1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 // For example: 4 + (x + 5) -> x + (4 + 5)
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/IR/PatternMatch.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
64 using namespace reassociate
;
65 using namespace PatternMatch
;
67 #define DEBUG_TYPE "reassociate"
69 STATISTIC(NumChanged
, "Number of insts reassociated");
70 STATISTIC(NumAnnihil
, "Number of expr tree annihilated");
71 STATISTIC(NumFactor
, "Number of multiplies factored");
74 /// Print out the expression identified in the Ops list.
75 static void PrintOps(Instruction
*I
, const SmallVectorImpl
<ValueEntry
> &Ops
) {
76 Module
*M
= I
->getModule();
77 dbgs() << Instruction::getOpcodeName(I
->getOpcode()) << " "
78 << *Ops
[0].Op
->getType() << '\t';
79 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
81 Ops
[i
].Op
->printAsOperand(dbgs(), false, M
);
82 dbgs() << ", #" << Ops
[i
].Rank
<< "] ";
87 /// Utility class representing a non-constant Xor-operand. We classify
88 /// non-constant Xor-Operands into two categories:
89 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
91 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
93 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94 /// operand as "E | 0"
95 class llvm::reassociate::XorOpnd
{
99 bool isInvalid() const { return SymbolicPart
== nullptr; }
100 bool isOrExpr() const { return isOr
; }
101 Value
*getValue() const { return OrigVal
; }
102 Value
*getSymbolicPart() const { return SymbolicPart
; }
103 unsigned getSymbolicRank() const { return SymbolicRank
; }
104 const APInt
&getConstPart() const { return ConstPart
; }
106 void Invalidate() { SymbolicPart
= OrigVal
= nullptr; }
107 void setSymbolicRank(unsigned R
) { SymbolicRank
= R
; }
113 unsigned SymbolicRank
;
117 XorOpnd::XorOpnd(Value
*V
) {
118 assert(!isa
<ConstantInt
>(V
) && "No ConstantInt");
120 Instruction
*I
= dyn_cast
<Instruction
>(V
);
123 if (I
&& (I
->getOpcode() == Instruction::Or
||
124 I
->getOpcode() == Instruction::And
)) {
125 Value
*V0
= I
->getOperand(0);
126 Value
*V1
= I
->getOperand(1);
128 if (match(V0
, m_APInt(C
)))
131 if (match(V1
, m_APInt(C
))) {
134 isOr
= (I
->getOpcode() == Instruction::Or
);
139 // view the operand as "V | 0"
141 ConstPart
= APInt::getNullValue(V
->getType()->getScalarSizeInBits());
145 /// Return true if V is an instruction of the specified opcode and if it
146 /// only has one use.
147 static BinaryOperator
*isReassociableOp(Value
*V
, unsigned Opcode
) {
148 auto *I
= dyn_cast
<Instruction
>(V
);
149 if (I
&& I
->hasOneUse() && I
->getOpcode() == Opcode
)
150 if (!isa
<FPMathOperator
>(I
) || I
->isFast())
151 return cast
<BinaryOperator
>(I
);
155 static BinaryOperator
*isReassociableOp(Value
*V
, unsigned Opcode1
,
157 auto *I
= dyn_cast
<Instruction
>(V
);
158 if (I
&& I
->hasOneUse() &&
159 (I
->getOpcode() == Opcode1
|| I
->getOpcode() == Opcode2
))
160 if (!isa
<FPMathOperator
>(I
) || I
->isFast())
161 return cast
<BinaryOperator
>(I
);
165 void ReassociatePass::BuildRankMap(Function
&F
,
166 ReversePostOrderTraversal
<Function
*> &RPOT
) {
169 // Assign distinct ranks to function arguments.
170 for (auto &Arg
: F
.args()) {
171 ValueRankMap
[&Arg
] = ++Rank
;
172 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg
.getName() << "] = " << Rank
176 // Traverse basic blocks in ReversePostOrder
177 for (BasicBlock
*BB
: RPOT
) {
178 unsigned BBRank
= RankMap
[BB
] = ++Rank
<< 16;
180 // Walk the basic block, adding precomputed ranks for any instructions that
181 // we cannot move. This ensures that the ranks for these instructions are
182 // all different in the block.
183 for (Instruction
&I
: *BB
)
184 if (mayBeMemoryDependent(I
))
185 ValueRankMap
[&I
] = ++BBRank
;
189 unsigned ReassociatePass::getRank(Value
*V
) {
190 Instruction
*I
= dyn_cast
<Instruction
>(V
);
192 if (isa
<Argument
>(V
)) return ValueRankMap
[V
]; // Function argument.
193 return 0; // Otherwise it's a global or constant, rank 0.
196 if (unsigned Rank
= ValueRankMap
[I
])
197 return Rank
; // Rank already known?
199 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
200 // we can reassociate expressions for code motion! Since we do not recurse
201 // for PHI nodes, we cannot have infinite recursion here, because there
202 // cannot be loops in the value graph that do not go through PHI nodes.
203 unsigned Rank
= 0, MaxRank
= RankMap
[I
->getParent()];
204 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
&& Rank
!= MaxRank
; ++i
)
205 Rank
= std::max(Rank
, getRank(I
->getOperand(i
)));
207 // If this is a 'not' or 'neg' instruction, do not count it for rank. This
208 // assures us that X and ~X will have the same rank.
209 if (!match(I
, m_Not(m_Value())) && !match(I
, m_Neg(m_Value())) &&
210 !match(I
, m_FNeg(m_Value())))
213 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V
->getName() << "] = " << Rank
216 return ValueRankMap
[I
] = Rank
;
219 // Canonicalize constants to RHS. Otherwise, sort the operands by rank.
220 void ReassociatePass::canonicalizeOperands(Instruction
*I
) {
221 assert(isa
<BinaryOperator
>(I
) && "Expected binary operator.");
222 assert(I
->isCommutative() && "Expected commutative operator.");
224 Value
*LHS
= I
->getOperand(0);
225 Value
*RHS
= I
->getOperand(1);
226 if (LHS
== RHS
|| isa
<Constant
>(RHS
))
228 if (isa
<Constant
>(LHS
) || getRank(RHS
) < getRank(LHS
))
229 cast
<BinaryOperator
>(I
)->swapOperands();
232 static BinaryOperator
*CreateAdd(Value
*S1
, Value
*S2
, const Twine
&Name
,
233 Instruction
*InsertBefore
, Value
*FlagsOp
) {
234 if (S1
->getType()->isIntOrIntVectorTy())
235 return BinaryOperator::CreateAdd(S1
, S2
, Name
, InsertBefore
);
237 BinaryOperator
*Res
=
238 BinaryOperator::CreateFAdd(S1
, S2
, Name
, InsertBefore
);
239 Res
->setFastMathFlags(cast
<FPMathOperator
>(FlagsOp
)->getFastMathFlags());
244 static BinaryOperator
*CreateMul(Value
*S1
, Value
*S2
, const Twine
&Name
,
245 Instruction
*InsertBefore
, Value
*FlagsOp
) {
246 if (S1
->getType()->isIntOrIntVectorTy())
247 return BinaryOperator::CreateMul(S1
, S2
, Name
, InsertBefore
);
249 BinaryOperator
*Res
=
250 BinaryOperator::CreateFMul(S1
, S2
, Name
, InsertBefore
);
251 Res
->setFastMathFlags(cast
<FPMathOperator
>(FlagsOp
)->getFastMathFlags());
256 static BinaryOperator
*CreateNeg(Value
*S1
, const Twine
&Name
,
257 Instruction
*InsertBefore
, Value
*FlagsOp
) {
258 if (S1
->getType()->isIntOrIntVectorTy())
259 return BinaryOperator::CreateNeg(S1
, Name
, InsertBefore
);
261 BinaryOperator
*Res
= BinaryOperator::CreateFNeg(S1
, Name
, InsertBefore
);
262 Res
->setFastMathFlags(cast
<FPMathOperator
>(FlagsOp
)->getFastMathFlags());
267 /// Replace 0-X with X*-1.
268 static BinaryOperator
*LowerNegateToMultiply(Instruction
*Neg
) {
269 assert((isa
<UnaryOperator
>(Neg
) || isa
<BinaryOperator
>(Neg
)) &&
270 "Expected a Negate!");
271 // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
272 unsigned OpNo
= isa
<BinaryOperator
>(Neg
) ? 1 : 0;
273 Type
*Ty
= Neg
->getType();
274 Constant
*NegOne
= Ty
->isIntOrIntVectorTy() ?
275 ConstantInt::getAllOnesValue(Ty
) : ConstantFP::get(Ty
, -1.0);
277 BinaryOperator
*Res
= CreateMul(Neg
->getOperand(OpNo
), NegOne
, "", Neg
, Neg
);
278 Neg
->setOperand(OpNo
, Constant::getNullValue(Ty
)); // Drop use of op.
280 Neg
->replaceAllUsesWith(Res
);
281 Res
->setDebugLoc(Neg
->getDebugLoc());
285 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
286 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
287 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
288 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
289 /// even x in Bitwidth-bit arithmetic.
290 static unsigned CarmichaelShift(unsigned Bitwidth
) {
296 /// Add the extra weight 'RHS' to the existing weight 'LHS',
297 /// reducing the combined weight using any special properties of the operation.
298 /// The existing weight LHS represents the computation X op X op ... op X where
299 /// X occurs LHS times. The combined weight represents X op X op ... op X with
300 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined
301 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
302 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
303 static void IncorporateWeight(APInt
&LHS
, const APInt
&RHS
, unsigned Opcode
) {
304 // If we were working with infinite precision arithmetic then the combined
305 // weight would be LHS + RHS. But we are using finite precision arithmetic,
306 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
307 // for nilpotent operations and addition, but not for idempotent operations
308 // and multiplication), so it is important to correctly reduce the combined
309 // weight back into range if wrapping would be wrong.
311 // If RHS is zero then the weight didn't change.
312 if (RHS
.isMinValue())
314 // If LHS is zero then the combined weight is RHS.
315 if (LHS
.isMinValue()) {
319 // From this point on we know that neither LHS nor RHS is zero.
321 if (Instruction::isIdempotent(Opcode
)) {
322 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
323 // weight of 1. Keeping weights at zero or one also means that wrapping is
325 assert(LHS
== 1 && RHS
== 1 && "Weights not reduced!");
326 return; // Return a weight of 1.
328 if (Instruction::isNilpotent(Opcode
)) {
329 // Nilpotent means X op X === 0, so reduce weights modulo 2.
330 assert(LHS
== 1 && RHS
== 1 && "Weights not reduced!");
331 LHS
= 0; // 1 + 1 === 0 modulo 2.
334 if (Opcode
== Instruction::Add
|| Opcode
== Instruction::FAdd
) {
335 // TODO: Reduce the weight by exploiting nsw/nuw?
340 assert((Opcode
== Instruction::Mul
|| Opcode
== Instruction::FMul
) &&
341 "Unknown associative operation!");
342 unsigned Bitwidth
= LHS
.getBitWidth();
343 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
344 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
345 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
346 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
347 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
348 // which by a happy accident means that they can always be represented using
350 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
351 // the Carmichael number).
353 /// CM - The value of Carmichael's lambda function.
354 APInt CM
= APInt::getOneBitSet(Bitwidth
, CarmichaelShift(Bitwidth
));
355 // Any weight W >= Threshold can be replaced with W - CM.
356 APInt Threshold
= CM
+ Bitwidth
;
357 assert(LHS
.ult(Threshold
) && RHS
.ult(Threshold
) && "Weights not reduced!");
358 // For Bitwidth 4 or more the following sum does not overflow.
360 while (LHS
.uge(Threshold
))
363 // To avoid problems with overflow do everything the same as above but using
365 unsigned CM
= 1U << CarmichaelShift(Bitwidth
);
366 unsigned Threshold
= CM
+ Bitwidth
;
367 assert(LHS
.getZExtValue() < Threshold
&& RHS
.getZExtValue() < Threshold
&&
368 "Weights not reduced!");
369 unsigned Total
= LHS
.getZExtValue() + RHS
.getZExtValue();
370 while (Total
>= Threshold
)
376 using RepeatedValue
= std::pair
<Value
*, APInt
>;
378 /// Given an associative binary expression, return the leaf
379 /// nodes in Ops along with their weights (how many times the leaf occurs). The
380 /// original expression is the same as
381 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
383 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
387 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
389 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
391 /// This routine may modify the function, in which case it returns 'true'. The
392 /// changes it makes may well be destructive, changing the value computed by 'I'
393 /// to something completely different. Thus if the routine returns 'true' then
394 /// you MUST either replace I with a new expression computed from the Ops array,
395 /// or use RewriteExprTree to put the values back in.
397 /// A leaf node is either not a binary operation of the same kind as the root
398 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
399 /// opcode), or is the same kind of binary operator but has a use which either
400 /// does not belong to the expression, or does belong to the expression but is
401 /// a leaf node. Every leaf node has at least one use that is a non-leaf node
402 /// of the expression, while for non-leaf nodes (except for the root 'I') every
403 /// use is a non-leaf node of the expression.
406 /// expression graph node names
416 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
417 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
419 /// The expression is maximal: if some instruction is a binary operator of the
420 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
421 /// then the instruction also belongs to the expression, is not a leaf node of
422 /// it, and its operands also belong to the expression (but may be leaf nodes).
424 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
425 /// order to ensure that every non-root node in the expression has *exactly one*
426 /// use by a non-leaf node of the expression. This destruction means that the
427 /// caller MUST either replace 'I' with a new expression or use something like
428 /// RewriteExprTree to put the values back in if the routine indicates that it
429 /// made a change by returning 'true'.
431 /// In the above example either the right operand of A or the left operand of B
432 /// will be replaced by undef. If it is B's operand then this gives:
436 /// + + | A, B - operand of B replaced with undef
442 /// Note that such undef operands can only be reached by passing through 'I'.
443 /// For example, if you visit operands recursively starting from a leaf node
444 /// then you will never see such an undef operand unless you get back to 'I',
445 /// which requires passing through a phi node.
447 /// Note that this routine may also mutate binary operators of the wrong type
448 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
449 /// of the expression) if it can turn them into binary operators of the right
450 /// type and thus make the expression bigger.
451 static bool LinearizeExprTree(Instruction
*I
,
452 SmallVectorImpl
<RepeatedValue
> &Ops
) {
453 assert((isa
<UnaryOperator
>(I
) || isa
<BinaryOperator
>(I
)) &&
454 "Expected a UnaryOperator or BinaryOperator!");
455 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I
<< '\n');
456 unsigned Bitwidth
= I
->getType()->getScalarType()->getPrimitiveSizeInBits();
457 unsigned Opcode
= I
->getOpcode();
458 assert(I
->isAssociative() && I
->isCommutative() &&
459 "Expected an associative and commutative operation!");
461 // Visit all operands of the expression, keeping track of their weight (the
462 // number of paths from the expression root to the operand, or if you like
463 // the number of times that operand occurs in the linearized expression).
464 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
465 // while A has weight two.
467 // Worklist of non-leaf nodes (their operands are in the expression too) along
468 // with their weights, representing a certain number of paths to the operator.
469 // If an operator occurs in the worklist multiple times then we found multiple
470 // ways to get to it.
471 SmallVector
<std::pair
<Instruction
*, APInt
>, 8> Worklist
; // (Op, Weight)
472 Worklist
.push_back(std::make_pair(I
, APInt(Bitwidth
, 1)));
473 bool Changed
= false;
475 // Leaves of the expression are values that either aren't the right kind of
476 // operation (eg: a constant, or a multiply in an add tree), or are, but have
477 // some uses that are not inside the expression. For example, in I = X + X,
478 // X = A + B, the value X has two uses (by I) that are in the expression. If
479 // X has any other uses, for example in a return instruction, then we consider
480 // X to be a leaf, and won't analyze it further. When we first visit a value,
481 // if it has more than one use then at first we conservatively consider it to
482 // be a leaf. Later, as the expression is explored, we may discover some more
483 // uses of the value from inside the expression. If all uses turn out to be
484 // from within the expression (and the value is a binary operator of the right
485 // kind) then the value is no longer considered to be a leaf, and its operands
488 // Leaves - Keeps track of the set of putative leaves as well as the number of
489 // paths to each leaf seen so far.
490 using LeafMap
= DenseMap
<Value
*, APInt
>;
491 LeafMap Leaves
; // Leaf -> Total weight so far.
492 SmallVector
<Value
*, 8> LeafOrder
; // Ensure deterministic leaf output order.
495 SmallPtrSet
<Value
*, 8> Visited
; // For sanity checking the iteration scheme.
497 while (!Worklist
.empty()) {
498 std::pair
<Instruction
*, APInt
> P
= Worklist
.pop_back_val();
499 I
= P
.first
; // We examine the operands of this binary operator.
501 for (unsigned OpIdx
= 0; OpIdx
< I
->getNumOperands(); ++OpIdx
) { // Visit operands.
502 Value
*Op
= I
->getOperand(OpIdx
);
503 APInt Weight
= P
.second
; // Number of paths to this operand.
504 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op
<< " (" << Weight
<< ")\n");
505 assert(!Op
->use_empty() && "No uses, so how did we get to it?!");
507 // If this is a binary operation of the right kind with only one use then
508 // add its operands to the expression.
509 if (BinaryOperator
*BO
= isReassociableOp(Op
, Opcode
)) {
510 assert(Visited
.insert(Op
).second
&& "Not first visit!");
511 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op
<< " (" << Weight
<< ")\n");
512 Worklist
.push_back(std::make_pair(BO
, Weight
));
516 // Appears to be a leaf. Is the operand already in the set of leaves?
517 LeafMap::iterator It
= Leaves
.find(Op
);
518 if (It
== Leaves
.end()) {
519 // Not in the leaf map. Must be the first time we saw this operand.
520 assert(Visited
.insert(Op
).second
&& "Not first visit!");
521 if (!Op
->hasOneUse()) {
522 // This value has uses not accounted for by the expression, so it is
523 // not safe to modify. Mark it as being a leaf.
525 << "ADD USES LEAF: " << *Op
<< " (" << Weight
<< ")\n");
526 LeafOrder
.push_back(Op
);
530 // No uses outside the expression, try morphing it.
532 // Already in the leaf map.
533 assert(It
!= Leaves
.end() && Visited
.count(Op
) &&
534 "In leaf map but not visited!");
536 // Update the number of paths to the leaf.
537 IncorporateWeight(It
->second
, Weight
, Opcode
);
539 #if 0 // TODO: Re-enable once PR13021 is fixed.
540 // The leaf already has one use from inside the expression. As we want
541 // exactly one such use, drop this new use of the leaf.
542 assert(!Op
->hasOneUse() && "Only one use, but we got here twice!");
543 I
->setOperand(OpIdx
, UndefValue::get(I
->getType()));
546 // If the leaf is a binary operation of the right kind and we now see
547 // that its multiple original uses were in fact all by nodes belonging
548 // to the expression, then no longer consider it to be a leaf and add
549 // its operands to the expression.
550 if (BinaryOperator
*BO
= isReassociableOp(Op
, Opcode
)) {
551 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op
<< " (" << It
->second
<< ")\n");
552 Worklist
.push_back(std::make_pair(BO
, It
->second
));
558 // If we still have uses that are not accounted for by the expression
559 // then it is not safe to modify the value.
560 if (!Op
->hasOneUse())
563 // No uses outside the expression, try morphing it.
565 Leaves
.erase(It
); // Since the value may be morphed below.
568 // At this point we have a value which, first of all, is not a binary
569 // expression of the right kind, and secondly, is only used inside the
570 // expression. This means that it can safely be modified. See if we
571 // can usefully morph it into an expression of the right kind.
572 assert((!isa
<Instruction
>(Op
) ||
573 cast
<Instruction
>(Op
)->getOpcode() != Opcode
574 || (isa
<FPMathOperator
>(Op
) &&
575 !cast
<Instruction
>(Op
)->isFast())) &&
576 "Should have been handled above!");
577 assert(Op
->hasOneUse() && "Has uses outside the expression tree!");
579 // If this is a multiply expression, turn any internal negations into
580 // multiplies by -1 so they can be reassociated.
581 if (Instruction
*Tmp
= dyn_cast
<Instruction
>(Op
))
582 if ((Opcode
== Instruction::Mul
&& match(Tmp
, m_Neg(m_Value()))) ||
583 (Opcode
== Instruction::FMul
&& match(Tmp
, m_FNeg(m_Value())))) {
585 << "MORPH LEAF: " << *Op
<< " (" << Weight
<< ") TO ");
586 Tmp
= LowerNegateToMultiply(Tmp
);
587 LLVM_DEBUG(dbgs() << *Tmp
<< '\n');
588 Worklist
.push_back(std::make_pair(Tmp
, Weight
));
593 // Failed to morph into an expression of the right type. This really is
595 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op
<< " (" << Weight
<< ")\n");
596 assert(!isReassociableOp(Op
, Opcode
) && "Value was morphed?");
597 LeafOrder
.push_back(Op
);
602 // The leaves, repeated according to their weights, represent the linearized
603 // form of the expression.
604 for (unsigned i
= 0, e
= LeafOrder
.size(); i
!= e
; ++i
) {
605 Value
*V
= LeafOrder
[i
];
606 LeafMap::iterator It
= Leaves
.find(V
);
607 if (It
== Leaves
.end())
608 // Node initially thought to be a leaf wasn't.
610 assert(!isReassociableOp(V
, Opcode
) && "Shouldn't be a leaf!");
611 APInt Weight
= It
->second
;
612 if (Weight
.isMinValue())
613 // Leaf already output or weight reduction eliminated it.
615 // Ensure the leaf is only output once.
617 Ops
.push_back(std::make_pair(V
, Weight
));
620 // For nilpotent operations or addition there may be no operands, for example
621 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
622 // in both cases the weight reduces to 0 causing the value to be skipped.
624 Constant
*Identity
= ConstantExpr::getBinOpIdentity(Opcode
, I
->getType());
625 assert(Identity
&& "Associative operation without identity!");
626 Ops
.emplace_back(Identity
, APInt(Bitwidth
, 1));
632 /// Now that the operands for this expression tree are
633 /// linearized and optimized, emit them in-order.
634 void ReassociatePass::RewriteExprTree(BinaryOperator
*I
,
635 SmallVectorImpl
<ValueEntry
> &Ops
) {
636 assert(Ops
.size() > 1 && "Single values should be used directly!");
638 // Since our optimizations should never increase the number of operations, the
639 // new expression can usually be written reusing the existing binary operators
640 // from the original expression tree, without creating any new instructions,
641 // though the rewritten expression may have a completely different topology.
642 // We take care to not change anything if the new expression will be the same
643 // as the original. If more than trivial changes (like commuting operands)
644 // were made then we are obliged to clear out any optional subclass data like
647 /// NodesToRewrite - Nodes from the original expression available for writing
648 /// the new expression into.
649 SmallVector
<BinaryOperator
*, 8> NodesToRewrite
;
650 unsigned Opcode
= I
->getOpcode();
651 BinaryOperator
*Op
= I
;
653 /// NotRewritable - The operands being written will be the leaves of the new
654 /// expression and must not be used as inner nodes (via NodesToRewrite) by
655 /// mistake. Inner nodes are always reassociable, and usually leaves are not
656 /// (if they were they would have been incorporated into the expression and so
657 /// would not be leaves), so most of the time there is no danger of this. But
658 /// in rare cases a leaf may become reassociable if an optimization kills uses
659 /// of it, or it may momentarily become reassociable during rewriting (below)
660 /// due it being removed as an operand of one of its uses. Ensure that misuse
661 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
662 /// leaves and refusing to reuse any of them as inner nodes.
663 SmallPtrSet
<Value
*, 8> NotRewritable
;
664 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
665 NotRewritable
.insert(Ops
[i
].Op
);
667 // ExpressionChanged - Non-null if the rewritten expression differs from the
668 // original in some non-trivial way, requiring the clearing of optional flags.
669 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
670 BinaryOperator
*ExpressionChanged
= nullptr;
671 for (unsigned i
= 0; ; ++i
) {
672 // The last operation (which comes earliest in the IR) is special as both
673 // operands will come from Ops, rather than just one with the other being
675 if (i
+2 == Ops
.size()) {
676 Value
*NewLHS
= Ops
[i
].Op
;
677 Value
*NewRHS
= Ops
[i
+1].Op
;
678 Value
*OldLHS
= Op
->getOperand(0);
679 Value
*OldRHS
= Op
->getOperand(1);
681 if (NewLHS
== OldLHS
&& NewRHS
== OldRHS
)
682 // Nothing changed, leave it alone.
685 if (NewLHS
== OldRHS
&& NewRHS
== OldLHS
) {
686 // The order of the operands was reversed. Swap them.
687 LLVM_DEBUG(dbgs() << "RA: " << *Op
<< '\n');
689 LLVM_DEBUG(dbgs() << "TO: " << *Op
<< '\n');
695 // The new operation differs non-trivially from the original. Overwrite
696 // the old operands with the new ones.
697 LLVM_DEBUG(dbgs() << "RA: " << *Op
<< '\n');
698 if (NewLHS
!= OldLHS
) {
699 BinaryOperator
*BO
= isReassociableOp(OldLHS
, Opcode
);
700 if (BO
&& !NotRewritable
.count(BO
))
701 NodesToRewrite
.push_back(BO
);
702 Op
->setOperand(0, NewLHS
);
704 if (NewRHS
!= OldRHS
) {
705 BinaryOperator
*BO
= isReassociableOp(OldRHS
, Opcode
);
706 if (BO
&& !NotRewritable
.count(BO
))
707 NodesToRewrite
.push_back(BO
);
708 Op
->setOperand(1, NewRHS
);
710 LLVM_DEBUG(dbgs() << "TO: " << *Op
<< '\n');
712 ExpressionChanged
= Op
;
719 // Not the last operation. The left-hand side will be a sub-expression
720 // while the right-hand side will be the current element of Ops.
721 Value
*NewRHS
= Ops
[i
].Op
;
722 if (NewRHS
!= Op
->getOperand(1)) {
723 LLVM_DEBUG(dbgs() << "RA: " << *Op
<< '\n');
724 if (NewRHS
== Op
->getOperand(0)) {
725 // The new right-hand side was already present as the left operand. If
726 // we are lucky then swapping the operands will sort out both of them.
729 // Overwrite with the new right-hand side.
730 BinaryOperator
*BO
= isReassociableOp(Op
->getOperand(1), Opcode
);
731 if (BO
&& !NotRewritable
.count(BO
))
732 NodesToRewrite
.push_back(BO
);
733 Op
->setOperand(1, NewRHS
);
734 ExpressionChanged
= Op
;
736 LLVM_DEBUG(dbgs() << "TO: " << *Op
<< '\n');
741 // Now deal with the left-hand side. If this is already an operation node
742 // from the original expression then just rewrite the rest of the expression
744 BinaryOperator
*BO
= isReassociableOp(Op
->getOperand(0), Opcode
);
745 if (BO
&& !NotRewritable
.count(BO
)) {
750 // Otherwise, grab a spare node from the original expression and use that as
751 // the left-hand side. If there are no nodes left then the optimizers made
752 // an expression with more nodes than the original! This usually means that
753 // they did something stupid but it might mean that the problem was just too
754 // hard (finding the mimimal number of multiplications needed to realize a
755 // multiplication expression is NP-complete). Whatever the reason, smart or
756 // stupid, create a new node if there are none left.
757 BinaryOperator
*NewOp
;
758 if (NodesToRewrite
.empty()) {
759 Constant
*Undef
= UndefValue::get(I
->getType());
760 NewOp
= BinaryOperator::Create(Instruction::BinaryOps(Opcode
),
761 Undef
, Undef
, "", I
);
762 if (NewOp
->getType()->isFPOrFPVectorTy())
763 NewOp
->setFastMathFlags(I
->getFastMathFlags());
765 NewOp
= NodesToRewrite
.pop_back_val();
768 LLVM_DEBUG(dbgs() << "RA: " << *Op
<< '\n');
769 Op
->setOperand(0, NewOp
);
770 LLVM_DEBUG(dbgs() << "TO: " << *Op
<< '\n');
771 ExpressionChanged
= Op
;
777 // If the expression changed non-trivially then clear out all subclass data
778 // starting from the operator specified in ExpressionChanged, and compactify
779 // the operators to just before the expression root to guarantee that the
780 // expression tree is dominated by all of Ops.
781 if (ExpressionChanged
)
783 // Preserve FastMathFlags.
784 if (isa
<FPMathOperator
>(I
)) {
785 FastMathFlags Flags
= I
->getFastMathFlags();
786 ExpressionChanged
->clearSubclassOptionalData();
787 ExpressionChanged
->setFastMathFlags(Flags
);
789 ExpressionChanged
->clearSubclassOptionalData();
791 if (ExpressionChanged
== I
)
794 // Discard any debug info related to the expressions that has changed (we
795 // can leave debug infor related to the root, since the result of the
796 // expression tree should be the same even after reassociation).
797 replaceDbgUsesWithUndef(ExpressionChanged
);
799 ExpressionChanged
->moveBefore(I
);
800 ExpressionChanged
= cast
<BinaryOperator
>(*ExpressionChanged
->user_begin());
803 // Throw away any left over nodes from the original expression.
804 for (unsigned i
= 0, e
= NodesToRewrite
.size(); i
!= e
; ++i
)
805 RedoInsts
.insert(NodesToRewrite
[i
]);
808 /// Insert instructions before the instruction pointed to by BI,
809 /// that computes the negative version of the value specified. The negative
810 /// version of the value is returned, and BI is left pointing at the instruction
811 /// that should be processed next by the reassociation pass.
812 /// Also add intermediate instructions to the redo list that are modified while
813 /// pushing the negates through adds. These will be revisited to see if
814 /// additional opportunities have been exposed.
815 static Value
*NegateValue(Value
*V
, Instruction
*BI
,
816 ReassociatePass::OrderedSet
&ToRedo
) {
817 if (auto *C
= dyn_cast
<Constant
>(V
))
818 return C
->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C
) :
819 ConstantExpr::getNeg(C
);
821 // We are trying to expose opportunity for reassociation. One of the things
822 // that we want to do to achieve this is to push a negation as deep into an
823 // expression chain as possible, to expose the add instructions. In practice,
824 // this means that we turn this:
825 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
826 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
827 // the constants. We assume that instcombine will clean up the mess later if
828 // we introduce tons of unnecessary negation instructions.
830 if (BinaryOperator
*I
=
831 isReassociableOp(V
, Instruction::Add
, Instruction::FAdd
)) {
832 // Push the negates through the add.
833 I
->setOperand(0, NegateValue(I
->getOperand(0), BI
, ToRedo
));
834 I
->setOperand(1, NegateValue(I
->getOperand(1), BI
, ToRedo
));
835 if (I
->getOpcode() == Instruction::Add
) {
836 I
->setHasNoUnsignedWrap(false);
837 I
->setHasNoSignedWrap(false);
840 // We must move the add instruction here, because the neg instructions do
841 // not dominate the old add instruction in general. By moving it, we are
842 // assured that the neg instructions we just inserted dominate the
843 // instruction we are about to insert after them.
846 I
->setName(I
->getName()+".neg");
848 // Add the intermediate negates to the redo list as processing them later
849 // could expose more reassociating opportunities.
854 // Okay, we need to materialize a negated version of V with an instruction.
855 // Scan the use lists of V to see if we have one already.
856 for (User
*U
: V
->users()) {
857 if (!match(U
, m_Neg(m_Value())) && !match(U
, m_FNeg(m_Value())))
860 // We found one! Now we have to make sure that the definition dominates
861 // this use. We do this by moving it to the entry block (if it is a
862 // non-instruction value) or right after the definition. These negates will
863 // be zapped by reassociate later, so we don't need much finesse here.
864 Instruction
*TheNeg
= cast
<Instruction
>(U
);
866 // Verify that the negate is in this function, V might be a constant expr.
867 if (TheNeg
->getParent()->getParent() != BI
->getParent()->getParent())
870 bool FoundCatchSwitch
= false;
872 BasicBlock::iterator InsertPt
;
873 if (Instruction
*InstInput
= dyn_cast
<Instruction
>(V
)) {
874 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(InstInput
)) {
875 InsertPt
= II
->getNormalDest()->begin();
877 InsertPt
= ++InstInput
->getIterator();
880 const BasicBlock
*BB
= InsertPt
->getParent();
882 // Make sure we don't move anything before PHIs or exception
884 while (InsertPt
!= BB
->end() && (isa
<PHINode
>(InsertPt
) ||
885 InsertPt
->isEHPad())) {
886 if (isa
<CatchSwitchInst
>(InsertPt
))
887 // A catchswitch cannot have anything in the block except
888 // itself and PHIs. We'll bail out below.
889 FoundCatchSwitch
= true;
893 InsertPt
= TheNeg
->getParent()->getParent()->getEntryBlock().begin();
896 // We found a catchswitch in the block where we want to move the
897 // neg. We cannot move anything into that block. Bail and just
898 // create the neg before BI, as if we hadn't found an existing
900 if (FoundCatchSwitch
)
903 TheNeg
->moveBefore(&*InsertPt
);
904 if (TheNeg
->getOpcode() == Instruction::Sub
) {
905 TheNeg
->setHasNoUnsignedWrap(false);
906 TheNeg
->setHasNoSignedWrap(false);
908 TheNeg
->andIRFlags(BI
);
910 ToRedo
.insert(TheNeg
);
914 // Insert a 'neg' instruction that subtracts the value from zero to get the
916 BinaryOperator
*NewNeg
= CreateNeg(V
, V
->getName() + ".neg", BI
, BI
);
917 ToRedo
.insert(NewNeg
);
921 /// Return true if we should break up this subtract of X-Y into (X + -Y).
922 static bool ShouldBreakUpSubtract(Instruction
*Sub
) {
923 // If this is a negation, we can't split it up!
924 if (match(Sub
, m_Neg(m_Value())) || match(Sub
, m_FNeg(m_Value())))
927 // Don't breakup X - undef.
928 if (isa
<UndefValue
>(Sub
->getOperand(1)))
931 // Don't bother to break this up unless either the LHS is an associable add or
932 // subtract or if this is only used by one.
933 Value
*V0
= Sub
->getOperand(0);
934 if (isReassociableOp(V0
, Instruction::Add
, Instruction::FAdd
) ||
935 isReassociableOp(V0
, Instruction::Sub
, Instruction::FSub
))
937 Value
*V1
= Sub
->getOperand(1);
938 if (isReassociableOp(V1
, Instruction::Add
, Instruction::FAdd
) ||
939 isReassociableOp(V1
, Instruction::Sub
, Instruction::FSub
))
941 Value
*VB
= Sub
->user_back();
942 if (Sub
->hasOneUse() &&
943 (isReassociableOp(VB
, Instruction::Add
, Instruction::FAdd
) ||
944 isReassociableOp(VB
, Instruction::Sub
, Instruction::FSub
)))
950 /// If we have (X-Y), and if either X is an add, or if this is only used by an
951 /// add, transform this into (X+(0-Y)) to promote better reassociation.
952 static BinaryOperator
*BreakUpSubtract(Instruction
*Sub
,
953 ReassociatePass::OrderedSet
&ToRedo
) {
954 // Convert a subtract into an add and a neg instruction. This allows sub
955 // instructions to be commuted with other add instructions.
957 // Calculate the negative value of Operand 1 of the sub instruction,
958 // and set it as the RHS of the add instruction we just made.
959 Value
*NegVal
= NegateValue(Sub
->getOperand(1), Sub
, ToRedo
);
960 BinaryOperator
*New
= CreateAdd(Sub
->getOperand(0), NegVal
, "", Sub
, Sub
);
961 Sub
->setOperand(0, Constant::getNullValue(Sub
->getType())); // Drop use of op.
962 Sub
->setOperand(1, Constant::getNullValue(Sub
->getType())); // Drop use of op.
965 // Everyone now refers to the add instruction.
966 Sub
->replaceAllUsesWith(New
);
967 New
->setDebugLoc(Sub
->getDebugLoc());
969 LLVM_DEBUG(dbgs() << "Negated: " << *New
<< '\n');
973 /// If this is a shift of a reassociable multiply or is used by one, change
974 /// this into a multiply by a constant to assist with further reassociation.
975 static BinaryOperator
*ConvertShiftToMul(Instruction
*Shl
) {
976 Constant
*MulCst
= ConstantInt::get(Shl
->getType(), 1);
977 MulCst
= ConstantExpr::getShl(MulCst
, cast
<Constant
>(Shl
->getOperand(1)));
979 BinaryOperator
*Mul
=
980 BinaryOperator::CreateMul(Shl
->getOperand(0), MulCst
, "", Shl
);
981 Shl
->setOperand(0, UndefValue::get(Shl
->getType())); // Drop use of op.
984 // Everyone now refers to the mul instruction.
985 Shl
->replaceAllUsesWith(Mul
);
986 Mul
->setDebugLoc(Shl
->getDebugLoc());
988 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
989 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
991 bool NSW
= cast
<BinaryOperator
>(Shl
)->hasNoSignedWrap();
992 bool NUW
= cast
<BinaryOperator
>(Shl
)->hasNoUnsignedWrap();
994 Mul
->setHasNoSignedWrap(true);
995 Mul
->setHasNoUnsignedWrap(NUW
);
999 /// Scan backwards and forwards among values with the same rank as element i
1000 /// to see if X exists. If X does not exist, return i. This is useful when
1001 /// scanning for 'x' when we see '-x' because they both get the same rank.
1002 static unsigned FindInOperandList(const SmallVectorImpl
<ValueEntry
> &Ops
,
1003 unsigned i
, Value
*X
) {
1004 unsigned XRank
= Ops
[i
].Rank
;
1005 unsigned e
= Ops
.size();
1006 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
].Rank
== XRank
; ++j
) {
1009 if (Instruction
*I1
= dyn_cast
<Instruction
>(Ops
[j
].Op
))
1010 if (Instruction
*I2
= dyn_cast
<Instruction
>(X
))
1011 if (I1
->isIdenticalTo(I2
))
1015 for (unsigned j
= i
-1; j
!= ~0U && Ops
[j
].Rank
== XRank
; --j
) {
1018 if (Instruction
*I1
= dyn_cast
<Instruction
>(Ops
[j
].Op
))
1019 if (Instruction
*I2
= dyn_cast
<Instruction
>(X
))
1020 if (I1
->isIdenticalTo(I2
))
1026 /// Emit a tree of add instructions, summing Ops together
1027 /// and returning the result. Insert the tree before I.
1028 static Value
*EmitAddTreeOfValues(Instruction
*I
,
1029 SmallVectorImpl
<WeakTrackingVH
> &Ops
) {
1030 if (Ops
.size() == 1) return Ops
.back();
1032 Value
*V1
= Ops
.back();
1034 Value
*V2
= EmitAddTreeOfValues(I
, Ops
);
1035 return CreateAdd(V2
, V1
, "reass.add", I
, I
);
1038 /// If V is an expression tree that is a multiplication sequence,
1039 /// and if this sequence contains a multiply by Factor,
1040 /// remove Factor from the tree and return the new tree.
1041 Value
*ReassociatePass::RemoveFactorFromExpression(Value
*V
, Value
*Factor
) {
1042 BinaryOperator
*BO
= isReassociableOp(V
, Instruction::Mul
, Instruction::FMul
);
1046 SmallVector
<RepeatedValue
, 8> Tree
;
1047 MadeChange
|= LinearizeExprTree(BO
, Tree
);
1048 SmallVector
<ValueEntry
, 8> Factors
;
1049 Factors
.reserve(Tree
.size());
1050 for (unsigned i
= 0, e
= Tree
.size(); i
!= e
; ++i
) {
1051 RepeatedValue E
= Tree
[i
];
1052 Factors
.append(E
.second
.getZExtValue(),
1053 ValueEntry(getRank(E
.first
), E
.first
));
1056 bool FoundFactor
= false;
1057 bool NeedsNegate
= false;
1058 for (unsigned i
= 0, e
= Factors
.size(); i
!= e
; ++i
) {
1059 if (Factors
[i
].Op
== Factor
) {
1061 Factors
.erase(Factors
.begin()+i
);
1065 // If this is a negative version of this factor, remove it.
1066 if (ConstantInt
*FC1
= dyn_cast
<ConstantInt
>(Factor
)) {
1067 if (ConstantInt
*FC2
= dyn_cast
<ConstantInt
>(Factors
[i
].Op
))
1068 if (FC1
->getValue() == -FC2
->getValue()) {
1069 FoundFactor
= NeedsNegate
= true;
1070 Factors
.erase(Factors
.begin()+i
);
1073 } else if (ConstantFP
*FC1
= dyn_cast
<ConstantFP
>(Factor
)) {
1074 if (ConstantFP
*FC2
= dyn_cast
<ConstantFP
>(Factors
[i
].Op
)) {
1075 const APFloat
&F1
= FC1
->getValueAPF();
1076 APFloat
F2(FC2
->getValueAPF());
1078 if (F1
.compare(F2
) == APFloat::cmpEqual
) {
1079 FoundFactor
= NeedsNegate
= true;
1080 Factors
.erase(Factors
.begin() + i
);
1088 // Make sure to restore the operands to the expression tree.
1089 RewriteExprTree(BO
, Factors
);
1093 BasicBlock::iterator InsertPt
= ++BO
->getIterator();
1095 // If this was just a single multiply, remove the multiply and return the only
1096 // remaining operand.
1097 if (Factors
.size() == 1) {
1098 RedoInsts
.insert(BO
);
1101 RewriteExprTree(BO
, Factors
);
1106 V
= CreateNeg(V
, "neg", &*InsertPt
, BO
);
1111 /// If V is a single-use multiply, recursively add its operands as factors,
1112 /// otherwise add V to the list of factors.
1114 /// Ops is the top-level list of add operands we're trying to factor.
1115 static void FindSingleUseMultiplyFactors(Value
*V
,
1116 SmallVectorImpl
<Value
*> &Factors
) {
1117 BinaryOperator
*BO
= isReassociableOp(V
, Instruction::Mul
, Instruction::FMul
);
1119 Factors
.push_back(V
);
1123 // Otherwise, add the LHS and RHS to the list of factors.
1124 FindSingleUseMultiplyFactors(BO
->getOperand(1), Factors
);
1125 FindSingleUseMultiplyFactors(BO
->getOperand(0), Factors
);
1128 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1129 /// This optimizes based on identities. If it can be reduced to a single Value,
1130 /// it is returned, otherwise the Ops list is mutated as necessary.
1131 static Value
*OptimizeAndOrXor(unsigned Opcode
,
1132 SmallVectorImpl
<ValueEntry
> &Ops
) {
1133 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1134 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1135 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1136 // First, check for X and ~X in the operand list.
1137 assert(i
< Ops
.size());
1139 if (match(Ops
[i
].Op
, m_Not(m_Value(X
)))) { // Cannot occur for ^.
1140 unsigned FoundX
= FindInOperandList(Ops
, i
, X
);
1142 if (Opcode
== Instruction::And
) // ...&X&~X = 0
1143 return Constant::getNullValue(X
->getType());
1145 if (Opcode
== Instruction::Or
) // ...|X|~X = -1
1146 return Constant::getAllOnesValue(X
->getType());
1150 // Next, check for duplicate pairs of values, which we assume are next to
1151 // each other, due to our sorting criteria.
1152 assert(i
< Ops
.size());
1153 if (i
+1 != Ops
.size() && Ops
[i
+1].Op
== Ops
[i
].Op
) {
1154 if (Opcode
== Instruction::And
|| Opcode
== Instruction::Or
) {
1155 // Drop duplicate values for And and Or.
1156 Ops
.erase(Ops
.begin()+i
);
1162 // Drop pairs of values for Xor.
1163 assert(Opcode
== Instruction::Xor
);
1165 return Constant::getNullValue(Ops
[0].Op
->getType());
1168 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+2);
1176 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1177 /// instruction with the given two operands, and return the resulting
1178 /// instruction. There are two special cases: 1) if the constant operand is 0,
1179 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1181 static Value
*createAndInstr(Instruction
*InsertBefore
, Value
*Opnd
,
1182 const APInt
&ConstOpnd
) {
1183 if (ConstOpnd
.isNullValue())
1186 if (ConstOpnd
.isAllOnesValue())
1189 Instruction
*I
= BinaryOperator::CreateAnd(
1190 Opnd
, ConstantInt::get(Opnd
->getType(), ConstOpnd
), "and.ra",
1192 I
->setDebugLoc(InsertBefore
->getDebugLoc());
1196 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1197 // into "R ^ C", where C would be 0, and R is a symbolic value.
1199 // If it was successful, true is returned, and the "R" and "C" is returned
1200 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1201 // and both "Res" and "ConstOpnd" remain unchanged.
1202 bool ReassociatePass::CombineXorOpnd(Instruction
*I
, XorOpnd
*Opnd1
,
1203 APInt
&ConstOpnd
, Value
*&Res
) {
1204 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1205 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1206 // = (x & ~c1) ^ (c1 ^ c2)
1207 // It is useful only when c1 == c2.
1208 if (!Opnd1
->isOrExpr() || Opnd1
->getConstPart().isNullValue())
1211 if (!Opnd1
->getValue()->hasOneUse())
1214 const APInt
&C1
= Opnd1
->getConstPart();
1215 if (C1
!= ConstOpnd
)
1218 Value
*X
= Opnd1
->getSymbolicPart();
1219 Res
= createAndInstr(I
, X
, ~C1
);
1220 // ConstOpnd was C2, now C1 ^ C2.
1223 if (Instruction
*T
= dyn_cast
<Instruction
>(Opnd1
->getValue()))
1224 RedoInsts
.insert(T
);
1228 // Helper function of OptimizeXor(). It tries to simplify
1229 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1232 // If it was successful, true is returned, and the "R" and "C" is returned
1233 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1234 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1235 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1236 bool ReassociatePass::CombineXorOpnd(Instruction
*I
, XorOpnd
*Opnd1
,
1237 XorOpnd
*Opnd2
, APInt
&ConstOpnd
,
1239 Value
*X
= Opnd1
->getSymbolicPart();
1240 if (X
!= Opnd2
->getSymbolicPart())
1243 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1244 int DeadInstNum
= 1;
1245 if (Opnd1
->getValue()->hasOneUse())
1247 if (Opnd2
->getValue()->hasOneUse())
1251 // (x | c1) ^ (x & c2)
1252 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1253 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1254 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1256 if (Opnd1
->isOrExpr() != Opnd2
->isOrExpr()) {
1257 if (Opnd2
->isOrExpr())
1258 std::swap(Opnd1
, Opnd2
);
1260 const APInt
&C1
= Opnd1
->getConstPart();
1261 const APInt
&C2
= Opnd2
->getConstPart();
1262 APInt
C3((~C1
) ^ C2
);
1264 // Do not increase code size!
1265 if (!C3
.isNullValue() && !C3
.isAllOnesValue()) {
1266 int NewInstNum
= ConstOpnd
.getBoolValue() ? 1 : 2;
1267 if (NewInstNum
> DeadInstNum
)
1271 Res
= createAndInstr(I
, X
, C3
);
1273 } else if (Opnd1
->isOrExpr()) {
1274 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1276 const APInt
&C1
= Opnd1
->getConstPart();
1277 const APInt
&C2
= Opnd2
->getConstPart();
1280 // Do not increase code size
1281 if (!C3
.isNullValue() && !C3
.isAllOnesValue()) {
1282 int NewInstNum
= ConstOpnd
.getBoolValue() ? 1 : 2;
1283 if (NewInstNum
> DeadInstNum
)
1287 Res
= createAndInstr(I
, X
, C3
);
1290 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1292 const APInt
&C1
= Opnd1
->getConstPart();
1293 const APInt
&C2
= Opnd2
->getConstPart();
1295 Res
= createAndInstr(I
, X
, C3
);
1298 // Put the original operands in the Redo list; hope they will be deleted
1300 if (Instruction
*T
= dyn_cast
<Instruction
>(Opnd1
->getValue()))
1301 RedoInsts
.insert(T
);
1302 if (Instruction
*T
= dyn_cast
<Instruction
>(Opnd2
->getValue()))
1303 RedoInsts
.insert(T
);
1308 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1309 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1311 Value
*ReassociatePass::OptimizeXor(Instruction
*I
,
1312 SmallVectorImpl
<ValueEntry
> &Ops
) {
1313 if (Value
*V
= OptimizeAndOrXor(Instruction::Xor
, Ops
))
1316 if (Ops
.size() == 1)
1319 SmallVector
<XorOpnd
, 8> Opnds
;
1320 SmallVector
<XorOpnd
*, 8> OpndPtrs
;
1321 Type
*Ty
= Ops
[0].Op
->getType();
1322 APInt
ConstOpnd(Ty
->getScalarSizeInBits(), 0);
1324 // Step 1: Convert ValueEntry to XorOpnd
1325 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1326 Value
*V
= Ops
[i
].Op
;
1328 // TODO: Support non-splat vectors.
1329 if (match(V
, m_APInt(C
))) {
1333 O
.setSymbolicRank(getRank(O
.getSymbolicPart()));
1338 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1339 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1340 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1341 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1342 // when new elements are added to the vector.
1343 for (unsigned i
= 0, e
= Opnds
.size(); i
!= e
; ++i
)
1344 OpndPtrs
.push_back(&Opnds
[i
]);
1346 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1347 // the same symbolic value cluster together. For instance, the input operand
1348 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1349 // ("x | 123", "x & 789", "y & 456").
1351 // The purpose is twofold:
1352 // 1) Cluster together the operands sharing the same symbolic-value.
1353 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1354 // could potentially shorten crital path, and expose more loop-invariants.
1355 // Note that values' rank are basically defined in RPO order (FIXME).
1356 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1357 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1358 // "z" in the order of X-Y-Z is better than any other orders.
1359 llvm::stable_sort(OpndPtrs
, [](XorOpnd
*LHS
, XorOpnd
*RHS
) {
1360 return LHS
->getSymbolicRank() < RHS
->getSymbolicRank();
1363 // Step 3: Combine adjacent operands
1364 XorOpnd
*PrevOpnd
= nullptr;
1365 bool Changed
= false;
1366 for (unsigned i
= 0, e
= Opnds
.size(); i
< e
; i
++) {
1367 XorOpnd
*CurrOpnd
= OpndPtrs
[i
];
1368 // The combined value
1371 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1372 if (!ConstOpnd
.isNullValue() &&
1373 CombineXorOpnd(I
, CurrOpnd
, ConstOpnd
, CV
)) {
1376 *CurrOpnd
= XorOpnd(CV
);
1378 CurrOpnd
->Invalidate();
1383 if (!PrevOpnd
|| CurrOpnd
->getSymbolicPart() != PrevOpnd
->getSymbolicPart()) {
1384 PrevOpnd
= CurrOpnd
;
1388 // step 3.2: When previous and current operands share the same symbolic
1389 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1390 if (CombineXorOpnd(I
, CurrOpnd
, PrevOpnd
, ConstOpnd
, CV
)) {
1391 // Remove previous operand
1392 PrevOpnd
->Invalidate();
1394 *CurrOpnd
= XorOpnd(CV
);
1395 PrevOpnd
= CurrOpnd
;
1397 CurrOpnd
->Invalidate();
1404 // Step 4: Reassemble the Ops
1407 for (unsigned int i
= 0, e
= Opnds
.size(); i
< e
; i
++) {
1408 XorOpnd
&O
= Opnds
[i
];
1411 ValueEntry
VE(getRank(O
.getValue()), O
.getValue());
1414 if (!ConstOpnd
.isNullValue()) {
1415 Value
*C
= ConstantInt::get(Ty
, ConstOpnd
);
1416 ValueEntry
VE(getRank(C
), C
);
1419 unsigned Sz
= Ops
.size();
1421 return Ops
.back().Op
;
1423 assert(ConstOpnd
.isNullValue());
1424 return ConstantInt::get(Ty
, ConstOpnd
);
1431 /// Optimize a series of operands to an 'add' instruction. This
1432 /// optimizes based on identities. If it can be reduced to a single Value, it
1433 /// is returned, otherwise the Ops list is mutated as necessary.
1434 Value
*ReassociatePass::OptimizeAdd(Instruction
*I
,
1435 SmallVectorImpl
<ValueEntry
> &Ops
) {
1436 // Scan the operand lists looking for X and -X pairs. If we find any, we
1437 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1439 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1441 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1442 Value
*TheOp
= Ops
[i
].Op
;
1443 // Check to see if we've seen this operand before. If so, we factor all
1444 // instances of the operand together. Due to our sorting criteria, we know
1445 // that these need to be next to each other in the vector.
1446 if (i
+1 != Ops
.size() && Ops
[i
+1].Op
== TheOp
) {
1447 // Rescan the list, remove all instances of this operand from the expr.
1448 unsigned NumFound
= 0;
1450 Ops
.erase(Ops
.begin()+i
);
1452 } while (i
!= Ops
.size() && Ops
[i
].Op
== TheOp
);
1454 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound
<< "]: " << *TheOp
1458 // Insert a new multiply.
1459 Type
*Ty
= TheOp
->getType();
1460 Constant
*C
= Ty
->isIntOrIntVectorTy() ?
1461 ConstantInt::get(Ty
, NumFound
) : ConstantFP::get(Ty
, NumFound
);
1462 Instruction
*Mul
= CreateMul(TheOp
, C
, "factor", I
, I
);
1464 // Now that we have inserted a multiply, optimize it. This allows us to
1465 // handle cases that require multiple factoring steps, such as this:
1466 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1467 RedoInsts
.insert(Mul
);
1469 // If every add operand was a duplicate, return the multiply.
1473 // Otherwise, we had some input that didn't have the dupe, such as
1474 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1475 // things being added by this operation.
1476 Ops
.insert(Ops
.begin(), ValueEntry(getRank(Mul
), Mul
));
1483 // Check for X and -X or X and ~X in the operand list.
1485 if (!match(TheOp
, m_Neg(m_Value(X
))) && !match(TheOp
, m_Not(m_Value(X
))) &&
1486 !match(TheOp
, m_FNeg(m_Value(X
))))
1489 unsigned FoundX
= FindInOperandList(Ops
, i
, X
);
1493 // Remove X and -X from the operand list.
1494 if (Ops
.size() == 2 &&
1495 (match(TheOp
, m_Neg(m_Value())) || match(TheOp
, m_FNeg(m_Value()))))
1496 return Constant::getNullValue(X
->getType());
1498 // Remove X and ~X from the operand list.
1499 if (Ops
.size() == 2 && match(TheOp
, m_Not(m_Value())))
1500 return Constant::getAllOnesValue(X
->getType());
1502 Ops
.erase(Ops
.begin()+i
);
1506 --i
; // Need to back up an extra one.
1507 Ops
.erase(Ops
.begin()+FoundX
);
1509 --i
; // Revisit element.
1510 e
-= 2; // Removed two elements.
1512 // if X and ~X we append -1 to the operand list.
1513 if (match(TheOp
, m_Not(m_Value()))) {
1514 Value
*V
= Constant::getAllOnesValue(X
->getType());
1515 Ops
.insert(Ops
.end(), ValueEntry(getRank(V
), V
));
1520 // Scan the operand list, checking to see if there are any common factors
1521 // between operands. Consider something like A*A+A*B*C+D. We would like to
1522 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1523 // To efficiently find this, we count the number of times a factor occurs
1524 // for any ADD operands that are MULs.
1525 DenseMap
<Value
*, unsigned> FactorOccurrences
;
1527 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1528 // where they are actually the same multiply.
1529 unsigned MaxOcc
= 0;
1530 Value
*MaxOccVal
= nullptr;
1531 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1532 BinaryOperator
*BOp
=
1533 isReassociableOp(Ops
[i
].Op
, Instruction::Mul
, Instruction::FMul
);
1537 // Compute all of the factors of this added value.
1538 SmallVector
<Value
*, 8> Factors
;
1539 FindSingleUseMultiplyFactors(BOp
, Factors
);
1540 assert(Factors
.size() > 1 && "Bad linearize!");
1542 // Add one to FactorOccurrences for each unique factor in this op.
1543 SmallPtrSet
<Value
*, 8> Duplicates
;
1544 for (unsigned i
= 0, e
= Factors
.size(); i
!= e
; ++i
) {
1545 Value
*Factor
= Factors
[i
];
1546 if (!Duplicates
.insert(Factor
).second
)
1549 unsigned Occ
= ++FactorOccurrences
[Factor
];
1555 // If Factor is a negative constant, add the negated value as a factor
1556 // because we can percolate the negate out. Watch for minint, which
1557 // cannot be positivified.
1558 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Factor
)) {
1559 if (CI
->isNegative() && !CI
->isMinValue(true)) {
1560 Factor
= ConstantInt::get(CI
->getContext(), -CI
->getValue());
1561 if (!Duplicates
.insert(Factor
).second
)
1563 unsigned Occ
= ++FactorOccurrences
[Factor
];
1569 } else if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(Factor
)) {
1570 if (CF
->isNegative()) {
1571 APFloat
F(CF
->getValueAPF());
1573 Factor
= ConstantFP::get(CF
->getContext(), F
);
1574 if (!Duplicates
.insert(Factor
).second
)
1576 unsigned Occ
= ++FactorOccurrences
[Factor
];
1586 // If any factor occurred more than one time, we can pull it out.
1588 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc
<< "]: " << *MaxOccVal
1592 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1593 // this, we could otherwise run into situations where removing a factor
1594 // from an expression will drop a use of maxocc, and this can cause
1595 // RemoveFactorFromExpression on successive values to behave differently.
1596 Instruction
*DummyInst
=
1597 I
->getType()->isIntOrIntVectorTy()
1598 ? BinaryOperator::CreateAdd(MaxOccVal
, MaxOccVal
)
1599 : BinaryOperator::CreateFAdd(MaxOccVal
, MaxOccVal
);
1601 SmallVector
<WeakTrackingVH
, 4> NewMulOps
;
1602 for (unsigned i
= 0; i
!= Ops
.size(); ++i
) {
1603 // Only try to remove factors from expressions we're allowed to.
1604 BinaryOperator
*BOp
=
1605 isReassociableOp(Ops
[i
].Op
, Instruction::Mul
, Instruction::FMul
);
1609 if (Value
*V
= RemoveFactorFromExpression(Ops
[i
].Op
, MaxOccVal
)) {
1610 // The factorized operand may occur several times. Convert them all in
1612 for (unsigned j
= Ops
.size(); j
!= i
;) {
1614 if (Ops
[j
].Op
== Ops
[i
].Op
) {
1615 NewMulOps
.push_back(V
);
1616 Ops
.erase(Ops
.begin()+j
);
1623 // No need for extra uses anymore.
1624 DummyInst
->deleteValue();
1626 unsigned NumAddedValues
= NewMulOps
.size();
1627 Value
*V
= EmitAddTreeOfValues(I
, NewMulOps
);
1629 // Now that we have inserted the add tree, optimize it. This allows us to
1630 // handle cases that require multiple factoring steps, such as this:
1631 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
1632 assert(NumAddedValues
> 1 && "Each occurrence should contribute a value");
1633 (void)NumAddedValues
;
1634 if (Instruction
*VI
= dyn_cast
<Instruction
>(V
))
1635 RedoInsts
.insert(VI
);
1637 // Create the multiply.
1638 Instruction
*V2
= CreateMul(V
, MaxOccVal
, "reass.mul", I
, I
);
1640 // Rerun associate on the multiply in case the inner expression turned into
1641 // a multiply. We want to make sure that we keep things in canonical form.
1642 RedoInsts
.insert(V2
);
1644 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1645 // entire result expression is just the multiply "A*(B+C)".
1649 // Otherwise, we had some input that didn't have the factor, such as
1650 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
1651 // things being added by this operation.
1652 Ops
.insert(Ops
.begin(), ValueEntry(getRank(V2
), V2
));
1658 /// Build up a vector of value/power pairs factoring a product.
1660 /// Given a series of multiplication operands, build a vector of factors and
1661 /// the powers each is raised to when forming the final product. Sort them in
1662 /// the order of descending power.
1664 /// (x*x) -> [(x, 2)]
1665 /// ((x*x)*x) -> [(x, 3)]
1666 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1668 /// \returns Whether any factors have a power greater than one.
1669 static bool collectMultiplyFactors(SmallVectorImpl
<ValueEntry
> &Ops
,
1670 SmallVectorImpl
<Factor
> &Factors
) {
1671 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1672 // Compute the sum of powers of simplifiable factors.
1673 unsigned FactorPowerSum
= 0;
1674 for (unsigned Idx
= 1, Size
= Ops
.size(); Idx
< Size
; ++Idx
) {
1675 Value
*Op
= Ops
[Idx
-1].Op
;
1677 // Count the number of occurrences of this value.
1679 for (; Idx
< Size
&& Ops
[Idx
].Op
== Op
; ++Idx
)
1681 // Track for simplification all factors which occur 2 or more times.
1683 FactorPowerSum
+= Count
;
1686 // We can only simplify factors if the sum of the powers of our simplifiable
1687 // factors is 4 or higher. When that is the case, we will *always* have
1688 // a simplification. This is an important invariant to prevent cyclicly
1689 // trying to simplify already minimal formations.
1690 if (FactorPowerSum
< 4)
1693 // Now gather the simplifiable factors, removing them from Ops.
1695 for (unsigned Idx
= 1; Idx
< Ops
.size(); ++Idx
) {
1696 Value
*Op
= Ops
[Idx
-1].Op
;
1698 // Count the number of occurrences of this value.
1700 for (; Idx
< Ops
.size() && Ops
[Idx
].Op
== Op
; ++Idx
)
1704 // Move an even number of occurrences to Factors.
1707 FactorPowerSum
+= Count
;
1708 Factors
.push_back(Factor(Op
, Count
));
1709 Ops
.erase(Ops
.begin()+Idx
, Ops
.begin()+Idx
+Count
);
1712 // None of the adjustments above should have reduced the sum of factor powers
1713 // below our mininum of '4'.
1714 assert(FactorPowerSum
>= 4);
1716 llvm::stable_sort(Factors
, [](const Factor
&LHS
, const Factor
&RHS
) {
1717 return LHS
.Power
> RHS
.Power
;
1722 /// Build a tree of multiplies, computing the product of Ops.
1723 static Value
*buildMultiplyTree(IRBuilder
<> &Builder
,
1724 SmallVectorImpl
<Value
*> &Ops
) {
1725 if (Ops
.size() == 1)
1728 Value
*LHS
= Ops
.pop_back_val();
1730 if (LHS
->getType()->isIntOrIntVectorTy())
1731 LHS
= Builder
.CreateMul(LHS
, Ops
.pop_back_val());
1733 LHS
= Builder
.CreateFMul(LHS
, Ops
.pop_back_val());
1734 } while (!Ops
.empty());
1739 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1741 /// Given a vector of values raised to various powers, where no two values are
1742 /// equal and the powers are sorted in decreasing order, compute the minimal
1743 /// DAG of multiplies to compute the final product, and return that product
1746 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder
<> &Builder
,
1747 SmallVectorImpl
<Factor
> &Factors
) {
1748 assert(Factors
[0].Power
);
1749 SmallVector
<Value
*, 4> OuterProduct
;
1750 for (unsigned LastIdx
= 0, Idx
= 1, Size
= Factors
.size();
1751 Idx
< Size
&& Factors
[Idx
].Power
> 0; ++Idx
) {
1752 if (Factors
[Idx
].Power
!= Factors
[LastIdx
].Power
) {
1757 // We want to multiply across all the factors with the same power so that
1758 // we can raise them to that power as a single entity. Build a mini tree
1760 SmallVector
<Value
*, 4> InnerProduct
;
1761 InnerProduct
.push_back(Factors
[LastIdx
].Base
);
1763 InnerProduct
.push_back(Factors
[Idx
].Base
);
1765 } while (Idx
< Size
&& Factors
[Idx
].Power
== Factors
[LastIdx
].Power
);
1767 // Reset the base value of the first factor to the new expression tree.
1768 // We'll remove all the factors with the same power in a second pass.
1769 Value
*M
= Factors
[LastIdx
].Base
= buildMultiplyTree(Builder
, InnerProduct
);
1770 if (Instruction
*MI
= dyn_cast
<Instruction
>(M
))
1771 RedoInsts
.insert(MI
);
1775 // Unique factors with equal powers -- we've folded them into the first one's
1777 Factors
.erase(std::unique(Factors
.begin(), Factors
.end(),
1778 [](const Factor
&LHS
, const Factor
&RHS
) {
1779 return LHS
.Power
== RHS
.Power
;
1783 // Iteratively collect the base of each factor with an add power into the
1784 // outer product, and halve each power in preparation for squaring the
1786 for (unsigned Idx
= 0, Size
= Factors
.size(); Idx
!= Size
; ++Idx
) {
1787 if (Factors
[Idx
].Power
& 1)
1788 OuterProduct
.push_back(Factors
[Idx
].Base
);
1789 Factors
[Idx
].Power
>>= 1;
1791 if (Factors
[0].Power
) {
1792 Value
*SquareRoot
= buildMinimalMultiplyDAG(Builder
, Factors
);
1793 OuterProduct
.push_back(SquareRoot
);
1794 OuterProduct
.push_back(SquareRoot
);
1796 if (OuterProduct
.size() == 1)
1797 return OuterProduct
.front();
1799 Value
*V
= buildMultiplyTree(Builder
, OuterProduct
);
1803 Value
*ReassociatePass::OptimizeMul(BinaryOperator
*I
,
1804 SmallVectorImpl
<ValueEntry
> &Ops
) {
1805 // We can only optimize the multiplies when there is a chain of more than
1806 // three, such that a balanced tree might require fewer total multiplies.
1810 // Try to turn linear trees of multiplies without other uses of the
1811 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1813 SmallVector
<Factor
, 4> Factors
;
1814 if (!collectMultiplyFactors(Ops
, Factors
))
1815 return nullptr; // All distinct factors, so nothing left for us to do.
1817 IRBuilder
<> Builder(I
);
1818 // The reassociate transformation for FP operations is performed only
1819 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1820 // to the newly generated operations.
1821 if (auto FPI
= dyn_cast
<FPMathOperator
>(I
))
1822 Builder
.setFastMathFlags(FPI
->getFastMathFlags());
1824 Value
*V
= buildMinimalMultiplyDAG(Builder
, Factors
);
1828 ValueEntry NewEntry
= ValueEntry(getRank(V
), V
);
1829 Ops
.insert(llvm::lower_bound(Ops
, NewEntry
), NewEntry
);
1833 Value
*ReassociatePass::OptimizeExpression(BinaryOperator
*I
,
1834 SmallVectorImpl
<ValueEntry
> &Ops
) {
1835 // Now that we have the linearized expression tree, try to optimize it.
1836 // Start by folding any constants that we found.
1837 Constant
*Cst
= nullptr;
1838 unsigned Opcode
= I
->getOpcode();
1839 while (!Ops
.empty() && isa
<Constant
>(Ops
.back().Op
)) {
1840 Constant
*C
= cast
<Constant
>(Ops
.pop_back_val().Op
);
1841 Cst
= Cst
? ConstantExpr::get(Opcode
, C
, Cst
) : C
;
1843 // If there was nothing but constants then we are done.
1847 // Put the combined constant back at the end of the operand list, except if
1848 // there is no point. For example, an add of 0 gets dropped here, while a
1849 // multiplication by zero turns the whole expression into zero.
1850 if (Cst
&& Cst
!= ConstantExpr::getBinOpIdentity(Opcode
, I
->getType())) {
1851 if (Cst
== ConstantExpr::getBinOpAbsorber(Opcode
, I
->getType()))
1853 Ops
.push_back(ValueEntry(0, Cst
));
1856 if (Ops
.size() == 1) return Ops
[0].Op
;
1858 // Handle destructive annihilation due to identities between elements in the
1859 // argument list here.
1860 unsigned NumOps
= Ops
.size();
1863 case Instruction::And
:
1864 case Instruction::Or
:
1865 if (Value
*Result
= OptimizeAndOrXor(Opcode
, Ops
))
1869 case Instruction::Xor
:
1870 if (Value
*Result
= OptimizeXor(I
, Ops
))
1874 case Instruction::Add
:
1875 case Instruction::FAdd
:
1876 if (Value
*Result
= OptimizeAdd(I
, Ops
))
1880 case Instruction::Mul
:
1881 case Instruction::FMul
:
1882 if (Value
*Result
= OptimizeMul(I
, Ops
))
1887 if (Ops
.size() != NumOps
)
1888 return OptimizeExpression(I
, Ops
);
1892 // Remove dead instructions and if any operands are trivially dead add them to
1893 // Insts so they will be removed as well.
1894 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction
*I
,
1895 OrderedSet
&Insts
) {
1896 assert(isInstructionTriviallyDead(I
) && "Trivially dead instructions only!");
1897 SmallVector
<Value
*, 4> Ops(I
->op_begin(), I
->op_end());
1898 ValueRankMap
.erase(I
);
1900 RedoInsts
.remove(I
);
1901 I
->eraseFromParent();
1903 if (Instruction
*OpInst
= dyn_cast
<Instruction
>(Op
))
1904 if (OpInst
->use_empty())
1905 Insts
.insert(OpInst
);
1908 /// Zap the given instruction, adding interesting operands to the work list.
1909 void ReassociatePass::EraseInst(Instruction
*I
) {
1910 assert(isInstructionTriviallyDead(I
) && "Trivially dead instructions only!");
1911 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I
->dump());
1913 SmallVector
<Value
*, 8> Ops(I
->op_begin(), I
->op_end());
1914 // Erase the dead instruction.
1915 ValueRankMap
.erase(I
);
1916 RedoInsts
.remove(I
);
1917 I
->eraseFromParent();
1918 // Optimize its operands.
1919 SmallPtrSet
<Instruction
*, 8> Visited
; // Detect self-referential nodes.
1920 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1921 if (Instruction
*Op
= dyn_cast
<Instruction
>(Ops
[i
])) {
1922 // If this is a node in an expression tree, climb to the expression root
1923 // and add that since that's where optimization actually happens.
1924 unsigned Opcode
= Op
->getOpcode();
1925 while (Op
->hasOneUse() && Op
->user_back()->getOpcode() == Opcode
&&
1926 Visited
.insert(Op
).second
)
1927 Op
= Op
->user_back();
1929 // The instruction we're going to push may be coming from a
1930 // dead block, and Reassociate skips the processing of unreachable
1931 // blocks because it's a waste of time and also because it can
1932 // lead to infinite loop due to LLVM's non-standard definition
1934 if (ValueRankMap
.find(Op
) != ValueRankMap
.end())
1935 RedoInsts
.insert(Op
);
1941 /// Recursively analyze an expression to build a list of instructions that have
1942 /// negative floating-point constant operands. The caller can then transform
1943 /// the list to create positive constants for better reassociation and CSE.
1944 static void getNegatibleInsts(Value
*V
,
1945 SmallVectorImpl
<Instruction
*> &Candidates
) {
1946 // Handle only one-use instructions. Combining negations does not justify
1947 // replicating instructions.
1949 if (!match(V
, m_OneUse(m_Instruction(I
))))
1952 // Handle expressions of multiplications and divisions.
1953 // TODO: This could look through floating-point casts.
1955 switch (I
->getOpcode()) {
1956 case Instruction::FMul
:
1957 // Not expecting non-canonical code here. Bail out and wait.
1958 if (match(I
->getOperand(0), m_Constant()))
1961 if (match(I
->getOperand(1), m_APFloat(C
)) && C
->isNegative()) {
1962 Candidates
.push_back(I
);
1963 LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I
<< '\n');
1965 getNegatibleInsts(I
->getOperand(0), Candidates
);
1966 getNegatibleInsts(I
->getOperand(1), Candidates
);
1968 case Instruction::FDiv
:
1969 // Not expecting non-canonical code here. Bail out and wait.
1970 if (match(I
->getOperand(0), m_Constant()) &&
1971 match(I
->getOperand(1), m_Constant()))
1974 if ((match(I
->getOperand(0), m_APFloat(C
)) && C
->isNegative()) ||
1975 (match(I
->getOperand(1), m_APFloat(C
)) && C
->isNegative())) {
1976 Candidates
.push_back(I
);
1977 LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I
<< '\n');
1979 getNegatibleInsts(I
->getOperand(0), Candidates
);
1980 getNegatibleInsts(I
->getOperand(1), Candidates
);
1987 /// Given an fadd/fsub with an operand that is a one-use instruction
1988 /// (the fadd/fsub), try to change negative floating-point constants into
1989 /// positive constants to increase potential for reassociation and CSE.
1990 Instruction
*ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction
*I
,
1993 assert((I
->getOpcode() == Instruction::FAdd
||
1994 I
->getOpcode() == Instruction::FSub
) && "Expected fadd/fsub");
1996 // Collect instructions with negative FP constants from the subtree that ends
1998 SmallVector
<Instruction
*, 4> Candidates
;
1999 getNegatibleInsts(Op
, Candidates
);
2000 if (Candidates
.empty())
2003 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2004 // resulting subtract will be broken up later. This can get us into an
2005 // infinite loop during reassociation.
2006 bool IsFSub
= I
->getOpcode() == Instruction::FSub
;
2007 bool NeedsSubtract
= !IsFSub
&& Candidates
.size() % 2 == 1;
2008 if (NeedsSubtract
&& ShouldBreakUpSubtract(I
))
2011 for (Instruction
*Negatible
: Candidates
) {
2013 if (match(Negatible
->getOperand(0), m_APFloat(C
))) {
2014 assert(!match(Negatible
->getOperand(1), m_Constant()) &&
2015 "Expecting only 1 constant operand");
2016 assert(C
->isNegative() && "Expected negative FP constant");
2017 Negatible
->setOperand(0, ConstantFP::get(Negatible
->getType(), abs(*C
)));
2020 if (match(Negatible
->getOperand(1), m_APFloat(C
))) {
2021 assert(!match(Negatible
->getOperand(0), m_Constant()) &&
2022 "Expecting only 1 constant operand");
2023 assert(C
->isNegative() && "Expected negative FP constant");
2024 Negatible
->setOperand(1, ConstantFP::get(Negatible
->getType(), abs(*C
)));
2028 assert(MadeChange
== true && "Negative constant candidate was not changed");
2030 // Negations cancelled out.
2031 if (Candidates
.size() % 2 == 0)
2034 // Negate the final operand in the expression by flipping the opcode of this
2036 assert(Candidates
.size() % 2 == 1 && "Expected odd number");
2037 IRBuilder
<> Builder(I
);
2038 Value
*NewInst
= IsFSub
? Builder
.CreateFAddFMF(OtherOp
, Op
, I
)
2039 : Builder
.CreateFSubFMF(OtherOp
, Op
, I
);
2040 I
->replaceAllUsesWith(NewInst
);
2041 RedoInsts
.insert(I
);
2042 return dyn_cast
<Instruction
>(NewInst
);
2045 /// Canonicalize expressions that contain a negative floating-point constant
2046 /// of the following form:
2047 /// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2048 /// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2049 /// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2051 /// The fadd/fsub opcode may be switched to allow folding a negation into the
2052 /// input instruction.
2053 Instruction
*ReassociatePass::canonicalizeNegFPConstants(Instruction
*I
) {
2054 LLVM_DEBUG(dbgs() << "Combine negations for: " << *I
<< '\n');
2057 if (match(I
, m_FAdd(m_Value(X
), m_OneUse(m_Instruction(Op
)))))
2058 if (Instruction
*R
= canonicalizeNegFPConstantsForOp(I
, Op
, X
))
2060 if (match(I
, m_FAdd(m_OneUse(m_Instruction(Op
)), m_Value(X
))))
2061 if (Instruction
*R
= canonicalizeNegFPConstantsForOp(I
, Op
, X
))
2063 if (match(I
, m_FSub(m_Value(X
), m_OneUse(m_Instruction(Op
)))))
2064 if (Instruction
*R
= canonicalizeNegFPConstantsForOp(I
, Op
, X
))
2069 /// Inspect and optimize the given instruction. Note that erasing
2070 /// instructions is not allowed.
2071 void ReassociatePass::OptimizeInst(Instruction
*I
) {
2072 // Only consider operations that we understand.
2073 if (!isa
<UnaryOperator
>(I
) && !isa
<BinaryOperator
>(I
))
2076 if (I
->getOpcode() == Instruction::Shl
&& isa
<ConstantInt
>(I
->getOperand(1)))
2077 // If an operand of this shift is a reassociable multiply, or if the shift
2078 // is used by a reassociable multiply or add, turn into a multiply.
2079 if (isReassociableOp(I
->getOperand(0), Instruction::Mul
) ||
2081 (isReassociableOp(I
->user_back(), Instruction::Mul
) ||
2082 isReassociableOp(I
->user_back(), Instruction::Add
)))) {
2083 Instruction
*NI
= ConvertShiftToMul(I
);
2084 RedoInsts
.insert(I
);
2089 // Commute binary operators, to canonicalize the order of their operands.
2090 // This can potentially expose more CSE opportunities, and makes writing other
2091 // transformations simpler.
2092 if (I
->isCommutative())
2093 canonicalizeOperands(I
);
2095 // Canonicalize negative constants out of expressions.
2096 if (Instruction
*Res
= canonicalizeNegFPConstants(I
))
2099 // Don't optimize floating-point instructions unless they are 'fast'.
2100 if (I
->getType()->isFPOrFPVectorTy() && !I
->isFast())
2103 // Do not reassociate boolean (i1) expressions. We want to preserve the
2104 // original order of evaluation for short-circuited comparisons that
2105 // SimplifyCFG has folded to AND/OR expressions. If the expression
2106 // is not further optimized, it is likely to be transformed back to a
2107 // short-circuited form for code gen, and the source order may have been
2108 // optimized for the most likely conditions.
2109 if (I
->getType()->isIntegerTy(1))
2112 // If this is a subtract instruction which is not already in negate form,
2113 // see if we can convert it to X+-Y.
2114 if (I
->getOpcode() == Instruction::Sub
) {
2115 if (ShouldBreakUpSubtract(I
)) {
2116 Instruction
*NI
= BreakUpSubtract(I
, RedoInsts
);
2117 RedoInsts
.insert(I
);
2120 } else if (match(I
, m_Neg(m_Value()))) {
2121 // Otherwise, this is a negation. See if the operand is a multiply tree
2122 // and if this is not an inner node of a multiply tree.
2123 if (isReassociableOp(I
->getOperand(1), Instruction::Mul
) &&
2125 !isReassociableOp(I
->user_back(), Instruction::Mul
))) {
2126 Instruction
*NI
= LowerNegateToMultiply(I
);
2127 // If the negate was simplified, revisit the users to see if we can
2128 // reassociate further.
2129 for (User
*U
: NI
->users()) {
2130 if (BinaryOperator
*Tmp
= dyn_cast
<BinaryOperator
>(U
))
2131 RedoInsts
.insert(Tmp
);
2133 RedoInsts
.insert(I
);
2138 } else if (I
->getOpcode() == Instruction::FNeg
||
2139 I
->getOpcode() == Instruction::FSub
) {
2140 if (ShouldBreakUpSubtract(I
)) {
2141 Instruction
*NI
= BreakUpSubtract(I
, RedoInsts
);
2142 RedoInsts
.insert(I
);
2145 } else if (match(I
, m_FNeg(m_Value()))) {
2146 // Otherwise, this is a negation. See if the operand is a multiply tree
2147 // and if this is not an inner node of a multiply tree.
2148 Value
*Op
= isa
<BinaryOperator
>(I
) ? I
->getOperand(1) :
2150 if (isReassociableOp(Op
, Instruction::FMul
) &&
2152 !isReassociableOp(I
->user_back(), Instruction::FMul
))) {
2153 // If the negate was simplified, revisit the users to see if we can
2154 // reassociate further.
2155 Instruction
*NI
= LowerNegateToMultiply(I
);
2156 for (User
*U
: NI
->users()) {
2157 if (BinaryOperator
*Tmp
= dyn_cast
<BinaryOperator
>(U
))
2158 RedoInsts
.insert(Tmp
);
2160 RedoInsts
.insert(I
);
2167 // If this instruction is an associative binary operator, process it.
2168 if (!I
->isAssociative()) return;
2169 BinaryOperator
*BO
= cast
<BinaryOperator
>(I
);
2171 // If this is an interior node of a reassociable tree, ignore it until we
2172 // get to the root of the tree, to avoid N^2 analysis.
2173 unsigned Opcode
= BO
->getOpcode();
2174 if (BO
->hasOneUse() && BO
->user_back()->getOpcode() == Opcode
) {
2175 // During the initial run we will get to the root of the tree.
2176 // But if we get here while we are redoing instructions, there is no
2177 // guarantee that the root will be visited. So Redo later
2178 if (BO
->user_back() != BO
&&
2179 BO
->getParent() == BO
->user_back()->getParent())
2180 RedoInsts
.insert(BO
->user_back());
2184 // If this is an add tree that is used by a sub instruction, ignore it
2185 // until we process the subtract.
2186 if (BO
->hasOneUse() && BO
->getOpcode() == Instruction::Add
&&
2187 cast
<Instruction
>(BO
->user_back())->getOpcode() == Instruction::Sub
)
2189 if (BO
->hasOneUse() && BO
->getOpcode() == Instruction::FAdd
&&
2190 cast
<Instruction
>(BO
->user_back())->getOpcode() == Instruction::FSub
)
2193 ReassociateExpression(BO
);
2196 void ReassociatePass::ReassociateExpression(BinaryOperator
*I
) {
2197 // First, walk the expression tree, linearizing the tree, collecting the
2198 // operand information.
2199 SmallVector
<RepeatedValue
, 8> Tree
;
2200 MadeChange
|= LinearizeExprTree(I
, Tree
);
2201 SmallVector
<ValueEntry
, 8> Ops
;
2202 Ops
.reserve(Tree
.size());
2203 for (unsigned i
= 0, e
= Tree
.size(); i
!= e
; ++i
) {
2204 RepeatedValue E
= Tree
[i
];
2205 Ops
.append(E
.second
.getZExtValue(),
2206 ValueEntry(getRank(E
.first
), E
.first
));
2209 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I
, Ops
); dbgs() << '\n');
2211 // Now that we have linearized the tree to a list and have gathered all of
2212 // the operands and their ranks, sort the operands by their rank. Use a
2213 // stable_sort so that values with equal ranks will have their relative
2214 // positions maintained (and so the compiler is deterministic). Note that
2215 // this sorts so that the highest ranking values end up at the beginning of
2217 llvm::stable_sort(Ops
);
2219 // Now that we have the expression tree in a convenient
2220 // sorted form, optimize it globally if possible.
2221 if (Value
*V
= OptimizeExpression(I
, Ops
)) {
2223 // Self-referential expression in unreachable code.
2225 // This expression tree simplified to something that isn't a tree,
2227 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V
<< '\n');
2228 I
->replaceAllUsesWith(V
);
2229 if (Instruction
*VI
= dyn_cast
<Instruction
>(V
))
2230 if (I
->getDebugLoc())
2231 VI
->setDebugLoc(I
->getDebugLoc());
2232 RedoInsts
.insert(I
);
2237 // We want to sink immediates as deeply as possible except in the case where
2238 // this is a multiply tree used only by an add, and the immediate is a -1.
2239 // In this case we reassociate to put the negation on the outside so that we
2240 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2241 if (I
->hasOneUse()) {
2242 if (I
->getOpcode() == Instruction::Mul
&&
2243 cast
<Instruction
>(I
->user_back())->getOpcode() == Instruction::Add
&&
2244 isa
<ConstantInt
>(Ops
.back().Op
) &&
2245 cast
<ConstantInt
>(Ops
.back().Op
)->isMinusOne()) {
2246 ValueEntry Tmp
= Ops
.pop_back_val();
2247 Ops
.insert(Ops
.begin(), Tmp
);
2248 } else if (I
->getOpcode() == Instruction::FMul
&&
2249 cast
<Instruction
>(I
->user_back())->getOpcode() ==
2250 Instruction::FAdd
&&
2251 isa
<ConstantFP
>(Ops
.back().Op
) &&
2252 cast
<ConstantFP
>(Ops
.back().Op
)->isExactlyValue(-1.0)) {
2253 ValueEntry Tmp
= Ops
.pop_back_val();
2254 Ops
.insert(Ops
.begin(), Tmp
);
2258 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I
, Ops
); dbgs() << '\n');
2260 if (Ops
.size() == 1) {
2262 // Self-referential expression in unreachable code.
2265 // This expression tree simplified to something that isn't a tree,
2267 I
->replaceAllUsesWith(Ops
[0].Op
);
2268 if (Instruction
*OI
= dyn_cast
<Instruction
>(Ops
[0].Op
))
2269 OI
->setDebugLoc(I
->getDebugLoc());
2270 RedoInsts
.insert(I
);
2274 if (Ops
.size() > 2 && Ops
.size() <= GlobalReassociateLimit
) {
2275 // Find the pair with the highest count in the pairmap and move it to the
2276 // back of the list so that it can later be CSE'd.
2279 // if c*e is the most "popular" pair, we can express this as
2282 unsigned BestRank
= 0;
2283 std::pair
<unsigned, unsigned> BestPair
;
2284 unsigned Idx
= I
->getOpcode() - Instruction::BinaryOpsBegin
;
2285 for (unsigned i
= 0; i
< Ops
.size() - 1; ++i
)
2286 for (unsigned j
= i
+ 1; j
< Ops
.size(); ++j
) {
2288 Value
*Op0
= Ops
[i
].Op
;
2289 Value
*Op1
= Ops
[j
].Op
;
2290 if (std::less
<Value
*>()(Op1
, Op0
))
2291 std::swap(Op0
, Op1
);
2292 auto it
= PairMap
[Idx
].find({Op0
, Op1
});
2293 if (it
!= PairMap
[Idx
].end()) {
2294 // Functions like BreakUpSubtract() can erase the Values we're using
2295 // as keys and create new Values after we built the PairMap. There's a
2296 // small chance that the new nodes can have the same address as
2297 // something already in the table. We shouldn't accumulate the stored
2298 // score in that case as it refers to the wrong Value.
2299 if (it
->second
.isValid())
2300 Score
+= it
->second
.Score
;
2303 unsigned MaxRank
= std::max(Ops
[i
].Rank
, Ops
[j
].Rank
);
2304 if (Score
> Max
|| (Score
== Max
&& MaxRank
< BestRank
)) {
2311 auto Op0
= Ops
[BestPair
.first
];
2312 auto Op1
= Ops
[BestPair
.second
];
2313 Ops
.erase(&Ops
[BestPair
.second
]);
2314 Ops
.erase(&Ops
[BestPair
.first
]);
2319 // Now that we ordered and optimized the expressions, splat them back into
2320 // the expression tree, removing any unneeded nodes.
2321 RewriteExprTree(I
, Ops
);
2325 ReassociatePass::BuildPairMap(ReversePostOrderTraversal
<Function
*> &RPOT
) {
2326 // Make a "pairmap" of how often each operand pair occurs.
2327 for (BasicBlock
*BI
: RPOT
) {
2328 for (Instruction
&I
: *BI
) {
2329 if (!I
.isAssociative())
2332 // Ignore nodes that aren't at the root of trees.
2333 if (I
.hasOneUse() && I
.user_back()->getOpcode() == I
.getOpcode())
2336 // Collect all operands in a single reassociable expression.
2337 // Since Reassociate has already been run once, we can assume things
2338 // are already canonical according to Reassociation's regime.
2339 SmallVector
<Value
*, 8> Worklist
= { I
.getOperand(0), I
.getOperand(1) };
2340 SmallVector
<Value
*, 8> Ops
;
2341 while (!Worklist
.empty() && Ops
.size() <= GlobalReassociateLimit
) {
2342 Value
*Op
= Worklist
.pop_back_val();
2343 Instruction
*OpI
= dyn_cast
<Instruction
>(Op
);
2344 if (!OpI
|| OpI
->getOpcode() != I
.getOpcode() || !OpI
->hasOneUse()) {
2348 // Be paranoid about self-referencing expressions in unreachable code.
2349 if (OpI
->getOperand(0) != OpI
)
2350 Worklist
.push_back(OpI
->getOperand(0));
2351 if (OpI
->getOperand(1) != OpI
)
2352 Worklist
.push_back(OpI
->getOperand(1));
2354 // Skip extremely long expressions.
2355 if (Ops
.size() > GlobalReassociateLimit
)
2358 // Add all pairwise combinations of operands to the pair map.
2359 unsigned BinaryIdx
= I
.getOpcode() - Instruction::BinaryOpsBegin
;
2360 SmallSet
<std::pair
<Value
*, Value
*>, 32> Visited
;
2361 for (unsigned i
= 0; i
< Ops
.size() - 1; ++i
) {
2362 for (unsigned j
= i
+ 1; j
< Ops
.size(); ++j
) {
2363 // Canonicalize operand orderings.
2364 Value
*Op0
= Ops
[i
];
2365 Value
*Op1
= Ops
[j
];
2366 if (std::less
<Value
*>()(Op1
, Op0
))
2367 std::swap(Op0
, Op1
);
2368 if (!Visited
.insert({Op0
, Op1
}).second
)
2370 auto res
= PairMap
[BinaryIdx
].insert({{Op0
, Op1
}, {Op0
, Op1
, 1}});
2372 // If either key value has been erased then we've got the same
2373 // address by coincidence. That can't happen here because nothing is
2374 // erasing values but it can happen by the time we're querying the
2376 assert(res
.first
->second
.isValid() && "WeakVH invalidated");
2377 ++res
.first
->second
.Score
;
2385 PreservedAnalyses
ReassociatePass::run(Function
&F
, FunctionAnalysisManager
&) {
2386 // Get the functions basic blocks in Reverse Post Order. This order is used by
2387 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2388 // blocks (it has been seen that the analysis in this pass could hang when
2389 // analysing dead basic blocks).
2390 ReversePostOrderTraversal
<Function
*> RPOT(&F
);
2392 // Calculate the rank map for F.
2393 BuildRankMap(F
, RPOT
);
2395 // Build the pair map before running reassociate.
2396 // Technically this would be more accurate if we did it after one round
2397 // of reassociation, but in practice it doesn't seem to help much on
2398 // real-world code, so don't waste the compile time running reassociate
2400 // If a user wants, they could expicitly run reassociate twice in their
2401 // pass pipeline for further potential gains.
2402 // It might also be possible to update the pair map during runtime, but the
2403 // overhead of that may be large if there's many reassociable chains.
2408 // Traverse the same blocks that were analysed by BuildRankMap.
2409 for (BasicBlock
*BI
: RPOT
) {
2410 assert(RankMap
.count(&*BI
) && "BB should be ranked.");
2411 // Optimize every instruction in the basic block.
2412 for (BasicBlock::iterator II
= BI
->begin(), IE
= BI
->end(); II
!= IE
;)
2413 if (isInstructionTriviallyDead(&*II
)) {
2417 assert(II
->getParent() == &*BI
&& "Moved to a different block!");
2421 // Make a copy of all the instructions to be redone so we can remove dead
2423 OrderedSet
ToRedo(RedoInsts
);
2424 // Iterate over all instructions to be reevaluated and remove trivially dead
2425 // instructions. If any operand of the trivially dead instruction becomes
2426 // dead mark it for deletion as well. Continue this process until all
2427 // trivially dead instructions have been removed.
2428 while (!ToRedo
.empty()) {
2429 Instruction
*I
= ToRedo
.pop_back_val();
2430 if (isInstructionTriviallyDead(I
)) {
2431 RecursivelyEraseDeadInsts(I
, ToRedo
);
2436 // Now that we have removed dead instructions, we can reoptimize the
2437 // remaining instructions.
2438 while (!RedoInsts
.empty()) {
2439 Instruction
*I
= RedoInsts
.front();
2440 RedoInsts
.erase(RedoInsts
.begin());
2441 if (isInstructionTriviallyDead(I
))
2448 // We are done with the rank map and pair map.
2450 ValueRankMap
.clear();
2451 for (auto &Entry
: PairMap
)
2455 PreservedAnalyses PA
;
2456 PA
.preserveSet
<CFGAnalyses
>();
2457 PA
.preserve
<GlobalsAA
>();
2461 return PreservedAnalyses::all();
2466 class ReassociateLegacyPass
: public FunctionPass
{
2467 ReassociatePass Impl
;
2470 static char ID
; // Pass identification, replacement for typeid
2472 ReassociateLegacyPass() : FunctionPass(ID
) {
2473 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2476 bool runOnFunction(Function
&F
) override
{
2477 if (skipFunction(F
))
2480 FunctionAnalysisManager DummyFAM
;
2481 auto PA
= Impl
.run(F
, DummyFAM
);
2482 return !PA
.areAllPreserved();
2485 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
2486 AU
.setPreservesCFG();
2487 AU
.addPreserved
<GlobalsAAWrapperPass
>();
2491 } // end anonymous namespace
2493 char ReassociateLegacyPass::ID
= 0;
2495 INITIALIZE_PASS(ReassociateLegacyPass
, "reassociate",
2496 "Reassociate expressions", false, false)
2498 // Public interface to the Reassociate pass
2499 FunctionPass
*llvm::createReassociatePass() {
2500 return new ReassociateLegacyPass();