1 //===- SeparateConstOffsetFromGEP.cpp -------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Loop unrolling may create many similar GEPs for array accesses.
10 // e.g., a 2-level loop
12 // float a[32][32]; // global variable
14 // for (int i = 0; i < 2; ++i) {
15 // for (int j = 0; j < 2; ++j) {
17 // ... = a[x + i][y + j];
22 // will probably be unrolled to:
24 // gep %a, 0, %x, %y; load
25 // gep %a, 0, %x, %y + 1; load
26 // gep %a, 0, %x + 1, %y; load
27 // gep %a, 0, %x + 1, %y + 1; load
29 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
30 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
31 // significant slowdown in targets with limited addressing modes. For instance,
32 // because the PTX target does not support the reg+reg addressing mode, the
33 // NVPTX backend emits PTX code that literally computes the pointer address of
34 // each GEP, wasting tons of registers. It emits the following PTX for the
35 // first load and similar PTX for other loads.
39 // mul.wide.u32 %rl2, %r1, 128;
41 // add.s64 %rl4, %rl3, %rl2;
42 // mul.wide.u32 %rl5, %r2, 4;
43 // add.s64 %rl6, %rl4, %rl5;
44 // ld.global.f32 %f1, [%rl6];
46 // To reduce the register pressure, the optimization implemented in this file
47 // merges the common part of a group of GEPs, so we can compute each pointer
48 // address by adding a simple offset to the common part, saving many registers.
50 // It works by splitting each GEP into a variadic base and a constant offset.
51 // The variadic base can be computed once and reused by multiple GEPs, and the
52 // constant offsets can be nicely folded into the reg+immediate addressing mode
53 // (supported by most targets) without using any extra register.
55 // For instance, we transform the four GEPs and four loads in the above example
58 // base = gep a, 0, x, y
60 // laod base + 1 * sizeof(float)
61 // load base + 32 * sizeof(float)
62 // load base + 33 * sizeof(float)
64 // Given the transformed IR, a backend that supports the reg+immediate
65 // addressing mode can easily fold the pointer arithmetics into the loads. For
66 // example, the NVPTX backend can easily fold the pointer arithmetics into the
67 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
69 // mov.u32 %r1, %tid.x;
70 // mov.u32 %r2, %tid.y;
71 // mul.wide.u32 %rl2, %r1, 128;
73 // add.s64 %rl4, %rl3, %rl2;
74 // mul.wide.u32 %rl5, %r2, 4;
75 // add.s64 %rl6, %rl4, %rl5;
76 // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
77 // ld.global.f32 %f2, [%rl6+4]; // much better
78 // ld.global.f32 %f3, [%rl6+128]; // much better
79 // ld.global.f32 %f4, [%rl6+132]; // much better
81 // Another improvement enabled by the LowerGEP flag is to lower a GEP with
82 // multiple indices to either multiple GEPs with a single index or arithmetic
83 // operations (depending on whether the target uses alias analysis in codegen).
84 // Such transformation can have following benefits:
85 // (1) It can always extract constants in the indices of structure type.
86 // (2) After such Lowering, there are more optimization opportunities such as
89 // E.g. The following GEPs have multiple indices:
91 // %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
95 // %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
99 // We can not do CSE to the common part related to index "i64 %i". Lowering
100 // GEPs can achieve such goals.
101 // If the target does not use alias analysis in codegen, this pass will
102 // lower a GEP with multiple indices into arithmetic operations:
104 // %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
105 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
106 // %3 = add i64 %1, %2 ; CSE opportunity
107 // %4 = mul i64 %j1, length_of_struct
108 // %5 = add i64 %3, %4
109 // %6 = add i64 %3, struct_field_3 ; Constant offset
110 // %p = inttoptr i64 %6 to i32*
114 // %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
115 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
116 // %9 = add i64 %7, %8 ; CSE opportunity
117 // %10 = mul i64 %j2, length_of_struct
118 // %11 = add i64 %9, %10
119 // %12 = add i64 %11, struct_field_2 ; Constant offset
120 // %p = inttoptr i64 %12 to i32*
124 // If the target uses alias analysis in codegen, this pass will lower a GEP
125 // with multiple indices into multiple GEPs with a single index:
127 // %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
128 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
129 // %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity
130 // %4 = mul i64 %j1, length_of_struct
131 // %5 = getelementptr i8* %3, i64 %4
132 // %6 = getelementptr i8* %5, struct_field_3 ; Constant offset
133 // %p = bitcast i8* %6 to i32*
137 // %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
138 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
139 // %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity
140 // %10 = mul i64 %j2, length_of_struct
141 // %11 = getelementptr i8* %9, i64 %10
142 // %12 = getelementptr i8* %11, struct_field_2 ; Constant offset
143 // %p2 = bitcast i8* %12 to i32*
147 // Lowering GEPs can also benefit other passes such as LICM and CGP.
148 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
149 // indices if one of the index is variant. If we lower such GEP into invariant
150 // parts and variant parts, LICM can hoist/sink those invariant parts.
151 // CGP (CodeGen Prepare) tries to sink address calculations that match the
152 // target's addressing modes. A GEP with multiple indices may not match and will
153 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
154 // them. So we end up with a better addressing mode.
156 //===----------------------------------------------------------------------===//
158 #include "llvm/ADT/APInt.h"
159 #include "llvm/ADT/DenseMap.h"
160 #include "llvm/ADT/DepthFirstIterator.h"
161 #include "llvm/ADT/SmallVector.h"
162 #include "llvm/Analysis/LoopInfo.h"
163 #include "llvm/Analysis/MemoryBuiltins.h"
164 #include "llvm/Analysis/ScalarEvolution.h"
165 #include "llvm/Analysis/TargetLibraryInfo.h"
166 #include "llvm/Analysis/TargetTransformInfo.h"
167 #include "llvm/Transforms/Utils/Local.h"
168 #include "llvm/Analysis/ValueTracking.h"
169 #include "llvm/IR/BasicBlock.h"
170 #include "llvm/IR/Constant.h"
171 #include "llvm/IR/Constants.h"
172 #include "llvm/IR/DataLayout.h"
173 #include "llvm/IR/DerivedTypes.h"
174 #include "llvm/IR/Dominators.h"
175 #include "llvm/IR/Function.h"
176 #include "llvm/IR/GetElementPtrTypeIterator.h"
177 #include "llvm/IR/IRBuilder.h"
178 #include "llvm/IR/Instruction.h"
179 #include "llvm/IR/Instructions.h"
180 #include "llvm/IR/Module.h"
181 #include "llvm/IR/PatternMatch.h"
182 #include "llvm/IR/Type.h"
183 #include "llvm/IR/User.h"
184 #include "llvm/IR/Value.h"
185 #include "llvm/Pass.h"
186 #include "llvm/Support/Casting.h"
187 #include "llvm/Support/CommandLine.h"
188 #include "llvm/Support/ErrorHandling.h"
189 #include "llvm/Support/raw_ostream.h"
190 #include "llvm/Target/TargetMachine.h"
191 #include "llvm/Transforms/Scalar.h"
196 using namespace llvm
;
197 using namespace llvm::PatternMatch
;
199 static cl::opt
<bool> DisableSeparateConstOffsetFromGEP(
200 "disable-separate-const-offset-from-gep", cl::init(false),
201 cl::desc("Do not separate the constant offset from a GEP instruction"),
204 // Setting this flag may emit false positives when the input module already
205 // contains dead instructions. Therefore, we set it only in unit tests that are
206 // free of dead code.
208 VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
209 cl::desc("Verify this pass produces no dead code"),
214 /// A helper class for separating a constant offset from a GEP index.
216 /// In real programs, a GEP index may be more complicated than a simple addition
217 /// of something and a constant integer which can be trivially splitted. For
218 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
219 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
221 /// Therefore, this class looks into the expression that computes a given GEP
222 /// index, and tries to find a constant integer that can be hoisted to the
223 /// outermost level of the expression as an addition. Not every constant in an
224 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
225 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
226 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
227 class ConstantOffsetExtractor
{
229 /// Extracts a constant offset from the given GEP index. It returns the
230 /// new index representing the remainder (equal to the original index minus
231 /// the constant offset), or nullptr if we cannot extract a constant offset.
232 /// \p Idx The given GEP index
233 /// \p GEP The given GEP
234 /// \p UserChainTail Outputs the tail of UserChain so that we can
235 /// garbage-collect unused instructions in UserChain.
236 static Value
*Extract(Value
*Idx
, GetElementPtrInst
*GEP
,
237 User
*&UserChainTail
, const DominatorTree
*DT
);
239 /// Looks for a constant offset from the given GEP index without extracting
240 /// it. It returns the numeric value of the extracted constant offset (0 if
241 /// failed). The meaning of the arguments are the same as Extract.
242 static int64_t Find(Value
*Idx
, GetElementPtrInst
*GEP
,
243 const DominatorTree
*DT
);
246 ConstantOffsetExtractor(Instruction
*InsertionPt
, const DominatorTree
*DT
)
247 : IP(InsertionPt
), DL(InsertionPt
->getModule()->getDataLayout()), DT(DT
) {
250 /// Searches the expression that computes V for a non-zero constant C s.t.
251 /// V can be reassociated into the form V' + C. If the searching is
252 /// successful, returns C and update UserChain as a def-use chain from C to V;
253 /// otherwise, UserChain is empty.
255 /// \p V The given expression
256 /// \p SignExtended Whether V will be sign-extended in the computation of the
258 /// \p ZeroExtended Whether V will be zero-extended in the computation of the
260 /// \p NonNegative Whether V is guaranteed to be non-negative. For example,
261 /// an index of an inbounds GEP is guaranteed to be
262 /// non-negative. Levaraging this, we can better split
264 APInt
find(Value
*V
, bool SignExtended
, bool ZeroExtended
, bool NonNegative
);
266 /// A helper function to look into both operands of a binary operator.
267 APInt
findInEitherOperand(BinaryOperator
*BO
, bool SignExtended
,
270 /// After finding the constant offset C from the GEP index I, we build a new
271 /// index I' s.t. I' + C = I. This function builds and returns the new
272 /// index I' according to UserChain produced by function "find".
274 /// The building conceptually takes two steps:
275 /// 1) iteratively distribute s/zext towards the leaves of the expression tree
277 /// 2) reassociate the expression tree to the form I' + C.
279 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
280 /// sext to a, b and 5 so that we have
281 /// sext(a) + (sext(b) + 5).
282 /// Then, we reassociate it to
283 /// (sext(a) + sext(b)) + 5.
284 /// Given this form, we know I' is sext(a) + sext(b).
285 Value
*rebuildWithoutConstOffset();
287 /// After the first step of rebuilding the GEP index without the constant
288 /// offset, distribute s/zext to the operands of all operators in UserChain.
289 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
290 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
292 /// The function also updates UserChain to point to new subexpressions after
293 /// distributing s/zext. e.g., the old UserChain of the above example is
294 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
295 /// and the new UserChain is
296 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
297 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
299 /// \p ChainIndex The index to UserChain. ChainIndex is initially
300 /// UserChain.size() - 1, and is decremented during
302 Value
*distributeExtsAndCloneChain(unsigned ChainIndex
);
304 /// Reassociates the GEP index to the form I' + C and returns I'.
305 Value
*removeConstOffset(unsigned ChainIndex
);
307 /// A helper function to apply ExtInsts, a list of s/zext, to value V.
308 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
309 /// returns "sext i32 (zext i16 V to i32) to i64".
310 Value
*applyExts(Value
*V
);
312 /// A helper function that returns whether we can trace into the operands
313 /// of binary operator BO for a constant offset.
315 /// \p SignExtended Whether BO is surrounded by sext
316 /// \p ZeroExtended Whether BO is surrounded by zext
317 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
319 bool CanTraceInto(bool SignExtended
, bool ZeroExtended
, BinaryOperator
*BO
,
322 /// The path from the constant offset to the old GEP index. e.g., if the GEP
323 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
324 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
325 /// UserChain[2] will be the entire expression "a * b + (c + 5)".
327 /// This path helps to rebuild the new GEP index.
328 SmallVector
<User
*, 8> UserChain
;
330 /// A data structure used in rebuildWithoutConstOffset. Contains all
331 /// sext/zext instructions along UserChain.
332 SmallVector
<CastInst
*, 16> ExtInsts
;
334 /// Insertion position of cloned instructions.
337 const DataLayout
&DL
;
338 const DominatorTree
*DT
;
341 /// A pass that tries to split every GEP in the function into a variadic
342 /// base and a constant offset. It is a FunctionPass because searching for the
343 /// constant offset may inspect other basic blocks.
344 class SeparateConstOffsetFromGEP
: public FunctionPass
{
348 SeparateConstOffsetFromGEP(bool LowerGEP
= false)
349 : FunctionPass(ID
), LowerGEP(LowerGEP
) {
350 initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
353 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
354 AU
.addRequired
<DominatorTreeWrapperPass
>();
355 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
356 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
357 AU
.addRequired
<LoopInfoWrapperPass
>();
358 AU
.setPreservesCFG();
359 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
362 bool doInitialization(Module
&M
) override
{
363 DL
= &M
.getDataLayout();
367 bool runOnFunction(Function
&F
) override
;
370 /// Tries to split the given GEP into a variadic base and a constant offset,
371 /// and returns true if the splitting succeeds.
372 bool splitGEP(GetElementPtrInst
*GEP
);
374 /// Lower a GEP with multiple indices into multiple GEPs with a single index.
375 /// Function splitGEP already split the original GEP into a variadic part and
376 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
377 /// variadic part into a set of GEPs with a single index and applies
378 /// AccumulativeByteOffset to it.
379 /// \p Variadic The variadic part of the original GEP.
380 /// \p AccumulativeByteOffset The constant offset.
381 void lowerToSingleIndexGEPs(GetElementPtrInst
*Variadic
,
382 int64_t AccumulativeByteOffset
);
384 /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
385 /// Function splitGEP already split the original GEP into a variadic part and
386 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
387 /// variadic part into a set of arithmetic operations and applies
388 /// AccumulativeByteOffset to it.
389 /// \p Variadic The variadic part of the original GEP.
390 /// \p AccumulativeByteOffset The constant offset.
391 void lowerToArithmetics(GetElementPtrInst
*Variadic
,
392 int64_t AccumulativeByteOffset
);
394 /// Finds the constant offset within each index and accumulates them. If
395 /// LowerGEP is true, it finds in indices of both sequential and structure
396 /// types, otherwise it only finds in sequential indices. The output
397 /// NeedsExtraction indicates whether we successfully find a non-zero constant
399 int64_t accumulateByteOffset(GetElementPtrInst
*GEP
, bool &NeedsExtraction
);
401 /// Canonicalize array indices to pointer-size integers. This helps to
402 /// simplify the logic of splitting a GEP. For example, if a + b is a
403 /// pointer-size integer, we have
404 /// gep base, a + b = gep (gep base, a), b
405 /// However, this equality may not hold if the size of a + b is smaller than
406 /// the pointer size, because LLVM conceptually sign-extends GEP indices to
407 /// pointer size before computing the address
408 /// (http://llvm.org/docs/LangRef.html#id181).
410 /// This canonicalization is very likely already done in clang and
411 /// instcombine. Therefore, the program will probably remain the same.
413 /// Returns true if the module changes.
415 /// Verified in @i32_add in split-gep.ll
416 bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst
*GEP
);
418 /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
419 /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
420 /// the constant offset. After extraction, it becomes desirable to reunion the
421 /// distributed sexts. For example,
423 /// &a[sext(i +nsw (j +nsw 5)]
424 /// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)]
425 /// => constant extraction &a[sext(i) + sext(j)] + 5
426 /// => reunion &a[sext(i +nsw j)] + 5
427 bool reuniteExts(Function
&F
);
429 /// A helper that reunites sexts in an instruction.
430 bool reuniteExts(Instruction
*I
);
432 /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
433 Instruction
*findClosestMatchingDominator(const SCEV
*Key
,
434 Instruction
*Dominatee
);
435 /// Verify F is free of dead code.
436 void verifyNoDeadCode(Function
&F
);
438 bool hasMoreThanOneUseInLoop(Value
*v
, Loop
*L
);
440 // Swap the index operand of two GEP.
441 void swapGEPOperand(GetElementPtrInst
*First
, GetElementPtrInst
*Second
);
443 // Check if it is safe to swap operand of two GEP.
444 bool isLegalToSwapOperand(GetElementPtrInst
*First
, GetElementPtrInst
*Second
,
447 const DataLayout
*DL
= nullptr;
448 DominatorTree
*DT
= nullptr;
452 TargetLibraryInfo
*TLI
;
454 /// Whether to lower a GEP with multiple indices into arithmetic operations or
455 /// multiple GEPs with a single index.
458 DenseMap
<const SCEV
*, SmallVector
<Instruction
*, 2>> DominatingExprs
;
461 } // end anonymous namespace
463 char SeparateConstOffsetFromGEP::ID
= 0;
465 INITIALIZE_PASS_BEGIN(
466 SeparateConstOffsetFromGEP
, "separate-const-offset-from-gep",
467 "Split GEPs to a variadic base and a constant offset for better CSE", false,
469 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
470 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
471 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
472 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
473 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
475 SeparateConstOffsetFromGEP
, "separate-const-offset-from-gep",
476 "Split GEPs to a variadic base and a constant offset for better CSE", false,
479 FunctionPass
*llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP
) {
480 return new SeparateConstOffsetFromGEP(LowerGEP
);
483 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended
,
487 // We only consider ADD, SUB and OR, because a non-zero constant found in
488 // expressions composed of these operations can be easily hoisted as a
489 // constant offset by reassociation.
490 if (BO
->getOpcode() != Instruction::Add
&&
491 BO
->getOpcode() != Instruction::Sub
&&
492 BO
->getOpcode() != Instruction::Or
) {
496 Value
*LHS
= BO
->getOperand(0), *RHS
= BO
->getOperand(1);
497 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
498 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
499 // FIXME: this does not appear to be covered by any tests
500 // (with x86/aarch64 backends at least)
501 if (BO
->getOpcode() == Instruction::Or
&&
502 !haveNoCommonBitsSet(LHS
, RHS
, DL
, nullptr, BO
, DT
))
505 // In addition, tracing into BO requires that its surrounding s/zext (if
506 // any) is distributable to both operands.
508 // Suppose BO = A op B.
509 // SignExtended | ZeroExtended | Distributable?
510 // --------------+--------------+----------------------------------
511 // 0 | 0 | true because no s/zext exists
512 // 0 | 1 | zext(BO) == zext(A) op zext(B)
513 // 1 | 0 | sext(BO) == sext(A) op sext(B)
514 // 1 | 1 | zext(sext(BO)) ==
515 // | | zext(sext(A)) op zext(sext(B))
516 if (BO
->getOpcode() == Instruction::Add
&& !ZeroExtended
&& NonNegative
) {
517 // If a + b >= 0 and (a >= 0 or b >= 0), then
518 // sext(a + b) = sext(a) + sext(b)
519 // even if the addition is not marked nsw.
521 // Leveraging this invarient, we can trace into an sext'ed inbound GEP
522 // index if the constant offset is non-negative.
524 // Verified in @sext_add in split-gep.ll.
525 if (ConstantInt
*ConstLHS
= dyn_cast
<ConstantInt
>(LHS
)) {
526 if (!ConstLHS
->isNegative())
529 if (ConstantInt
*ConstRHS
= dyn_cast
<ConstantInt
>(RHS
)) {
530 if (!ConstRHS
->isNegative())
535 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
536 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
537 if (BO
->getOpcode() == Instruction::Add
||
538 BO
->getOpcode() == Instruction::Sub
) {
539 if (SignExtended
&& !BO
->hasNoSignedWrap())
541 if (ZeroExtended
&& !BO
->hasNoUnsignedWrap())
548 APInt
ConstantOffsetExtractor::findInEitherOperand(BinaryOperator
*BO
,
551 // BO being non-negative does not shed light on whether its operands are
552 // non-negative. Clear the NonNegative flag here.
553 APInt ConstantOffset
= find(BO
->getOperand(0), SignExtended
, ZeroExtended
,
554 /* NonNegative */ false);
555 // If we found a constant offset in the left operand, stop and return that.
556 // This shortcut might cause us to miss opportunities of combining the
557 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
558 // However, such cases are probably already handled by -instcombine,
559 // given this pass runs after the standard optimizations.
560 if (ConstantOffset
!= 0) return ConstantOffset
;
561 ConstantOffset
= find(BO
->getOperand(1), SignExtended
, ZeroExtended
,
562 /* NonNegative */ false);
563 // If U is a sub operator, negate the constant offset found in the right
565 if (BO
->getOpcode() == Instruction::Sub
)
566 ConstantOffset
= -ConstantOffset
;
567 return ConstantOffset
;
570 APInt
ConstantOffsetExtractor::find(Value
*V
, bool SignExtended
,
571 bool ZeroExtended
, bool NonNegative
) {
572 // TODO(jingyue): We could trace into integer/pointer casts, such as
573 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
574 // integers because it gives good enough results for our benchmarks.
575 unsigned BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
577 // We cannot do much with Values that are not a User, such as an Argument.
578 User
*U
= dyn_cast
<User
>(V
);
579 if (U
== nullptr) return APInt(BitWidth
, 0);
581 APInt
ConstantOffset(BitWidth
, 0);
582 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
583 // Hooray, we found it!
584 ConstantOffset
= CI
->getValue();
585 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(V
)) {
586 // Trace into subexpressions for more hoisting opportunities.
587 if (CanTraceInto(SignExtended
, ZeroExtended
, BO
, NonNegative
))
588 ConstantOffset
= findInEitherOperand(BO
, SignExtended
, ZeroExtended
);
589 } else if (isa
<TruncInst
>(V
)) {
591 find(U
->getOperand(0), SignExtended
, ZeroExtended
, NonNegative
)
593 } else if (isa
<SExtInst
>(V
)) {
594 ConstantOffset
= find(U
->getOperand(0), /* SignExtended */ true,
595 ZeroExtended
, NonNegative
).sext(BitWidth
);
596 } else if (isa
<ZExtInst
>(V
)) {
597 // As an optimization, we can clear the SignExtended flag because
598 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
600 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
602 find(U
->getOperand(0), /* SignExtended */ false,
603 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth
);
606 // If we found a non-zero constant offset, add it to the path for
607 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
608 // help this optimization.
609 if (ConstantOffset
!= 0)
610 UserChain
.push_back(U
);
611 return ConstantOffset
;
614 Value
*ConstantOffsetExtractor::applyExts(Value
*V
) {
616 // ExtInsts is built in the use-def order. Therefore, we apply them to V
617 // in the reversed order.
618 for (auto I
= ExtInsts
.rbegin(), E
= ExtInsts
.rend(); I
!= E
; ++I
) {
619 if (Constant
*C
= dyn_cast
<Constant
>(Current
)) {
620 // If Current is a constant, apply s/zext using ConstantExpr::getCast.
621 // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
622 Current
= ConstantExpr::getCast((*I
)->getOpcode(), C
, (*I
)->getType());
624 Instruction
*Ext
= (*I
)->clone();
625 Ext
->setOperand(0, Current
);
626 Ext
->insertBefore(IP
);
633 Value
*ConstantOffsetExtractor::rebuildWithoutConstOffset() {
634 distributeExtsAndCloneChain(UserChain
.size() - 1);
635 // Remove all nullptrs (used to be s/zext) from UserChain.
636 unsigned NewSize
= 0;
637 for (User
*I
: UserChain
) {
639 UserChain
[NewSize
] = I
;
643 UserChain
.resize(NewSize
);
644 return removeConstOffset(UserChain
.size() - 1);
648 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex
) {
649 User
*U
= UserChain
[ChainIndex
];
650 if (ChainIndex
== 0) {
651 assert(isa
<ConstantInt
>(U
));
652 // If U is a ConstantInt, applyExts will return a ConstantInt as well.
653 return UserChain
[ChainIndex
] = cast
<ConstantInt
>(applyExts(U
));
656 if (CastInst
*Cast
= dyn_cast
<CastInst
>(U
)) {
658 (isa
<SExtInst
>(Cast
) || isa
<ZExtInst
>(Cast
) || isa
<TruncInst
>(Cast
)) &&
659 "Only following instructions can be traced: sext, zext & trunc");
660 ExtInsts
.push_back(Cast
);
661 UserChain
[ChainIndex
] = nullptr;
662 return distributeExtsAndCloneChain(ChainIndex
- 1);
665 // Function find only trace into BinaryOperator and CastInst.
666 BinaryOperator
*BO
= cast
<BinaryOperator
>(U
);
667 // OpNo = which operand of BO is UserChain[ChainIndex - 1]
668 unsigned OpNo
= (BO
->getOperand(0) == UserChain
[ChainIndex
- 1] ? 0 : 1);
669 Value
*TheOther
= applyExts(BO
->getOperand(1 - OpNo
));
670 Value
*NextInChain
= distributeExtsAndCloneChain(ChainIndex
- 1);
672 BinaryOperator
*NewBO
= nullptr;
674 NewBO
= BinaryOperator::Create(BO
->getOpcode(), NextInChain
, TheOther
,
677 NewBO
= BinaryOperator::Create(BO
->getOpcode(), TheOther
, NextInChain
,
680 return UserChain
[ChainIndex
] = NewBO
;
683 Value
*ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex
) {
684 if (ChainIndex
== 0) {
685 assert(isa
<ConstantInt
>(UserChain
[ChainIndex
]));
686 return ConstantInt::getNullValue(UserChain
[ChainIndex
]->getType());
689 BinaryOperator
*BO
= cast
<BinaryOperator
>(UserChain
[ChainIndex
]);
690 assert(BO
->getNumUses() <= 1 &&
691 "distributeExtsAndCloneChain clones each BinaryOperator in "
692 "UserChain, so no one should be used more than "
695 unsigned OpNo
= (BO
->getOperand(0) == UserChain
[ChainIndex
- 1] ? 0 : 1);
696 assert(BO
->getOperand(OpNo
) == UserChain
[ChainIndex
- 1]);
697 Value
*NextInChain
= removeConstOffset(ChainIndex
- 1);
698 Value
*TheOther
= BO
->getOperand(1 - OpNo
);
700 // If NextInChain is 0 and not the LHS of a sub, we can simplify the
701 // sub-expression to be just TheOther.
702 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(NextInChain
)) {
703 if (CI
->isZero() && !(BO
->getOpcode() == Instruction::Sub
&& OpNo
== 0))
707 BinaryOperator::BinaryOps NewOp
= BO
->getOpcode();
708 if (BO
->getOpcode() == Instruction::Or
) {
709 // Rebuild "or" as "add", because "or" may be invalid for the new
712 // For instance, given
713 // a | (b + 5) where a and b + 5 have no common bits,
714 // we can extract 5 as the constant offset.
716 // However, reusing the "or" in the new index would give us
718 // which does not equal a | (b + 5).
720 // Replacing the "or" with "add" is fine, because
721 // a | (b + 5) = a + (b + 5) = (a + b) + 5
722 NewOp
= Instruction::Add
;
725 BinaryOperator
*NewBO
;
727 NewBO
= BinaryOperator::Create(NewOp
, NextInChain
, TheOther
, "", IP
);
729 NewBO
= BinaryOperator::Create(NewOp
, TheOther
, NextInChain
, "", IP
);
735 Value
*ConstantOffsetExtractor::Extract(Value
*Idx
, GetElementPtrInst
*GEP
,
736 User
*&UserChainTail
,
737 const DominatorTree
*DT
) {
738 ConstantOffsetExtractor
Extractor(GEP
, DT
);
739 // Find a non-zero constant offset first.
740 APInt ConstantOffset
=
741 Extractor
.find(Idx
, /* SignExtended */ false, /* ZeroExtended */ false,
743 if (ConstantOffset
== 0) {
744 UserChainTail
= nullptr;
747 // Separates the constant offset from the GEP index.
748 Value
*IdxWithoutConstOffset
= Extractor
.rebuildWithoutConstOffset();
749 UserChainTail
= Extractor
.UserChain
.back();
750 return IdxWithoutConstOffset
;
753 int64_t ConstantOffsetExtractor::Find(Value
*Idx
, GetElementPtrInst
*GEP
,
754 const DominatorTree
*DT
) {
755 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
756 return ConstantOffsetExtractor(GEP
, DT
)
757 .find(Idx
, /* SignExtended */ false, /* ZeroExtended */ false,
762 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
763 GetElementPtrInst
*GEP
) {
764 bool Changed
= false;
765 Type
*IntPtrTy
= DL
->getIntPtrType(GEP
->getType());
766 gep_type_iterator GTI
= gep_type_begin(*GEP
);
767 for (User::op_iterator I
= GEP
->op_begin() + 1, E
= GEP
->op_end();
768 I
!= E
; ++I
, ++GTI
) {
769 // Skip struct member indices which must be i32.
770 if (GTI
.isSequential()) {
771 if ((*I
)->getType() != IntPtrTy
) {
772 *I
= CastInst::CreateIntegerCast(*I
, IntPtrTy
, true, "idxprom", GEP
);
781 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst
*GEP
,
782 bool &NeedsExtraction
) {
783 NeedsExtraction
= false;
784 int64_t AccumulativeByteOffset
= 0;
785 gep_type_iterator GTI
= gep_type_begin(*GEP
);
786 for (unsigned I
= 1, E
= GEP
->getNumOperands(); I
!= E
; ++I
, ++GTI
) {
787 if (GTI
.isSequential()) {
788 // Tries to extract a constant offset from this GEP index.
789 int64_t ConstantOffset
=
790 ConstantOffsetExtractor::Find(GEP
->getOperand(I
), GEP
, DT
);
791 if (ConstantOffset
!= 0) {
792 NeedsExtraction
= true;
793 // A GEP may have multiple indices. We accumulate the extracted
794 // constant offset to a byte offset, and later offset the remainder of
795 // the original GEP with this byte offset.
796 AccumulativeByteOffset
+=
797 ConstantOffset
* DL
->getTypeAllocSize(GTI
.getIndexedType());
799 } else if (LowerGEP
) {
800 StructType
*StTy
= GTI
.getStructType();
801 uint64_t Field
= cast
<ConstantInt
>(GEP
->getOperand(I
))->getZExtValue();
802 // Skip field 0 as the offset is always 0.
804 NeedsExtraction
= true;
805 AccumulativeByteOffset
+=
806 DL
->getStructLayout(StTy
)->getElementOffset(Field
);
810 return AccumulativeByteOffset
;
813 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
814 GetElementPtrInst
*Variadic
, int64_t AccumulativeByteOffset
) {
815 IRBuilder
<> Builder(Variadic
);
816 Type
*IntPtrTy
= DL
->getIntPtrType(Variadic
->getType());
819 Builder
.getInt8PtrTy(Variadic
->getType()->getPointerAddressSpace());
820 Value
*ResultPtr
= Variadic
->getOperand(0);
821 Loop
*L
= LI
->getLoopFor(Variadic
->getParent());
822 // Check if the base is not loop invariant or used more than once.
823 bool isSwapCandidate
=
824 L
&& L
->isLoopInvariant(ResultPtr
) &&
825 !hasMoreThanOneUseInLoop(ResultPtr
, L
);
826 Value
*FirstResult
= nullptr;
828 if (ResultPtr
->getType() != I8PtrTy
)
829 ResultPtr
= Builder
.CreateBitCast(ResultPtr
, I8PtrTy
);
831 gep_type_iterator GTI
= gep_type_begin(*Variadic
);
832 // Create an ugly GEP for each sequential index. We don't create GEPs for
833 // structure indices, as they are accumulated in the constant offset index.
834 for (unsigned I
= 1, E
= Variadic
->getNumOperands(); I
!= E
; ++I
, ++GTI
) {
835 if (GTI
.isSequential()) {
836 Value
*Idx
= Variadic
->getOperand(I
);
837 // Skip zero indices.
838 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
))
842 APInt ElementSize
= APInt(IntPtrTy
->getIntegerBitWidth(),
843 DL
->getTypeAllocSize(GTI
.getIndexedType()));
844 // Scale the index by element size.
845 if (ElementSize
!= 1) {
846 if (ElementSize
.isPowerOf2()) {
847 Idx
= Builder
.CreateShl(
848 Idx
, ConstantInt::get(IntPtrTy
, ElementSize
.logBase2()));
850 Idx
= Builder
.CreateMul(Idx
, ConstantInt::get(IntPtrTy
, ElementSize
));
853 // Create an ugly GEP with a single index for each index.
855 Builder
.CreateGEP(Builder
.getInt8Ty(), ResultPtr
, Idx
, "uglygep");
856 if (FirstResult
== nullptr)
857 FirstResult
= ResultPtr
;
861 // Create a GEP with the constant offset index.
862 if (AccumulativeByteOffset
!= 0) {
863 Value
*Offset
= ConstantInt::get(IntPtrTy
, AccumulativeByteOffset
);
865 Builder
.CreateGEP(Builder
.getInt8Ty(), ResultPtr
, Offset
, "uglygep");
867 isSwapCandidate
= false;
869 // If we created a GEP with constant index, and the base is loop invariant,
870 // then we swap the first one with it, so LICM can move constant GEP out
872 GetElementPtrInst
*FirstGEP
= dyn_cast_or_null
<GetElementPtrInst
>(FirstResult
);
873 GetElementPtrInst
*SecondGEP
= dyn_cast_or_null
<GetElementPtrInst
>(ResultPtr
);
874 if (isSwapCandidate
&& isLegalToSwapOperand(FirstGEP
, SecondGEP
, L
))
875 swapGEPOperand(FirstGEP
, SecondGEP
);
877 if (ResultPtr
->getType() != Variadic
->getType())
878 ResultPtr
= Builder
.CreateBitCast(ResultPtr
, Variadic
->getType());
880 Variadic
->replaceAllUsesWith(ResultPtr
);
881 Variadic
->eraseFromParent();
885 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst
*Variadic
,
886 int64_t AccumulativeByteOffset
) {
887 IRBuilder
<> Builder(Variadic
);
888 Type
*IntPtrTy
= DL
->getIntPtrType(Variadic
->getType());
890 Value
*ResultPtr
= Builder
.CreatePtrToInt(Variadic
->getOperand(0), IntPtrTy
);
891 gep_type_iterator GTI
= gep_type_begin(*Variadic
);
892 // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
893 // don't create arithmetics for structure indices, as they are accumulated
894 // in the constant offset index.
895 for (unsigned I
= 1, E
= Variadic
->getNumOperands(); I
!= E
; ++I
, ++GTI
) {
896 if (GTI
.isSequential()) {
897 Value
*Idx
= Variadic
->getOperand(I
);
898 // Skip zero indices.
899 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
))
903 APInt ElementSize
= APInt(IntPtrTy
->getIntegerBitWidth(),
904 DL
->getTypeAllocSize(GTI
.getIndexedType()));
905 // Scale the index by element size.
906 if (ElementSize
!= 1) {
907 if (ElementSize
.isPowerOf2()) {
908 Idx
= Builder
.CreateShl(
909 Idx
, ConstantInt::get(IntPtrTy
, ElementSize
.logBase2()));
911 Idx
= Builder
.CreateMul(Idx
, ConstantInt::get(IntPtrTy
, ElementSize
));
914 // Create an ADD for each index.
915 ResultPtr
= Builder
.CreateAdd(ResultPtr
, Idx
);
919 // Create an ADD for the constant offset index.
920 if (AccumulativeByteOffset
!= 0) {
921 ResultPtr
= Builder
.CreateAdd(
922 ResultPtr
, ConstantInt::get(IntPtrTy
, AccumulativeByteOffset
));
925 ResultPtr
= Builder
.CreateIntToPtr(ResultPtr
, Variadic
->getType());
926 Variadic
->replaceAllUsesWith(ResultPtr
);
927 Variadic
->eraseFromParent();
930 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst
*GEP
) {
932 if (GEP
->getType()->isVectorTy())
935 // The backend can already nicely handle the case where all indices are
937 if (GEP
->hasAllConstantIndices())
940 bool Changed
= canonicalizeArrayIndicesToPointerSize(GEP
);
942 bool NeedsExtraction
;
943 int64_t AccumulativeByteOffset
= accumulateByteOffset(GEP
, NeedsExtraction
);
945 if (!NeedsExtraction
)
948 TargetTransformInfo
&TTI
=
949 getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(*GEP
->getFunction());
951 // If LowerGEP is disabled, before really splitting the GEP, check whether the
952 // backend supports the addressing mode we are about to produce. If no, this
953 // splitting probably won't be beneficial.
954 // If LowerGEP is enabled, even the extracted constant offset can not match
955 // the addressing mode, we can still do optimizations to other lowered parts
956 // of variable indices. Therefore, we don't check for addressing modes in that
959 unsigned AddrSpace
= GEP
->getPointerAddressSpace();
960 if (!TTI
.isLegalAddressingMode(GEP
->getResultElementType(),
961 /*BaseGV=*/nullptr, AccumulativeByteOffset
,
962 /*HasBaseReg=*/true, /*Scale=*/0,
968 // Remove the constant offset in each sequential index. The resultant GEP
969 // computes the variadic base.
970 // Notice that we don't remove struct field indices here. If LowerGEP is
971 // disabled, a structure index is not accumulated and we still use the old
972 // one. If LowerGEP is enabled, a structure index is accumulated in the
973 // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
974 // handle the constant offset and won't need a new structure index.
975 gep_type_iterator GTI
= gep_type_begin(*GEP
);
976 for (unsigned I
= 1, E
= GEP
->getNumOperands(); I
!= E
; ++I
, ++GTI
) {
977 if (GTI
.isSequential()) {
978 // Splits this GEP index into a variadic part and a constant offset, and
979 // uses the variadic part as the new index.
980 Value
*OldIdx
= GEP
->getOperand(I
);
983 ConstantOffsetExtractor::Extract(OldIdx
, GEP
, UserChainTail
, DT
);
984 if (NewIdx
!= nullptr) {
985 // Switches to the index with the constant offset removed.
986 GEP
->setOperand(I
, NewIdx
);
987 // After switching to the new index, we can garbage-collect UserChain
988 // and the old index if they are not used.
989 RecursivelyDeleteTriviallyDeadInstructions(UserChainTail
);
990 RecursivelyDeleteTriviallyDeadInstructions(OldIdx
);
995 // Clear the inbounds attribute because the new index may be off-bound.
999 // addr = gep inbounds float, float* p, i64 b
1001 // is transformed to:
1003 // addr2 = gep float, float* p, i64 a ; inbounds removed
1004 // addr = gep inbounds float, float* addr2, i64 5
1006 // If a is -4, although the old index b is in bounds, the new index a is
1007 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
1008 // inbounds keyword is not present, the offsets are added to the base
1009 // address with silently-wrapping two's complement arithmetic".
1010 // Therefore, the final code will be a semantically equivalent.
1012 // TODO(jingyue): do some range analysis to keep as many inbounds as
1013 // possible. GEPs with inbounds are more friendly to alias analysis.
1014 bool GEPWasInBounds
= GEP
->isInBounds();
1015 GEP
->setIsInBounds(false);
1017 // Lowers a GEP to either GEPs with a single index or arithmetic operations.
1019 // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
1020 // arithmetic operations if the target uses alias analysis in codegen.
1022 lowerToSingleIndexGEPs(GEP
, AccumulativeByteOffset
);
1024 lowerToArithmetics(GEP
, AccumulativeByteOffset
);
1028 // No need to create another GEP if the accumulative byte offset is 0.
1029 if (AccumulativeByteOffset
== 0)
1032 // Offsets the base with the accumulative byte offset.
1037 // => add the offset
1039 // %gep2 ; clone of %gep
1040 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
1041 // %gep ; will be removed
1044 // => replace all uses of %gep with %new.gep and remove %gep
1046 // %gep2 ; clone of %gep
1047 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
1050 // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
1051 // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
1052 // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
1055 // %gep2 ; clone of %gep
1056 // %0 = bitcast %gep2 to i8*
1057 // %uglygep = gep %0, <offset>
1058 // %new.gep = bitcast %uglygep to <type of %gep>
1060 Instruction
*NewGEP
= GEP
->clone();
1061 NewGEP
->insertBefore(GEP
);
1063 // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
1064 // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
1065 // used with unsigned integers later.
1066 int64_t ElementTypeSizeOfGEP
= static_cast<int64_t>(
1067 DL
->getTypeAllocSize(GEP
->getResultElementType()));
1068 Type
*IntPtrTy
= DL
->getIntPtrType(GEP
->getType());
1069 if (AccumulativeByteOffset
% ElementTypeSizeOfGEP
== 0) {
1070 // Very likely. As long as %gep is naturally aligned, the byte offset we
1071 // extracted should be a multiple of sizeof(*%gep).
1072 int64_t Index
= AccumulativeByteOffset
/ ElementTypeSizeOfGEP
;
1073 NewGEP
= GetElementPtrInst::Create(GEP
->getResultElementType(), NewGEP
,
1074 ConstantInt::get(IntPtrTy
, Index
, true),
1075 GEP
->getName(), GEP
);
1076 NewGEP
->copyMetadata(*GEP
);
1077 // Inherit the inbounds attribute of the original GEP.
1078 cast
<GetElementPtrInst
>(NewGEP
)->setIsInBounds(GEPWasInBounds
);
1080 // Unlikely but possible. For example,
1088 // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
1089 // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
1090 // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
1093 // Emit an uglygep in this case.
1094 Type
*I8PtrTy
= Type::getInt8PtrTy(GEP
->getContext(),
1095 GEP
->getPointerAddressSpace());
1096 NewGEP
= new BitCastInst(NewGEP
, I8PtrTy
, "", GEP
);
1097 NewGEP
= GetElementPtrInst::Create(
1098 Type::getInt8Ty(GEP
->getContext()), NewGEP
,
1099 ConstantInt::get(IntPtrTy
, AccumulativeByteOffset
, true), "uglygep",
1101 NewGEP
->copyMetadata(*GEP
);
1102 // Inherit the inbounds attribute of the original GEP.
1103 cast
<GetElementPtrInst
>(NewGEP
)->setIsInBounds(GEPWasInBounds
);
1104 if (GEP
->getType() != I8PtrTy
)
1105 NewGEP
= new BitCastInst(NewGEP
, GEP
->getType(), GEP
->getName(), GEP
);
1108 GEP
->replaceAllUsesWith(NewGEP
);
1109 GEP
->eraseFromParent();
1114 bool SeparateConstOffsetFromGEP::runOnFunction(Function
&F
) {
1115 if (skipFunction(F
))
1118 if (DisableSeparateConstOffsetFromGEP
)
1121 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1122 SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
1123 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1124 TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
1125 bool Changed
= false;
1126 for (BasicBlock
&B
: F
) {
1127 for (BasicBlock::iterator I
= B
.begin(), IE
= B
.end(); I
!= IE
;)
1128 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(I
++))
1129 Changed
|= splitGEP(GEP
);
1130 // No need to split GEP ConstantExprs because all its indices are constant
1134 Changed
|= reuniteExts(F
);
1136 if (VerifyNoDeadCode
)
1137 verifyNoDeadCode(F
);
1142 Instruction
*SeparateConstOffsetFromGEP::findClosestMatchingDominator(
1143 const SCEV
*Key
, Instruction
*Dominatee
) {
1144 auto Pos
= DominatingExprs
.find(Key
);
1145 if (Pos
== DominatingExprs
.end())
1148 auto &Candidates
= Pos
->second
;
1149 // Because we process the basic blocks in pre-order of the dominator tree, a
1150 // candidate that doesn't dominate the current instruction won't dominate any
1151 // future instruction either. Therefore, we pop it out of the stack. This
1152 // optimization makes the algorithm O(n).
1153 while (!Candidates
.empty()) {
1154 Instruction
*Candidate
= Candidates
.back();
1155 if (DT
->dominates(Candidate
, Dominatee
))
1157 Candidates
.pop_back();
1162 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction
*I
) {
1163 if (!SE
->isSCEVable(I
->getType()))
1167 // I: sext(LHS)+sext(RHS)
1168 // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
1169 // TODO: handle zext
1170 Value
*LHS
= nullptr, *RHS
= nullptr;
1171 if (match(I
, m_Add(m_SExt(m_Value(LHS
)), m_SExt(m_Value(RHS
)))) ||
1172 match(I
, m_Sub(m_SExt(m_Value(LHS
)), m_SExt(m_Value(RHS
))))) {
1173 if (LHS
->getType() == RHS
->getType()) {
1175 SE
->getAddExpr(SE
->getUnknown(LHS
), SE
->getUnknown(RHS
));
1176 if (auto *Dom
= findClosestMatchingDominator(Key
, I
)) {
1177 Instruction
*NewSExt
= new SExtInst(Dom
, I
->getType(), "", I
);
1178 NewSExt
->takeName(I
);
1179 I
->replaceAllUsesWith(NewSExt
);
1180 RecursivelyDeleteTriviallyDeadInstructions(I
);
1186 // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
1187 if (match(I
, m_NSWAdd(m_Value(LHS
), m_Value(RHS
))) ||
1188 match(I
, m_NSWSub(m_Value(LHS
), m_Value(RHS
)))) {
1189 if (programUndefinedIfFullPoison(I
)) {
1191 SE
->getAddExpr(SE
->getUnknown(LHS
), SE
->getUnknown(RHS
));
1192 DominatingExprs
[Key
].push_back(I
);
1198 bool SeparateConstOffsetFromGEP::reuniteExts(Function
&F
) {
1199 bool Changed
= false;
1200 DominatingExprs
.clear();
1201 for (const auto Node
: depth_first(DT
)) {
1202 BasicBlock
*BB
= Node
->getBlock();
1203 for (auto I
= BB
->begin(); I
!= BB
->end(); ) {
1204 Instruction
*Cur
= &*I
++;
1205 Changed
|= reuniteExts(Cur
);
1211 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function
&F
) {
1212 for (BasicBlock
&B
: F
) {
1213 for (Instruction
&I
: B
) {
1214 if (isInstructionTriviallyDead(&I
)) {
1215 std::string ErrMessage
;
1216 raw_string_ostream
RSO(ErrMessage
);
1217 RSO
<< "Dead instruction detected!\n" << I
<< "\n";
1218 llvm_unreachable(RSO
.str().c_str());
1224 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
1225 GetElementPtrInst
*FirstGEP
, GetElementPtrInst
*SecondGEP
, Loop
*CurLoop
) {
1226 if (!FirstGEP
|| !FirstGEP
->hasOneUse())
1229 if (!SecondGEP
|| FirstGEP
->getParent() != SecondGEP
->getParent())
1232 if (FirstGEP
== SecondGEP
)
1235 unsigned FirstNum
= FirstGEP
->getNumOperands();
1236 unsigned SecondNum
= SecondGEP
->getNumOperands();
1237 // Give up if the number of operands are not 2.
1238 if (FirstNum
!= SecondNum
|| FirstNum
!= 2)
1241 Value
*FirstBase
= FirstGEP
->getOperand(0);
1242 Value
*SecondBase
= SecondGEP
->getOperand(0);
1243 Value
*FirstOffset
= FirstGEP
->getOperand(1);
1244 // Give up if the index of the first GEP is loop invariant.
1245 if (CurLoop
->isLoopInvariant(FirstOffset
))
1248 // Give up if base doesn't have same type.
1249 if (FirstBase
->getType() != SecondBase
->getType())
1252 Instruction
*FirstOffsetDef
= dyn_cast
<Instruction
>(FirstOffset
);
1254 // Check if the second operand of first GEP has constant coefficient.
1255 // For an example, for the following code, we won't gain anything by
1256 // hoisting the second GEP out because the second GEP can be folded away.
1257 // %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
1258 // %67 = shl i64 %scevgep.sum.ur159, 2
1259 // %uglygep160 = getelementptr i8* %65, i64 %67
1260 // %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
1262 // Skip constant shift instruction which may be generated by Splitting GEPs.
1263 if (FirstOffsetDef
&& FirstOffsetDef
->isShift() &&
1264 isa
<ConstantInt
>(FirstOffsetDef
->getOperand(1)))
1265 FirstOffsetDef
= dyn_cast
<Instruction
>(FirstOffsetDef
->getOperand(0));
1267 // Give up if FirstOffsetDef is an Add or Sub with constant.
1268 // Because it may not profitable at all due to constant folding.
1270 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(FirstOffsetDef
)) {
1271 unsigned opc
= BO
->getOpcode();
1272 if ((opc
== Instruction::Add
|| opc
== Instruction::Sub
) &&
1273 (isa
<ConstantInt
>(BO
->getOperand(0)) ||
1274 isa
<ConstantInt
>(BO
->getOperand(1))))
1280 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value
*V
, Loop
*L
) {
1282 for (User
*U
: V
->users()) {
1283 if (Instruction
*User
= dyn_cast
<Instruction
>(U
))
1284 if (L
->contains(User
))
1285 if (++UsesInLoop
> 1)
1291 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst
*First
,
1292 GetElementPtrInst
*Second
) {
1293 Value
*Offset1
= First
->getOperand(1);
1294 Value
*Offset2
= Second
->getOperand(1);
1295 First
->setOperand(1, Offset2
);
1296 Second
->setOperand(1, Offset1
);
1298 // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
1299 const DataLayout
&DAL
= First
->getModule()->getDataLayout();
1300 APInt
Offset(DAL
.getIndexSizeInBits(
1301 cast
<PointerType
>(First
->getType())->getAddressSpace()),
1304 First
->stripAndAccumulateInBoundsConstantOffsets(DAL
, Offset
);
1305 uint64_t ObjectSize
;
1306 if (!getObjectSize(NewBase
, ObjectSize
, DAL
, TLI
) ||
1307 Offset
.ugt(ObjectSize
)) {
1308 First
->setIsInBounds(false);
1309 Second
->setIsInBounds(false);
1311 First
->setIsInBounds(true);