[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Scalar / Reassociate.cpp
blob124f625ef7b66ad4ad8186bd35a70a4f6fe1355c
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 // For example: 4 + (x + 5) -> x + (4 + 5)
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/IR/PatternMatch.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <utility>
63 using namespace llvm;
64 using namespace reassociate;
65 using namespace PatternMatch;
67 #define DEBUG_TYPE "reassociate"
69 STATISTIC(NumChanged, "Number of insts reassociated");
70 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
71 STATISTIC(NumFactor , "Number of multiplies factored");
73 #ifndef NDEBUG
74 /// Print out the expression identified in the Ops list.
75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
76 Module *M = I->getModule();
77 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
78 << *Ops[0].Op->getType() << '\t';
79 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
80 dbgs() << "[ ";
81 Ops[i].Op->printAsOperand(dbgs(), false, M);
82 dbgs() << ", #" << Ops[i].Rank << "] ";
85 #endif
87 /// Utility class representing a non-constant Xor-operand. We classify
88 /// non-constant Xor-Operands into two categories:
89 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
90 /// C2)
91 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
92 /// constant.
93 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94 /// operand as "E | 0"
95 class llvm::reassociate::XorOpnd {
96 public:
97 XorOpnd(Value *V);
99 bool isInvalid() const { return SymbolicPart == nullptr; }
100 bool isOrExpr() const { return isOr; }
101 Value *getValue() const { return OrigVal; }
102 Value *getSymbolicPart() const { return SymbolicPart; }
103 unsigned getSymbolicRank() const { return SymbolicRank; }
104 const APInt &getConstPart() const { return ConstPart; }
106 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
107 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
109 private:
110 Value *OrigVal;
111 Value *SymbolicPart;
112 APInt ConstPart;
113 unsigned SymbolicRank;
114 bool isOr;
117 XorOpnd::XorOpnd(Value *V) {
118 assert(!isa<ConstantInt>(V) && "No ConstantInt");
119 OrigVal = V;
120 Instruction *I = dyn_cast<Instruction>(V);
121 SymbolicRank = 0;
123 if (I && (I->getOpcode() == Instruction::Or ||
124 I->getOpcode() == Instruction::And)) {
125 Value *V0 = I->getOperand(0);
126 Value *V1 = I->getOperand(1);
127 const APInt *C;
128 if (match(V0, m_APInt(C)))
129 std::swap(V0, V1);
131 if (match(V1, m_APInt(C))) {
132 ConstPart = *C;
133 SymbolicPart = V0;
134 isOr = (I->getOpcode() == Instruction::Or);
135 return;
139 // view the operand as "V | 0"
140 SymbolicPart = V;
141 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
142 isOr = true;
145 /// Return true if V is an instruction of the specified opcode and if it
146 /// only has one use.
147 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
148 auto *I = dyn_cast<Instruction>(V);
149 if (I && I->hasOneUse() && I->getOpcode() == Opcode)
150 if (!isa<FPMathOperator>(I) || I->isFast())
151 return cast<BinaryOperator>(I);
152 return nullptr;
155 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
156 unsigned Opcode2) {
157 auto *I = dyn_cast<Instruction>(V);
158 if (I && I->hasOneUse() &&
159 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
160 if (!isa<FPMathOperator>(I) || I->isFast())
161 return cast<BinaryOperator>(I);
162 return nullptr;
165 void ReassociatePass::BuildRankMap(Function &F,
166 ReversePostOrderTraversal<Function*> &RPOT) {
167 unsigned Rank = 2;
169 // Assign distinct ranks to function arguments.
170 for (auto &Arg : F.args()) {
171 ValueRankMap[&Arg] = ++Rank;
172 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
173 << "\n");
176 // Traverse basic blocks in ReversePostOrder
177 for (BasicBlock *BB : RPOT) {
178 unsigned BBRank = RankMap[BB] = ++Rank << 16;
180 // Walk the basic block, adding precomputed ranks for any instructions that
181 // we cannot move. This ensures that the ranks for these instructions are
182 // all different in the block.
183 for (Instruction &I : *BB)
184 if (mayBeMemoryDependent(I))
185 ValueRankMap[&I] = ++BBRank;
189 unsigned ReassociatePass::getRank(Value *V) {
190 Instruction *I = dyn_cast<Instruction>(V);
191 if (!I) {
192 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
193 return 0; // Otherwise it's a global or constant, rank 0.
196 if (unsigned Rank = ValueRankMap[I])
197 return Rank; // Rank already known?
199 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
200 // we can reassociate expressions for code motion! Since we do not recurse
201 // for PHI nodes, we cannot have infinite recursion here, because there
202 // cannot be loops in the value graph that do not go through PHI nodes.
203 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
204 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
205 Rank = std::max(Rank, getRank(I->getOperand(i)));
207 // If this is a 'not' or 'neg' instruction, do not count it for rank. This
208 // assures us that X and ~X will have the same rank.
209 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
210 !match(I, m_FNeg(m_Value())))
211 ++Rank;
213 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
214 << "\n");
216 return ValueRankMap[I] = Rank;
219 // Canonicalize constants to RHS. Otherwise, sort the operands by rank.
220 void ReassociatePass::canonicalizeOperands(Instruction *I) {
221 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
222 assert(I->isCommutative() && "Expected commutative operator.");
224 Value *LHS = I->getOperand(0);
225 Value *RHS = I->getOperand(1);
226 if (LHS == RHS || isa<Constant>(RHS))
227 return;
228 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
229 cast<BinaryOperator>(I)->swapOperands();
232 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
233 Instruction *InsertBefore, Value *FlagsOp) {
234 if (S1->getType()->isIntOrIntVectorTy())
235 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
236 else {
237 BinaryOperator *Res =
238 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
239 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
240 return Res;
244 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
245 Instruction *InsertBefore, Value *FlagsOp) {
246 if (S1->getType()->isIntOrIntVectorTy())
247 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
248 else {
249 BinaryOperator *Res =
250 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
251 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
252 return Res;
256 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
257 Instruction *InsertBefore, Value *FlagsOp) {
258 if (S1->getType()->isIntOrIntVectorTy())
259 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
260 else {
261 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
262 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
263 return Res;
267 /// Replace 0-X with X*-1.
268 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
269 assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
270 "Expected a Negate!");
271 // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
272 unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
273 Type *Ty = Neg->getType();
274 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
275 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
277 BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
278 Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
279 Res->takeName(Neg);
280 Neg->replaceAllUsesWith(Res);
281 Res->setDebugLoc(Neg->getDebugLoc());
282 return Res;
285 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
286 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
287 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
288 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
289 /// even x in Bitwidth-bit arithmetic.
290 static unsigned CarmichaelShift(unsigned Bitwidth) {
291 if (Bitwidth < 3)
292 return Bitwidth - 1;
293 return Bitwidth - 2;
296 /// Add the extra weight 'RHS' to the existing weight 'LHS',
297 /// reducing the combined weight using any special properties of the operation.
298 /// The existing weight LHS represents the computation X op X op ... op X where
299 /// X occurs LHS times. The combined weight represents X op X op ... op X with
300 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined
301 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
302 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
303 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
304 // If we were working with infinite precision arithmetic then the combined
305 // weight would be LHS + RHS. But we are using finite precision arithmetic,
306 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
307 // for nilpotent operations and addition, but not for idempotent operations
308 // and multiplication), so it is important to correctly reduce the combined
309 // weight back into range if wrapping would be wrong.
311 // If RHS is zero then the weight didn't change.
312 if (RHS.isMinValue())
313 return;
314 // If LHS is zero then the combined weight is RHS.
315 if (LHS.isMinValue()) {
316 LHS = RHS;
317 return;
319 // From this point on we know that neither LHS nor RHS is zero.
321 if (Instruction::isIdempotent(Opcode)) {
322 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
323 // weight of 1. Keeping weights at zero or one also means that wrapping is
324 // not a problem.
325 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
326 return; // Return a weight of 1.
328 if (Instruction::isNilpotent(Opcode)) {
329 // Nilpotent means X op X === 0, so reduce weights modulo 2.
330 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
331 LHS = 0; // 1 + 1 === 0 modulo 2.
332 return;
334 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
335 // TODO: Reduce the weight by exploiting nsw/nuw?
336 LHS += RHS;
337 return;
340 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
341 "Unknown associative operation!");
342 unsigned Bitwidth = LHS.getBitWidth();
343 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
344 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
345 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
346 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
347 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
348 // which by a happy accident means that they can always be represented using
349 // Bitwidth bits.
350 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
351 // the Carmichael number).
352 if (Bitwidth > 3) {
353 /// CM - The value of Carmichael's lambda function.
354 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
355 // Any weight W >= Threshold can be replaced with W - CM.
356 APInt Threshold = CM + Bitwidth;
357 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
358 // For Bitwidth 4 or more the following sum does not overflow.
359 LHS += RHS;
360 while (LHS.uge(Threshold))
361 LHS -= CM;
362 } else {
363 // To avoid problems with overflow do everything the same as above but using
364 // a larger type.
365 unsigned CM = 1U << CarmichaelShift(Bitwidth);
366 unsigned Threshold = CM + Bitwidth;
367 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
368 "Weights not reduced!");
369 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
370 while (Total >= Threshold)
371 Total -= CM;
372 LHS = Total;
376 using RepeatedValue = std::pair<Value*, APInt>;
378 /// Given an associative binary expression, return the leaf
379 /// nodes in Ops along with their weights (how many times the leaf occurs). The
380 /// original expression is the same as
381 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
382 /// op
383 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
384 /// op
385 /// ...
386 /// op
387 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
389 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
391 /// This routine may modify the function, in which case it returns 'true'. The
392 /// changes it makes may well be destructive, changing the value computed by 'I'
393 /// to something completely different. Thus if the routine returns 'true' then
394 /// you MUST either replace I with a new expression computed from the Ops array,
395 /// or use RewriteExprTree to put the values back in.
397 /// A leaf node is either not a binary operation of the same kind as the root
398 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
399 /// opcode), or is the same kind of binary operator but has a use which either
400 /// does not belong to the expression, or does belong to the expression but is
401 /// a leaf node. Every leaf node has at least one use that is a non-leaf node
402 /// of the expression, while for non-leaf nodes (except for the root 'I') every
403 /// use is a non-leaf node of the expression.
405 /// For example:
406 /// expression graph node names
408 /// + | I
409 /// / \ |
410 /// + + | A, B
411 /// / \ / \ |
412 /// * + * | C, D, E
413 /// / \ / \ / \ |
414 /// + * | F, G
416 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
417 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
419 /// The expression is maximal: if some instruction is a binary operator of the
420 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
421 /// then the instruction also belongs to the expression, is not a leaf node of
422 /// it, and its operands also belong to the expression (but may be leaf nodes).
424 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
425 /// order to ensure that every non-root node in the expression has *exactly one*
426 /// use by a non-leaf node of the expression. This destruction means that the
427 /// caller MUST either replace 'I' with a new expression or use something like
428 /// RewriteExprTree to put the values back in if the routine indicates that it
429 /// made a change by returning 'true'.
431 /// In the above example either the right operand of A or the left operand of B
432 /// will be replaced by undef. If it is B's operand then this gives:
434 /// + | I
435 /// / \ |
436 /// + + | A, B - operand of B replaced with undef
437 /// / \ \ |
438 /// * + * | C, D, E
439 /// / \ / \ / \ |
440 /// + * | F, G
442 /// Note that such undef operands can only be reached by passing through 'I'.
443 /// For example, if you visit operands recursively starting from a leaf node
444 /// then you will never see such an undef operand unless you get back to 'I',
445 /// which requires passing through a phi node.
447 /// Note that this routine may also mutate binary operators of the wrong type
448 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
449 /// of the expression) if it can turn them into binary operators of the right
450 /// type and thus make the expression bigger.
451 static bool LinearizeExprTree(Instruction *I,
452 SmallVectorImpl<RepeatedValue> &Ops) {
453 assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
454 "Expected a UnaryOperator or BinaryOperator!");
455 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
456 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
457 unsigned Opcode = I->getOpcode();
458 assert(I->isAssociative() && I->isCommutative() &&
459 "Expected an associative and commutative operation!");
461 // Visit all operands of the expression, keeping track of their weight (the
462 // number of paths from the expression root to the operand, or if you like
463 // the number of times that operand occurs in the linearized expression).
464 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
465 // while A has weight two.
467 // Worklist of non-leaf nodes (their operands are in the expression too) along
468 // with their weights, representing a certain number of paths to the operator.
469 // If an operator occurs in the worklist multiple times then we found multiple
470 // ways to get to it.
471 SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
472 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
473 bool Changed = false;
475 // Leaves of the expression are values that either aren't the right kind of
476 // operation (eg: a constant, or a multiply in an add tree), or are, but have
477 // some uses that are not inside the expression. For example, in I = X + X,
478 // X = A + B, the value X has two uses (by I) that are in the expression. If
479 // X has any other uses, for example in a return instruction, then we consider
480 // X to be a leaf, and won't analyze it further. When we first visit a value,
481 // if it has more than one use then at first we conservatively consider it to
482 // be a leaf. Later, as the expression is explored, we may discover some more
483 // uses of the value from inside the expression. If all uses turn out to be
484 // from within the expression (and the value is a binary operator of the right
485 // kind) then the value is no longer considered to be a leaf, and its operands
486 // are explored.
488 // Leaves - Keeps track of the set of putative leaves as well as the number of
489 // paths to each leaf seen so far.
490 using LeafMap = DenseMap<Value *, APInt>;
491 LeafMap Leaves; // Leaf -> Total weight so far.
492 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
494 #ifndef NDEBUG
495 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
496 #endif
497 while (!Worklist.empty()) {
498 std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
499 I = P.first; // We examine the operands of this binary operator.
501 for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
502 Value *Op = I->getOperand(OpIdx);
503 APInt Weight = P.second; // Number of paths to this operand.
504 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
505 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
507 // If this is a binary operation of the right kind with only one use then
508 // add its operands to the expression.
509 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
510 assert(Visited.insert(Op).second && "Not first visit!");
511 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
512 Worklist.push_back(std::make_pair(BO, Weight));
513 continue;
516 // Appears to be a leaf. Is the operand already in the set of leaves?
517 LeafMap::iterator It = Leaves.find(Op);
518 if (It == Leaves.end()) {
519 // Not in the leaf map. Must be the first time we saw this operand.
520 assert(Visited.insert(Op).second && "Not first visit!");
521 if (!Op->hasOneUse()) {
522 // This value has uses not accounted for by the expression, so it is
523 // not safe to modify. Mark it as being a leaf.
524 LLVM_DEBUG(dbgs()
525 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
526 LeafOrder.push_back(Op);
527 Leaves[Op] = Weight;
528 continue;
530 // No uses outside the expression, try morphing it.
531 } else {
532 // Already in the leaf map.
533 assert(It != Leaves.end() && Visited.count(Op) &&
534 "In leaf map but not visited!");
536 // Update the number of paths to the leaf.
537 IncorporateWeight(It->second, Weight, Opcode);
539 #if 0 // TODO: Re-enable once PR13021 is fixed.
540 // The leaf already has one use from inside the expression. As we want
541 // exactly one such use, drop this new use of the leaf.
542 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
543 I->setOperand(OpIdx, UndefValue::get(I->getType()));
544 Changed = true;
546 // If the leaf is a binary operation of the right kind and we now see
547 // that its multiple original uses were in fact all by nodes belonging
548 // to the expression, then no longer consider it to be a leaf and add
549 // its operands to the expression.
550 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
551 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
552 Worklist.push_back(std::make_pair(BO, It->second));
553 Leaves.erase(It);
554 continue;
556 #endif
558 // If we still have uses that are not accounted for by the expression
559 // then it is not safe to modify the value.
560 if (!Op->hasOneUse())
561 continue;
563 // No uses outside the expression, try morphing it.
564 Weight = It->second;
565 Leaves.erase(It); // Since the value may be morphed below.
568 // At this point we have a value which, first of all, is not a binary
569 // expression of the right kind, and secondly, is only used inside the
570 // expression. This means that it can safely be modified. See if we
571 // can usefully morph it into an expression of the right kind.
572 assert((!isa<Instruction>(Op) ||
573 cast<Instruction>(Op)->getOpcode() != Opcode
574 || (isa<FPMathOperator>(Op) &&
575 !cast<Instruction>(Op)->isFast())) &&
576 "Should have been handled above!");
577 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
579 // If this is a multiply expression, turn any internal negations into
580 // multiplies by -1 so they can be reassociated.
581 if (Instruction *Tmp = dyn_cast<Instruction>(Op))
582 if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) ||
583 (Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) {
584 LLVM_DEBUG(dbgs()
585 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
586 Tmp = LowerNegateToMultiply(Tmp);
587 LLVM_DEBUG(dbgs() << *Tmp << '\n');
588 Worklist.push_back(std::make_pair(Tmp, Weight));
589 Changed = true;
590 continue;
593 // Failed to morph into an expression of the right type. This really is
594 // a leaf.
595 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
596 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
597 LeafOrder.push_back(Op);
598 Leaves[Op] = Weight;
602 // The leaves, repeated according to their weights, represent the linearized
603 // form of the expression.
604 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
605 Value *V = LeafOrder[i];
606 LeafMap::iterator It = Leaves.find(V);
607 if (It == Leaves.end())
608 // Node initially thought to be a leaf wasn't.
609 continue;
610 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
611 APInt Weight = It->second;
612 if (Weight.isMinValue())
613 // Leaf already output or weight reduction eliminated it.
614 continue;
615 // Ensure the leaf is only output once.
616 It->second = 0;
617 Ops.push_back(std::make_pair(V, Weight));
620 // For nilpotent operations or addition there may be no operands, for example
621 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
622 // in both cases the weight reduces to 0 causing the value to be skipped.
623 if (Ops.empty()) {
624 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
625 assert(Identity && "Associative operation without identity!");
626 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
629 return Changed;
632 /// Now that the operands for this expression tree are
633 /// linearized and optimized, emit them in-order.
634 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
635 SmallVectorImpl<ValueEntry> &Ops) {
636 assert(Ops.size() > 1 && "Single values should be used directly!");
638 // Since our optimizations should never increase the number of operations, the
639 // new expression can usually be written reusing the existing binary operators
640 // from the original expression tree, without creating any new instructions,
641 // though the rewritten expression may have a completely different topology.
642 // We take care to not change anything if the new expression will be the same
643 // as the original. If more than trivial changes (like commuting operands)
644 // were made then we are obliged to clear out any optional subclass data like
645 // nsw flags.
647 /// NodesToRewrite - Nodes from the original expression available for writing
648 /// the new expression into.
649 SmallVector<BinaryOperator*, 8> NodesToRewrite;
650 unsigned Opcode = I->getOpcode();
651 BinaryOperator *Op = I;
653 /// NotRewritable - The operands being written will be the leaves of the new
654 /// expression and must not be used as inner nodes (via NodesToRewrite) by
655 /// mistake. Inner nodes are always reassociable, and usually leaves are not
656 /// (if they were they would have been incorporated into the expression and so
657 /// would not be leaves), so most of the time there is no danger of this. But
658 /// in rare cases a leaf may become reassociable if an optimization kills uses
659 /// of it, or it may momentarily become reassociable during rewriting (below)
660 /// due it being removed as an operand of one of its uses. Ensure that misuse
661 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
662 /// leaves and refusing to reuse any of them as inner nodes.
663 SmallPtrSet<Value*, 8> NotRewritable;
664 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
665 NotRewritable.insert(Ops[i].Op);
667 // ExpressionChanged - Non-null if the rewritten expression differs from the
668 // original in some non-trivial way, requiring the clearing of optional flags.
669 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
670 BinaryOperator *ExpressionChanged = nullptr;
671 for (unsigned i = 0; ; ++i) {
672 // The last operation (which comes earliest in the IR) is special as both
673 // operands will come from Ops, rather than just one with the other being
674 // a subexpression.
675 if (i+2 == Ops.size()) {
676 Value *NewLHS = Ops[i].Op;
677 Value *NewRHS = Ops[i+1].Op;
678 Value *OldLHS = Op->getOperand(0);
679 Value *OldRHS = Op->getOperand(1);
681 if (NewLHS == OldLHS && NewRHS == OldRHS)
682 // Nothing changed, leave it alone.
683 break;
685 if (NewLHS == OldRHS && NewRHS == OldLHS) {
686 // The order of the operands was reversed. Swap them.
687 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
688 Op->swapOperands();
689 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
690 MadeChange = true;
691 ++NumChanged;
692 break;
695 // The new operation differs non-trivially from the original. Overwrite
696 // the old operands with the new ones.
697 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
698 if (NewLHS != OldLHS) {
699 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
700 if (BO && !NotRewritable.count(BO))
701 NodesToRewrite.push_back(BO);
702 Op->setOperand(0, NewLHS);
704 if (NewRHS != OldRHS) {
705 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
706 if (BO && !NotRewritable.count(BO))
707 NodesToRewrite.push_back(BO);
708 Op->setOperand(1, NewRHS);
710 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
712 ExpressionChanged = Op;
713 MadeChange = true;
714 ++NumChanged;
716 break;
719 // Not the last operation. The left-hand side will be a sub-expression
720 // while the right-hand side will be the current element of Ops.
721 Value *NewRHS = Ops[i].Op;
722 if (NewRHS != Op->getOperand(1)) {
723 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
724 if (NewRHS == Op->getOperand(0)) {
725 // The new right-hand side was already present as the left operand. If
726 // we are lucky then swapping the operands will sort out both of them.
727 Op->swapOperands();
728 } else {
729 // Overwrite with the new right-hand side.
730 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
731 if (BO && !NotRewritable.count(BO))
732 NodesToRewrite.push_back(BO);
733 Op->setOperand(1, NewRHS);
734 ExpressionChanged = Op;
736 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
737 MadeChange = true;
738 ++NumChanged;
741 // Now deal with the left-hand side. If this is already an operation node
742 // from the original expression then just rewrite the rest of the expression
743 // into it.
744 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
745 if (BO && !NotRewritable.count(BO)) {
746 Op = BO;
747 continue;
750 // Otherwise, grab a spare node from the original expression and use that as
751 // the left-hand side. If there are no nodes left then the optimizers made
752 // an expression with more nodes than the original! This usually means that
753 // they did something stupid but it might mean that the problem was just too
754 // hard (finding the mimimal number of multiplications needed to realize a
755 // multiplication expression is NP-complete). Whatever the reason, smart or
756 // stupid, create a new node if there are none left.
757 BinaryOperator *NewOp;
758 if (NodesToRewrite.empty()) {
759 Constant *Undef = UndefValue::get(I->getType());
760 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
761 Undef, Undef, "", I);
762 if (NewOp->getType()->isFPOrFPVectorTy())
763 NewOp->setFastMathFlags(I->getFastMathFlags());
764 } else {
765 NewOp = NodesToRewrite.pop_back_val();
768 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
769 Op->setOperand(0, NewOp);
770 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
771 ExpressionChanged = Op;
772 MadeChange = true;
773 ++NumChanged;
774 Op = NewOp;
777 // If the expression changed non-trivially then clear out all subclass data
778 // starting from the operator specified in ExpressionChanged, and compactify
779 // the operators to just before the expression root to guarantee that the
780 // expression tree is dominated by all of Ops.
781 if (ExpressionChanged)
782 do {
783 // Preserve FastMathFlags.
784 if (isa<FPMathOperator>(I)) {
785 FastMathFlags Flags = I->getFastMathFlags();
786 ExpressionChanged->clearSubclassOptionalData();
787 ExpressionChanged->setFastMathFlags(Flags);
788 } else
789 ExpressionChanged->clearSubclassOptionalData();
791 if (ExpressionChanged == I)
792 break;
794 // Discard any debug info related to the expressions that has changed (we
795 // can leave debug infor related to the root, since the result of the
796 // expression tree should be the same even after reassociation).
797 replaceDbgUsesWithUndef(ExpressionChanged);
799 ExpressionChanged->moveBefore(I);
800 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
801 } while (true);
803 // Throw away any left over nodes from the original expression.
804 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
805 RedoInsts.insert(NodesToRewrite[i]);
808 /// Insert instructions before the instruction pointed to by BI,
809 /// that computes the negative version of the value specified. The negative
810 /// version of the value is returned, and BI is left pointing at the instruction
811 /// that should be processed next by the reassociation pass.
812 /// Also add intermediate instructions to the redo list that are modified while
813 /// pushing the negates through adds. These will be revisited to see if
814 /// additional opportunities have been exposed.
815 static Value *NegateValue(Value *V, Instruction *BI,
816 ReassociatePass::OrderedSet &ToRedo) {
817 if (auto *C = dyn_cast<Constant>(V))
818 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
819 ConstantExpr::getNeg(C);
821 // We are trying to expose opportunity for reassociation. One of the things
822 // that we want to do to achieve this is to push a negation as deep into an
823 // expression chain as possible, to expose the add instructions. In practice,
824 // this means that we turn this:
825 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
826 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
827 // the constants. We assume that instcombine will clean up the mess later if
828 // we introduce tons of unnecessary negation instructions.
830 if (BinaryOperator *I =
831 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
832 // Push the negates through the add.
833 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
834 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
835 if (I->getOpcode() == Instruction::Add) {
836 I->setHasNoUnsignedWrap(false);
837 I->setHasNoSignedWrap(false);
840 // We must move the add instruction here, because the neg instructions do
841 // not dominate the old add instruction in general. By moving it, we are
842 // assured that the neg instructions we just inserted dominate the
843 // instruction we are about to insert after them.
845 I->moveBefore(BI);
846 I->setName(I->getName()+".neg");
848 // Add the intermediate negates to the redo list as processing them later
849 // could expose more reassociating opportunities.
850 ToRedo.insert(I);
851 return I;
854 // Okay, we need to materialize a negated version of V with an instruction.
855 // Scan the use lists of V to see if we have one already.
856 for (User *U : V->users()) {
857 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
858 continue;
860 // We found one! Now we have to make sure that the definition dominates
861 // this use. We do this by moving it to the entry block (if it is a
862 // non-instruction value) or right after the definition. These negates will
863 // be zapped by reassociate later, so we don't need much finesse here.
864 Instruction *TheNeg = cast<Instruction>(U);
866 // Verify that the negate is in this function, V might be a constant expr.
867 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
868 continue;
870 bool FoundCatchSwitch = false;
872 BasicBlock::iterator InsertPt;
873 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
874 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
875 InsertPt = II->getNormalDest()->begin();
876 } else {
877 InsertPt = ++InstInput->getIterator();
880 const BasicBlock *BB = InsertPt->getParent();
882 // Make sure we don't move anything before PHIs or exception
883 // handling pads.
884 while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) ||
885 InsertPt->isEHPad())) {
886 if (isa<CatchSwitchInst>(InsertPt))
887 // A catchswitch cannot have anything in the block except
888 // itself and PHIs. We'll bail out below.
889 FoundCatchSwitch = true;
890 ++InsertPt;
892 } else {
893 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
896 // We found a catchswitch in the block where we want to move the
897 // neg. We cannot move anything into that block. Bail and just
898 // create the neg before BI, as if we hadn't found an existing
899 // neg.
900 if (FoundCatchSwitch)
901 break;
903 TheNeg->moveBefore(&*InsertPt);
904 if (TheNeg->getOpcode() == Instruction::Sub) {
905 TheNeg->setHasNoUnsignedWrap(false);
906 TheNeg->setHasNoSignedWrap(false);
907 } else {
908 TheNeg->andIRFlags(BI);
910 ToRedo.insert(TheNeg);
911 return TheNeg;
914 // Insert a 'neg' instruction that subtracts the value from zero to get the
915 // negation.
916 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
917 ToRedo.insert(NewNeg);
918 return NewNeg;
921 /// Return true if we should break up this subtract of X-Y into (X + -Y).
922 static bool ShouldBreakUpSubtract(Instruction *Sub) {
923 // If this is a negation, we can't split it up!
924 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
925 return false;
927 // Don't breakup X - undef.
928 if (isa<UndefValue>(Sub->getOperand(1)))
929 return false;
931 // Don't bother to break this up unless either the LHS is an associable add or
932 // subtract or if this is only used by one.
933 Value *V0 = Sub->getOperand(0);
934 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
935 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
936 return true;
937 Value *V1 = Sub->getOperand(1);
938 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
939 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
940 return true;
941 Value *VB = Sub->user_back();
942 if (Sub->hasOneUse() &&
943 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
944 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
945 return true;
947 return false;
950 /// If we have (X-Y), and if either X is an add, or if this is only used by an
951 /// add, transform this into (X+(0-Y)) to promote better reassociation.
952 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
953 ReassociatePass::OrderedSet &ToRedo) {
954 // Convert a subtract into an add and a neg instruction. This allows sub
955 // instructions to be commuted with other add instructions.
957 // Calculate the negative value of Operand 1 of the sub instruction,
958 // and set it as the RHS of the add instruction we just made.
959 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
960 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
961 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
962 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
963 New->takeName(Sub);
965 // Everyone now refers to the add instruction.
966 Sub->replaceAllUsesWith(New);
967 New->setDebugLoc(Sub->getDebugLoc());
969 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
970 return New;
973 /// If this is a shift of a reassociable multiply or is used by one, change
974 /// this into a multiply by a constant to assist with further reassociation.
975 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
976 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
977 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
979 BinaryOperator *Mul =
980 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
981 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
982 Mul->takeName(Shl);
984 // Everyone now refers to the mul instruction.
985 Shl->replaceAllUsesWith(Mul);
986 Mul->setDebugLoc(Shl->getDebugLoc());
988 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
989 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
990 // handling.
991 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
992 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
993 if (NSW && NUW)
994 Mul->setHasNoSignedWrap(true);
995 Mul->setHasNoUnsignedWrap(NUW);
996 return Mul;
999 /// Scan backwards and forwards among values with the same rank as element i
1000 /// to see if X exists. If X does not exist, return i. This is useful when
1001 /// scanning for 'x' when we see '-x' because they both get the same rank.
1002 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
1003 unsigned i, Value *X) {
1004 unsigned XRank = Ops[i].Rank;
1005 unsigned e = Ops.size();
1006 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1007 if (Ops[j].Op == X)
1008 return j;
1009 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1010 if (Instruction *I2 = dyn_cast<Instruction>(X))
1011 if (I1->isIdenticalTo(I2))
1012 return j;
1014 // Scan backwards.
1015 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1016 if (Ops[j].Op == X)
1017 return j;
1018 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1019 if (Instruction *I2 = dyn_cast<Instruction>(X))
1020 if (I1->isIdenticalTo(I2))
1021 return j;
1023 return i;
1026 /// Emit a tree of add instructions, summing Ops together
1027 /// and returning the result. Insert the tree before I.
1028 static Value *EmitAddTreeOfValues(Instruction *I,
1029 SmallVectorImpl<WeakTrackingVH> &Ops) {
1030 if (Ops.size() == 1) return Ops.back();
1032 Value *V1 = Ops.back();
1033 Ops.pop_back();
1034 Value *V2 = EmitAddTreeOfValues(I, Ops);
1035 return CreateAdd(V2, V1, "reass.add", I, I);
1038 /// If V is an expression tree that is a multiplication sequence,
1039 /// and if this sequence contains a multiply by Factor,
1040 /// remove Factor from the tree and return the new tree.
1041 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1042 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1043 if (!BO)
1044 return nullptr;
1046 SmallVector<RepeatedValue, 8> Tree;
1047 MadeChange |= LinearizeExprTree(BO, Tree);
1048 SmallVector<ValueEntry, 8> Factors;
1049 Factors.reserve(Tree.size());
1050 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1051 RepeatedValue E = Tree[i];
1052 Factors.append(E.second.getZExtValue(),
1053 ValueEntry(getRank(E.first), E.first));
1056 bool FoundFactor = false;
1057 bool NeedsNegate = false;
1058 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1059 if (Factors[i].Op == Factor) {
1060 FoundFactor = true;
1061 Factors.erase(Factors.begin()+i);
1062 break;
1065 // If this is a negative version of this factor, remove it.
1066 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1067 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1068 if (FC1->getValue() == -FC2->getValue()) {
1069 FoundFactor = NeedsNegate = true;
1070 Factors.erase(Factors.begin()+i);
1071 break;
1073 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1074 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1075 const APFloat &F1 = FC1->getValueAPF();
1076 APFloat F2(FC2->getValueAPF());
1077 F2.changeSign();
1078 if (F1.compare(F2) == APFloat::cmpEqual) {
1079 FoundFactor = NeedsNegate = true;
1080 Factors.erase(Factors.begin() + i);
1081 break;
1087 if (!FoundFactor) {
1088 // Make sure to restore the operands to the expression tree.
1089 RewriteExprTree(BO, Factors);
1090 return nullptr;
1093 BasicBlock::iterator InsertPt = ++BO->getIterator();
1095 // If this was just a single multiply, remove the multiply and return the only
1096 // remaining operand.
1097 if (Factors.size() == 1) {
1098 RedoInsts.insert(BO);
1099 V = Factors[0].Op;
1100 } else {
1101 RewriteExprTree(BO, Factors);
1102 V = BO;
1105 if (NeedsNegate)
1106 V = CreateNeg(V, "neg", &*InsertPt, BO);
1108 return V;
1111 /// If V is a single-use multiply, recursively add its operands as factors,
1112 /// otherwise add V to the list of factors.
1114 /// Ops is the top-level list of add operands we're trying to factor.
1115 static void FindSingleUseMultiplyFactors(Value *V,
1116 SmallVectorImpl<Value*> &Factors) {
1117 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1118 if (!BO) {
1119 Factors.push_back(V);
1120 return;
1123 // Otherwise, add the LHS and RHS to the list of factors.
1124 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1125 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1128 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1129 /// This optimizes based on identities. If it can be reduced to a single Value,
1130 /// it is returned, otherwise the Ops list is mutated as necessary.
1131 static Value *OptimizeAndOrXor(unsigned Opcode,
1132 SmallVectorImpl<ValueEntry> &Ops) {
1133 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1134 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1135 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1136 // First, check for X and ~X in the operand list.
1137 assert(i < Ops.size());
1138 Value *X;
1139 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^.
1140 unsigned FoundX = FindInOperandList(Ops, i, X);
1141 if (FoundX != i) {
1142 if (Opcode == Instruction::And) // ...&X&~X = 0
1143 return Constant::getNullValue(X->getType());
1145 if (Opcode == Instruction::Or) // ...|X|~X = -1
1146 return Constant::getAllOnesValue(X->getType());
1150 // Next, check for duplicate pairs of values, which we assume are next to
1151 // each other, due to our sorting criteria.
1152 assert(i < Ops.size());
1153 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1154 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1155 // Drop duplicate values for And and Or.
1156 Ops.erase(Ops.begin()+i);
1157 --i; --e;
1158 ++NumAnnihil;
1159 continue;
1162 // Drop pairs of values for Xor.
1163 assert(Opcode == Instruction::Xor);
1164 if (e == 2)
1165 return Constant::getNullValue(Ops[0].Op->getType());
1167 // Y ^ X^X -> Y
1168 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1169 i -= 1; e -= 2;
1170 ++NumAnnihil;
1173 return nullptr;
1176 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1177 /// instruction with the given two operands, and return the resulting
1178 /// instruction. There are two special cases: 1) if the constant operand is 0,
1179 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1180 /// be returned.
1181 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1182 const APInt &ConstOpnd) {
1183 if (ConstOpnd.isNullValue())
1184 return nullptr;
1186 if (ConstOpnd.isAllOnesValue())
1187 return Opnd;
1189 Instruction *I = BinaryOperator::CreateAnd(
1190 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1191 InsertBefore);
1192 I->setDebugLoc(InsertBefore->getDebugLoc());
1193 return I;
1196 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1197 // into "R ^ C", where C would be 0, and R is a symbolic value.
1199 // If it was successful, true is returned, and the "R" and "C" is returned
1200 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1201 // and both "Res" and "ConstOpnd" remain unchanged.
1202 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1203 APInt &ConstOpnd, Value *&Res) {
1204 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1205 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1206 // = (x & ~c1) ^ (c1 ^ c2)
1207 // It is useful only when c1 == c2.
1208 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1209 return false;
1211 if (!Opnd1->getValue()->hasOneUse())
1212 return false;
1214 const APInt &C1 = Opnd1->getConstPart();
1215 if (C1 != ConstOpnd)
1216 return false;
1218 Value *X = Opnd1->getSymbolicPart();
1219 Res = createAndInstr(I, X, ~C1);
1220 // ConstOpnd was C2, now C1 ^ C2.
1221 ConstOpnd ^= C1;
1223 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1224 RedoInsts.insert(T);
1225 return true;
1228 // Helper function of OptimizeXor(). It tries to simplify
1229 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1230 // symbolic value.
1232 // If it was successful, true is returned, and the "R" and "C" is returned
1233 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1234 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1235 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1236 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1237 XorOpnd *Opnd2, APInt &ConstOpnd,
1238 Value *&Res) {
1239 Value *X = Opnd1->getSymbolicPart();
1240 if (X != Opnd2->getSymbolicPart())
1241 return false;
1243 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1244 int DeadInstNum = 1;
1245 if (Opnd1->getValue()->hasOneUse())
1246 DeadInstNum++;
1247 if (Opnd2->getValue()->hasOneUse())
1248 DeadInstNum++;
1250 // Xor-Rule 2:
1251 // (x | c1) ^ (x & c2)
1252 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1253 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1254 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1256 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1257 if (Opnd2->isOrExpr())
1258 std::swap(Opnd1, Opnd2);
1260 const APInt &C1 = Opnd1->getConstPart();
1261 const APInt &C2 = Opnd2->getConstPart();
1262 APInt C3((~C1) ^ C2);
1264 // Do not increase code size!
1265 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1266 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1267 if (NewInstNum > DeadInstNum)
1268 return false;
1271 Res = createAndInstr(I, X, C3);
1272 ConstOpnd ^= C1;
1273 } else if (Opnd1->isOrExpr()) {
1274 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1276 const APInt &C1 = Opnd1->getConstPart();
1277 const APInt &C2 = Opnd2->getConstPart();
1278 APInt C3 = C1 ^ C2;
1280 // Do not increase code size
1281 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1282 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1283 if (NewInstNum > DeadInstNum)
1284 return false;
1287 Res = createAndInstr(I, X, C3);
1288 ConstOpnd ^= C3;
1289 } else {
1290 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1292 const APInt &C1 = Opnd1->getConstPart();
1293 const APInt &C2 = Opnd2->getConstPart();
1294 APInt C3 = C1 ^ C2;
1295 Res = createAndInstr(I, X, C3);
1298 // Put the original operands in the Redo list; hope they will be deleted
1299 // as dead code.
1300 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1301 RedoInsts.insert(T);
1302 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1303 RedoInsts.insert(T);
1305 return true;
1308 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1309 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1310 /// necessary.
1311 Value *ReassociatePass::OptimizeXor(Instruction *I,
1312 SmallVectorImpl<ValueEntry> &Ops) {
1313 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1314 return V;
1316 if (Ops.size() == 1)
1317 return nullptr;
1319 SmallVector<XorOpnd, 8> Opnds;
1320 SmallVector<XorOpnd*, 8> OpndPtrs;
1321 Type *Ty = Ops[0].Op->getType();
1322 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1324 // Step 1: Convert ValueEntry to XorOpnd
1325 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1326 Value *V = Ops[i].Op;
1327 const APInt *C;
1328 // TODO: Support non-splat vectors.
1329 if (match(V, m_APInt(C))) {
1330 ConstOpnd ^= *C;
1331 } else {
1332 XorOpnd O(V);
1333 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1334 Opnds.push_back(O);
1338 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1339 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1340 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1341 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1342 // when new elements are added to the vector.
1343 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1344 OpndPtrs.push_back(&Opnds[i]);
1346 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1347 // the same symbolic value cluster together. For instance, the input operand
1348 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1349 // ("x | 123", "x & 789", "y & 456").
1351 // The purpose is twofold:
1352 // 1) Cluster together the operands sharing the same symbolic-value.
1353 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1354 // could potentially shorten crital path, and expose more loop-invariants.
1355 // Note that values' rank are basically defined in RPO order (FIXME).
1356 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1357 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1358 // "z" in the order of X-Y-Z is better than any other orders.
1359 llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1360 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1363 // Step 3: Combine adjacent operands
1364 XorOpnd *PrevOpnd = nullptr;
1365 bool Changed = false;
1366 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1367 XorOpnd *CurrOpnd = OpndPtrs[i];
1368 // The combined value
1369 Value *CV;
1371 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1372 if (!ConstOpnd.isNullValue() &&
1373 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1374 Changed = true;
1375 if (CV)
1376 *CurrOpnd = XorOpnd(CV);
1377 else {
1378 CurrOpnd->Invalidate();
1379 continue;
1383 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1384 PrevOpnd = CurrOpnd;
1385 continue;
1388 // step 3.2: When previous and current operands share the same symbolic
1389 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1390 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1391 // Remove previous operand
1392 PrevOpnd->Invalidate();
1393 if (CV) {
1394 *CurrOpnd = XorOpnd(CV);
1395 PrevOpnd = CurrOpnd;
1396 } else {
1397 CurrOpnd->Invalidate();
1398 PrevOpnd = nullptr;
1400 Changed = true;
1404 // Step 4: Reassemble the Ops
1405 if (Changed) {
1406 Ops.clear();
1407 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1408 XorOpnd &O = Opnds[i];
1409 if (O.isInvalid())
1410 continue;
1411 ValueEntry VE(getRank(O.getValue()), O.getValue());
1412 Ops.push_back(VE);
1414 if (!ConstOpnd.isNullValue()) {
1415 Value *C = ConstantInt::get(Ty, ConstOpnd);
1416 ValueEntry VE(getRank(C), C);
1417 Ops.push_back(VE);
1419 unsigned Sz = Ops.size();
1420 if (Sz == 1)
1421 return Ops.back().Op;
1422 if (Sz == 0) {
1423 assert(ConstOpnd.isNullValue());
1424 return ConstantInt::get(Ty, ConstOpnd);
1428 return nullptr;
1431 /// Optimize a series of operands to an 'add' instruction. This
1432 /// optimizes based on identities. If it can be reduced to a single Value, it
1433 /// is returned, otherwise the Ops list is mutated as necessary.
1434 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1435 SmallVectorImpl<ValueEntry> &Ops) {
1436 // Scan the operand lists looking for X and -X pairs. If we find any, we
1437 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1438 // scan for any
1439 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1441 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1442 Value *TheOp = Ops[i].Op;
1443 // Check to see if we've seen this operand before. If so, we factor all
1444 // instances of the operand together. Due to our sorting criteria, we know
1445 // that these need to be next to each other in the vector.
1446 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1447 // Rescan the list, remove all instances of this operand from the expr.
1448 unsigned NumFound = 0;
1449 do {
1450 Ops.erase(Ops.begin()+i);
1451 ++NumFound;
1452 } while (i != Ops.size() && Ops[i].Op == TheOp);
1454 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1455 << '\n');
1456 ++NumFactor;
1458 // Insert a new multiply.
1459 Type *Ty = TheOp->getType();
1460 Constant *C = Ty->isIntOrIntVectorTy() ?
1461 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1462 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1464 // Now that we have inserted a multiply, optimize it. This allows us to
1465 // handle cases that require multiple factoring steps, such as this:
1466 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1467 RedoInsts.insert(Mul);
1469 // If every add operand was a duplicate, return the multiply.
1470 if (Ops.empty())
1471 return Mul;
1473 // Otherwise, we had some input that didn't have the dupe, such as
1474 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1475 // things being added by this operation.
1476 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1478 --i;
1479 e = Ops.size();
1480 continue;
1483 // Check for X and -X or X and ~X in the operand list.
1484 Value *X;
1485 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1486 !match(TheOp, m_FNeg(m_Value(X))))
1487 continue;
1489 unsigned FoundX = FindInOperandList(Ops, i, X);
1490 if (FoundX == i)
1491 continue;
1493 // Remove X and -X from the operand list.
1494 if (Ops.size() == 2 &&
1495 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1496 return Constant::getNullValue(X->getType());
1498 // Remove X and ~X from the operand list.
1499 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1500 return Constant::getAllOnesValue(X->getType());
1502 Ops.erase(Ops.begin()+i);
1503 if (i < FoundX)
1504 --FoundX;
1505 else
1506 --i; // Need to back up an extra one.
1507 Ops.erase(Ops.begin()+FoundX);
1508 ++NumAnnihil;
1509 --i; // Revisit element.
1510 e -= 2; // Removed two elements.
1512 // if X and ~X we append -1 to the operand list.
1513 if (match(TheOp, m_Not(m_Value()))) {
1514 Value *V = Constant::getAllOnesValue(X->getType());
1515 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1516 e += 1;
1520 // Scan the operand list, checking to see if there are any common factors
1521 // between operands. Consider something like A*A+A*B*C+D. We would like to
1522 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1523 // To efficiently find this, we count the number of times a factor occurs
1524 // for any ADD operands that are MULs.
1525 DenseMap<Value*, unsigned> FactorOccurrences;
1527 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1528 // where they are actually the same multiply.
1529 unsigned MaxOcc = 0;
1530 Value *MaxOccVal = nullptr;
1531 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1532 BinaryOperator *BOp =
1533 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1534 if (!BOp)
1535 continue;
1537 // Compute all of the factors of this added value.
1538 SmallVector<Value*, 8> Factors;
1539 FindSingleUseMultiplyFactors(BOp, Factors);
1540 assert(Factors.size() > 1 && "Bad linearize!");
1542 // Add one to FactorOccurrences for each unique factor in this op.
1543 SmallPtrSet<Value*, 8> Duplicates;
1544 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1545 Value *Factor = Factors[i];
1546 if (!Duplicates.insert(Factor).second)
1547 continue;
1549 unsigned Occ = ++FactorOccurrences[Factor];
1550 if (Occ > MaxOcc) {
1551 MaxOcc = Occ;
1552 MaxOccVal = Factor;
1555 // If Factor is a negative constant, add the negated value as a factor
1556 // because we can percolate the negate out. Watch for minint, which
1557 // cannot be positivified.
1558 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1559 if (CI->isNegative() && !CI->isMinValue(true)) {
1560 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1561 if (!Duplicates.insert(Factor).second)
1562 continue;
1563 unsigned Occ = ++FactorOccurrences[Factor];
1564 if (Occ > MaxOcc) {
1565 MaxOcc = Occ;
1566 MaxOccVal = Factor;
1569 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1570 if (CF->isNegative()) {
1571 APFloat F(CF->getValueAPF());
1572 F.changeSign();
1573 Factor = ConstantFP::get(CF->getContext(), F);
1574 if (!Duplicates.insert(Factor).second)
1575 continue;
1576 unsigned Occ = ++FactorOccurrences[Factor];
1577 if (Occ > MaxOcc) {
1578 MaxOcc = Occ;
1579 MaxOccVal = Factor;
1586 // If any factor occurred more than one time, we can pull it out.
1587 if (MaxOcc > 1) {
1588 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1589 << '\n');
1590 ++NumFactor;
1592 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1593 // this, we could otherwise run into situations where removing a factor
1594 // from an expression will drop a use of maxocc, and this can cause
1595 // RemoveFactorFromExpression on successive values to behave differently.
1596 Instruction *DummyInst =
1597 I->getType()->isIntOrIntVectorTy()
1598 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1599 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1601 SmallVector<WeakTrackingVH, 4> NewMulOps;
1602 for (unsigned i = 0; i != Ops.size(); ++i) {
1603 // Only try to remove factors from expressions we're allowed to.
1604 BinaryOperator *BOp =
1605 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1606 if (!BOp)
1607 continue;
1609 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1610 // The factorized operand may occur several times. Convert them all in
1611 // one fell swoop.
1612 for (unsigned j = Ops.size(); j != i;) {
1613 --j;
1614 if (Ops[j].Op == Ops[i].Op) {
1615 NewMulOps.push_back(V);
1616 Ops.erase(Ops.begin()+j);
1619 --i;
1623 // No need for extra uses anymore.
1624 DummyInst->deleteValue();
1626 unsigned NumAddedValues = NewMulOps.size();
1627 Value *V = EmitAddTreeOfValues(I, NewMulOps);
1629 // Now that we have inserted the add tree, optimize it. This allows us to
1630 // handle cases that require multiple factoring steps, such as this:
1631 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
1632 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1633 (void)NumAddedValues;
1634 if (Instruction *VI = dyn_cast<Instruction>(V))
1635 RedoInsts.insert(VI);
1637 // Create the multiply.
1638 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1640 // Rerun associate on the multiply in case the inner expression turned into
1641 // a multiply. We want to make sure that we keep things in canonical form.
1642 RedoInsts.insert(V2);
1644 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1645 // entire result expression is just the multiply "A*(B+C)".
1646 if (Ops.empty())
1647 return V2;
1649 // Otherwise, we had some input that didn't have the factor, such as
1650 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
1651 // things being added by this operation.
1652 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1655 return nullptr;
1658 /// Build up a vector of value/power pairs factoring a product.
1660 /// Given a series of multiplication operands, build a vector of factors and
1661 /// the powers each is raised to when forming the final product. Sort them in
1662 /// the order of descending power.
1664 /// (x*x) -> [(x, 2)]
1665 /// ((x*x)*x) -> [(x, 3)]
1666 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1668 /// \returns Whether any factors have a power greater than one.
1669 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1670 SmallVectorImpl<Factor> &Factors) {
1671 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1672 // Compute the sum of powers of simplifiable factors.
1673 unsigned FactorPowerSum = 0;
1674 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1675 Value *Op = Ops[Idx-1].Op;
1677 // Count the number of occurrences of this value.
1678 unsigned Count = 1;
1679 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1680 ++Count;
1681 // Track for simplification all factors which occur 2 or more times.
1682 if (Count > 1)
1683 FactorPowerSum += Count;
1686 // We can only simplify factors if the sum of the powers of our simplifiable
1687 // factors is 4 or higher. When that is the case, we will *always* have
1688 // a simplification. This is an important invariant to prevent cyclicly
1689 // trying to simplify already minimal formations.
1690 if (FactorPowerSum < 4)
1691 return false;
1693 // Now gather the simplifiable factors, removing them from Ops.
1694 FactorPowerSum = 0;
1695 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1696 Value *Op = Ops[Idx-1].Op;
1698 // Count the number of occurrences of this value.
1699 unsigned Count = 1;
1700 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1701 ++Count;
1702 if (Count == 1)
1703 continue;
1704 // Move an even number of occurrences to Factors.
1705 Count &= ~1U;
1706 Idx -= Count;
1707 FactorPowerSum += Count;
1708 Factors.push_back(Factor(Op, Count));
1709 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1712 // None of the adjustments above should have reduced the sum of factor powers
1713 // below our mininum of '4'.
1714 assert(FactorPowerSum >= 4);
1716 llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1717 return LHS.Power > RHS.Power;
1719 return true;
1722 /// Build a tree of multiplies, computing the product of Ops.
1723 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1724 SmallVectorImpl<Value*> &Ops) {
1725 if (Ops.size() == 1)
1726 return Ops.back();
1728 Value *LHS = Ops.pop_back_val();
1729 do {
1730 if (LHS->getType()->isIntOrIntVectorTy())
1731 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1732 else
1733 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1734 } while (!Ops.empty());
1736 return LHS;
1739 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1741 /// Given a vector of values raised to various powers, where no two values are
1742 /// equal and the powers are sorted in decreasing order, compute the minimal
1743 /// DAG of multiplies to compute the final product, and return that product
1744 /// value.
1745 Value *
1746 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1747 SmallVectorImpl<Factor> &Factors) {
1748 assert(Factors[0].Power);
1749 SmallVector<Value *, 4> OuterProduct;
1750 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1751 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1752 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1753 LastIdx = Idx;
1754 continue;
1757 // We want to multiply across all the factors with the same power so that
1758 // we can raise them to that power as a single entity. Build a mini tree
1759 // for that.
1760 SmallVector<Value *, 4> InnerProduct;
1761 InnerProduct.push_back(Factors[LastIdx].Base);
1762 do {
1763 InnerProduct.push_back(Factors[Idx].Base);
1764 ++Idx;
1765 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1767 // Reset the base value of the first factor to the new expression tree.
1768 // We'll remove all the factors with the same power in a second pass.
1769 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1770 if (Instruction *MI = dyn_cast<Instruction>(M))
1771 RedoInsts.insert(MI);
1773 LastIdx = Idx;
1775 // Unique factors with equal powers -- we've folded them into the first one's
1776 // base.
1777 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1778 [](const Factor &LHS, const Factor &RHS) {
1779 return LHS.Power == RHS.Power;
1781 Factors.end());
1783 // Iteratively collect the base of each factor with an add power into the
1784 // outer product, and halve each power in preparation for squaring the
1785 // expression.
1786 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1787 if (Factors[Idx].Power & 1)
1788 OuterProduct.push_back(Factors[Idx].Base);
1789 Factors[Idx].Power >>= 1;
1791 if (Factors[0].Power) {
1792 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1793 OuterProduct.push_back(SquareRoot);
1794 OuterProduct.push_back(SquareRoot);
1796 if (OuterProduct.size() == 1)
1797 return OuterProduct.front();
1799 Value *V = buildMultiplyTree(Builder, OuterProduct);
1800 return V;
1803 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1804 SmallVectorImpl<ValueEntry> &Ops) {
1805 // We can only optimize the multiplies when there is a chain of more than
1806 // three, such that a balanced tree might require fewer total multiplies.
1807 if (Ops.size() < 4)
1808 return nullptr;
1810 // Try to turn linear trees of multiplies without other uses of the
1811 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1812 // re-use.
1813 SmallVector<Factor, 4> Factors;
1814 if (!collectMultiplyFactors(Ops, Factors))
1815 return nullptr; // All distinct factors, so nothing left for us to do.
1817 IRBuilder<> Builder(I);
1818 // The reassociate transformation for FP operations is performed only
1819 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1820 // to the newly generated operations.
1821 if (auto FPI = dyn_cast<FPMathOperator>(I))
1822 Builder.setFastMathFlags(FPI->getFastMathFlags());
1824 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1825 if (Ops.empty())
1826 return V;
1828 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1829 Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
1830 return nullptr;
1833 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1834 SmallVectorImpl<ValueEntry> &Ops) {
1835 // Now that we have the linearized expression tree, try to optimize it.
1836 // Start by folding any constants that we found.
1837 Constant *Cst = nullptr;
1838 unsigned Opcode = I->getOpcode();
1839 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1840 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1841 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1843 // If there was nothing but constants then we are done.
1844 if (Ops.empty())
1845 return Cst;
1847 // Put the combined constant back at the end of the operand list, except if
1848 // there is no point. For example, an add of 0 gets dropped here, while a
1849 // multiplication by zero turns the whole expression into zero.
1850 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1851 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1852 return Cst;
1853 Ops.push_back(ValueEntry(0, Cst));
1856 if (Ops.size() == 1) return Ops[0].Op;
1858 // Handle destructive annihilation due to identities between elements in the
1859 // argument list here.
1860 unsigned NumOps = Ops.size();
1861 switch (Opcode) {
1862 default: break;
1863 case Instruction::And:
1864 case Instruction::Or:
1865 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1866 return Result;
1867 break;
1869 case Instruction::Xor:
1870 if (Value *Result = OptimizeXor(I, Ops))
1871 return Result;
1872 break;
1874 case Instruction::Add:
1875 case Instruction::FAdd:
1876 if (Value *Result = OptimizeAdd(I, Ops))
1877 return Result;
1878 break;
1880 case Instruction::Mul:
1881 case Instruction::FMul:
1882 if (Value *Result = OptimizeMul(I, Ops))
1883 return Result;
1884 break;
1887 if (Ops.size() != NumOps)
1888 return OptimizeExpression(I, Ops);
1889 return nullptr;
1892 // Remove dead instructions and if any operands are trivially dead add them to
1893 // Insts so they will be removed as well.
1894 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1895 OrderedSet &Insts) {
1896 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1897 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1898 ValueRankMap.erase(I);
1899 Insts.remove(I);
1900 RedoInsts.remove(I);
1901 I->eraseFromParent();
1902 for (auto Op : Ops)
1903 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1904 if (OpInst->use_empty())
1905 Insts.insert(OpInst);
1908 /// Zap the given instruction, adding interesting operands to the work list.
1909 void ReassociatePass::EraseInst(Instruction *I) {
1910 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1911 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1913 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1914 // Erase the dead instruction.
1915 ValueRankMap.erase(I);
1916 RedoInsts.remove(I);
1917 I->eraseFromParent();
1918 // Optimize its operands.
1919 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1920 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1921 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1922 // If this is a node in an expression tree, climb to the expression root
1923 // and add that since that's where optimization actually happens.
1924 unsigned Opcode = Op->getOpcode();
1925 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1926 Visited.insert(Op).second)
1927 Op = Op->user_back();
1929 // The instruction we're going to push may be coming from a
1930 // dead block, and Reassociate skips the processing of unreachable
1931 // blocks because it's a waste of time and also because it can
1932 // lead to infinite loop due to LLVM's non-standard definition
1933 // of dominance.
1934 if (ValueRankMap.find(Op) != ValueRankMap.end())
1935 RedoInsts.insert(Op);
1938 MadeChange = true;
1941 /// Recursively analyze an expression to build a list of instructions that have
1942 /// negative floating-point constant operands. The caller can then transform
1943 /// the list to create positive constants for better reassociation and CSE.
1944 static void getNegatibleInsts(Value *V,
1945 SmallVectorImpl<Instruction *> &Candidates) {
1946 // Handle only one-use instructions. Combining negations does not justify
1947 // replicating instructions.
1948 Instruction *I;
1949 if (!match(V, m_OneUse(m_Instruction(I))))
1950 return;
1952 // Handle expressions of multiplications and divisions.
1953 // TODO: This could look through floating-point casts.
1954 const APFloat *C;
1955 switch (I->getOpcode()) {
1956 case Instruction::FMul:
1957 // Not expecting non-canonical code here. Bail out and wait.
1958 if (match(I->getOperand(0), m_Constant()))
1959 break;
1961 if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
1962 Candidates.push_back(I);
1963 LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
1965 getNegatibleInsts(I->getOperand(0), Candidates);
1966 getNegatibleInsts(I->getOperand(1), Candidates);
1967 break;
1968 case Instruction::FDiv:
1969 // Not expecting non-canonical code here. Bail out and wait.
1970 if (match(I->getOperand(0), m_Constant()) &&
1971 match(I->getOperand(1), m_Constant()))
1972 break;
1974 if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
1975 (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
1976 Candidates.push_back(I);
1977 LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
1979 getNegatibleInsts(I->getOperand(0), Candidates);
1980 getNegatibleInsts(I->getOperand(1), Candidates);
1981 break;
1982 default:
1983 break;
1987 /// Given an fadd/fsub with an operand that is a one-use instruction
1988 /// (the fadd/fsub), try to change negative floating-point constants into
1989 /// positive constants to increase potential for reassociation and CSE.
1990 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
1991 Instruction *Op,
1992 Value *OtherOp) {
1993 assert((I->getOpcode() == Instruction::FAdd ||
1994 I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
1996 // Collect instructions with negative FP constants from the subtree that ends
1997 // in Op.
1998 SmallVector<Instruction *, 4> Candidates;
1999 getNegatibleInsts(Op, Candidates);
2000 if (Candidates.empty())
2001 return nullptr;
2003 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2004 // resulting subtract will be broken up later. This can get us into an
2005 // infinite loop during reassociation.
2006 bool IsFSub = I->getOpcode() == Instruction::FSub;
2007 bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
2008 if (NeedsSubtract && ShouldBreakUpSubtract(I))
2009 return nullptr;
2011 for (Instruction *Negatible : Candidates) {
2012 const APFloat *C;
2013 if (match(Negatible->getOperand(0), m_APFloat(C))) {
2014 assert(!match(Negatible->getOperand(1), m_Constant()) &&
2015 "Expecting only 1 constant operand");
2016 assert(C->isNegative() && "Expected negative FP constant");
2017 Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
2018 MadeChange = true;
2020 if (match(Negatible->getOperand(1), m_APFloat(C))) {
2021 assert(!match(Negatible->getOperand(0), m_Constant()) &&
2022 "Expecting only 1 constant operand");
2023 assert(C->isNegative() && "Expected negative FP constant");
2024 Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
2025 MadeChange = true;
2028 assert(MadeChange == true && "Negative constant candidate was not changed");
2030 // Negations cancelled out.
2031 if (Candidates.size() % 2 == 0)
2032 return I;
2034 // Negate the final operand in the expression by flipping the opcode of this
2035 // fadd/fsub.
2036 assert(Candidates.size() % 2 == 1 && "Expected odd number");
2037 IRBuilder<> Builder(I);
2038 Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
2039 : Builder.CreateFSubFMF(OtherOp, Op, I);
2040 I->replaceAllUsesWith(NewInst);
2041 RedoInsts.insert(I);
2042 return dyn_cast<Instruction>(NewInst);
2045 /// Canonicalize expressions that contain a negative floating-point constant
2046 /// of the following form:
2047 /// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2048 /// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2049 /// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2051 /// The fadd/fsub opcode may be switched to allow folding a negation into the
2052 /// input instruction.
2053 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
2054 LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
2055 Value *X;
2056 Instruction *Op;
2057 if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
2058 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2059 I = R;
2060 if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
2061 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2062 I = R;
2063 if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
2064 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2065 I = R;
2066 return I;
2069 /// Inspect and optimize the given instruction. Note that erasing
2070 /// instructions is not allowed.
2071 void ReassociatePass::OptimizeInst(Instruction *I) {
2072 // Only consider operations that we understand.
2073 if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
2074 return;
2076 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2077 // If an operand of this shift is a reassociable multiply, or if the shift
2078 // is used by a reassociable multiply or add, turn into a multiply.
2079 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2080 (I->hasOneUse() &&
2081 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2082 isReassociableOp(I->user_back(), Instruction::Add)))) {
2083 Instruction *NI = ConvertShiftToMul(I);
2084 RedoInsts.insert(I);
2085 MadeChange = true;
2086 I = NI;
2089 // Commute binary operators, to canonicalize the order of their operands.
2090 // This can potentially expose more CSE opportunities, and makes writing other
2091 // transformations simpler.
2092 if (I->isCommutative())
2093 canonicalizeOperands(I);
2095 // Canonicalize negative constants out of expressions.
2096 if (Instruction *Res = canonicalizeNegFPConstants(I))
2097 I = Res;
2099 // Don't optimize floating-point instructions unless they are 'fast'.
2100 if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2101 return;
2103 // Do not reassociate boolean (i1) expressions. We want to preserve the
2104 // original order of evaluation for short-circuited comparisons that
2105 // SimplifyCFG has folded to AND/OR expressions. If the expression
2106 // is not further optimized, it is likely to be transformed back to a
2107 // short-circuited form for code gen, and the source order may have been
2108 // optimized for the most likely conditions.
2109 if (I->getType()->isIntegerTy(1))
2110 return;
2112 // If this is a subtract instruction which is not already in negate form,
2113 // see if we can convert it to X+-Y.
2114 if (I->getOpcode() == Instruction::Sub) {
2115 if (ShouldBreakUpSubtract(I)) {
2116 Instruction *NI = BreakUpSubtract(I, RedoInsts);
2117 RedoInsts.insert(I);
2118 MadeChange = true;
2119 I = NI;
2120 } else if (match(I, m_Neg(m_Value()))) {
2121 // Otherwise, this is a negation. See if the operand is a multiply tree
2122 // and if this is not an inner node of a multiply tree.
2123 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2124 (!I->hasOneUse() ||
2125 !isReassociableOp(I->user_back(), Instruction::Mul))) {
2126 Instruction *NI = LowerNegateToMultiply(I);
2127 // If the negate was simplified, revisit the users to see if we can
2128 // reassociate further.
2129 for (User *U : NI->users()) {
2130 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2131 RedoInsts.insert(Tmp);
2133 RedoInsts.insert(I);
2134 MadeChange = true;
2135 I = NI;
2138 } else if (I->getOpcode() == Instruction::FNeg ||
2139 I->getOpcode() == Instruction::FSub) {
2140 if (ShouldBreakUpSubtract(I)) {
2141 Instruction *NI = BreakUpSubtract(I, RedoInsts);
2142 RedoInsts.insert(I);
2143 MadeChange = true;
2144 I = NI;
2145 } else if (match(I, m_FNeg(m_Value()))) {
2146 // Otherwise, this is a negation. See if the operand is a multiply tree
2147 // and if this is not an inner node of a multiply tree.
2148 Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
2149 I->getOperand(0);
2150 if (isReassociableOp(Op, Instruction::FMul) &&
2151 (!I->hasOneUse() ||
2152 !isReassociableOp(I->user_back(), Instruction::FMul))) {
2153 // If the negate was simplified, revisit the users to see if we can
2154 // reassociate further.
2155 Instruction *NI = LowerNegateToMultiply(I);
2156 for (User *U : NI->users()) {
2157 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2158 RedoInsts.insert(Tmp);
2160 RedoInsts.insert(I);
2161 MadeChange = true;
2162 I = NI;
2167 // If this instruction is an associative binary operator, process it.
2168 if (!I->isAssociative()) return;
2169 BinaryOperator *BO = cast<BinaryOperator>(I);
2171 // If this is an interior node of a reassociable tree, ignore it until we
2172 // get to the root of the tree, to avoid N^2 analysis.
2173 unsigned Opcode = BO->getOpcode();
2174 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2175 // During the initial run we will get to the root of the tree.
2176 // But if we get here while we are redoing instructions, there is no
2177 // guarantee that the root will be visited. So Redo later
2178 if (BO->user_back() != BO &&
2179 BO->getParent() == BO->user_back()->getParent())
2180 RedoInsts.insert(BO->user_back());
2181 return;
2184 // If this is an add tree that is used by a sub instruction, ignore it
2185 // until we process the subtract.
2186 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2187 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2188 return;
2189 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2190 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2191 return;
2193 ReassociateExpression(BO);
2196 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2197 // First, walk the expression tree, linearizing the tree, collecting the
2198 // operand information.
2199 SmallVector<RepeatedValue, 8> Tree;
2200 MadeChange |= LinearizeExprTree(I, Tree);
2201 SmallVector<ValueEntry, 8> Ops;
2202 Ops.reserve(Tree.size());
2203 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2204 RepeatedValue E = Tree[i];
2205 Ops.append(E.second.getZExtValue(),
2206 ValueEntry(getRank(E.first), E.first));
2209 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2211 // Now that we have linearized the tree to a list and have gathered all of
2212 // the operands and their ranks, sort the operands by their rank. Use a
2213 // stable_sort so that values with equal ranks will have their relative
2214 // positions maintained (and so the compiler is deterministic). Note that
2215 // this sorts so that the highest ranking values end up at the beginning of
2216 // the vector.
2217 llvm::stable_sort(Ops);
2219 // Now that we have the expression tree in a convenient
2220 // sorted form, optimize it globally if possible.
2221 if (Value *V = OptimizeExpression(I, Ops)) {
2222 if (V == I)
2223 // Self-referential expression in unreachable code.
2224 return;
2225 // This expression tree simplified to something that isn't a tree,
2226 // eliminate it.
2227 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2228 I->replaceAllUsesWith(V);
2229 if (Instruction *VI = dyn_cast<Instruction>(V))
2230 if (I->getDebugLoc())
2231 VI->setDebugLoc(I->getDebugLoc());
2232 RedoInsts.insert(I);
2233 ++NumAnnihil;
2234 return;
2237 // We want to sink immediates as deeply as possible except in the case where
2238 // this is a multiply tree used only by an add, and the immediate is a -1.
2239 // In this case we reassociate to put the negation on the outside so that we
2240 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2241 if (I->hasOneUse()) {
2242 if (I->getOpcode() == Instruction::Mul &&
2243 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2244 isa<ConstantInt>(Ops.back().Op) &&
2245 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2246 ValueEntry Tmp = Ops.pop_back_val();
2247 Ops.insert(Ops.begin(), Tmp);
2248 } else if (I->getOpcode() == Instruction::FMul &&
2249 cast<Instruction>(I->user_back())->getOpcode() ==
2250 Instruction::FAdd &&
2251 isa<ConstantFP>(Ops.back().Op) &&
2252 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2253 ValueEntry Tmp = Ops.pop_back_val();
2254 Ops.insert(Ops.begin(), Tmp);
2258 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2260 if (Ops.size() == 1) {
2261 if (Ops[0].Op == I)
2262 // Self-referential expression in unreachable code.
2263 return;
2265 // This expression tree simplified to something that isn't a tree,
2266 // eliminate it.
2267 I->replaceAllUsesWith(Ops[0].Op);
2268 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2269 OI->setDebugLoc(I->getDebugLoc());
2270 RedoInsts.insert(I);
2271 return;
2274 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2275 // Find the pair with the highest count in the pairmap and move it to the
2276 // back of the list so that it can later be CSE'd.
2277 // example:
2278 // a*b*c*d*e
2279 // if c*e is the most "popular" pair, we can express this as
2280 // (((c*e)*d)*b)*a
2281 unsigned Max = 1;
2282 unsigned BestRank = 0;
2283 std::pair<unsigned, unsigned> BestPair;
2284 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2285 for (unsigned i = 0; i < Ops.size() - 1; ++i)
2286 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2287 unsigned Score = 0;
2288 Value *Op0 = Ops[i].Op;
2289 Value *Op1 = Ops[j].Op;
2290 if (std::less<Value *>()(Op1, Op0))
2291 std::swap(Op0, Op1);
2292 auto it = PairMap[Idx].find({Op0, Op1});
2293 if (it != PairMap[Idx].end()) {
2294 // Functions like BreakUpSubtract() can erase the Values we're using
2295 // as keys and create new Values after we built the PairMap. There's a
2296 // small chance that the new nodes can have the same address as
2297 // something already in the table. We shouldn't accumulate the stored
2298 // score in that case as it refers to the wrong Value.
2299 if (it->second.isValid())
2300 Score += it->second.Score;
2303 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2304 if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2305 BestPair = {i, j};
2306 Max = Score;
2307 BestRank = MaxRank;
2310 if (Max > 1) {
2311 auto Op0 = Ops[BestPair.first];
2312 auto Op1 = Ops[BestPair.second];
2313 Ops.erase(&Ops[BestPair.second]);
2314 Ops.erase(&Ops[BestPair.first]);
2315 Ops.push_back(Op0);
2316 Ops.push_back(Op1);
2319 // Now that we ordered and optimized the expressions, splat them back into
2320 // the expression tree, removing any unneeded nodes.
2321 RewriteExprTree(I, Ops);
2324 void
2325 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2326 // Make a "pairmap" of how often each operand pair occurs.
2327 for (BasicBlock *BI : RPOT) {
2328 for (Instruction &I : *BI) {
2329 if (!I.isAssociative())
2330 continue;
2332 // Ignore nodes that aren't at the root of trees.
2333 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2334 continue;
2336 // Collect all operands in a single reassociable expression.
2337 // Since Reassociate has already been run once, we can assume things
2338 // are already canonical according to Reassociation's regime.
2339 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2340 SmallVector<Value *, 8> Ops;
2341 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2342 Value *Op = Worklist.pop_back_val();
2343 Instruction *OpI = dyn_cast<Instruction>(Op);
2344 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2345 Ops.push_back(Op);
2346 continue;
2348 // Be paranoid about self-referencing expressions in unreachable code.
2349 if (OpI->getOperand(0) != OpI)
2350 Worklist.push_back(OpI->getOperand(0));
2351 if (OpI->getOperand(1) != OpI)
2352 Worklist.push_back(OpI->getOperand(1));
2354 // Skip extremely long expressions.
2355 if (Ops.size() > GlobalReassociateLimit)
2356 continue;
2358 // Add all pairwise combinations of operands to the pair map.
2359 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2360 SmallSet<std::pair<Value *, Value*>, 32> Visited;
2361 for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2362 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2363 // Canonicalize operand orderings.
2364 Value *Op0 = Ops[i];
2365 Value *Op1 = Ops[j];
2366 if (std::less<Value *>()(Op1, Op0))
2367 std::swap(Op0, Op1);
2368 if (!Visited.insert({Op0, Op1}).second)
2369 continue;
2370 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2371 if (!res.second) {
2372 // If either key value has been erased then we've got the same
2373 // address by coincidence. That can't happen here because nothing is
2374 // erasing values but it can happen by the time we're querying the
2375 // map.
2376 assert(res.first->second.isValid() && "WeakVH invalidated");
2377 ++res.first->second.Score;
2385 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2386 // Get the functions basic blocks in Reverse Post Order. This order is used by
2387 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2388 // blocks (it has been seen that the analysis in this pass could hang when
2389 // analysing dead basic blocks).
2390 ReversePostOrderTraversal<Function *> RPOT(&F);
2392 // Calculate the rank map for F.
2393 BuildRankMap(F, RPOT);
2395 // Build the pair map before running reassociate.
2396 // Technically this would be more accurate if we did it after one round
2397 // of reassociation, but in practice it doesn't seem to help much on
2398 // real-world code, so don't waste the compile time running reassociate
2399 // twice.
2400 // If a user wants, they could expicitly run reassociate twice in their
2401 // pass pipeline for further potential gains.
2402 // It might also be possible to update the pair map during runtime, but the
2403 // overhead of that may be large if there's many reassociable chains.
2404 BuildPairMap(RPOT);
2406 MadeChange = false;
2408 // Traverse the same blocks that were analysed by BuildRankMap.
2409 for (BasicBlock *BI : RPOT) {
2410 assert(RankMap.count(&*BI) && "BB should be ranked.");
2411 // Optimize every instruction in the basic block.
2412 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2413 if (isInstructionTriviallyDead(&*II)) {
2414 EraseInst(&*II++);
2415 } else {
2416 OptimizeInst(&*II);
2417 assert(II->getParent() == &*BI && "Moved to a different block!");
2418 ++II;
2421 // Make a copy of all the instructions to be redone so we can remove dead
2422 // instructions.
2423 OrderedSet ToRedo(RedoInsts);
2424 // Iterate over all instructions to be reevaluated and remove trivially dead
2425 // instructions. If any operand of the trivially dead instruction becomes
2426 // dead mark it for deletion as well. Continue this process until all
2427 // trivially dead instructions have been removed.
2428 while (!ToRedo.empty()) {
2429 Instruction *I = ToRedo.pop_back_val();
2430 if (isInstructionTriviallyDead(I)) {
2431 RecursivelyEraseDeadInsts(I, ToRedo);
2432 MadeChange = true;
2436 // Now that we have removed dead instructions, we can reoptimize the
2437 // remaining instructions.
2438 while (!RedoInsts.empty()) {
2439 Instruction *I = RedoInsts.front();
2440 RedoInsts.erase(RedoInsts.begin());
2441 if (isInstructionTriviallyDead(I))
2442 EraseInst(I);
2443 else
2444 OptimizeInst(I);
2448 // We are done with the rank map and pair map.
2449 RankMap.clear();
2450 ValueRankMap.clear();
2451 for (auto &Entry : PairMap)
2452 Entry.clear();
2454 if (MadeChange) {
2455 PreservedAnalyses PA;
2456 PA.preserveSet<CFGAnalyses>();
2457 PA.preserve<GlobalsAA>();
2458 return PA;
2461 return PreservedAnalyses::all();
2464 namespace {
2466 class ReassociateLegacyPass : public FunctionPass {
2467 ReassociatePass Impl;
2469 public:
2470 static char ID; // Pass identification, replacement for typeid
2472 ReassociateLegacyPass() : FunctionPass(ID) {
2473 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2476 bool runOnFunction(Function &F) override {
2477 if (skipFunction(F))
2478 return false;
2480 FunctionAnalysisManager DummyFAM;
2481 auto PA = Impl.run(F, DummyFAM);
2482 return !PA.areAllPreserved();
2485 void getAnalysisUsage(AnalysisUsage &AU) const override {
2486 AU.setPreservesCFG();
2487 AU.addPreserved<GlobalsAAWrapperPass>();
2491 } // end anonymous namespace
2493 char ReassociateLegacyPass::ID = 0;
2495 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2496 "Reassociate expressions", false, false)
2498 // Public interface to the Reassociate pass
2499 FunctionPass *llvm::createReassociatePass() {
2500 return new ReassociateLegacyPass();