1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block. This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number). Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly. In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes. The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen. The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
47 /// We also do not perform elimination by using any published algorithm. All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
52 //===----------------------------------------------------------------------===//
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/SparseBitVector.h"
68 #include "llvm/ADT/Statistic.h"
69 #include "llvm/ADT/iterator_range.h"
70 #include "llvm/Analysis/AliasAnalysis.h"
71 #include "llvm/Analysis/AssumptionCache.h"
72 #include "llvm/Analysis/CFGPrinter.h"
73 #include "llvm/Analysis/ConstantFolding.h"
74 #include "llvm/Analysis/GlobalsModRef.h"
75 #include "llvm/Analysis/InstructionSimplify.h"
76 #include "llvm/Analysis/MemoryBuiltins.h"
77 #include "llvm/Analysis/MemorySSA.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Transforms/Utils/Local.h"
80 #include "llvm/IR/Argument.h"
81 #include "llvm/IR/BasicBlock.h"
82 #include "llvm/IR/Constant.h"
83 #include "llvm/IR/Constants.h"
84 #include "llvm/IR/Dominators.h"
85 #include "llvm/IR/Function.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/PatternMatch.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/Use.h"
95 #include "llvm/IR/User.h"
96 #include "llvm/IR/Value.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Allocator.h"
99 #include "llvm/Support/ArrayRecycler.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/DebugCounter.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/PointerLikeTypeTraits.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Scalar/GVNExpression.h"
109 #include "llvm/Transforms/Utils/PredicateInfo.h"
110 #include "llvm/Transforms/Utils/VNCoercion.h"
123 using namespace llvm
;
124 using namespace llvm::GVNExpression
;
125 using namespace llvm::VNCoercion
;
126 using namespace llvm::PatternMatch
;
128 #define DEBUG_TYPE "newgvn"
130 STATISTIC(NumGVNInstrDeleted
, "Number of instructions deleted");
131 STATISTIC(NumGVNBlocksDeleted
, "Number of blocks deleted");
132 STATISTIC(NumGVNOpsSimplified
, "Number of Expressions simplified");
133 STATISTIC(NumGVNPhisAllSame
, "Number of PHIs whos arguments are all the same");
134 STATISTIC(NumGVNMaxIterations
,
135 "Maximum Number of iterations it took to converge GVN");
136 STATISTIC(NumGVNLeaderChanges
, "Number of leader changes");
137 STATISTIC(NumGVNSortedLeaderChanges
, "Number of sorted leader changes");
138 STATISTIC(NumGVNAvoidedSortedLeaderChanges
,
139 "Number of avoided sorted leader changes");
140 STATISTIC(NumGVNDeadStores
, "Number of redundant/dead stores eliminated");
141 STATISTIC(NumGVNPHIOfOpsCreated
, "Number of PHI of ops created");
142 STATISTIC(NumGVNPHIOfOpsEliminations
,
143 "Number of things eliminated using PHI of ops");
144 DEBUG_COUNTER(VNCounter
, "newgvn-vn",
145 "Controls which instructions are value numbered");
146 DEBUG_COUNTER(PHIOfOpsCounter
, "newgvn-phi",
147 "Controls which instructions we create phi of ops for");
148 // Currently store defining access refinement is too slow due to basicaa being
149 // egregiously slow. This flag lets us keep it working while we work on this
151 static cl::opt
<bool> EnableStoreRefinement("enable-store-refinement",
152 cl::init(false), cl::Hidden
);
154 /// Currently, the generation "phi of ops" can result in correctness issues.
155 static cl::opt
<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
158 //===----------------------------------------------------------------------===//
160 //===----------------------------------------------------------------------===//
164 namespace GVNExpression
{
166 Expression::~Expression() = default;
167 BasicExpression::~BasicExpression() = default;
168 CallExpression::~CallExpression() = default;
169 LoadExpression::~LoadExpression() = default;
170 StoreExpression::~StoreExpression() = default;
171 AggregateValueExpression::~AggregateValueExpression() = default;
172 PHIExpression::~PHIExpression() = default;
174 } // end namespace GVNExpression
175 } // end namespace llvm
179 // Tarjan's SCC finding algorithm with Nuutila's improvements
180 // SCCIterator is actually fairly complex for the simple thing we want.
181 // It also wants to hand us SCC's that are unrelated to the phi node we ask
182 // about, and have us process them there or risk redoing work.
183 // Graph traits over a filter iterator also doesn't work that well here.
184 // This SCC finder is specialized to walk use-def chains, and only follows
186 // not generic values (arguments, etc).
188 TarjanSCC() : Components(1) {}
190 void Start(const Instruction
*Start
) {
191 if (Root
.lookup(Start
) == 0)
195 const SmallPtrSetImpl
<const Value
*> &getComponentFor(const Value
*V
) const {
196 unsigned ComponentID
= ValueToComponent
.lookup(V
);
198 assert(ComponentID
> 0 &&
199 "Asking for a component for a value we never processed");
200 return Components
[ComponentID
];
204 void FindSCC(const Instruction
*I
) {
206 // Store the DFS Number we had before it possibly gets incremented.
207 unsigned int OurDFS
= DFSNum
;
208 for (auto &Op
: I
->operands()) {
209 if (auto *InstOp
= dyn_cast
<Instruction
>(Op
)) {
210 if (Root
.lookup(Op
) == 0)
212 if (!InComponent
.count(Op
))
213 Root
[I
] = std::min(Root
.lookup(I
), Root
.lookup(Op
));
216 // See if we really were the root of a component, by seeing if we still have
217 // our DFSNumber. If we do, we are the root of the component, and we have
218 // completed a component. If we do not, we are not the root of a component,
219 // and belong on the component stack.
220 if (Root
.lookup(I
) == OurDFS
) {
221 unsigned ComponentID
= Components
.size();
222 Components
.resize(Components
.size() + 1);
223 auto &Component
= Components
.back();
225 LLVM_DEBUG(dbgs() << "Component root is " << *I
<< "\n");
226 InComponent
.insert(I
);
227 ValueToComponent
[I
] = ComponentID
;
228 // Pop a component off the stack and label it.
229 while (!Stack
.empty() && Root
.lookup(Stack
.back()) >= OurDFS
) {
230 auto *Member
= Stack
.back();
231 LLVM_DEBUG(dbgs() << "Component member is " << *Member
<< "\n");
232 Component
.insert(Member
);
233 InComponent
.insert(Member
);
234 ValueToComponent
[Member
] = ComponentID
;
238 // Part of a component, push to stack
243 unsigned int DFSNum
= 1;
244 SmallPtrSet
<const Value
*, 8> InComponent
;
245 DenseMap
<const Value
*, unsigned int> Root
;
246 SmallVector
<const Value
*, 8> Stack
;
248 // Store the components as vector of ptr sets, because we need the topo order
249 // of SCC's, but not individual member order
250 SmallVector
<SmallPtrSet
<const Value
*, 8>, 8> Components
;
252 DenseMap
<const Value
*, unsigned> ValueToComponent
;
255 // Congruence classes represent the set of expressions/instructions
256 // that are all the same *during some scope in the function*.
257 // That is, because of the way we perform equality propagation, and
258 // because of memory value numbering, it is not correct to assume
259 // you can willy-nilly replace any member with any other at any
260 // point in the function.
262 // For any Value in the Member set, it is valid to replace any dominated member
265 // Every congruence class has a leader, and the leader is used to symbolize
266 // instructions in a canonical way (IE every operand of an instruction that is a
267 // member of the same congruence class will always be replaced with leader
268 // during symbolization). To simplify symbolization, we keep the leader as a
269 // constant if class can be proved to be a constant value. Otherwise, the
270 // leader is the member of the value set with the smallest DFS number. Each
271 // congruence class also has a defining expression, though the expression may be
272 // null. If it exists, it can be used for forward propagation and reassociation
275 // For memory, we also track a representative MemoryAccess, and a set of memory
276 // members for MemoryPhis (which have no real instructions). Note that for
277 // memory, it seems tempting to try to split the memory members into a
278 // MemoryCongruenceClass or something. Unfortunately, this does not work
279 // easily. The value numbering of a given memory expression depends on the
280 // leader of the memory congruence class, and the leader of memory congruence
281 // class depends on the value numbering of a given memory expression. This
282 // leads to wasted propagation, and in some cases, missed optimization. For
283 // example: If we had value numbered two stores together before, but now do not,
284 // we move them to a new value congruence class. This in turn will move at one
285 // of the memorydefs to a new memory congruence class. Which in turn, affects
286 // the value numbering of the stores we just value numbered (because the memory
287 // congruence class is part of the value number). So while theoretically
288 // possible to split them up, it turns out to be *incredibly* complicated to get
289 // it to work right, because of the interdependency. While structurally
290 // slightly messier, it is algorithmically much simpler and faster to do what we
291 // do here, and track them both at once in the same class.
292 // Note: The default iterators for this class iterate over values
293 class CongruenceClass
{
295 using MemberType
= Value
;
296 using MemberSet
= SmallPtrSet
<MemberType
*, 4>;
297 using MemoryMemberType
= MemoryPhi
;
298 using MemoryMemberSet
= SmallPtrSet
<const MemoryMemberType
*, 2>;
300 explicit CongruenceClass(unsigned ID
) : ID(ID
) {}
301 CongruenceClass(unsigned ID
, Value
*Leader
, const Expression
*E
)
302 : ID(ID
), RepLeader(Leader
), DefiningExpr(E
) {}
304 unsigned getID() const { return ID
; }
306 // True if this class has no members left. This is mainly used for assertion
307 // purposes, and for skipping empty classes.
308 bool isDead() const {
309 // If it's both dead from a value perspective, and dead from a memory
310 // perspective, it's really dead.
311 return empty() && memory_empty();
315 Value
*getLeader() const { return RepLeader
; }
316 void setLeader(Value
*Leader
) { RepLeader
= Leader
; }
317 const std::pair
<Value
*, unsigned int> &getNextLeader() const {
320 void resetNextLeader() { NextLeader
= {nullptr, ~0}; }
321 void addPossibleNextLeader(std::pair
<Value
*, unsigned int> LeaderPair
) {
322 if (LeaderPair
.second
< NextLeader
.second
)
323 NextLeader
= LeaderPair
;
326 Value
*getStoredValue() const { return RepStoredValue
; }
327 void setStoredValue(Value
*Leader
) { RepStoredValue
= Leader
; }
328 const MemoryAccess
*getMemoryLeader() const { return RepMemoryAccess
; }
329 void setMemoryLeader(const MemoryAccess
*Leader
) { RepMemoryAccess
= Leader
; }
331 // Forward propagation info
332 const Expression
*getDefiningExpr() const { return DefiningExpr
; }
335 bool empty() const { return Members
.empty(); }
336 unsigned size() const { return Members
.size(); }
337 MemberSet::const_iterator
begin() const { return Members
.begin(); }
338 MemberSet::const_iterator
end() const { return Members
.end(); }
339 void insert(MemberType
*M
) { Members
.insert(M
); }
340 void erase(MemberType
*M
) { Members
.erase(M
); }
341 void swap(MemberSet
&Other
) { Members
.swap(Other
); }
344 bool memory_empty() const { return MemoryMembers
.empty(); }
345 unsigned memory_size() const { return MemoryMembers
.size(); }
346 MemoryMemberSet::const_iterator
memory_begin() const {
347 return MemoryMembers
.begin();
349 MemoryMemberSet::const_iterator
memory_end() const {
350 return MemoryMembers
.end();
352 iterator_range
<MemoryMemberSet::const_iterator
> memory() const {
353 return make_range(memory_begin(), memory_end());
356 void memory_insert(const MemoryMemberType
*M
) { MemoryMembers
.insert(M
); }
357 void memory_erase(const MemoryMemberType
*M
) { MemoryMembers
.erase(M
); }
360 unsigned getStoreCount() const { return StoreCount
; }
361 void incStoreCount() { ++StoreCount
; }
362 void decStoreCount() {
363 assert(StoreCount
!= 0 && "Store count went negative");
367 // True if this class has no memory members.
368 bool definesNoMemory() const { return StoreCount
== 0 && memory_empty(); }
370 // Return true if two congruence classes are equivalent to each other. This
371 // means that every field but the ID number and the dead field are equivalent.
372 bool isEquivalentTo(const CongruenceClass
*Other
) const {
378 if (std::tie(StoreCount
, RepLeader
, RepStoredValue
, RepMemoryAccess
) !=
379 std::tie(Other
->StoreCount
, Other
->RepLeader
, Other
->RepStoredValue
,
380 Other
->RepMemoryAccess
))
382 if (DefiningExpr
!= Other
->DefiningExpr
)
383 if (!DefiningExpr
|| !Other
->DefiningExpr
||
384 *DefiningExpr
!= *Other
->DefiningExpr
)
387 if (Members
.size() != Other
->Members
.size())
390 return all_of(Members
,
391 [&](const Value
*V
) { return Other
->Members
.count(V
); });
397 // Representative leader.
398 Value
*RepLeader
= nullptr;
400 // The most dominating leader after our current leader, because the member set
401 // is not sorted and is expensive to keep sorted all the time.
402 std::pair
<Value
*, unsigned int> NextLeader
= {nullptr, ~0U};
404 // If this is represented by a store, the value of the store.
405 Value
*RepStoredValue
= nullptr;
407 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
409 const MemoryAccess
*RepMemoryAccess
= nullptr;
411 // Defining Expression.
412 const Expression
*DefiningExpr
= nullptr;
414 // Actual members of this class.
417 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
418 // MemoryUses have real instructions representing them, so we only need to
419 // track MemoryPhis here.
420 MemoryMemberSet MemoryMembers
;
422 // Number of stores in this congruence class.
423 // This is used so we can detect store equivalence changes properly.
427 } // end anonymous namespace
431 struct ExactEqualsExpression
{
434 explicit ExactEqualsExpression(const Expression
&E
) : E(E
) {}
436 hash_code
getComputedHash() const { return E
.getComputedHash(); }
438 bool operator==(const Expression
&Other
) const {
439 return E
.exactlyEquals(Other
);
443 template <> struct DenseMapInfo
<const Expression
*> {
444 static const Expression
*getEmptyKey() {
445 auto Val
= static_cast<uintptr_t>(-1);
446 Val
<<= PointerLikeTypeTraits
<const Expression
*>::NumLowBitsAvailable
;
447 return reinterpret_cast<const Expression
*>(Val
);
450 static const Expression
*getTombstoneKey() {
451 auto Val
= static_cast<uintptr_t>(~1U);
452 Val
<<= PointerLikeTypeTraits
<const Expression
*>::NumLowBitsAvailable
;
453 return reinterpret_cast<const Expression
*>(Val
);
456 static unsigned getHashValue(const Expression
*E
) {
457 return E
->getComputedHash();
460 static unsigned getHashValue(const ExactEqualsExpression
&E
) {
461 return E
.getComputedHash();
464 static bool isEqual(const ExactEqualsExpression
&LHS
, const Expression
*RHS
) {
465 if (RHS
== getTombstoneKey() || RHS
== getEmptyKey())
470 static bool isEqual(const Expression
*LHS
, const Expression
*RHS
) {
473 if (LHS
== getTombstoneKey() || RHS
== getTombstoneKey() ||
474 LHS
== getEmptyKey() || RHS
== getEmptyKey())
476 // Compare hashes before equality. This is *not* what the hashtable does,
477 // since it is computing it modulo the number of buckets, whereas we are
478 // using the full hash keyspace. Since the hashes are precomputed, this
479 // check is *much* faster than equality.
480 if (LHS
->getComputedHash() != RHS
->getComputedHash())
486 } // end namespace llvm
493 const TargetLibraryInfo
*TLI
;
496 MemorySSAWalker
*MSSAWalker
;
497 const DataLayout
&DL
;
498 std::unique_ptr
<PredicateInfo
> PredInfo
;
500 // These are the only two things the create* functions should have
501 // side-effects on due to allocating memory.
502 mutable BumpPtrAllocator ExpressionAllocator
;
503 mutable ArrayRecycler
<Value
*> ArgRecycler
;
504 mutable TarjanSCC SCCFinder
;
505 const SimplifyQuery SQ
;
507 // Number of function arguments, used by ranking
508 unsigned int NumFuncArgs
;
510 // RPOOrdering of basic blocks
511 DenseMap
<const DomTreeNode
*, unsigned> RPOOrdering
;
513 // Congruence class info.
515 // This class is called INITIAL in the paper. It is the class everything
516 // startsout in, and represents any value. Being an optimistic analysis,
517 // anything in the TOP class has the value TOP, which is indeterminate and
518 // equivalent to everything.
519 CongruenceClass
*TOPClass
;
520 std::vector
<CongruenceClass
*> CongruenceClasses
;
521 unsigned NextCongruenceNum
;
524 DenseMap
<Value
*, CongruenceClass
*> ValueToClass
;
525 DenseMap
<Value
*, const Expression
*> ValueToExpression
;
527 // Value PHI handling, used to make equivalence between phi(op, op) and
529 // These mappings just store various data that would normally be part of the
531 SmallPtrSet
<const Instruction
*, 8> PHINodeUses
;
533 DenseMap
<const Value
*, bool> OpSafeForPHIOfOps
;
535 // Map a temporary instruction we created to a parent block.
536 DenseMap
<const Value
*, BasicBlock
*> TempToBlock
;
538 // Map between the already in-program instructions and the temporary phis we
539 // created that they are known equivalent to.
540 DenseMap
<const Value
*, PHINode
*> RealToTemp
;
542 // In order to know when we should re-process instructions that have
543 // phi-of-ops, we track the set of expressions that they needed as
544 // leaders. When we discover new leaders for those expressions, we process the
545 // associated phi-of-op instructions again in case they have changed. The
546 // other way they may change is if they had leaders, and those leaders
547 // disappear. However, at the point they have leaders, there are uses of the
548 // relevant operands in the created phi node, and so they will get reprocessed
549 // through the normal user marking we perform.
550 mutable DenseMap
<const Value
*, SmallPtrSet
<Value
*, 2>> AdditionalUsers
;
551 DenseMap
<const Expression
*, SmallPtrSet
<Instruction
*, 2>>
552 ExpressionToPhiOfOps
;
554 // Map from temporary operation to MemoryAccess.
555 DenseMap
<const Instruction
*, MemoryUseOrDef
*> TempToMemory
;
557 // Set of all temporary instructions we created.
558 // Note: This will include instructions that were just created during value
559 // numbering. The way to test if something is using them is to check
561 DenseSet
<Instruction
*> AllTempInstructions
;
563 // This is the set of instructions to revisit on a reachability change. At
564 // the end of the main iteration loop it will contain at least all the phi of
565 // ops instructions that will be changed to phis, as well as regular phis.
566 // During the iteration loop, it may contain other things, such as phi of ops
567 // instructions that used edge reachability to reach a result, and so need to
568 // be revisited when the edge changes, independent of whether the phi they
569 // depended on changes.
570 DenseMap
<BasicBlock
*, SparseBitVector
<>> RevisitOnReachabilityChange
;
572 // Mapping from predicate info we used to the instructions we used it with.
573 // In order to correctly ensure propagation, we must keep track of what
574 // comparisons we used, so that when the values of the comparisons change, we
575 // propagate the information to the places we used the comparison.
576 mutable DenseMap
<const Value
*, SmallPtrSet
<Instruction
*, 2>>
579 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
580 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
581 mutable DenseMap
<const MemoryAccess
*, SmallPtrSet
<MemoryAccess
*, 2>>
584 // A table storing which memorydefs/phis represent a memory state provably
585 // equivalent to another memory state.
586 // We could use the congruence class machinery, but the MemoryAccess's are
587 // abstract memory states, so they can only ever be equivalent to each other,
588 // and not to constants, etc.
589 DenseMap
<const MemoryAccess
*, CongruenceClass
*> MemoryAccessToClass
;
591 // We could, if we wanted, build MemoryPhiExpressions and
592 // MemoryVariableExpressions, etc, and value number them the same way we value
593 // number phi expressions. For the moment, this seems like overkill. They
594 // can only exist in one of three states: they can be TOP (equal to
595 // everything), Equivalent to something else, or unique. Because we do not
596 // create expressions for them, we need to simulate leader change not just
597 // when they change class, but when they change state. Note: We can do the
598 // same thing for phis, and avoid having phi expressions if we wanted, We
599 // should eventually unify in one direction or the other, so this is a little
600 // bit of an experiment in which turns out easier to maintain.
601 enum MemoryPhiState
{ MPS_Invalid
, MPS_TOP
, MPS_Equivalent
, MPS_Unique
};
602 DenseMap
<const MemoryPhi
*, MemoryPhiState
> MemoryPhiState
;
604 enum InstCycleState
{ ICS_Unknown
, ICS_CycleFree
, ICS_Cycle
};
605 mutable DenseMap
<const Instruction
*, InstCycleState
> InstCycleState
;
607 // Expression to class mapping.
608 using ExpressionClassMap
= DenseMap
<const Expression
*, CongruenceClass
*>;
609 ExpressionClassMap ExpressionToClass
;
611 // We have a single expression that represents currently DeadExpressions.
612 // For dead expressions we can prove will stay dead, we mark them with
613 // DFS number zero. However, it's possible in the case of phi nodes
614 // for us to assume/prove all arguments are dead during fixpointing.
615 // We use DeadExpression for that case.
616 DeadExpression
*SingletonDeadExpression
= nullptr;
618 // Which values have changed as a result of leader changes.
619 SmallPtrSet
<Value
*, 8> LeaderChanges
;
621 // Reachability info.
622 using BlockEdge
= BasicBlockEdge
;
623 DenseSet
<BlockEdge
> ReachableEdges
;
624 SmallPtrSet
<const BasicBlock
*, 8> ReachableBlocks
;
626 // This is a bitvector because, on larger functions, we may have
627 // thousands of touched instructions at once (entire blocks,
628 // instructions with hundreds of uses, etc). Even with optimization
629 // for when we mark whole blocks as touched, when this was a
630 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
631 // the time in GVN just managing this list. The bitvector, on the
632 // other hand, efficiently supports test/set/clear of both
633 // individual and ranges, as well as "find next element" This
634 // enables us to use it as a worklist with essentially 0 cost.
635 BitVector TouchedInstructions
;
637 DenseMap
<const BasicBlock
*, std::pair
<unsigned, unsigned>> BlockInstRange
;
640 // Debugging for how many times each block and instruction got processed.
641 DenseMap
<const Value
*, unsigned> ProcessedCount
;
645 // This contains a mapping from Instructions to DFS numbers.
646 // The numbering starts at 1. An instruction with DFS number zero
647 // means that the instruction is dead.
648 DenseMap
<const Value
*, unsigned> InstrDFS
;
650 // This contains the mapping DFS numbers to instructions.
651 SmallVector
<Value
*, 32> DFSToInstr
;
654 SmallPtrSet
<Instruction
*, 8> InstructionsToErase
;
657 NewGVN(Function
&F
, DominatorTree
*DT
, AssumptionCache
*AC
,
658 TargetLibraryInfo
*TLI
, AliasAnalysis
*AA
, MemorySSA
*MSSA
,
659 const DataLayout
&DL
)
660 : F(F
), DT(DT
), TLI(TLI
), AA(AA
), MSSA(MSSA
), DL(DL
),
661 PredInfo(std::make_unique
<PredicateInfo
>(F
, *DT
, *AC
)),
662 SQ(DL
, TLI
, DT
, AC
, /*CtxI=*/nullptr, /*UseInstrInfo=*/false) {}
667 // Expression handling.
668 const Expression
*createExpression(Instruction
*) const;
669 const Expression
*createBinaryExpression(unsigned, Type
*, Value
*, Value
*,
670 Instruction
*) const;
672 // Our canonical form for phi arguments is a pair of incoming value, incoming
674 using ValPair
= std::pair
<Value
*, BasicBlock
*>;
676 PHIExpression
*createPHIExpression(ArrayRef
<ValPair
>, const Instruction
*,
677 BasicBlock
*, bool &HasBackEdge
,
678 bool &OriginalOpsConstant
) const;
679 const DeadExpression
*createDeadExpression() const;
680 const VariableExpression
*createVariableExpression(Value
*) const;
681 const ConstantExpression
*createConstantExpression(Constant
*) const;
682 const Expression
*createVariableOrConstant(Value
*V
) const;
683 const UnknownExpression
*createUnknownExpression(Instruction
*) const;
684 const StoreExpression
*createStoreExpression(StoreInst
*,
685 const MemoryAccess
*) const;
686 LoadExpression
*createLoadExpression(Type
*, Value
*, LoadInst
*,
687 const MemoryAccess
*) const;
688 const CallExpression
*createCallExpression(CallInst
*,
689 const MemoryAccess
*) const;
690 const AggregateValueExpression
*
691 createAggregateValueExpression(Instruction
*) const;
692 bool setBasicExpressionInfo(Instruction
*, BasicExpression
*) const;
694 // Congruence class handling.
695 CongruenceClass
*createCongruenceClass(Value
*Leader
, const Expression
*E
) {
696 auto *result
= new CongruenceClass(NextCongruenceNum
++, Leader
, E
);
697 CongruenceClasses
.emplace_back(result
);
701 CongruenceClass
*createMemoryClass(MemoryAccess
*MA
) {
702 auto *CC
= createCongruenceClass(nullptr, nullptr);
703 CC
->setMemoryLeader(MA
);
707 CongruenceClass
*ensureLeaderOfMemoryClass(MemoryAccess
*MA
) {
708 auto *CC
= getMemoryClass(MA
);
709 if (CC
->getMemoryLeader() != MA
)
710 CC
= createMemoryClass(MA
);
714 CongruenceClass
*createSingletonCongruenceClass(Value
*Member
) {
715 CongruenceClass
*CClass
= createCongruenceClass(Member
, nullptr);
716 CClass
->insert(Member
);
717 ValueToClass
[Member
] = CClass
;
721 void initializeCongruenceClasses(Function
&F
);
722 const Expression
*makePossiblePHIOfOps(Instruction
*,
723 SmallPtrSetImpl
<Value
*> &);
724 Value
*findLeaderForInst(Instruction
*ValueOp
,
725 SmallPtrSetImpl
<Value
*> &Visited
,
726 MemoryAccess
*MemAccess
, Instruction
*OrigInst
,
728 bool OpIsSafeForPHIOfOpsHelper(Value
*V
, const BasicBlock
*PHIBlock
,
729 SmallPtrSetImpl
<const Value
*> &Visited
,
730 SmallVectorImpl
<Instruction
*> &Worklist
);
731 bool OpIsSafeForPHIOfOps(Value
*Op
, const BasicBlock
*PHIBlock
,
732 SmallPtrSetImpl
<const Value
*> &);
733 void addPhiOfOps(PHINode
*Op
, BasicBlock
*BB
, Instruction
*ExistingValue
);
734 void removePhiOfOps(Instruction
*I
, PHINode
*PHITemp
);
736 // Value number an Instruction or MemoryPhi.
737 void valueNumberMemoryPhi(MemoryPhi
*);
738 void valueNumberInstruction(Instruction
*);
740 // Symbolic evaluation.
741 const Expression
*checkSimplificationResults(Expression
*, Instruction
*,
743 const Expression
*performSymbolicEvaluation(Value
*,
744 SmallPtrSetImpl
<Value
*> &) const;
745 const Expression
*performSymbolicLoadCoercion(Type
*, Value
*, LoadInst
*,
747 MemoryAccess
*) const;
748 const Expression
*performSymbolicLoadEvaluation(Instruction
*) const;
749 const Expression
*performSymbolicStoreEvaluation(Instruction
*) const;
750 const Expression
*performSymbolicCallEvaluation(Instruction
*) const;
751 void sortPHIOps(MutableArrayRef
<ValPair
> Ops
) const;
752 const Expression
*performSymbolicPHIEvaluation(ArrayRef
<ValPair
>,
754 BasicBlock
*PHIBlock
) const;
755 const Expression
*performSymbolicAggrValueEvaluation(Instruction
*) const;
756 const Expression
*performSymbolicCmpEvaluation(Instruction
*) const;
757 const Expression
*performSymbolicPredicateInfoEvaluation(Instruction
*) const;
759 // Congruence finding.
760 bool someEquivalentDominates(const Instruction
*, const Instruction
*) const;
761 Value
*lookupOperandLeader(Value
*) const;
762 CongruenceClass
*getClassForExpression(const Expression
*E
) const;
763 void performCongruenceFinding(Instruction
*, const Expression
*);
764 void moveValueToNewCongruenceClass(Instruction
*, const Expression
*,
765 CongruenceClass
*, CongruenceClass
*);
766 void moveMemoryToNewCongruenceClass(Instruction
*, MemoryAccess
*,
767 CongruenceClass
*, CongruenceClass
*);
768 Value
*getNextValueLeader(CongruenceClass
*) const;
769 const MemoryAccess
*getNextMemoryLeader(CongruenceClass
*) const;
770 bool setMemoryClass(const MemoryAccess
*From
, CongruenceClass
*To
);
771 CongruenceClass
*getMemoryClass(const MemoryAccess
*MA
) const;
772 const MemoryAccess
*lookupMemoryLeader(const MemoryAccess
*) const;
773 bool isMemoryAccessTOP(const MemoryAccess
*) const;
776 unsigned int getRank(const Value
*) const;
777 bool shouldSwapOperands(const Value
*, const Value
*) const;
779 // Reachability handling.
780 void updateReachableEdge(BasicBlock
*, BasicBlock
*);
781 void processOutgoingEdges(Instruction
*, BasicBlock
*);
782 Value
*findConditionEquivalence(Value
*) const;
786 void convertClassToDFSOrdered(const CongruenceClass
&,
787 SmallVectorImpl
<ValueDFS
> &,
788 DenseMap
<const Value
*, unsigned int> &,
789 SmallPtrSetImpl
<Instruction
*> &) const;
790 void convertClassToLoadsAndStores(const CongruenceClass
&,
791 SmallVectorImpl
<ValueDFS
> &) const;
793 bool eliminateInstructions(Function
&);
794 void replaceInstruction(Instruction
*, Value
*);
795 void markInstructionForDeletion(Instruction
*);
796 void deleteInstructionsInBlock(BasicBlock
*);
797 Value
*findPHIOfOpsLeader(const Expression
*, const Instruction
*,
798 const BasicBlock
*) const;
800 // New instruction creation.
801 void handleNewInstruction(Instruction
*) {}
803 // Various instruction touch utilities
804 template <typename Map
, typename KeyType
, typename Func
>
805 void for_each_found(Map
&, const KeyType
&, Func
);
806 template <typename Map
, typename KeyType
>
807 void touchAndErase(Map
&, const KeyType
&);
808 void markUsersTouched(Value
*);
809 void markMemoryUsersTouched(const MemoryAccess
*);
810 void markMemoryDefTouched(const MemoryAccess
*);
811 void markPredicateUsersTouched(Instruction
*);
812 void markValueLeaderChangeTouched(CongruenceClass
*CC
);
813 void markMemoryLeaderChangeTouched(CongruenceClass
*CC
);
814 void markPhiOfOpsChanged(const Expression
*E
);
815 void addPredicateUsers(const PredicateBase
*, Instruction
*) const;
816 void addMemoryUsers(const MemoryAccess
*To
, MemoryAccess
*U
) const;
817 void addAdditionalUsers(Value
*To
, Value
*User
) const;
819 // Main loop of value numbering
820 void iterateTouchedInstructions();
823 void cleanupTables();
824 std::pair
<unsigned, unsigned> assignDFSNumbers(BasicBlock
*, unsigned);
825 void updateProcessedCount(const Value
*V
);
826 void verifyMemoryCongruency() const;
827 void verifyIterationSettled(Function
&F
);
828 void verifyStoreExpressions() const;
829 bool singleReachablePHIPath(SmallPtrSet
<const MemoryAccess
*, 8> &,
830 const MemoryAccess
*, const MemoryAccess
*) const;
831 BasicBlock
*getBlockForValue(Value
*V
) const;
832 void deleteExpression(const Expression
*E
) const;
833 MemoryUseOrDef
*getMemoryAccess(const Instruction
*) const;
834 MemoryAccess
*getDefiningAccess(const MemoryAccess
*) const;
835 MemoryPhi
*getMemoryAccess(const BasicBlock
*) const;
836 template <class T
, class Range
> T
*getMinDFSOfRange(const Range
&) const;
838 unsigned InstrToDFSNum(const Value
*V
) const {
839 assert(isa
<Instruction
>(V
) && "This should not be used for MemoryAccesses");
840 return InstrDFS
.lookup(V
);
843 unsigned InstrToDFSNum(const MemoryAccess
*MA
) const {
844 return MemoryToDFSNum(MA
);
847 Value
*InstrFromDFSNum(unsigned DFSNum
) { return DFSToInstr
[DFSNum
]; }
849 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
850 // This deliberately takes a value so it can be used with Use's, which will
851 // auto-convert to Value's but not to MemoryAccess's.
852 unsigned MemoryToDFSNum(const Value
*MA
) const {
853 assert(isa
<MemoryAccess
>(MA
) &&
854 "This should not be used with instructions");
855 return isa
<MemoryUseOrDef
>(MA
)
856 ? InstrToDFSNum(cast
<MemoryUseOrDef
>(MA
)->getMemoryInst())
857 : InstrDFS
.lookup(MA
);
860 bool isCycleFree(const Instruction
*) const;
861 bool isBackedge(BasicBlock
*From
, BasicBlock
*To
) const;
863 // Debug counter info. When verifying, we have to reset the value numbering
864 // debug counter to the same state it started in to get the same results.
865 int64_t StartingVNCounter
;
868 } // end anonymous namespace
870 template <typename T
>
871 static bool equalsLoadStoreHelper(const T
&LHS
, const Expression
&RHS
) {
872 if (!isa
<LoadExpression
>(RHS
) && !isa
<StoreExpression
>(RHS
))
874 return LHS
.MemoryExpression::equals(RHS
);
877 bool LoadExpression::equals(const Expression
&Other
) const {
878 return equalsLoadStoreHelper(*this, Other
);
881 bool StoreExpression::equals(const Expression
&Other
) const {
882 if (!equalsLoadStoreHelper(*this, Other
))
884 // Make sure that store vs store includes the value operand.
885 if (const auto *S
= dyn_cast
<StoreExpression
>(&Other
))
886 if (getStoredValue() != S
->getStoredValue())
891 // Determine if the edge From->To is a backedge
892 bool NewGVN::isBackedge(BasicBlock
*From
, BasicBlock
*To
) const {
894 RPOOrdering
.lookup(DT
->getNode(From
)) >=
895 RPOOrdering
.lookup(DT
->getNode(To
));
899 static std::string
getBlockName(const BasicBlock
*B
) {
900 return DOTGraphTraits
<const Function
*>::getSimpleNodeLabel(B
, nullptr);
904 // Get a MemoryAccess for an instruction, fake or real.
905 MemoryUseOrDef
*NewGVN::getMemoryAccess(const Instruction
*I
) const {
906 auto *Result
= MSSA
->getMemoryAccess(I
);
907 return Result
? Result
: TempToMemory
.lookup(I
);
910 // Get a MemoryPhi for a basic block. These are all real.
911 MemoryPhi
*NewGVN::getMemoryAccess(const BasicBlock
*BB
) const {
912 return MSSA
->getMemoryAccess(BB
);
915 // Get the basic block from an instruction/memory value.
916 BasicBlock
*NewGVN::getBlockForValue(Value
*V
) const {
917 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
918 auto *Parent
= I
->getParent();
921 Parent
= TempToBlock
.lookup(V
);
922 assert(Parent
&& "Every fake instruction should have a block");
926 auto *MP
= dyn_cast
<MemoryPhi
>(V
);
927 assert(MP
&& "Should have been an instruction or a MemoryPhi");
928 return MP
->getBlock();
931 // Delete a definitely dead expression, so it can be reused by the expression
932 // allocator. Some of these are not in creation functions, so we have to accept
934 void NewGVN::deleteExpression(const Expression
*E
) const {
935 assert(isa
<BasicExpression
>(E
));
936 auto *BE
= cast
<BasicExpression
>(E
);
937 const_cast<BasicExpression
*>(BE
)->deallocateOperands(ArgRecycler
);
938 ExpressionAllocator
.Deallocate(E
);
941 // If V is a predicateinfo copy, get the thing it is a copy of.
942 static Value
*getCopyOf(const Value
*V
) {
943 if (auto *II
= dyn_cast
<IntrinsicInst
>(V
))
944 if (II
->getIntrinsicID() == Intrinsic::ssa_copy
)
945 return II
->getOperand(0);
949 // Return true if V is really PN, even accounting for predicateinfo copies.
950 static bool isCopyOfPHI(const Value
*V
, const PHINode
*PN
) {
951 return V
== PN
|| getCopyOf(V
) == PN
;
954 static bool isCopyOfAPHI(const Value
*V
) {
955 auto *CO
= getCopyOf(V
);
956 return CO
&& isa
<PHINode
>(CO
);
959 // Sort PHI Operands into a canonical order. What we use here is an RPO
960 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
962 void NewGVN::sortPHIOps(MutableArrayRef
<ValPair
> Ops
) const {
963 llvm::sort(Ops
, [&](const ValPair
&P1
, const ValPair
&P2
) {
964 return BlockInstRange
.lookup(P1
.second
).first
<
965 BlockInstRange
.lookup(P2
.second
).first
;
969 // Return true if V is a value that will always be available (IE can
970 // be placed anywhere) in the function. We don't do globals here
971 // because they are often worse to put in place.
972 static bool alwaysAvailable(Value
*V
) {
973 return isa
<Constant
>(V
) || isa
<Argument
>(V
);
976 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is
977 // the original instruction we are creating a PHIExpression for (but may not be
978 // a phi node). We require, as an invariant, that all the PHIOperands in the
979 // same block are sorted the same way. sortPHIOps will sort them into a
981 PHIExpression
*NewGVN::createPHIExpression(ArrayRef
<ValPair
> PHIOperands
,
982 const Instruction
*I
,
983 BasicBlock
*PHIBlock
,
985 bool &OriginalOpsConstant
) const {
986 unsigned NumOps
= PHIOperands
.size();
987 auto *E
= new (ExpressionAllocator
) PHIExpression(NumOps
, PHIBlock
);
989 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
990 E
->setType(PHIOperands
.begin()->first
->getType());
991 E
->setOpcode(Instruction::PHI
);
993 // Filter out unreachable phi operands.
994 auto Filtered
= make_filter_range(PHIOperands
, [&](const ValPair
&P
) {
996 if (auto *PHIOp
= dyn_cast
<PHINode
>(I
))
997 if (isCopyOfPHI(P
.first
, PHIOp
))
999 if (!ReachableEdges
.count({BB
, PHIBlock
}))
1001 // Things in TOPClass are equivalent to everything.
1002 if (ValueToClass
.lookup(P
.first
) == TOPClass
)
1004 OriginalOpsConstant
= OriginalOpsConstant
&& isa
<Constant
>(P
.first
);
1005 HasBackedge
= HasBackedge
|| isBackedge(BB
, PHIBlock
);
1006 return lookupOperandLeader(P
.first
) != I
;
1008 std::transform(Filtered
.begin(), Filtered
.end(), op_inserter(E
),
1009 [&](const ValPair
&P
) -> Value
* {
1010 return lookupOperandLeader(P
.first
);
1015 // Set basic expression info (Arguments, type, opcode) for Expression
1016 // E from Instruction I in block B.
1017 bool NewGVN::setBasicExpressionInfo(Instruction
*I
, BasicExpression
*E
) const {
1018 bool AllConstant
= true;
1019 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(I
))
1020 E
->setType(GEP
->getSourceElementType());
1022 E
->setType(I
->getType());
1023 E
->setOpcode(I
->getOpcode());
1024 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1026 // Transform the operand array into an operand leader array, and keep track of
1027 // whether all members are constant.
1028 std::transform(I
->op_begin(), I
->op_end(), op_inserter(E
), [&](Value
*O
) {
1029 auto Operand
= lookupOperandLeader(O
);
1030 AllConstant
= AllConstant
&& isa
<Constant
>(Operand
);
1037 const Expression
*NewGVN::createBinaryExpression(unsigned Opcode
, Type
*T
,
1038 Value
*Arg1
, Value
*Arg2
,
1039 Instruction
*I
) const {
1040 auto *E
= new (ExpressionAllocator
) BasicExpression(2);
1043 E
->setOpcode(Opcode
);
1044 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1045 if (Instruction::isCommutative(Opcode
)) {
1046 // Ensure that commutative instructions that only differ by a permutation
1047 // of their operands get the same value number by sorting the operand value
1048 // numbers. Since all commutative instructions have two operands it is more
1049 // efficient to sort by hand rather than using, say, std::sort.
1050 if (shouldSwapOperands(Arg1
, Arg2
))
1051 std::swap(Arg1
, Arg2
);
1053 E
->op_push_back(lookupOperandLeader(Arg1
));
1054 E
->op_push_back(lookupOperandLeader(Arg2
));
1056 Value
*V
= SimplifyBinOp(Opcode
, E
->getOperand(0), E
->getOperand(1), SQ
);
1057 if (const Expression
*SimplifiedE
= checkSimplificationResults(E
, I
, V
))
1062 // Take a Value returned by simplification of Expression E/Instruction
1063 // I, and see if it resulted in a simpler expression. If so, return
1065 const Expression
*NewGVN::checkSimplificationResults(Expression
*E
,
1070 if (auto *C
= dyn_cast
<Constant
>(V
)) {
1072 LLVM_DEBUG(dbgs() << "Simplified " << *I
<< " to "
1073 << " constant " << *C
<< "\n");
1074 NumGVNOpsSimplified
++;
1075 assert(isa
<BasicExpression
>(E
) &&
1076 "We should always have had a basic expression here");
1077 deleteExpression(E
);
1078 return createConstantExpression(C
);
1079 } else if (isa
<Argument
>(V
) || isa
<GlobalVariable
>(V
)) {
1081 LLVM_DEBUG(dbgs() << "Simplified " << *I
<< " to "
1082 << " variable " << *V
<< "\n");
1083 deleteExpression(E
);
1084 return createVariableExpression(V
);
1087 CongruenceClass
*CC
= ValueToClass
.lookup(V
);
1089 if (CC
->getLeader() && CC
->getLeader() != I
) {
1090 // If we simplified to something else, we need to communicate
1091 // that we're users of the value we simplified to.
1093 // Don't add temporary instructions to the user lists.
1094 if (!AllTempInstructions
.count(I
))
1095 addAdditionalUsers(V
, I
);
1097 return createVariableOrConstant(CC
->getLeader());
1099 if (CC
->getDefiningExpr()) {
1100 // If we simplified to something else, we need to communicate
1101 // that we're users of the value we simplified to.
1103 // Don't add temporary instructions to the user lists.
1104 if (!AllTempInstructions
.count(I
))
1105 addAdditionalUsers(V
, I
);
1109 LLVM_DEBUG(dbgs() << "Simplified " << *I
<< " to "
1110 << " expression " << *CC
->getDefiningExpr() << "\n");
1111 NumGVNOpsSimplified
++;
1112 deleteExpression(E
);
1113 return CC
->getDefiningExpr();
1120 // Create a value expression from the instruction I, replacing operands with
1123 const Expression
*NewGVN::createExpression(Instruction
*I
) const {
1124 auto *E
= new (ExpressionAllocator
) BasicExpression(I
->getNumOperands());
1126 bool AllConstant
= setBasicExpressionInfo(I
, E
);
1128 if (I
->isCommutative()) {
1129 // Ensure that commutative instructions that only differ by a permutation
1130 // of their operands get the same value number by sorting the operand value
1131 // numbers. Since all commutative instructions have two operands it is more
1132 // efficient to sort by hand rather than using, say, std::sort.
1133 assert(I
->getNumOperands() == 2 && "Unsupported commutative instruction!");
1134 if (shouldSwapOperands(E
->getOperand(0), E
->getOperand(1)))
1135 E
->swapOperands(0, 1);
1137 // Perform simplification.
1138 if (auto *CI
= dyn_cast
<CmpInst
>(I
)) {
1139 // Sort the operand value numbers so x<y and y>x get the same value
1141 CmpInst::Predicate Predicate
= CI
->getPredicate();
1142 if (shouldSwapOperands(E
->getOperand(0), E
->getOperand(1))) {
1143 E
->swapOperands(0, 1);
1144 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
1146 E
->setOpcode((CI
->getOpcode() << 8) | Predicate
);
1147 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1148 assert(I
->getOperand(0)->getType() == I
->getOperand(1)->getType() &&
1149 "Wrong types on cmp instruction");
1150 assert((E
->getOperand(0)->getType() == I
->getOperand(0)->getType() &&
1151 E
->getOperand(1)->getType() == I
->getOperand(1)->getType()));
1153 SimplifyCmpInst(Predicate
, E
->getOperand(0), E
->getOperand(1), SQ
);
1154 if (const Expression
*SimplifiedE
= checkSimplificationResults(E
, I
, V
))
1156 } else if (isa
<SelectInst
>(I
)) {
1157 if (isa
<Constant
>(E
->getOperand(0)) ||
1158 E
->getOperand(1) == E
->getOperand(2)) {
1159 assert(E
->getOperand(1)->getType() == I
->getOperand(1)->getType() &&
1160 E
->getOperand(2)->getType() == I
->getOperand(2)->getType());
1161 Value
*V
= SimplifySelectInst(E
->getOperand(0), E
->getOperand(1),
1162 E
->getOperand(2), SQ
);
1163 if (const Expression
*SimplifiedE
= checkSimplificationResults(E
, I
, V
))
1166 } else if (I
->isBinaryOp()) {
1168 SimplifyBinOp(E
->getOpcode(), E
->getOperand(0), E
->getOperand(1), SQ
);
1169 if (const Expression
*SimplifiedE
= checkSimplificationResults(E
, I
, V
))
1171 } else if (auto *CI
= dyn_cast
<CastInst
>(I
)) {
1173 SimplifyCastInst(CI
->getOpcode(), E
->getOperand(0), CI
->getType(), SQ
);
1174 if (const Expression
*SimplifiedE
= checkSimplificationResults(E
, I
, V
))
1176 } else if (isa
<GetElementPtrInst
>(I
)) {
1177 Value
*V
= SimplifyGEPInst(
1178 E
->getType(), ArrayRef
<Value
*>(E
->op_begin(), E
->op_end()), SQ
);
1179 if (const Expression
*SimplifiedE
= checkSimplificationResults(E
, I
, V
))
1181 } else if (AllConstant
) {
1182 // We don't bother trying to simplify unless all of the operands
1184 // TODO: There are a lot of Simplify*'s we could call here, if we
1185 // wanted to. The original motivating case for this code was a
1186 // zext i1 false to i8, which we don't have an interface to
1187 // simplify (IE there is no SimplifyZExt).
1189 SmallVector
<Constant
*, 8> C
;
1190 for (Value
*Arg
: E
->operands())
1191 C
.emplace_back(cast
<Constant
>(Arg
));
1193 if (Value
*V
= ConstantFoldInstOperands(I
, C
, DL
, TLI
))
1194 if (const Expression
*SimplifiedE
= checkSimplificationResults(E
, I
, V
))
1200 const AggregateValueExpression
*
1201 NewGVN::createAggregateValueExpression(Instruction
*I
) const {
1202 if (auto *II
= dyn_cast
<InsertValueInst
>(I
)) {
1203 auto *E
= new (ExpressionAllocator
)
1204 AggregateValueExpression(I
->getNumOperands(), II
->getNumIndices());
1205 setBasicExpressionInfo(I
, E
);
1206 E
->allocateIntOperands(ExpressionAllocator
);
1207 std::copy(II
->idx_begin(), II
->idx_end(), int_op_inserter(E
));
1209 } else if (auto *EI
= dyn_cast
<ExtractValueInst
>(I
)) {
1210 auto *E
= new (ExpressionAllocator
)
1211 AggregateValueExpression(I
->getNumOperands(), EI
->getNumIndices());
1212 setBasicExpressionInfo(EI
, E
);
1213 E
->allocateIntOperands(ExpressionAllocator
);
1214 std::copy(EI
->idx_begin(), EI
->idx_end(), int_op_inserter(E
));
1217 llvm_unreachable("Unhandled type of aggregate value operation");
1220 const DeadExpression
*NewGVN::createDeadExpression() const {
1221 // DeadExpression has no arguments and all DeadExpression's are the same,
1222 // so we only need one of them.
1223 return SingletonDeadExpression
;
1226 const VariableExpression
*NewGVN::createVariableExpression(Value
*V
) const {
1227 auto *E
= new (ExpressionAllocator
) VariableExpression(V
);
1228 E
->setOpcode(V
->getValueID());
1232 const Expression
*NewGVN::createVariableOrConstant(Value
*V
) const {
1233 if (auto *C
= dyn_cast
<Constant
>(V
))
1234 return createConstantExpression(C
);
1235 return createVariableExpression(V
);
1238 const ConstantExpression
*NewGVN::createConstantExpression(Constant
*C
) const {
1239 auto *E
= new (ExpressionAllocator
) ConstantExpression(C
);
1240 E
->setOpcode(C
->getValueID());
1244 const UnknownExpression
*NewGVN::createUnknownExpression(Instruction
*I
) const {
1245 auto *E
= new (ExpressionAllocator
) UnknownExpression(I
);
1246 E
->setOpcode(I
->getOpcode());
1250 const CallExpression
*
1251 NewGVN::createCallExpression(CallInst
*CI
, const MemoryAccess
*MA
) const {
1252 // FIXME: Add operand bundles for calls.
1254 new (ExpressionAllocator
) CallExpression(CI
->getNumOperands(), CI
, MA
);
1255 setBasicExpressionInfo(CI
, E
);
1259 // Return true if some equivalent of instruction Inst dominates instruction U.
1260 bool NewGVN::someEquivalentDominates(const Instruction
*Inst
,
1261 const Instruction
*U
) const {
1262 auto *CC
= ValueToClass
.lookup(Inst
);
1263 // This must be an instruction because we are only called from phi nodes
1264 // in the case that the value it needs to check against is an instruction.
1266 // The most likely candidates for dominance are the leader and the next leader.
1267 // The leader or nextleader will dominate in all cases where there is an
1268 // equivalent that is higher up in the dom tree.
1269 // We can't *only* check them, however, because the
1270 // dominator tree could have an infinite number of non-dominating siblings
1271 // with instructions that are in the right congruence class.
1276 // Instruction U could be in H, with equivalents in every other sibling.
1277 // Depending on the rpo order picked, the leader could be the equivalent in
1278 // any of these siblings.
1281 if (alwaysAvailable(CC
->getLeader()))
1283 if (DT
->dominates(cast
<Instruction
>(CC
->getLeader()), U
))
1285 if (CC
->getNextLeader().first
&&
1286 DT
->dominates(cast
<Instruction
>(CC
->getNextLeader().first
), U
))
1288 return llvm::any_of(*CC
, [&](const Value
*Member
) {
1289 return Member
!= CC
->getLeader() &&
1290 DT
->dominates(cast
<Instruction
>(Member
), U
);
1294 // See if we have a congruence class and leader for this operand, and if so,
1295 // return it. Otherwise, return the operand itself.
1296 Value
*NewGVN::lookupOperandLeader(Value
*V
) const {
1297 CongruenceClass
*CC
= ValueToClass
.lookup(V
);
1299 // Everything in TOP is represented by undef, as it can be any value.
1300 // We do have to make sure we get the type right though, so we can't set the
1301 // RepLeader to undef.
1303 return UndefValue::get(V
->getType());
1304 return CC
->getStoredValue() ? CC
->getStoredValue() : CC
->getLeader();
1310 const MemoryAccess
*NewGVN::lookupMemoryLeader(const MemoryAccess
*MA
) const {
1311 auto *CC
= getMemoryClass(MA
);
1312 assert(CC
->getMemoryLeader() &&
1313 "Every MemoryAccess should be mapped to a congruence class with a "
1314 "representative memory access");
1315 return CC
->getMemoryLeader();
1318 // Return true if the MemoryAccess is really equivalent to everything. This is
1319 // equivalent to the lattice value "TOP" in most lattices. This is the initial
1320 // state of all MemoryAccesses.
1321 bool NewGVN::isMemoryAccessTOP(const MemoryAccess
*MA
) const {
1322 return getMemoryClass(MA
) == TOPClass
;
1325 LoadExpression
*NewGVN::createLoadExpression(Type
*LoadType
, Value
*PointerOp
,
1327 const MemoryAccess
*MA
) const {
1329 new (ExpressionAllocator
) LoadExpression(1, LI
, lookupMemoryLeader(MA
));
1330 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1331 E
->setType(LoadType
);
1333 // Give store and loads same opcode so they value number together.
1335 E
->op_push_back(PointerOp
);
1337 E
->setAlignment(MaybeAlign(LI
->getAlignment()));
1339 // TODO: Value number heap versions. We may be able to discover
1340 // things alias analysis can't on it's own (IE that a store and a
1341 // load have the same value, and thus, it isn't clobbering the load).
1345 const StoreExpression
*
1346 NewGVN::createStoreExpression(StoreInst
*SI
, const MemoryAccess
*MA
) const {
1347 auto *StoredValueLeader
= lookupOperandLeader(SI
->getValueOperand());
1348 auto *E
= new (ExpressionAllocator
)
1349 StoreExpression(SI
->getNumOperands(), SI
, StoredValueLeader
, MA
);
1350 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1351 E
->setType(SI
->getValueOperand()->getType());
1353 // Give store and loads same opcode so they value number together.
1355 E
->op_push_back(lookupOperandLeader(SI
->getPointerOperand()));
1357 // TODO: Value number heap versions. We may be able to discover
1358 // things alias analysis can't on it's own (IE that a store and a
1359 // load have the same value, and thus, it isn't clobbering the load).
1363 const Expression
*NewGVN::performSymbolicStoreEvaluation(Instruction
*I
) const {
1364 // Unlike loads, we never try to eliminate stores, so we do not check if they
1365 // are simple and avoid value numbering them.
1366 auto *SI
= cast
<StoreInst
>(I
);
1367 auto *StoreAccess
= getMemoryAccess(SI
);
1368 // Get the expression, if any, for the RHS of the MemoryDef.
1369 const MemoryAccess
*StoreRHS
= StoreAccess
->getDefiningAccess();
1370 if (EnableStoreRefinement
)
1371 StoreRHS
= MSSAWalker
->getClobberingMemoryAccess(StoreAccess
);
1372 // If we bypassed the use-def chains, make sure we add a use.
1373 StoreRHS
= lookupMemoryLeader(StoreRHS
);
1374 if (StoreRHS
!= StoreAccess
->getDefiningAccess())
1375 addMemoryUsers(StoreRHS
, StoreAccess
);
1376 // If we are defined by ourselves, use the live on entry def.
1377 if (StoreRHS
== StoreAccess
)
1378 StoreRHS
= MSSA
->getLiveOnEntryDef();
1380 if (SI
->isSimple()) {
1381 // See if we are defined by a previous store expression, it already has a
1382 // value, and it's the same value as our current store. FIXME: Right now, we
1383 // only do this for simple stores, we should expand to cover memcpys, etc.
1384 const auto *LastStore
= createStoreExpression(SI
, StoreRHS
);
1385 const auto *LastCC
= ExpressionToClass
.lookup(LastStore
);
1386 // We really want to check whether the expression we matched was a store. No
1387 // easy way to do that. However, we can check that the class we found has a
1388 // store, which, assuming the value numbering state is not corrupt, is
1389 // sufficient, because we must also be equivalent to that store's expression
1390 // for it to be in the same class as the load.
1391 if (LastCC
&& LastCC
->getStoredValue() == LastStore
->getStoredValue())
1393 // Also check if our value operand is defined by a load of the same memory
1394 // location, and the memory state is the same as it was then (otherwise, it
1395 // could have been overwritten later. See test32 in
1396 // transforms/DeadStoreElimination/simple.ll).
1397 if (auto *LI
= dyn_cast
<LoadInst
>(LastStore
->getStoredValue()))
1398 if ((lookupOperandLeader(LI
->getPointerOperand()) ==
1399 LastStore
->getOperand(0)) &&
1400 (lookupMemoryLeader(getMemoryAccess(LI
)->getDefiningAccess()) ==
1403 deleteExpression(LastStore
);
1406 // If the store is not equivalent to anything, value number it as a store that
1407 // produces a unique memory state (instead of using it's MemoryUse, we use
1409 return createStoreExpression(SI
, StoreAccess
);
1412 // See if we can extract the value of a loaded pointer from a load, a store, or
1413 // a memory instruction.
1415 NewGVN::performSymbolicLoadCoercion(Type
*LoadType
, Value
*LoadPtr
,
1416 LoadInst
*LI
, Instruction
*DepInst
,
1417 MemoryAccess
*DefiningAccess
) const {
1418 assert((!LI
|| LI
->isSimple()) && "Not a simple load");
1419 if (auto *DepSI
= dyn_cast
<StoreInst
>(DepInst
)) {
1420 // Can't forward from non-atomic to atomic without violating memory model.
1421 // Also don't need to coerce if they are the same type, we will just
1423 if (LI
->isAtomic() > DepSI
->isAtomic() ||
1424 LoadType
== DepSI
->getValueOperand()->getType())
1426 int Offset
= analyzeLoadFromClobberingStore(LoadType
, LoadPtr
, DepSI
, DL
);
1428 if (auto *C
= dyn_cast
<Constant
>(
1429 lookupOperandLeader(DepSI
->getValueOperand()))) {
1430 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1431 << " to constant " << *C
<< "\n");
1432 return createConstantExpression(
1433 getConstantStoreValueForLoad(C
, Offset
, LoadType
, DL
));
1436 } else if (auto *DepLI
= dyn_cast
<LoadInst
>(DepInst
)) {
1437 // Can't forward from non-atomic to atomic without violating memory model.
1438 if (LI
->isAtomic() > DepLI
->isAtomic())
1440 int Offset
= analyzeLoadFromClobberingLoad(LoadType
, LoadPtr
, DepLI
, DL
);
1442 // We can coerce a constant load into a load.
1443 if (auto *C
= dyn_cast
<Constant
>(lookupOperandLeader(DepLI
)))
1444 if (auto *PossibleConstant
=
1445 getConstantLoadValueForLoad(C
, Offset
, LoadType
, DL
)) {
1446 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1447 << " to constant " << *PossibleConstant
<< "\n");
1448 return createConstantExpression(PossibleConstant
);
1451 } else if (auto *DepMI
= dyn_cast
<MemIntrinsic
>(DepInst
)) {
1452 int Offset
= analyzeLoadFromClobberingMemInst(LoadType
, LoadPtr
, DepMI
, DL
);
1454 if (auto *PossibleConstant
=
1455 getConstantMemInstValueForLoad(DepMI
, Offset
, LoadType
, DL
)) {
1456 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1457 << " to constant " << *PossibleConstant
<< "\n");
1458 return createConstantExpression(PossibleConstant
);
1463 // All of the below are only true if the loaded pointer is produced
1464 // by the dependent instruction.
1465 if (LoadPtr
!= lookupOperandLeader(DepInst
) &&
1466 !AA
->isMustAlias(LoadPtr
, DepInst
))
1468 // If this load really doesn't depend on anything, then we must be loading an
1469 // undef value. This can happen when loading for a fresh allocation with no
1470 // intervening stores, for example. Note that this is only true in the case
1471 // that the result of the allocation is pointer equal to the load ptr.
1472 if (isa
<AllocaInst
>(DepInst
) || isMallocLikeFn(DepInst
, TLI
)) {
1473 return createConstantExpression(UndefValue::get(LoadType
));
1475 // If this load occurs either right after a lifetime begin,
1476 // then the loaded value is undefined.
1477 else if (auto *II
= dyn_cast
<IntrinsicInst
>(DepInst
)) {
1478 if (II
->getIntrinsicID() == Intrinsic::lifetime_start
)
1479 return createConstantExpression(UndefValue::get(LoadType
));
1481 // If this load follows a calloc (which zero initializes memory),
1482 // then the loaded value is zero
1483 else if (isCallocLikeFn(DepInst
, TLI
)) {
1484 return createConstantExpression(Constant::getNullValue(LoadType
));
1490 const Expression
*NewGVN::performSymbolicLoadEvaluation(Instruction
*I
) const {
1491 auto *LI
= cast
<LoadInst
>(I
);
1493 // We can eliminate in favor of non-simple loads, but we won't be able to
1494 // eliminate the loads themselves.
1495 if (!LI
->isSimple())
1498 Value
*LoadAddressLeader
= lookupOperandLeader(LI
->getPointerOperand());
1499 // Load of undef is undef.
1500 if (isa
<UndefValue
>(LoadAddressLeader
))
1501 return createConstantExpression(UndefValue::get(LI
->getType()));
1502 MemoryAccess
*OriginalAccess
= getMemoryAccess(I
);
1503 MemoryAccess
*DefiningAccess
=
1504 MSSAWalker
->getClobberingMemoryAccess(OriginalAccess
);
1506 if (!MSSA
->isLiveOnEntryDef(DefiningAccess
)) {
1507 if (auto *MD
= dyn_cast
<MemoryDef
>(DefiningAccess
)) {
1508 Instruction
*DefiningInst
= MD
->getMemoryInst();
1509 // If the defining instruction is not reachable, replace with undef.
1510 if (!ReachableBlocks
.count(DefiningInst
->getParent()))
1511 return createConstantExpression(UndefValue::get(LI
->getType()));
1512 // This will handle stores and memory insts. We only do if it the
1513 // defining access has a different type, or it is a pointer produced by
1514 // certain memory operations that cause the memory to have a fixed value
1515 // (IE things like calloc).
1516 if (const auto *CoercionResult
=
1517 performSymbolicLoadCoercion(LI
->getType(), LoadAddressLeader
, LI
,
1518 DefiningInst
, DefiningAccess
))
1519 return CoercionResult
;
1523 const auto *LE
= createLoadExpression(LI
->getType(), LoadAddressLeader
, LI
,
1525 // If our MemoryLeader is not our defining access, add a use to the
1526 // MemoryLeader, so that we get reprocessed when it changes.
1527 if (LE
->getMemoryLeader() != DefiningAccess
)
1528 addMemoryUsers(LE
->getMemoryLeader(), OriginalAccess
);
1533 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction
*I
) const {
1534 auto *PI
= PredInfo
->getPredicateInfoFor(I
);
1538 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1540 auto *PWC
= dyn_cast
<PredicateWithCondition
>(PI
);
1544 auto *CopyOf
= I
->getOperand(0);
1545 auto *Cond
= PWC
->Condition
;
1547 // If this a copy of the condition, it must be either true or false depending
1548 // on the predicate info type and edge.
1549 if (CopyOf
== Cond
) {
1550 // We should not need to add predicate users because the predicate info is
1551 // already a use of this operand.
1552 if (isa
<PredicateAssume
>(PI
))
1553 return createConstantExpression(ConstantInt::getTrue(Cond
->getType()));
1554 if (auto *PBranch
= dyn_cast
<PredicateBranch
>(PI
)) {
1555 if (PBranch
->TrueEdge
)
1556 return createConstantExpression(ConstantInt::getTrue(Cond
->getType()));
1557 return createConstantExpression(ConstantInt::getFalse(Cond
->getType()));
1559 if (auto *PSwitch
= dyn_cast
<PredicateSwitch
>(PI
))
1560 return createConstantExpression(cast
<Constant
>(PSwitch
->CaseValue
));
1563 // Not a copy of the condition, so see what the predicates tell us about this
1564 // value. First, though, we check to make sure the value is actually a copy
1565 // of one of the condition operands. It's possible, in certain cases, for it
1566 // to be a copy of a predicateinfo copy. In particular, if two branch
1567 // operations use the same condition, and one branch dominates the other, we
1568 // will end up with a copy of a copy. This is currently a small deficiency in
1569 // predicateinfo. What will end up happening here is that we will value
1570 // number both copies the same anyway.
1572 // Everything below relies on the condition being a comparison.
1573 auto *Cmp
= dyn_cast
<CmpInst
>(Cond
);
1577 if (CopyOf
!= Cmp
->getOperand(0) && CopyOf
!= Cmp
->getOperand(1)) {
1578 LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n");
1581 Value
*FirstOp
= lookupOperandLeader(Cmp
->getOperand(0));
1582 Value
*SecondOp
= lookupOperandLeader(Cmp
->getOperand(1));
1583 bool SwappedOps
= false;
1585 if (shouldSwapOperands(FirstOp
, SecondOp
)) {
1586 std::swap(FirstOp
, SecondOp
);
1589 CmpInst::Predicate Predicate
=
1590 SwappedOps
? Cmp
->getSwappedPredicate() : Cmp
->getPredicate();
1592 if (isa
<PredicateAssume
>(PI
)) {
1593 // If we assume the operands are equal, then they are equal.
1594 if (Predicate
== CmpInst::ICMP_EQ
) {
1595 addPredicateUsers(PI
, I
);
1596 addAdditionalUsers(SwappedOps
? Cmp
->getOperand(1) : Cmp
->getOperand(0),
1598 return createVariableOrConstant(FirstOp
);
1601 if (const auto *PBranch
= dyn_cast
<PredicateBranch
>(PI
)) {
1602 // If we are *not* a copy of the comparison, we may equal to the other
1603 // operand when the predicate implies something about equality of
1604 // operations. In particular, if the comparison is true/false when the
1605 // operands are equal, and we are on the right edge, we know this operation
1606 // is equal to something.
1607 if ((PBranch
->TrueEdge
&& Predicate
== CmpInst::ICMP_EQ
) ||
1608 (!PBranch
->TrueEdge
&& Predicate
== CmpInst::ICMP_NE
)) {
1609 addPredicateUsers(PI
, I
);
1610 addAdditionalUsers(SwappedOps
? Cmp
->getOperand(1) : Cmp
->getOperand(0),
1612 return createVariableOrConstant(FirstOp
);
1614 // Handle the special case of floating point.
1615 if (((PBranch
->TrueEdge
&& Predicate
== CmpInst::FCMP_OEQ
) ||
1616 (!PBranch
->TrueEdge
&& Predicate
== CmpInst::FCMP_UNE
)) &&
1617 isa
<ConstantFP
>(FirstOp
) && !cast
<ConstantFP
>(FirstOp
)->isZero()) {
1618 addPredicateUsers(PI
, I
);
1619 addAdditionalUsers(SwappedOps
? Cmp
->getOperand(1) : Cmp
->getOperand(0),
1621 return createConstantExpression(cast
<Constant
>(FirstOp
));
1627 // Evaluate read only and pure calls, and create an expression result.
1628 const Expression
*NewGVN::performSymbolicCallEvaluation(Instruction
*I
) const {
1629 auto *CI
= cast
<CallInst
>(I
);
1630 if (auto *II
= dyn_cast
<IntrinsicInst
>(I
)) {
1631 // Intrinsics with the returned attribute are copies of arguments.
1632 if (auto *ReturnedValue
= II
->getReturnedArgOperand()) {
1633 if (II
->getIntrinsicID() == Intrinsic::ssa_copy
)
1634 if (const auto *Result
= performSymbolicPredicateInfoEvaluation(I
))
1636 return createVariableOrConstant(ReturnedValue
);
1639 if (AA
->doesNotAccessMemory(CI
)) {
1640 return createCallExpression(CI
, TOPClass
->getMemoryLeader());
1641 } else if (AA
->onlyReadsMemory(CI
)) {
1642 if (auto *MA
= MSSA
->getMemoryAccess(CI
)) {
1643 auto *DefiningAccess
= MSSAWalker
->getClobberingMemoryAccess(MA
);
1644 return createCallExpression(CI
, DefiningAccess
);
1645 } else // MSSA determined that CI does not access memory.
1646 return createCallExpression(CI
, TOPClass
->getMemoryLeader());
1651 // Retrieve the memory class for a given MemoryAccess.
1652 CongruenceClass
*NewGVN::getMemoryClass(const MemoryAccess
*MA
) const {
1653 auto *Result
= MemoryAccessToClass
.lookup(MA
);
1654 assert(Result
&& "Should have found memory class");
1658 // Update the MemoryAccess equivalence table to say that From is equal to To,
1659 // and return true if this is different from what already existed in the table.
1660 bool NewGVN::setMemoryClass(const MemoryAccess
*From
,
1661 CongruenceClass
*NewClass
) {
1663 "Every MemoryAccess should be getting mapped to a non-null class");
1664 LLVM_DEBUG(dbgs() << "Setting " << *From
);
1665 LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1666 LLVM_DEBUG(dbgs() << NewClass
->getID()
1667 << " with current MemoryAccess leader ");
1668 LLVM_DEBUG(dbgs() << *NewClass
->getMemoryLeader() << "\n");
1670 auto LookupResult
= MemoryAccessToClass
.find(From
);
1671 bool Changed
= false;
1672 // If it's already in the table, see if the value changed.
1673 if (LookupResult
!= MemoryAccessToClass
.end()) {
1674 auto *OldClass
= LookupResult
->second
;
1675 if (OldClass
!= NewClass
) {
1676 // If this is a phi, we have to handle memory member updates.
1677 if (auto *MP
= dyn_cast
<MemoryPhi
>(From
)) {
1678 OldClass
->memory_erase(MP
);
1679 NewClass
->memory_insert(MP
);
1680 // This may have killed the class if it had no non-memory members
1681 if (OldClass
->getMemoryLeader() == From
) {
1682 if (OldClass
->definesNoMemory()) {
1683 OldClass
->setMemoryLeader(nullptr);
1685 OldClass
->setMemoryLeader(getNextMemoryLeader(OldClass
));
1686 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1687 << OldClass
->getID() << " to "
1688 << *OldClass
->getMemoryLeader()
1689 << " due to removal of a memory member " << *From
1691 markMemoryLeaderChangeTouched(OldClass
);
1695 // It wasn't equivalent before, and now it is.
1696 LookupResult
->second
= NewClass
;
1704 // Determine if a instruction is cycle-free. That means the values in the
1705 // instruction don't depend on any expressions that can change value as a result
1706 // of the instruction. For example, a non-cycle free instruction would be v =
1708 bool NewGVN::isCycleFree(const Instruction
*I
) const {
1709 // In order to compute cycle-freeness, we do SCC finding on the instruction,
1710 // and see what kind of SCC it ends up in. If it is a singleton, it is
1711 // cycle-free. If it is not in a singleton, it is only cycle free if the
1712 // other members are all phi nodes (as they do not compute anything, they are
1714 auto ICS
= InstCycleState
.lookup(I
);
1715 if (ICS
== ICS_Unknown
) {
1717 auto &SCC
= SCCFinder
.getComponentFor(I
);
1718 // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1719 if (SCC
.size() == 1)
1720 InstCycleState
.insert({I
, ICS_CycleFree
});
1722 bool AllPhis
= llvm::all_of(SCC
, [](const Value
*V
) {
1723 return isa
<PHINode
>(V
) || isCopyOfAPHI(V
);
1725 ICS
= AllPhis
? ICS_CycleFree
: ICS_Cycle
;
1726 for (auto *Member
: SCC
)
1727 if (auto *MemberPhi
= dyn_cast
<PHINode
>(Member
))
1728 InstCycleState
.insert({MemberPhi
, ICS
});
1731 if (ICS
== ICS_Cycle
)
1736 // Evaluate PHI nodes symbolically and create an expression result.
1738 NewGVN::performSymbolicPHIEvaluation(ArrayRef
<ValPair
> PHIOps
,
1740 BasicBlock
*PHIBlock
) const {
1741 // True if one of the incoming phi edges is a backedge.
1742 bool HasBackedge
= false;
1743 // All constant tracks the state of whether all the *original* phi operands
1744 // This is really shorthand for "this phi cannot cycle due to forward
1745 // change in value of the phi is guaranteed not to later change the value of
1746 // the phi. IE it can't be v = phi(undef, v+1)
1747 bool OriginalOpsConstant
= true;
1748 auto *E
= cast
<PHIExpression
>(createPHIExpression(
1749 PHIOps
, I
, PHIBlock
, HasBackedge
, OriginalOpsConstant
));
1750 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1751 // See if all arguments are the same.
1752 // We track if any were undef because they need special handling.
1753 bool HasUndef
= false;
1754 auto Filtered
= make_filter_range(E
->operands(), [&](Value
*Arg
) {
1755 if (isa
<UndefValue
>(Arg
)) {
1761 // If we are left with no operands, it's dead.
1762 if (Filtered
.empty()) {
1763 // If it has undef at this point, it means there are no-non-undef arguments,
1764 // and thus, the value of the phi node must be undef.
1767 dbgs() << "PHI Node " << *I
1768 << " has no non-undef arguments, valuing it as undef\n");
1769 return createConstantExpression(UndefValue::get(I
->getType()));
1772 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I
<< " are live\n");
1773 deleteExpression(E
);
1774 return createDeadExpression();
1776 Value
*AllSameValue
= *(Filtered
.begin());
1778 // Can't use std::equal here, sadly, because filter.begin moves.
1779 if (llvm::all_of(Filtered
, [&](Value
*Arg
) { return Arg
== AllSameValue
; })) {
1780 // In LLVM's non-standard representation of phi nodes, it's possible to have
1781 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1782 // on the original phi node), especially in weird CFG's where some arguments
1783 // are unreachable, or uninitialized along certain paths. This can cause
1784 // infinite loops during evaluation. We work around this by not trying to
1785 // really evaluate them independently, but instead using a variable
1786 // expression to say if one is equivalent to the other.
1787 // We also special case undef, so that if we have an undef, we can't use the
1788 // common value unless it dominates the phi block.
1790 // If we have undef and at least one other value, this is really a
1791 // multivalued phi, and we need to know if it's cycle free in order to
1792 // evaluate whether we can ignore the undef. The other parts of this are
1793 // just shortcuts. If there is no backedge, or all operands are
1794 // constants, it also must be cycle free.
1795 if (HasBackedge
&& !OriginalOpsConstant
&&
1796 !isa
<UndefValue
>(AllSameValue
) && !isCycleFree(I
))
1799 // Only have to check for instructions
1800 if (auto *AllSameInst
= dyn_cast
<Instruction
>(AllSameValue
))
1801 if (!someEquivalentDominates(AllSameInst
, I
))
1804 // Can't simplify to something that comes later in the iteration.
1805 // Otherwise, when and if it changes congruence class, we will never catch
1806 // up. We will always be a class behind it.
1807 if (isa
<Instruction
>(AllSameValue
) &&
1808 InstrToDFSNum(AllSameValue
) > InstrToDFSNum(I
))
1810 NumGVNPhisAllSame
++;
1811 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I
<< " to " << *AllSameValue
1813 deleteExpression(E
);
1814 return createVariableOrConstant(AllSameValue
);
1820 NewGVN::performSymbolicAggrValueEvaluation(Instruction
*I
) const {
1821 if (auto *EI
= dyn_cast
<ExtractValueInst
>(I
)) {
1822 auto *WO
= dyn_cast
<WithOverflowInst
>(EI
->getAggregateOperand());
1823 if (WO
&& EI
->getNumIndices() == 1 && *EI
->idx_begin() == 0)
1824 // EI is an extract from one of our with.overflow intrinsics. Synthesize
1825 // a semantically equivalent expression instead of an extract value
1827 return createBinaryExpression(WO
->getBinaryOp(), EI
->getType(),
1828 WO
->getLHS(), WO
->getRHS(), I
);
1831 return createAggregateValueExpression(I
);
1834 const Expression
*NewGVN::performSymbolicCmpEvaluation(Instruction
*I
) const {
1835 assert(isa
<CmpInst
>(I
) && "Expected a cmp instruction.");
1837 auto *CI
= cast
<CmpInst
>(I
);
1838 // See if our operands are equal to those of a previous predicate, and if so,
1839 // if it implies true or false.
1840 auto Op0
= lookupOperandLeader(CI
->getOperand(0));
1841 auto Op1
= lookupOperandLeader(CI
->getOperand(1));
1842 auto OurPredicate
= CI
->getPredicate();
1843 if (shouldSwapOperands(Op0
, Op1
)) {
1844 std::swap(Op0
, Op1
);
1845 OurPredicate
= CI
->getSwappedPredicate();
1848 // Avoid processing the same info twice.
1849 const PredicateBase
*LastPredInfo
= nullptr;
1850 // See if we know something about the comparison itself, like it is the target
1852 auto *CmpPI
= PredInfo
->getPredicateInfoFor(I
);
1853 if (dyn_cast_or_null
<PredicateAssume
>(CmpPI
))
1854 return createConstantExpression(ConstantInt::getTrue(CI
->getType()));
1857 // This condition does not depend on predicates, no need to add users
1858 if (CI
->isTrueWhenEqual())
1859 return createConstantExpression(ConstantInt::getTrue(CI
->getType()));
1860 else if (CI
->isFalseWhenEqual())
1861 return createConstantExpression(ConstantInt::getFalse(CI
->getType()));
1864 // NOTE: Because we are comparing both operands here and below, and using
1865 // previous comparisons, we rely on fact that predicateinfo knows to mark
1866 // comparisons that use renamed operands as users of the earlier comparisons.
1867 // It is *not* enough to just mark predicateinfo renamed operands as users of
1868 // the earlier comparisons, because the *other* operand may have changed in a
1869 // previous iteration.
1872 // %b.0 = ssa.copy(%b)
1874 // icmp slt %c, %b.0
1876 // %c and %a may start out equal, and thus, the code below will say the second
1877 // %icmp is false. c may become equal to something else, and in that case the
1878 // %second icmp *must* be reexamined, but would not if only the renamed
1879 // %operands are considered users of the icmp.
1881 // *Currently* we only check one level of comparisons back, and only mark one
1882 // level back as touched when changes happen. If you modify this code to look
1883 // back farther through comparisons, you *must* mark the appropriate
1884 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1885 // we know something just from the operands themselves
1887 // See if our operands have predicate info, so that we may be able to derive
1888 // something from a previous comparison.
1889 for (const auto &Op
: CI
->operands()) {
1890 auto *PI
= PredInfo
->getPredicateInfoFor(Op
);
1891 if (const auto *PBranch
= dyn_cast_or_null
<PredicateBranch
>(PI
)) {
1892 if (PI
== LastPredInfo
)
1895 // In phi of ops cases, we may have predicate info that we are evaluating
1896 // in a different context.
1897 if (!DT
->dominates(PBranch
->To
, getBlockForValue(I
)))
1899 // TODO: Along the false edge, we may know more things too, like
1901 // same operands is false.
1902 // TODO: We only handle actual comparison conditions below, not
1904 auto *BranchCond
= dyn_cast
<CmpInst
>(PBranch
->Condition
);
1907 auto *BranchOp0
= lookupOperandLeader(BranchCond
->getOperand(0));
1908 auto *BranchOp1
= lookupOperandLeader(BranchCond
->getOperand(1));
1909 auto BranchPredicate
= BranchCond
->getPredicate();
1910 if (shouldSwapOperands(BranchOp0
, BranchOp1
)) {
1911 std::swap(BranchOp0
, BranchOp1
);
1912 BranchPredicate
= BranchCond
->getSwappedPredicate();
1914 if (BranchOp0
== Op0
&& BranchOp1
== Op1
) {
1915 if (PBranch
->TrueEdge
) {
1916 // If we know the previous predicate is true and we are in the true
1917 // edge then we may be implied true or false.
1918 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate
,
1920 addPredicateUsers(PI
, I
);
1921 return createConstantExpression(
1922 ConstantInt::getTrue(CI
->getType()));
1925 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate
,
1927 addPredicateUsers(PI
, I
);
1928 return createConstantExpression(
1929 ConstantInt::getFalse(CI
->getType()));
1932 // Just handle the ne and eq cases, where if we have the same
1933 // operands, we may know something.
1934 if (BranchPredicate
== OurPredicate
) {
1935 addPredicateUsers(PI
, I
);
1936 // Same predicate, same ops,we know it was false, so this is false.
1937 return createConstantExpression(
1938 ConstantInt::getFalse(CI
->getType()));
1939 } else if (BranchPredicate
==
1940 CmpInst::getInversePredicate(OurPredicate
)) {
1941 addPredicateUsers(PI
, I
);
1942 // Inverse predicate, we know the other was false, so this is true.
1943 return createConstantExpression(
1944 ConstantInt::getTrue(CI
->getType()));
1950 // Create expression will take care of simplifyCmpInst
1951 return createExpression(I
);
1954 // Substitute and symbolize the value before value numbering.
1956 NewGVN::performSymbolicEvaluation(Value
*V
,
1957 SmallPtrSetImpl
<Value
*> &Visited
) const {
1958 const Expression
*E
= nullptr;
1959 if (auto *C
= dyn_cast
<Constant
>(V
))
1960 E
= createConstantExpression(C
);
1961 else if (isa
<Argument
>(V
) || isa
<GlobalVariable
>(V
)) {
1962 E
= createVariableExpression(V
);
1964 // TODO: memory intrinsics.
1965 // TODO: Some day, we should do the forward propagation and reassociation
1966 // parts of the algorithm.
1967 auto *I
= cast
<Instruction
>(V
);
1968 switch (I
->getOpcode()) {
1969 case Instruction::ExtractValue
:
1970 case Instruction::InsertValue
:
1971 E
= performSymbolicAggrValueEvaluation(I
);
1973 case Instruction::PHI
: {
1974 SmallVector
<ValPair
, 3> Ops
;
1975 auto *PN
= cast
<PHINode
>(I
);
1976 for (unsigned i
= 0; i
< PN
->getNumOperands(); ++i
)
1977 Ops
.push_back({PN
->getIncomingValue(i
), PN
->getIncomingBlock(i
)});
1978 // Sort to ensure the invariant createPHIExpression requires is met.
1980 E
= performSymbolicPHIEvaluation(Ops
, I
, getBlockForValue(I
));
1982 case Instruction::Call
:
1983 E
= performSymbolicCallEvaluation(I
);
1985 case Instruction::Store
:
1986 E
= performSymbolicStoreEvaluation(I
);
1988 case Instruction::Load
:
1989 E
= performSymbolicLoadEvaluation(I
);
1991 case Instruction::BitCast
:
1992 case Instruction::AddrSpaceCast
:
1993 E
= createExpression(I
);
1995 case Instruction::ICmp
:
1996 case Instruction::FCmp
:
1997 E
= performSymbolicCmpEvaluation(I
);
1999 case Instruction::FNeg
:
2000 case Instruction::Add
:
2001 case Instruction::FAdd
:
2002 case Instruction::Sub
:
2003 case Instruction::FSub
:
2004 case Instruction::Mul
:
2005 case Instruction::FMul
:
2006 case Instruction::UDiv
:
2007 case Instruction::SDiv
:
2008 case Instruction::FDiv
:
2009 case Instruction::URem
:
2010 case Instruction::SRem
:
2011 case Instruction::FRem
:
2012 case Instruction::Shl
:
2013 case Instruction::LShr
:
2014 case Instruction::AShr
:
2015 case Instruction::And
:
2016 case Instruction::Or
:
2017 case Instruction::Xor
:
2018 case Instruction::Trunc
:
2019 case Instruction::ZExt
:
2020 case Instruction::SExt
:
2021 case Instruction::FPToUI
:
2022 case Instruction::FPToSI
:
2023 case Instruction::UIToFP
:
2024 case Instruction::SIToFP
:
2025 case Instruction::FPTrunc
:
2026 case Instruction::FPExt
:
2027 case Instruction::PtrToInt
:
2028 case Instruction::IntToPtr
:
2029 case Instruction::Select
:
2030 case Instruction::ExtractElement
:
2031 case Instruction::InsertElement
:
2032 case Instruction::ShuffleVector
:
2033 case Instruction::GetElementPtr
:
2034 E
= createExpression(I
);
2043 // Look up a container in a map, and then call a function for each thing in the
2045 template <typename Map
, typename KeyType
, typename Func
>
2046 void NewGVN::for_each_found(Map
&M
, const KeyType
&Key
, Func F
) {
2047 const auto Result
= M
.find_as(Key
);
2048 if (Result
!= M
.end())
2049 for (typename
Map::mapped_type::value_type Mapped
: Result
->second
)
2053 // Look up a container of values/instructions in a map, and touch all the
2054 // instructions in the container. Then erase value from the map.
2055 template <typename Map
, typename KeyType
>
2056 void NewGVN::touchAndErase(Map
&M
, const KeyType
&Key
) {
2057 const auto Result
= M
.find_as(Key
);
2058 if (Result
!= M
.end()) {
2059 for (const typename
Map::mapped_type::value_type Mapped
: Result
->second
)
2060 TouchedInstructions
.set(InstrToDFSNum(Mapped
));
2065 void NewGVN::addAdditionalUsers(Value
*To
, Value
*User
) const {
2066 assert(User
&& To
!= User
);
2067 if (isa
<Instruction
>(To
))
2068 AdditionalUsers
[To
].insert(User
);
2071 void NewGVN::markUsersTouched(Value
*V
) {
2072 // Now mark the users as touched.
2073 for (auto *User
: V
->users()) {
2074 assert(isa
<Instruction
>(User
) && "Use of value not within an instruction?");
2075 TouchedInstructions
.set(InstrToDFSNum(User
));
2077 touchAndErase(AdditionalUsers
, V
);
2080 void NewGVN::addMemoryUsers(const MemoryAccess
*To
, MemoryAccess
*U
) const {
2081 LLVM_DEBUG(dbgs() << "Adding memory user " << *U
<< " to " << *To
<< "\n");
2082 MemoryToUsers
[To
].insert(U
);
2085 void NewGVN::markMemoryDefTouched(const MemoryAccess
*MA
) {
2086 TouchedInstructions
.set(MemoryToDFSNum(MA
));
2089 void NewGVN::markMemoryUsersTouched(const MemoryAccess
*MA
) {
2090 if (isa
<MemoryUse
>(MA
))
2092 for (auto U
: MA
->users())
2093 TouchedInstructions
.set(MemoryToDFSNum(U
));
2094 touchAndErase(MemoryToUsers
, MA
);
2097 // Add I to the set of users of a given predicate.
2098 void NewGVN::addPredicateUsers(const PredicateBase
*PB
, Instruction
*I
) const {
2099 // Don't add temporary instructions to the user lists.
2100 if (AllTempInstructions
.count(I
))
2103 if (auto *PBranch
= dyn_cast
<PredicateBranch
>(PB
))
2104 PredicateToUsers
[PBranch
->Condition
].insert(I
);
2105 else if (auto *PAssume
= dyn_cast
<PredicateAssume
>(PB
))
2106 PredicateToUsers
[PAssume
->Condition
].insert(I
);
2109 // Touch all the predicates that depend on this instruction.
2110 void NewGVN::markPredicateUsersTouched(Instruction
*I
) {
2111 touchAndErase(PredicateToUsers
, I
);
2114 // Mark users affected by a memory leader change.
2115 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass
*CC
) {
2116 for (auto M
: CC
->memory())
2117 markMemoryDefTouched(M
);
2120 // Touch the instructions that need to be updated after a congruence class has a
2121 // leader change, and mark changed values.
2122 void NewGVN::markValueLeaderChangeTouched(CongruenceClass
*CC
) {
2123 for (auto M
: *CC
) {
2124 if (auto *I
= dyn_cast
<Instruction
>(M
))
2125 TouchedInstructions
.set(InstrToDFSNum(I
));
2126 LeaderChanges
.insert(M
);
2130 // Give a range of things that have instruction DFS numbers, this will return
2131 // the member of the range with the smallest dfs number.
2132 template <class T
, class Range
>
2133 T
*NewGVN::getMinDFSOfRange(const Range
&R
) const {
2134 std::pair
<T
*, unsigned> MinDFS
= {nullptr, ~0U};
2135 for (const auto X
: R
) {
2136 auto DFSNum
= InstrToDFSNum(X
);
2137 if (DFSNum
< MinDFS
.second
)
2138 MinDFS
= {X
, DFSNum
};
2140 return MinDFS
.first
;
2143 // This function returns the MemoryAccess that should be the next leader of
2144 // congruence class CC, under the assumption that the current leader is going to
2146 const MemoryAccess
*NewGVN::getNextMemoryLeader(CongruenceClass
*CC
) const {
2147 // TODO: If this ends up to slow, we can maintain a next memory leader like we
2148 // do for regular leaders.
2149 // Make sure there will be a leader to find.
2150 assert(!CC
->definesNoMemory() && "Can't get next leader if there is none");
2151 if (CC
->getStoreCount() > 0) {
2152 if (auto *NL
= dyn_cast_or_null
<StoreInst
>(CC
->getNextLeader().first
))
2153 return getMemoryAccess(NL
);
2154 // Find the store with the minimum DFS number.
2155 auto *V
= getMinDFSOfRange
<Value
>(make_filter_range(
2156 *CC
, [&](const Value
*V
) { return isa
<StoreInst
>(V
); }));
2157 return getMemoryAccess(cast
<StoreInst
>(V
));
2159 assert(CC
->getStoreCount() == 0);
2161 // Given our assertion, hitting this part must mean
2162 // !OldClass->memory_empty()
2163 if (CC
->memory_size() == 1)
2164 return *CC
->memory_begin();
2165 return getMinDFSOfRange
<const MemoryPhi
>(CC
->memory());
2168 // This function returns the next value leader of a congruence class, under the
2169 // assumption that the current leader is going away. This should end up being
2170 // the next most dominating member.
2171 Value
*NewGVN::getNextValueLeader(CongruenceClass
*CC
) const {
2172 // We don't need to sort members if there is only 1, and we don't care about
2173 // sorting the TOP class because everything either gets out of it or is
2176 if (CC
->size() == 1 || CC
== TOPClass
) {
2177 return *(CC
->begin());
2178 } else if (CC
->getNextLeader().first
) {
2179 ++NumGVNAvoidedSortedLeaderChanges
;
2180 return CC
->getNextLeader().first
;
2182 ++NumGVNSortedLeaderChanges
;
2183 // NOTE: If this ends up to slow, we can maintain a dual structure for
2184 // member testing/insertion, or keep things mostly sorted, and sort only
2185 // here, or use SparseBitVector or ....
2186 return getMinDFSOfRange
<Value
>(*CC
);
2190 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2191 // the memory members, etc for the move.
2193 // The invariants of this function are:
2195 // - I must be moving to NewClass from OldClass
2196 // - The StoreCount of OldClass and NewClass is expected to have been updated
2197 // for I already if it is a store.
2198 // - The OldClass memory leader has not been updated yet if I was the leader.
2199 void NewGVN::moveMemoryToNewCongruenceClass(Instruction
*I
,
2200 MemoryAccess
*InstMA
,
2201 CongruenceClass
*OldClass
,
2202 CongruenceClass
*NewClass
) {
2203 // If the leader is I, and we had a representative MemoryAccess, it should
2204 // be the MemoryAccess of OldClass.
2205 assert((!InstMA
|| !OldClass
->getMemoryLeader() ||
2206 OldClass
->getLeader() != I
||
2207 MemoryAccessToClass
.lookup(OldClass
->getMemoryLeader()) ==
2208 MemoryAccessToClass
.lookup(InstMA
)) &&
2209 "Representative MemoryAccess mismatch");
2210 // First, see what happens to the new class
2211 if (!NewClass
->getMemoryLeader()) {
2212 // Should be a new class, or a store becoming a leader of a new class.
2213 assert(NewClass
->size() == 1 ||
2214 (isa
<StoreInst
>(I
) && NewClass
->getStoreCount() == 1));
2215 NewClass
->setMemoryLeader(InstMA
);
2216 // Mark it touched if we didn't just create a singleton
2217 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2218 << NewClass
->getID()
2219 << " due to new memory instruction becoming leader\n");
2220 markMemoryLeaderChangeTouched(NewClass
);
2222 setMemoryClass(InstMA
, NewClass
);
2223 // Now, fixup the old class if necessary
2224 if (OldClass
->getMemoryLeader() == InstMA
) {
2225 if (!OldClass
->definesNoMemory()) {
2226 OldClass
->setMemoryLeader(getNextMemoryLeader(OldClass
));
2227 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2228 << OldClass
->getID() << " to "
2229 << *OldClass
->getMemoryLeader()
2230 << " due to removal of old leader " << *InstMA
<< "\n");
2231 markMemoryLeaderChangeTouched(OldClass
);
2233 OldClass
->setMemoryLeader(nullptr);
2237 // Move a value, currently in OldClass, to be part of NewClass
2238 // Update OldClass and NewClass for the move (including changing leaders, etc).
2239 void NewGVN::moveValueToNewCongruenceClass(Instruction
*I
, const Expression
*E
,
2240 CongruenceClass
*OldClass
,
2241 CongruenceClass
*NewClass
) {
2242 if (I
== OldClass
->getNextLeader().first
)
2243 OldClass
->resetNextLeader();
2246 NewClass
->insert(I
);
2248 if (NewClass
->getLeader() != I
)
2249 NewClass
->addPossibleNextLeader({I
, InstrToDFSNum(I
)});
2250 // Handle our special casing of stores.
2251 if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
2252 OldClass
->decStoreCount();
2253 // Okay, so when do we want to make a store a leader of a class?
2254 // If we have a store defined by an earlier load, we want the earlier load
2255 // to lead the class.
2256 // If we have a store defined by something else, we want the store to lead
2257 // the class so everything else gets the "something else" as a value.
2258 // If we have a store as the single member of the class, we want the store
2260 if (NewClass
->getStoreCount() == 0 && !NewClass
->getStoredValue()) {
2261 // If it's a store expression we are using, it means we are not equivalent
2262 // to something earlier.
2263 if (auto *SE
= dyn_cast
<StoreExpression
>(E
)) {
2264 NewClass
->setStoredValue(SE
->getStoredValue());
2265 markValueLeaderChangeTouched(NewClass
);
2266 // Shift the new class leader to be the store
2267 LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2268 << NewClass
->getID() << " from "
2269 << *NewClass
->getLeader() << " to " << *SI
2270 << " because store joined class\n");
2271 // If we changed the leader, we have to mark it changed because we don't
2272 // know what it will do to symbolic evaluation.
2273 NewClass
->setLeader(SI
);
2275 // We rely on the code below handling the MemoryAccess change.
2277 NewClass
->incStoreCount();
2279 // True if there is no memory instructions left in a class that had memory
2280 // instructions before.
2282 // If it's not a memory use, set the MemoryAccess equivalence
2283 auto *InstMA
= dyn_cast_or_null
<MemoryDef
>(getMemoryAccess(I
));
2285 moveMemoryToNewCongruenceClass(I
, InstMA
, OldClass
, NewClass
);
2286 ValueToClass
[I
] = NewClass
;
2287 // See if we destroyed the class or need to swap leaders.
2288 if (OldClass
->empty() && OldClass
!= TOPClass
) {
2289 if (OldClass
->getDefiningExpr()) {
2290 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass
->getDefiningExpr()
2291 << " from table\n");
2292 // We erase it as an exact expression to make sure we don't just erase an
2294 auto Iter
= ExpressionToClass
.find_as(
2295 ExactEqualsExpression(*OldClass
->getDefiningExpr()));
2296 if (Iter
!= ExpressionToClass
.end())
2297 ExpressionToClass
.erase(Iter
);
2298 #ifdef EXPENSIVE_CHECKS
2300 (*OldClass
->getDefiningExpr() != *E
|| ExpressionToClass
.lookup(E
)) &&
2301 "We erased the expression we just inserted, which should not happen");
2304 } else if (OldClass
->getLeader() == I
) {
2305 // When the leader changes, the value numbering of
2306 // everything may change due to symbolization changes, so we need to
2308 LLVM_DEBUG(dbgs() << "Value class leader change for class "
2309 << OldClass
->getID() << "\n");
2310 ++NumGVNLeaderChanges
;
2311 // Destroy the stored value if there are no more stores to represent it.
2312 // Note that this is basically clean up for the expression removal that
2313 // happens below. If we remove stores from a class, we may leave it as a
2314 // class of equivalent memory phis.
2315 if (OldClass
->getStoreCount() == 0) {
2316 if (OldClass
->getStoredValue())
2317 OldClass
->setStoredValue(nullptr);
2319 OldClass
->setLeader(getNextValueLeader(OldClass
));
2320 OldClass
->resetNextLeader();
2321 markValueLeaderChangeTouched(OldClass
);
2325 // For a given expression, mark the phi of ops instructions that could have
2326 // changed as a result.
2327 void NewGVN::markPhiOfOpsChanged(const Expression
*E
) {
2328 touchAndErase(ExpressionToPhiOfOps
, E
);
2331 // Perform congruence finding on a given value numbering expression.
2332 void NewGVN::performCongruenceFinding(Instruction
*I
, const Expression
*E
) {
2333 // This is guaranteed to return something, since it will at least find
2336 CongruenceClass
*IClass
= ValueToClass
.lookup(I
);
2337 assert(IClass
&& "Should have found a IClass");
2338 // Dead classes should have been eliminated from the mapping.
2339 assert(!IClass
->isDead() && "Found a dead class");
2341 CongruenceClass
*EClass
= nullptr;
2342 if (const auto *VE
= dyn_cast
<VariableExpression
>(E
)) {
2343 EClass
= ValueToClass
.lookup(VE
->getVariableValue());
2344 } else if (isa
<DeadExpression
>(E
)) {
2348 auto lookupResult
= ExpressionToClass
.insert({E
, nullptr});
2350 // If it's not in the value table, create a new congruence class.
2351 if (lookupResult
.second
) {
2352 CongruenceClass
*NewClass
= createCongruenceClass(nullptr, E
);
2353 auto place
= lookupResult
.first
;
2354 place
->second
= NewClass
;
2356 // Constants and variables should always be made the leader.
2357 if (const auto *CE
= dyn_cast
<ConstantExpression
>(E
)) {
2358 NewClass
->setLeader(CE
->getConstantValue());
2359 } else if (const auto *SE
= dyn_cast
<StoreExpression
>(E
)) {
2360 StoreInst
*SI
= SE
->getStoreInst();
2361 NewClass
->setLeader(SI
);
2362 NewClass
->setStoredValue(SE
->getStoredValue());
2363 // The RepMemoryAccess field will be filled in properly by the
2364 // moveValueToNewCongruenceClass call.
2366 NewClass
->setLeader(I
);
2368 assert(!isa
<VariableExpression
>(E
) &&
2369 "VariableExpression should have been handled already");
2372 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2373 << " using expression " << *E
<< " at "
2374 << NewClass
->getID() << " and leader "
2375 << *(NewClass
->getLeader()));
2376 if (NewClass
->getStoredValue())
2377 LLVM_DEBUG(dbgs() << " and stored value "
2378 << *(NewClass
->getStoredValue()));
2379 LLVM_DEBUG(dbgs() << "\n");
2381 EClass
= lookupResult
.first
->second
;
2382 if (isa
<ConstantExpression
>(E
))
2383 assert((isa
<Constant
>(EClass
->getLeader()) ||
2384 (EClass
->getStoredValue() &&
2385 isa
<Constant
>(EClass
->getStoredValue()))) &&
2386 "Any class with a constant expression should have a "
2389 assert(EClass
&& "Somehow don't have an eclass");
2391 assert(!EClass
->isDead() && "We accidentally looked up a dead class");
2394 bool ClassChanged
= IClass
!= EClass
;
2395 bool LeaderChanged
= LeaderChanges
.erase(I
);
2396 if (ClassChanged
|| LeaderChanged
) {
2397 LLVM_DEBUG(dbgs() << "New class " << EClass
->getID() << " for expression "
2400 moveValueToNewCongruenceClass(I
, E
, IClass
, EClass
);
2401 markPhiOfOpsChanged(E
);
2404 markUsersTouched(I
);
2405 if (MemoryAccess
*MA
= getMemoryAccess(I
))
2406 markMemoryUsersTouched(MA
);
2407 if (auto *CI
= dyn_cast
<CmpInst
>(I
))
2408 markPredicateUsersTouched(CI
);
2410 // If we changed the class of the store, we want to ensure nothing finds the
2411 // old store expression. In particular, loads do not compare against stored
2412 // value, so they will find old store expressions (and associated class
2413 // mappings) if we leave them in the table.
2414 if (ClassChanged
&& isa
<StoreInst
>(I
)) {
2415 auto *OldE
= ValueToExpression
.lookup(I
);
2416 // It could just be that the old class died. We don't want to erase it if we
2417 // just moved classes.
2418 if (OldE
&& isa
<StoreExpression
>(OldE
) && *E
!= *OldE
) {
2419 // Erase this as an exact expression to ensure we don't erase expressions
2420 // equivalent to it.
2421 auto Iter
= ExpressionToClass
.find_as(ExactEqualsExpression(*OldE
));
2422 if (Iter
!= ExpressionToClass
.end())
2423 ExpressionToClass
.erase(Iter
);
2426 ValueToExpression
[I
] = E
;
2429 // Process the fact that Edge (from, to) is reachable, including marking
2430 // any newly reachable blocks and instructions for processing.
2431 void NewGVN::updateReachableEdge(BasicBlock
*From
, BasicBlock
*To
) {
2432 // Check if the Edge was reachable before.
2433 if (ReachableEdges
.insert({From
, To
}).second
) {
2434 // If this block wasn't reachable before, all instructions are touched.
2435 if (ReachableBlocks
.insert(To
).second
) {
2436 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To
)
2437 << " marked reachable\n");
2438 const auto &InstRange
= BlockInstRange
.lookup(To
);
2439 TouchedInstructions
.set(InstRange
.first
, InstRange
.second
);
2441 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To
)
2442 << " was reachable, but new edge {"
2443 << getBlockName(From
) << "," << getBlockName(To
)
2444 << "} to it found\n");
2446 // We've made an edge reachable to an existing block, which may
2447 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2448 // they are the only thing that depend on new edges. Anything using their
2449 // values will get propagated to if necessary.
2450 if (MemoryAccess
*MemPhi
= getMemoryAccess(To
))
2451 TouchedInstructions
.set(InstrToDFSNum(MemPhi
));
2453 // FIXME: We should just add a union op on a Bitvector and
2454 // SparseBitVector. We can do it word by word faster than we are doing it
2456 for (auto InstNum
: RevisitOnReachabilityChange
[To
])
2457 TouchedInstructions
.set(InstNum
);
2462 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2463 // see if we know some constant value for it already.
2464 Value
*NewGVN::findConditionEquivalence(Value
*Cond
) const {
2465 auto Result
= lookupOperandLeader(Cond
);
2466 return isa
<Constant
>(Result
) ? Result
: nullptr;
2469 // Process the outgoing edges of a block for reachability.
2470 void NewGVN::processOutgoingEdges(Instruction
*TI
, BasicBlock
*B
) {
2471 // Evaluate reachability of terminator instruction.
2473 BasicBlock
*TrueSucc
, *FalseSucc
;
2474 if (match(TI
, m_Br(m_Value(Cond
), TrueSucc
, FalseSucc
))) {
2475 Value
*CondEvaluated
= findConditionEquivalence(Cond
);
2476 if (!CondEvaluated
) {
2477 if (auto *I
= dyn_cast
<Instruction
>(Cond
)) {
2478 const Expression
*E
= createExpression(I
);
2479 if (const auto *CE
= dyn_cast
<ConstantExpression
>(E
)) {
2480 CondEvaluated
= CE
->getConstantValue();
2482 } else if (isa
<ConstantInt
>(Cond
)) {
2483 CondEvaluated
= Cond
;
2487 if (CondEvaluated
&& (CI
= dyn_cast
<ConstantInt
>(CondEvaluated
))) {
2489 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2490 << " evaluated to true\n");
2491 updateReachableEdge(B
, TrueSucc
);
2492 } else if (CI
->isZero()) {
2493 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2494 << " evaluated to false\n");
2495 updateReachableEdge(B
, FalseSucc
);
2498 updateReachableEdge(B
, TrueSucc
);
2499 updateReachableEdge(B
, FalseSucc
);
2501 } else if (auto *SI
= dyn_cast
<SwitchInst
>(TI
)) {
2502 // For switches, propagate the case values into the case
2505 Value
*SwitchCond
= SI
->getCondition();
2506 Value
*CondEvaluated
= findConditionEquivalence(SwitchCond
);
2507 // See if we were able to turn this switch statement into a constant.
2508 if (CondEvaluated
&& isa
<ConstantInt
>(CondEvaluated
)) {
2509 auto *CondVal
= cast
<ConstantInt
>(CondEvaluated
);
2510 // We should be able to get case value for this.
2511 auto Case
= *SI
->findCaseValue(CondVal
);
2512 if (Case
.getCaseSuccessor() == SI
->getDefaultDest()) {
2513 // We proved the value is outside of the range of the case.
2514 // We can't do anything other than mark the default dest as reachable,
2516 updateReachableEdge(B
, SI
->getDefaultDest());
2519 // Now get where it goes and mark it reachable.
2520 BasicBlock
*TargetBlock
= Case
.getCaseSuccessor();
2521 updateReachableEdge(B
, TargetBlock
);
2523 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
!= e
; ++i
) {
2524 BasicBlock
*TargetBlock
= SI
->getSuccessor(i
);
2525 updateReachableEdge(B
, TargetBlock
);
2529 // Otherwise this is either unconditional, or a type we have no
2530 // idea about. Just mark successors as reachable.
2531 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
2532 BasicBlock
*TargetBlock
= TI
->getSuccessor(i
);
2533 updateReachableEdge(B
, TargetBlock
);
2536 // This also may be a memory defining terminator, in which case, set it
2537 // equivalent only to itself.
2539 auto *MA
= getMemoryAccess(TI
);
2540 if (MA
&& !isa
<MemoryUse
>(MA
)) {
2541 auto *CC
= ensureLeaderOfMemoryClass(MA
);
2542 if (setMemoryClass(MA
, CC
))
2543 markMemoryUsersTouched(MA
);
2548 // Remove the PHI of Ops PHI for I
2549 void NewGVN::removePhiOfOps(Instruction
*I
, PHINode
*PHITemp
) {
2550 InstrDFS
.erase(PHITemp
);
2551 // It's still a temp instruction. We keep it in the array so it gets erased.
2552 // However, it's no longer used by I, or in the block
2553 TempToBlock
.erase(PHITemp
);
2554 RealToTemp
.erase(I
);
2555 // We don't remove the users from the phi node uses. This wastes a little
2556 // time, but such is life. We could use two sets to track which were there
2557 // are the start of NewGVN, and which were added, but right nowt he cost of
2558 // tracking is more than the cost of checking for more phi of ops.
2561 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2562 void NewGVN::addPhiOfOps(PHINode
*Op
, BasicBlock
*BB
,
2563 Instruction
*ExistingValue
) {
2564 InstrDFS
[Op
] = InstrToDFSNum(ExistingValue
);
2565 AllTempInstructions
.insert(Op
);
2566 TempToBlock
[Op
] = BB
;
2567 RealToTemp
[ExistingValue
] = Op
;
2568 // Add all users to phi node use, as they are now uses of the phi of ops phis
2569 // and may themselves be phi of ops.
2570 for (auto *U
: ExistingValue
->users())
2571 if (auto *UI
= dyn_cast
<Instruction
>(U
))
2572 PHINodeUses
.insert(UI
);
2575 static bool okayForPHIOfOps(const Instruction
*I
) {
2576 if (!EnablePhiOfOps
)
2578 return isa
<BinaryOperator
>(I
) || isa
<SelectInst
>(I
) || isa
<CmpInst
>(I
) ||
2582 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2583 Value
*V
, const BasicBlock
*PHIBlock
,
2584 SmallPtrSetImpl
<const Value
*> &Visited
,
2585 SmallVectorImpl
<Instruction
*> &Worklist
) {
2587 if (!isa
<Instruction
>(V
))
2589 auto OISIt
= OpSafeForPHIOfOps
.find(V
);
2590 if (OISIt
!= OpSafeForPHIOfOps
.end())
2591 return OISIt
->second
;
2593 // Keep walking until we either dominate the phi block, or hit a phi, or run
2594 // out of things to check.
2595 if (DT
->properlyDominates(getBlockForValue(V
), PHIBlock
)) {
2596 OpSafeForPHIOfOps
.insert({V
, true});
2599 // PHI in the same block.
2600 if (isa
<PHINode
>(V
) && getBlockForValue(V
) == PHIBlock
) {
2601 OpSafeForPHIOfOps
.insert({V
, false});
2605 auto *OrigI
= cast
<Instruction
>(V
);
2606 for (auto *Op
: OrigI
->operand_values()) {
2607 if (!isa
<Instruction
>(Op
))
2609 // Stop now if we find an unsafe operand.
2610 auto OISIt
= OpSafeForPHIOfOps
.find(OrigI
);
2611 if (OISIt
!= OpSafeForPHIOfOps
.end()) {
2612 if (!OISIt
->second
) {
2613 OpSafeForPHIOfOps
.insert({V
, false});
2618 if (!Visited
.insert(Op
).second
)
2620 Worklist
.push_back(cast
<Instruction
>(Op
));
2625 // Return true if this operand will be safe to use for phi of ops.
2627 // The reason some operands are unsafe is that we are not trying to recursively
2628 // translate everything back through phi nodes. We actually expect some lookups
2629 // of expressions to fail. In particular, a lookup where the expression cannot
2630 // exist in the predecessor. This is true even if the expression, as shown, can
2631 // be determined to be constant.
2632 bool NewGVN::OpIsSafeForPHIOfOps(Value
*V
, const BasicBlock
*PHIBlock
,
2633 SmallPtrSetImpl
<const Value
*> &Visited
) {
2634 SmallVector
<Instruction
*, 4> Worklist
;
2635 if (!OpIsSafeForPHIOfOpsHelper(V
, PHIBlock
, Visited
, Worklist
))
2637 while (!Worklist
.empty()) {
2638 auto *I
= Worklist
.pop_back_val();
2639 if (!OpIsSafeForPHIOfOpsHelper(I
, PHIBlock
, Visited
, Worklist
))
2642 OpSafeForPHIOfOps
.insert({V
, true});
2646 // Try to find a leader for instruction TransInst, which is a phi translated
2647 // version of something in our original program. Visited is used to ensure we
2648 // don't infinite loop during translations of cycles. OrigInst is the
2649 // instruction in the original program, and PredBB is the predecessor we
2650 // translated it through.
2651 Value
*NewGVN::findLeaderForInst(Instruction
*TransInst
,
2652 SmallPtrSetImpl
<Value
*> &Visited
,
2653 MemoryAccess
*MemAccess
, Instruction
*OrigInst
,
2654 BasicBlock
*PredBB
) {
2655 unsigned IDFSNum
= InstrToDFSNum(OrigInst
);
2656 // Make sure it's marked as a temporary instruction.
2657 AllTempInstructions
.insert(TransInst
);
2658 // and make sure anything that tries to add it's DFS number is
2659 // redirected to the instruction we are making a phi of ops
2661 TempToBlock
.insert({TransInst
, PredBB
});
2662 InstrDFS
.insert({TransInst
, IDFSNum
});
2664 const Expression
*E
= performSymbolicEvaluation(TransInst
, Visited
);
2665 InstrDFS
.erase(TransInst
);
2666 AllTempInstructions
.erase(TransInst
);
2667 TempToBlock
.erase(TransInst
);
2669 TempToMemory
.erase(TransInst
);
2672 auto *FoundVal
= findPHIOfOpsLeader(E
, OrigInst
, PredBB
);
2674 ExpressionToPhiOfOps
[E
].insert(OrigInst
);
2675 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2676 << " in block " << getBlockName(PredBB
) << "\n");
2679 if (auto *SI
= dyn_cast
<StoreInst
>(FoundVal
))
2680 FoundVal
= SI
->getValueOperand();
2684 // When we see an instruction that is an op of phis, generate the equivalent phi
2687 NewGVN::makePossiblePHIOfOps(Instruction
*I
,
2688 SmallPtrSetImpl
<Value
*> &Visited
) {
2689 if (!okayForPHIOfOps(I
))
2692 if (!Visited
.insert(I
).second
)
2694 // For now, we require the instruction be cycle free because we don't
2695 // *always* create a phi of ops for instructions that could be done as phi
2696 // of ops, we only do it if we think it is useful. If we did do it all the
2697 // time, we could remove the cycle free check.
2698 if (!isCycleFree(I
))
2701 SmallPtrSet
<const Value
*, 8> ProcessedPHIs
;
2702 // TODO: We don't do phi translation on memory accesses because it's
2703 // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2704 // which we don't have a good way of doing ATM.
2705 auto *MemAccess
= getMemoryAccess(I
);
2706 // If the memory operation is defined by a memory operation this block that
2707 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2708 // can't help, as it would still be killed by that memory operation.
2709 if (MemAccess
&& !isa
<MemoryPhi
>(MemAccess
->getDefiningAccess()) &&
2710 MemAccess
->getDefiningAccess()->getBlock() == I
->getParent())
2713 // Convert op of phis to phi of ops
2714 SmallPtrSet
<const Value
*, 10> VisitedOps
;
2715 SmallVector
<Value
*, 4> Ops(I
->operand_values());
2716 BasicBlock
*SamePHIBlock
= nullptr;
2717 PHINode
*OpPHI
= nullptr;
2718 if (!DebugCounter::shouldExecute(PHIOfOpsCounter
))
2720 for (auto *Op
: Ops
) {
2721 if (!isa
<PHINode
>(Op
)) {
2722 auto *ValuePHI
= RealToTemp
.lookup(Op
);
2725 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2728 OpPHI
= cast
<PHINode
>(Op
);
2729 if (!SamePHIBlock
) {
2730 SamePHIBlock
= getBlockForValue(OpPHI
);
2731 } else if (SamePHIBlock
!= getBlockForValue(OpPHI
)) {
2734 << "PHIs for operands are not all in the same block, aborting\n");
2737 // No point in doing this for one-operand phis.
2738 if (OpPHI
->getNumOperands() == 1) {
2747 SmallVector
<ValPair
, 4> PHIOps
;
2748 SmallPtrSet
<Value
*, 4> Deps
;
2749 auto *PHIBlock
= getBlockForValue(OpPHI
);
2750 RevisitOnReachabilityChange
[PHIBlock
].reset(InstrToDFSNum(I
));
2751 for (unsigned PredNum
= 0; PredNum
< OpPHI
->getNumOperands(); ++PredNum
) {
2752 auto *PredBB
= OpPHI
->getIncomingBlock(PredNum
);
2753 Value
*FoundVal
= nullptr;
2754 SmallPtrSet
<Value
*, 4> CurrentDeps
;
2755 // We could just skip unreachable edges entirely but it's tricky to do
2756 // with rewriting existing phi nodes.
2757 if (ReachableEdges
.count({PredBB
, PHIBlock
})) {
2758 // Clone the instruction, create an expression from it that is
2759 // translated back into the predecessor, and see if we have a leader.
2760 Instruction
*ValueOp
= I
->clone();
2762 TempToMemory
.insert({ValueOp
, MemAccess
});
2763 bool SafeForPHIOfOps
= true;
2765 for (auto &Op
: ValueOp
->operands()) {
2766 auto *OrigOp
= &*Op
;
2767 // When these operand changes, it could change whether there is a
2768 // leader for us or not, so we have to add additional users.
2769 if (isa
<PHINode
>(Op
)) {
2770 Op
= Op
->DoPHITranslation(PHIBlock
, PredBB
);
2771 if (Op
!= OrigOp
&& Op
!= I
)
2772 CurrentDeps
.insert(Op
);
2773 } else if (auto *ValuePHI
= RealToTemp
.lookup(Op
)) {
2774 if (getBlockForValue(ValuePHI
) == PHIBlock
)
2775 Op
= ValuePHI
->getIncomingValueForBlock(PredBB
);
2777 // If we phi-translated the op, it must be safe.
2780 (Op
!= OrigOp
|| OpIsSafeForPHIOfOps(Op
, PHIBlock
, VisitedOps
));
2782 // FIXME: For those things that are not safe we could generate
2783 // expressions all the way down, and see if this comes out to a
2784 // constant. For anything where that is true, and unsafe, we should
2785 // have made a phi-of-ops (or value numbered it equivalent to something)
2786 // for the pieces already.
2787 FoundVal
= !SafeForPHIOfOps
? nullptr
2788 : findLeaderForInst(ValueOp
, Visited
,
2789 MemAccess
, I
, PredBB
);
2790 ValueOp
->deleteValue();
2792 // We failed to find a leader for the current ValueOp, but this might
2793 // change in case of the translated operands change.
2794 if (SafeForPHIOfOps
)
2795 for (auto Dep
: CurrentDeps
)
2796 addAdditionalUsers(Dep
, I
);
2800 Deps
.insert(CurrentDeps
.begin(), CurrentDeps
.end());
2802 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2803 << getBlockName(PredBB
)
2804 << " because the block is unreachable\n");
2805 FoundVal
= UndefValue::get(I
->getType());
2806 RevisitOnReachabilityChange
[PHIBlock
].set(InstrToDFSNum(I
));
2809 PHIOps
.push_back({FoundVal
, PredBB
});
2810 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal
<< " in "
2811 << getBlockName(PredBB
) << "\n");
2813 for (auto Dep
: Deps
)
2814 addAdditionalUsers(Dep
, I
);
2816 auto *E
= performSymbolicPHIEvaluation(PHIOps
, I
, PHIBlock
);
2817 if (isa
<ConstantExpression
>(E
) || isa
<VariableExpression
>(E
)) {
2820 << "Not creating real PHI of ops because it simplified to existing "
2821 "value or constant\n");
2824 auto *ValuePHI
= RealToTemp
.lookup(I
);
2825 bool NewPHI
= false;
2828 PHINode::Create(I
->getType(), OpPHI
->getNumOperands(), "phiofops");
2829 addPhiOfOps(ValuePHI
, PHIBlock
, I
);
2831 NumGVNPHIOfOpsCreated
++;
2834 for (auto PHIOp
: PHIOps
)
2835 ValuePHI
->addIncoming(PHIOp
.first
, PHIOp
.second
);
2837 TempToBlock
[ValuePHI
] = PHIBlock
;
2839 for (auto PHIOp
: PHIOps
) {
2840 ValuePHI
->setIncomingValue(i
, PHIOp
.first
);
2841 ValuePHI
->setIncomingBlock(i
, PHIOp
.second
);
2845 RevisitOnReachabilityChange
[PHIBlock
].set(InstrToDFSNum(I
));
2846 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI
<< " for " << *I
2852 // The algorithm initially places the values of the routine in the TOP
2853 // congruence class. The leader of TOP is the undetermined value `undef`.
2854 // When the algorithm has finished, values still in TOP are unreachable.
2855 void NewGVN::initializeCongruenceClasses(Function
&F
) {
2856 NextCongruenceNum
= 0;
2858 // Note that even though we use the live on entry def as a representative
2859 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2860 // have no real equivalemnt to undef for MemoryAccesses, and so we really
2861 // should be checking whether the MemoryAccess is top if we want to know if it
2862 // is equivalent to everything. Otherwise, what this really signifies is that
2863 // the access "it reaches all the way back to the beginning of the function"
2865 // Initialize all other instructions to be in TOP class.
2866 TOPClass
= createCongruenceClass(nullptr, nullptr);
2867 TOPClass
->setMemoryLeader(MSSA
->getLiveOnEntryDef());
2868 // The live on entry def gets put into it's own class
2869 MemoryAccessToClass
[MSSA
->getLiveOnEntryDef()] =
2870 createMemoryClass(MSSA
->getLiveOnEntryDef());
2872 for (auto DTN
: nodes(DT
)) {
2873 BasicBlock
*BB
= DTN
->getBlock();
2874 // All MemoryAccesses are equivalent to live on entry to start. They must
2875 // be initialized to something so that initial changes are noticed. For
2876 // the maximal answer, we initialize them all to be the same as
2878 auto *MemoryBlockDefs
= MSSA
->getBlockDefs(BB
);
2879 if (MemoryBlockDefs
)
2880 for (const auto &Def
: *MemoryBlockDefs
) {
2881 MemoryAccessToClass
[&Def
] = TOPClass
;
2882 auto *MD
= dyn_cast
<MemoryDef
>(&Def
);
2883 // Insert the memory phis into the member list.
2885 const MemoryPhi
*MP
= cast
<MemoryPhi
>(&Def
);
2886 TOPClass
->memory_insert(MP
);
2887 MemoryPhiState
.insert({MP
, MPS_TOP
});
2890 if (MD
&& isa
<StoreInst
>(MD
->getMemoryInst()))
2891 TOPClass
->incStoreCount();
2894 // FIXME: This is trying to discover which instructions are uses of phi
2895 // nodes. We should move this into one of the myriad of places that walk
2896 // all the operands already.
2897 for (auto &I
: *BB
) {
2898 if (isa
<PHINode
>(&I
))
2899 for (auto *U
: I
.users())
2900 if (auto *UInst
= dyn_cast
<Instruction
>(U
))
2901 if (InstrToDFSNum(UInst
) != 0 && okayForPHIOfOps(UInst
))
2902 PHINodeUses
.insert(UInst
);
2903 // Don't insert void terminators into the class. We don't value number
2904 // them, and they just end up sitting in TOP.
2905 if (I
.isTerminator() && I
.getType()->isVoidTy())
2907 TOPClass
->insert(&I
);
2908 ValueToClass
[&I
] = TOPClass
;
2912 // Initialize arguments to be in their own unique congruence classes
2913 for (auto &FA
: F
.args())
2914 createSingletonCongruenceClass(&FA
);
2917 void NewGVN::cleanupTables() {
2918 for (unsigned i
= 0, e
= CongruenceClasses
.size(); i
!= e
; ++i
) {
2919 LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses
[i
]->getID()
2920 << " has " << CongruenceClasses
[i
]->size()
2922 // Make sure we delete the congruence class (probably worth switching to
2923 // a unique_ptr at some point.
2924 delete CongruenceClasses
[i
];
2925 CongruenceClasses
[i
] = nullptr;
2928 // Destroy the value expressions
2929 SmallVector
<Instruction
*, 8> TempInst(AllTempInstructions
.begin(),
2930 AllTempInstructions
.end());
2931 AllTempInstructions
.clear();
2933 // We have to drop all references for everything first, so there are no uses
2934 // left as we delete them.
2935 for (auto *I
: TempInst
) {
2936 I
->dropAllReferences();
2939 while (!TempInst
.empty()) {
2940 auto *I
= TempInst
.back();
2941 TempInst
.pop_back();
2945 ValueToClass
.clear();
2946 ArgRecycler
.clear(ExpressionAllocator
);
2947 ExpressionAllocator
.Reset();
2948 CongruenceClasses
.clear();
2949 ExpressionToClass
.clear();
2950 ValueToExpression
.clear();
2952 AdditionalUsers
.clear();
2953 ExpressionToPhiOfOps
.clear();
2954 TempToBlock
.clear();
2955 TempToMemory
.clear();
2956 PHINodeUses
.clear();
2957 OpSafeForPHIOfOps
.clear();
2958 ReachableBlocks
.clear();
2959 ReachableEdges
.clear();
2961 ProcessedCount
.clear();
2964 InstructionsToErase
.clear();
2966 BlockInstRange
.clear();
2967 TouchedInstructions
.clear();
2968 MemoryAccessToClass
.clear();
2969 PredicateToUsers
.clear();
2970 MemoryToUsers
.clear();
2971 RevisitOnReachabilityChange
.clear();
2974 // Assign local DFS number mapping to instructions, and leave space for Value
2976 std::pair
<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock
*B
,
2978 unsigned End
= Start
;
2979 if (MemoryAccess
*MemPhi
= getMemoryAccess(B
)) {
2980 InstrDFS
[MemPhi
] = End
++;
2981 DFSToInstr
.emplace_back(MemPhi
);
2984 // Then the real block goes next.
2985 for (auto &I
: *B
) {
2986 // There's no need to call isInstructionTriviallyDead more than once on
2987 // an instruction. Therefore, once we know that an instruction is dead
2988 // we change its DFS number so that it doesn't get value numbered.
2989 if (isInstructionTriviallyDead(&I
, TLI
)) {
2991 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I
<< "\n");
2992 markInstructionForDeletion(&I
);
2995 if (isa
<PHINode
>(&I
))
2996 RevisitOnReachabilityChange
[B
].set(End
);
2997 InstrDFS
[&I
] = End
++;
2998 DFSToInstr
.emplace_back(&I
);
3001 // All of the range functions taken half-open ranges (open on the end side).
3002 // So we do not subtract one from count, because at this point it is one
3003 // greater than the last instruction.
3004 return std::make_pair(Start
, End
);
3007 void NewGVN::updateProcessedCount(const Value
*V
) {
3009 if (ProcessedCount
.count(V
) == 0) {
3010 ProcessedCount
.insert({V
, 1});
3012 ++ProcessedCount
[V
];
3013 assert(ProcessedCount
[V
] < 100 &&
3014 "Seem to have processed the same Value a lot");
3019 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3020 void NewGVN::valueNumberMemoryPhi(MemoryPhi
*MP
) {
3021 // If all the arguments are the same, the MemoryPhi has the same value as the
3022 // argument. Filter out unreachable blocks and self phis from our operands.
3023 // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3024 // self-phi checking.
3025 const BasicBlock
*PHIBlock
= MP
->getBlock();
3026 auto Filtered
= make_filter_range(MP
->operands(), [&](const Use
&U
) {
3027 return cast
<MemoryAccess
>(U
) != MP
&&
3028 !isMemoryAccessTOP(cast
<MemoryAccess
>(U
)) &&
3029 ReachableEdges
.count({MP
->getIncomingBlock(U
), PHIBlock
});
3031 // If all that is left is nothing, our memoryphi is undef. We keep it as
3032 // InitialClass. Note: The only case this should happen is if we have at
3033 // least one self-argument.
3034 if (Filtered
.begin() == Filtered
.end()) {
3035 if (setMemoryClass(MP
, TOPClass
))
3036 markMemoryUsersTouched(MP
);
3040 // Transform the remaining operands into operand leaders.
3041 // FIXME: mapped_iterator should have a range version.
3042 auto LookupFunc
= [&](const Use
&U
) {
3043 return lookupMemoryLeader(cast
<MemoryAccess
>(U
));
3045 auto MappedBegin
= map_iterator(Filtered
.begin(), LookupFunc
);
3046 auto MappedEnd
= map_iterator(Filtered
.end(), LookupFunc
);
3048 // and now check if all the elements are equal.
3049 // Sadly, we can't use std::equals since these are random access iterators.
3050 const auto *AllSameValue
= *MappedBegin
;
3052 bool AllEqual
= std::all_of(
3053 MappedBegin
, MappedEnd
,
3054 [&AllSameValue
](const MemoryAccess
*V
) { return V
== AllSameValue
; });
3057 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3060 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3061 // If it's equal to something, it's in that class. Otherwise, it has to be in
3062 // a class where it is the leader (other things may be equivalent to it, but
3063 // it needs to start off in its own class, which means it must have been the
3064 // leader, and it can't have stopped being the leader because it was never
3066 CongruenceClass
*CC
=
3067 AllEqual
? getMemoryClass(AllSameValue
) : ensureLeaderOfMemoryClass(MP
);
3068 auto OldState
= MemoryPhiState
.lookup(MP
);
3069 assert(OldState
!= MPS_Invalid
&& "Invalid memory phi state");
3070 auto NewState
= AllEqual
? MPS_Equivalent
: MPS_Unique
;
3071 MemoryPhiState
[MP
] = NewState
;
3072 if (setMemoryClass(MP
, CC
) || OldState
!= NewState
)
3073 markMemoryUsersTouched(MP
);
3076 // Value number a single instruction, symbolically evaluating, performing
3077 // congruence finding, and updating mappings.
3078 void NewGVN::valueNumberInstruction(Instruction
*I
) {
3079 LLVM_DEBUG(dbgs() << "Processing instruction " << *I
<< "\n");
3080 if (!I
->isTerminator()) {
3081 const Expression
*Symbolized
= nullptr;
3082 SmallPtrSet
<Value
*, 2> Visited
;
3083 if (DebugCounter::shouldExecute(VNCounter
)) {
3084 Symbolized
= performSymbolicEvaluation(I
, Visited
);
3085 // Make a phi of ops if necessary
3086 if (Symbolized
&& !isa
<ConstantExpression
>(Symbolized
) &&
3087 !isa
<VariableExpression
>(Symbolized
) && PHINodeUses
.count(I
)) {
3088 auto *PHIE
= makePossiblePHIOfOps(I
, Visited
);
3089 // If we created a phi of ops, use it.
3090 // If we couldn't create one, make sure we don't leave one lying around
3093 } else if (auto *Op
= RealToTemp
.lookup(I
)) {
3094 removePhiOfOps(I
, Op
);
3098 // Mark the instruction as unused so we don't value number it again.
3101 // If we couldn't come up with a symbolic expression, use the unknown
3103 if (Symbolized
== nullptr)
3104 Symbolized
= createUnknownExpression(I
);
3105 performCongruenceFinding(I
, Symbolized
);
3107 // Handle terminators that return values. All of them produce values we
3108 // don't currently understand. We don't place non-value producing
3109 // terminators in a class.
3110 if (!I
->getType()->isVoidTy()) {
3111 auto *Symbolized
= createUnknownExpression(I
);
3112 performCongruenceFinding(I
, Symbolized
);
3114 processOutgoingEdges(I
, I
->getParent());
3118 // Check if there is a path, using single or equal argument phi nodes, from
3120 bool NewGVN::singleReachablePHIPath(
3121 SmallPtrSet
<const MemoryAccess
*, 8> &Visited
, const MemoryAccess
*First
,
3122 const MemoryAccess
*Second
) const {
3123 if (First
== Second
)
3125 if (MSSA
->isLiveOnEntryDef(First
))
3128 // This is not perfect, but as we're just verifying here, we can live with
3129 // the loss of precision. The real solution would be that of doing strongly
3130 // connected component finding in this routine, and it's probably not worth
3131 // the complexity for the time being. So, we just keep a set of visited
3132 // MemoryAccess and return true when we hit a cycle.
3133 if (Visited
.count(First
))
3135 Visited
.insert(First
);
3137 const auto *EndDef
= First
;
3138 for (auto *ChainDef
: optimized_def_chain(First
)) {
3139 if (ChainDef
== Second
)
3141 if (MSSA
->isLiveOnEntryDef(ChainDef
))
3145 auto *MP
= cast
<MemoryPhi
>(EndDef
);
3146 auto ReachableOperandPred
= [&](const Use
&U
) {
3147 return ReachableEdges
.count({MP
->getIncomingBlock(U
), MP
->getBlock()});
3149 auto FilteredPhiArgs
=
3150 make_filter_range(MP
->operands(), ReachableOperandPred
);
3151 SmallVector
<const Value
*, 32> OperandList
;
3152 llvm::copy(FilteredPhiArgs
, std::back_inserter(OperandList
));
3153 bool Okay
= is_splat(OperandList
);
3155 return singleReachablePHIPath(Visited
, cast
<MemoryAccess
>(OperandList
[0]),
3160 // Verify the that the memory equivalence table makes sense relative to the
3161 // congruence classes. Note that this checking is not perfect, and is currently
3162 // subject to very rare false negatives. It is only useful for
3163 // testing/debugging.
3164 void NewGVN::verifyMemoryCongruency() const {
3166 // Verify that the memory table equivalence and memory member set match
3167 for (const auto *CC
: CongruenceClasses
) {
3168 if (CC
== TOPClass
|| CC
->isDead())
3170 if (CC
->getStoreCount() != 0) {
3171 assert((CC
->getStoredValue() || !isa
<StoreInst
>(CC
->getLeader())) &&
3172 "Any class with a store as a leader should have a "
3173 "representative stored value");
3174 assert(CC
->getMemoryLeader() &&
3175 "Any congruence class with a store should have a "
3176 "representative access");
3179 if (CC
->getMemoryLeader())
3180 assert(MemoryAccessToClass
.lookup(CC
->getMemoryLeader()) == CC
&&
3181 "Representative MemoryAccess does not appear to be reverse "
3183 for (auto M
: CC
->memory())
3184 assert(MemoryAccessToClass
.lookup(M
) == CC
&&
3185 "Memory member does not appear to be reverse mapped properly");
3188 // Anything equivalent in the MemoryAccess table should be in the same
3189 // congruence class.
3191 // Filter out the unreachable and trivially dead entries, because they may
3192 // never have been updated if the instructions were not processed.
3193 auto ReachableAccessPred
=
3194 [&](const std::pair
<const MemoryAccess
*, CongruenceClass
*> Pair
) {
3195 bool Result
= ReachableBlocks
.count(Pair
.first
->getBlock());
3196 if (!Result
|| MSSA
->isLiveOnEntryDef(Pair
.first
) ||
3197 MemoryToDFSNum(Pair
.first
) == 0)
3199 if (auto *MemDef
= dyn_cast
<MemoryDef
>(Pair
.first
))
3200 return !isInstructionTriviallyDead(MemDef
->getMemoryInst());
3202 // We could have phi nodes which operands are all trivially dead,
3203 // so we don't process them.
3204 if (auto *MemPHI
= dyn_cast
<MemoryPhi
>(Pair
.first
)) {
3205 for (auto &U
: MemPHI
->incoming_values()) {
3206 if (auto *I
= dyn_cast
<Instruction
>(&*U
)) {
3207 if (!isInstructionTriviallyDead(I
))
3217 auto Filtered
= make_filter_range(MemoryAccessToClass
, ReachableAccessPred
);
3218 for (auto KV
: Filtered
) {
3219 if (auto *FirstMUD
= dyn_cast
<MemoryUseOrDef
>(KV
.first
)) {
3220 auto *SecondMUD
= dyn_cast
<MemoryUseOrDef
>(KV
.second
->getMemoryLeader());
3221 if (FirstMUD
&& SecondMUD
) {
3222 SmallPtrSet
<const MemoryAccess
*, 8> VisitedMAS
;
3223 assert((singleReachablePHIPath(VisitedMAS
, FirstMUD
, SecondMUD
) ||
3224 ValueToClass
.lookup(FirstMUD
->getMemoryInst()) ==
3225 ValueToClass
.lookup(SecondMUD
->getMemoryInst())) &&
3226 "The instructions for these memory operations should have "
3227 "been in the same congruence class or reachable through"
3228 "a single argument phi");
3230 } else if (auto *FirstMP
= dyn_cast
<MemoryPhi
>(KV
.first
)) {
3231 // We can only sanely verify that MemoryDefs in the operand list all have
3233 auto ReachableOperandPred
= [&](const Use
&U
) {
3234 return ReachableEdges
.count(
3235 {FirstMP
->getIncomingBlock(U
), FirstMP
->getBlock()}) &&
3239 // All arguments should in the same class, ignoring unreachable arguments
3240 auto FilteredPhiArgs
=
3241 make_filter_range(FirstMP
->operands(), ReachableOperandPred
);
3242 SmallVector
<const CongruenceClass
*, 16> PhiOpClasses
;
3243 std::transform(FilteredPhiArgs
.begin(), FilteredPhiArgs
.end(),
3244 std::back_inserter(PhiOpClasses
), [&](const Use
&U
) {
3245 const MemoryDef
*MD
= cast
<MemoryDef
>(U
);
3246 return ValueToClass
.lookup(MD
->getMemoryInst());
3248 assert(is_splat(PhiOpClasses
) &&
3249 "All MemoryPhi arguments should be in the same class");
3255 // Verify that the sparse propagation we did actually found the maximal fixpoint
3256 // We do this by storing the value to class mapping, touching all instructions,
3257 // and redoing the iteration to see if anything changed.
3258 void NewGVN::verifyIterationSettled(Function
&F
) {
3260 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3261 if (DebugCounter::isCounterSet(VNCounter
))
3262 DebugCounter::setCounterValue(VNCounter
, StartingVNCounter
);
3264 // Note that we have to store the actual classes, as we may change existing
3265 // classes during iteration. This is because our memory iteration propagation
3266 // is not perfect, and so may waste a little work. But it should generate
3267 // exactly the same congruence classes we have now, with different IDs.
3268 std::map
<const Value
*, CongruenceClass
> BeforeIteration
;
3270 for (auto &KV
: ValueToClass
) {
3271 if (auto *I
= dyn_cast
<Instruction
>(KV
.first
))
3272 // Skip unused/dead instructions.
3273 if (InstrToDFSNum(I
) == 0)
3275 BeforeIteration
.insert({KV
.first
, *KV
.second
});
3278 TouchedInstructions
.set();
3279 TouchedInstructions
.reset(0);
3280 iterateTouchedInstructions();
3281 DenseSet
<std::pair
<const CongruenceClass
*, const CongruenceClass
*>>
3283 for (const auto &KV
: ValueToClass
) {
3284 if (auto *I
= dyn_cast
<Instruction
>(KV
.first
))
3285 // Skip unused/dead instructions.
3286 if (InstrToDFSNum(I
) == 0)
3288 // We could sink these uses, but i think this adds a bit of clarity here as
3289 // to what we are comparing.
3290 auto *BeforeCC
= &BeforeIteration
.find(KV
.first
)->second
;
3291 auto *AfterCC
= KV
.second
;
3292 // Note that the classes can't change at this point, so we memoize the set
3294 if (!EqualClasses
.count({BeforeCC
, AfterCC
})) {
3295 assert(BeforeCC
->isEquivalentTo(AfterCC
) &&
3296 "Value number changed after main loop completed!");
3297 EqualClasses
.insert({BeforeCC
, AfterCC
});
3303 // Verify that for each store expression in the expression to class mapping,
3304 // only the latest appears, and multiple ones do not appear.
3305 // Because loads do not use the stored value when doing equality with stores,
3306 // if we don't erase the old store expressions from the table, a load can find
3307 // a no-longer valid StoreExpression.
3308 void NewGVN::verifyStoreExpressions() const {
3310 // This is the only use of this, and it's not worth defining a complicated
3311 // densemapinfo hash/equality function for it.
3313 std::pair
<const Value
*,
3314 std::tuple
<const Value
*, const CongruenceClass
*, Value
*>>>
3316 for (const auto &KV
: ExpressionToClass
) {
3317 if (auto *SE
= dyn_cast
<StoreExpression
>(KV
.first
)) {
3318 // Make sure a version that will conflict with loads is not already there
3319 auto Res
= StoreExpressionSet
.insert(
3320 {SE
->getOperand(0), std::make_tuple(SE
->getMemoryLeader(), KV
.second
,
3321 SE
->getStoredValue())});
3322 bool Okay
= Res
.second
;
3323 // It's okay to have the same expression already in there if it is
3324 // identical in nature.
3325 // This can happen when the leader of the stored value changes over time.
3327 Okay
= (std::get
<1>(Res
.first
->second
) == KV
.second
) &&
3328 (lookupOperandLeader(std::get
<2>(Res
.first
->second
)) ==
3329 lookupOperandLeader(SE
->getStoredValue()));
3330 assert(Okay
&& "Stored expression conflict exists in expression table");
3331 auto *ValueExpr
= ValueToExpression
.lookup(SE
->getStoreInst());
3332 assert(ValueExpr
&& ValueExpr
->equals(*SE
) &&
3333 "StoreExpression in ExpressionToClass is not latest "
3334 "StoreExpression for value");
3340 // This is the main value numbering loop, it iterates over the initial touched
3341 // instruction set, propagating value numbers, marking things touched, etc,
3342 // until the set of touched instructions is completely empty.
3343 void NewGVN::iterateTouchedInstructions() {
3344 unsigned int Iterations
= 0;
3345 // Figure out where touchedinstructions starts
3346 int FirstInstr
= TouchedInstructions
.find_first();
3347 // Nothing set, nothing to iterate, just return.
3348 if (FirstInstr
== -1)
3350 const BasicBlock
*LastBlock
= getBlockForValue(InstrFromDFSNum(FirstInstr
));
3351 while (TouchedInstructions
.any()) {
3353 // Walk through all the instructions in all the blocks in RPO.
3354 // TODO: As we hit a new block, we should push and pop equalities into a
3355 // table lookupOperandLeader can use, to catch things PredicateInfo
3356 // might miss, like edge-only equivalences.
3357 for (unsigned InstrNum
: TouchedInstructions
.set_bits()) {
3359 // This instruction was found to be dead. We don't bother looking
3361 if (InstrNum
== 0) {
3362 TouchedInstructions
.reset(InstrNum
);
3366 Value
*V
= InstrFromDFSNum(InstrNum
);
3367 const BasicBlock
*CurrBlock
= getBlockForValue(V
);
3369 // If we hit a new block, do reachability processing.
3370 if (CurrBlock
!= LastBlock
) {
3371 LastBlock
= CurrBlock
;
3372 bool BlockReachable
= ReachableBlocks
.count(CurrBlock
);
3373 const auto &CurrInstRange
= BlockInstRange
.lookup(CurrBlock
);
3375 // If it's not reachable, erase any touched instructions and move on.
3376 if (!BlockReachable
) {
3377 TouchedInstructions
.reset(CurrInstRange
.first
, CurrInstRange
.second
);
3378 LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3379 << getBlockName(CurrBlock
)
3380 << " because it is unreachable\n");
3383 updateProcessedCount(CurrBlock
);
3385 // Reset after processing (because we may mark ourselves as touched when
3386 // we propagate equalities).
3387 TouchedInstructions
.reset(InstrNum
);
3389 if (auto *MP
= dyn_cast
<MemoryPhi
>(V
)) {
3390 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP
<< "\n");
3391 valueNumberMemoryPhi(MP
);
3392 } else if (auto *I
= dyn_cast
<Instruction
>(V
)) {
3393 valueNumberInstruction(I
);
3395 llvm_unreachable("Should have been a MemoryPhi or Instruction");
3397 updateProcessedCount(V
);
3400 NumGVNMaxIterations
= std::max(NumGVNMaxIterations
.getValue(), Iterations
);
3403 // This is the main transformation entry point.
3404 bool NewGVN::runGVN() {
3405 if (DebugCounter::isCounterSet(VNCounter
))
3406 StartingVNCounter
= DebugCounter::getCounterValue(VNCounter
);
3407 bool Changed
= false;
3408 NumFuncArgs
= F
.arg_size();
3409 MSSAWalker
= MSSA
->getWalker();
3410 SingletonDeadExpression
= new (ExpressionAllocator
) DeadExpression();
3412 // Count number of instructions for sizing of hash tables, and come
3413 // up with a global dfs numbering for instructions.
3414 unsigned ICount
= 1;
3415 // Add an empty instruction to account for the fact that we start at 1
3416 DFSToInstr
.emplace_back(nullptr);
3417 // Note: We want ideal RPO traversal of the blocks, which is not quite the
3418 // same as dominator tree order, particularly with regard whether backedges
3419 // get visited first or second, given a block with multiple successors.
3420 // If we visit in the wrong order, we will end up performing N times as many
3422 // The dominator tree does guarantee that, for a given dom tree node, it's
3423 // parent must occur before it in the RPO ordering. Thus, we only need to sort
3425 ReversePostOrderTraversal
<Function
*> RPOT(&F
);
3426 unsigned Counter
= 0;
3427 for (auto &B
: RPOT
) {
3428 auto *Node
= DT
->getNode(B
);
3429 assert(Node
&& "RPO and Dominator tree should have same reachability");
3430 RPOOrdering
[Node
] = ++Counter
;
3432 // Sort dominator tree children arrays into RPO.
3433 for (auto &B
: RPOT
) {
3434 auto *Node
= DT
->getNode(B
);
3435 if (Node
->getChildren().size() > 1)
3436 llvm::sort(Node
->begin(), Node
->end(),
3437 [&](const DomTreeNode
*A
, const DomTreeNode
*B
) {
3438 return RPOOrdering
[A
] < RPOOrdering
[B
];
3442 // Now a standard depth first ordering of the domtree is equivalent to RPO.
3443 for (auto DTN
: depth_first(DT
->getRootNode())) {
3444 BasicBlock
*B
= DTN
->getBlock();
3445 const auto &BlockRange
= assignDFSNumbers(B
, ICount
);
3446 BlockInstRange
.insert({B
, BlockRange
});
3447 ICount
+= BlockRange
.second
- BlockRange
.first
;
3449 initializeCongruenceClasses(F
);
3451 TouchedInstructions
.resize(ICount
);
3452 // Ensure we don't end up resizing the expressionToClass map, as
3453 // that can be quite expensive. At most, we have one expression per
3455 ExpressionToClass
.reserve(ICount
);
3457 // Initialize the touched instructions to include the entry block.
3458 const auto &InstRange
= BlockInstRange
.lookup(&F
.getEntryBlock());
3459 TouchedInstructions
.set(InstRange
.first
, InstRange
.second
);
3460 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F
.getEntryBlock())
3461 << " marked reachable\n");
3462 ReachableBlocks
.insert(&F
.getEntryBlock());
3464 iterateTouchedInstructions();
3465 verifyMemoryCongruency();
3466 verifyIterationSettled(F
);
3467 verifyStoreExpressions();
3469 Changed
|= eliminateInstructions(F
);
3471 // Delete all instructions marked for deletion.
3472 for (Instruction
*ToErase
: InstructionsToErase
) {
3473 if (!ToErase
->use_empty())
3474 ToErase
->replaceAllUsesWith(UndefValue::get(ToErase
->getType()));
3476 assert(ToErase
->getParent() &&
3477 "BB containing ToErase deleted unexpectedly!");
3478 ToErase
->eraseFromParent();
3480 Changed
|= !InstructionsToErase
.empty();
3482 // Delete all unreachable blocks.
3483 auto UnreachableBlockPred
= [&](const BasicBlock
&BB
) {
3484 return !ReachableBlocks
.count(&BB
);
3487 for (auto &BB
: make_filter_range(F
, UnreachableBlockPred
)) {
3488 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB
)
3489 << " is unreachable\n");
3490 deleteInstructionsInBlock(&BB
);
3498 struct NewGVN::ValueDFS
{
3503 // Only one of Def and U will be set.
3504 // The bool in the Def tells us whether the Def is the stored value of a
3506 PointerIntPair
<Value
*, 1, bool> Def
;
3509 bool operator<(const ValueDFS
&Other
) const {
3510 // It's not enough that any given field be less than - we have sets
3511 // of fields that need to be evaluated together to give a proper ordering.
3512 // For example, if you have;
3517 // We want the second to be less than the first, but if we just go field
3518 // by field, we will get to Val 0 < Val 50 and say the first is less than
3519 // the second. We only want it to be less than if the DFS orders are equal.
3521 // Each LLVM instruction only produces one value, and thus the lowest-level
3522 // differentiator that really matters for the stack (and what we use as as a
3523 // replacement) is the local dfs number.
3524 // Everything else in the structure is instruction level, and only affects
3525 // the order in which we will replace operands of a given instruction.
3527 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3528 // the order of replacement of uses does not matter.
3532 // When you hit b, you will have two valuedfs with the same dfsin, out, and
3534 // The .val will be the same as well.
3535 // The .u's will be different.
3536 // You will replace both, and it does not matter what order you replace them
3537 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3539 // Similarly for the case of same dfsin, dfsout, localnum, but different
3544 // in c, we will a valuedfs for a, and one for b,with everything the same
3546 // It does not matter what order we replace these operands in.
3547 // You will always end up with the same IR, and this is guaranteed.
3548 return std::tie(DFSIn
, DFSOut
, LocalNum
, Def
, U
) <
3549 std::tie(Other
.DFSIn
, Other
.DFSOut
, Other
.LocalNum
, Other
.Def
,
3554 // This function converts the set of members for a congruence class from values,
3555 // to sets of defs and uses with associated DFS info. The total number of
3556 // reachable uses for each value is stored in UseCount, and instructions that
3558 // dead (have no non-dead uses) are stored in ProbablyDead.
3559 void NewGVN::convertClassToDFSOrdered(
3560 const CongruenceClass
&Dense
, SmallVectorImpl
<ValueDFS
> &DFSOrderedSet
,
3561 DenseMap
<const Value
*, unsigned int> &UseCounts
,
3562 SmallPtrSetImpl
<Instruction
*> &ProbablyDead
) const {
3563 for (auto D
: Dense
) {
3564 // First add the value.
3565 BasicBlock
*BB
= getBlockForValue(D
);
3566 // Constants are handled prior to ever calling this function, so
3567 // we should only be left with instructions as members.
3568 assert(BB
&& "Should have figured out a basic block for value");
3570 DomTreeNode
*DomNode
= DT
->getNode(BB
);
3571 VDDef
.DFSIn
= DomNode
->getDFSNumIn();
3572 VDDef
.DFSOut
= DomNode
->getDFSNumOut();
3573 // If it's a store, use the leader of the value operand, if it's always
3574 // available, or the value operand. TODO: We could do dominance checks to
3575 // find a dominating leader, but not worth it ATM.
3576 if (auto *SI
= dyn_cast
<StoreInst
>(D
)) {
3577 auto Leader
= lookupOperandLeader(SI
->getValueOperand());
3578 if (alwaysAvailable(Leader
)) {
3579 VDDef
.Def
.setPointer(Leader
);
3581 VDDef
.Def
.setPointer(SI
->getValueOperand());
3582 VDDef
.Def
.setInt(true);
3585 VDDef
.Def
.setPointer(D
);
3587 assert(isa
<Instruction
>(D
) &&
3588 "The dense set member should always be an instruction");
3589 Instruction
*Def
= cast
<Instruction
>(D
);
3590 VDDef
.LocalNum
= InstrToDFSNum(D
);
3591 DFSOrderedSet
.push_back(VDDef
);
3592 // If there is a phi node equivalent, add it
3593 if (auto *PN
= RealToTemp
.lookup(Def
)) {
3595 dyn_cast_or_null
<PHIExpression
>(ValueToExpression
.lookup(Def
));
3597 VDDef
.Def
.setInt(false);
3598 VDDef
.Def
.setPointer(PN
);
3600 DFSOrderedSet
.push_back(VDDef
);
3604 unsigned int UseCount
= 0;
3605 // Now add the uses.
3606 for (auto &U
: Def
->uses()) {
3607 if (auto *I
= dyn_cast
<Instruction
>(U
.getUser())) {
3608 // Don't try to replace into dead uses
3609 if (InstructionsToErase
.count(I
))
3612 // Put the phi node uses in the incoming block.
3614 if (auto *P
= dyn_cast
<PHINode
>(I
)) {
3615 IBlock
= P
->getIncomingBlock(U
);
3616 // Make phi node users appear last in the incoming block
3618 VDUse
.LocalNum
= InstrDFS
.size() + 1;
3620 IBlock
= getBlockForValue(I
);
3621 VDUse
.LocalNum
= InstrToDFSNum(I
);
3624 // Skip uses in unreachable blocks, as we're going
3626 if (ReachableBlocks
.count(IBlock
) == 0)
3629 DomTreeNode
*DomNode
= DT
->getNode(IBlock
);
3630 VDUse
.DFSIn
= DomNode
->getDFSNumIn();
3631 VDUse
.DFSOut
= DomNode
->getDFSNumOut();
3634 DFSOrderedSet
.emplace_back(VDUse
);
3638 // If there are no uses, it's probably dead (but it may have side-effects,
3639 // so not definitely dead. Otherwise, store the number of uses so we can
3640 // track if it becomes dead later).
3642 ProbablyDead
.insert(Def
);
3644 UseCounts
[Def
] = UseCount
;
3648 // This function converts the set of members for a congruence class from values,
3649 // to the set of defs for loads and stores, with associated DFS info.
3650 void NewGVN::convertClassToLoadsAndStores(
3651 const CongruenceClass
&Dense
,
3652 SmallVectorImpl
<ValueDFS
> &LoadsAndStores
) const {
3653 for (auto D
: Dense
) {
3654 if (!isa
<LoadInst
>(D
) && !isa
<StoreInst
>(D
))
3657 BasicBlock
*BB
= getBlockForValue(D
);
3659 DomTreeNode
*DomNode
= DT
->getNode(BB
);
3660 VD
.DFSIn
= DomNode
->getDFSNumIn();
3661 VD
.DFSOut
= DomNode
->getDFSNumOut();
3662 VD
.Def
.setPointer(D
);
3664 // If it's an instruction, use the real local dfs number.
3665 if (auto *I
= dyn_cast
<Instruction
>(D
))
3666 VD
.LocalNum
= InstrToDFSNum(I
);
3668 llvm_unreachable("Should have been an instruction");
3670 LoadsAndStores
.emplace_back(VD
);
3674 static void patchAndReplaceAllUsesWith(Instruction
*I
, Value
*Repl
) {
3675 patchReplacementInstruction(I
, Repl
);
3676 I
->replaceAllUsesWith(Repl
);
3679 void NewGVN::deleteInstructionsInBlock(BasicBlock
*BB
) {
3680 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB
);
3681 ++NumGVNBlocksDeleted
;
3683 // Delete the instructions backwards, as it has a reduced likelihood of having
3684 // to update as many def-use and use-def chains. Start after the terminator.
3685 auto StartPoint
= BB
->rbegin();
3687 // Note that we explicitly recalculate BB->rend() on each iteration,
3688 // as it may change when we remove the first instruction.
3689 for (BasicBlock::reverse_iterator
I(StartPoint
); I
!= BB
->rend();) {
3690 Instruction
&Inst
= *I
++;
3691 if (!Inst
.use_empty())
3692 Inst
.replaceAllUsesWith(UndefValue::get(Inst
.getType()));
3693 if (isa
<LandingPadInst
>(Inst
))
3696 Inst
.eraseFromParent();
3697 ++NumGVNInstrDeleted
;
3699 // Now insert something that simplifycfg will turn into an unreachable.
3700 Type
*Int8Ty
= Type::getInt8Ty(BB
->getContext());
3701 new StoreInst(UndefValue::get(Int8Ty
),
3702 Constant::getNullValue(Int8Ty
->getPointerTo()),
3703 BB
->getTerminator());
3706 void NewGVN::markInstructionForDeletion(Instruction
*I
) {
3707 LLVM_DEBUG(dbgs() << "Marking " << *I
<< " for deletion\n");
3708 InstructionsToErase
.insert(I
);
3711 void NewGVN::replaceInstruction(Instruction
*I
, Value
*V
) {
3712 LLVM_DEBUG(dbgs() << "Replacing " << *I
<< " with " << *V
<< "\n");
3713 patchAndReplaceAllUsesWith(I
, V
);
3714 // We save the actual erasing to avoid invalidating memory
3715 // dependencies until we are done with everything.
3716 markInstructionForDeletion(I
);
3721 // This is a stack that contains both the value and dfs info of where
3722 // that value is valid.
3723 class ValueDFSStack
{
3725 Value
*back() const { return ValueStack
.back(); }
3726 std::pair
<int, int> dfs_back() const { return DFSStack
.back(); }
3728 void push_back(Value
*V
, int DFSIn
, int DFSOut
) {
3729 ValueStack
.emplace_back(V
);
3730 DFSStack
.emplace_back(DFSIn
, DFSOut
);
3733 bool empty() const { return DFSStack
.empty(); }
3735 bool isInScope(int DFSIn
, int DFSOut
) const {
3738 return DFSIn
>= DFSStack
.back().first
&& DFSOut
<= DFSStack
.back().second
;
3741 void popUntilDFSScope(int DFSIn
, int DFSOut
) {
3743 // These two should always be in sync at this point.
3744 assert(ValueStack
.size() == DFSStack
.size() &&
3745 "Mismatch between ValueStack and DFSStack");
3747 !DFSStack
.empty() &&
3748 !(DFSIn
>= DFSStack
.back().first
&& DFSOut
<= DFSStack
.back().second
)) {
3749 DFSStack
.pop_back();
3750 ValueStack
.pop_back();
3755 SmallVector
<Value
*, 8> ValueStack
;
3756 SmallVector
<std::pair
<int, int>, 8> DFSStack
;
3759 } // end anonymous namespace
3761 // Given an expression, get the congruence class for it.
3762 CongruenceClass
*NewGVN::getClassForExpression(const Expression
*E
) const {
3763 if (auto *VE
= dyn_cast
<VariableExpression
>(E
))
3764 return ValueToClass
.lookup(VE
->getVariableValue());
3765 else if (isa
<DeadExpression
>(E
))
3767 return ExpressionToClass
.lookup(E
);
3770 // Given a value and a basic block we are trying to see if it is available in,
3771 // see if the value has a leader available in that block.
3772 Value
*NewGVN::findPHIOfOpsLeader(const Expression
*E
,
3773 const Instruction
*OrigInst
,
3774 const BasicBlock
*BB
) const {
3775 // It would already be constant if we could make it constant
3776 if (auto *CE
= dyn_cast
<ConstantExpression
>(E
))
3777 return CE
->getConstantValue();
3778 if (auto *VE
= dyn_cast
<VariableExpression
>(E
)) {
3779 auto *V
= VE
->getVariableValue();
3780 if (alwaysAvailable(V
) || DT
->dominates(getBlockForValue(V
), BB
))
3781 return VE
->getVariableValue();
3784 auto *CC
= getClassForExpression(E
);
3787 if (alwaysAvailable(CC
->getLeader()))
3788 return CC
->getLeader();
3790 for (auto Member
: *CC
) {
3791 auto *MemberInst
= dyn_cast
<Instruction
>(Member
);
3792 if (MemberInst
== OrigInst
)
3794 // Anything that isn't an instruction is always available.
3797 if (DT
->dominates(getBlockForValue(MemberInst
), BB
))
3803 bool NewGVN::eliminateInstructions(Function
&F
) {
3804 // This is a non-standard eliminator. The normal way to eliminate is
3805 // to walk the dominator tree in order, keeping track of available
3806 // values, and eliminating them. However, this is mildly
3807 // pointless. It requires doing lookups on every instruction,
3808 // regardless of whether we will ever eliminate it. For
3809 // instructions part of most singleton congruence classes, we know we
3810 // will never eliminate them.
3812 // Instead, this eliminator looks at the congruence classes directly, sorts
3813 // them into a DFS ordering of the dominator tree, and then we just
3814 // perform elimination straight on the sets by walking the congruence
3815 // class member uses in order, and eliminate the ones dominated by the
3816 // last member. This is worst case O(E log E) where E = number of
3817 // instructions in a single congruence class. In theory, this is all
3818 // instructions. In practice, it is much faster, as most instructions are
3819 // either in singleton congruence classes or can't possibly be eliminated
3820 // anyway (if there are no overlapping DFS ranges in class).
3821 // When we find something not dominated, it becomes the new leader
3822 // for elimination purposes.
3823 // TODO: If we wanted to be faster, We could remove any members with no
3824 // overlapping ranges while sorting, as we will never eliminate anything
3825 // with those members, as they don't dominate anything else in our set.
3827 bool AnythingReplaced
= false;
3829 // Since we are going to walk the domtree anyway, and we can't guarantee the
3830 // DFS numbers are updated, we compute some ourselves.
3831 DT
->updateDFSNumbers();
3833 // Go through all of our phi nodes, and kill the arguments associated with
3834 // unreachable edges.
3835 auto ReplaceUnreachablePHIArgs
= [&](PHINode
*PHI
, BasicBlock
*BB
) {
3836 for (auto &Operand
: PHI
->incoming_values())
3837 if (!ReachableEdges
.count({PHI
->getIncomingBlock(Operand
), BB
})) {
3838 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3840 << getBlockName(PHI
->getIncomingBlock(Operand
))
3841 << " with undef due to it being unreachable\n");
3842 Operand
.set(UndefValue::get(PHI
->getType()));
3845 // Replace unreachable phi arguments.
3846 // At this point, RevisitOnReachabilityChange only contains:
3849 // 2. Temporaries that will convert to PHIs
3850 // 3. Operations that are affected by an unreachable edge but do not fit into
3852 // So it is a slight overshoot of what we want. We could make it exact by
3853 // using two SparseBitVectors per block.
3854 DenseMap
<const BasicBlock
*, unsigned> ReachablePredCount
;
3855 for (auto &KV
: ReachableEdges
)
3856 ReachablePredCount
[KV
.getEnd()]++;
3857 for (auto &BBPair
: RevisitOnReachabilityChange
) {
3858 for (auto InstNum
: BBPair
.second
) {
3859 auto *Inst
= InstrFromDFSNum(InstNum
);
3860 auto *PHI
= dyn_cast
<PHINode
>(Inst
);
3861 PHI
= PHI
? PHI
: dyn_cast_or_null
<PHINode
>(RealToTemp
.lookup(Inst
));
3864 auto *BB
= BBPair
.first
;
3865 if (ReachablePredCount
.lookup(BB
) != PHI
->getNumIncomingValues())
3866 ReplaceUnreachablePHIArgs(PHI
, BB
);
3870 // Map to store the use counts
3871 DenseMap
<const Value
*, unsigned int> UseCounts
;
3872 for (auto *CC
: reverse(CongruenceClasses
)) {
3873 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC
->getID()
3875 // Track the equivalent store info so we can decide whether to try
3876 // dead store elimination.
3877 SmallVector
<ValueDFS
, 8> PossibleDeadStores
;
3878 SmallPtrSet
<Instruction
*, 8> ProbablyDead
;
3879 if (CC
->isDead() || CC
->empty())
3881 // Everything still in the TOP class is unreachable or dead.
3882 if (CC
== TOPClass
) {
3883 for (auto M
: *CC
) {
3884 auto *VTE
= ValueToExpression
.lookup(M
);
3885 if (VTE
&& isa
<DeadExpression
>(VTE
))
3886 markInstructionForDeletion(cast
<Instruction
>(M
));
3887 assert((!ReachableBlocks
.count(cast
<Instruction
>(M
)->getParent()) ||
3888 InstructionsToErase
.count(cast
<Instruction
>(M
))) &&
3889 "Everything in TOP should be unreachable or dead at this "
3895 assert(CC
->getLeader() && "We should have had a leader");
3896 // If this is a leader that is always available, and it's a
3897 // constant or has no equivalences, just replace everything with
3898 // it. We then update the congruence class with whatever members
3901 CC
->getStoredValue() ? CC
->getStoredValue() : CC
->getLeader();
3902 if (alwaysAvailable(Leader
)) {
3903 CongruenceClass::MemberSet MembersLeft
;
3904 for (auto M
: *CC
) {
3906 // Void things have no uses we can replace.
3907 if (Member
== Leader
|| !isa
<Instruction
>(Member
) ||
3908 Member
->getType()->isVoidTy()) {
3909 MembersLeft
.insert(Member
);
3912 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader
) << " for "
3913 << *Member
<< "\n");
3914 auto *I
= cast
<Instruction
>(Member
);
3915 assert(Leader
!= I
&& "About to accidentally remove our leader");
3916 replaceInstruction(I
, Leader
);
3917 AnythingReplaced
= true;
3919 CC
->swap(MembersLeft
);
3921 // If this is a singleton, we can skip it.
3922 if (CC
->size() != 1 || RealToTemp
.count(Leader
)) {
3923 // This is a stack because equality replacement/etc may place
3924 // constants in the middle of the member list, and we want to use
3925 // those constant values in preference to the current leader, over
3926 // the scope of those constants.
3927 ValueDFSStack EliminationStack
;
3929 // Convert the members to DFS ordered sets and then merge them.
3930 SmallVector
<ValueDFS
, 8> DFSOrderedSet
;
3931 convertClassToDFSOrdered(*CC
, DFSOrderedSet
, UseCounts
, ProbablyDead
);
3933 // Sort the whole thing.
3934 llvm::sort(DFSOrderedSet
);
3935 for (auto &VD
: DFSOrderedSet
) {
3936 int MemberDFSIn
= VD
.DFSIn
;
3937 int MemberDFSOut
= VD
.DFSOut
;
3938 Value
*Def
= VD
.Def
.getPointer();
3939 bool FromStore
= VD
.Def
.getInt();
3941 // We ignore void things because we can't get a value from them.
3942 if (Def
&& Def
->getType()->isVoidTy())
3944 auto *DefInst
= dyn_cast_or_null
<Instruction
>(Def
);
3945 if (DefInst
&& AllTempInstructions
.count(DefInst
)) {
3946 auto *PN
= cast
<PHINode
>(DefInst
);
3948 // If this is a value phi and that's the expression we used, insert
3949 // it into the program
3950 // remove from temp instruction list.
3951 AllTempInstructions
.erase(PN
);
3952 auto *DefBlock
= getBlockForValue(Def
);
3953 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3955 << getBlockName(getBlockForValue(Def
)) << "\n");
3956 PN
->insertBefore(&DefBlock
->front());
3958 NumGVNPHIOfOpsEliminations
++;
3961 if (EliminationStack
.empty()) {
3962 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3964 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3965 << EliminationStack
.dfs_back().first
<< ","
3966 << EliminationStack
.dfs_back().second
<< ")\n");
3969 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn
<< ","
3970 << MemberDFSOut
<< ")\n");
3971 // First, we see if we are out of scope or empty. If so,
3972 // and there equivalences, we try to replace the top of
3973 // stack with equivalences (if it's on the stack, it must
3974 // not have been eliminated yet).
3975 // Then we synchronize to our current scope, by
3976 // popping until we are back within a DFS scope that
3977 // dominates the current member.
3978 // Then, what happens depends on a few factors
3979 // If the stack is now empty, we need to push
3980 // If we have a constant or a local equivalence we want to
3981 // start using, we also push.
3982 // Otherwise, we walk along, processing members who are
3983 // dominated by this scope, and eliminate them.
3984 bool ShouldPush
= Def
&& EliminationStack
.empty();
3986 !EliminationStack
.isInScope(MemberDFSIn
, MemberDFSOut
);
3988 if (OutOfScope
|| ShouldPush
) {
3989 // Sync to our current scope.
3990 EliminationStack
.popUntilDFSScope(MemberDFSIn
, MemberDFSOut
);
3991 bool ShouldPush
= Def
&& EliminationStack
.empty();
3993 EliminationStack
.push_back(Def
, MemberDFSIn
, MemberDFSOut
);
3997 // Skip the Def's, we only want to eliminate on their uses. But mark
3998 // dominated defs as dead.
4000 // For anything in this case, what and how we value number
4001 // guarantees that any side-effets that would have occurred (ie
4002 // throwing, etc) can be proven to either still occur (because it's
4003 // dominated by something that has the same side-effects), or never
4004 // occur. Otherwise, we would not have been able to prove it value
4005 // equivalent to something else. For these things, we can just mark
4006 // it all dead. Note that this is different from the "ProbablyDead"
4007 // set, which may not be dominated by anything, and thus, are only
4008 // easy to prove dead if they are also side-effect free. Note that
4009 // because stores are put in terms of the stored value, we skip
4010 // stored values here. If the stored value is really dead, it will
4011 // still be marked for deletion when we process it in its own class.
4012 if (!EliminationStack
.empty() && Def
!= EliminationStack
.back() &&
4013 isa
<Instruction
>(Def
) && !FromStore
)
4014 markInstructionForDeletion(cast
<Instruction
>(Def
));
4017 // At this point, we know it is a Use we are trying to possibly
4020 assert(isa
<Instruction
>(U
->get()) &&
4021 "Current def should have been an instruction");
4022 assert(isa
<Instruction
>(U
->getUser()) &&
4023 "Current user should have been an instruction");
4025 // If the thing we are replacing into is already marked to be dead,
4026 // this use is dead. Note that this is true regardless of whether
4027 // we have anything dominating the use or not. We do this here
4028 // because we are already walking all the uses anyway.
4029 Instruction
*InstUse
= cast
<Instruction
>(U
->getUser());
4030 if (InstructionsToErase
.count(InstUse
)) {
4031 auto &UseCount
= UseCounts
[U
->get()];
4032 if (--UseCount
== 0) {
4033 ProbablyDead
.insert(cast
<Instruction
>(U
->get()));
4037 // If we get to this point, and the stack is empty we must have a use
4038 // with nothing we can use to eliminate this use, so just skip it.
4039 if (EliminationStack
.empty())
4042 Value
*DominatingLeader
= EliminationStack
.back();
4044 auto *II
= dyn_cast
<IntrinsicInst
>(DominatingLeader
);
4045 bool isSSACopy
= II
&& II
->getIntrinsicID() == Intrinsic::ssa_copy
;
4047 DominatingLeader
= II
->getOperand(0);
4049 // Don't replace our existing users with ourselves.
4050 if (U
->get() == DominatingLeader
)
4053 << "Found replacement " << *DominatingLeader
<< " for "
4054 << *U
->get() << " in " << *(U
->getUser()) << "\n");
4056 // If we replaced something in an instruction, handle the patching of
4057 // metadata. Skip this if we are replacing predicateinfo with its
4058 // original operand, as we already know we can just drop it.
4059 auto *ReplacedInst
= cast
<Instruction
>(U
->get());
4060 auto *PI
= PredInfo
->getPredicateInfoFor(ReplacedInst
);
4061 if (!PI
|| DominatingLeader
!= PI
->OriginalOp
)
4062 patchReplacementInstruction(ReplacedInst
, DominatingLeader
);
4063 U
->set(DominatingLeader
);
4064 // This is now a use of the dominating leader, which means if the
4065 // dominating leader was dead, it's now live!
4066 auto &LeaderUseCount
= UseCounts
[DominatingLeader
];
4067 // It's about to be alive again.
4068 if (LeaderUseCount
== 0 && isa
<Instruction
>(DominatingLeader
))
4069 ProbablyDead
.erase(cast
<Instruction
>(DominatingLeader
));
4070 // For copy instructions, we use their operand as a leader,
4071 // which means we remove a user of the copy and it may become dead.
4073 unsigned &IIUseCount
= UseCounts
[II
];
4074 if (--IIUseCount
== 0)
4075 ProbablyDead
.insert(II
);
4078 AnythingReplaced
= true;
4083 // At this point, anything still in the ProbablyDead set is actually dead if
4084 // would be trivially dead.
4085 for (auto *I
: ProbablyDead
)
4086 if (wouldInstructionBeTriviallyDead(I
))
4087 markInstructionForDeletion(I
);
4089 // Cleanup the congruence class.
4090 CongruenceClass::MemberSet MembersLeft
;
4091 for (auto *Member
: *CC
)
4092 if (!isa
<Instruction
>(Member
) ||
4093 !InstructionsToErase
.count(cast
<Instruction
>(Member
)))
4094 MembersLeft
.insert(Member
);
4095 CC
->swap(MembersLeft
);
4097 // If we have possible dead stores to look at, try to eliminate them.
4098 if (CC
->getStoreCount() > 0) {
4099 convertClassToLoadsAndStores(*CC
, PossibleDeadStores
);
4100 llvm::sort(PossibleDeadStores
);
4101 ValueDFSStack EliminationStack
;
4102 for (auto &VD
: PossibleDeadStores
) {
4103 int MemberDFSIn
= VD
.DFSIn
;
4104 int MemberDFSOut
= VD
.DFSOut
;
4105 Instruction
*Member
= cast
<Instruction
>(VD
.Def
.getPointer());
4106 if (EliminationStack
.empty() ||
4107 !EliminationStack
.isInScope(MemberDFSIn
, MemberDFSOut
)) {
4108 // Sync to our current scope.
4109 EliminationStack
.popUntilDFSScope(MemberDFSIn
, MemberDFSOut
);
4110 if (EliminationStack
.empty()) {
4111 EliminationStack
.push_back(Member
, MemberDFSIn
, MemberDFSOut
);
4115 // We already did load elimination, so nothing to do here.
4116 if (isa
<LoadInst
>(Member
))
4118 assert(!EliminationStack
.empty());
4119 Instruction
*Leader
= cast
<Instruction
>(EliminationStack
.back());
4121 assert(DT
->dominates(Leader
->getParent(), Member
->getParent()));
4122 // Member is dominater by Leader, and thus dead
4123 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4124 << " that is dominated by " << *Leader
<< "\n");
4125 markInstructionForDeletion(Member
);
4131 return AnythingReplaced
;
4134 // This function provides global ranking of operations so that we can place them
4135 // in a canonical order. Note that rank alone is not necessarily enough for a
4136 // complete ordering, as constants all have the same rank. However, generally,
4137 // we will simplify an operation with all constants so that it doesn't matter
4138 // what order they appear in.
4139 unsigned int NewGVN::getRank(const Value
*V
) const {
4140 // Prefer constants to undef to anything else
4141 // Undef is a constant, have to check it first.
4142 // Prefer smaller constants to constantexprs
4143 if (isa
<ConstantExpr
>(V
))
4145 if (isa
<UndefValue
>(V
))
4147 if (isa
<Constant
>(V
))
4149 else if (auto *A
= dyn_cast
<Argument
>(V
))
4150 return 3 + A
->getArgNo();
4152 // Need to shift the instruction DFS by number of arguments + 3 to account for
4153 // the constant and argument ranking above.
4154 unsigned Result
= InstrToDFSNum(V
);
4156 return 4 + NumFuncArgs
+ Result
;
4157 // Unreachable or something else, just return a really large number.
4161 // This is a function that says whether two commutative operations should
4162 // have their order swapped when canonicalizing.
4163 bool NewGVN::shouldSwapOperands(const Value
*A
, const Value
*B
) const {
4164 // Because we only care about a total ordering, and don't rewrite expressions
4165 // in this order, we order by rank, which will give a strict weak ordering to
4166 // everything but constants, and then we order by pointer address.
4167 return std::make_pair(getRank(A
), A
) > std::make_pair(getRank(B
), B
);
4172 class NewGVNLegacyPass
: public FunctionPass
{
4174 // Pass identification, replacement for typeid.
4177 NewGVNLegacyPass() : FunctionPass(ID
) {
4178 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4181 bool runOnFunction(Function
&F
) override
;
4184 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
4185 AU
.addRequired
<AssumptionCacheTracker
>();
4186 AU
.addRequired
<DominatorTreeWrapperPass
>();
4187 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
4188 AU
.addRequired
<MemorySSAWrapperPass
>();
4189 AU
.addRequired
<AAResultsWrapperPass
>();
4190 AU
.addPreserved
<DominatorTreeWrapperPass
>();
4191 AU
.addPreserved
<GlobalsAAWrapperPass
>();
4195 } // end anonymous namespace
4197 bool NewGVNLegacyPass::runOnFunction(Function
&F
) {
4198 if (skipFunction(F
))
4200 return NewGVN(F
, &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
4201 &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
),
4202 &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
),
4203 &getAnalysis
<AAResultsWrapperPass
>().getAAResults(),
4204 &getAnalysis
<MemorySSAWrapperPass
>().getMSSA(),
4205 F
.getParent()->getDataLayout())
4209 char NewGVNLegacyPass::ID
= 0;
4211 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass
, "newgvn", "Global Value Numbering",
4213 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
4214 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
4215 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
4216 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
4217 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
4218 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
4219 INITIALIZE_PASS_END(NewGVNLegacyPass
, "newgvn", "Global Value Numbering", false,
4222 // createGVNPass - The public interface to this file.
4223 FunctionPass
*llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4225 PreservedAnalyses
NewGVNPass::run(Function
&F
, AnalysisManager
<Function
> &AM
) {
4226 // Apparently the order in which we get these results matter for
4227 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4228 // the same order here, just in case.
4229 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
4230 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
4231 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
4232 auto &AA
= AM
.getResult
<AAManager
>(F
);
4233 auto &MSSA
= AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA();
4235 NewGVN(F
, &DT
, &AC
, &TLI
, &AA
, &MSSA
, F
.getParent()->getDataLayout())
4238 return PreservedAnalyses::all();
4239 PreservedAnalyses PA
;
4240 PA
.preserve
<DominatorTreeAnalysis
>();
4241 PA
.preserve
<GlobalsAA
>();