[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Utils / LoopUnrollPeel.cpp
blob58e42074f963019be870bfb20ae31cea90627e47
1 //===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities for peeling loops
10 // with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for
11 // unrolling loops with compile-time constant trip counts.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/LoopIterator.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/LoopSimplify.h"
41 #include "llvm/Transforms/Utils/LoopUtils.h"
42 #include "llvm/Transforms/Utils/UnrollLoop.h"
43 #include "llvm/Transforms/Utils/ValueMapper.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <limits>
49 using namespace llvm;
50 using namespace llvm::PatternMatch;
52 #define DEBUG_TYPE "loop-unroll"
54 STATISTIC(NumPeeled, "Number of loops peeled");
56 static cl::opt<unsigned> UnrollPeelMaxCount(
57 "unroll-peel-max-count", cl::init(7), cl::Hidden,
58 cl::desc("Max average trip count which will cause loop peeling."));
60 static cl::opt<unsigned> UnrollForcePeelCount(
61 "unroll-force-peel-count", cl::init(0), cl::Hidden,
62 cl::desc("Force a peel count regardless of profiling information."));
64 static cl::opt<bool> UnrollPeelMultiDeoptExit(
65 "unroll-peel-multi-deopt-exit", cl::init(true), cl::Hidden,
66 cl::desc("Allow peeling of loops with multiple deopt exits."));
68 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
70 // Designates that a Phi is estimated to become invariant after an "infinite"
71 // number of loop iterations (i.e. only may become an invariant if the loop is
72 // fully unrolled).
73 static const unsigned InfiniteIterationsToInvariance =
74 std::numeric_limits<unsigned>::max();
76 // Check whether we are capable of peeling this loop.
77 bool llvm::canPeel(Loop *L) {
78 // Make sure the loop is in simplified form
79 if (!L->isLoopSimplifyForm())
80 return false;
82 if (UnrollPeelMultiDeoptExit) {
83 SmallVector<BasicBlock *, 4> Exits;
84 L->getUniqueNonLatchExitBlocks(Exits);
86 if (!Exits.empty()) {
87 // Latch's terminator is a conditional branch, Latch is exiting and
88 // all non Latch exits ends up with deoptimize.
89 const BasicBlock *Latch = L->getLoopLatch();
90 const BranchInst *T = dyn_cast<BranchInst>(Latch->getTerminator());
91 return T && T->isConditional() && L->isLoopExiting(Latch) &&
92 all_of(Exits, [](const BasicBlock *BB) {
93 return BB->getTerminatingDeoptimizeCall();
94 });
98 // Only peel loops that contain a single exit
99 if (!L->getExitingBlock() || !L->getUniqueExitBlock())
100 return false;
102 // Don't try to peel loops where the latch is not the exiting block.
103 // This can be an indication of two different things:
104 // 1) The loop is not rotated.
105 // 2) The loop contains irreducible control flow that involves the latch.
106 if (L->getLoopLatch() != L->getExitingBlock())
107 return false;
109 return true;
112 // This function calculates the number of iterations after which the given Phi
113 // becomes an invariant. The pre-calculated values are memorized in the map. The
114 // function (shortcut is I) is calculated according to the following definition:
115 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
116 // If %y is a loop invariant, then I(%x) = 1.
117 // If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
118 // Otherwise, I(%x) is infinite.
119 // TODO: Actually if %y is an expression that depends only on Phi %z and some
120 // loop invariants, we can estimate I(%x) = I(%z) + 1. The example
121 // looks like:
122 // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration.
123 // %y = phi(0, 5),
124 // %a = %y + 1.
125 static unsigned calculateIterationsToInvariance(
126 PHINode *Phi, Loop *L, BasicBlock *BackEdge,
127 SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) {
128 assert(Phi->getParent() == L->getHeader() &&
129 "Non-loop Phi should not be checked for turning into invariant.");
130 assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
131 // If we already know the answer, take it from the map.
132 auto I = IterationsToInvariance.find(Phi);
133 if (I != IterationsToInvariance.end())
134 return I->second;
136 // Otherwise we need to analyze the input from the back edge.
137 Value *Input = Phi->getIncomingValueForBlock(BackEdge);
138 // Place infinity to map to avoid infinite recursion for cycled Phis. Such
139 // cycles can never stop on an invariant.
140 IterationsToInvariance[Phi] = InfiniteIterationsToInvariance;
141 unsigned ToInvariance = InfiniteIterationsToInvariance;
143 if (L->isLoopInvariant(Input))
144 ToInvariance = 1u;
145 else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
146 // Only consider Phis in header block.
147 if (IncPhi->getParent() != L->getHeader())
148 return InfiniteIterationsToInvariance;
149 // If the input becomes an invariant after X iterations, then our Phi
150 // becomes an invariant after X + 1 iterations.
151 unsigned InputToInvariance = calculateIterationsToInvariance(
152 IncPhi, L, BackEdge, IterationsToInvariance);
153 if (InputToInvariance != InfiniteIterationsToInvariance)
154 ToInvariance = InputToInvariance + 1u;
157 // If we found that this Phi lies in an invariant chain, update the map.
158 if (ToInvariance != InfiniteIterationsToInvariance)
159 IterationsToInvariance[Phi] = ToInvariance;
160 return ToInvariance;
163 // Return the number of iterations to peel off that make conditions in the
164 // body true/false. For example, if we peel 2 iterations off the loop below,
165 // the condition i < 2 can be evaluated at compile time.
166 // for (i = 0; i < n; i++)
167 // if (i < 2)
168 // ..
169 // else
170 // ..
171 // }
172 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
173 ScalarEvolution &SE) {
174 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
175 unsigned DesiredPeelCount = 0;
177 for (auto *BB : L.blocks()) {
178 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
179 if (!BI || BI->isUnconditional())
180 continue;
182 // Ignore loop exit condition.
183 if (L.getLoopLatch() == BB)
184 continue;
186 Value *Condition = BI->getCondition();
187 Value *LeftVal, *RightVal;
188 CmpInst::Predicate Pred;
189 if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
190 continue;
192 const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
193 const SCEV *RightSCEV = SE.getSCEV(RightVal);
195 // Do not consider predicates that are known to be true or false
196 // independently of the loop iteration.
197 if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) ||
198 SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV,
199 RightSCEV))
200 continue;
202 // Check if we have a condition with one AddRec and one non AddRec
203 // expression. Normalize LeftSCEV to be the AddRec.
204 if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
205 if (isa<SCEVAddRecExpr>(RightSCEV)) {
206 std::swap(LeftSCEV, RightSCEV);
207 Pred = ICmpInst::getSwappedPredicate(Pred);
208 } else
209 continue;
212 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
214 // Avoid huge SCEV computations in the loop below, make sure we only
215 // consider AddRecs of the loop we are trying to peel and avoid
216 // non-monotonic predicates, as we will not be able to simplify the loop
217 // body.
218 // FIXME: For the non-monotonic predicates ICMP_EQ and ICMP_NE we can
219 // simplify the loop, if we peel 1 additional iteration, if there
220 // is no wrapping.
221 bool Increasing;
222 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L ||
223 !SE.isMonotonicPredicate(LeftAR, Pred, Increasing))
224 continue;
225 (void)Increasing;
227 // Check if extending the current DesiredPeelCount lets us evaluate Pred
228 // or !Pred in the loop body statically.
229 unsigned NewPeelCount = DesiredPeelCount;
231 const SCEV *IterVal = LeftAR->evaluateAtIteration(
232 SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
234 // If the original condition is not known, get the negated predicate
235 // (which holds on the else branch) and check if it is known. This allows
236 // us to peel of iterations that make the original condition false.
237 if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
238 Pred = ICmpInst::getInversePredicate(Pred);
240 const SCEV *Step = LeftAR->getStepRecurrence(SE);
241 while (NewPeelCount < MaxPeelCount &&
242 SE.isKnownPredicate(Pred, IterVal, RightSCEV)) {
243 IterVal = SE.getAddExpr(IterVal, Step);
244 NewPeelCount++;
247 // Only peel the loop if the monotonic predicate !Pred becomes known in the
248 // first iteration of the loop body after peeling.
249 if (NewPeelCount > DesiredPeelCount &&
250 SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
251 RightSCEV))
252 DesiredPeelCount = NewPeelCount;
255 return DesiredPeelCount;
258 // Return the number of iterations we want to peel off.
259 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
260 TargetTransformInfo::UnrollingPreferences &UP,
261 unsigned &TripCount, ScalarEvolution &SE) {
262 assert(LoopSize > 0 && "Zero loop size is not allowed!");
263 // Save the UP.PeelCount value set by the target in
264 // TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
265 unsigned TargetPeelCount = UP.PeelCount;
266 UP.PeelCount = 0;
267 if (!canPeel(L))
268 return;
270 // Only try to peel innermost loops.
271 if (!L->empty())
272 return;
274 // If the user provided a peel count, use that.
275 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
276 if (UserPeelCount) {
277 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
278 << " iterations.\n");
279 UP.PeelCount = UnrollForcePeelCount;
280 UP.PeelProfiledIterations = true;
281 return;
284 // Skip peeling if it's disabled.
285 if (!UP.AllowPeeling)
286 return;
288 unsigned AlreadyPeeled = 0;
289 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
290 AlreadyPeeled = *Peeled;
291 // Stop if we already peeled off the maximum number of iterations.
292 if (AlreadyPeeled >= UnrollPeelMaxCount)
293 return;
295 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
296 // iterations of the loop. For this we compute the number for iterations after
297 // which every Phi is guaranteed to become an invariant, and try to peel the
298 // maximum number of iterations among these values, thus turning all those
299 // Phis into invariants.
300 // First, check that we can peel at least one iteration.
301 if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) {
302 // Store the pre-calculated values here.
303 SmallDenseMap<PHINode *, unsigned> IterationsToInvariance;
304 // Now go through all Phis to calculate their the number of iterations they
305 // need to become invariants.
306 // Start the max computation with the UP.PeelCount value set by the target
307 // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
308 unsigned DesiredPeelCount = TargetPeelCount;
309 BasicBlock *BackEdge = L->getLoopLatch();
310 assert(BackEdge && "Loop is not in simplified form?");
311 for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
312 PHINode *Phi = cast<PHINode>(&*BI);
313 unsigned ToInvariance = calculateIterationsToInvariance(
314 Phi, L, BackEdge, IterationsToInvariance);
315 if (ToInvariance != InfiniteIterationsToInvariance)
316 DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance);
319 // Pay respect to limitations implied by loop size and the max peel count.
320 unsigned MaxPeelCount = UnrollPeelMaxCount;
321 MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1);
323 DesiredPeelCount = std::max(DesiredPeelCount,
324 countToEliminateCompares(*L, MaxPeelCount, SE));
326 if (DesiredPeelCount > 0) {
327 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
328 // Consider max peel count limitation.
329 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
330 if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
331 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
332 << " iteration(s) to turn"
333 << " some Phis into invariants.\n");
334 UP.PeelCount = DesiredPeelCount;
335 UP.PeelProfiledIterations = false;
336 return;
341 // Bail if we know the statically calculated trip count.
342 // In this case we rather prefer partial unrolling.
343 if (TripCount)
344 return;
346 // Do not apply profile base peeling if it is disabled.
347 if (!UP.PeelProfiledIterations)
348 return;
349 // If we don't know the trip count, but have reason to believe the average
350 // trip count is low, peeling should be beneficial, since we will usually
351 // hit the peeled section.
352 // We only do this in the presence of profile information, since otherwise
353 // our estimates of the trip count are not reliable enough.
354 if (L->getHeader()->getParent()->hasProfileData()) {
355 Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
356 if (!PeelCount)
357 return;
359 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
360 << "\n");
362 if (*PeelCount) {
363 if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) &&
364 (LoopSize * (*PeelCount + 1) <= UP.Threshold)) {
365 LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
366 << " iterations.\n");
367 UP.PeelCount = *PeelCount;
368 return;
370 LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
371 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
372 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
373 LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1)
374 << "\n");
375 LLVM_DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n");
380 /// Update the branch weights of the latch of a peeled-off loop
381 /// iteration.
382 /// This sets the branch weights for the latch of the recently peeled off loop
383 /// iteration correctly.
384 /// Let F is a weight of the edge from latch to header.
385 /// Let E is a weight of the edge from latch to exit.
386 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
387 /// go to exit.
388 /// Then, Estimated TripCount = F / E.
389 /// For I-th (counting from 0) peeled off iteration we set the the weights for
390 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution,
391 /// The probability to go to exit 1/(TC-I) increases. At the same time
392 /// the estimated trip count of remaining loop reduces by I.
393 /// To avoid dealing with division rounding we can just multiple both part
394 /// of weights to E and use weight as (F - I * E, E).
396 /// \param Header The copy of the header block that belongs to next iteration.
397 /// \param LatchBR The copy of the latch branch that belongs to this iteration.
398 /// \param[in,out] FallThroughWeight The weight of the edge from latch to
399 /// header before peeling (in) and after peeled off one iteration (out).
400 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
401 uint64_t ExitWeight,
402 uint64_t &FallThroughWeight) {
403 // FallThroughWeight is 0 means that there is no branch weights on original
404 // latch block or estimated trip count is zero.
405 if (!FallThroughWeight)
406 return;
408 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
409 MDBuilder MDB(LatchBR->getContext());
410 MDNode *WeightNode =
411 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
412 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
413 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
414 FallThroughWeight =
415 FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1;
418 /// Initialize the weights.
420 /// \param Header The header block.
421 /// \param LatchBR The latch branch.
422 /// \param[out] ExitWeight The weight of the edge from Latch to Exit.
423 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header.
424 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
425 uint64_t &ExitWeight,
426 uint64_t &FallThroughWeight) {
427 uint64_t TrueWeight, FalseWeight;
428 if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
429 return;
430 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
431 ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
432 FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight;
435 /// Update the weights of original Latch block after peeling off all iterations.
437 /// \param Header The header block.
438 /// \param LatchBR The latch branch.
439 /// \param ExitWeight The weight of the edge from Latch to Exit.
440 /// \param FallThroughWeight The weight of the edge from Latch to Header.
441 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
442 uint64_t ExitWeight,
443 uint64_t FallThroughWeight) {
444 // FallThroughWeight is 0 means that there is no branch weights on original
445 // latch block or estimated trip count is zero.
446 if (!FallThroughWeight)
447 return;
449 // Sets the branch weights on the loop exit.
450 MDBuilder MDB(LatchBR->getContext());
451 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
452 MDNode *WeightNode =
453 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
454 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
455 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
458 /// Clones the body of the loop L, putting it between \p InsertTop and \p
459 /// InsertBot.
460 /// \param IterNumber The serial number of the iteration currently being
461 /// peeled off.
462 /// \param ExitEdges The exit edges of the original loop.
463 /// \param[out] NewBlocks A list of the blocks in the newly created clone
464 /// \param[out] VMap The value map between the loop and the new clone.
465 /// \param LoopBlocks A helper for DFS-traversal of the loop.
466 /// \param LVMap A value-map that maps instructions from the original loop to
467 /// instructions in the last peeled-off iteration.
468 static void cloneLoopBlocks(
469 Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
470 SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *> > &ExitEdges,
471 SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
472 ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
473 LoopInfo *LI) {
474 BasicBlock *Header = L->getHeader();
475 BasicBlock *Latch = L->getLoopLatch();
476 BasicBlock *PreHeader = L->getLoopPreheader();
478 Function *F = Header->getParent();
479 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
480 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
481 Loop *ParentLoop = L->getParentLoop();
483 // For each block in the original loop, create a new copy,
484 // and update the value map with the newly created values.
485 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
486 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
487 NewBlocks.push_back(NewBB);
489 if (ParentLoop)
490 ParentLoop->addBasicBlockToLoop(NewBB, *LI);
492 VMap[*BB] = NewBB;
494 // If dominator tree is available, insert nodes to represent cloned blocks.
495 if (DT) {
496 if (Header == *BB)
497 DT->addNewBlock(NewBB, InsertTop);
498 else {
499 DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
500 // VMap must contain entry for IDom, as the iteration order is RPO.
501 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
506 // Hook-up the control flow for the newly inserted blocks.
507 // The new header is hooked up directly to the "top", which is either
508 // the original loop preheader (for the first iteration) or the previous
509 // iteration's exiting block (for every other iteration)
510 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
512 // Similarly, for the latch:
513 // The original exiting edge is still hooked up to the loop exit.
514 // The backedge now goes to the "bottom", which is either the loop's real
515 // header (for the last peeled iteration) or the copied header of the next
516 // iteration (for every other iteration)
517 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
518 BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
519 for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx)
520 if (LatchBR->getSuccessor(idx) == Header) {
521 LatchBR->setSuccessor(idx, InsertBot);
522 break;
524 if (DT)
525 DT->changeImmediateDominator(InsertBot, NewLatch);
527 // The new copy of the loop body starts with a bunch of PHI nodes
528 // that pick an incoming value from either the preheader, or the previous
529 // loop iteration. Since this copy is no longer part of the loop, we
530 // resolve this statically:
531 // For the first iteration, we use the value from the preheader directly.
532 // For any other iteration, we replace the phi with the value generated by
533 // the immediately preceding clone of the loop body (which represents
534 // the previous iteration).
535 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
536 PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
537 if (IterNumber == 0) {
538 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
539 } else {
540 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
541 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
542 if (LatchInst && L->contains(LatchInst))
543 VMap[&*I] = LVMap[LatchInst];
544 else
545 VMap[&*I] = LatchVal;
547 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
550 // Fix up the outgoing values - we need to add a value for the iteration
551 // we've just created. Note that this must happen *after* the incoming
552 // values are adjusted, since the value going out of the latch may also be
553 // a value coming into the header.
554 for (auto Edge : ExitEdges)
555 for (PHINode &PHI : Edge.second->phis()) {
556 Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
557 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
558 if (LatchInst && L->contains(LatchInst))
559 LatchVal = VMap[LatchVal];
560 PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
563 // LastValueMap is updated with the values for the current loop
564 // which are used the next time this function is called.
565 for (const auto &KV : VMap)
566 LVMap[KV.first] = KV.second;
569 /// Peel off the first \p PeelCount iterations of loop \p L.
571 /// Note that this does not peel them off as a single straight-line block.
572 /// Rather, each iteration is peeled off separately, and needs to check the
573 /// exit condition.
574 /// For loops that dynamically execute \p PeelCount iterations or less
575 /// this provides a benefit, since the peeled off iterations, which account
576 /// for the bulk of dynamic execution, can be further simplified by scalar
577 /// optimizations.
578 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
579 ScalarEvolution *SE, DominatorTree *DT,
580 AssumptionCache *AC, bool PreserveLCSSA) {
581 assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
582 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
584 LoopBlocksDFS LoopBlocks(L);
585 LoopBlocks.perform(LI);
587 BasicBlock *Header = L->getHeader();
588 BasicBlock *PreHeader = L->getLoopPreheader();
589 BasicBlock *Latch = L->getLoopLatch();
590 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
591 L->getExitEdges(ExitEdges);
593 DenseMap<BasicBlock *, BasicBlock *> ExitIDom;
594 if (DT) {
595 // We'd like to determine the idom of exit block after peeling one
596 // iteration.
597 // Let Exit is exit block.
598 // Let ExitingSet - is a set of predecessors of Exit block. They are exiting
599 // blocks.
600 // Let Latch' and ExitingSet' are copies after a peeling.
601 // We'd like to find an idom'(Exit) - idom of Exit after peeling.
602 // It is an evident that idom'(Exit) will be the nearest common dominator
603 // of ExitingSet and ExitingSet'.
604 // idom(Exit) is a nearest common dominator of ExitingSet.
605 // idom(Exit)' is a nearest common dominator of ExitingSet'.
606 // Taking into account that we have a single Latch, Latch' will dominate
607 // Header and idom(Exit).
608 // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
609 // All these basic blocks are in the same loop, so what we find is
610 // (nearest common dominator of idom(Exit) and Latch)'.
611 // In the loop below we remember nearest common dominator of idom(Exit) and
612 // Latch to update idom of Exit later.
613 assert(L->hasDedicatedExits() && "No dedicated exits?");
614 for (auto Edge : ExitEdges) {
615 if (ExitIDom.count(Edge.second))
616 continue;
617 BasicBlock *BB = DT->findNearestCommonDominator(
618 DT->getNode(Edge.second)->getIDom()->getBlock(), Latch);
619 assert(L->contains(BB) && "IDom is not in a loop");
620 ExitIDom[Edge.second] = BB;
624 Function *F = Header->getParent();
626 // Set up all the necessary basic blocks. It is convenient to split the
627 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
628 // body, and a new preheader for the "real" loop.
630 // Peeling the first iteration transforms.
632 // PreHeader:
633 // ...
634 // Header:
635 // LoopBody
636 // If (cond) goto Header
637 // Exit:
639 // into
641 // InsertTop:
642 // LoopBody
643 // If (!cond) goto Exit
644 // InsertBot:
645 // NewPreHeader:
646 // ...
647 // Header:
648 // LoopBody
649 // If (cond) goto Header
650 // Exit:
652 // Each following iteration will split the current bottom anchor in two,
653 // and put the new copy of the loop body between these two blocks. That is,
654 // after peeling another iteration from the example above, we'll split
655 // InsertBot, and get:
657 // InsertTop:
658 // LoopBody
659 // If (!cond) goto Exit
660 // InsertBot:
661 // LoopBody
662 // If (!cond) goto Exit
663 // InsertBot.next:
664 // NewPreHeader:
665 // ...
666 // Header:
667 // LoopBody
668 // If (cond) goto Header
669 // Exit:
671 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
672 BasicBlock *InsertBot =
673 SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
674 BasicBlock *NewPreHeader =
675 SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
677 InsertTop->setName(Header->getName() + ".peel.begin");
678 InsertBot->setName(Header->getName() + ".peel.next");
679 NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
681 ValueToValueMapTy LVMap;
683 // If we have branch weight information, we'll want to update it for the
684 // newly created branches.
685 BranchInst *LatchBR =
686 cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
687 uint64_t ExitWeight = 0, FallThroughWeight = 0;
688 initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
690 // For each peeled-off iteration, make a copy of the loop.
691 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
692 SmallVector<BasicBlock *, 8> NewBlocks;
693 ValueToValueMapTy VMap;
695 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
696 LoopBlocks, VMap, LVMap, DT, LI);
698 // Remap to use values from the current iteration instead of the
699 // previous one.
700 remapInstructionsInBlocks(NewBlocks, VMap);
702 if (DT) {
703 // Latches of the cloned loops dominate over the loop exit, so idom of the
704 // latter is the first cloned loop body, as original PreHeader dominates
705 // the original loop body.
706 if (Iter == 0)
707 for (auto Exit : ExitIDom)
708 DT->changeImmediateDominator(Exit.first,
709 cast<BasicBlock>(LVMap[Exit.second]));
710 #ifdef EXPENSIVE_CHECKS
711 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
712 #endif
715 auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
716 updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight);
717 // Remove Loop metadata from the latch branch instruction
718 // because it is not the Loop's latch branch anymore.
719 LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);
721 InsertTop = InsertBot;
722 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
723 InsertBot->setName(Header->getName() + ".peel.next");
725 F->getBasicBlockList().splice(InsertTop->getIterator(),
726 F->getBasicBlockList(),
727 NewBlocks[0]->getIterator(), F->end());
730 // Now adjust the phi nodes in the loop header to get their initial values
731 // from the last peeled-off iteration instead of the preheader.
732 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
733 PHINode *PHI = cast<PHINode>(I);
734 Value *NewVal = PHI->getIncomingValueForBlock(Latch);
735 Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
736 if (LatchInst && L->contains(LatchInst))
737 NewVal = LVMap[LatchInst];
739 PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
742 fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
744 // Update Metadata for count of peeled off iterations.
745 unsigned AlreadyPeeled = 0;
746 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
747 AlreadyPeeled = *Peeled;
748 addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
750 if (Loop *ParentLoop = L->getParentLoop())
751 L = ParentLoop;
753 // We modified the loop, update SE.
754 SE->forgetTopmostLoop(L);
756 // Finally DomtTree must be correct.
757 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
759 // FIXME: Incrementally update loop-simplify
760 simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA);
762 NumPeeled++;
764 return true;