId << " + "
398 << Comparison.Lhs().Offset << " and "
399 << Comparison.Rhs().BaseId << " + "
400 << Comparison.Rhs().Offset << "\n");
401 LLVM_DEBUG(dbgs() << "\n");
402 Comparisons.push_back(std::move(Comparison));
405 // A chain of comparisons.
406 class BCECmpChain {
407 public:
408 BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
409 AliasAnalysis &AA);
411 int size() const { return Comparisons_.size(); }
413 #ifdef MERGEICMPS_DOT_ON
414 void dump() const;
415 #endif // MERGEICMPS_DOT_ON
417 bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
418 DomTreeUpdater &DTU);
420 private:
421 static bool IsContiguous(const BCECmpBlock &First,
422 const BCECmpBlock &Second) {
423 return First.Lhs().BaseId == Second.Lhs().BaseId &&
424 First.Rhs().BaseId == Second.Rhs().BaseId &&
425 First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
426 First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
429 PHINode &Phi_;
430 std::vector<BCECmpBlock> Comparisons_;
431 // The original entry block (before sorting);
432 BasicBlock *EntryBlock_;
435 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
436 AliasAnalysis &AA)
437 : Phi_(Phi) {
438 assert(!Blocks.empty() && "a chain should have at least one block");
439 // Now look inside blocks to check for BCE comparisons.
440 std::vector<BCECmpBlock> Comparisons;
441 BaseIdentifier BaseId;
442 for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) {
443 BasicBlock *const Block = Blocks[BlockIdx];
444 assert(Block && "invalid block");
445 BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block),
446 Block, Phi.getParent(), BaseId);
447 Comparison.BB = Block;
448 if (!Comparison.IsValid()) {
449 LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
450 return;
452 if (Comparison.doesOtherWork()) {
453 LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName()
454 << "' does extra work besides compare\n");
455 if (Comparisons.empty()) {
456 // This is the initial block in the chain, in case this block does other
457 // work, we can try to split the block and move the irrelevant
458 // instructions to the predecessor.
460 // If this is not the initial block in the chain, splitting it wont
461 // work.
463 // As once split, there will still be instructions before the BCE cmp
464 // instructions that do other work in program order, i.e. within the
465 // chain before sorting. Unless we can abort the chain at this point
466 // and start anew.
468 // NOTE: we only handle blocks a with single predecessor for now.
469 if (Comparison.canSplit(AA)) {
470 LLVM_DEBUG(dbgs()
471 << "Split initial block '" << Comparison.BB->getName()
472 << "' that does extra work besides compare\n");
473 Comparison.RequireSplit = true;
474 enqueueBlock(Comparisons, std::move(Comparison));
475 } else {
476 LLVM_DEBUG(dbgs()
477 << "ignoring initial block '" << Comparison.BB->getName()
478 << "' that does extra work besides compare\n");
480 continue;
482 // TODO(courbet): Right now we abort the whole chain. We could be
483 // merging only the blocks that don't do other work and resume the
484 // chain from there. For example:
485 // if (a[0] == b[0]) { // bb1
486 // if (a[1] == b[1]) { // bb2
487 // some_value = 3; //bb3
488 // if (a[2] == b[2]) { //bb3
489 // do a ton of stuff //bb4
490 // }
491 // }
492 // }
494 // This is:
496 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
497 // \ \ \ \
498 // ne ne ne \
499 // \ \ \ v
500 // +------------+-----------+----------> bb_phi
502 // We can only merge the first two comparisons, because bb3* does
503 // "other work" (setting some_value to 3).
504 // We could still merge bb1 and bb2 though.
505 return;
507 enqueueBlock(Comparisons, std::move(Comparison));
510 // It is possible we have no suitable comparison to merge.
511 if (Comparisons.empty()) {
512 LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
513 return;
515 EntryBlock_ = Comparisons[0].BB;
516 Comparisons_ = std::move(Comparisons);
517 #ifdef MERGEICMPS_DOT_ON
518 errs() << "BEFORE REORDERING:\n\n";
519 dump();
520 #endif // MERGEICMPS_DOT_ON
521 // Reorder blocks by LHS. We can do that without changing the
522 // semantics because we are only accessing dereferencable memory.
523 llvm::sort(Comparisons_,
524 [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) {
525 return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) <
526 std::tie(RhsBlock.Lhs(), RhsBlock.Rhs());
528 #ifdef MERGEICMPS_DOT_ON
529 errs() << "AFTER REORDERING:\n\n";
530 dump();
531 #endif // MERGEICMPS_DOT_ON
534 #ifdef MERGEICMPS_DOT_ON
535 void BCECmpChain::dump() const {
536 errs() << "digraph dag {\n";
537 errs() << " graph [bgcolor=transparent];\n";
538 errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
539 errs() << " edge [color=black];\n";
540 for (size_t I = 0; I < Comparisons_.size(); ++I) {
541 const auto &Comparison = Comparisons_[I];
542 errs() << " \"" << I << "\" [label=\"%"
543 << Comparison.Lhs().Base()->getName() << " + "
544 << Comparison.Lhs().Offset << " == %"
545 << Comparison.Rhs().Base()->getName() << " + "
546 << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
547 << " bytes)\"];\n";
548 const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
549 if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
550 errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
552 errs() << " \"Phi\" [label=\"Phi\"];\n";
553 errs() << "}\n\n";
555 #endif // MERGEICMPS_DOT_ON
557 namespace {
559 // A class to compute the name of a set of merged basic blocks.
560 // This is optimized for the common case of no block names.
561 class MergedBlockName {
562 // Storage for the uncommon case of several named blocks.
563 SmallString<16> Scratch;
565 public:
566 explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons)
567 : Name(makeName(Comparisons)) {}
568 const StringRef Name;
570 private:
571 StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) {
572 assert(!Comparisons.empty() && "no basic block");
573 // Fast path: only one block, or no names at all.
574 if (Comparisons.size() == 1)
575 return Comparisons[0].BB->getName();
576 const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
577 [](int i, const BCECmpBlock &Cmp) {
578 return i + Cmp.BB->getName().size();
580 if (size == 0)
581 return StringRef("", 0);
583 // Slow path: at least two blocks, at least one block with a name.
584 Scratch.clear();
585 // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for
586 // separators.
587 Scratch.reserve(size + Comparisons.size() - 1);
588 const auto append = [this](StringRef str) {
589 Scratch.append(str.begin(), str.end());
591 append(Comparisons[0].BB->getName());
592 for (int I = 1, E = Comparisons.size(); I < E; ++I) {
593 const BasicBlock *const BB = Comparisons[I].BB;
594 if (!BB->getName().empty()) {
595 append("+");
596 append(BB->getName());
599 return StringRef(Scratch);
602 } // namespace
604 // Merges the given contiguous comparison blocks into one memcmp block.
605 static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
606 BasicBlock *const InsertBefore,
607 BasicBlock *const NextCmpBlock,
608 PHINode &Phi, const TargetLibraryInfo &TLI,
609 AliasAnalysis &AA, DomTreeUpdater &DTU) {
610 assert(!Comparisons.empty() && "merging zero comparisons");
611 LLVMContext &Context = NextCmpBlock->getContext();
612 const BCECmpBlock &FirstCmp = Comparisons[0];
614 // Create a new cmp block before next cmp block.
615 BasicBlock *const BB =
616 BasicBlock::Create(Context, MergedBlockName(Comparisons).Name,
617 NextCmpBlock->getParent(), InsertBefore);
618 IRBuilder<> Builder(BB);
619 // Add the GEPs from the first BCECmpBlock.
620 Value *const Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone());
621 Value *const Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone());
623 Value *IsEqual = nullptr;
624 LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> "
625 << BB->getName() << "\n");
626 if (Comparisons.size() == 1) {
627 LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
628 Value *const LhsLoad =
629 Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs);
630 Value *const RhsLoad =
631 Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs);
632 // There are no blocks to merge, just do the comparison.
633 IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
634 } else {
635 // If there is one block that requires splitting, we do it now, i.e.
636 // just before we know we will collapse the chain. The instructions
637 // can be executed before any of the instructions in the chain.
638 const auto ToSplit =
639 std::find_if(Comparisons.begin(), Comparisons.end(),
640 [](const BCECmpBlock &B) { return B.RequireSplit; });
641 if (ToSplit != Comparisons.end()) {
642 LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n");
643 ToSplit->split(BB, AA);
646 const unsigned TotalSizeBits = std::accumulate(
647 Comparisons.begin(), Comparisons.end(), 0u,
648 [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); });
650 // Create memcmp() == 0.
651 const auto &DL = Phi.getModule()->getDataLayout();
652 Value *const MemCmpCall = emitMemCmp(
653 Lhs, Rhs,
654 ConstantInt::get(DL.getIntPtrType(Context), TotalSizeBits / 8), Builder,
655 DL, &TLI);
656 IsEqual = Builder.CreateICmpEQ(
657 MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
660 BasicBlock *const PhiBB = Phi.getParent();
661 // Add a branch to the next basic block in the chain.
662 if (NextCmpBlock == PhiBB) {
663 // Continue to phi, passing it the comparison result.
664 Builder.CreateBr(PhiBB);
665 Phi.addIncoming(IsEqual, BB);
666 DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}});
667 } else {
668 // Continue to next block if equal, exit to phi else.
669 Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB);
670 Phi.addIncoming(ConstantInt::getFalse(Context), BB);
671 DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock},
672 {DominatorTree::Insert, BB, PhiBB}});
674 return BB;
677 bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
678 DomTreeUpdater &DTU) {
679 assert(Comparisons_.size() >= 2 && "simplifying trivial BCECmpChain");
680 // First pass to check if there is at least one merge. If not, we don't do
681 // anything and we keep analysis passes intact.
682 const auto AtLeastOneMerged = [this]() {
683 for (size_t I = 1; I < Comparisons_.size(); ++I) {
684 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I]))
685 return true;
687 return false;
689 if (!AtLeastOneMerged())
690 return false;
692 LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block "
693 << EntryBlock_->getName() << "\n");
695 // Effectively merge blocks. We go in the reverse direction from the phi block
696 // so that the next block is always available to branch to.
697 const auto mergeRange = [this, &TLI, &AA, &DTU](int I, int Num,
698 BasicBlock *InsertBefore,
699 BasicBlock *Next) {
700 return mergeComparisons(makeArrayRef(Comparisons_).slice(I, Num),
701 InsertBefore, Next, Phi_, TLI, AA, DTU);
703 int NumMerged = 1;
704 BasicBlock *NextCmpBlock = Phi_.getParent();
705 for (int I = static_cast<int>(Comparisons_.size()) - 2; I >= 0; --I) {
706 if (IsContiguous(Comparisons_[I], Comparisons_[I + 1])) {
707 LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_[I].BB->getName()
708 << " into " << Comparisons_[I + 1].BB->getName()
709 << "\n");
710 ++NumMerged;
711 } else {
712 NextCmpBlock = mergeRange(I + 1, NumMerged, NextCmpBlock, NextCmpBlock);
713 NumMerged = 1;
716 // Insert the entry block for the new chain before the old entry block.
717 // If the old entry block was the function entry, this ensures that the new
718 // entry can become the function entry.
719 NextCmpBlock = mergeRange(0, NumMerged, EntryBlock_, NextCmpBlock);
721 // Replace the original cmp chain with the new cmp chain by pointing all
722 // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp
723 // blocks in the old chain unreachable.
724 while (!pred_empty(EntryBlock_)) {
725 BasicBlock* const Pred = *pred_begin(EntryBlock_);
726 LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName()
727 << "\n");
728 Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock);
729 DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_},
730 {DominatorTree::Insert, Pred, NextCmpBlock}});
733 // If the old cmp chain was the function entry, we need to update the function
734 // entry.
735 const bool ChainEntryIsFnEntry =
736 (EntryBlock_ == &EntryBlock_->getParent()->getEntryBlock());
737 if (ChainEntryIsFnEntry && DTU.hasDomTree()) {
738 LLVM_DEBUG(dbgs() << "Changing function entry from "
739 << EntryBlock_->getName() << " to "
740 << NextCmpBlock->getName() << "\n");
741 DTU.getDomTree().setNewRoot(NextCmpBlock);
742 DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}});
744 EntryBlock_ = nullptr;
746 // Delete merged blocks. This also removes incoming values in phi.
747 SmallVector<BasicBlock *, 16> DeadBlocks;
748 for (auto &Cmp : Comparisons_) {
749 LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp.BB->getName() << "\n");
750 DeadBlocks.push_back(Cmp.BB);
752 DeleteDeadBlocks(DeadBlocks, &DTU);
754 Comparisons_.clear();
755 return true;
758 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
759 BasicBlock *const LastBlock,
760 int NumBlocks) {
761 // Walk up from the last block to find other blocks.
762 std::vector<BasicBlock *> Blocks(NumBlocks);
763 assert(LastBlock && "invalid last block");
764 BasicBlock *CurBlock = LastBlock;
765 for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
766 if (CurBlock->hasAddressTaken()) {
767 // Somebody is jumping to the block through an address, all bets are
768 // off.
769 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
770 << " has its address taken\n");
771 return {};
773 Blocks[BlockIndex] = CurBlock;
774 auto *SinglePredecessor = CurBlock->getSinglePredecessor();
775 if (!SinglePredecessor) {
776 // The block has two or more predecessors.
777 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
778 << " has two or more predecessors\n");
779 return {};
781 if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
782 // The block does not link back to the phi.
783 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
784 << " does not link back to the phi\n");
785 return {};
787 CurBlock = SinglePredecessor;
789 Blocks[0] = CurBlock;
790 return Blocks;
793 bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA,
794 DomTreeUpdater &DTU) {
795 LLVM_DEBUG(dbgs() << "processPhi()\n");
796 if (Phi.getNumIncomingValues() <= 1) {
797 LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
798 return false;
800 // We are looking for something that has the following structure:
801 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
802 // \ \ \ \
803 // ne ne ne \
804 // \ \ \ v
805 // +------------+-----------+----------> bb_phi
807 // - The last basic block (bb4 here) must branch unconditionally to bb_phi.
808 // It's the only block that contributes a non-constant value to the Phi.
809 // - All other blocks (b1, b2, b3) must have exactly two successors, one of
810 // them being the phi block.
811 // - All intermediate blocks (bb2, bb3) must have only one predecessor.
812 // - Blocks cannot do other work besides the comparison, see doesOtherWork()
814 // The blocks are not necessarily ordered in the phi, so we start from the
815 // last block and reconstruct the order.
816 BasicBlock *LastBlock = nullptr;
817 for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
818 if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
819 if (LastBlock) {
820 // There are several non-constant values.
821 LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
822 return false;
824 if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
825 cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
826 Phi.getIncomingBlock(I)) {
827 // Non-constant incoming value is not from a cmp instruction or not
828 // produced by the last block. We could end up processing the value
829 // producing block more than once.
831 // This is an uncommon case, so we bail.
832 LLVM_DEBUG(
833 dbgs()
834 << "skip: non-constant value not from cmp or not from last block.\n");
835 return false;
837 LastBlock = Phi.getIncomingBlock(I);
839 if (!LastBlock) {
840 // There is no non-constant block.
841 LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
842 return false;
844 if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
845 LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
846 return false;
849 const auto Blocks =
850 getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
851 if (Blocks.empty()) return false;
852 BCECmpChain CmpChain(Blocks, Phi, AA);
854 if (CmpChain.size() < 2) {
855 LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
856 return false;
859 return CmpChain.simplify(TLI, AA, DTU);
862 static bool runImpl(Function &F, const TargetLibraryInfo &TLI,
863 const TargetTransformInfo &TTI, AliasAnalysis &AA,
864 DominatorTree *DT) {
865 LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n");
867 // We only try merging comparisons if the target wants to expand memcmp later.
868 // The rationale is to avoid turning small chains into memcmp calls.
869 if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true))
870 return false;
872 // If we don't have memcmp avaiable we can't emit calls to it.
873 if (!TLI.has(LibFunc_memcmp))
874 return false;
876 DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr,
877 DomTreeUpdater::UpdateStrategy::Eager);
879 bool MadeChange = false;
881 for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
882 // A Phi operation is always first in a basic block.
883 if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
884 MadeChange |= processPhi(*Phi, TLI, AA, DTU);
887 return MadeChange;
890 class MergeICmpsLegacyPass : public FunctionPass {
891 public:
892 static char ID;
894 MergeICmpsLegacyPass() : FunctionPass(ID) {
895 initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry());
898 bool runOnFunction(Function &F) override {
899 if (skipFunction(F)) return false;
900 const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
901 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
902 // MergeICmps does not need the DominatorTree, but we update it if it's
903 // already available.
904 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
905 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
906 return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr);
909 private:
910 void getAnalysisUsage(AnalysisUsage &AU) const override {
911 AU.addRequired<TargetLibraryInfoWrapperPass>();
912 AU.addRequired<TargetTransformInfoWrapperPass>();
913 AU.addRequired<AAResultsWrapperPass>();
914 AU.addPreserved<GlobalsAAWrapperPass>();
915 AU.addPreserved<DominatorTreeWrapperPass>();
919 } // namespace
921 char MergeICmpsLegacyPass::ID = 0;
922 INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps",
923 "Merge contiguous icmps into a memcmp", false, false)
924 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
925 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
926 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
927 INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps",
928 "Merge contiguous icmps into a memcmp", false, false)
930 Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); }
932 PreservedAnalyses MergeICmpsPass::run(Function &F,
933 FunctionAnalysisManager &AM) {
934 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
935 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
936 auto &AA = AM.getResult<AAManager>(F);
937 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
938 const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT);
939 if (!MadeChanges)
940 return PreservedAnalyses::all();
941 PreservedAnalyses PA;
942 PA.preserve<GlobalsAA>();
943 PA.preserve<DominatorTreeAnalysis>();
944 return PA;