[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Scalar / SeparateConstOffsetFromGEP.cpp
blob41554fccdf087fc73690e5d2449952abb6f12f17
1 //===- SeparateConstOffsetFromGEP.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop unrolling may create many similar GEPs for array accesses.
10 // e.g., a 2-level loop
12 // float a[32][32]; // global variable
14 // for (int i = 0; i < 2; ++i) {
15 // for (int j = 0; j < 2; ++j) {
16 // ...
17 // ... = a[x + i][y + j];
18 // ...
19 // }
20 // }
22 // will probably be unrolled to:
24 // gep %a, 0, %x, %y; load
25 // gep %a, 0, %x, %y + 1; load
26 // gep %a, 0, %x + 1, %y; load
27 // gep %a, 0, %x + 1, %y + 1; load
29 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
30 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
31 // significant slowdown in targets with limited addressing modes. For instance,
32 // because the PTX target does not support the reg+reg addressing mode, the
33 // NVPTX backend emits PTX code that literally computes the pointer address of
34 // each GEP, wasting tons of registers. It emits the following PTX for the
35 // first load and similar PTX for other loads.
37 // mov.u32 %r1, %x;
38 // mov.u32 %r2, %y;
39 // mul.wide.u32 %rl2, %r1, 128;
40 // mov.u64 %rl3, a;
41 // add.s64 %rl4, %rl3, %rl2;
42 // mul.wide.u32 %rl5, %r2, 4;
43 // add.s64 %rl6, %rl4, %rl5;
44 // ld.global.f32 %f1, [%rl6];
46 // To reduce the register pressure, the optimization implemented in this file
47 // merges the common part of a group of GEPs, so we can compute each pointer
48 // address by adding a simple offset to the common part, saving many registers.
50 // It works by splitting each GEP into a variadic base and a constant offset.
51 // The variadic base can be computed once and reused by multiple GEPs, and the
52 // constant offsets can be nicely folded into the reg+immediate addressing mode
53 // (supported by most targets) without using any extra register.
55 // For instance, we transform the four GEPs and four loads in the above example
56 // into:
58 // base = gep a, 0, x, y
59 // load base
60 // laod base + 1 * sizeof(float)
61 // load base + 32 * sizeof(float)
62 // load base + 33 * sizeof(float)
64 // Given the transformed IR, a backend that supports the reg+immediate
65 // addressing mode can easily fold the pointer arithmetics into the loads. For
66 // example, the NVPTX backend can easily fold the pointer arithmetics into the
67 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
69 // mov.u32 %r1, %tid.x;
70 // mov.u32 %r2, %tid.y;
71 // mul.wide.u32 %rl2, %r1, 128;
72 // mov.u64 %rl3, a;
73 // add.s64 %rl4, %rl3, %rl2;
74 // mul.wide.u32 %rl5, %r2, 4;
75 // add.s64 %rl6, %rl4, %rl5;
76 // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
77 // ld.global.f32 %f2, [%rl6+4]; // much better
78 // ld.global.f32 %f3, [%rl6+128]; // much better
79 // ld.global.f32 %f4, [%rl6+132]; // much better
81 // Another improvement enabled by the LowerGEP flag is to lower a GEP with
82 // multiple indices to either multiple GEPs with a single index or arithmetic
83 // operations (depending on whether the target uses alias analysis in codegen).
84 // Such transformation can have following benefits:
85 // (1) It can always extract constants in the indices of structure type.
86 // (2) After such Lowering, there are more optimization opportunities such as
87 // CSE, LICM and CGP.
89 // E.g. The following GEPs have multiple indices:
90 // BB1:
91 // %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
92 // load %p
93 // ...
94 // BB2:
95 // %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
96 // load %p2
97 // ...
99 // We can not do CSE to the common part related to index "i64 %i". Lowering
100 // GEPs can achieve such goals.
101 // If the target does not use alias analysis in codegen, this pass will
102 // lower a GEP with multiple indices into arithmetic operations:
103 // BB1:
104 // %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
105 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
106 // %3 = add i64 %1, %2 ; CSE opportunity
107 // %4 = mul i64 %j1, length_of_struct
108 // %5 = add i64 %3, %4
109 // %6 = add i64 %3, struct_field_3 ; Constant offset
110 // %p = inttoptr i64 %6 to i32*
111 // load %p
112 // ...
113 // BB2:
114 // %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
115 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
116 // %9 = add i64 %7, %8 ; CSE opportunity
117 // %10 = mul i64 %j2, length_of_struct
118 // %11 = add i64 %9, %10
119 // %12 = add i64 %11, struct_field_2 ; Constant offset
120 // %p = inttoptr i64 %12 to i32*
121 // load %p2
122 // ...
124 // If the target uses alias analysis in codegen, this pass will lower a GEP
125 // with multiple indices into multiple GEPs with a single index:
126 // BB1:
127 // %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
128 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
129 // %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity
130 // %4 = mul i64 %j1, length_of_struct
131 // %5 = getelementptr i8* %3, i64 %4
132 // %6 = getelementptr i8* %5, struct_field_3 ; Constant offset
133 // %p = bitcast i8* %6 to i32*
134 // load %p
135 // ...
136 // BB2:
137 // %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
138 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
139 // %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity
140 // %10 = mul i64 %j2, length_of_struct
141 // %11 = getelementptr i8* %9, i64 %10
142 // %12 = getelementptr i8* %11, struct_field_2 ; Constant offset
143 // %p2 = bitcast i8* %12 to i32*
144 // load %p2
145 // ...
147 // Lowering GEPs can also benefit other passes such as LICM and CGP.
148 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
149 // indices if one of the index is variant. If we lower such GEP into invariant
150 // parts and variant parts, LICM can hoist/sink those invariant parts.
151 // CGP (CodeGen Prepare) tries to sink address calculations that match the
152 // target's addressing modes. A GEP with multiple indices may not match and will
153 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
154 // them. So we end up with a better addressing mode.
156 //===----------------------------------------------------------------------===//
158 #include "llvm/ADT/APInt.h"
159 #include "llvm/ADT/DenseMap.h"
160 #include "llvm/ADT/DepthFirstIterator.h"
161 #include "llvm/ADT/SmallVector.h"
162 #include "llvm/Analysis/LoopInfo.h"
163 #include "llvm/Analysis/MemoryBuiltins.h"
164 #include "llvm/Analysis/ScalarEvolution.h"
165 #include "llvm/Analysis/TargetLibraryInfo.h"
166 #include "llvm/Analysis/TargetTransformInfo.h"
167 #include "llvm/Transforms/Utils/Local.h"
168 #include "llvm/Analysis/ValueTracking.h"
169 #include "llvm/IR/BasicBlock.h"
170 #include "llvm/IR/Constant.h"
171 #include "llvm/IR/Constants.h"
172 #include "llvm/IR/DataLayout.h"
173 #include "llvm/IR/DerivedTypes.h"
174 #include "llvm/IR/Dominators.h"
175 #include "llvm/IR/Function.h"
176 #include "llvm/IR/GetElementPtrTypeIterator.h"
177 #include "llvm/IR/IRBuilder.h"
178 #include "llvm/IR/Instruction.h"
179 #include "llvm/IR/Instructions.h"
180 #include "llvm/IR/Module.h"
181 #include "llvm/IR/PatternMatch.h"
182 #include "llvm/IR/Type.h"
183 #include "llvm/IR/User.h"
184 #include "llvm/IR/Value.h"
185 #include "llvm/Pass.h"
186 #include "llvm/Support/Casting.h"
187 #include "llvm/Support/CommandLine.h"
188 #include "llvm/Support/ErrorHandling.h"
189 #include "llvm/Support/raw_ostream.h"
190 #include "llvm/Target/TargetMachine.h"
191 #include "llvm/Transforms/Scalar.h"
192 #include <cassert>
193 #include <cstdint>
194 #include <string>
196 using namespace llvm;
197 using namespace llvm::PatternMatch;
199 static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
200 "disable-separate-const-offset-from-gep", cl::init(false),
201 cl::desc("Do not separate the constant offset from a GEP instruction"),
202 cl::Hidden);
204 // Setting this flag may emit false positives when the input module already
205 // contains dead instructions. Therefore, we set it only in unit tests that are
206 // free of dead code.
207 static cl::opt<bool>
208 VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
209 cl::desc("Verify this pass produces no dead code"),
210 cl::Hidden);
212 namespace {
214 /// A helper class for separating a constant offset from a GEP index.
216 /// In real programs, a GEP index may be more complicated than a simple addition
217 /// of something and a constant integer which can be trivially splitted. For
218 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
219 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
221 /// Therefore, this class looks into the expression that computes a given GEP
222 /// index, and tries to find a constant integer that can be hoisted to the
223 /// outermost level of the expression as an addition. Not every constant in an
224 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
225 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
226 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
227 class ConstantOffsetExtractor {
228 public:
229 /// Extracts a constant offset from the given GEP index. It returns the
230 /// new index representing the remainder (equal to the original index minus
231 /// the constant offset), or nullptr if we cannot extract a constant offset.
232 /// \p Idx The given GEP index
233 /// \p GEP The given GEP
234 /// \p UserChainTail Outputs the tail of UserChain so that we can
235 /// garbage-collect unused instructions in UserChain.
236 static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
237 User *&UserChainTail, const DominatorTree *DT);
239 /// Looks for a constant offset from the given GEP index without extracting
240 /// it. It returns the numeric value of the extracted constant offset (0 if
241 /// failed). The meaning of the arguments are the same as Extract.
242 static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
243 const DominatorTree *DT);
245 private:
246 ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
247 : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
250 /// Searches the expression that computes V for a non-zero constant C s.t.
251 /// V can be reassociated into the form V' + C. If the searching is
252 /// successful, returns C and update UserChain as a def-use chain from C to V;
253 /// otherwise, UserChain is empty.
255 /// \p V The given expression
256 /// \p SignExtended Whether V will be sign-extended in the computation of the
257 /// GEP index
258 /// \p ZeroExtended Whether V will be zero-extended in the computation of the
259 /// GEP index
260 /// \p NonNegative Whether V is guaranteed to be non-negative. For example,
261 /// an index of an inbounds GEP is guaranteed to be
262 /// non-negative. Levaraging this, we can better split
263 /// inbounds GEPs.
264 APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
266 /// A helper function to look into both operands of a binary operator.
267 APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
268 bool ZeroExtended);
270 /// After finding the constant offset C from the GEP index I, we build a new
271 /// index I' s.t. I' + C = I. This function builds and returns the new
272 /// index I' according to UserChain produced by function "find".
274 /// The building conceptually takes two steps:
275 /// 1) iteratively distribute s/zext towards the leaves of the expression tree
276 /// that computes I
277 /// 2) reassociate the expression tree to the form I' + C.
279 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
280 /// sext to a, b and 5 so that we have
281 /// sext(a) + (sext(b) + 5).
282 /// Then, we reassociate it to
283 /// (sext(a) + sext(b)) + 5.
284 /// Given this form, we know I' is sext(a) + sext(b).
285 Value *rebuildWithoutConstOffset();
287 /// After the first step of rebuilding the GEP index without the constant
288 /// offset, distribute s/zext to the operands of all operators in UserChain.
289 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
290 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
292 /// The function also updates UserChain to point to new subexpressions after
293 /// distributing s/zext. e.g., the old UserChain of the above example is
294 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
295 /// and the new UserChain is
296 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
297 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
299 /// \p ChainIndex The index to UserChain. ChainIndex is initially
300 /// UserChain.size() - 1, and is decremented during
301 /// the recursion.
302 Value *distributeExtsAndCloneChain(unsigned ChainIndex);
304 /// Reassociates the GEP index to the form I' + C and returns I'.
305 Value *removeConstOffset(unsigned ChainIndex);
307 /// A helper function to apply ExtInsts, a list of s/zext, to value V.
308 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
309 /// returns "sext i32 (zext i16 V to i32) to i64".
310 Value *applyExts(Value *V);
312 /// A helper function that returns whether we can trace into the operands
313 /// of binary operator BO for a constant offset.
315 /// \p SignExtended Whether BO is surrounded by sext
316 /// \p ZeroExtended Whether BO is surrounded by zext
317 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
318 /// array index.
319 bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
320 bool NonNegative);
322 /// The path from the constant offset to the old GEP index. e.g., if the GEP
323 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
324 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
325 /// UserChain[2] will be the entire expression "a * b + (c + 5)".
327 /// This path helps to rebuild the new GEP index.
328 SmallVector<User *, 8> UserChain;
330 /// A data structure used in rebuildWithoutConstOffset. Contains all
331 /// sext/zext instructions along UserChain.
332 SmallVector<CastInst *, 16> ExtInsts;
334 /// Insertion position of cloned instructions.
335 Instruction *IP;
337 const DataLayout &DL;
338 const DominatorTree *DT;
341 /// A pass that tries to split every GEP in the function into a variadic
342 /// base and a constant offset. It is a FunctionPass because searching for the
343 /// constant offset may inspect other basic blocks.
344 class SeparateConstOffsetFromGEP : public FunctionPass {
345 public:
346 static char ID;
348 SeparateConstOffsetFromGEP(bool LowerGEP = false)
349 : FunctionPass(ID), LowerGEP(LowerGEP) {
350 initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
353 void getAnalysisUsage(AnalysisUsage &AU) const override {
354 AU.addRequired<DominatorTreeWrapperPass>();
355 AU.addRequired<ScalarEvolutionWrapperPass>();
356 AU.addRequired<TargetTransformInfoWrapperPass>();
357 AU.addRequired<LoopInfoWrapperPass>();
358 AU.setPreservesCFG();
359 AU.addRequired<TargetLibraryInfoWrapperPass>();
362 bool doInitialization(Module &M) override {
363 DL = &M.getDataLayout();
364 return false;
367 bool runOnFunction(Function &F) override;
369 private:
370 /// Tries to split the given GEP into a variadic base and a constant offset,
371 /// and returns true if the splitting succeeds.
372 bool splitGEP(GetElementPtrInst *GEP);
374 /// Lower a GEP with multiple indices into multiple GEPs with a single index.
375 /// Function splitGEP already split the original GEP into a variadic part and
376 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
377 /// variadic part into a set of GEPs with a single index and applies
378 /// AccumulativeByteOffset to it.
379 /// \p Variadic The variadic part of the original GEP.
380 /// \p AccumulativeByteOffset The constant offset.
381 void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
382 int64_t AccumulativeByteOffset);
384 /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
385 /// Function splitGEP already split the original GEP into a variadic part and
386 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
387 /// variadic part into a set of arithmetic operations and applies
388 /// AccumulativeByteOffset to it.
389 /// \p Variadic The variadic part of the original GEP.
390 /// \p AccumulativeByteOffset The constant offset.
391 void lowerToArithmetics(GetElementPtrInst *Variadic,
392 int64_t AccumulativeByteOffset);
394 /// Finds the constant offset within each index and accumulates them. If
395 /// LowerGEP is true, it finds in indices of both sequential and structure
396 /// types, otherwise it only finds in sequential indices. The output
397 /// NeedsExtraction indicates whether we successfully find a non-zero constant
398 /// offset.
399 int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
401 /// Canonicalize array indices to pointer-size integers. This helps to
402 /// simplify the logic of splitting a GEP. For example, if a + b is a
403 /// pointer-size integer, we have
404 /// gep base, a + b = gep (gep base, a), b
405 /// However, this equality may not hold if the size of a + b is smaller than
406 /// the pointer size, because LLVM conceptually sign-extends GEP indices to
407 /// pointer size before computing the address
408 /// (http://llvm.org/docs/LangRef.html#id181).
410 /// This canonicalization is very likely already done in clang and
411 /// instcombine. Therefore, the program will probably remain the same.
413 /// Returns true if the module changes.
415 /// Verified in @i32_add in split-gep.ll
416 bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
418 /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
419 /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
420 /// the constant offset. After extraction, it becomes desirable to reunion the
421 /// distributed sexts. For example,
423 /// &a[sext(i +nsw (j +nsw 5)]
424 /// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)]
425 /// => constant extraction &a[sext(i) + sext(j)] + 5
426 /// => reunion &a[sext(i +nsw j)] + 5
427 bool reuniteExts(Function &F);
429 /// A helper that reunites sexts in an instruction.
430 bool reuniteExts(Instruction *I);
432 /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
433 Instruction *findClosestMatchingDominator(const SCEV *Key,
434 Instruction *Dominatee);
435 /// Verify F is free of dead code.
436 void verifyNoDeadCode(Function &F);
438 bool hasMoreThanOneUseInLoop(Value *v, Loop *L);
440 // Swap the index operand of two GEP.
441 void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);
443 // Check if it is safe to swap operand of two GEP.
444 bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
445 Loop *CurLoop);
447 const DataLayout *DL = nullptr;
448 DominatorTree *DT = nullptr;
449 ScalarEvolution *SE;
451 LoopInfo *LI;
452 TargetLibraryInfo *TLI;
454 /// Whether to lower a GEP with multiple indices into arithmetic operations or
455 /// multiple GEPs with a single index.
456 bool LowerGEP;
458 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingExprs;
461 } // end anonymous namespace
463 char SeparateConstOffsetFromGEP::ID = 0;
465 INITIALIZE_PASS_BEGIN(
466 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
467 "Split GEPs to a variadic base and a constant offset for better CSE", false,
468 false)
469 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
470 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
471 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
472 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
473 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
474 INITIALIZE_PASS_END(
475 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
476 "Split GEPs to a variadic base and a constant offset for better CSE", false,
477 false)
479 FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) {
480 return new SeparateConstOffsetFromGEP(LowerGEP);
483 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
484 bool ZeroExtended,
485 BinaryOperator *BO,
486 bool NonNegative) {
487 // We only consider ADD, SUB and OR, because a non-zero constant found in
488 // expressions composed of these operations can be easily hoisted as a
489 // constant offset by reassociation.
490 if (BO->getOpcode() != Instruction::Add &&
491 BO->getOpcode() != Instruction::Sub &&
492 BO->getOpcode() != Instruction::Or) {
493 return false;
496 Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
497 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
498 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
499 // FIXME: this does not appear to be covered by any tests
500 // (with x86/aarch64 backends at least)
501 if (BO->getOpcode() == Instruction::Or &&
502 !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
503 return false;
505 // In addition, tracing into BO requires that its surrounding s/zext (if
506 // any) is distributable to both operands.
508 // Suppose BO = A op B.
509 // SignExtended | ZeroExtended | Distributable?
510 // --------------+--------------+----------------------------------
511 // 0 | 0 | true because no s/zext exists
512 // 0 | 1 | zext(BO) == zext(A) op zext(B)
513 // 1 | 0 | sext(BO) == sext(A) op sext(B)
514 // 1 | 1 | zext(sext(BO)) ==
515 // | | zext(sext(A)) op zext(sext(B))
516 if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
517 // If a + b >= 0 and (a >= 0 or b >= 0), then
518 // sext(a + b) = sext(a) + sext(b)
519 // even if the addition is not marked nsw.
521 // Leveraging this invarient, we can trace into an sext'ed inbound GEP
522 // index if the constant offset is non-negative.
524 // Verified in @sext_add in split-gep.ll.
525 if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
526 if (!ConstLHS->isNegative())
527 return true;
529 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
530 if (!ConstRHS->isNegative())
531 return true;
535 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
536 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
537 if (BO->getOpcode() == Instruction::Add ||
538 BO->getOpcode() == Instruction::Sub) {
539 if (SignExtended && !BO->hasNoSignedWrap())
540 return false;
541 if (ZeroExtended && !BO->hasNoUnsignedWrap())
542 return false;
545 return true;
548 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
549 bool SignExtended,
550 bool ZeroExtended) {
551 // BO being non-negative does not shed light on whether its operands are
552 // non-negative. Clear the NonNegative flag here.
553 APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
554 /* NonNegative */ false);
555 // If we found a constant offset in the left operand, stop and return that.
556 // This shortcut might cause us to miss opportunities of combining the
557 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
558 // However, such cases are probably already handled by -instcombine,
559 // given this pass runs after the standard optimizations.
560 if (ConstantOffset != 0) return ConstantOffset;
561 ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
562 /* NonNegative */ false);
563 // If U is a sub operator, negate the constant offset found in the right
564 // operand.
565 if (BO->getOpcode() == Instruction::Sub)
566 ConstantOffset = -ConstantOffset;
567 return ConstantOffset;
570 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
571 bool ZeroExtended, bool NonNegative) {
572 // TODO(jingyue): We could trace into integer/pointer casts, such as
573 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
574 // integers because it gives good enough results for our benchmarks.
575 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
577 // We cannot do much with Values that are not a User, such as an Argument.
578 User *U = dyn_cast<User>(V);
579 if (U == nullptr) return APInt(BitWidth, 0);
581 APInt ConstantOffset(BitWidth, 0);
582 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
583 // Hooray, we found it!
584 ConstantOffset = CI->getValue();
585 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
586 // Trace into subexpressions for more hoisting opportunities.
587 if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
588 ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
589 } else if (isa<TruncInst>(V)) {
590 ConstantOffset =
591 find(U->getOperand(0), SignExtended, ZeroExtended, NonNegative)
592 .trunc(BitWidth);
593 } else if (isa<SExtInst>(V)) {
594 ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
595 ZeroExtended, NonNegative).sext(BitWidth);
596 } else if (isa<ZExtInst>(V)) {
597 // As an optimization, we can clear the SignExtended flag because
598 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
600 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
601 ConstantOffset =
602 find(U->getOperand(0), /* SignExtended */ false,
603 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
606 // If we found a non-zero constant offset, add it to the path for
607 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
608 // help this optimization.
609 if (ConstantOffset != 0)
610 UserChain.push_back(U);
611 return ConstantOffset;
614 Value *ConstantOffsetExtractor::applyExts(Value *V) {
615 Value *Current = V;
616 // ExtInsts is built in the use-def order. Therefore, we apply them to V
617 // in the reversed order.
618 for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
619 if (Constant *C = dyn_cast<Constant>(Current)) {
620 // If Current is a constant, apply s/zext using ConstantExpr::getCast.
621 // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
622 Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
623 } else {
624 Instruction *Ext = (*I)->clone();
625 Ext->setOperand(0, Current);
626 Ext->insertBefore(IP);
627 Current = Ext;
630 return Current;
633 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
634 distributeExtsAndCloneChain(UserChain.size() - 1);
635 // Remove all nullptrs (used to be s/zext) from UserChain.
636 unsigned NewSize = 0;
637 for (User *I : UserChain) {
638 if (I != nullptr) {
639 UserChain[NewSize] = I;
640 NewSize++;
643 UserChain.resize(NewSize);
644 return removeConstOffset(UserChain.size() - 1);
647 Value *
648 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
649 User *U = UserChain[ChainIndex];
650 if (ChainIndex == 0) {
651 assert(isa<ConstantInt>(U));
652 // If U is a ConstantInt, applyExts will return a ConstantInt as well.
653 return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
656 if (CastInst *Cast = dyn_cast<CastInst>(U)) {
657 assert(
658 (isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) &&
659 "Only following instructions can be traced: sext, zext & trunc");
660 ExtInsts.push_back(Cast);
661 UserChain[ChainIndex] = nullptr;
662 return distributeExtsAndCloneChain(ChainIndex - 1);
665 // Function find only trace into BinaryOperator and CastInst.
666 BinaryOperator *BO = cast<BinaryOperator>(U);
667 // OpNo = which operand of BO is UserChain[ChainIndex - 1]
668 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
669 Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
670 Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
672 BinaryOperator *NewBO = nullptr;
673 if (OpNo == 0) {
674 NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
675 BO->getName(), IP);
676 } else {
677 NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
678 BO->getName(), IP);
680 return UserChain[ChainIndex] = NewBO;
683 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
684 if (ChainIndex == 0) {
685 assert(isa<ConstantInt>(UserChain[ChainIndex]));
686 return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
689 BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
690 assert(BO->getNumUses() <= 1 &&
691 "distributeExtsAndCloneChain clones each BinaryOperator in "
692 "UserChain, so no one should be used more than "
693 "once");
695 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
696 assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
697 Value *NextInChain = removeConstOffset(ChainIndex - 1);
698 Value *TheOther = BO->getOperand(1 - OpNo);
700 // If NextInChain is 0 and not the LHS of a sub, we can simplify the
701 // sub-expression to be just TheOther.
702 if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
703 if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
704 return TheOther;
707 BinaryOperator::BinaryOps NewOp = BO->getOpcode();
708 if (BO->getOpcode() == Instruction::Or) {
709 // Rebuild "or" as "add", because "or" may be invalid for the new
710 // expression.
712 // For instance, given
713 // a | (b + 5) where a and b + 5 have no common bits,
714 // we can extract 5 as the constant offset.
716 // However, reusing the "or" in the new index would give us
717 // (a | b) + 5
718 // which does not equal a | (b + 5).
720 // Replacing the "or" with "add" is fine, because
721 // a | (b + 5) = a + (b + 5) = (a + b) + 5
722 NewOp = Instruction::Add;
725 BinaryOperator *NewBO;
726 if (OpNo == 0) {
727 NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
728 } else {
729 NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
731 NewBO->takeName(BO);
732 return NewBO;
735 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
736 User *&UserChainTail,
737 const DominatorTree *DT) {
738 ConstantOffsetExtractor Extractor(GEP, DT);
739 // Find a non-zero constant offset first.
740 APInt ConstantOffset =
741 Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
742 GEP->isInBounds());
743 if (ConstantOffset == 0) {
744 UserChainTail = nullptr;
745 return nullptr;
747 // Separates the constant offset from the GEP index.
748 Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
749 UserChainTail = Extractor.UserChain.back();
750 return IdxWithoutConstOffset;
753 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
754 const DominatorTree *DT) {
755 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
756 return ConstantOffsetExtractor(GEP, DT)
757 .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
758 GEP->isInBounds())
759 .getSExtValue();
762 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
763 GetElementPtrInst *GEP) {
764 bool Changed = false;
765 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
766 gep_type_iterator GTI = gep_type_begin(*GEP);
767 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
768 I != E; ++I, ++GTI) {
769 // Skip struct member indices which must be i32.
770 if (GTI.isSequential()) {
771 if ((*I)->getType() != IntPtrTy) {
772 *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
773 Changed = true;
777 return Changed;
780 int64_t
781 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
782 bool &NeedsExtraction) {
783 NeedsExtraction = false;
784 int64_t AccumulativeByteOffset = 0;
785 gep_type_iterator GTI = gep_type_begin(*GEP);
786 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
787 if (GTI.isSequential()) {
788 // Tries to extract a constant offset from this GEP index.
789 int64_t ConstantOffset =
790 ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
791 if (ConstantOffset != 0) {
792 NeedsExtraction = true;
793 // A GEP may have multiple indices. We accumulate the extracted
794 // constant offset to a byte offset, and later offset the remainder of
795 // the original GEP with this byte offset.
796 AccumulativeByteOffset +=
797 ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
799 } else if (LowerGEP) {
800 StructType *StTy = GTI.getStructType();
801 uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
802 // Skip field 0 as the offset is always 0.
803 if (Field != 0) {
804 NeedsExtraction = true;
805 AccumulativeByteOffset +=
806 DL->getStructLayout(StTy)->getElementOffset(Field);
810 return AccumulativeByteOffset;
813 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
814 GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
815 IRBuilder<> Builder(Variadic);
816 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
818 Type *I8PtrTy =
819 Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
820 Value *ResultPtr = Variadic->getOperand(0);
821 Loop *L = LI->getLoopFor(Variadic->getParent());
822 // Check if the base is not loop invariant or used more than once.
823 bool isSwapCandidate =
824 L && L->isLoopInvariant(ResultPtr) &&
825 !hasMoreThanOneUseInLoop(ResultPtr, L);
826 Value *FirstResult = nullptr;
828 if (ResultPtr->getType() != I8PtrTy)
829 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
831 gep_type_iterator GTI = gep_type_begin(*Variadic);
832 // Create an ugly GEP for each sequential index. We don't create GEPs for
833 // structure indices, as they are accumulated in the constant offset index.
834 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
835 if (GTI.isSequential()) {
836 Value *Idx = Variadic->getOperand(I);
837 // Skip zero indices.
838 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
839 if (CI->isZero())
840 continue;
842 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
843 DL->getTypeAllocSize(GTI.getIndexedType()));
844 // Scale the index by element size.
845 if (ElementSize != 1) {
846 if (ElementSize.isPowerOf2()) {
847 Idx = Builder.CreateShl(
848 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
849 } else {
850 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
853 // Create an ugly GEP with a single index for each index.
854 ResultPtr =
855 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
856 if (FirstResult == nullptr)
857 FirstResult = ResultPtr;
861 // Create a GEP with the constant offset index.
862 if (AccumulativeByteOffset != 0) {
863 Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
864 ResultPtr =
865 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
866 } else
867 isSwapCandidate = false;
869 // If we created a GEP with constant index, and the base is loop invariant,
870 // then we swap the first one with it, so LICM can move constant GEP out
871 // later.
872 GetElementPtrInst *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult);
873 GetElementPtrInst *SecondGEP = dyn_cast_or_null<GetElementPtrInst>(ResultPtr);
874 if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
875 swapGEPOperand(FirstGEP, SecondGEP);
877 if (ResultPtr->getType() != Variadic->getType())
878 ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
880 Variadic->replaceAllUsesWith(ResultPtr);
881 Variadic->eraseFromParent();
884 void
885 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
886 int64_t AccumulativeByteOffset) {
887 IRBuilder<> Builder(Variadic);
888 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
890 Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
891 gep_type_iterator GTI = gep_type_begin(*Variadic);
892 // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
893 // don't create arithmetics for structure indices, as they are accumulated
894 // in the constant offset index.
895 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
896 if (GTI.isSequential()) {
897 Value *Idx = Variadic->getOperand(I);
898 // Skip zero indices.
899 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
900 if (CI->isZero())
901 continue;
903 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
904 DL->getTypeAllocSize(GTI.getIndexedType()));
905 // Scale the index by element size.
906 if (ElementSize != 1) {
907 if (ElementSize.isPowerOf2()) {
908 Idx = Builder.CreateShl(
909 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
910 } else {
911 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
914 // Create an ADD for each index.
915 ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
919 // Create an ADD for the constant offset index.
920 if (AccumulativeByteOffset != 0) {
921 ResultPtr = Builder.CreateAdd(
922 ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
925 ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
926 Variadic->replaceAllUsesWith(ResultPtr);
927 Variadic->eraseFromParent();
930 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
931 // Skip vector GEPs.
932 if (GEP->getType()->isVectorTy())
933 return false;
935 // The backend can already nicely handle the case where all indices are
936 // constant.
937 if (GEP->hasAllConstantIndices())
938 return false;
940 bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
942 bool NeedsExtraction;
943 int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
945 if (!NeedsExtraction)
946 return Changed;
948 TargetTransformInfo &TTI =
949 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*GEP->getFunction());
951 // If LowerGEP is disabled, before really splitting the GEP, check whether the
952 // backend supports the addressing mode we are about to produce. If no, this
953 // splitting probably won't be beneficial.
954 // If LowerGEP is enabled, even the extracted constant offset can not match
955 // the addressing mode, we can still do optimizations to other lowered parts
956 // of variable indices. Therefore, we don't check for addressing modes in that
957 // case.
958 if (!LowerGEP) {
959 unsigned AddrSpace = GEP->getPointerAddressSpace();
960 if (!TTI.isLegalAddressingMode(GEP->getResultElementType(),
961 /*BaseGV=*/nullptr, AccumulativeByteOffset,
962 /*HasBaseReg=*/true, /*Scale=*/0,
963 AddrSpace)) {
964 return Changed;
968 // Remove the constant offset in each sequential index. The resultant GEP
969 // computes the variadic base.
970 // Notice that we don't remove struct field indices here. If LowerGEP is
971 // disabled, a structure index is not accumulated and we still use the old
972 // one. If LowerGEP is enabled, a structure index is accumulated in the
973 // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
974 // handle the constant offset and won't need a new structure index.
975 gep_type_iterator GTI = gep_type_begin(*GEP);
976 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
977 if (GTI.isSequential()) {
978 // Splits this GEP index into a variadic part and a constant offset, and
979 // uses the variadic part as the new index.
980 Value *OldIdx = GEP->getOperand(I);
981 User *UserChainTail;
982 Value *NewIdx =
983 ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
984 if (NewIdx != nullptr) {
985 // Switches to the index with the constant offset removed.
986 GEP->setOperand(I, NewIdx);
987 // After switching to the new index, we can garbage-collect UserChain
988 // and the old index if they are not used.
989 RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
990 RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
995 // Clear the inbounds attribute because the new index may be off-bound.
996 // e.g.,
998 // b = add i64 a, 5
999 // addr = gep inbounds float, float* p, i64 b
1001 // is transformed to:
1003 // addr2 = gep float, float* p, i64 a ; inbounds removed
1004 // addr = gep inbounds float, float* addr2, i64 5
1006 // If a is -4, although the old index b is in bounds, the new index a is
1007 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
1008 // inbounds keyword is not present, the offsets are added to the base
1009 // address with silently-wrapping two's complement arithmetic".
1010 // Therefore, the final code will be a semantically equivalent.
1012 // TODO(jingyue): do some range analysis to keep as many inbounds as
1013 // possible. GEPs with inbounds are more friendly to alias analysis.
1014 bool GEPWasInBounds = GEP->isInBounds();
1015 GEP->setIsInBounds(false);
1017 // Lowers a GEP to either GEPs with a single index or arithmetic operations.
1018 if (LowerGEP) {
1019 // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
1020 // arithmetic operations if the target uses alias analysis in codegen.
1021 if (TTI.useAA())
1022 lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
1023 else
1024 lowerToArithmetics(GEP, AccumulativeByteOffset);
1025 return true;
1028 // No need to create another GEP if the accumulative byte offset is 0.
1029 if (AccumulativeByteOffset == 0)
1030 return true;
1032 // Offsets the base with the accumulative byte offset.
1034 // %gep ; the base
1035 // ... %gep ...
1037 // => add the offset
1039 // %gep2 ; clone of %gep
1040 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
1041 // %gep ; will be removed
1042 // ... %gep ...
1044 // => replace all uses of %gep with %new.gep and remove %gep
1046 // %gep2 ; clone of %gep
1047 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
1048 // ... %new.gep ...
1050 // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
1051 // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
1052 // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
1053 // type of %gep.
1055 // %gep2 ; clone of %gep
1056 // %0 = bitcast %gep2 to i8*
1057 // %uglygep = gep %0, <offset>
1058 // %new.gep = bitcast %uglygep to <type of %gep>
1059 // ... %new.gep ...
1060 Instruction *NewGEP = GEP->clone();
1061 NewGEP->insertBefore(GEP);
1063 // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
1064 // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
1065 // used with unsigned integers later.
1066 int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
1067 DL->getTypeAllocSize(GEP->getResultElementType()));
1068 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
1069 if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
1070 // Very likely. As long as %gep is naturally aligned, the byte offset we
1071 // extracted should be a multiple of sizeof(*%gep).
1072 int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
1073 NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
1074 ConstantInt::get(IntPtrTy, Index, true),
1075 GEP->getName(), GEP);
1076 NewGEP->copyMetadata(*GEP);
1077 // Inherit the inbounds attribute of the original GEP.
1078 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
1079 } else {
1080 // Unlikely but possible. For example,
1081 // #pragma pack(1)
1082 // struct S {
1083 // int a[3];
1084 // int64 b[8];
1085 // };
1086 // #pragma pack()
1088 // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
1089 // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
1090 // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
1091 // sizeof(int64).
1093 // Emit an uglygep in this case.
1094 Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
1095 GEP->getPointerAddressSpace());
1096 NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
1097 NewGEP = GetElementPtrInst::Create(
1098 Type::getInt8Ty(GEP->getContext()), NewGEP,
1099 ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
1100 GEP);
1101 NewGEP->copyMetadata(*GEP);
1102 // Inherit the inbounds attribute of the original GEP.
1103 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
1104 if (GEP->getType() != I8PtrTy)
1105 NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
1108 GEP->replaceAllUsesWith(NewGEP);
1109 GEP->eraseFromParent();
1111 return true;
1114 bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
1115 if (skipFunction(F))
1116 return false;
1118 if (DisableSeparateConstOffsetFromGEP)
1119 return false;
1121 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1122 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1123 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1124 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1125 bool Changed = false;
1126 for (BasicBlock &B : F) {
1127 for (BasicBlock::iterator I = B.begin(), IE = B.end(); I != IE;)
1128 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++))
1129 Changed |= splitGEP(GEP);
1130 // No need to split GEP ConstantExprs because all its indices are constant
1131 // already.
1134 Changed |= reuniteExts(F);
1136 if (VerifyNoDeadCode)
1137 verifyNoDeadCode(F);
1139 return Changed;
1142 Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
1143 const SCEV *Key, Instruction *Dominatee) {
1144 auto Pos = DominatingExprs.find(Key);
1145 if (Pos == DominatingExprs.end())
1146 return nullptr;
1148 auto &Candidates = Pos->second;
1149 // Because we process the basic blocks in pre-order of the dominator tree, a
1150 // candidate that doesn't dominate the current instruction won't dominate any
1151 // future instruction either. Therefore, we pop it out of the stack. This
1152 // optimization makes the algorithm O(n).
1153 while (!Candidates.empty()) {
1154 Instruction *Candidate = Candidates.back();
1155 if (DT->dominates(Candidate, Dominatee))
1156 return Candidate;
1157 Candidates.pop_back();
1159 return nullptr;
1162 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
1163 if (!SE->isSCEVable(I->getType()))
1164 return false;
1166 // Dom: LHS+RHS
1167 // I: sext(LHS)+sext(RHS)
1168 // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
1169 // TODO: handle zext
1170 Value *LHS = nullptr, *RHS = nullptr;
1171 if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS)))) ||
1172 match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1173 if (LHS->getType() == RHS->getType()) {
1174 const SCEV *Key =
1175 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1176 if (auto *Dom = findClosestMatchingDominator(Key, I)) {
1177 Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1178 NewSExt->takeName(I);
1179 I->replaceAllUsesWith(NewSExt);
1180 RecursivelyDeleteTriviallyDeadInstructions(I);
1181 return true;
1186 // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
1187 if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS))) ||
1188 match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
1189 if (programUndefinedIfFullPoison(I)) {
1190 const SCEV *Key =
1191 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1192 DominatingExprs[Key].push_back(I);
1195 return false;
1198 bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
1199 bool Changed = false;
1200 DominatingExprs.clear();
1201 for (const auto Node : depth_first(DT)) {
1202 BasicBlock *BB = Node->getBlock();
1203 for (auto I = BB->begin(); I != BB->end(); ) {
1204 Instruction *Cur = &*I++;
1205 Changed |= reuniteExts(Cur);
1208 return Changed;
1211 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
1212 for (BasicBlock &B : F) {
1213 for (Instruction &I : B) {
1214 if (isInstructionTriviallyDead(&I)) {
1215 std::string ErrMessage;
1216 raw_string_ostream RSO(ErrMessage);
1217 RSO << "Dead instruction detected!\n" << I << "\n";
1218 llvm_unreachable(RSO.str().c_str());
1224 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
1225 GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
1226 if (!FirstGEP || !FirstGEP->hasOneUse())
1227 return false;
1229 if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
1230 return false;
1232 if (FirstGEP == SecondGEP)
1233 return false;
1235 unsigned FirstNum = FirstGEP->getNumOperands();
1236 unsigned SecondNum = SecondGEP->getNumOperands();
1237 // Give up if the number of operands are not 2.
1238 if (FirstNum != SecondNum || FirstNum != 2)
1239 return false;
1241 Value *FirstBase = FirstGEP->getOperand(0);
1242 Value *SecondBase = SecondGEP->getOperand(0);
1243 Value *FirstOffset = FirstGEP->getOperand(1);
1244 // Give up if the index of the first GEP is loop invariant.
1245 if (CurLoop->isLoopInvariant(FirstOffset))
1246 return false;
1248 // Give up if base doesn't have same type.
1249 if (FirstBase->getType() != SecondBase->getType())
1250 return false;
1252 Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);
1254 // Check if the second operand of first GEP has constant coefficient.
1255 // For an example, for the following code, we won't gain anything by
1256 // hoisting the second GEP out because the second GEP can be folded away.
1257 // %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
1258 // %67 = shl i64 %scevgep.sum.ur159, 2
1259 // %uglygep160 = getelementptr i8* %65, i64 %67
1260 // %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
1262 // Skip constant shift instruction which may be generated by Splitting GEPs.
1263 if (FirstOffsetDef && FirstOffsetDef->isShift() &&
1264 isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
1265 FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));
1267 // Give up if FirstOffsetDef is an Add or Sub with constant.
1268 // Because it may not profitable at all due to constant folding.
1269 if (FirstOffsetDef)
1270 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
1271 unsigned opc = BO->getOpcode();
1272 if ((opc == Instruction::Add || opc == Instruction::Sub) &&
1273 (isa<ConstantInt>(BO->getOperand(0)) ||
1274 isa<ConstantInt>(BO->getOperand(1))))
1275 return false;
1277 return true;
1280 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
1281 int UsesInLoop = 0;
1282 for (User *U : V->users()) {
1283 if (Instruction *User = dyn_cast<Instruction>(U))
1284 if (L->contains(User))
1285 if (++UsesInLoop > 1)
1286 return true;
1288 return false;
1291 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
1292 GetElementPtrInst *Second) {
1293 Value *Offset1 = First->getOperand(1);
1294 Value *Offset2 = Second->getOperand(1);
1295 First->setOperand(1, Offset2);
1296 Second->setOperand(1, Offset1);
1298 // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
1299 const DataLayout &DAL = First->getModule()->getDataLayout();
1300 APInt Offset(DAL.getIndexSizeInBits(
1301 cast<PointerType>(First->getType())->getAddressSpace()),
1303 Value *NewBase =
1304 First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
1305 uint64_t ObjectSize;
1306 if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
1307 Offset.ugt(ObjectSize)) {
1308 First->setIsInBounds(false);
1309 Second->setIsInBounds(false);
1310 } else
1311 First->setIsInBounds(true);