1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Transforms/Utils/BuildLibCalls.h"
40 #include "llvm/Transforms/Utils/SizeOpts.h"
43 using namespace PatternMatch
;
46 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden
,
48 cl::desc("Enable unsafe double to float "
49 "shrinking for math lib calls"));
51 //===----------------------------------------------------------------------===//
53 //===----------------------------------------------------------------------===//
55 static bool ignoreCallingConv(LibFunc Func
) {
56 return Func
== LibFunc_abs
|| Func
== LibFunc_labs
||
57 Func
== LibFunc_llabs
|| Func
== LibFunc_strlen
;
60 static bool isCallingConvCCompatible(CallInst
*CI
) {
61 switch(CI
->getCallingConv()) {
64 case llvm::CallingConv::C
:
66 case llvm::CallingConv::ARM_APCS
:
67 case llvm::CallingConv::ARM_AAPCS
:
68 case llvm::CallingConv::ARM_AAPCS_VFP
: {
70 // The iOS ABI diverges from the standard in some cases, so for now don't
71 // try to simplify those calls.
72 if (Triple(CI
->getModule()->getTargetTriple()).isiOS())
75 auto *FuncTy
= CI
->getFunctionType();
77 if (!FuncTy
->getReturnType()->isPointerTy() &&
78 !FuncTy
->getReturnType()->isIntegerTy() &&
79 !FuncTy
->getReturnType()->isVoidTy())
82 for (auto Param
: FuncTy
->params()) {
83 if (!Param
->isPointerTy() && !Param
->isIntegerTy())
92 /// Return true if it is only used in equality comparisons with With.
93 static bool isOnlyUsedInEqualityComparison(Value
*V
, Value
*With
) {
94 for (User
*U
: V
->users()) {
95 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(U
))
96 if (IC
->isEquality() && IC
->getOperand(1) == With
)
98 // Unknown instruction.
104 static bool callHasFloatingPointArgument(const CallInst
*CI
) {
105 return any_of(CI
->operands(), [](const Use
&OI
) {
106 return OI
->getType()->isFloatingPointTy();
110 static bool callHasFP128Argument(const CallInst
*CI
) {
111 return any_of(CI
->operands(), [](const Use
&OI
) {
112 return OI
->getType()->isFP128Ty();
116 static Value
*convertStrToNumber(CallInst
*CI
, StringRef
&Str
, int64_t Base
) {
117 if (Base
< 2 || Base
> 36)
118 // handle special zero base
123 std::string nptr
= Str
.str();
125 long long int Result
= strtoll(nptr
.c_str(), &End
, Base
);
129 // if we assume all possible target locales are ASCII supersets,
130 // then if strtoll successfully parses a number on the host,
131 // it will also successfully parse the same way on the target
135 if (!isIntN(CI
->getType()->getPrimitiveSizeInBits(), Result
))
138 return ConstantInt::get(CI
->getType(), Result
);
141 static bool isLocallyOpenedFile(Value
*File
, CallInst
*CI
, IRBuilder
<> &B
,
142 const TargetLibraryInfo
*TLI
) {
143 CallInst
*FOpen
= dyn_cast
<CallInst
>(File
);
147 Function
*InnerCallee
= FOpen
->getCalledFunction();
152 if (!TLI
->getLibFunc(*InnerCallee
, Func
) || !TLI
->has(Func
) ||
153 Func
!= LibFunc_fopen
)
156 inferLibFuncAttributes(*CI
->getCalledFunction(), *TLI
);
157 if (PointerMayBeCaptured(File
, true, true))
163 static bool isOnlyUsedInComparisonWithZero(Value
*V
) {
164 for (User
*U
: V
->users()) {
165 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(U
))
166 if (Constant
*C
= dyn_cast
<Constant
>(IC
->getOperand(1)))
167 if (C
->isNullValue())
169 // Unknown instruction.
175 static bool canTransformToMemCmp(CallInst
*CI
, Value
*Str
, uint64_t Len
,
176 const DataLayout
&DL
) {
177 if (!isOnlyUsedInComparisonWithZero(CI
))
180 if (!isDereferenceableAndAlignedPointer(Str
, Align::None(), APInt(64, Len
),
184 if (CI
->getFunction()->hasFnAttribute(Attribute::SanitizeMemory
))
190 static void annotateDereferenceableBytes(CallInst
*CI
,
191 ArrayRef
<unsigned> ArgNos
,
192 uint64_t DereferenceableBytes
) {
193 const Function
*F
= CI
->getCaller();
196 for (unsigned ArgNo
: ArgNos
) {
197 uint64_t DerefBytes
= DereferenceableBytes
;
198 unsigned AS
= CI
->getArgOperand(ArgNo
)->getType()->getPointerAddressSpace();
199 if (!llvm::NullPointerIsDefined(F
, AS
) ||
200 CI
->paramHasAttr(ArgNo
, Attribute::NonNull
))
201 DerefBytes
= std::max(CI
->getDereferenceableOrNullBytes(
202 ArgNo
+ AttributeList::FirstArgIndex
),
203 DereferenceableBytes
);
205 if (CI
->getDereferenceableBytes(ArgNo
+ AttributeList::FirstArgIndex
) <
207 CI
->removeParamAttr(ArgNo
, Attribute::Dereferenceable
);
208 if (!llvm::NullPointerIsDefined(F
, AS
) ||
209 CI
->paramHasAttr(ArgNo
, Attribute::NonNull
))
210 CI
->removeParamAttr(ArgNo
, Attribute::DereferenceableOrNull
);
211 CI
->addParamAttr(ArgNo
, Attribute::getWithDereferenceableBytes(
212 CI
->getContext(), DerefBytes
));
217 static void annotateNonNullBasedOnAccess(CallInst
*CI
,
218 ArrayRef
<unsigned> ArgNos
) {
219 Function
*F
= CI
->getCaller();
223 for (unsigned ArgNo
: ArgNos
) {
224 if (CI
->paramHasAttr(ArgNo
, Attribute::NonNull
))
226 unsigned AS
= CI
->getArgOperand(ArgNo
)->getType()->getPointerAddressSpace();
227 if (llvm::NullPointerIsDefined(F
, AS
))
230 CI
->addParamAttr(ArgNo
, Attribute::NonNull
);
231 annotateDereferenceableBytes(CI
, ArgNo
, 1);
235 static void annotateNonNullAndDereferenceable(CallInst
*CI
, ArrayRef
<unsigned> ArgNos
,
236 Value
*Size
, const DataLayout
&DL
) {
237 if (ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(Size
)) {
238 annotateNonNullBasedOnAccess(CI
, ArgNos
);
239 annotateDereferenceableBytes(CI
, ArgNos
, LenC
->getZExtValue());
240 } else if (isKnownNonZero(Size
, DL
)) {
241 annotateNonNullBasedOnAccess(CI
, ArgNos
);
243 uint64_t DerefMin
= 1;
244 if (match(Size
, m_Select(m_Value(), m_APInt(X
), m_APInt(Y
)))) {
245 DerefMin
= std::min(X
->getZExtValue(), Y
->getZExtValue());
246 annotateDereferenceableBytes(CI
, ArgNos
, DerefMin
);
251 //===----------------------------------------------------------------------===//
252 // String and Memory Library Call Optimizations
253 //===----------------------------------------------------------------------===//
255 Value
*LibCallSimplifier::optimizeStrCat(CallInst
*CI
, IRBuilder
<> &B
) {
256 // Extract some information from the instruction
257 Value
*Dst
= CI
->getArgOperand(0);
258 Value
*Src
= CI
->getArgOperand(1);
259 annotateNonNullBasedOnAccess(CI
, {0, 1});
261 // See if we can get the length of the input string.
262 uint64_t Len
= GetStringLength(Src
);
264 annotateDereferenceableBytes(CI
, 1, Len
);
267 --Len
; // Unbias length.
269 // Handle the simple, do-nothing case: strcat(x, "") -> x
273 return emitStrLenMemCpy(Src
, Dst
, Len
, B
);
276 Value
*LibCallSimplifier::emitStrLenMemCpy(Value
*Src
, Value
*Dst
, uint64_t Len
,
278 // We need to find the end of the destination string. That's where the
279 // memory is to be moved to. We just generate a call to strlen.
280 Value
*DstLen
= emitStrLen(Dst
, B
, DL
, TLI
);
284 // Now that we have the destination's length, we must index into the
285 // destination's pointer to get the actual memcpy destination (end of
286 // the string .. we're concatenating).
287 Value
*CpyDst
= B
.CreateGEP(B
.getInt8Ty(), Dst
, DstLen
, "endptr");
289 // We have enough information to now generate the memcpy call to do the
290 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
291 B
.CreateMemCpy(CpyDst
, 1, Src
, 1,
292 ConstantInt::get(DL
.getIntPtrType(Src
->getContext()), Len
+ 1));
296 Value
*LibCallSimplifier::optimizeStrNCat(CallInst
*CI
, IRBuilder
<> &B
) {
297 // Extract some information from the instruction.
298 Value
*Dst
= CI
->getArgOperand(0);
299 Value
*Src
= CI
->getArgOperand(1);
300 Value
*Size
= CI
->getArgOperand(2);
302 annotateNonNullBasedOnAccess(CI
, 0);
303 if (isKnownNonZero(Size
, DL
))
304 annotateNonNullBasedOnAccess(CI
, 1);
306 // We don't do anything if length is not constant.
307 ConstantInt
*LengthArg
= dyn_cast
<ConstantInt
>(Size
);
309 Len
= LengthArg
->getZExtValue();
310 // strncat(x, c, 0) -> x
317 // See if we can get the length of the input string.
318 uint64_t SrcLen
= GetStringLength(Src
);
320 annotateDereferenceableBytes(CI
, 1, SrcLen
);
321 --SrcLen
; // Unbias length.
326 // strncat(x, "", c) -> x
330 // We don't optimize this case.
334 // strncat(x, s, c) -> strcat(x, s)
335 // s is constant so the strcat can be optimized further.
336 return emitStrLenMemCpy(Src
, Dst
, SrcLen
, B
);
339 Value
*LibCallSimplifier::optimizeStrChr(CallInst
*CI
, IRBuilder
<> &B
) {
340 Function
*Callee
= CI
->getCalledFunction();
341 FunctionType
*FT
= Callee
->getFunctionType();
342 Value
*SrcStr
= CI
->getArgOperand(0);
343 annotateNonNullBasedOnAccess(CI
, 0);
345 // If the second operand is non-constant, see if we can compute the length
346 // of the input string and turn this into memchr.
347 ConstantInt
*CharC
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
349 uint64_t Len
= GetStringLength(SrcStr
);
351 annotateDereferenceableBytes(CI
, 0, Len
);
354 if (!FT
->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
357 return emitMemChr(SrcStr
, CI
->getArgOperand(1), // include nul.
358 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), Len
),
362 // Otherwise, the character is a constant, see if the first argument is
363 // a string literal. If so, we can constant fold.
365 if (!getConstantStringInfo(SrcStr
, Str
)) {
366 if (CharC
->isZero()) // strchr(p, 0) -> p + strlen(p)
367 return B
.CreateGEP(B
.getInt8Ty(), SrcStr
, emitStrLen(SrcStr
, B
, DL
, TLI
),
372 // Compute the offset, make sure to handle the case when we're searching for
373 // zero (a weird way to spell strlen).
374 size_t I
= (0xFF & CharC
->getSExtValue()) == 0
376 : Str
.find(CharC
->getSExtValue());
377 if (I
== StringRef::npos
) // Didn't find the char. strchr returns null.
378 return Constant::getNullValue(CI
->getType());
380 // strchr(s+n,c) -> gep(s+n+i,c)
381 return B
.CreateGEP(B
.getInt8Ty(), SrcStr
, B
.getInt64(I
), "strchr");
384 Value
*LibCallSimplifier::optimizeStrRChr(CallInst
*CI
, IRBuilder
<> &B
) {
385 Value
*SrcStr
= CI
->getArgOperand(0);
386 ConstantInt
*CharC
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
387 annotateNonNullBasedOnAccess(CI
, 0);
389 // Cannot fold anything if we're not looking for a constant.
394 if (!getConstantStringInfo(SrcStr
, Str
)) {
395 // strrchr(s, 0) -> strchr(s, 0)
397 return emitStrChr(SrcStr
, '\0', B
, TLI
);
401 // Compute the offset.
402 size_t I
= (0xFF & CharC
->getSExtValue()) == 0
404 : Str
.rfind(CharC
->getSExtValue());
405 if (I
== StringRef::npos
) // Didn't find the char. Return null.
406 return Constant::getNullValue(CI
->getType());
408 // strrchr(s+n,c) -> gep(s+n+i,c)
409 return B
.CreateGEP(B
.getInt8Ty(), SrcStr
, B
.getInt64(I
), "strrchr");
412 Value
*LibCallSimplifier::optimizeStrCmp(CallInst
*CI
, IRBuilder
<> &B
) {
413 Value
*Str1P
= CI
->getArgOperand(0), *Str2P
= CI
->getArgOperand(1);
414 if (Str1P
== Str2P
) // strcmp(x,x) -> 0
415 return ConstantInt::get(CI
->getType(), 0);
417 StringRef Str1
, Str2
;
418 bool HasStr1
= getConstantStringInfo(Str1P
, Str1
);
419 bool HasStr2
= getConstantStringInfo(Str2P
, Str2
);
421 // strcmp(x, y) -> cnst (if both x and y are constant strings)
422 if (HasStr1
&& HasStr2
)
423 return ConstantInt::get(CI
->getType(), Str1
.compare(Str2
));
425 if (HasStr1
&& Str1
.empty()) // strcmp("", x) -> -*x
426 return B
.CreateNeg(B
.CreateZExt(
427 B
.CreateLoad(B
.getInt8Ty(), Str2P
, "strcmpload"), CI
->getType()));
429 if (HasStr2
&& Str2
.empty()) // strcmp(x,"") -> *x
430 return B
.CreateZExt(B
.CreateLoad(B
.getInt8Ty(), Str1P
, "strcmpload"),
433 // strcmp(P, "x") -> memcmp(P, "x", 2)
434 uint64_t Len1
= GetStringLength(Str1P
);
436 annotateDereferenceableBytes(CI
, 0, Len1
);
437 uint64_t Len2
= GetStringLength(Str2P
);
439 annotateDereferenceableBytes(CI
, 1, Len2
);
442 return emitMemCmp(Str1P
, Str2P
,
443 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()),
444 std::min(Len1
, Len2
)),
449 if (!HasStr1
&& HasStr2
) {
450 if (canTransformToMemCmp(CI
, Str1P
, Len2
, DL
))
453 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), Len2
), B
, DL
,
455 } else if (HasStr1
&& !HasStr2
) {
456 if (canTransformToMemCmp(CI
, Str2P
, Len1
, DL
))
459 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), Len1
), B
, DL
,
463 annotateNonNullBasedOnAccess(CI
, {0, 1});
467 Value
*LibCallSimplifier::optimizeStrNCmp(CallInst
*CI
, IRBuilder
<> &B
) {
468 Value
*Str1P
= CI
->getArgOperand(0);
469 Value
*Str2P
= CI
->getArgOperand(1);
470 Value
*Size
= CI
->getArgOperand(2);
471 if (Str1P
== Str2P
) // strncmp(x,x,n) -> 0
472 return ConstantInt::get(CI
->getType(), 0);
474 if (isKnownNonZero(Size
, DL
))
475 annotateNonNullBasedOnAccess(CI
, {0, 1});
476 // Get the length argument if it is constant.
478 if (ConstantInt
*LengthArg
= dyn_cast
<ConstantInt
>(Size
))
479 Length
= LengthArg
->getZExtValue();
483 if (Length
== 0) // strncmp(x,y,0) -> 0
484 return ConstantInt::get(CI
->getType(), 0);
486 if (Length
== 1) // strncmp(x,y,1) -> memcmp(x,y,1)
487 return emitMemCmp(Str1P
, Str2P
, Size
, B
, DL
, TLI
);
489 StringRef Str1
, Str2
;
490 bool HasStr1
= getConstantStringInfo(Str1P
, Str1
);
491 bool HasStr2
= getConstantStringInfo(Str2P
, Str2
);
493 // strncmp(x, y) -> cnst (if both x and y are constant strings)
494 if (HasStr1
&& HasStr2
) {
495 StringRef SubStr1
= Str1
.substr(0, Length
);
496 StringRef SubStr2
= Str2
.substr(0, Length
);
497 return ConstantInt::get(CI
->getType(), SubStr1
.compare(SubStr2
));
500 if (HasStr1
&& Str1
.empty()) // strncmp("", x, n) -> -*x
501 return B
.CreateNeg(B
.CreateZExt(
502 B
.CreateLoad(B
.getInt8Ty(), Str2P
, "strcmpload"), CI
->getType()));
504 if (HasStr2
&& Str2
.empty()) // strncmp(x, "", n) -> *x
505 return B
.CreateZExt(B
.CreateLoad(B
.getInt8Ty(), Str1P
, "strcmpload"),
508 uint64_t Len1
= GetStringLength(Str1P
);
510 annotateDereferenceableBytes(CI
, 0, Len1
);
511 uint64_t Len2
= GetStringLength(Str2P
);
513 annotateDereferenceableBytes(CI
, 1, Len2
);
516 if (!HasStr1
&& HasStr2
) {
517 Len2
= std::min(Len2
, Length
);
518 if (canTransformToMemCmp(CI
, Str1P
, Len2
, DL
))
521 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), Len2
), B
, DL
,
523 } else if (HasStr1
&& !HasStr2
) {
524 Len1
= std::min(Len1
, Length
);
525 if (canTransformToMemCmp(CI
, Str2P
, Len1
, DL
))
528 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), Len1
), B
, DL
,
535 Value
*LibCallSimplifier::optimizeStrNDup(CallInst
*CI
, IRBuilder
<> &B
) {
536 Value
*Src
= CI
->getArgOperand(0);
537 ConstantInt
*Size
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
538 uint64_t SrcLen
= GetStringLength(Src
);
539 if (SrcLen
&& Size
) {
540 annotateDereferenceableBytes(CI
, 0, SrcLen
);
541 if (SrcLen
<= Size
->getZExtValue() + 1)
542 return emitStrDup(Src
, B
, TLI
);
548 Value
*LibCallSimplifier::optimizeStrCpy(CallInst
*CI
, IRBuilder
<> &B
) {
549 Value
*Dst
= CI
->getArgOperand(0), *Src
= CI
->getArgOperand(1);
550 if (Dst
== Src
) // strcpy(x,x) -> x
553 annotateNonNullBasedOnAccess(CI
, {0, 1});
554 // See if we can get the length of the input string.
555 uint64_t Len
= GetStringLength(Src
);
557 annotateDereferenceableBytes(CI
, 1, Len
);
561 // We have enough information to now generate the memcpy call to do the
562 // copy for us. Make a memcpy to copy the nul byte with align = 1.
564 B
.CreateMemCpy(Dst
, 1, Src
, 1,
565 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), Len
));
566 NewCI
->setAttributes(CI
->getAttributes());
570 Value
*LibCallSimplifier::optimizeStpCpy(CallInst
*CI
, IRBuilder
<> &B
) {
571 Function
*Callee
= CI
->getCalledFunction();
572 Value
*Dst
= CI
->getArgOperand(0), *Src
= CI
->getArgOperand(1);
573 if (Dst
== Src
) { // stpcpy(x,x) -> x+strlen(x)
574 Value
*StrLen
= emitStrLen(Src
, B
, DL
, TLI
);
575 return StrLen
? B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, StrLen
) : nullptr;
578 // See if we can get the length of the input string.
579 uint64_t Len
= GetStringLength(Src
);
581 annotateDereferenceableBytes(CI
, 1, Len
);
585 Type
*PT
= Callee
->getFunctionType()->getParamType(0);
586 Value
*LenV
= ConstantInt::get(DL
.getIntPtrType(PT
), Len
);
587 Value
*DstEnd
= B
.CreateGEP(B
.getInt8Ty(), Dst
,
588 ConstantInt::get(DL
.getIntPtrType(PT
), Len
- 1));
590 // We have enough information to now generate the memcpy call to do the
591 // copy for us. Make a memcpy to copy the nul byte with align = 1.
592 CallInst
*NewCI
= B
.CreateMemCpy(Dst
, 1, Src
, 1, LenV
);
593 NewCI
->setAttributes(CI
->getAttributes());
597 Value
*LibCallSimplifier::optimizeStrNCpy(CallInst
*CI
, IRBuilder
<> &B
) {
598 Function
*Callee
= CI
->getCalledFunction();
599 Value
*Dst
= CI
->getArgOperand(0);
600 Value
*Src
= CI
->getArgOperand(1);
601 Value
*Size
= CI
->getArgOperand(2);
602 annotateNonNullBasedOnAccess(CI
, 0);
603 if (isKnownNonZero(Size
, DL
))
604 annotateNonNullBasedOnAccess(CI
, 1);
607 if (ConstantInt
*LengthArg
= dyn_cast
<ConstantInt
>(Size
))
608 Len
= LengthArg
->getZExtValue();
612 // strncpy(x, y, 0) -> x
616 // See if we can get the length of the input string.
617 uint64_t SrcLen
= GetStringLength(Src
);
619 annotateDereferenceableBytes(CI
, 1, SrcLen
);
620 --SrcLen
; // Unbias length.
626 // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
627 CallInst
*NewCI
= B
.CreateMemSet(Dst
, B
.getInt8('\0'), Size
, 1);
628 AttrBuilder
ArgAttrs(CI
->getAttributes().getParamAttributes(0));
629 NewCI
->setAttributes(NewCI
->getAttributes().addParamAttributes(
630 CI
->getContext(), 0, ArgAttrs
));
634 // Let strncpy handle the zero padding
635 if (Len
> SrcLen
+ 1)
638 Type
*PT
= Callee
->getFunctionType()->getParamType(0);
639 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
640 CallInst
*NewCI
= B
.CreateMemCpy(Dst
, 1, Src
, 1, ConstantInt::get(DL
.getIntPtrType(PT
), Len
));
641 NewCI
->setAttributes(CI
->getAttributes());
645 Value
*LibCallSimplifier::optimizeStringLength(CallInst
*CI
, IRBuilder
<> &B
,
647 Value
*Src
= CI
->getArgOperand(0);
649 // Constant folding: strlen("xyz") -> 3
650 if (uint64_t Len
= GetStringLength(Src
, CharSize
))
651 return ConstantInt::get(CI
->getType(), Len
- 1);
653 // If s is a constant pointer pointing to a string literal, we can fold
654 // strlen(s + x) to strlen(s) - x, when x is known to be in the range
655 // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
656 // We only try to simplify strlen when the pointer s points to an array
657 // of i8. Otherwise, we would need to scale the offset x before doing the
658 // subtraction. This will make the optimization more complex, and it's not
659 // very useful because calling strlen for a pointer of other types is
661 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Src
)) {
662 if (!isGEPBasedOnPointerToString(GEP
, CharSize
))
665 ConstantDataArraySlice Slice
;
666 if (getConstantDataArrayInfo(GEP
->getOperand(0), Slice
, CharSize
)) {
667 uint64_t NullTermIdx
;
668 if (Slice
.Array
== nullptr) {
671 NullTermIdx
= ~((uint64_t)0);
672 for (uint64_t I
= 0, E
= Slice
.Length
; I
< E
; ++I
) {
673 if (Slice
.Array
->getElementAsInteger(I
+ Slice
.Offset
) == 0) {
678 // If the string does not have '\0', leave it to strlen to compute
680 if (NullTermIdx
== ~((uint64_t)0))
684 Value
*Offset
= GEP
->getOperand(2);
685 KnownBits Known
= computeKnownBits(Offset
, DL
, 0, nullptr, CI
, nullptr);
686 Known
.Zero
.flipAllBits();
688 cast
<ArrayType
>(GEP
->getSourceElementType())->getNumElements();
690 // KnownZero's bits are flipped, so zeros in KnownZero now represent
691 // bits known to be zeros in Offset, and ones in KnowZero represent
692 // bits unknown in Offset. Therefore, Offset is known to be in range
693 // [0, NullTermIdx] when the flipped KnownZero is non-negative and
694 // unsigned-less-than NullTermIdx.
696 // If Offset is not provably in the range [0, NullTermIdx], we can still
697 // optimize if we can prove that the program has undefined behavior when
698 // Offset is outside that range. That is the case when GEP->getOperand(0)
699 // is a pointer to an object whose memory extent is NullTermIdx+1.
700 if ((Known
.Zero
.isNonNegative() && Known
.Zero
.ule(NullTermIdx
)) ||
701 (GEP
->isInBounds() && isa
<GlobalVariable
>(GEP
->getOperand(0)) &&
702 NullTermIdx
== ArrSize
- 1)) {
703 Offset
= B
.CreateSExtOrTrunc(Offset
, CI
->getType());
704 return B
.CreateSub(ConstantInt::get(CI
->getType(), NullTermIdx
),
712 // strlen(x?"foo":"bars") --> x ? 3 : 4
713 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Src
)) {
714 uint64_t LenTrue
= GetStringLength(SI
->getTrueValue(), CharSize
);
715 uint64_t LenFalse
= GetStringLength(SI
->getFalseValue(), CharSize
);
716 if (LenTrue
&& LenFalse
) {
718 return OptimizationRemark("instcombine", "simplify-libcalls", CI
)
719 << "folded strlen(select) to select of constants";
721 return B
.CreateSelect(SI
->getCondition(),
722 ConstantInt::get(CI
->getType(), LenTrue
- 1),
723 ConstantInt::get(CI
->getType(), LenFalse
- 1));
727 // strlen(x) != 0 --> *x != 0
728 // strlen(x) == 0 --> *x == 0
729 if (isOnlyUsedInZeroEqualityComparison(CI
))
730 return B
.CreateZExt(B
.CreateLoad(B
.getIntNTy(CharSize
), Src
, "strlenfirst"),
736 Value
*LibCallSimplifier::optimizeStrLen(CallInst
*CI
, IRBuilder
<> &B
) {
737 if (Value
*V
= optimizeStringLength(CI
, B
, 8))
739 annotateNonNullBasedOnAccess(CI
, 0);
743 Value
*LibCallSimplifier::optimizeWcslen(CallInst
*CI
, IRBuilder
<> &B
) {
744 Module
&M
= *CI
->getModule();
745 unsigned WCharSize
= TLI
->getWCharSize(M
) * 8;
746 // We cannot perform this optimization without wchar_size metadata.
750 return optimizeStringLength(CI
, B
, WCharSize
);
753 Value
*LibCallSimplifier::optimizeStrPBrk(CallInst
*CI
, IRBuilder
<> &B
) {
755 bool HasS1
= getConstantStringInfo(CI
->getArgOperand(0), S1
);
756 bool HasS2
= getConstantStringInfo(CI
->getArgOperand(1), S2
);
758 // strpbrk(s, "") -> nullptr
759 // strpbrk("", s) -> nullptr
760 if ((HasS1
&& S1
.empty()) || (HasS2
&& S2
.empty()))
761 return Constant::getNullValue(CI
->getType());
764 if (HasS1
&& HasS2
) {
765 size_t I
= S1
.find_first_of(S2
);
766 if (I
== StringRef::npos
) // No match.
767 return Constant::getNullValue(CI
->getType());
769 return B
.CreateGEP(B
.getInt8Ty(), CI
->getArgOperand(0), B
.getInt64(I
),
773 // strpbrk(s, "a") -> strchr(s, 'a')
774 if (HasS2
&& S2
.size() == 1)
775 return emitStrChr(CI
->getArgOperand(0), S2
[0], B
, TLI
);
780 Value
*LibCallSimplifier::optimizeStrTo(CallInst
*CI
, IRBuilder
<> &B
) {
781 Value
*EndPtr
= CI
->getArgOperand(1);
782 if (isa
<ConstantPointerNull
>(EndPtr
)) {
783 // With a null EndPtr, this function won't capture the main argument.
784 // It would be readonly too, except that it still may write to errno.
785 CI
->addParamAttr(0, Attribute::NoCapture
);
791 Value
*LibCallSimplifier::optimizeStrSpn(CallInst
*CI
, IRBuilder
<> &B
) {
793 bool HasS1
= getConstantStringInfo(CI
->getArgOperand(0), S1
);
794 bool HasS2
= getConstantStringInfo(CI
->getArgOperand(1), S2
);
796 // strspn(s, "") -> 0
797 // strspn("", s) -> 0
798 if ((HasS1
&& S1
.empty()) || (HasS2
&& S2
.empty()))
799 return Constant::getNullValue(CI
->getType());
802 if (HasS1
&& HasS2
) {
803 size_t Pos
= S1
.find_first_not_of(S2
);
804 if (Pos
== StringRef::npos
)
806 return ConstantInt::get(CI
->getType(), Pos
);
812 Value
*LibCallSimplifier::optimizeStrCSpn(CallInst
*CI
, IRBuilder
<> &B
) {
814 bool HasS1
= getConstantStringInfo(CI
->getArgOperand(0), S1
);
815 bool HasS2
= getConstantStringInfo(CI
->getArgOperand(1), S2
);
817 // strcspn("", s) -> 0
818 if (HasS1
&& S1
.empty())
819 return Constant::getNullValue(CI
->getType());
822 if (HasS1
&& HasS2
) {
823 size_t Pos
= S1
.find_first_of(S2
);
824 if (Pos
== StringRef::npos
)
826 return ConstantInt::get(CI
->getType(), Pos
);
829 // strcspn(s, "") -> strlen(s)
830 if (HasS2
&& S2
.empty())
831 return emitStrLen(CI
->getArgOperand(0), B
, DL
, TLI
);
836 Value
*LibCallSimplifier::optimizeStrStr(CallInst
*CI
, IRBuilder
<> &B
) {
837 // fold strstr(x, x) -> x.
838 if (CI
->getArgOperand(0) == CI
->getArgOperand(1))
839 return B
.CreateBitCast(CI
->getArgOperand(0), CI
->getType());
841 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
842 if (isOnlyUsedInEqualityComparison(CI
, CI
->getArgOperand(0))) {
843 Value
*StrLen
= emitStrLen(CI
->getArgOperand(1), B
, DL
, TLI
);
846 Value
*StrNCmp
= emitStrNCmp(CI
->getArgOperand(0), CI
->getArgOperand(1),
850 for (auto UI
= CI
->user_begin(), UE
= CI
->user_end(); UI
!= UE
;) {
851 ICmpInst
*Old
= cast
<ICmpInst
>(*UI
++);
853 B
.CreateICmp(Old
->getPredicate(), StrNCmp
,
854 ConstantInt::getNullValue(StrNCmp
->getType()), "cmp");
855 replaceAllUsesWith(Old
, Cmp
);
860 // See if either input string is a constant string.
861 StringRef SearchStr
, ToFindStr
;
862 bool HasStr1
= getConstantStringInfo(CI
->getArgOperand(0), SearchStr
);
863 bool HasStr2
= getConstantStringInfo(CI
->getArgOperand(1), ToFindStr
);
865 // fold strstr(x, "") -> x.
866 if (HasStr2
&& ToFindStr
.empty())
867 return B
.CreateBitCast(CI
->getArgOperand(0), CI
->getType());
869 // If both strings are known, constant fold it.
870 if (HasStr1
&& HasStr2
) {
871 size_t Offset
= SearchStr
.find(ToFindStr
);
873 if (Offset
== StringRef::npos
) // strstr("foo", "bar") -> null
874 return Constant::getNullValue(CI
->getType());
876 // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
877 Value
*Result
= castToCStr(CI
->getArgOperand(0), B
);
879 B
.CreateConstInBoundsGEP1_64(B
.getInt8Ty(), Result
, Offset
, "strstr");
880 return B
.CreateBitCast(Result
, CI
->getType());
883 // fold strstr(x, "y") -> strchr(x, 'y').
884 if (HasStr2
&& ToFindStr
.size() == 1) {
885 Value
*StrChr
= emitStrChr(CI
->getArgOperand(0), ToFindStr
[0], B
, TLI
);
886 return StrChr
? B
.CreateBitCast(StrChr
, CI
->getType()) : nullptr;
889 annotateNonNullBasedOnAccess(CI
, {0, 1});
893 Value
*LibCallSimplifier::optimizeMemRChr(CallInst
*CI
, IRBuilder
<> &B
) {
894 if (isKnownNonZero(CI
->getOperand(2), DL
))
895 annotateNonNullBasedOnAccess(CI
, 0);
899 Value
*LibCallSimplifier::optimizeMemChr(CallInst
*CI
, IRBuilder
<> &B
) {
900 Value
*SrcStr
= CI
->getArgOperand(0);
901 Value
*Size
= CI
->getArgOperand(2);
902 annotateNonNullAndDereferenceable(CI
, 0, Size
, DL
);
903 ConstantInt
*CharC
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
904 ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(Size
);
906 // memchr(x, y, 0) -> null
909 return Constant::getNullValue(CI
->getType());
911 // From now on we need at least constant length and string.
916 if (!getConstantStringInfo(SrcStr
, Str
, 0, /*TrimAtNul=*/false))
919 // Truncate the string to LenC. If Str is smaller than LenC we will still only
920 // scan the string, as reading past the end of it is undefined and we can just
921 // return null if we don't find the char.
922 Str
= Str
.substr(0, LenC
->getZExtValue());
924 // If the char is variable but the input str and length are not we can turn
925 // this memchr call into a simple bit field test. Of course this only works
926 // when the return value is only checked against null.
928 // It would be really nice to reuse switch lowering here but we can't change
929 // the CFG at this point.
931 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
933 // after bounds check.
934 if (!CharC
&& !Str
.empty() && isOnlyUsedInZeroEqualityComparison(CI
)) {
936 *std::max_element(reinterpret_cast<const unsigned char *>(Str
.begin()),
937 reinterpret_cast<const unsigned char *>(Str
.end()));
939 // Make sure the bit field we're about to create fits in a register on the
941 // FIXME: On a 64 bit architecture this prevents us from using the
942 // interesting range of alpha ascii chars. We could do better by emitting
943 // two bitfields or shifting the range by 64 if no lower chars are used.
944 if (!DL
.fitsInLegalInteger(Max
+ 1))
947 // For the bit field use a power-of-2 type with at least 8 bits to avoid
948 // creating unnecessary illegal types.
949 unsigned char Width
= NextPowerOf2(std::max((unsigned char)7, Max
));
951 // Now build the bit field.
952 APInt
Bitfield(Width
, 0);
954 Bitfield
.setBit((unsigned char)C
);
955 Value
*BitfieldC
= B
.getInt(Bitfield
);
957 // Adjust width of "C" to the bitfield width, then mask off the high bits.
958 Value
*C
= B
.CreateZExtOrTrunc(CI
->getArgOperand(1), BitfieldC
->getType());
959 C
= B
.CreateAnd(C
, B
.getIntN(Width
, 0xFF));
961 // First check that the bit field access is within bounds.
962 Value
*Bounds
= B
.CreateICmp(ICmpInst::ICMP_ULT
, C
, B
.getIntN(Width
, Width
),
965 // Create code that checks if the given bit is set in the field.
966 Value
*Shl
= B
.CreateShl(B
.getIntN(Width
, 1ULL), C
);
967 Value
*Bits
= B
.CreateIsNotNull(B
.CreateAnd(Shl
, BitfieldC
), "memchr.bits");
969 // Finally merge both checks and cast to pointer type. The inttoptr
970 // implicitly zexts the i1 to intptr type.
971 return B
.CreateIntToPtr(B
.CreateAnd(Bounds
, Bits
, "memchr"), CI
->getType());
974 // Check if all arguments are constants. If so, we can constant fold.
978 // Compute the offset.
979 size_t I
= Str
.find(CharC
->getSExtValue() & 0xFF);
980 if (I
== StringRef::npos
) // Didn't find the char. memchr returns null.
981 return Constant::getNullValue(CI
->getType());
983 // memchr(s+n,c,l) -> gep(s+n+i,c)
984 return B
.CreateGEP(B
.getInt8Ty(), SrcStr
, B
.getInt64(I
), "memchr");
987 static Value
*optimizeMemCmpConstantSize(CallInst
*CI
, Value
*LHS
, Value
*RHS
,
988 uint64_t Len
, IRBuilder
<> &B
,
989 const DataLayout
&DL
) {
990 if (Len
== 0) // memcmp(s1,s2,0) -> 0
991 return Constant::getNullValue(CI
->getType());
993 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
996 B
.CreateZExt(B
.CreateLoad(B
.getInt8Ty(), castToCStr(LHS
, B
), "lhsc"),
997 CI
->getType(), "lhsv");
999 B
.CreateZExt(B
.CreateLoad(B
.getInt8Ty(), castToCStr(RHS
, B
), "rhsc"),
1000 CI
->getType(), "rhsv");
1001 return B
.CreateSub(LHSV
, RHSV
, "chardiff");
1004 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1005 // TODO: The case where both inputs are constants does not need to be limited
1006 // to legal integers or equality comparison. See block below this.
1007 if (DL
.isLegalInteger(Len
* 8) && isOnlyUsedInZeroEqualityComparison(CI
)) {
1008 IntegerType
*IntType
= IntegerType::get(CI
->getContext(), Len
* 8);
1009 unsigned PrefAlignment
= DL
.getPrefTypeAlignment(IntType
);
1011 // First, see if we can fold either argument to a constant.
1012 Value
*LHSV
= nullptr;
1013 if (auto *LHSC
= dyn_cast
<Constant
>(LHS
)) {
1014 LHSC
= ConstantExpr::getBitCast(LHSC
, IntType
->getPointerTo());
1015 LHSV
= ConstantFoldLoadFromConstPtr(LHSC
, IntType
, DL
);
1017 Value
*RHSV
= nullptr;
1018 if (auto *RHSC
= dyn_cast
<Constant
>(RHS
)) {
1019 RHSC
= ConstantExpr::getBitCast(RHSC
, IntType
->getPointerTo());
1020 RHSV
= ConstantFoldLoadFromConstPtr(RHSC
, IntType
, DL
);
1023 // Don't generate unaligned loads. If either source is constant data,
1024 // alignment doesn't matter for that source because there is no load.
1025 if ((LHSV
|| getKnownAlignment(LHS
, DL
, CI
) >= PrefAlignment
) &&
1026 (RHSV
|| getKnownAlignment(RHS
, DL
, CI
) >= PrefAlignment
)) {
1029 IntType
->getPointerTo(LHS
->getType()->getPointerAddressSpace());
1030 LHSV
= B
.CreateLoad(IntType
, B
.CreateBitCast(LHS
, LHSPtrTy
), "lhsv");
1034 IntType
->getPointerTo(RHS
->getType()->getPointerAddressSpace());
1035 RHSV
= B
.CreateLoad(IntType
, B
.CreateBitCast(RHS
, RHSPtrTy
), "rhsv");
1037 return B
.CreateZExt(B
.CreateICmpNE(LHSV
, RHSV
), CI
->getType(), "memcmp");
1041 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1042 // TODO: This is limited to i8 arrays.
1043 StringRef LHSStr
, RHSStr
;
1044 if (getConstantStringInfo(LHS
, LHSStr
) &&
1045 getConstantStringInfo(RHS
, RHSStr
)) {
1046 // Make sure we're not reading out-of-bounds memory.
1047 if (Len
> LHSStr
.size() || Len
> RHSStr
.size())
1049 // Fold the memcmp and normalize the result. This way we get consistent
1050 // results across multiple platforms.
1052 int Cmp
= memcmp(LHSStr
.data(), RHSStr
.data(), Len
);
1057 return ConstantInt::get(CI
->getType(), Ret
);
1063 // Most simplifications for memcmp also apply to bcmp.
1064 Value
*LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst
*CI
,
1066 Value
*LHS
= CI
->getArgOperand(0), *RHS
= CI
->getArgOperand(1);
1067 Value
*Size
= CI
->getArgOperand(2);
1069 if (LHS
== RHS
) // memcmp(s,s,x) -> 0
1070 return Constant::getNullValue(CI
->getType());
1072 annotateNonNullAndDereferenceable(CI
, {0, 1}, Size
, DL
);
1073 // Handle constant lengths.
1074 ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(Size
);
1078 // memcmp(d,s,0) -> 0
1079 if (LenC
->getZExtValue() == 0)
1080 return Constant::getNullValue(CI
->getType());
1083 optimizeMemCmpConstantSize(CI
, LHS
, RHS
, LenC
->getZExtValue(), B
, DL
))
1088 Value
*LibCallSimplifier::optimizeMemCmp(CallInst
*CI
, IRBuilder
<> &B
) {
1089 if (Value
*V
= optimizeMemCmpBCmpCommon(CI
, B
))
1092 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1093 // bcmp can be more efficient than memcmp because it only has to know that
1094 // there is a difference, not how different one is to the other.
1095 if (TLI
->has(LibFunc_bcmp
) && isOnlyUsedInZeroEqualityComparison(CI
)) {
1096 Value
*LHS
= CI
->getArgOperand(0);
1097 Value
*RHS
= CI
->getArgOperand(1);
1098 Value
*Size
= CI
->getArgOperand(2);
1099 return emitBCmp(LHS
, RHS
, Size
, B
, DL
, TLI
);
1105 Value
*LibCallSimplifier::optimizeBCmp(CallInst
*CI
, IRBuilder
<> &B
) {
1106 return optimizeMemCmpBCmpCommon(CI
, B
);
1109 Value
*LibCallSimplifier::optimizeMemCpy(CallInst
*CI
, IRBuilder
<> &B
) {
1110 Value
*Size
= CI
->getArgOperand(2);
1111 annotateNonNullAndDereferenceable(CI
, {0, 1}, Size
, DL
);
1112 if (isa
<IntrinsicInst
>(CI
))
1115 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1117 B
.CreateMemCpy(CI
->getArgOperand(0), 1, CI
->getArgOperand(1), 1, Size
);
1118 NewCI
->setAttributes(CI
->getAttributes());
1119 return CI
->getArgOperand(0);
1122 Value
*LibCallSimplifier::optimizeMemPCpy(CallInst
*CI
, IRBuilder
<> &B
) {
1123 Value
*Dst
= CI
->getArgOperand(0);
1124 Value
*N
= CI
->getArgOperand(2);
1125 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1126 CallInst
*NewCI
= B
.CreateMemCpy(Dst
, 1, CI
->getArgOperand(1), 1, N
);
1127 NewCI
->setAttributes(CI
->getAttributes());
1128 return B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, N
);
1131 Value
*LibCallSimplifier::optimizeMemMove(CallInst
*CI
, IRBuilder
<> &B
) {
1132 Value
*Size
= CI
->getArgOperand(2);
1133 annotateNonNullAndDereferenceable(CI
, {0, 1}, Size
, DL
);
1134 if (isa
<IntrinsicInst
>(CI
))
1137 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1139 B
.CreateMemMove(CI
->getArgOperand(0), 1, CI
->getArgOperand(1), 1, Size
);
1140 NewCI
->setAttributes(CI
->getAttributes());
1141 return CI
->getArgOperand(0);
1144 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
1145 Value
*LibCallSimplifier::foldMallocMemset(CallInst
*Memset
, IRBuilder
<> &B
) {
1146 // This has to be a memset of zeros (bzero).
1147 auto *FillValue
= dyn_cast
<ConstantInt
>(Memset
->getArgOperand(1));
1148 if (!FillValue
|| FillValue
->getZExtValue() != 0)
1151 // TODO: We should handle the case where the malloc has more than one use.
1152 // This is necessary to optimize common patterns such as when the result of
1153 // the malloc is checked against null or when a memset intrinsic is used in
1154 // place of a memset library call.
1155 auto *Malloc
= dyn_cast
<CallInst
>(Memset
->getArgOperand(0));
1156 if (!Malloc
|| !Malloc
->hasOneUse())
1159 // Is the inner call really malloc()?
1160 Function
*InnerCallee
= Malloc
->getCalledFunction();
1165 if (!TLI
->getLibFunc(*InnerCallee
, Func
) || !TLI
->has(Func
) ||
1166 Func
!= LibFunc_malloc
)
1169 // The memset must cover the same number of bytes that are malloc'd.
1170 if (Memset
->getArgOperand(2) != Malloc
->getArgOperand(0))
1173 // Replace the malloc with a calloc. We need the data layout to know what the
1174 // actual size of a 'size_t' parameter is.
1175 B
.SetInsertPoint(Malloc
->getParent(), ++Malloc
->getIterator());
1176 const DataLayout
&DL
= Malloc
->getModule()->getDataLayout();
1177 IntegerType
*SizeType
= DL
.getIntPtrType(B
.GetInsertBlock()->getContext());
1178 if (Value
*Calloc
= emitCalloc(ConstantInt::get(SizeType
, 1),
1179 Malloc
->getArgOperand(0),
1180 Malloc
->getAttributes(), B
, *TLI
)) {
1181 substituteInParent(Malloc
, Calloc
);
1188 Value
*LibCallSimplifier::optimizeMemSet(CallInst
*CI
, IRBuilder
<> &B
) {
1189 Value
*Size
= CI
->getArgOperand(2);
1190 annotateNonNullAndDereferenceable(CI
, 0, Size
, DL
);
1191 if (isa
<IntrinsicInst
>(CI
))
1194 if (auto *Calloc
= foldMallocMemset(CI
, B
))
1197 // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1198 Value
*Val
= B
.CreateIntCast(CI
->getArgOperand(1), B
.getInt8Ty(), false);
1199 CallInst
*NewCI
= B
.CreateMemSet(CI
->getArgOperand(0), Val
, Size
, 1);
1200 NewCI
->setAttributes(CI
->getAttributes());
1201 return CI
->getArgOperand(0);
1204 Value
*LibCallSimplifier::optimizeRealloc(CallInst
*CI
, IRBuilder
<> &B
) {
1205 if (isa
<ConstantPointerNull
>(CI
->getArgOperand(0)))
1206 return emitMalloc(CI
->getArgOperand(1), B
, DL
, TLI
);
1211 //===----------------------------------------------------------------------===//
1212 // Math Library Optimizations
1213 //===----------------------------------------------------------------------===//
1215 // Replace a libcall \p CI with a call to intrinsic \p IID
1216 static Value
*replaceUnaryCall(CallInst
*CI
, IRBuilder
<> &B
, Intrinsic::ID IID
) {
1217 // Propagate fast-math flags from the existing call to the new call.
1218 IRBuilder
<>::FastMathFlagGuard
Guard(B
);
1219 B
.setFastMathFlags(CI
->getFastMathFlags());
1221 Module
*M
= CI
->getModule();
1222 Value
*V
= CI
->getArgOperand(0);
1223 Function
*F
= Intrinsic::getDeclaration(M
, IID
, CI
->getType());
1224 CallInst
*NewCall
= B
.CreateCall(F
, V
);
1225 NewCall
->takeName(CI
);
1229 /// Return a variant of Val with float type.
1230 /// Currently this works in two cases: If Val is an FPExtension of a float
1231 /// value to something bigger, simply return the operand.
1232 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1233 /// loss of precision do so.
1234 static Value
*valueHasFloatPrecision(Value
*Val
) {
1235 if (FPExtInst
*Cast
= dyn_cast
<FPExtInst
>(Val
)) {
1236 Value
*Op
= Cast
->getOperand(0);
1237 if (Op
->getType()->isFloatTy())
1240 if (ConstantFP
*Const
= dyn_cast
<ConstantFP
>(Val
)) {
1241 APFloat F
= Const
->getValueAPF();
1243 (void)F
.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven
,
1246 return ConstantFP::get(Const
->getContext(), F
);
1251 /// Shrink double -> float functions.
1252 static Value
*optimizeDoubleFP(CallInst
*CI
, IRBuilder
<> &B
,
1253 bool isBinary
, bool isPrecise
= false) {
1254 Function
*CalleeFn
= CI
->getCalledFunction();
1255 if (!CI
->getType()->isDoubleTy() || !CalleeFn
)
1258 // If not all the uses of the function are converted to float, then bail out.
1259 // This matters if the precision of the result is more important than the
1260 // precision of the arguments.
1262 for (User
*U
: CI
->users()) {
1263 FPTruncInst
*Cast
= dyn_cast
<FPTruncInst
>(U
);
1264 if (!Cast
|| !Cast
->getType()->isFloatTy())
1268 // If this is something like 'g((double) float)', convert to 'gf(float)'.
1270 V
[0] = valueHasFloatPrecision(CI
->getArgOperand(0));
1271 V
[1] = isBinary
? valueHasFloatPrecision(CI
->getArgOperand(1)) : nullptr;
1272 if (!V
[0] || (isBinary
&& !V
[1]))
1275 // If call isn't an intrinsic, check that it isn't within a function with the
1276 // same name as the float version of this call, otherwise the result is an
1277 // infinite loop. For example, from MinGW-w64:
1279 // float expf(float val) { return (float) exp((double) val); }
1280 StringRef CalleeName
= CalleeFn
->getName();
1281 bool IsIntrinsic
= CalleeFn
->isIntrinsic();
1283 StringRef CallerName
= CI
->getFunction()->getName();
1284 if (!CallerName
.empty() && CallerName
.back() == 'f' &&
1285 CallerName
.size() == (CalleeName
.size() + 1) &&
1286 CallerName
.startswith(CalleeName
))
1290 // Propagate the math semantics from the current function to the new function.
1291 IRBuilder
<>::FastMathFlagGuard
Guard(B
);
1292 B
.setFastMathFlags(CI
->getFastMathFlags());
1294 // g((double) float) -> (double) gf(float)
1297 Module
*M
= CI
->getModule();
1298 Intrinsic::ID IID
= CalleeFn
->getIntrinsicID();
1299 Function
*Fn
= Intrinsic::getDeclaration(M
, IID
, B
.getFloatTy());
1300 R
= isBinary
? B
.CreateCall(Fn
, V
) : B
.CreateCall(Fn
, V
[0]);
1302 AttributeList CalleeAttrs
= CalleeFn
->getAttributes();
1303 R
= isBinary
? emitBinaryFloatFnCall(V
[0], V
[1], CalleeName
, B
, CalleeAttrs
)
1304 : emitUnaryFloatFnCall(V
[0], CalleeName
, B
, CalleeAttrs
);
1306 return B
.CreateFPExt(R
, B
.getDoubleTy());
1309 /// Shrink double -> float for unary functions.
1310 static Value
*optimizeUnaryDoubleFP(CallInst
*CI
, IRBuilder
<> &B
,
1311 bool isPrecise
= false) {
1312 return optimizeDoubleFP(CI
, B
, false, isPrecise
);
1315 /// Shrink double -> float for binary functions.
1316 static Value
*optimizeBinaryDoubleFP(CallInst
*CI
, IRBuilder
<> &B
,
1317 bool isPrecise
= false) {
1318 return optimizeDoubleFP(CI
, B
, true, isPrecise
);
1321 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1322 Value
*LibCallSimplifier::optimizeCAbs(CallInst
*CI
, IRBuilder
<> &B
) {
1326 // Propagate fast-math flags from the existing call to new instructions.
1327 IRBuilder
<>::FastMathFlagGuard
Guard(B
);
1328 B
.setFastMathFlags(CI
->getFastMathFlags());
1331 if (CI
->getNumArgOperands() == 1) {
1332 Value
*Op
= CI
->getArgOperand(0);
1333 assert(Op
->getType()->isArrayTy() && "Unexpected signature for cabs!");
1334 Real
= B
.CreateExtractValue(Op
, 0, "real");
1335 Imag
= B
.CreateExtractValue(Op
, 1, "imag");
1337 assert(CI
->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1338 Real
= CI
->getArgOperand(0);
1339 Imag
= CI
->getArgOperand(1);
1342 Value
*RealReal
= B
.CreateFMul(Real
, Real
);
1343 Value
*ImagImag
= B
.CreateFMul(Imag
, Imag
);
1345 Function
*FSqrt
= Intrinsic::getDeclaration(CI
->getModule(), Intrinsic::sqrt
,
1347 return B
.CreateCall(FSqrt
, B
.CreateFAdd(RealReal
, ImagImag
), "cabs");
1350 static Value
*optimizeTrigReflections(CallInst
*Call
, LibFunc Func
,
1352 if (!isa
<FPMathOperator
>(Call
))
1355 IRBuilder
<>::FastMathFlagGuard
Guard(B
);
1356 B
.setFastMathFlags(Call
->getFastMathFlags());
1358 // TODO: Can this be shared to also handle LLVM intrinsics?
1367 // sin(-X) --> -sin(X)
1368 // tan(-X) --> -tan(X)
1369 if (match(Call
->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X
)))))
1370 return B
.CreateFNeg(B
.CreateCall(Call
->getCalledFunction(), X
));
1375 // cos(-X) --> cos(X)
1376 if (match(Call
->getArgOperand(0), m_FNeg(m_Value(X
))))
1377 return B
.CreateCall(Call
->getCalledFunction(), X
, "cos");
1385 static Value
*getPow(Value
*InnerChain
[33], unsigned Exp
, IRBuilder
<> &B
) {
1386 // Multiplications calculated using Addition Chains.
1387 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1389 assert(Exp
!= 0 && "Incorrect exponent 0 not handled");
1391 if (InnerChain
[Exp
])
1392 return InnerChain
[Exp
];
1394 static const unsigned AddChain
[33][2] = {
1396 {0, 0}, // Unused (base case = pow1).
1397 {1, 1}, // Unused (pre-computed).
1398 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4},
1399 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7},
1400 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10},
1401 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1402 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1405 InnerChain
[Exp
] = B
.CreateFMul(getPow(InnerChain
, AddChain
[Exp
][0], B
),
1406 getPow(InnerChain
, AddChain
[Exp
][1], B
));
1407 return InnerChain
[Exp
];
1410 // Return a properly extended 32-bit integer if the operation is an itofp.
1411 static Value
*getIntToFPVal(Value
*I2F
, IRBuilder
<> &B
) {
1412 if (isa
<SIToFPInst
>(I2F
) || isa
<UIToFPInst
>(I2F
)) {
1413 Value
*Op
= cast
<Instruction
>(I2F
)->getOperand(0);
1414 // Make sure that the exponent fits inside an int32_t,
1415 // thus avoiding any range issues that FP has not.
1416 unsigned BitWidth
= Op
->getType()->getPrimitiveSizeInBits();
1417 if (BitWidth
< 32 ||
1418 (BitWidth
== 32 && isa
<SIToFPInst
>(I2F
)))
1419 return isa
<SIToFPInst
>(I2F
) ? B
.CreateSExt(Op
, B
.getInt32Ty())
1420 : B
.CreateZExt(Op
, B
.getInt32Ty());
1426 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1427 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1428 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1429 Value
*LibCallSimplifier::replacePowWithExp(CallInst
*Pow
, IRBuilder
<> &B
) {
1430 Value
*Base
= Pow
->getArgOperand(0), *Expo
= Pow
->getArgOperand(1);
1431 AttributeList Attrs
= Pow
->getCalledFunction()->getAttributes();
1432 Module
*Mod
= Pow
->getModule();
1433 Type
*Ty
= Pow
->getType();
1436 // Evaluate special cases related to a nested function as the base.
1438 // pow(exp(x), y) -> exp(x * y)
1439 // pow(exp2(x), y) -> exp2(x * y)
1440 // If exp{,2}() is used only once, it is better to fold two transcendental
1441 // math functions into one. If used again, exp{,2}() would still have to be
1442 // called with the original argument, then keep both original transcendental
1443 // functions. However, this transformation is only safe with fully relaxed
1444 // math semantics, since, besides rounding differences, it changes overflow
1445 // and underflow behavior quite dramatically. For example:
1446 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1448 // exp(1000 * 0.001) = exp(1)
1449 // TODO: Loosen the requirement for fully relaxed math semantics.
1450 // TODO: Handle exp10() when more targets have it available.
1451 CallInst
*BaseFn
= dyn_cast
<CallInst
>(Base
);
1452 if (BaseFn
&& BaseFn
->hasOneUse() && BaseFn
->isFast() && Pow
->isFast()) {
1455 Function
*CalleeFn
= BaseFn
->getCalledFunction();
1457 TLI
->getLibFunc(CalleeFn
->getName(), LibFn
) && TLI
->has(LibFn
)) {
1461 LibFunc LibFnFloat
, LibFnDouble
, LibFnLongDouble
;
1466 case LibFunc_expf
: case LibFunc_exp
: case LibFunc_expl
:
1467 ExpName
= TLI
->getName(LibFunc_exp
);
1468 ID
= Intrinsic::exp
;
1469 LibFnFloat
= LibFunc_expf
;
1470 LibFnDouble
= LibFunc_exp
;
1471 LibFnLongDouble
= LibFunc_expl
;
1473 case LibFunc_exp2f
: case LibFunc_exp2
: case LibFunc_exp2l
:
1474 ExpName
= TLI
->getName(LibFunc_exp2
);
1475 ID
= Intrinsic::exp2
;
1476 LibFnFloat
= LibFunc_exp2f
;
1477 LibFnDouble
= LibFunc_exp2
;
1478 LibFnLongDouble
= LibFunc_exp2l
;
1482 // Create new exp{,2}() with the product as its argument.
1483 Value
*FMul
= B
.CreateFMul(BaseFn
->getArgOperand(0), Expo
, "mul");
1484 ExpFn
= BaseFn
->doesNotAccessMemory()
1485 ? B
.CreateCall(Intrinsic::getDeclaration(Mod
, ID
, Ty
),
1487 : emitUnaryFloatFnCall(FMul
, TLI
, LibFnDouble
, LibFnFloat
,
1489 BaseFn
->getAttributes());
1491 // Since the new exp{,2}() is different from the original one, dead code
1492 // elimination cannot be trusted to remove it, since it may have side
1493 // effects (e.g., errno). When the only consumer for the original
1494 // exp{,2}() is pow(), then it has to be explicitly erased.
1495 substituteInParent(BaseFn
, ExpFn
);
1500 // Evaluate special cases related to a constant base.
1502 const APFloat
*BaseF
;
1503 if (!match(Pow
->getArgOperand(0), m_APFloat(BaseF
)))
1506 // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1507 if (match(Base
, m_SpecificFP(2.0)) &&
1508 (isa
<SIToFPInst
>(Expo
) || isa
<UIToFPInst
>(Expo
)) &&
1509 hasFloatFn(TLI
, Ty
, LibFunc_ldexp
, LibFunc_ldexpf
, LibFunc_ldexpl
)) {
1510 if (Value
*ExpoI
= getIntToFPVal(Expo
, B
))
1511 return emitBinaryFloatFnCall(ConstantFP::get(Ty
, 1.0), ExpoI
, TLI
,
1512 LibFunc_ldexp
, LibFunc_ldexpf
, LibFunc_ldexpl
,
1516 // pow(2.0 ** n, x) -> exp2(n * x)
1517 if (hasFloatFn(TLI
, Ty
, LibFunc_exp2
, LibFunc_exp2f
, LibFunc_exp2l
)) {
1518 APFloat BaseR
= APFloat(1.0);
1519 BaseR
.convert(BaseF
->getSemantics(), APFloat::rmTowardZero
, &Ignored
);
1520 BaseR
= BaseR
/ *BaseF
;
1521 bool IsInteger
= BaseF
->isInteger(), IsReciprocal
= BaseR
.isInteger();
1522 const APFloat
*NF
= IsReciprocal
? &BaseR
: BaseF
;
1523 APSInt
NI(64, false);
1524 if ((IsInteger
|| IsReciprocal
) &&
1525 NF
->convertToInteger(NI
, APFloat::rmTowardZero
, &Ignored
) ==
1527 NI
> 1 && NI
.isPowerOf2()) {
1528 double N
= NI
.logBase2() * (IsReciprocal
? -1.0 : 1.0);
1529 Value
*FMul
= B
.CreateFMul(Expo
, ConstantFP::get(Ty
, N
), "mul");
1530 if (Pow
->doesNotAccessMemory())
1531 return B
.CreateCall(Intrinsic::getDeclaration(Mod
, Intrinsic::exp2
, Ty
),
1534 return emitUnaryFloatFnCall(FMul
, TLI
, LibFunc_exp2
, LibFunc_exp2f
,
1535 LibFunc_exp2l
, B
, Attrs
);
1539 // pow(10.0, x) -> exp10(x)
1540 // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1541 if (match(Base
, m_SpecificFP(10.0)) &&
1542 hasFloatFn(TLI
, Ty
, LibFunc_exp10
, LibFunc_exp10f
, LibFunc_exp10l
))
1543 return emitUnaryFloatFnCall(Expo
, TLI
, LibFunc_exp10
, LibFunc_exp10f
,
1544 LibFunc_exp10l
, B
, Attrs
);
1546 // pow(n, x) -> exp2(log2(n) * x)
1547 if (Pow
->hasOneUse() && Pow
->hasApproxFunc() && Pow
->hasNoNaNs() &&
1548 Pow
->hasNoInfs() && BaseF
->isNormal() && !BaseF
->isNegative()) {
1549 Value
*Log
= nullptr;
1550 if (Ty
->isFloatTy())
1551 Log
= ConstantFP::get(Ty
, std::log2(BaseF
->convertToFloat()));
1552 else if (Ty
->isDoubleTy())
1553 Log
= ConstantFP::get(Ty
, std::log2(BaseF
->convertToDouble()));
1556 Value
*FMul
= B
.CreateFMul(Log
, Expo
, "mul");
1557 if (Pow
->doesNotAccessMemory())
1558 return B
.CreateCall(Intrinsic::getDeclaration(Mod
, Intrinsic::exp2
, Ty
),
1560 else if (hasFloatFn(TLI
, Ty
, LibFunc_exp2
, LibFunc_exp2f
, LibFunc_exp2l
))
1561 return emitUnaryFloatFnCall(FMul
, TLI
, LibFunc_exp2
, LibFunc_exp2f
,
1562 LibFunc_exp2l
, B
, Attrs
);
1569 static Value
*getSqrtCall(Value
*V
, AttributeList Attrs
, bool NoErrno
,
1570 Module
*M
, IRBuilder
<> &B
,
1571 const TargetLibraryInfo
*TLI
) {
1572 // If errno is never set, then use the intrinsic for sqrt().
1575 Intrinsic::getDeclaration(M
, Intrinsic::sqrt
, V
->getType());
1576 return B
.CreateCall(SqrtFn
, V
, "sqrt");
1579 // Otherwise, use the libcall for sqrt().
1580 if (hasFloatFn(TLI
, V
->getType(), LibFunc_sqrt
, LibFunc_sqrtf
, LibFunc_sqrtl
))
1581 // TODO: We also should check that the target can in fact lower the sqrt()
1582 // libcall. We currently have no way to ask this question, so we ask if
1583 // the target has a sqrt() libcall, which is not exactly the same.
1584 return emitUnaryFloatFnCall(V
, TLI
, LibFunc_sqrt
, LibFunc_sqrtf
,
1585 LibFunc_sqrtl
, B
, Attrs
);
1590 /// Use square root in place of pow(x, +/-0.5).
1591 Value
*LibCallSimplifier::replacePowWithSqrt(CallInst
*Pow
, IRBuilder
<> &B
) {
1592 Value
*Sqrt
, *Base
= Pow
->getArgOperand(0), *Expo
= Pow
->getArgOperand(1);
1593 AttributeList Attrs
= Pow
->getCalledFunction()->getAttributes();
1594 Module
*Mod
= Pow
->getModule();
1595 Type
*Ty
= Pow
->getType();
1597 const APFloat
*ExpoF
;
1598 if (!match(Expo
, m_APFloat(ExpoF
)) ||
1599 (!ExpoF
->isExactlyValue(0.5) && !ExpoF
->isExactlyValue(-0.5)))
1602 Sqrt
= getSqrtCall(Base
, Attrs
, Pow
->doesNotAccessMemory(), Mod
, B
, TLI
);
1606 // Handle signed zero base by expanding to fabs(sqrt(x)).
1607 if (!Pow
->hasNoSignedZeros()) {
1608 Function
*FAbsFn
= Intrinsic::getDeclaration(Mod
, Intrinsic::fabs
, Ty
);
1609 Sqrt
= B
.CreateCall(FAbsFn
, Sqrt
, "abs");
1612 // Handle non finite base by expanding to
1613 // (x == -infinity ? +infinity : sqrt(x)).
1614 if (!Pow
->hasNoInfs()) {
1615 Value
*PosInf
= ConstantFP::getInfinity(Ty
),
1616 *NegInf
= ConstantFP::getInfinity(Ty
, true);
1617 Value
*FCmp
= B
.CreateFCmpOEQ(Base
, NegInf
, "isinf");
1618 Sqrt
= B
.CreateSelect(FCmp
, PosInf
, Sqrt
);
1621 // If the exponent is negative, then get the reciprocal.
1622 if (ExpoF
->isNegative())
1623 Sqrt
= B
.CreateFDiv(ConstantFP::get(Ty
, 1.0), Sqrt
, "reciprocal");
1628 static Value
*createPowWithIntegerExponent(Value
*Base
, Value
*Expo
, Module
*M
,
1630 Value
*Args
[] = {Base
, Expo
};
1631 Function
*F
= Intrinsic::getDeclaration(M
, Intrinsic::powi
, Base
->getType());
1632 return B
.CreateCall(F
, Args
);
1635 Value
*LibCallSimplifier::optimizePow(CallInst
*Pow
, IRBuilder
<> &B
) {
1636 Value
*Base
= Pow
->getArgOperand(0);
1637 Value
*Expo
= Pow
->getArgOperand(1);
1638 Function
*Callee
= Pow
->getCalledFunction();
1639 StringRef Name
= Callee
->getName();
1640 Type
*Ty
= Pow
->getType();
1641 Module
*M
= Pow
->getModule();
1642 Value
*Shrunk
= nullptr;
1643 bool AllowApprox
= Pow
->hasApproxFunc();
1646 // Bail out if simplifying libcalls to pow() is disabled.
1647 if (!hasFloatFn(TLI
, Ty
, LibFunc_pow
, LibFunc_powf
, LibFunc_powl
))
1650 // Propagate the math semantics from the call to any created instructions.
1651 IRBuilder
<>::FastMathFlagGuard
Guard(B
);
1652 B
.setFastMathFlags(Pow
->getFastMathFlags());
1654 // Shrink pow() to powf() if the arguments are single precision,
1655 // unless the result is expected to be double precision.
1656 if (UnsafeFPShrink
&& Name
== TLI
->getName(LibFunc_pow
) &&
1657 hasFloatVersion(Name
))
1658 Shrunk
= optimizeBinaryDoubleFP(Pow
, B
, true);
1660 // Evaluate special cases related to the base.
1662 // pow(1.0, x) -> 1.0
1663 if (match(Base
, m_FPOne()))
1666 if (Value
*Exp
= replacePowWithExp(Pow
, B
))
1669 // Evaluate special cases related to the exponent.
1671 // pow(x, -1.0) -> 1.0 / x
1672 if (match(Expo
, m_SpecificFP(-1.0)))
1673 return B
.CreateFDiv(ConstantFP::get(Ty
, 1.0), Base
, "reciprocal");
1675 // pow(x, +/-0.0) -> 1.0
1676 if (match(Expo
, m_AnyZeroFP()))
1677 return ConstantFP::get(Ty
, 1.0);
1680 if (match(Expo
, m_FPOne()))
1683 // pow(x, 2.0) -> x * x
1684 if (match(Expo
, m_SpecificFP(2.0)))
1685 return B
.CreateFMul(Base
, Base
, "square");
1687 if (Value
*Sqrt
= replacePowWithSqrt(Pow
, B
))
1690 // pow(x, n) -> x * x * x * ...
1691 const APFloat
*ExpoF
;
1692 if (AllowApprox
&& match(Expo
, m_APFloat(ExpoF
))) {
1693 // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1694 // If the exponent is an integer+0.5 we generate a call to sqrt and an
1696 // TODO: This whole transformation should be backend specific (e.g. some
1697 // backends might prefer libcalls or the limit for the exponent might
1698 // be different) and it should also consider optimizing for size.
1699 APFloat
LimF(ExpoF
->getSemantics(), 33.0),
1701 if (ExpoA
.compare(LimF
) == APFloat::cmpLessThan
) {
1702 // This transformation applies to integer or integer+0.5 exponents only.
1703 // For integer+0.5, we create a sqrt(Base) call.
1704 Value
*Sqrt
= nullptr;
1705 if (!ExpoA
.isInteger()) {
1706 APFloat Expo2
= ExpoA
;
1707 // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1708 // is no floating point exception and the result is an integer, then
1709 // ExpoA == integer + 0.5
1710 if (Expo2
.add(ExpoA
, APFloat::rmNearestTiesToEven
) != APFloat::opOK
)
1713 if (!Expo2
.isInteger())
1716 Sqrt
= getSqrtCall(Base
, Pow
->getCalledFunction()->getAttributes(),
1717 Pow
->doesNotAccessMemory(), M
, B
, TLI
);
1720 // We will memoize intermediate products of the Addition Chain.
1721 Value
*InnerChain
[33] = {nullptr};
1722 InnerChain
[1] = Base
;
1723 InnerChain
[2] = B
.CreateFMul(Base
, Base
, "square");
1725 // We cannot readily convert a non-double type (like float) to a double.
1726 // So we first convert it to something which could be converted to double.
1727 ExpoA
.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero
, &Ignored
);
1728 Value
*FMul
= getPow(InnerChain
, ExpoA
.convertToDouble(), B
);
1730 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1732 FMul
= B
.CreateFMul(FMul
, Sqrt
);
1734 // If the exponent is negative, then get the reciprocal.
1735 if (ExpoF
->isNegative())
1736 FMul
= B
.CreateFDiv(ConstantFP::get(Ty
, 1.0), FMul
, "reciprocal");
1741 APSInt
IntExpo(32, /*isUnsigned=*/false);
1742 // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1743 if (ExpoF
->isInteger() &&
1744 ExpoF
->convertToInteger(IntExpo
, APFloat::rmTowardZero
, &Ignored
) ==
1746 return createPowWithIntegerExponent(
1747 Base
, ConstantInt::get(B
.getInt32Ty(), IntExpo
), M
, B
);
1751 // powf(x, itofp(y)) -> powi(x, y)
1752 if (AllowApprox
&& (isa
<SIToFPInst
>(Expo
) || isa
<UIToFPInst
>(Expo
))) {
1753 if (Value
*ExpoI
= getIntToFPVal(Expo
, B
))
1754 return createPowWithIntegerExponent(Base
, ExpoI
, M
, B
);
1760 Value
*LibCallSimplifier::optimizeExp2(CallInst
*CI
, IRBuilder
<> &B
) {
1761 Function
*Callee
= CI
->getCalledFunction();
1762 StringRef Name
= Callee
->getName();
1763 Value
*Ret
= nullptr;
1764 if (UnsafeFPShrink
&& Name
== TLI
->getName(LibFunc_exp2
) &&
1765 hasFloatVersion(Name
))
1766 Ret
= optimizeUnaryDoubleFP(CI
, B
, true);
1768 Type
*Ty
= CI
->getType();
1769 Value
*Op
= CI
->getArgOperand(0);
1771 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
1772 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
1773 if ((isa
<SIToFPInst
>(Op
) || isa
<UIToFPInst
>(Op
)) &&
1774 hasFloatFn(TLI
, Ty
, LibFunc_ldexp
, LibFunc_ldexpf
, LibFunc_ldexpl
)) {
1775 if (Value
*Exp
= getIntToFPVal(Op
, B
))
1776 return emitBinaryFloatFnCall(ConstantFP::get(Ty
, 1.0), Exp
, TLI
,
1777 LibFunc_ldexp
, LibFunc_ldexpf
, LibFunc_ldexpl
,
1778 B
, CI
->getCalledFunction()->getAttributes());
1784 Value
*LibCallSimplifier::optimizeFMinFMax(CallInst
*CI
, IRBuilder
<> &B
) {
1785 // If we can shrink the call to a float function rather than a double
1786 // function, do that first.
1787 Function
*Callee
= CI
->getCalledFunction();
1788 StringRef Name
= Callee
->getName();
1789 if ((Name
== "fmin" || Name
== "fmax") && hasFloatVersion(Name
))
1790 if (Value
*Ret
= optimizeBinaryDoubleFP(CI
, B
))
1793 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1794 // the intrinsics for improved optimization (for example, vectorization).
1795 // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1796 // From the C standard draft WG14/N1256:
1797 // "Ideally, fmax would be sensitive to the sign of zero, for example
1798 // fmax(-0.0, +0.0) would return +0; however, implementation in software
1799 // might be impractical."
1800 IRBuilder
<>::FastMathFlagGuard
Guard(B
);
1801 FastMathFlags FMF
= CI
->getFastMathFlags();
1802 FMF
.setNoSignedZeros();
1803 B
.setFastMathFlags(FMF
);
1805 Intrinsic::ID IID
= Callee
->getName().startswith("fmin") ? Intrinsic::minnum
1806 : Intrinsic::maxnum
;
1807 Function
*F
= Intrinsic::getDeclaration(CI
->getModule(), IID
, CI
->getType());
1808 return B
.CreateCall(F
, { CI
->getArgOperand(0), CI
->getArgOperand(1) });
1811 Value
*LibCallSimplifier::optimizeLog(CallInst
*Log
, IRBuilder
<> &B
) {
1812 Function
*LogFn
= Log
->getCalledFunction();
1813 AttributeList Attrs
= LogFn
->getAttributes();
1814 StringRef LogNm
= LogFn
->getName();
1815 Intrinsic::ID LogID
= LogFn
->getIntrinsicID();
1816 Module
*Mod
= Log
->getModule();
1817 Type
*Ty
= Log
->getType();
1818 Value
*Ret
= nullptr;
1820 if (UnsafeFPShrink
&& hasFloatVersion(LogNm
))
1821 Ret
= optimizeUnaryDoubleFP(Log
, B
, true);
1823 // The earlier call must also be 'fast' in order to do these transforms.
1824 CallInst
*Arg
= dyn_cast
<CallInst
>(Log
->getArgOperand(0));
1825 if (!Log
->isFast() || !Arg
|| !Arg
->isFast() || !Arg
->hasOneUse())
1828 LibFunc LogLb
, ExpLb
, Exp2Lb
, Exp10Lb
, PowLb
;
1830 // This is only applicable to log(), log2(), log10().
1831 if (TLI
->getLibFunc(LogNm
, LogLb
))
1834 LogID
= Intrinsic::log
;
1835 ExpLb
= LibFunc_expf
;
1836 Exp2Lb
= LibFunc_exp2f
;
1837 Exp10Lb
= LibFunc_exp10f
;
1838 PowLb
= LibFunc_powf
;
1841 LogID
= Intrinsic::log
;
1842 ExpLb
= LibFunc_exp
;
1843 Exp2Lb
= LibFunc_exp2
;
1844 Exp10Lb
= LibFunc_exp10
;
1845 PowLb
= LibFunc_pow
;
1848 LogID
= Intrinsic::log
;
1849 ExpLb
= LibFunc_expl
;
1850 Exp2Lb
= LibFunc_exp2l
;
1851 Exp10Lb
= LibFunc_exp10l
;
1852 PowLb
= LibFunc_powl
;
1855 LogID
= Intrinsic::log2
;
1856 ExpLb
= LibFunc_expf
;
1857 Exp2Lb
= LibFunc_exp2f
;
1858 Exp10Lb
= LibFunc_exp10f
;
1859 PowLb
= LibFunc_powf
;
1862 LogID
= Intrinsic::log2
;
1863 ExpLb
= LibFunc_exp
;
1864 Exp2Lb
= LibFunc_exp2
;
1865 Exp10Lb
= LibFunc_exp10
;
1866 PowLb
= LibFunc_pow
;
1869 LogID
= Intrinsic::log2
;
1870 ExpLb
= LibFunc_expl
;
1871 Exp2Lb
= LibFunc_exp2l
;
1872 Exp10Lb
= LibFunc_exp10l
;
1873 PowLb
= LibFunc_powl
;
1875 case LibFunc_log10f
:
1876 LogID
= Intrinsic::log10
;
1877 ExpLb
= LibFunc_expf
;
1878 Exp2Lb
= LibFunc_exp2f
;
1879 Exp10Lb
= LibFunc_exp10f
;
1880 PowLb
= LibFunc_powf
;
1883 LogID
= Intrinsic::log10
;
1884 ExpLb
= LibFunc_exp
;
1885 Exp2Lb
= LibFunc_exp2
;
1886 Exp10Lb
= LibFunc_exp10
;
1887 PowLb
= LibFunc_pow
;
1889 case LibFunc_log10l
:
1890 LogID
= Intrinsic::log10
;
1891 ExpLb
= LibFunc_expl
;
1892 Exp2Lb
= LibFunc_exp2l
;
1893 Exp10Lb
= LibFunc_exp10l
;
1894 PowLb
= LibFunc_powl
;
1899 else if (LogID
== Intrinsic::log
|| LogID
== Intrinsic::log2
||
1900 LogID
== Intrinsic::log10
) {
1901 if (Ty
->getScalarType()->isFloatTy()) {
1902 ExpLb
= LibFunc_expf
;
1903 Exp2Lb
= LibFunc_exp2f
;
1904 Exp10Lb
= LibFunc_exp10f
;
1905 PowLb
= LibFunc_powf
;
1906 } else if (Ty
->getScalarType()->isDoubleTy()) {
1907 ExpLb
= LibFunc_exp
;
1908 Exp2Lb
= LibFunc_exp2
;
1909 Exp10Lb
= LibFunc_exp10
;
1910 PowLb
= LibFunc_pow
;
1916 IRBuilder
<>::FastMathFlagGuard
Guard(B
);
1917 B
.setFastMathFlags(FastMathFlags::getFast());
1919 Intrinsic::ID ArgID
= Arg
->getIntrinsicID();
1920 LibFunc ArgLb
= NotLibFunc
;
1921 TLI
->getLibFunc(Arg
, ArgLb
);
1923 // log(pow(x,y)) -> y*log(x)
1924 if (ArgLb
== PowLb
|| ArgID
== Intrinsic::pow
) {
1926 Log
->doesNotAccessMemory()
1927 ? B
.CreateCall(Intrinsic::getDeclaration(Mod
, LogID
, Ty
),
1928 Arg
->getOperand(0), "log")
1929 : emitUnaryFloatFnCall(Arg
->getOperand(0), LogNm
, B
, Attrs
);
1930 Value
*MulY
= B
.CreateFMul(Arg
->getArgOperand(1), LogX
, "mul");
1931 // Since pow() may have side effects, e.g. errno,
1932 // dead code elimination may not be trusted to remove it.
1933 substituteInParent(Arg
, MulY
);
1937 // log(exp{,2,10}(y)) -> y*log({e,2,10})
1938 // TODO: There is no exp10() intrinsic yet.
1939 if (ArgLb
== ExpLb
|| ArgLb
== Exp2Lb
|| ArgLb
== Exp10Lb
||
1940 ArgID
== Intrinsic::exp
|| ArgID
== Intrinsic::exp2
) {
1942 if (ArgLb
== ExpLb
|| ArgID
== Intrinsic::exp
)
1943 // FIXME: Add more precise value of e for long double.
1944 Eul
= ConstantFP::get(Log
->getType(), numbers::e
);
1945 else if (ArgLb
== Exp2Lb
|| ArgID
== Intrinsic::exp2
)
1946 Eul
= ConstantFP::get(Log
->getType(), 2.0);
1948 Eul
= ConstantFP::get(Log
->getType(), 10.0);
1949 Value
*LogE
= Log
->doesNotAccessMemory()
1950 ? B
.CreateCall(Intrinsic::getDeclaration(Mod
, LogID
, Ty
),
1952 : emitUnaryFloatFnCall(Eul
, LogNm
, B
, Attrs
);
1953 Value
*MulY
= B
.CreateFMul(Arg
->getArgOperand(0), LogE
, "mul");
1954 // Since exp() may have side effects, e.g. errno,
1955 // dead code elimination may not be trusted to remove it.
1956 substituteInParent(Arg
, MulY
);
1963 Value
*LibCallSimplifier::optimizeSqrt(CallInst
*CI
, IRBuilder
<> &B
) {
1964 Function
*Callee
= CI
->getCalledFunction();
1965 Value
*Ret
= nullptr;
1966 // TODO: Once we have a way (other than checking for the existince of the
1967 // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1969 if (TLI
->has(LibFunc_sqrtf
) && (Callee
->getName() == "sqrt" ||
1970 Callee
->getIntrinsicID() == Intrinsic::sqrt
))
1971 Ret
= optimizeUnaryDoubleFP(CI
, B
, true);
1976 Instruction
*I
= dyn_cast
<Instruction
>(CI
->getArgOperand(0));
1977 if (!I
|| I
->getOpcode() != Instruction::FMul
|| !I
->isFast())
1980 // We're looking for a repeated factor in a multiplication tree,
1981 // so we can do this fold: sqrt(x * x) -> fabs(x);
1982 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1983 Value
*Op0
= I
->getOperand(0);
1984 Value
*Op1
= I
->getOperand(1);
1985 Value
*RepeatOp
= nullptr;
1986 Value
*OtherOp
= nullptr;
1988 // Simple match: the operands of the multiply are identical.
1991 // Look for a more complicated pattern: one of the operands is itself
1992 // a multiply, so search for a common factor in that multiply.
1993 // Note: We don't bother looking any deeper than this first level or for
1994 // variations of this pattern because instcombine's visitFMUL and/or the
1995 // reassociation pass should give us this form.
1996 Value
*OtherMul0
, *OtherMul1
;
1997 if (match(Op0
, m_FMul(m_Value(OtherMul0
), m_Value(OtherMul1
)))) {
1998 // Pattern: sqrt((x * y) * z)
1999 if (OtherMul0
== OtherMul1
&& cast
<Instruction
>(Op0
)->isFast()) {
2000 // Matched: sqrt((x * x) * z)
2001 RepeatOp
= OtherMul0
;
2009 // Fast math flags for any created instructions should match the sqrt
2011 IRBuilder
<>::FastMathFlagGuard
Guard(B
);
2012 B
.setFastMathFlags(I
->getFastMathFlags());
2014 // If we found a repeated factor, hoist it out of the square root and
2015 // replace it with the fabs of that factor.
2016 Module
*M
= Callee
->getParent();
2017 Type
*ArgType
= I
->getType();
2018 Function
*Fabs
= Intrinsic::getDeclaration(M
, Intrinsic::fabs
, ArgType
);
2019 Value
*FabsCall
= B
.CreateCall(Fabs
, RepeatOp
, "fabs");
2021 // If we found a non-repeated factor, we still need to get its square
2022 // root. We then multiply that by the value that was simplified out
2023 // of the square root calculation.
2024 Function
*Sqrt
= Intrinsic::getDeclaration(M
, Intrinsic::sqrt
, ArgType
);
2025 Value
*SqrtCall
= B
.CreateCall(Sqrt
, OtherOp
, "sqrt");
2026 return B
.CreateFMul(FabsCall
, SqrtCall
);
2031 // TODO: Generalize to handle any trig function and its inverse.
2032 Value
*LibCallSimplifier::optimizeTan(CallInst
*CI
, IRBuilder
<> &B
) {
2033 Function
*Callee
= CI
->getCalledFunction();
2034 Value
*Ret
= nullptr;
2035 StringRef Name
= Callee
->getName();
2036 if (UnsafeFPShrink
&& Name
== "tan" && hasFloatVersion(Name
))
2037 Ret
= optimizeUnaryDoubleFP(CI
, B
, true);
2039 Value
*Op1
= CI
->getArgOperand(0);
2040 auto *OpC
= dyn_cast
<CallInst
>(Op1
);
2044 // Both calls must be 'fast' in order to remove them.
2045 if (!CI
->isFast() || !OpC
->isFast())
2048 // tan(atan(x)) -> x
2049 // tanf(atanf(x)) -> x
2050 // tanl(atanl(x)) -> x
2052 Function
*F
= OpC
->getCalledFunction();
2053 if (F
&& TLI
->getLibFunc(F
->getName(), Func
) && TLI
->has(Func
) &&
2054 ((Func
== LibFunc_atan
&& Callee
->getName() == "tan") ||
2055 (Func
== LibFunc_atanf
&& Callee
->getName() == "tanf") ||
2056 (Func
== LibFunc_atanl
&& Callee
->getName() == "tanl")))
2057 Ret
= OpC
->getArgOperand(0);
2061 static bool isTrigLibCall(CallInst
*CI
) {
2062 // We can only hope to do anything useful if we can ignore things like errno
2063 // and floating-point exceptions.
2064 // We already checked the prototype.
2065 return CI
->hasFnAttr(Attribute::NoUnwind
) &&
2066 CI
->hasFnAttr(Attribute::ReadNone
);
2069 static void insertSinCosCall(IRBuilder
<> &B
, Function
*OrigCallee
, Value
*Arg
,
2070 bool UseFloat
, Value
*&Sin
, Value
*&Cos
,
2072 Type
*ArgTy
= Arg
->getType();
2076 Triple
T(OrigCallee
->getParent()->getTargetTriple());
2078 Name
= "__sincospif_stret";
2080 assert(T
.getArch() != Triple::x86
&& "x86 messy and unsupported for now");
2081 // x86_64 can't use {float, float} since that would be returned in both
2082 // xmm0 and xmm1, which isn't what a real struct would do.
2083 ResTy
= T
.getArch() == Triple::x86_64
2084 ? static_cast<Type
*>(VectorType::get(ArgTy
, 2))
2085 : static_cast<Type
*>(StructType::get(ArgTy
, ArgTy
));
2087 Name
= "__sincospi_stret";
2088 ResTy
= StructType::get(ArgTy
, ArgTy
);
2091 Module
*M
= OrigCallee
->getParent();
2092 FunctionCallee Callee
=
2093 M
->getOrInsertFunction(Name
, OrigCallee
->getAttributes(), ResTy
, ArgTy
);
2095 if (Instruction
*ArgInst
= dyn_cast
<Instruction
>(Arg
)) {
2096 // If the argument is an instruction, it must dominate all uses so put our
2097 // sincos call there.
2098 B
.SetInsertPoint(ArgInst
->getParent(), ++ArgInst
->getIterator());
2100 // Otherwise (e.g. for a constant) the beginning of the function is as
2101 // good a place as any.
2102 BasicBlock
&EntryBB
= B
.GetInsertBlock()->getParent()->getEntryBlock();
2103 B
.SetInsertPoint(&EntryBB
, EntryBB
.begin());
2106 SinCos
= B
.CreateCall(Callee
, Arg
, "sincospi");
2108 if (SinCos
->getType()->isStructTy()) {
2109 Sin
= B
.CreateExtractValue(SinCos
, 0, "sinpi");
2110 Cos
= B
.CreateExtractValue(SinCos
, 1, "cospi");
2112 Sin
= B
.CreateExtractElement(SinCos
, ConstantInt::get(B
.getInt32Ty(), 0),
2114 Cos
= B
.CreateExtractElement(SinCos
, ConstantInt::get(B
.getInt32Ty(), 1),
2119 Value
*LibCallSimplifier::optimizeSinCosPi(CallInst
*CI
, IRBuilder
<> &B
) {
2120 // Make sure the prototype is as expected, otherwise the rest of the
2121 // function is probably invalid and likely to abort.
2122 if (!isTrigLibCall(CI
))
2125 Value
*Arg
= CI
->getArgOperand(0);
2126 SmallVector
<CallInst
*, 1> SinCalls
;
2127 SmallVector
<CallInst
*, 1> CosCalls
;
2128 SmallVector
<CallInst
*, 1> SinCosCalls
;
2130 bool IsFloat
= Arg
->getType()->isFloatTy();
2132 // Look for all compatible sinpi, cospi and sincospi calls with the same
2133 // argument. If there are enough (in some sense) we can make the
2135 Function
*F
= CI
->getFunction();
2136 for (User
*U
: Arg
->users())
2137 classifyArgUse(U
, F
, IsFloat
, SinCalls
, CosCalls
, SinCosCalls
);
2139 // It's only worthwhile if both sinpi and cospi are actually used.
2140 if (SinCosCalls
.empty() && (SinCalls
.empty() || CosCalls
.empty()))
2143 Value
*Sin
, *Cos
, *SinCos
;
2144 insertSinCosCall(B
, CI
->getCalledFunction(), Arg
, IsFloat
, Sin
, Cos
, SinCos
);
2146 auto replaceTrigInsts
= [this](SmallVectorImpl
<CallInst
*> &Calls
,
2148 for (CallInst
*C
: Calls
)
2149 replaceAllUsesWith(C
, Res
);
2152 replaceTrigInsts(SinCalls
, Sin
);
2153 replaceTrigInsts(CosCalls
, Cos
);
2154 replaceTrigInsts(SinCosCalls
, SinCos
);
2159 void LibCallSimplifier::classifyArgUse(
2160 Value
*Val
, Function
*F
, bool IsFloat
,
2161 SmallVectorImpl
<CallInst
*> &SinCalls
,
2162 SmallVectorImpl
<CallInst
*> &CosCalls
,
2163 SmallVectorImpl
<CallInst
*> &SinCosCalls
) {
2164 CallInst
*CI
= dyn_cast
<CallInst
>(Val
);
2169 // Don't consider calls in other functions.
2170 if (CI
->getFunction() != F
)
2173 Function
*Callee
= CI
->getCalledFunction();
2175 if (!Callee
|| !TLI
->getLibFunc(*Callee
, Func
) || !TLI
->has(Func
) ||
2180 if (Func
== LibFunc_sinpif
)
2181 SinCalls
.push_back(CI
);
2182 else if (Func
== LibFunc_cospif
)
2183 CosCalls
.push_back(CI
);
2184 else if (Func
== LibFunc_sincospif_stret
)
2185 SinCosCalls
.push_back(CI
);
2187 if (Func
== LibFunc_sinpi
)
2188 SinCalls
.push_back(CI
);
2189 else if (Func
== LibFunc_cospi
)
2190 CosCalls
.push_back(CI
);
2191 else if (Func
== LibFunc_sincospi_stret
)
2192 SinCosCalls
.push_back(CI
);
2196 //===----------------------------------------------------------------------===//
2197 // Integer Library Call Optimizations
2198 //===----------------------------------------------------------------------===//
2200 Value
*LibCallSimplifier::optimizeFFS(CallInst
*CI
, IRBuilder
<> &B
) {
2201 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2202 Value
*Op
= CI
->getArgOperand(0);
2203 Type
*ArgType
= Op
->getType();
2204 Function
*F
= Intrinsic::getDeclaration(CI
->getCalledFunction()->getParent(),
2205 Intrinsic::cttz
, ArgType
);
2206 Value
*V
= B
.CreateCall(F
, {Op
, B
.getTrue()}, "cttz");
2207 V
= B
.CreateAdd(V
, ConstantInt::get(V
->getType(), 1));
2208 V
= B
.CreateIntCast(V
, B
.getInt32Ty(), false);
2210 Value
*Cond
= B
.CreateICmpNE(Op
, Constant::getNullValue(ArgType
));
2211 return B
.CreateSelect(Cond
, V
, B
.getInt32(0));
2214 Value
*LibCallSimplifier::optimizeFls(CallInst
*CI
, IRBuilder
<> &B
) {
2215 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2216 Value
*Op
= CI
->getArgOperand(0);
2217 Type
*ArgType
= Op
->getType();
2218 Function
*F
= Intrinsic::getDeclaration(CI
->getCalledFunction()->getParent(),
2219 Intrinsic::ctlz
, ArgType
);
2220 Value
*V
= B
.CreateCall(F
, {Op
, B
.getFalse()}, "ctlz");
2221 V
= B
.CreateSub(ConstantInt::get(V
->getType(), ArgType
->getIntegerBitWidth()),
2223 return B
.CreateIntCast(V
, CI
->getType(), false);
2226 Value
*LibCallSimplifier::optimizeAbs(CallInst
*CI
, IRBuilder
<> &B
) {
2227 // abs(x) -> x <s 0 ? -x : x
2228 // The negation has 'nsw' because abs of INT_MIN is undefined.
2229 Value
*X
= CI
->getArgOperand(0);
2230 Value
*IsNeg
= B
.CreateICmpSLT(X
, Constant::getNullValue(X
->getType()));
2231 Value
*NegX
= B
.CreateNSWNeg(X
, "neg");
2232 return B
.CreateSelect(IsNeg
, NegX
, X
);
2235 Value
*LibCallSimplifier::optimizeIsDigit(CallInst
*CI
, IRBuilder
<> &B
) {
2236 // isdigit(c) -> (c-'0') <u 10
2237 Value
*Op
= CI
->getArgOperand(0);
2238 Op
= B
.CreateSub(Op
, B
.getInt32('0'), "isdigittmp");
2239 Op
= B
.CreateICmpULT(Op
, B
.getInt32(10), "isdigit");
2240 return B
.CreateZExt(Op
, CI
->getType());
2243 Value
*LibCallSimplifier::optimizeIsAscii(CallInst
*CI
, IRBuilder
<> &B
) {
2244 // isascii(c) -> c <u 128
2245 Value
*Op
= CI
->getArgOperand(0);
2246 Op
= B
.CreateICmpULT(Op
, B
.getInt32(128), "isascii");
2247 return B
.CreateZExt(Op
, CI
->getType());
2250 Value
*LibCallSimplifier::optimizeToAscii(CallInst
*CI
, IRBuilder
<> &B
) {
2251 // toascii(c) -> c & 0x7f
2252 return B
.CreateAnd(CI
->getArgOperand(0),
2253 ConstantInt::get(CI
->getType(), 0x7F));
2256 Value
*LibCallSimplifier::optimizeAtoi(CallInst
*CI
, IRBuilder
<> &B
) {
2258 if (!getConstantStringInfo(CI
->getArgOperand(0), Str
))
2261 return convertStrToNumber(CI
, Str
, 10);
2264 Value
*LibCallSimplifier::optimizeStrtol(CallInst
*CI
, IRBuilder
<> &B
) {
2266 if (!getConstantStringInfo(CI
->getArgOperand(0), Str
))
2269 if (!isa
<ConstantPointerNull
>(CI
->getArgOperand(1)))
2272 if (ConstantInt
*CInt
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(2))) {
2273 return convertStrToNumber(CI
, Str
, CInt
->getSExtValue());
2279 //===----------------------------------------------------------------------===//
2280 // Formatting and IO Library Call Optimizations
2281 //===----------------------------------------------------------------------===//
2283 static bool isReportingError(Function
*Callee
, CallInst
*CI
, int StreamArg
);
2285 Value
*LibCallSimplifier::optimizeErrorReporting(CallInst
*CI
, IRBuilder
<> &B
,
2287 Function
*Callee
= CI
->getCalledFunction();
2288 // Error reporting calls should be cold, mark them as such.
2289 // This applies even to non-builtin calls: it is only a hint and applies to
2290 // functions that the frontend might not understand as builtins.
2292 // This heuristic was suggested in:
2293 // Improving Static Branch Prediction in a Compiler
2294 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2295 // Proceedings of PACT'98, Oct. 1998, IEEE
2296 if (!CI
->hasFnAttr(Attribute::Cold
) &&
2297 isReportingError(Callee
, CI
, StreamArg
)) {
2298 CI
->addAttribute(AttributeList::FunctionIndex
, Attribute::Cold
);
2304 static bool isReportingError(Function
*Callee
, CallInst
*CI
, int StreamArg
) {
2305 if (!Callee
|| !Callee
->isDeclaration())
2311 // These functions might be considered cold, but only if their stream
2312 // argument is stderr.
2314 if (StreamArg
>= (int)CI
->getNumArgOperands())
2316 LoadInst
*LI
= dyn_cast
<LoadInst
>(CI
->getArgOperand(StreamArg
));
2319 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(LI
->getPointerOperand());
2320 if (!GV
|| !GV
->isDeclaration())
2322 return GV
->getName() == "stderr";
2325 Value
*LibCallSimplifier::optimizePrintFString(CallInst
*CI
, IRBuilder
<> &B
) {
2326 // Check for a fixed format string.
2327 StringRef FormatStr
;
2328 if (!getConstantStringInfo(CI
->getArgOperand(0), FormatStr
))
2331 // Empty format string -> noop.
2332 if (FormatStr
.empty()) // Tolerate printf's declared void.
2333 return CI
->use_empty() ? (Value
*)CI
: ConstantInt::get(CI
->getType(), 0);
2335 // Do not do any of the following transformations if the printf return value
2336 // is used, in general the printf return value is not compatible with either
2337 // putchar() or puts().
2338 if (!CI
->use_empty())
2341 // printf("x") -> putchar('x'), even for "%" and "%%".
2342 if (FormatStr
.size() == 1 || FormatStr
== "%%")
2343 return emitPutChar(B
.getInt32(FormatStr
[0]), B
, TLI
);
2345 // printf("%s", "a") --> putchar('a')
2346 if (FormatStr
== "%s" && CI
->getNumArgOperands() > 1) {
2348 if (!getConstantStringInfo(CI
->getOperand(1), ChrStr
))
2350 if (ChrStr
.size() != 1)
2352 return emitPutChar(B
.getInt32(ChrStr
[0]), B
, TLI
);
2355 // printf("foo\n") --> puts("foo")
2356 if (FormatStr
[FormatStr
.size() - 1] == '\n' &&
2357 FormatStr
.find('%') == StringRef::npos
) { // No format characters.
2358 // Create a string literal with no \n on it. We expect the constant merge
2359 // pass to be run after this pass, to merge duplicate strings.
2360 FormatStr
= FormatStr
.drop_back();
2361 Value
*GV
= B
.CreateGlobalString(FormatStr
, "str");
2362 return emitPutS(GV
, B
, TLI
);
2365 // Optimize specific format strings.
2366 // printf("%c", chr) --> putchar(chr)
2367 if (FormatStr
== "%c" && CI
->getNumArgOperands() > 1 &&
2368 CI
->getArgOperand(1)->getType()->isIntegerTy())
2369 return emitPutChar(CI
->getArgOperand(1), B
, TLI
);
2371 // printf("%s\n", str) --> puts(str)
2372 if (FormatStr
== "%s\n" && CI
->getNumArgOperands() > 1 &&
2373 CI
->getArgOperand(1)->getType()->isPointerTy())
2374 return emitPutS(CI
->getArgOperand(1), B
, TLI
);
2378 Value
*LibCallSimplifier::optimizePrintF(CallInst
*CI
, IRBuilder
<> &B
) {
2380 Function
*Callee
= CI
->getCalledFunction();
2381 FunctionType
*FT
= Callee
->getFunctionType();
2382 if (Value
*V
= optimizePrintFString(CI
, B
)) {
2386 // printf(format, ...) -> iprintf(format, ...) if no floating point
2388 if (TLI
->has(LibFunc_iprintf
) && !callHasFloatingPointArgument(CI
)) {
2389 Module
*M
= B
.GetInsertBlock()->getParent()->getParent();
2390 FunctionCallee IPrintFFn
=
2391 M
->getOrInsertFunction("iprintf", FT
, Callee
->getAttributes());
2392 CallInst
*New
= cast
<CallInst
>(CI
->clone());
2393 New
->setCalledFunction(IPrintFFn
);
2398 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2400 if (TLI
->has(LibFunc_small_printf
) && !callHasFP128Argument(CI
)) {
2401 Module
*M
= B
.GetInsertBlock()->getParent()->getParent();
2402 auto SmallPrintFFn
=
2403 M
->getOrInsertFunction(TLI
->getName(LibFunc_small_printf
),
2404 FT
, Callee
->getAttributes());
2405 CallInst
*New
= cast
<CallInst
>(CI
->clone());
2406 New
->setCalledFunction(SmallPrintFFn
);
2411 annotateNonNullBasedOnAccess(CI
, 0);
2415 Value
*LibCallSimplifier::optimizeSPrintFString(CallInst
*CI
, IRBuilder
<> &B
) {
2416 // Check for a fixed format string.
2417 StringRef FormatStr
;
2418 if (!getConstantStringInfo(CI
->getArgOperand(1), FormatStr
))
2421 // If we just have a format string (nothing else crazy) transform it.
2422 if (CI
->getNumArgOperands() == 2) {
2423 // Make sure there's no % in the constant array. We could try to handle
2424 // %% -> % in the future if we cared.
2425 if (FormatStr
.find('%') != StringRef::npos
)
2426 return nullptr; // we found a format specifier, bail out.
2428 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2429 B
.CreateMemCpy(CI
->getArgOperand(0), 1, CI
->getArgOperand(1), 1,
2430 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()),
2431 FormatStr
.size() + 1)); // Copy the null byte.
2432 return ConstantInt::get(CI
->getType(), FormatStr
.size());
2435 // The remaining optimizations require the format string to be "%s" or "%c"
2436 // and have an extra operand.
2437 if (FormatStr
.size() != 2 || FormatStr
[0] != '%' ||
2438 CI
->getNumArgOperands() < 3)
2441 // Decode the second character of the format string.
2442 if (FormatStr
[1] == 'c') {
2443 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2444 if (!CI
->getArgOperand(2)->getType()->isIntegerTy())
2446 Value
*V
= B
.CreateTrunc(CI
->getArgOperand(2), B
.getInt8Ty(), "char");
2447 Value
*Ptr
= castToCStr(CI
->getArgOperand(0), B
);
2448 B
.CreateStore(V
, Ptr
);
2449 Ptr
= B
.CreateGEP(B
.getInt8Ty(), Ptr
, B
.getInt32(1), "nul");
2450 B
.CreateStore(B
.getInt8(0), Ptr
);
2452 return ConstantInt::get(CI
->getType(), 1);
2455 if (FormatStr
[1] == 's') {
2456 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2458 if (!CI
->getArgOperand(2)->getType()->isPointerTy())
2461 Value
*Len
= emitStrLen(CI
->getArgOperand(2), B
, DL
, TLI
);
2465 B
.CreateAdd(Len
, ConstantInt::get(Len
->getType(), 1), "leninc");
2466 B
.CreateMemCpy(CI
->getArgOperand(0), 1, CI
->getArgOperand(2), 1, IncLen
);
2468 // The sprintf result is the unincremented number of bytes in the string.
2469 return B
.CreateIntCast(Len
, CI
->getType(), false);
2474 Value
*LibCallSimplifier::optimizeSPrintF(CallInst
*CI
, IRBuilder
<> &B
) {
2475 Function
*Callee
= CI
->getCalledFunction();
2476 FunctionType
*FT
= Callee
->getFunctionType();
2477 if (Value
*V
= optimizeSPrintFString(CI
, B
)) {
2481 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2483 if (TLI
->has(LibFunc_siprintf
) && !callHasFloatingPointArgument(CI
)) {
2484 Module
*M
= B
.GetInsertBlock()->getParent()->getParent();
2485 FunctionCallee SIPrintFFn
=
2486 M
->getOrInsertFunction("siprintf", FT
, Callee
->getAttributes());
2487 CallInst
*New
= cast
<CallInst
>(CI
->clone());
2488 New
->setCalledFunction(SIPrintFFn
);
2493 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2494 // floating point arguments.
2495 if (TLI
->has(LibFunc_small_sprintf
) && !callHasFP128Argument(CI
)) {
2496 Module
*M
= B
.GetInsertBlock()->getParent()->getParent();
2497 auto SmallSPrintFFn
=
2498 M
->getOrInsertFunction(TLI
->getName(LibFunc_small_sprintf
),
2499 FT
, Callee
->getAttributes());
2500 CallInst
*New
= cast
<CallInst
>(CI
->clone());
2501 New
->setCalledFunction(SmallSPrintFFn
);
2506 annotateNonNullBasedOnAccess(CI
, {0, 1});
2510 Value
*LibCallSimplifier::optimizeSnPrintFString(CallInst
*CI
, IRBuilder
<> &B
) {
2512 ConstantInt
*Size
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
2516 uint64_t N
= Size
->getZExtValue();
2517 // Check for a fixed format string.
2518 StringRef FormatStr
;
2519 if (!getConstantStringInfo(CI
->getArgOperand(2), FormatStr
))
2522 // If we just have a format string (nothing else crazy) transform it.
2523 if (CI
->getNumArgOperands() == 3) {
2524 // Make sure there's no % in the constant array. We could try to handle
2525 // %% -> % in the future if we cared.
2526 if (FormatStr
.find('%') != StringRef::npos
)
2527 return nullptr; // we found a format specifier, bail out.
2530 return ConstantInt::get(CI
->getType(), FormatStr
.size());
2531 else if (N
< FormatStr
.size() + 1)
2534 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2537 CI
->getArgOperand(0), 1, CI
->getArgOperand(2), 1,
2538 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()),
2539 FormatStr
.size() + 1)); // Copy the null byte.
2540 return ConstantInt::get(CI
->getType(), FormatStr
.size());
2543 // The remaining optimizations require the format string to be "%s" or "%c"
2544 // and have an extra operand.
2545 if (FormatStr
.size() == 2 && FormatStr
[0] == '%' &&
2546 CI
->getNumArgOperands() == 4) {
2548 // Decode the second character of the format string.
2549 if (FormatStr
[1] == 'c') {
2551 return ConstantInt::get(CI
->getType(), 1);
2555 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2556 if (!CI
->getArgOperand(3)->getType()->isIntegerTy())
2558 Value
*V
= B
.CreateTrunc(CI
->getArgOperand(3), B
.getInt8Ty(), "char");
2559 Value
*Ptr
= castToCStr(CI
->getArgOperand(0), B
);
2560 B
.CreateStore(V
, Ptr
);
2561 Ptr
= B
.CreateGEP(B
.getInt8Ty(), Ptr
, B
.getInt32(1), "nul");
2562 B
.CreateStore(B
.getInt8(0), Ptr
);
2564 return ConstantInt::get(CI
->getType(), 1);
2567 if (FormatStr
[1] == 's') {
2568 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2570 if (!getConstantStringInfo(CI
->getArgOperand(3), Str
))
2574 return ConstantInt::get(CI
->getType(), Str
.size());
2575 else if (N
< Str
.size() + 1)
2578 B
.CreateMemCpy(CI
->getArgOperand(0), 1, CI
->getArgOperand(3), 1,
2579 ConstantInt::get(CI
->getType(), Str
.size() + 1));
2581 // The snprintf result is the unincremented number of bytes in the string.
2582 return ConstantInt::get(CI
->getType(), Str
.size());
2588 Value
*LibCallSimplifier::optimizeSnPrintF(CallInst
*CI
, IRBuilder
<> &B
) {
2589 if (Value
*V
= optimizeSnPrintFString(CI
, B
)) {
2593 if (isKnownNonZero(CI
->getOperand(1), DL
))
2594 annotateNonNullBasedOnAccess(CI
, 0);
2598 Value
*LibCallSimplifier::optimizeFPrintFString(CallInst
*CI
, IRBuilder
<> &B
) {
2599 optimizeErrorReporting(CI
, B
, 0);
2601 // All the optimizations depend on the format string.
2602 StringRef FormatStr
;
2603 if (!getConstantStringInfo(CI
->getArgOperand(1), FormatStr
))
2606 // Do not do any of the following transformations if the fprintf return
2607 // value is used, in general the fprintf return value is not compatible
2608 // with fwrite(), fputc() or fputs().
2609 if (!CI
->use_empty())
2612 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2613 if (CI
->getNumArgOperands() == 2) {
2614 // Could handle %% -> % if we cared.
2615 if (FormatStr
.find('%') != StringRef::npos
)
2616 return nullptr; // We found a format specifier.
2619 CI
->getArgOperand(1),
2620 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), FormatStr
.size()),
2621 CI
->getArgOperand(0), B
, DL
, TLI
);
2624 // The remaining optimizations require the format string to be "%s" or "%c"
2625 // and have an extra operand.
2626 if (FormatStr
.size() != 2 || FormatStr
[0] != '%' ||
2627 CI
->getNumArgOperands() < 3)
2630 // Decode the second character of the format string.
2631 if (FormatStr
[1] == 'c') {
2632 // fprintf(F, "%c", chr) --> fputc(chr, F)
2633 if (!CI
->getArgOperand(2)->getType()->isIntegerTy())
2635 return emitFPutC(CI
->getArgOperand(2), CI
->getArgOperand(0), B
, TLI
);
2638 if (FormatStr
[1] == 's') {
2639 // fprintf(F, "%s", str) --> fputs(str, F)
2640 if (!CI
->getArgOperand(2)->getType()->isPointerTy())
2642 return emitFPutS(CI
->getArgOperand(2), CI
->getArgOperand(0), B
, TLI
);
2647 Value
*LibCallSimplifier::optimizeFPrintF(CallInst
*CI
, IRBuilder
<> &B
) {
2648 Function
*Callee
= CI
->getCalledFunction();
2649 FunctionType
*FT
= Callee
->getFunctionType();
2650 if (Value
*V
= optimizeFPrintFString(CI
, B
)) {
2654 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2655 // floating point arguments.
2656 if (TLI
->has(LibFunc_fiprintf
) && !callHasFloatingPointArgument(CI
)) {
2657 Module
*M
= B
.GetInsertBlock()->getParent()->getParent();
2658 FunctionCallee FIPrintFFn
=
2659 M
->getOrInsertFunction("fiprintf", FT
, Callee
->getAttributes());
2660 CallInst
*New
= cast
<CallInst
>(CI
->clone());
2661 New
->setCalledFunction(FIPrintFFn
);
2666 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2667 // 128-bit floating point arguments.
2668 if (TLI
->has(LibFunc_small_fprintf
) && !callHasFP128Argument(CI
)) {
2669 Module
*M
= B
.GetInsertBlock()->getParent()->getParent();
2670 auto SmallFPrintFFn
=
2671 M
->getOrInsertFunction(TLI
->getName(LibFunc_small_fprintf
),
2672 FT
, Callee
->getAttributes());
2673 CallInst
*New
= cast
<CallInst
>(CI
->clone());
2674 New
->setCalledFunction(SmallFPrintFFn
);
2682 Value
*LibCallSimplifier::optimizeFWrite(CallInst
*CI
, IRBuilder
<> &B
) {
2683 optimizeErrorReporting(CI
, B
, 3);
2685 // Get the element size and count.
2686 ConstantInt
*SizeC
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
2687 ConstantInt
*CountC
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(2));
2688 if (SizeC
&& CountC
) {
2689 uint64_t Bytes
= SizeC
->getZExtValue() * CountC
->getZExtValue();
2691 // If this is writing zero records, remove the call (it's a noop).
2693 return ConstantInt::get(CI
->getType(), 0);
2695 // If this is writing one byte, turn it into fputc.
2696 // This optimisation is only valid, if the return value is unused.
2697 if (Bytes
== 1 && CI
->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2698 Value
*Char
= B
.CreateLoad(B
.getInt8Ty(),
2699 castToCStr(CI
->getArgOperand(0), B
), "char");
2700 Value
*NewCI
= emitFPutC(Char
, CI
->getArgOperand(3), B
, TLI
);
2701 return NewCI
? ConstantInt::get(CI
->getType(), 1) : nullptr;
2705 if (isLocallyOpenedFile(CI
->getArgOperand(3), CI
, B
, TLI
))
2706 return emitFWriteUnlocked(CI
->getArgOperand(0), CI
->getArgOperand(1),
2707 CI
->getArgOperand(2), CI
->getArgOperand(3), B
, DL
,
2713 Value
*LibCallSimplifier::optimizeFPuts(CallInst
*CI
, IRBuilder
<> &B
) {
2714 optimizeErrorReporting(CI
, B
, 1);
2716 // Don't rewrite fputs to fwrite when optimising for size because fwrite
2717 // requires more arguments and thus extra MOVs are required.
2718 bool OptForSize
= CI
->getFunction()->hasOptSize() ||
2719 llvm::shouldOptimizeForSize(CI
->getParent(), PSI
, BFI
);
2723 // Check if has any use
2724 if (!CI
->use_empty()) {
2725 if (isLocallyOpenedFile(CI
->getArgOperand(1), CI
, B
, TLI
))
2726 return emitFPutSUnlocked(CI
->getArgOperand(0), CI
->getArgOperand(1), B
,
2729 // We can't optimize if return value is used.
2733 // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2734 uint64_t Len
= GetStringLength(CI
->getArgOperand(0));
2738 // Known to have no uses (see above).
2740 CI
->getArgOperand(0),
2741 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), Len
- 1),
2742 CI
->getArgOperand(1), B
, DL
, TLI
);
2745 Value
*LibCallSimplifier::optimizeFPutc(CallInst
*CI
, IRBuilder
<> &B
) {
2746 optimizeErrorReporting(CI
, B
, 1);
2748 if (isLocallyOpenedFile(CI
->getArgOperand(1), CI
, B
, TLI
))
2749 return emitFPutCUnlocked(CI
->getArgOperand(0), CI
->getArgOperand(1), B
,
2755 Value
*LibCallSimplifier::optimizeFGetc(CallInst
*CI
, IRBuilder
<> &B
) {
2756 if (isLocallyOpenedFile(CI
->getArgOperand(0), CI
, B
, TLI
))
2757 return emitFGetCUnlocked(CI
->getArgOperand(0), B
, TLI
);
2762 Value
*LibCallSimplifier::optimizeFGets(CallInst
*CI
, IRBuilder
<> &B
) {
2763 if (isLocallyOpenedFile(CI
->getArgOperand(2), CI
, B
, TLI
))
2764 return emitFGetSUnlocked(CI
->getArgOperand(0), CI
->getArgOperand(1),
2765 CI
->getArgOperand(2), B
, TLI
);
2770 Value
*LibCallSimplifier::optimizeFRead(CallInst
*CI
, IRBuilder
<> &B
) {
2771 if (isLocallyOpenedFile(CI
->getArgOperand(3), CI
, B
, TLI
))
2772 return emitFReadUnlocked(CI
->getArgOperand(0), CI
->getArgOperand(1),
2773 CI
->getArgOperand(2), CI
->getArgOperand(3), B
, DL
,
2779 Value
*LibCallSimplifier::optimizePuts(CallInst
*CI
, IRBuilder
<> &B
) {
2780 annotateNonNullBasedOnAccess(CI
, 0);
2781 if (!CI
->use_empty())
2784 // Check for a constant string.
2785 // puts("") -> putchar('\n')
2787 if (getConstantStringInfo(CI
->getArgOperand(0), Str
) && Str
.empty())
2788 return emitPutChar(B
.getInt32('\n'), B
, TLI
);
2793 Value
*LibCallSimplifier::optimizeBCopy(CallInst
*CI
, IRBuilder
<> &B
) {
2794 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2795 return B
.CreateMemMove(CI
->getArgOperand(1), 1, CI
->getArgOperand(0), 1,
2796 CI
->getArgOperand(2));
2799 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName
) {
2801 SmallString
<20> FloatFuncName
= FuncName
;
2802 FloatFuncName
+= 'f';
2803 if (TLI
->getLibFunc(FloatFuncName
, Func
))
2804 return TLI
->has(Func
);
2808 Value
*LibCallSimplifier::optimizeStringMemoryLibCall(CallInst
*CI
,
2809 IRBuilder
<> &Builder
) {
2811 Function
*Callee
= CI
->getCalledFunction();
2812 // Check for string/memory library functions.
2813 if (TLI
->getLibFunc(*Callee
, Func
) && TLI
->has(Func
)) {
2814 // Make sure we never change the calling convention.
2815 assert((ignoreCallingConv(Func
) ||
2816 isCallingConvCCompatible(CI
)) &&
2817 "Optimizing string/memory libcall would change the calling convention");
2819 case LibFunc_strcat
:
2820 return optimizeStrCat(CI
, Builder
);
2821 case LibFunc_strncat
:
2822 return optimizeStrNCat(CI
, Builder
);
2823 case LibFunc_strchr
:
2824 return optimizeStrChr(CI
, Builder
);
2825 case LibFunc_strrchr
:
2826 return optimizeStrRChr(CI
, Builder
);
2827 case LibFunc_strcmp
:
2828 return optimizeStrCmp(CI
, Builder
);
2829 case LibFunc_strncmp
:
2830 return optimizeStrNCmp(CI
, Builder
);
2831 case LibFunc_strcpy
:
2832 return optimizeStrCpy(CI
, Builder
);
2833 case LibFunc_stpcpy
:
2834 return optimizeStpCpy(CI
, Builder
);
2835 case LibFunc_strncpy
:
2836 return optimizeStrNCpy(CI
, Builder
);
2837 case LibFunc_strlen
:
2838 return optimizeStrLen(CI
, Builder
);
2839 case LibFunc_strpbrk
:
2840 return optimizeStrPBrk(CI
, Builder
);
2841 case LibFunc_strndup
:
2842 return optimizeStrNDup(CI
, Builder
);
2843 case LibFunc_strtol
:
2844 case LibFunc_strtod
:
2845 case LibFunc_strtof
:
2846 case LibFunc_strtoul
:
2847 case LibFunc_strtoll
:
2848 case LibFunc_strtold
:
2849 case LibFunc_strtoull
:
2850 return optimizeStrTo(CI
, Builder
);
2851 case LibFunc_strspn
:
2852 return optimizeStrSpn(CI
, Builder
);
2853 case LibFunc_strcspn
:
2854 return optimizeStrCSpn(CI
, Builder
);
2855 case LibFunc_strstr
:
2856 return optimizeStrStr(CI
, Builder
);
2857 case LibFunc_memchr
:
2858 return optimizeMemChr(CI
, Builder
);
2859 case LibFunc_memrchr
:
2860 return optimizeMemRChr(CI
, Builder
);
2862 return optimizeBCmp(CI
, Builder
);
2863 case LibFunc_memcmp
:
2864 return optimizeMemCmp(CI
, Builder
);
2865 case LibFunc_memcpy
:
2866 return optimizeMemCpy(CI
, Builder
);
2867 case LibFunc_mempcpy
:
2868 return optimizeMemPCpy(CI
, Builder
);
2869 case LibFunc_memmove
:
2870 return optimizeMemMove(CI
, Builder
);
2871 case LibFunc_memset
:
2872 return optimizeMemSet(CI
, Builder
);
2873 case LibFunc_realloc
:
2874 return optimizeRealloc(CI
, Builder
);
2875 case LibFunc_wcslen
:
2876 return optimizeWcslen(CI
, Builder
);
2878 return optimizeBCopy(CI
, Builder
);
2886 Value
*LibCallSimplifier::optimizeFloatingPointLibCall(CallInst
*CI
,
2888 IRBuilder
<> &Builder
) {
2889 // Don't optimize calls that require strict floating point semantics.
2890 if (CI
->isStrictFP())
2893 if (Value
*V
= optimizeTrigReflections(CI
, Func
, Builder
))
2897 case LibFunc_sinpif
:
2899 case LibFunc_cospif
:
2901 return optimizeSinCosPi(CI
, Builder
);
2905 return optimizePow(CI
, Builder
);
2909 return optimizeExp2(CI
, Builder
);
2913 return replaceUnaryCall(CI
, Builder
, Intrinsic::fabs
);
2917 return optimizeSqrt(CI
, Builder
);
2921 case LibFunc_log10f
:
2923 case LibFunc_log10l
:
2924 case LibFunc_log1pf
:
2926 case LibFunc_log1pl
:
2933 return optimizeLog(CI
, Builder
);
2937 return optimizeTan(CI
, Builder
);
2939 return replaceUnaryCall(CI
, Builder
, Intrinsic::ceil
);
2941 return replaceUnaryCall(CI
, Builder
, Intrinsic::floor
);
2943 return replaceUnaryCall(CI
, Builder
, Intrinsic::round
);
2944 case LibFunc_nearbyint
:
2945 return replaceUnaryCall(CI
, Builder
, Intrinsic::nearbyint
);
2947 return replaceUnaryCall(CI
, Builder
, Intrinsic::rint
);
2949 return replaceUnaryCall(CI
, Builder
, Intrinsic::trunc
);
2965 if (UnsafeFPShrink
&& hasFloatVersion(CI
->getCalledFunction()->getName()))
2966 return optimizeUnaryDoubleFP(CI
, Builder
, true);
2968 case LibFunc_copysign
:
2969 if (hasFloatVersion(CI
->getCalledFunction()->getName()))
2970 return optimizeBinaryDoubleFP(CI
, Builder
);
2978 return optimizeFMinFMax(CI
, Builder
);
2982 return optimizeCAbs(CI
, Builder
);
2988 Value
*LibCallSimplifier::optimizeCall(CallInst
*CI
) {
2989 // TODO: Split out the code below that operates on FP calls so that
2990 // we can all non-FP calls with the StrictFP attribute to be
2992 if (CI
->isNoBuiltin())
2996 Function
*Callee
= CI
->getCalledFunction();
2998 SmallVector
<OperandBundleDef
, 2> OpBundles
;
2999 CI
->getOperandBundlesAsDefs(OpBundles
);
3000 IRBuilder
<> Builder(CI
, /*FPMathTag=*/nullptr, OpBundles
);
3001 bool isCallingConvC
= isCallingConvCCompatible(CI
);
3003 // Command-line parameter overrides instruction attribute.
3004 // This can't be moved to optimizeFloatingPointLibCall() because it may be
3005 // used by the intrinsic optimizations.
3006 if (EnableUnsafeFPShrink
.getNumOccurrences() > 0)
3007 UnsafeFPShrink
= EnableUnsafeFPShrink
;
3008 else if (isa
<FPMathOperator
>(CI
) && CI
->isFast())
3009 UnsafeFPShrink
= true;
3011 // First, check for intrinsics.
3012 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CI
)) {
3013 if (!isCallingConvC
)
3015 // The FP intrinsics have corresponding constrained versions so we don't
3016 // need to check for the StrictFP attribute here.
3017 switch (II
->getIntrinsicID()) {
3018 case Intrinsic::pow
:
3019 return optimizePow(CI
, Builder
);
3020 case Intrinsic::exp2
:
3021 return optimizeExp2(CI
, Builder
);
3022 case Intrinsic::log
:
3023 case Intrinsic::log2
:
3024 case Intrinsic::log10
:
3025 return optimizeLog(CI
, Builder
);
3026 case Intrinsic::sqrt
:
3027 return optimizeSqrt(CI
, Builder
);
3028 // TODO: Use foldMallocMemset() with memset intrinsic.
3029 case Intrinsic::memset
:
3030 return optimizeMemSet(CI
, Builder
);
3031 case Intrinsic::memcpy
:
3032 return optimizeMemCpy(CI
, Builder
);
3033 case Intrinsic::memmove
:
3034 return optimizeMemMove(CI
, Builder
);
3040 // Also try to simplify calls to fortified library functions.
3041 if (Value
*SimplifiedFortifiedCI
= FortifiedSimplifier
.optimizeCall(CI
)) {
3042 // Try to further simplify the result.
3043 CallInst
*SimplifiedCI
= dyn_cast
<CallInst
>(SimplifiedFortifiedCI
);
3044 if (SimplifiedCI
&& SimplifiedCI
->getCalledFunction()) {
3045 // Use an IR Builder from SimplifiedCI if available instead of CI
3046 // to guarantee we reach all uses we might replace later on.
3047 IRBuilder
<> TmpBuilder(SimplifiedCI
);
3048 if (Value
*V
= optimizeStringMemoryLibCall(SimplifiedCI
, TmpBuilder
)) {
3049 // If we were able to further simplify, remove the now redundant call.
3050 substituteInParent(SimplifiedCI
, V
);
3054 return SimplifiedFortifiedCI
;
3057 // Then check for known library functions.
3058 if (TLI
->getLibFunc(*Callee
, Func
) && TLI
->has(Func
)) {
3059 // We never change the calling convention.
3060 if (!ignoreCallingConv(Func
) && !isCallingConvC
)
3062 if (Value
*V
= optimizeStringMemoryLibCall(CI
, Builder
))
3064 if (Value
*V
= optimizeFloatingPointLibCall(CI
, Func
, Builder
))
3070 return optimizeFFS(CI
, Builder
);
3074 return optimizeFls(CI
, Builder
);
3078 return optimizeAbs(CI
, Builder
);
3079 case LibFunc_isdigit
:
3080 return optimizeIsDigit(CI
, Builder
);
3081 case LibFunc_isascii
:
3082 return optimizeIsAscii(CI
, Builder
);
3083 case LibFunc_toascii
:
3084 return optimizeToAscii(CI
, Builder
);
3088 return optimizeAtoi(CI
, Builder
);
3089 case LibFunc_strtol
:
3090 case LibFunc_strtoll
:
3091 return optimizeStrtol(CI
, Builder
);
3092 case LibFunc_printf
:
3093 return optimizePrintF(CI
, Builder
);
3094 case LibFunc_sprintf
:
3095 return optimizeSPrintF(CI
, Builder
);
3096 case LibFunc_snprintf
:
3097 return optimizeSnPrintF(CI
, Builder
);
3098 case LibFunc_fprintf
:
3099 return optimizeFPrintF(CI
, Builder
);
3100 case LibFunc_fwrite
:
3101 return optimizeFWrite(CI
, Builder
);
3103 return optimizeFRead(CI
, Builder
);
3105 return optimizeFPuts(CI
, Builder
);
3107 return optimizeFGets(CI
, Builder
);
3109 return optimizeFPutc(CI
, Builder
);
3111 return optimizeFGetc(CI
, Builder
);
3113 return optimizePuts(CI
, Builder
);
3114 case LibFunc_perror
:
3115 return optimizeErrorReporting(CI
, Builder
);
3116 case LibFunc_vfprintf
:
3117 case LibFunc_fiprintf
:
3118 return optimizeErrorReporting(CI
, Builder
, 0);
3126 LibCallSimplifier::LibCallSimplifier(
3127 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
,
3128 OptimizationRemarkEmitter
&ORE
,
3129 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
,
3130 function_ref
<void(Instruction
*, Value
*)> Replacer
,
3131 function_ref
<void(Instruction
*)> Eraser
)
3132 : FortifiedSimplifier(TLI
), DL(DL
), TLI(TLI
), ORE(ORE
), BFI(BFI
), PSI(PSI
),
3133 UnsafeFPShrink(false), Replacer(Replacer
), Eraser(Eraser
) {}
3135 void LibCallSimplifier::replaceAllUsesWith(Instruction
*I
, Value
*With
) {
3136 // Indirect through the replacer used in this instance.
3140 void LibCallSimplifier::eraseFromParent(Instruction
*I
) {
3145 // Additional cases that we need to add to this file:
3148 // * cbrt(expN(X)) -> expN(x/3)
3149 // * cbrt(sqrt(x)) -> pow(x,1/6)
3150 // * cbrt(cbrt(x)) -> pow(x,1/9)
3153 // * exp(log(x)) -> x
3156 // * log(exp(x)) -> x
3157 // * log(exp(y)) -> y*log(e)
3158 // * log(exp10(y)) -> y*log(10)
3159 // * log(sqrt(x)) -> 0.5*log(x)
3162 // * pow(sqrt(x),y) -> pow(x,y*0.5)
3163 // * pow(pow(x,y),z)-> pow(x,y*z)
3166 // * signbit(cnst) -> cnst'
3167 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3169 // sqrt, sqrtf, sqrtl:
3170 // * sqrt(expN(x)) -> expN(x*0.5)
3171 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3172 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3175 //===----------------------------------------------------------------------===//
3176 // Fortified Library Call Optimizations
3177 //===----------------------------------------------------------------------===//
3180 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst
*CI
,
3182 Optional
<unsigned> SizeOp
,
3183 Optional
<unsigned> StrOp
,
3184 Optional
<unsigned> FlagOp
) {
3185 // If this function takes a flag argument, the implementation may use it to
3186 // perform extra checks. Don't fold into the non-checking variant.
3188 ConstantInt
*Flag
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(*FlagOp
));
3189 if (!Flag
|| !Flag
->isZero())
3193 if (SizeOp
&& CI
->getArgOperand(ObjSizeOp
) == CI
->getArgOperand(*SizeOp
))
3196 if (ConstantInt
*ObjSizeCI
=
3197 dyn_cast
<ConstantInt
>(CI
->getArgOperand(ObjSizeOp
))) {
3198 if (ObjSizeCI
->isMinusOne())
3200 // If the object size wasn't -1 (unknown), bail out if we were asked to.
3201 if (OnlyLowerUnknownSize
)
3204 uint64_t Len
= GetStringLength(CI
->getArgOperand(*StrOp
));
3205 // If the length is 0 we don't know how long it is and so we can't
3206 // remove the check.
3208 annotateDereferenceableBytes(CI
, *StrOp
, Len
);
3211 return ObjSizeCI
->getZExtValue() >= Len
;
3215 if (ConstantInt
*SizeCI
=
3216 dyn_cast
<ConstantInt
>(CI
->getArgOperand(*SizeOp
)))
3217 return ObjSizeCI
->getZExtValue() >= SizeCI
->getZExtValue();
3223 Value
*FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst
*CI
,
3225 if (isFortifiedCallFoldable(CI
, 3, 2)) {
3226 CallInst
*NewCI
= B
.CreateMemCpy(
3227 CI
->getArgOperand(0), 1, CI
->getArgOperand(1), 1, CI
->getArgOperand(2));
3228 NewCI
->setAttributes(CI
->getAttributes());
3229 return CI
->getArgOperand(0);
3234 Value
*FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst
*CI
,
3236 if (isFortifiedCallFoldable(CI
, 3, 2)) {
3237 CallInst
*NewCI
= B
.CreateMemMove(
3238 CI
->getArgOperand(0), 1, CI
->getArgOperand(1), 1, CI
->getArgOperand(2));
3239 NewCI
->setAttributes(CI
->getAttributes());
3240 return CI
->getArgOperand(0);
3245 Value
*FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst
*CI
,
3247 // TODO: Try foldMallocMemset() here.
3249 if (isFortifiedCallFoldable(CI
, 3, 2)) {
3250 Value
*Val
= B
.CreateIntCast(CI
->getArgOperand(1), B
.getInt8Ty(), false);
3252 B
.CreateMemSet(CI
->getArgOperand(0), Val
, CI
->getArgOperand(2), 1);
3253 NewCI
->setAttributes(CI
->getAttributes());
3254 return CI
->getArgOperand(0);
3259 Value
*FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst
*CI
,
3262 const DataLayout
&DL
= CI
->getModule()->getDataLayout();
3263 Value
*Dst
= CI
->getArgOperand(0), *Src
= CI
->getArgOperand(1),
3264 *ObjSize
= CI
->getArgOperand(2);
3266 // __stpcpy_chk(x,x,...) -> x+strlen(x)
3267 if (Func
== LibFunc_stpcpy_chk
&& !OnlyLowerUnknownSize
&& Dst
== Src
) {
3268 Value
*StrLen
= emitStrLen(Src
, B
, DL
, TLI
);
3269 return StrLen
? B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, StrLen
) : nullptr;
3272 // If a) we don't have any length information, or b) we know this will
3273 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3274 // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3275 // TODO: It might be nice to get a maximum length out of the possible
3276 // string lengths for varying.
3277 if (isFortifiedCallFoldable(CI
, 2, None
, 1)) {
3278 if (Func
== LibFunc_strcpy_chk
)
3279 return emitStrCpy(Dst
, Src
, B
, TLI
);
3281 return emitStpCpy(Dst
, Src
, B
, TLI
);
3284 if (OnlyLowerUnknownSize
)
3287 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3288 uint64_t Len
= GetStringLength(Src
);
3290 annotateDereferenceableBytes(CI
, 1, Len
);
3294 Type
*SizeTTy
= DL
.getIntPtrType(CI
->getContext());
3295 Value
*LenV
= ConstantInt::get(SizeTTy
, Len
);
3296 Value
*Ret
= emitMemCpyChk(Dst
, Src
, LenV
, ObjSize
, B
, DL
, TLI
);
3297 // If the function was an __stpcpy_chk, and we were able to fold it into
3298 // a __memcpy_chk, we still need to return the correct end pointer.
3299 if (Ret
&& Func
== LibFunc_stpcpy_chk
)
3300 return B
.CreateGEP(B
.getInt8Ty(), Dst
, ConstantInt::get(SizeTTy
, Len
- 1));
3304 Value
*FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst
*CI
,
3307 if (isFortifiedCallFoldable(CI
, 3, 2)) {
3308 if (Func
== LibFunc_strncpy_chk
)
3309 return emitStrNCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
3310 CI
->getArgOperand(2), B
, TLI
);
3312 return emitStpNCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
3313 CI
->getArgOperand(2), B
, TLI
);
3319 Value
*FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst
*CI
,
3321 if (isFortifiedCallFoldable(CI
, 4, 3))
3322 return emitMemCCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
3323 CI
->getArgOperand(2), CI
->getArgOperand(3), B
, TLI
);
3328 Value
*FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst
*CI
,
3330 if (isFortifiedCallFoldable(CI
, 3, 1, None
, 2)) {
3331 SmallVector
<Value
*, 8> VariadicArgs(CI
->arg_begin() + 5, CI
->arg_end());
3332 return emitSNPrintf(CI
->getArgOperand(0), CI
->getArgOperand(1),
3333 CI
->getArgOperand(4), VariadicArgs
, B
, TLI
);
3339 Value
*FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst
*CI
,
3341 if (isFortifiedCallFoldable(CI
, 2, None
, None
, 1)) {
3342 SmallVector
<Value
*, 8> VariadicArgs(CI
->arg_begin() + 4, CI
->arg_end());
3343 return emitSPrintf(CI
->getArgOperand(0), CI
->getArgOperand(3), VariadicArgs
,
3350 Value
*FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst
*CI
,
3352 if (isFortifiedCallFoldable(CI
, 2))
3353 return emitStrCat(CI
->getArgOperand(0), CI
->getArgOperand(1), B
, TLI
);
3358 Value
*FortifiedLibCallSimplifier::optimizeStrLCat(CallInst
*CI
,
3360 if (isFortifiedCallFoldable(CI
, 3))
3361 return emitStrLCat(CI
->getArgOperand(0), CI
->getArgOperand(1),
3362 CI
->getArgOperand(2), B
, TLI
);
3367 Value
*FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst
*CI
,
3369 if (isFortifiedCallFoldable(CI
, 3))
3370 return emitStrNCat(CI
->getArgOperand(0), CI
->getArgOperand(1),
3371 CI
->getArgOperand(2), B
, TLI
);
3376 Value
*FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst
*CI
,
3378 if (isFortifiedCallFoldable(CI
, 3))
3379 return emitStrLCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
3380 CI
->getArgOperand(2), B
, TLI
);
3385 Value
*FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst
*CI
,
3387 if (isFortifiedCallFoldable(CI
, 3, 1, None
, 2))
3388 return emitVSNPrintf(CI
->getArgOperand(0), CI
->getArgOperand(1),
3389 CI
->getArgOperand(4), CI
->getArgOperand(5), B
, TLI
);
3394 Value
*FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst
*CI
,
3396 if (isFortifiedCallFoldable(CI
, 2, None
, None
, 1))
3397 return emitVSPrintf(CI
->getArgOperand(0), CI
->getArgOperand(3),
3398 CI
->getArgOperand(4), B
, TLI
);
3403 Value
*FortifiedLibCallSimplifier::optimizeCall(CallInst
*CI
) {
3404 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3405 // Some clang users checked for _chk libcall availability using:
3406 // __has_builtin(__builtin___memcpy_chk)
3407 // When compiling with -fno-builtin, this is always true.
3408 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3409 // end up with fortified libcalls, which isn't acceptable in a freestanding
3410 // environment which only provides their non-fortified counterparts.
3412 // Until we change clang and/or teach external users to check for availability
3413 // differently, disregard the "nobuiltin" attribute and TLI::has.
3418 Function
*Callee
= CI
->getCalledFunction();
3420 SmallVector
<OperandBundleDef
, 2> OpBundles
;
3421 CI
->getOperandBundlesAsDefs(OpBundles
);
3422 IRBuilder
<> Builder(CI
, /*FPMathTag=*/nullptr, OpBundles
);
3423 bool isCallingConvC
= isCallingConvCCompatible(CI
);
3425 // First, check that this is a known library functions and that the prototype
3427 if (!TLI
->getLibFunc(*Callee
, Func
))
3430 // We never change the calling convention.
3431 if (!ignoreCallingConv(Func
) && !isCallingConvC
)
3435 case LibFunc_memcpy_chk
:
3436 return optimizeMemCpyChk(CI
, Builder
);
3437 case LibFunc_memmove_chk
:
3438 return optimizeMemMoveChk(CI
, Builder
);
3439 case LibFunc_memset_chk
:
3440 return optimizeMemSetChk(CI
, Builder
);
3441 case LibFunc_stpcpy_chk
:
3442 case LibFunc_strcpy_chk
:
3443 return optimizeStrpCpyChk(CI
, Builder
, Func
);
3444 case LibFunc_stpncpy_chk
:
3445 case LibFunc_strncpy_chk
:
3446 return optimizeStrpNCpyChk(CI
, Builder
, Func
);
3447 case LibFunc_memccpy_chk
:
3448 return optimizeMemCCpyChk(CI
, Builder
);
3449 case LibFunc_snprintf_chk
:
3450 return optimizeSNPrintfChk(CI
, Builder
);
3451 case LibFunc_sprintf_chk
:
3452 return optimizeSPrintfChk(CI
, Builder
);
3453 case LibFunc_strcat_chk
:
3454 return optimizeStrCatChk(CI
, Builder
);
3455 case LibFunc_strlcat_chk
:
3456 return optimizeStrLCat(CI
, Builder
);
3457 case LibFunc_strncat_chk
:
3458 return optimizeStrNCatChk(CI
, Builder
);
3459 case LibFunc_strlcpy_chk
:
3460 return optimizeStrLCpyChk(CI
, Builder
);
3461 case LibFunc_vsnprintf_chk
:
3462 return optimizeVSNPrintfChk(CI
, Builder
);
3463 case LibFunc_vsprintf_chk
:
3464 return optimizeVSPrintfChk(CI
, Builder
);
3471 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3472 const TargetLibraryInfo
*TLI
, bool OnlyLowerUnknownSize
)
3473 : TLI(TLI
), OnlyLowerUnknownSize(OnlyLowerUnknownSize
) {}