[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Utils / SimplifyLibCalls.cpp
blob0324993a8203dc0d637bc7203ed2832ae87fba4b
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Transforms/Utils/BuildLibCalls.h"
40 #include "llvm/Transforms/Utils/SizeOpts.h"
42 using namespace llvm;
43 using namespace PatternMatch;
45 static cl::opt<bool>
46 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
47 cl::init(false),
48 cl::desc("Enable unsafe double to float "
49 "shrinking for math lib calls"));
51 //===----------------------------------------------------------------------===//
52 // Helper Functions
53 //===----------------------------------------------------------------------===//
55 static bool ignoreCallingConv(LibFunc Func) {
56 return Func == LibFunc_abs || Func == LibFunc_labs ||
57 Func == LibFunc_llabs || Func == LibFunc_strlen;
60 static bool isCallingConvCCompatible(CallInst *CI) {
61 switch(CI->getCallingConv()) {
62 default:
63 return false;
64 case llvm::CallingConv::C:
65 return true;
66 case llvm::CallingConv::ARM_APCS:
67 case llvm::CallingConv::ARM_AAPCS:
68 case llvm::CallingConv::ARM_AAPCS_VFP: {
70 // The iOS ABI diverges from the standard in some cases, so for now don't
71 // try to simplify those calls.
72 if (Triple(CI->getModule()->getTargetTriple()).isiOS())
73 return false;
75 auto *FuncTy = CI->getFunctionType();
77 if (!FuncTy->getReturnType()->isPointerTy() &&
78 !FuncTy->getReturnType()->isIntegerTy() &&
79 !FuncTy->getReturnType()->isVoidTy())
80 return false;
82 for (auto Param : FuncTy->params()) {
83 if (!Param->isPointerTy() && !Param->isIntegerTy())
84 return false;
86 return true;
89 return false;
92 /// Return true if it is only used in equality comparisons with With.
93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
94 for (User *U : V->users()) {
95 if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
96 if (IC->isEquality() && IC->getOperand(1) == With)
97 continue;
98 // Unknown instruction.
99 return false;
101 return true;
104 static bool callHasFloatingPointArgument(const CallInst *CI) {
105 return any_of(CI->operands(), [](const Use &OI) {
106 return OI->getType()->isFloatingPointTy();
110 static bool callHasFP128Argument(const CallInst *CI) {
111 return any_of(CI->operands(), [](const Use &OI) {
112 return OI->getType()->isFP128Ty();
116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
117 if (Base < 2 || Base > 36)
118 // handle special zero base
119 if (Base != 0)
120 return nullptr;
122 char *End;
123 std::string nptr = Str.str();
124 errno = 0;
125 long long int Result = strtoll(nptr.c_str(), &End, Base);
126 if (errno)
127 return nullptr;
129 // if we assume all possible target locales are ASCII supersets,
130 // then if strtoll successfully parses a number on the host,
131 // it will also successfully parse the same way on the target
132 if (*End != '\0')
133 return nullptr;
135 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
136 return nullptr;
138 return ConstantInt::get(CI->getType(), Result);
141 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
142 const TargetLibraryInfo *TLI) {
143 CallInst *FOpen = dyn_cast<CallInst>(File);
144 if (!FOpen)
145 return false;
147 Function *InnerCallee = FOpen->getCalledFunction();
148 if (!InnerCallee)
149 return false;
151 LibFunc Func;
152 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
153 Func != LibFunc_fopen)
154 return false;
156 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
157 if (PointerMayBeCaptured(File, true, true))
158 return false;
160 return true;
163 static bool isOnlyUsedInComparisonWithZero(Value *V) {
164 for (User *U : V->users()) {
165 if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
166 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
167 if (C->isNullValue())
168 continue;
169 // Unknown instruction.
170 return false;
172 return true;
175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
176 const DataLayout &DL) {
177 if (!isOnlyUsedInComparisonWithZero(CI))
178 return false;
180 if (!isDereferenceableAndAlignedPointer(Str, Align::None(), APInt(64, Len),
181 DL))
182 return false;
184 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
185 return false;
187 return true;
190 static void annotateDereferenceableBytes(CallInst *CI,
191 ArrayRef<unsigned> ArgNos,
192 uint64_t DereferenceableBytes) {
193 const Function *F = CI->getCaller();
194 if (!F)
195 return;
196 for (unsigned ArgNo : ArgNos) {
197 uint64_t DerefBytes = DereferenceableBytes;
198 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
199 if (!llvm::NullPointerIsDefined(F, AS) ||
200 CI->paramHasAttr(ArgNo, Attribute::NonNull))
201 DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
202 ArgNo + AttributeList::FirstArgIndex),
203 DereferenceableBytes);
205 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
206 DerefBytes) {
207 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
208 if (!llvm::NullPointerIsDefined(F, AS) ||
209 CI->paramHasAttr(ArgNo, Attribute::NonNull))
210 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
211 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
212 CI->getContext(), DerefBytes));
217 static void annotateNonNullBasedOnAccess(CallInst *CI,
218 ArrayRef<unsigned> ArgNos) {
219 Function *F = CI->getCaller();
220 if (!F)
221 return;
223 for (unsigned ArgNo : ArgNos) {
224 if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
225 continue;
226 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
227 if (llvm::NullPointerIsDefined(F, AS))
228 continue;
230 CI->addParamAttr(ArgNo, Attribute::NonNull);
231 annotateDereferenceableBytes(CI, ArgNo, 1);
235 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
236 Value *Size, const DataLayout &DL) {
237 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
238 annotateNonNullBasedOnAccess(CI, ArgNos);
239 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
240 } else if (isKnownNonZero(Size, DL)) {
241 annotateNonNullBasedOnAccess(CI, ArgNos);
242 const APInt *X, *Y;
243 uint64_t DerefMin = 1;
244 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
245 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
246 annotateDereferenceableBytes(CI, ArgNos, DerefMin);
251 //===----------------------------------------------------------------------===//
252 // String and Memory Library Call Optimizations
253 //===----------------------------------------------------------------------===//
255 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
256 // Extract some information from the instruction
257 Value *Dst = CI->getArgOperand(0);
258 Value *Src = CI->getArgOperand(1);
259 annotateNonNullBasedOnAccess(CI, {0, 1});
261 // See if we can get the length of the input string.
262 uint64_t Len = GetStringLength(Src);
263 if (Len)
264 annotateDereferenceableBytes(CI, 1, Len);
265 else
266 return nullptr;
267 --Len; // Unbias length.
269 // Handle the simple, do-nothing case: strcat(x, "") -> x
270 if (Len == 0)
271 return Dst;
273 return emitStrLenMemCpy(Src, Dst, Len, B);
276 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
277 IRBuilder<> &B) {
278 // We need to find the end of the destination string. That's where the
279 // memory is to be moved to. We just generate a call to strlen.
280 Value *DstLen = emitStrLen(Dst, B, DL, TLI);
281 if (!DstLen)
282 return nullptr;
284 // Now that we have the destination's length, we must index into the
285 // destination's pointer to get the actual memcpy destination (end of
286 // the string .. we're concatenating).
287 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
289 // We have enough information to now generate the memcpy call to do the
290 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
291 B.CreateMemCpy(CpyDst, 1, Src, 1,
292 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
293 return Dst;
296 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
297 // Extract some information from the instruction.
298 Value *Dst = CI->getArgOperand(0);
299 Value *Src = CI->getArgOperand(1);
300 Value *Size = CI->getArgOperand(2);
301 uint64_t Len;
302 annotateNonNullBasedOnAccess(CI, 0);
303 if (isKnownNonZero(Size, DL))
304 annotateNonNullBasedOnAccess(CI, 1);
306 // We don't do anything if length is not constant.
307 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
308 if (LengthArg) {
309 Len = LengthArg->getZExtValue();
310 // strncat(x, c, 0) -> x
311 if (!Len)
312 return Dst;
313 } else {
314 return nullptr;
317 // See if we can get the length of the input string.
318 uint64_t SrcLen = GetStringLength(Src);
319 if (SrcLen) {
320 annotateDereferenceableBytes(CI, 1, SrcLen);
321 --SrcLen; // Unbias length.
322 } else {
323 return nullptr;
326 // strncat(x, "", c) -> x
327 if (SrcLen == 0)
328 return Dst;
330 // We don't optimize this case.
331 if (Len < SrcLen)
332 return nullptr;
334 // strncat(x, s, c) -> strcat(x, s)
335 // s is constant so the strcat can be optimized further.
336 return emitStrLenMemCpy(Src, Dst, SrcLen, B);
339 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
340 Function *Callee = CI->getCalledFunction();
341 FunctionType *FT = Callee->getFunctionType();
342 Value *SrcStr = CI->getArgOperand(0);
343 annotateNonNullBasedOnAccess(CI, 0);
345 // If the second operand is non-constant, see if we can compute the length
346 // of the input string and turn this into memchr.
347 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
348 if (!CharC) {
349 uint64_t Len = GetStringLength(SrcStr);
350 if (Len)
351 annotateDereferenceableBytes(CI, 0, Len);
352 else
353 return nullptr;
354 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
355 return nullptr;
357 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
358 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
359 B, DL, TLI);
362 // Otherwise, the character is a constant, see if the first argument is
363 // a string literal. If so, we can constant fold.
364 StringRef Str;
365 if (!getConstantStringInfo(SrcStr, Str)) {
366 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
367 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
368 "strchr");
369 return nullptr;
372 // Compute the offset, make sure to handle the case when we're searching for
373 // zero (a weird way to spell strlen).
374 size_t I = (0xFF & CharC->getSExtValue()) == 0
375 ? Str.size()
376 : Str.find(CharC->getSExtValue());
377 if (I == StringRef::npos) // Didn't find the char. strchr returns null.
378 return Constant::getNullValue(CI->getType());
380 // strchr(s+n,c) -> gep(s+n+i,c)
381 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
384 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
385 Value *SrcStr = CI->getArgOperand(0);
386 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
387 annotateNonNullBasedOnAccess(CI, 0);
389 // Cannot fold anything if we're not looking for a constant.
390 if (!CharC)
391 return nullptr;
393 StringRef Str;
394 if (!getConstantStringInfo(SrcStr, Str)) {
395 // strrchr(s, 0) -> strchr(s, 0)
396 if (CharC->isZero())
397 return emitStrChr(SrcStr, '\0', B, TLI);
398 return nullptr;
401 // Compute the offset.
402 size_t I = (0xFF & CharC->getSExtValue()) == 0
403 ? Str.size()
404 : Str.rfind(CharC->getSExtValue());
405 if (I == StringRef::npos) // Didn't find the char. Return null.
406 return Constant::getNullValue(CI->getType());
408 // strrchr(s+n,c) -> gep(s+n+i,c)
409 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
412 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
413 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
414 if (Str1P == Str2P) // strcmp(x,x) -> 0
415 return ConstantInt::get(CI->getType(), 0);
417 StringRef Str1, Str2;
418 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
419 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
421 // strcmp(x, y) -> cnst (if both x and y are constant strings)
422 if (HasStr1 && HasStr2)
423 return ConstantInt::get(CI->getType(), Str1.compare(Str2));
425 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
426 return B.CreateNeg(B.CreateZExt(
427 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
429 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
430 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
431 CI->getType());
433 // strcmp(P, "x") -> memcmp(P, "x", 2)
434 uint64_t Len1 = GetStringLength(Str1P);
435 if (Len1)
436 annotateDereferenceableBytes(CI, 0, Len1);
437 uint64_t Len2 = GetStringLength(Str2P);
438 if (Len2)
439 annotateDereferenceableBytes(CI, 1, Len2);
441 if (Len1 && Len2) {
442 return emitMemCmp(Str1P, Str2P,
443 ConstantInt::get(DL.getIntPtrType(CI->getContext()),
444 std::min(Len1, Len2)),
445 B, DL, TLI);
448 // strcmp to memcmp
449 if (!HasStr1 && HasStr2) {
450 if (canTransformToMemCmp(CI, Str1P, Len2, DL))
451 return emitMemCmp(
452 Str1P, Str2P,
453 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
454 TLI);
455 } else if (HasStr1 && !HasStr2) {
456 if (canTransformToMemCmp(CI, Str2P, Len1, DL))
457 return emitMemCmp(
458 Str1P, Str2P,
459 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
460 TLI);
463 annotateNonNullBasedOnAccess(CI, {0, 1});
464 return nullptr;
467 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
468 Value *Str1P = CI->getArgOperand(0);
469 Value *Str2P = CI->getArgOperand(1);
470 Value *Size = CI->getArgOperand(2);
471 if (Str1P == Str2P) // strncmp(x,x,n) -> 0
472 return ConstantInt::get(CI->getType(), 0);
474 if (isKnownNonZero(Size, DL))
475 annotateNonNullBasedOnAccess(CI, {0, 1});
476 // Get the length argument if it is constant.
477 uint64_t Length;
478 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
479 Length = LengthArg->getZExtValue();
480 else
481 return nullptr;
483 if (Length == 0) // strncmp(x,y,0) -> 0
484 return ConstantInt::get(CI->getType(), 0);
486 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
487 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
489 StringRef Str1, Str2;
490 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
491 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
493 // strncmp(x, y) -> cnst (if both x and y are constant strings)
494 if (HasStr1 && HasStr2) {
495 StringRef SubStr1 = Str1.substr(0, Length);
496 StringRef SubStr2 = Str2.substr(0, Length);
497 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
500 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
501 return B.CreateNeg(B.CreateZExt(
502 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
504 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
505 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
506 CI->getType());
508 uint64_t Len1 = GetStringLength(Str1P);
509 if (Len1)
510 annotateDereferenceableBytes(CI, 0, Len1);
511 uint64_t Len2 = GetStringLength(Str2P);
512 if (Len2)
513 annotateDereferenceableBytes(CI, 1, Len2);
515 // strncmp to memcmp
516 if (!HasStr1 && HasStr2) {
517 Len2 = std::min(Len2, Length);
518 if (canTransformToMemCmp(CI, Str1P, Len2, DL))
519 return emitMemCmp(
520 Str1P, Str2P,
521 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
522 TLI);
523 } else if (HasStr1 && !HasStr2) {
524 Len1 = std::min(Len1, Length);
525 if (canTransformToMemCmp(CI, Str2P, Len1, DL))
526 return emitMemCmp(
527 Str1P, Str2P,
528 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
529 TLI);
532 return nullptr;
535 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilder<> &B) {
536 Value *Src = CI->getArgOperand(0);
537 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
538 uint64_t SrcLen = GetStringLength(Src);
539 if (SrcLen && Size) {
540 annotateDereferenceableBytes(CI, 0, SrcLen);
541 if (SrcLen <= Size->getZExtValue() + 1)
542 return emitStrDup(Src, B, TLI);
545 return nullptr;
548 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
549 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
550 if (Dst == Src) // strcpy(x,x) -> x
551 return Src;
553 annotateNonNullBasedOnAccess(CI, {0, 1});
554 // See if we can get the length of the input string.
555 uint64_t Len = GetStringLength(Src);
556 if (Len)
557 annotateDereferenceableBytes(CI, 1, Len);
558 else
559 return nullptr;
561 // We have enough information to now generate the memcpy call to do the
562 // copy for us. Make a memcpy to copy the nul byte with align = 1.
563 CallInst *NewCI =
564 B.CreateMemCpy(Dst, 1, Src, 1,
565 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
566 NewCI->setAttributes(CI->getAttributes());
567 return Dst;
570 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
571 Function *Callee = CI->getCalledFunction();
572 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
573 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
574 Value *StrLen = emitStrLen(Src, B, DL, TLI);
575 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
578 // See if we can get the length of the input string.
579 uint64_t Len = GetStringLength(Src);
580 if (Len)
581 annotateDereferenceableBytes(CI, 1, Len);
582 else
583 return nullptr;
585 Type *PT = Callee->getFunctionType()->getParamType(0);
586 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
587 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
588 ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
590 // We have enough information to now generate the memcpy call to do the
591 // copy for us. Make a memcpy to copy the nul byte with align = 1.
592 CallInst *NewCI = B.CreateMemCpy(Dst, 1, Src, 1, LenV);
593 NewCI->setAttributes(CI->getAttributes());
594 return DstEnd;
597 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
598 Function *Callee = CI->getCalledFunction();
599 Value *Dst = CI->getArgOperand(0);
600 Value *Src = CI->getArgOperand(1);
601 Value *Size = CI->getArgOperand(2);
602 annotateNonNullBasedOnAccess(CI, 0);
603 if (isKnownNonZero(Size, DL))
604 annotateNonNullBasedOnAccess(CI, 1);
606 uint64_t Len;
607 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
608 Len = LengthArg->getZExtValue();
609 else
610 return nullptr;
612 // strncpy(x, y, 0) -> x
613 if (Len == 0)
614 return Dst;
616 // See if we can get the length of the input string.
617 uint64_t SrcLen = GetStringLength(Src);
618 if (SrcLen) {
619 annotateDereferenceableBytes(CI, 1, SrcLen);
620 --SrcLen; // Unbias length.
621 } else {
622 return nullptr;
625 if (SrcLen == 0) {
626 // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
627 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, 1);
628 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
629 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
630 CI->getContext(), 0, ArgAttrs));
631 return Dst;
634 // Let strncpy handle the zero padding
635 if (Len > SrcLen + 1)
636 return nullptr;
638 Type *PT = Callee->getFunctionType()->getParamType(0);
639 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
640 CallInst *NewCI = B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
641 NewCI->setAttributes(CI->getAttributes());
642 return Dst;
645 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
646 unsigned CharSize) {
647 Value *Src = CI->getArgOperand(0);
649 // Constant folding: strlen("xyz") -> 3
650 if (uint64_t Len = GetStringLength(Src, CharSize))
651 return ConstantInt::get(CI->getType(), Len - 1);
653 // If s is a constant pointer pointing to a string literal, we can fold
654 // strlen(s + x) to strlen(s) - x, when x is known to be in the range
655 // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
656 // We only try to simplify strlen when the pointer s points to an array
657 // of i8. Otherwise, we would need to scale the offset x before doing the
658 // subtraction. This will make the optimization more complex, and it's not
659 // very useful because calling strlen for a pointer of other types is
660 // very uncommon.
661 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
662 if (!isGEPBasedOnPointerToString(GEP, CharSize))
663 return nullptr;
665 ConstantDataArraySlice Slice;
666 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
667 uint64_t NullTermIdx;
668 if (Slice.Array == nullptr) {
669 NullTermIdx = 0;
670 } else {
671 NullTermIdx = ~((uint64_t)0);
672 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
673 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
674 NullTermIdx = I;
675 break;
678 // If the string does not have '\0', leave it to strlen to compute
679 // its length.
680 if (NullTermIdx == ~((uint64_t)0))
681 return nullptr;
684 Value *Offset = GEP->getOperand(2);
685 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
686 Known.Zero.flipAllBits();
687 uint64_t ArrSize =
688 cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
690 // KnownZero's bits are flipped, so zeros in KnownZero now represent
691 // bits known to be zeros in Offset, and ones in KnowZero represent
692 // bits unknown in Offset. Therefore, Offset is known to be in range
693 // [0, NullTermIdx] when the flipped KnownZero is non-negative and
694 // unsigned-less-than NullTermIdx.
696 // If Offset is not provably in the range [0, NullTermIdx], we can still
697 // optimize if we can prove that the program has undefined behavior when
698 // Offset is outside that range. That is the case when GEP->getOperand(0)
699 // is a pointer to an object whose memory extent is NullTermIdx+1.
700 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
701 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
702 NullTermIdx == ArrSize - 1)) {
703 Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
704 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
705 Offset);
709 return nullptr;
712 // strlen(x?"foo":"bars") --> x ? 3 : 4
713 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
714 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
715 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
716 if (LenTrue && LenFalse) {
717 ORE.emit([&]() {
718 return OptimizationRemark("instcombine", "simplify-libcalls", CI)
719 << "folded strlen(select) to select of constants";
721 return B.CreateSelect(SI->getCondition(),
722 ConstantInt::get(CI->getType(), LenTrue - 1),
723 ConstantInt::get(CI->getType(), LenFalse - 1));
727 // strlen(x) != 0 --> *x != 0
728 // strlen(x) == 0 --> *x == 0
729 if (isOnlyUsedInZeroEqualityComparison(CI))
730 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
731 CI->getType());
733 return nullptr;
736 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
737 if (Value *V = optimizeStringLength(CI, B, 8))
738 return V;
739 annotateNonNullBasedOnAccess(CI, 0);
740 return nullptr;
743 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
744 Module &M = *CI->getModule();
745 unsigned WCharSize = TLI->getWCharSize(M) * 8;
746 // We cannot perform this optimization without wchar_size metadata.
747 if (WCharSize == 0)
748 return nullptr;
750 return optimizeStringLength(CI, B, WCharSize);
753 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
754 StringRef S1, S2;
755 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
756 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
758 // strpbrk(s, "") -> nullptr
759 // strpbrk("", s) -> nullptr
760 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
761 return Constant::getNullValue(CI->getType());
763 // Constant folding.
764 if (HasS1 && HasS2) {
765 size_t I = S1.find_first_of(S2);
766 if (I == StringRef::npos) // No match.
767 return Constant::getNullValue(CI->getType());
769 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
770 "strpbrk");
773 // strpbrk(s, "a") -> strchr(s, 'a')
774 if (HasS2 && S2.size() == 1)
775 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
777 return nullptr;
780 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
781 Value *EndPtr = CI->getArgOperand(1);
782 if (isa<ConstantPointerNull>(EndPtr)) {
783 // With a null EndPtr, this function won't capture the main argument.
784 // It would be readonly too, except that it still may write to errno.
785 CI->addParamAttr(0, Attribute::NoCapture);
788 return nullptr;
791 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
792 StringRef S1, S2;
793 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
794 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
796 // strspn(s, "") -> 0
797 // strspn("", s) -> 0
798 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
799 return Constant::getNullValue(CI->getType());
801 // Constant folding.
802 if (HasS1 && HasS2) {
803 size_t Pos = S1.find_first_not_of(S2);
804 if (Pos == StringRef::npos)
805 Pos = S1.size();
806 return ConstantInt::get(CI->getType(), Pos);
809 return nullptr;
812 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
813 StringRef S1, S2;
814 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
815 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
817 // strcspn("", s) -> 0
818 if (HasS1 && S1.empty())
819 return Constant::getNullValue(CI->getType());
821 // Constant folding.
822 if (HasS1 && HasS2) {
823 size_t Pos = S1.find_first_of(S2);
824 if (Pos == StringRef::npos)
825 Pos = S1.size();
826 return ConstantInt::get(CI->getType(), Pos);
829 // strcspn(s, "") -> strlen(s)
830 if (HasS2 && S2.empty())
831 return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
833 return nullptr;
836 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
837 // fold strstr(x, x) -> x.
838 if (CI->getArgOperand(0) == CI->getArgOperand(1))
839 return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
841 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
842 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
843 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
844 if (!StrLen)
845 return nullptr;
846 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
847 StrLen, B, DL, TLI);
848 if (!StrNCmp)
849 return nullptr;
850 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
851 ICmpInst *Old = cast<ICmpInst>(*UI++);
852 Value *Cmp =
853 B.CreateICmp(Old->getPredicate(), StrNCmp,
854 ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
855 replaceAllUsesWith(Old, Cmp);
857 return CI;
860 // See if either input string is a constant string.
861 StringRef SearchStr, ToFindStr;
862 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
863 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
865 // fold strstr(x, "") -> x.
866 if (HasStr2 && ToFindStr.empty())
867 return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
869 // If both strings are known, constant fold it.
870 if (HasStr1 && HasStr2) {
871 size_t Offset = SearchStr.find(ToFindStr);
873 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
874 return Constant::getNullValue(CI->getType());
876 // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
877 Value *Result = castToCStr(CI->getArgOperand(0), B);
878 Result =
879 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
880 return B.CreateBitCast(Result, CI->getType());
883 // fold strstr(x, "y") -> strchr(x, 'y').
884 if (HasStr2 && ToFindStr.size() == 1) {
885 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
886 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
889 annotateNonNullBasedOnAccess(CI, {0, 1});
890 return nullptr;
893 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilder<> &B) {
894 if (isKnownNonZero(CI->getOperand(2), DL))
895 annotateNonNullBasedOnAccess(CI, 0);
896 return nullptr;
899 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
900 Value *SrcStr = CI->getArgOperand(0);
901 Value *Size = CI->getArgOperand(2);
902 annotateNonNullAndDereferenceable(CI, 0, Size, DL);
903 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
904 ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
906 // memchr(x, y, 0) -> null
907 if (LenC) {
908 if (LenC->isZero())
909 return Constant::getNullValue(CI->getType());
910 } else {
911 // From now on we need at least constant length and string.
912 return nullptr;
915 StringRef Str;
916 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
917 return nullptr;
919 // Truncate the string to LenC. If Str is smaller than LenC we will still only
920 // scan the string, as reading past the end of it is undefined and we can just
921 // return null if we don't find the char.
922 Str = Str.substr(0, LenC->getZExtValue());
924 // If the char is variable but the input str and length are not we can turn
925 // this memchr call into a simple bit field test. Of course this only works
926 // when the return value is only checked against null.
928 // It would be really nice to reuse switch lowering here but we can't change
929 // the CFG at this point.
931 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
932 // != 0
933 // after bounds check.
934 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
935 unsigned char Max =
936 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
937 reinterpret_cast<const unsigned char *>(Str.end()));
939 // Make sure the bit field we're about to create fits in a register on the
940 // target.
941 // FIXME: On a 64 bit architecture this prevents us from using the
942 // interesting range of alpha ascii chars. We could do better by emitting
943 // two bitfields or shifting the range by 64 if no lower chars are used.
944 if (!DL.fitsInLegalInteger(Max + 1))
945 return nullptr;
947 // For the bit field use a power-of-2 type with at least 8 bits to avoid
948 // creating unnecessary illegal types.
949 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
951 // Now build the bit field.
952 APInt Bitfield(Width, 0);
953 for (char C : Str)
954 Bitfield.setBit((unsigned char)C);
955 Value *BitfieldC = B.getInt(Bitfield);
957 // Adjust width of "C" to the bitfield width, then mask off the high bits.
958 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
959 C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
961 // First check that the bit field access is within bounds.
962 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
963 "memchr.bounds");
965 // Create code that checks if the given bit is set in the field.
966 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
967 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
969 // Finally merge both checks and cast to pointer type. The inttoptr
970 // implicitly zexts the i1 to intptr type.
971 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
974 // Check if all arguments are constants. If so, we can constant fold.
975 if (!CharC)
976 return nullptr;
978 // Compute the offset.
979 size_t I = Str.find(CharC->getSExtValue() & 0xFF);
980 if (I == StringRef::npos) // Didn't find the char. memchr returns null.
981 return Constant::getNullValue(CI->getType());
983 // memchr(s+n,c,l) -> gep(s+n+i,c)
984 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
987 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
988 uint64_t Len, IRBuilder<> &B,
989 const DataLayout &DL) {
990 if (Len == 0) // memcmp(s1,s2,0) -> 0
991 return Constant::getNullValue(CI->getType());
993 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
994 if (Len == 1) {
995 Value *LHSV =
996 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
997 CI->getType(), "lhsv");
998 Value *RHSV =
999 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1000 CI->getType(), "rhsv");
1001 return B.CreateSub(LHSV, RHSV, "chardiff");
1004 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1005 // TODO: The case where both inputs are constants does not need to be limited
1006 // to legal integers or equality comparison. See block below this.
1007 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1008 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1009 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1011 // First, see if we can fold either argument to a constant.
1012 Value *LHSV = nullptr;
1013 if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1014 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1015 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1017 Value *RHSV = nullptr;
1018 if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1019 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1020 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1023 // Don't generate unaligned loads. If either source is constant data,
1024 // alignment doesn't matter for that source because there is no load.
1025 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1026 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1027 if (!LHSV) {
1028 Type *LHSPtrTy =
1029 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1030 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1032 if (!RHSV) {
1033 Type *RHSPtrTy =
1034 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1035 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1037 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1041 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1042 // TODO: This is limited to i8 arrays.
1043 StringRef LHSStr, RHSStr;
1044 if (getConstantStringInfo(LHS, LHSStr) &&
1045 getConstantStringInfo(RHS, RHSStr)) {
1046 // Make sure we're not reading out-of-bounds memory.
1047 if (Len > LHSStr.size() || Len > RHSStr.size())
1048 return nullptr;
1049 // Fold the memcmp and normalize the result. This way we get consistent
1050 // results across multiple platforms.
1051 uint64_t Ret = 0;
1052 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1053 if (Cmp < 0)
1054 Ret = -1;
1055 else if (Cmp > 0)
1056 Ret = 1;
1057 return ConstantInt::get(CI->getType(), Ret);
1060 return nullptr;
1063 // Most simplifications for memcmp also apply to bcmp.
1064 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1065 IRBuilder<> &B) {
1066 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1067 Value *Size = CI->getArgOperand(2);
1069 if (LHS == RHS) // memcmp(s,s,x) -> 0
1070 return Constant::getNullValue(CI->getType());
1072 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1073 // Handle constant lengths.
1074 ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1075 if (!LenC)
1076 return nullptr;
1078 // memcmp(d,s,0) -> 0
1079 if (LenC->getZExtValue() == 0)
1080 return Constant::getNullValue(CI->getType());
1082 if (Value *Res =
1083 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1084 return Res;
1085 return nullptr;
1088 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
1089 if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1090 return V;
1092 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1093 // bcmp can be more efficient than memcmp because it only has to know that
1094 // there is a difference, not how different one is to the other.
1095 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1096 Value *LHS = CI->getArgOperand(0);
1097 Value *RHS = CI->getArgOperand(1);
1098 Value *Size = CI->getArgOperand(2);
1099 return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1102 return nullptr;
1105 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) {
1106 return optimizeMemCmpBCmpCommon(CI, B);
1109 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
1110 Value *Size = CI->getArgOperand(2);
1111 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1112 if (isa<IntrinsicInst>(CI))
1113 return nullptr;
1115 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1116 CallInst *NewCI =
1117 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, Size);
1118 NewCI->setAttributes(CI->getAttributes());
1119 return CI->getArgOperand(0);
1122 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilder<> &B) {
1123 Value *Dst = CI->getArgOperand(0);
1124 Value *N = CI->getArgOperand(2);
1125 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1126 CallInst *NewCI = B.CreateMemCpy(Dst, 1, CI->getArgOperand(1), 1, N);
1127 NewCI->setAttributes(CI->getAttributes());
1128 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1131 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
1132 Value *Size = CI->getArgOperand(2);
1133 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1134 if (isa<IntrinsicInst>(CI))
1135 return nullptr;
1137 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1138 CallInst *NewCI =
1139 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, Size);
1140 NewCI->setAttributes(CI->getAttributes());
1141 return CI->getArgOperand(0);
1144 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
1145 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) {
1146 // This has to be a memset of zeros (bzero).
1147 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1148 if (!FillValue || FillValue->getZExtValue() != 0)
1149 return nullptr;
1151 // TODO: We should handle the case where the malloc has more than one use.
1152 // This is necessary to optimize common patterns such as when the result of
1153 // the malloc is checked against null or when a memset intrinsic is used in
1154 // place of a memset library call.
1155 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1156 if (!Malloc || !Malloc->hasOneUse())
1157 return nullptr;
1159 // Is the inner call really malloc()?
1160 Function *InnerCallee = Malloc->getCalledFunction();
1161 if (!InnerCallee)
1162 return nullptr;
1164 LibFunc Func;
1165 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1166 Func != LibFunc_malloc)
1167 return nullptr;
1169 // The memset must cover the same number of bytes that are malloc'd.
1170 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1171 return nullptr;
1173 // Replace the malloc with a calloc. We need the data layout to know what the
1174 // actual size of a 'size_t' parameter is.
1175 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1176 const DataLayout &DL = Malloc->getModule()->getDataLayout();
1177 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1178 if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1179 Malloc->getArgOperand(0),
1180 Malloc->getAttributes(), B, *TLI)) {
1181 substituteInParent(Malloc, Calloc);
1182 return Calloc;
1185 return nullptr;
1188 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
1189 Value *Size = CI->getArgOperand(2);
1190 annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1191 if (isa<IntrinsicInst>(CI))
1192 return nullptr;
1194 if (auto *Calloc = foldMallocMemset(CI, B))
1195 return Calloc;
1197 // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1198 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1199 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, 1);
1200 NewCI->setAttributes(CI->getAttributes());
1201 return CI->getArgOperand(0);
1204 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
1205 if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1206 return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1208 return nullptr;
1211 //===----------------------------------------------------------------------===//
1212 // Math Library Optimizations
1213 //===----------------------------------------------------------------------===//
1215 // Replace a libcall \p CI with a call to intrinsic \p IID
1216 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
1217 // Propagate fast-math flags from the existing call to the new call.
1218 IRBuilder<>::FastMathFlagGuard Guard(B);
1219 B.setFastMathFlags(CI->getFastMathFlags());
1221 Module *M = CI->getModule();
1222 Value *V = CI->getArgOperand(0);
1223 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1224 CallInst *NewCall = B.CreateCall(F, V);
1225 NewCall->takeName(CI);
1226 return NewCall;
1229 /// Return a variant of Val with float type.
1230 /// Currently this works in two cases: If Val is an FPExtension of a float
1231 /// value to something bigger, simply return the operand.
1232 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1233 /// loss of precision do so.
1234 static Value *valueHasFloatPrecision(Value *Val) {
1235 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1236 Value *Op = Cast->getOperand(0);
1237 if (Op->getType()->isFloatTy())
1238 return Op;
1240 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1241 APFloat F = Const->getValueAPF();
1242 bool losesInfo;
1243 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1244 &losesInfo);
1245 if (!losesInfo)
1246 return ConstantFP::get(Const->getContext(), F);
1248 return nullptr;
1251 /// Shrink double -> float functions.
1252 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
1253 bool isBinary, bool isPrecise = false) {
1254 Function *CalleeFn = CI->getCalledFunction();
1255 if (!CI->getType()->isDoubleTy() || !CalleeFn)
1256 return nullptr;
1258 // If not all the uses of the function are converted to float, then bail out.
1259 // This matters if the precision of the result is more important than the
1260 // precision of the arguments.
1261 if (isPrecise)
1262 for (User *U : CI->users()) {
1263 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1264 if (!Cast || !Cast->getType()->isFloatTy())
1265 return nullptr;
1268 // If this is something like 'g((double) float)', convert to 'gf(float)'.
1269 Value *V[2];
1270 V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1271 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1272 if (!V[0] || (isBinary && !V[1]))
1273 return nullptr;
1275 // If call isn't an intrinsic, check that it isn't within a function with the
1276 // same name as the float version of this call, otherwise the result is an
1277 // infinite loop. For example, from MinGW-w64:
1279 // float expf(float val) { return (float) exp((double) val); }
1280 StringRef CalleeName = CalleeFn->getName();
1281 bool IsIntrinsic = CalleeFn->isIntrinsic();
1282 if (!IsIntrinsic) {
1283 StringRef CallerName = CI->getFunction()->getName();
1284 if (!CallerName.empty() && CallerName.back() == 'f' &&
1285 CallerName.size() == (CalleeName.size() + 1) &&
1286 CallerName.startswith(CalleeName))
1287 return nullptr;
1290 // Propagate the math semantics from the current function to the new function.
1291 IRBuilder<>::FastMathFlagGuard Guard(B);
1292 B.setFastMathFlags(CI->getFastMathFlags());
1294 // g((double) float) -> (double) gf(float)
1295 Value *R;
1296 if (IsIntrinsic) {
1297 Module *M = CI->getModule();
1298 Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1299 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1300 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1301 } else {
1302 AttributeList CalleeAttrs = CalleeFn->getAttributes();
1303 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1304 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1306 return B.CreateFPExt(R, B.getDoubleTy());
1309 /// Shrink double -> float for unary functions.
1310 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1311 bool isPrecise = false) {
1312 return optimizeDoubleFP(CI, B, false, isPrecise);
1315 /// Shrink double -> float for binary functions.
1316 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1317 bool isPrecise = false) {
1318 return optimizeDoubleFP(CI, B, true, isPrecise);
1321 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1322 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1323 if (!CI->isFast())
1324 return nullptr;
1326 // Propagate fast-math flags from the existing call to new instructions.
1327 IRBuilder<>::FastMathFlagGuard Guard(B);
1328 B.setFastMathFlags(CI->getFastMathFlags());
1330 Value *Real, *Imag;
1331 if (CI->getNumArgOperands() == 1) {
1332 Value *Op = CI->getArgOperand(0);
1333 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1334 Real = B.CreateExtractValue(Op, 0, "real");
1335 Imag = B.CreateExtractValue(Op, 1, "imag");
1336 } else {
1337 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1338 Real = CI->getArgOperand(0);
1339 Imag = CI->getArgOperand(1);
1342 Value *RealReal = B.CreateFMul(Real, Real);
1343 Value *ImagImag = B.CreateFMul(Imag, Imag);
1345 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1346 CI->getType());
1347 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1350 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1351 IRBuilder<> &B) {
1352 if (!isa<FPMathOperator>(Call))
1353 return nullptr;
1355 IRBuilder<>::FastMathFlagGuard Guard(B);
1356 B.setFastMathFlags(Call->getFastMathFlags());
1358 // TODO: Can this be shared to also handle LLVM intrinsics?
1359 Value *X;
1360 switch (Func) {
1361 case LibFunc_sin:
1362 case LibFunc_sinf:
1363 case LibFunc_sinl:
1364 case LibFunc_tan:
1365 case LibFunc_tanf:
1366 case LibFunc_tanl:
1367 // sin(-X) --> -sin(X)
1368 // tan(-X) --> -tan(X)
1369 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1370 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1371 break;
1372 case LibFunc_cos:
1373 case LibFunc_cosf:
1374 case LibFunc_cosl:
1375 // cos(-X) --> cos(X)
1376 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1377 return B.CreateCall(Call->getCalledFunction(), X, "cos");
1378 break;
1379 default:
1380 break;
1382 return nullptr;
1385 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1386 // Multiplications calculated using Addition Chains.
1387 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1389 assert(Exp != 0 && "Incorrect exponent 0 not handled");
1391 if (InnerChain[Exp])
1392 return InnerChain[Exp];
1394 static const unsigned AddChain[33][2] = {
1395 {0, 0}, // Unused.
1396 {0, 0}, // Unused (base case = pow1).
1397 {1, 1}, // Unused (pre-computed).
1398 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4},
1399 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7},
1400 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10},
1401 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1402 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1405 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1406 getPow(InnerChain, AddChain[Exp][1], B));
1407 return InnerChain[Exp];
1410 // Return a properly extended 32-bit integer if the operation is an itofp.
1411 static Value *getIntToFPVal(Value *I2F, IRBuilder<> &B) {
1412 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1413 Value *Op = cast<Instruction>(I2F)->getOperand(0);
1414 // Make sure that the exponent fits inside an int32_t,
1415 // thus avoiding any range issues that FP has not.
1416 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1417 if (BitWidth < 32 ||
1418 (BitWidth == 32 && isa<SIToFPInst>(I2F)))
1419 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty())
1420 : B.CreateZExt(Op, B.getInt32Ty());
1423 return nullptr;
1426 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1427 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1428 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1429 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
1430 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1431 AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1432 Module *Mod = Pow->getModule();
1433 Type *Ty = Pow->getType();
1434 bool Ignored;
1436 // Evaluate special cases related to a nested function as the base.
1438 // pow(exp(x), y) -> exp(x * y)
1439 // pow(exp2(x), y) -> exp2(x * y)
1440 // If exp{,2}() is used only once, it is better to fold two transcendental
1441 // math functions into one. If used again, exp{,2}() would still have to be
1442 // called with the original argument, then keep both original transcendental
1443 // functions. However, this transformation is only safe with fully relaxed
1444 // math semantics, since, besides rounding differences, it changes overflow
1445 // and underflow behavior quite dramatically. For example:
1446 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1447 // Whereas:
1448 // exp(1000 * 0.001) = exp(1)
1449 // TODO: Loosen the requirement for fully relaxed math semantics.
1450 // TODO: Handle exp10() when more targets have it available.
1451 CallInst *BaseFn = dyn_cast<CallInst>(Base);
1452 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1453 LibFunc LibFn;
1455 Function *CalleeFn = BaseFn->getCalledFunction();
1456 if (CalleeFn &&
1457 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1458 StringRef ExpName;
1459 Intrinsic::ID ID;
1460 Value *ExpFn;
1461 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1463 switch (LibFn) {
1464 default:
1465 return nullptr;
1466 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl:
1467 ExpName = TLI->getName(LibFunc_exp);
1468 ID = Intrinsic::exp;
1469 LibFnFloat = LibFunc_expf;
1470 LibFnDouble = LibFunc_exp;
1471 LibFnLongDouble = LibFunc_expl;
1472 break;
1473 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1474 ExpName = TLI->getName(LibFunc_exp2);
1475 ID = Intrinsic::exp2;
1476 LibFnFloat = LibFunc_exp2f;
1477 LibFnDouble = LibFunc_exp2;
1478 LibFnLongDouble = LibFunc_exp2l;
1479 break;
1482 // Create new exp{,2}() with the product as its argument.
1483 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1484 ExpFn = BaseFn->doesNotAccessMemory()
1485 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1486 FMul, ExpName)
1487 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1488 LibFnLongDouble, B,
1489 BaseFn->getAttributes());
1491 // Since the new exp{,2}() is different from the original one, dead code
1492 // elimination cannot be trusted to remove it, since it may have side
1493 // effects (e.g., errno). When the only consumer for the original
1494 // exp{,2}() is pow(), then it has to be explicitly erased.
1495 substituteInParent(BaseFn, ExpFn);
1496 return ExpFn;
1500 // Evaluate special cases related to a constant base.
1502 const APFloat *BaseF;
1503 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1504 return nullptr;
1506 // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1507 if (match(Base, m_SpecificFP(2.0)) &&
1508 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1509 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1510 if (Value *ExpoI = getIntToFPVal(Expo, B))
1511 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1512 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1513 B, Attrs);
1516 // pow(2.0 ** n, x) -> exp2(n * x)
1517 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1518 APFloat BaseR = APFloat(1.0);
1519 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1520 BaseR = BaseR / *BaseF;
1521 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1522 const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1523 APSInt NI(64, false);
1524 if ((IsInteger || IsReciprocal) &&
1525 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1526 APFloat::opOK &&
1527 NI > 1 && NI.isPowerOf2()) {
1528 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1529 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1530 if (Pow->doesNotAccessMemory())
1531 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1532 FMul, "exp2");
1533 else
1534 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1535 LibFunc_exp2l, B, Attrs);
1539 // pow(10.0, x) -> exp10(x)
1540 // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1541 if (match(Base, m_SpecificFP(10.0)) &&
1542 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1543 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1544 LibFunc_exp10l, B, Attrs);
1546 // pow(n, x) -> exp2(log2(n) * x)
1547 if (Pow->hasOneUse() && Pow->hasApproxFunc() && Pow->hasNoNaNs() &&
1548 Pow->hasNoInfs() && BaseF->isNormal() && !BaseF->isNegative()) {
1549 Value *Log = nullptr;
1550 if (Ty->isFloatTy())
1551 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1552 else if (Ty->isDoubleTy())
1553 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1555 if (Log) {
1556 Value *FMul = B.CreateFMul(Log, Expo, "mul");
1557 if (Pow->doesNotAccessMemory())
1558 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1559 FMul, "exp2");
1560 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1561 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1562 LibFunc_exp2l, B, Attrs);
1566 return nullptr;
1569 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1570 Module *M, IRBuilder<> &B,
1571 const TargetLibraryInfo *TLI) {
1572 // If errno is never set, then use the intrinsic for sqrt().
1573 if (NoErrno) {
1574 Function *SqrtFn =
1575 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1576 return B.CreateCall(SqrtFn, V, "sqrt");
1579 // Otherwise, use the libcall for sqrt().
1580 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1581 // TODO: We also should check that the target can in fact lower the sqrt()
1582 // libcall. We currently have no way to ask this question, so we ask if
1583 // the target has a sqrt() libcall, which is not exactly the same.
1584 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1585 LibFunc_sqrtl, B, Attrs);
1587 return nullptr;
1590 /// Use square root in place of pow(x, +/-0.5).
1591 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1592 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1593 AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1594 Module *Mod = Pow->getModule();
1595 Type *Ty = Pow->getType();
1597 const APFloat *ExpoF;
1598 if (!match(Expo, m_APFloat(ExpoF)) ||
1599 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1600 return nullptr;
1602 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1603 if (!Sqrt)
1604 return nullptr;
1606 // Handle signed zero base by expanding to fabs(sqrt(x)).
1607 if (!Pow->hasNoSignedZeros()) {
1608 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1609 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1612 // Handle non finite base by expanding to
1613 // (x == -infinity ? +infinity : sqrt(x)).
1614 if (!Pow->hasNoInfs()) {
1615 Value *PosInf = ConstantFP::getInfinity(Ty),
1616 *NegInf = ConstantFP::getInfinity(Ty, true);
1617 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1618 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1621 // If the exponent is negative, then get the reciprocal.
1622 if (ExpoF->isNegative())
1623 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1625 return Sqrt;
1628 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1629 IRBuilder<> &B) {
1630 Value *Args[] = {Base, Expo};
1631 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1632 return B.CreateCall(F, Args);
1635 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1636 Value *Base = Pow->getArgOperand(0);
1637 Value *Expo = Pow->getArgOperand(1);
1638 Function *Callee = Pow->getCalledFunction();
1639 StringRef Name = Callee->getName();
1640 Type *Ty = Pow->getType();
1641 Module *M = Pow->getModule();
1642 Value *Shrunk = nullptr;
1643 bool AllowApprox = Pow->hasApproxFunc();
1644 bool Ignored;
1646 // Bail out if simplifying libcalls to pow() is disabled.
1647 if (!hasFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1648 return nullptr;
1650 // Propagate the math semantics from the call to any created instructions.
1651 IRBuilder<>::FastMathFlagGuard Guard(B);
1652 B.setFastMathFlags(Pow->getFastMathFlags());
1654 // Shrink pow() to powf() if the arguments are single precision,
1655 // unless the result is expected to be double precision.
1656 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1657 hasFloatVersion(Name))
1658 Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1660 // Evaluate special cases related to the base.
1662 // pow(1.0, x) -> 1.0
1663 if (match(Base, m_FPOne()))
1664 return Base;
1666 if (Value *Exp = replacePowWithExp(Pow, B))
1667 return Exp;
1669 // Evaluate special cases related to the exponent.
1671 // pow(x, -1.0) -> 1.0 / x
1672 if (match(Expo, m_SpecificFP(-1.0)))
1673 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1675 // pow(x, +/-0.0) -> 1.0
1676 if (match(Expo, m_AnyZeroFP()))
1677 return ConstantFP::get(Ty, 1.0);
1679 // pow(x, 1.0) -> x
1680 if (match(Expo, m_FPOne()))
1681 return Base;
1683 // pow(x, 2.0) -> x * x
1684 if (match(Expo, m_SpecificFP(2.0)))
1685 return B.CreateFMul(Base, Base, "square");
1687 if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1688 return Sqrt;
1690 // pow(x, n) -> x * x * x * ...
1691 const APFloat *ExpoF;
1692 if (AllowApprox && match(Expo, m_APFloat(ExpoF))) {
1693 // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1694 // If the exponent is an integer+0.5 we generate a call to sqrt and an
1695 // additional fmul.
1696 // TODO: This whole transformation should be backend specific (e.g. some
1697 // backends might prefer libcalls or the limit for the exponent might
1698 // be different) and it should also consider optimizing for size.
1699 APFloat LimF(ExpoF->getSemantics(), 33.0),
1700 ExpoA(abs(*ExpoF));
1701 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1702 // This transformation applies to integer or integer+0.5 exponents only.
1703 // For integer+0.5, we create a sqrt(Base) call.
1704 Value *Sqrt = nullptr;
1705 if (!ExpoA.isInteger()) {
1706 APFloat Expo2 = ExpoA;
1707 // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1708 // is no floating point exception and the result is an integer, then
1709 // ExpoA == integer + 0.5
1710 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1711 return nullptr;
1713 if (!Expo2.isInteger())
1714 return nullptr;
1716 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1717 Pow->doesNotAccessMemory(), M, B, TLI);
1720 // We will memoize intermediate products of the Addition Chain.
1721 Value *InnerChain[33] = {nullptr};
1722 InnerChain[1] = Base;
1723 InnerChain[2] = B.CreateFMul(Base, Base, "square");
1725 // We cannot readily convert a non-double type (like float) to a double.
1726 // So we first convert it to something which could be converted to double.
1727 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1728 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1730 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1731 if (Sqrt)
1732 FMul = B.CreateFMul(FMul, Sqrt);
1734 // If the exponent is negative, then get the reciprocal.
1735 if (ExpoF->isNegative())
1736 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1738 return FMul;
1741 APSInt IntExpo(32, /*isUnsigned=*/false);
1742 // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1743 if (ExpoF->isInteger() &&
1744 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1745 APFloat::opOK) {
1746 return createPowWithIntegerExponent(
1747 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1751 // powf(x, itofp(y)) -> powi(x, y)
1752 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1753 if (Value *ExpoI = getIntToFPVal(Expo, B))
1754 return createPowWithIntegerExponent(Base, ExpoI, M, B);
1757 return Shrunk;
1760 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1761 Function *Callee = CI->getCalledFunction();
1762 StringRef Name = Callee->getName();
1763 Value *Ret = nullptr;
1764 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1765 hasFloatVersion(Name))
1766 Ret = optimizeUnaryDoubleFP(CI, B, true);
1768 Type *Ty = CI->getType();
1769 Value *Op = CI->getArgOperand(0);
1771 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
1772 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
1773 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1774 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1775 if (Value *Exp = getIntToFPVal(Op, B))
1776 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1777 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1778 B, CI->getCalledFunction()->getAttributes());
1781 return Ret;
1784 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1785 // If we can shrink the call to a float function rather than a double
1786 // function, do that first.
1787 Function *Callee = CI->getCalledFunction();
1788 StringRef Name = Callee->getName();
1789 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1790 if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1791 return Ret;
1793 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1794 // the intrinsics for improved optimization (for example, vectorization).
1795 // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1796 // From the C standard draft WG14/N1256:
1797 // "Ideally, fmax would be sensitive to the sign of zero, for example
1798 // fmax(-0.0, +0.0) would return +0; however, implementation in software
1799 // might be impractical."
1800 IRBuilder<>::FastMathFlagGuard Guard(B);
1801 FastMathFlags FMF = CI->getFastMathFlags();
1802 FMF.setNoSignedZeros();
1803 B.setFastMathFlags(FMF);
1805 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1806 : Intrinsic::maxnum;
1807 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1808 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1811 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilder<> &B) {
1812 Function *LogFn = Log->getCalledFunction();
1813 AttributeList Attrs = LogFn->getAttributes();
1814 StringRef LogNm = LogFn->getName();
1815 Intrinsic::ID LogID = LogFn->getIntrinsicID();
1816 Module *Mod = Log->getModule();
1817 Type *Ty = Log->getType();
1818 Value *Ret = nullptr;
1820 if (UnsafeFPShrink && hasFloatVersion(LogNm))
1821 Ret = optimizeUnaryDoubleFP(Log, B, true);
1823 // The earlier call must also be 'fast' in order to do these transforms.
1824 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1825 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1826 return Ret;
1828 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1830 // This is only applicable to log(), log2(), log10().
1831 if (TLI->getLibFunc(LogNm, LogLb))
1832 switch (LogLb) {
1833 case LibFunc_logf:
1834 LogID = Intrinsic::log;
1835 ExpLb = LibFunc_expf;
1836 Exp2Lb = LibFunc_exp2f;
1837 Exp10Lb = LibFunc_exp10f;
1838 PowLb = LibFunc_powf;
1839 break;
1840 case LibFunc_log:
1841 LogID = Intrinsic::log;
1842 ExpLb = LibFunc_exp;
1843 Exp2Lb = LibFunc_exp2;
1844 Exp10Lb = LibFunc_exp10;
1845 PowLb = LibFunc_pow;
1846 break;
1847 case LibFunc_logl:
1848 LogID = Intrinsic::log;
1849 ExpLb = LibFunc_expl;
1850 Exp2Lb = LibFunc_exp2l;
1851 Exp10Lb = LibFunc_exp10l;
1852 PowLb = LibFunc_powl;
1853 break;
1854 case LibFunc_log2f:
1855 LogID = Intrinsic::log2;
1856 ExpLb = LibFunc_expf;
1857 Exp2Lb = LibFunc_exp2f;
1858 Exp10Lb = LibFunc_exp10f;
1859 PowLb = LibFunc_powf;
1860 break;
1861 case LibFunc_log2:
1862 LogID = Intrinsic::log2;
1863 ExpLb = LibFunc_exp;
1864 Exp2Lb = LibFunc_exp2;
1865 Exp10Lb = LibFunc_exp10;
1866 PowLb = LibFunc_pow;
1867 break;
1868 case LibFunc_log2l:
1869 LogID = Intrinsic::log2;
1870 ExpLb = LibFunc_expl;
1871 Exp2Lb = LibFunc_exp2l;
1872 Exp10Lb = LibFunc_exp10l;
1873 PowLb = LibFunc_powl;
1874 break;
1875 case LibFunc_log10f:
1876 LogID = Intrinsic::log10;
1877 ExpLb = LibFunc_expf;
1878 Exp2Lb = LibFunc_exp2f;
1879 Exp10Lb = LibFunc_exp10f;
1880 PowLb = LibFunc_powf;
1881 break;
1882 case LibFunc_log10:
1883 LogID = Intrinsic::log10;
1884 ExpLb = LibFunc_exp;
1885 Exp2Lb = LibFunc_exp2;
1886 Exp10Lb = LibFunc_exp10;
1887 PowLb = LibFunc_pow;
1888 break;
1889 case LibFunc_log10l:
1890 LogID = Intrinsic::log10;
1891 ExpLb = LibFunc_expl;
1892 Exp2Lb = LibFunc_exp2l;
1893 Exp10Lb = LibFunc_exp10l;
1894 PowLb = LibFunc_powl;
1895 break;
1896 default:
1897 return Ret;
1899 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1900 LogID == Intrinsic::log10) {
1901 if (Ty->getScalarType()->isFloatTy()) {
1902 ExpLb = LibFunc_expf;
1903 Exp2Lb = LibFunc_exp2f;
1904 Exp10Lb = LibFunc_exp10f;
1905 PowLb = LibFunc_powf;
1906 } else if (Ty->getScalarType()->isDoubleTy()) {
1907 ExpLb = LibFunc_exp;
1908 Exp2Lb = LibFunc_exp2;
1909 Exp10Lb = LibFunc_exp10;
1910 PowLb = LibFunc_pow;
1911 } else
1912 return Ret;
1913 } else
1914 return Ret;
1916 IRBuilder<>::FastMathFlagGuard Guard(B);
1917 B.setFastMathFlags(FastMathFlags::getFast());
1919 Intrinsic::ID ArgID = Arg->getIntrinsicID();
1920 LibFunc ArgLb = NotLibFunc;
1921 TLI->getLibFunc(Arg, ArgLb);
1923 // log(pow(x,y)) -> y*log(x)
1924 if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1925 Value *LogX =
1926 Log->doesNotAccessMemory()
1927 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1928 Arg->getOperand(0), "log")
1929 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1930 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1931 // Since pow() may have side effects, e.g. errno,
1932 // dead code elimination may not be trusted to remove it.
1933 substituteInParent(Arg, MulY);
1934 return MulY;
1937 // log(exp{,2,10}(y)) -> y*log({e,2,10})
1938 // TODO: There is no exp10() intrinsic yet.
1939 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1940 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1941 Constant *Eul;
1942 if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1943 // FIXME: Add more precise value of e for long double.
1944 Eul = ConstantFP::get(Log->getType(), numbers::e);
1945 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1946 Eul = ConstantFP::get(Log->getType(), 2.0);
1947 else
1948 Eul = ConstantFP::get(Log->getType(), 10.0);
1949 Value *LogE = Log->doesNotAccessMemory()
1950 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1951 Eul, "log")
1952 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1953 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1954 // Since exp() may have side effects, e.g. errno,
1955 // dead code elimination may not be trusted to remove it.
1956 substituteInParent(Arg, MulY);
1957 return MulY;
1960 return Ret;
1963 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1964 Function *Callee = CI->getCalledFunction();
1965 Value *Ret = nullptr;
1966 // TODO: Once we have a way (other than checking for the existince of the
1967 // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1968 // condition below.
1969 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1970 Callee->getIntrinsicID() == Intrinsic::sqrt))
1971 Ret = optimizeUnaryDoubleFP(CI, B, true);
1973 if (!CI->isFast())
1974 return Ret;
1976 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1977 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1978 return Ret;
1980 // We're looking for a repeated factor in a multiplication tree,
1981 // so we can do this fold: sqrt(x * x) -> fabs(x);
1982 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1983 Value *Op0 = I->getOperand(0);
1984 Value *Op1 = I->getOperand(1);
1985 Value *RepeatOp = nullptr;
1986 Value *OtherOp = nullptr;
1987 if (Op0 == Op1) {
1988 // Simple match: the operands of the multiply are identical.
1989 RepeatOp = Op0;
1990 } else {
1991 // Look for a more complicated pattern: one of the operands is itself
1992 // a multiply, so search for a common factor in that multiply.
1993 // Note: We don't bother looking any deeper than this first level or for
1994 // variations of this pattern because instcombine's visitFMUL and/or the
1995 // reassociation pass should give us this form.
1996 Value *OtherMul0, *OtherMul1;
1997 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1998 // Pattern: sqrt((x * y) * z)
1999 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2000 // Matched: sqrt((x * x) * z)
2001 RepeatOp = OtherMul0;
2002 OtherOp = Op1;
2006 if (!RepeatOp)
2007 return Ret;
2009 // Fast math flags for any created instructions should match the sqrt
2010 // and multiply.
2011 IRBuilder<>::FastMathFlagGuard Guard(B);
2012 B.setFastMathFlags(I->getFastMathFlags());
2014 // If we found a repeated factor, hoist it out of the square root and
2015 // replace it with the fabs of that factor.
2016 Module *M = Callee->getParent();
2017 Type *ArgType = I->getType();
2018 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2019 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2020 if (OtherOp) {
2021 // If we found a non-repeated factor, we still need to get its square
2022 // root. We then multiply that by the value that was simplified out
2023 // of the square root calculation.
2024 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2025 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2026 return B.CreateFMul(FabsCall, SqrtCall);
2028 return FabsCall;
2031 // TODO: Generalize to handle any trig function and its inverse.
2032 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
2033 Function *Callee = CI->getCalledFunction();
2034 Value *Ret = nullptr;
2035 StringRef Name = Callee->getName();
2036 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2037 Ret = optimizeUnaryDoubleFP(CI, B, true);
2039 Value *Op1 = CI->getArgOperand(0);
2040 auto *OpC = dyn_cast<CallInst>(Op1);
2041 if (!OpC)
2042 return Ret;
2044 // Both calls must be 'fast' in order to remove them.
2045 if (!CI->isFast() || !OpC->isFast())
2046 return Ret;
2048 // tan(atan(x)) -> x
2049 // tanf(atanf(x)) -> x
2050 // tanl(atanl(x)) -> x
2051 LibFunc Func;
2052 Function *F = OpC->getCalledFunction();
2053 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2054 ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2055 (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2056 (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2057 Ret = OpC->getArgOperand(0);
2058 return Ret;
2061 static bool isTrigLibCall(CallInst *CI) {
2062 // We can only hope to do anything useful if we can ignore things like errno
2063 // and floating-point exceptions.
2064 // We already checked the prototype.
2065 return CI->hasFnAttr(Attribute::NoUnwind) &&
2066 CI->hasFnAttr(Attribute::ReadNone);
2069 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
2070 bool UseFloat, Value *&Sin, Value *&Cos,
2071 Value *&SinCos) {
2072 Type *ArgTy = Arg->getType();
2073 Type *ResTy;
2074 StringRef Name;
2076 Triple T(OrigCallee->getParent()->getTargetTriple());
2077 if (UseFloat) {
2078 Name = "__sincospif_stret";
2080 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2081 // x86_64 can't use {float, float} since that would be returned in both
2082 // xmm0 and xmm1, which isn't what a real struct would do.
2083 ResTy = T.getArch() == Triple::x86_64
2084 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
2085 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2086 } else {
2087 Name = "__sincospi_stret";
2088 ResTy = StructType::get(ArgTy, ArgTy);
2091 Module *M = OrigCallee->getParent();
2092 FunctionCallee Callee =
2093 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2095 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2096 // If the argument is an instruction, it must dominate all uses so put our
2097 // sincos call there.
2098 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2099 } else {
2100 // Otherwise (e.g. for a constant) the beginning of the function is as
2101 // good a place as any.
2102 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2103 B.SetInsertPoint(&EntryBB, EntryBB.begin());
2106 SinCos = B.CreateCall(Callee, Arg, "sincospi");
2108 if (SinCos->getType()->isStructTy()) {
2109 Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2110 Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2111 } else {
2112 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2113 "sinpi");
2114 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2115 "cospi");
2119 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
2120 // Make sure the prototype is as expected, otherwise the rest of the
2121 // function is probably invalid and likely to abort.
2122 if (!isTrigLibCall(CI))
2123 return nullptr;
2125 Value *Arg = CI->getArgOperand(0);
2126 SmallVector<CallInst *, 1> SinCalls;
2127 SmallVector<CallInst *, 1> CosCalls;
2128 SmallVector<CallInst *, 1> SinCosCalls;
2130 bool IsFloat = Arg->getType()->isFloatTy();
2132 // Look for all compatible sinpi, cospi and sincospi calls with the same
2133 // argument. If there are enough (in some sense) we can make the
2134 // substitution.
2135 Function *F = CI->getFunction();
2136 for (User *U : Arg->users())
2137 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2139 // It's only worthwhile if both sinpi and cospi are actually used.
2140 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
2141 return nullptr;
2143 Value *Sin, *Cos, *SinCos;
2144 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2146 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2147 Value *Res) {
2148 for (CallInst *C : Calls)
2149 replaceAllUsesWith(C, Res);
2152 replaceTrigInsts(SinCalls, Sin);
2153 replaceTrigInsts(CosCalls, Cos);
2154 replaceTrigInsts(SinCosCalls, SinCos);
2156 return nullptr;
2159 void LibCallSimplifier::classifyArgUse(
2160 Value *Val, Function *F, bool IsFloat,
2161 SmallVectorImpl<CallInst *> &SinCalls,
2162 SmallVectorImpl<CallInst *> &CosCalls,
2163 SmallVectorImpl<CallInst *> &SinCosCalls) {
2164 CallInst *CI = dyn_cast<CallInst>(Val);
2166 if (!CI)
2167 return;
2169 // Don't consider calls in other functions.
2170 if (CI->getFunction() != F)
2171 return;
2173 Function *Callee = CI->getCalledFunction();
2174 LibFunc Func;
2175 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2176 !isTrigLibCall(CI))
2177 return;
2179 if (IsFloat) {
2180 if (Func == LibFunc_sinpif)
2181 SinCalls.push_back(CI);
2182 else if (Func == LibFunc_cospif)
2183 CosCalls.push_back(CI);
2184 else if (Func == LibFunc_sincospif_stret)
2185 SinCosCalls.push_back(CI);
2186 } else {
2187 if (Func == LibFunc_sinpi)
2188 SinCalls.push_back(CI);
2189 else if (Func == LibFunc_cospi)
2190 CosCalls.push_back(CI);
2191 else if (Func == LibFunc_sincospi_stret)
2192 SinCosCalls.push_back(CI);
2196 //===----------------------------------------------------------------------===//
2197 // Integer Library Call Optimizations
2198 //===----------------------------------------------------------------------===//
2200 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
2201 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2202 Value *Op = CI->getArgOperand(0);
2203 Type *ArgType = Op->getType();
2204 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2205 Intrinsic::cttz, ArgType);
2206 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2207 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2208 V = B.CreateIntCast(V, B.getInt32Ty(), false);
2210 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2211 return B.CreateSelect(Cond, V, B.getInt32(0));
2214 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
2215 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2216 Value *Op = CI->getArgOperand(0);
2217 Type *ArgType = Op->getType();
2218 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2219 Intrinsic::ctlz, ArgType);
2220 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2221 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2223 return B.CreateIntCast(V, CI->getType(), false);
2226 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
2227 // abs(x) -> x <s 0 ? -x : x
2228 // The negation has 'nsw' because abs of INT_MIN is undefined.
2229 Value *X = CI->getArgOperand(0);
2230 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2231 Value *NegX = B.CreateNSWNeg(X, "neg");
2232 return B.CreateSelect(IsNeg, NegX, X);
2235 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
2236 // isdigit(c) -> (c-'0') <u 10
2237 Value *Op = CI->getArgOperand(0);
2238 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2239 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2240 return B.CreateZExt(Op, CI->getType());
2243 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
2244 // isascii(c) -> c <u 128
2245 Value *Op = CI->getArgOperand(0);
2246 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2247 return B.CreateZExt(Op, CI->getType());
2250 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
2251 // toascii(c) -> c & 0x7f
2252 return B.CreateAnd(CI->getArgOperand(0),
2253 ConstantInt::get(CI->getType(), 0x7F));
2256 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
2257 StringRef Str;
2258 if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2259 return nullptr;
2261 return convertStrToNumber(CI, Str, 10);
2264 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
2265 StringRef Str;
2266 if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2267 return nullptr;
2269 if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2270 return nullptr;
2272 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2273 return convertStrToNumber(CI, Str, CInt->getSExtValue());
2276 return nullptr;
2279 //===----------------------------------------------------------------------===//
2280 // Formatting and IO Library Call Optimizations
2281 //===----------------------------------------------------------------------===//
2283 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2285 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
2286 int StreamArg) {
2287 Function *Callee = CI->getCalledFunction();
2288 // Error reporting calls should be cold, mark them as such.
2289 // This applies even to non-builtin calls: it is only a hint and applies to
2290 // functions that the frontend might not understand as builtins.
2292 // This heuristic was suggested in:
2293 // Improving Static Branch Prediction in a Compiler
2294 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2295 // Proceedings of PACT'98, Oct. 1998, IEEE
2296 if (!CI->hasFnAttr(Attribute::Cold) &&
2297 isReportingError(Callee, CI, StreamArg)) {
2298 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2301 return nullptr;
2304 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2305 if (!Callee || !Callee->isDeclaration())
2306 return false;
2308 if (StreamArg < 0)
2309 return true;
2311 // These functions might be considered cold, but only if their stream
2312 // argument is stderr.
2314 if (StreamArg >= (int)CI->getNumArgOperands())
2315 return false;
2316 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2317 if (!LI)
2318 return false;
2319 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2320 if (!GV || !GV->isDeclaration())
2321 return false;
2322 return GV->getName() == "stderr";
2325 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
2326 // Check for a fixed format string.
2327 StringRef FormatStr;
2328 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2329 return nullptr;
2331 // Empty format string -> noop.
2332 if (FormatStr.empty()) // Tolerate printf's declared void.
2333 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2335 // Do not do any of the following transformations if the printf return value
2336 // is used, in general the printf return value is not compatible with either
2337 // putchar() or puts().
2338 if (!CI->use_empty())
2339 return nullptr;
2341 // printf("x") -> putchar('x'), even for "%" and "%%".
2342 if (FormatStr.size() == 1 || FormatStr == "%%")
2343 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2345 // printf("%s", "a") --> putchar('a')
2346 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2347 StringRef ChrStr;
2348 if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2349 return nullptr;
2350 if (ChrStr.size() != 1)
2351 return nullptr;
2352 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2355 // printf("foo\n") --> puts("foo")
2356 if (FormatStr[FormatStr.size() - 1] == '\n' &&
2357 FormatStr.find('%') == StringRef::npos) { // No format characters.
2358 // Create a string literal with no \n on it. We expect the constant merge
2359 // pass to be run after this pass, to merge duplicate strings.
2360 FormatStr = FormatStr.drop_back();
2361 Value *GV = B.CreateGlobalString(FormatStr, "str");
2362 return emitPutS(GV, B, TLI);
2365 // Optimize specific format strings.
2366 // printf("%c", chr) --> putchar(chr)
2367 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2368 CI->getArgOperand(1)->getType()->isIntegerTy())
2369 return emitPutChar(CI->getArgOperand(1), B, TLI);
2371 // printf("%s\n", str) --> puts(str)
2372 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2373 CI->getArgOperand(1)->getType()->isPointerTy())
2374 return emitPutS(CI->getArgOperand(1), B, TLI);
2375 return nullptr;
2378 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
2380 Function *Callee = CI->getCalledFunction();
2381 FunctionType *FT = Callee->getFunctionType();
2382 if (Value *V = optimizePrintFString(CI, B)) {
2383 return V;
2386 // printf(format, ...) -> iprintf(format, ...) if no floating point
2387 // arguments.
2388 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2389 Module *M = B.GetInsertBlock()->getParent()->getParent();
2390 FunctionCallee IPrintFFn =
2391 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2392 CallInst *New = cast<CallInst>(CI->clone());
2393 New->setCalledFunction(IPrintFFn);
2394 B.Insert(New);
2395 return New;
2398 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2399 // arguments.
2400 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2401 Module *M = B.GetInsertBlock()->getParent()->getParent();
2402 auto SmallPrintFFn =
2403 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2404 FT, Callee->getAttributes());
2405 CallInst *New = cast<CallInst>(CI->clone());
2406 New->setCalledFunction(SmallPrintFFn);
2407 B.Insert(New);
2408 return New;
2411 annotateNonNullBasedOnAccess(CI, 0);
2412 return nullptr;
2415 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
2416 // Check for a fixed format string.
2417 StringRef FormatStr;
2418 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2419 return nullptr;
2421 // If we just have a format string (nothing else crazy) transform it.
2422 if (CI->getNumArgOperands() == 2) {
2423 // Make sure there's no % in the constant array. We could try to handle
2424 // %% -> % in the future if we cared.
2425 if (FormatStr.find('%') != StringRef::npos)
2426 return nullptr; // we found a format specifier, bail out.
2428 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2429 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2430 ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2431 FormatStr.size() + 1)); // Copy the null byte.
2432 return ConstantInt::get(CI->getType(), FormatStr.size());
2435 // The remaining optimizations require the format string to be "%s" or "%c"
2436 // and have an extra operand.
2437 if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2438 CI->getNumArgOperands() < 3)
2439 return nullptr;
2441 // Decode the second character of the format string.
2442 if (FormatStr[1] == 'c') {
2443 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2444 if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2445 return nullptr;
2446 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2447 Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2448 B.CreateStore(V, Ptr);
2449 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2450 B.CreateStore(B.getInt8(0), Ptr);
2452 return ConstantInt::get(CI->getType(), 1);
2455 if (FormatStr[1] == 's') {
2456 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2457 // strlen(str)+1)
2458 if (!CI->getArgOperand(2)->getType()->isPointerTy())
2459 return nullptr;
2461 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2462 if (!Len)
2463 return nullptr;
2464 Value *IncLen =
2465 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2466 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
2468 // The sprintf result is the unincremented number of bytes in the string.
2469 return B.CreateIntCast(Len, CI->getType(), false);
2471 return nullptr;
2474 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
2475 Function *Callee = CI->getCalledFunction();
2476 FunctionType *FT = Callee->getFunctionType();
2477 if (Value *V = optimizeSPrintFString(CI, B)) {
2478 return V;
2481 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2482 // point arguments.
2483 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2484 Module *M = B.GetInsertBlock()->getParent()->getParent();
2485 FunctionCallee SIPrintFFn =
2486 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2487 CallInst *New = cast<CallInst>(CI->clone());
2488 New->setCalledFunction(SIPrintFFn);
2489 B.Insert(New);
2490 return New;
2493 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2494 // floating point arguments.
2495 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2496 Module *M = B.GetInsertBlock()->getParent()->getParent();
2497 auto SmallSPrintFFn =
2498 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2499 FT, Callee->getAttributes());
2500 CallInst *New = cast<CallInst>(CI->clone());
2501 New->setCalledFunction(SmallSPrintFFn);
2502 B.Insert(New);
2503 return New;
2506 annotateNonNullBasedOnAccess(CI, {0, 1});
2507 return nullptr;
2510 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
2511 // Check for size
2512 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2513 if (!Size)
2514 return nullptr;
2516 uint64_t N = Size->getZExtValue();
2517 // Check for a fixed format string.
2518 StringRef FormatStr;
2519 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2520 return nullptr;
2522 // If we just have a format string (nothing else crazy) transform it.
2523 if (CI->getNumArgOperands() == 3) {
2524 // Make sure there's no % in the constant array. We could try to handle
2525 // %% -> % in the future if we cared.
2526 if (FormatStr.find('%') != StringRef::npos)
2527 return nullptr; // we found a format specifier, bail out.
2529 if (N == 0)
2530 return ConstantInt::get(CI->getType(), FormatStr.size());
2531 else if (N < FormatStr.size() + 1)
2532 return nullptr;
2534 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2535 // strlen(fmt)+1)
2536 B.CreateMemCpy(
2537 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
2538 ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2539 FormatStr.size() + 1)); // Copy the null byte.
2540 return ConstantInt::get(CI->getType(), FormatStr.size());
2543 // The remaining optimizations require the format string to be "%s" or "%c"
2544 // and have an extra operand.
2545 if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2546 CI->getNumArgOperands() == 4) {
2548 // Decode the second character of the format string.
2549 if (FormatStr[1] == 'c') {
2550 if (N == 0)
2551 return ConstantInt::get(CI->getType(), 1);
2552 else if (N == 1)
2553 return nullptr;
2555 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2556 if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2557 return nullptr;
2558 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2559 Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2560 B.CreateStore(V, Ptr);
2561 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2562 B.CreateStore(B.getInt8(0), Ptr);
2564 return ConstantInt::get(CI->getType(), 1);
2567 if (FormatStr[1] == 's') {
2568 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2569 StringRef Str;
2570 if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2571 return nullptr;
2573 if (N == 0)
2574 return ConstantInt::get(CI->getType(), Str.size());
2575 else if (N < Str.size() + 1)
2576 return nullptr;
2578 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1,
2579 ConstantInt::get(CI->getType(), Str.size() + 1));
2581 // The snprintf result is the unincremented number of bytes in the string.
2582 return ConstantInt::get(CI->getType(), Str.size());
2585 return nullptr;
2588 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2589 if (Value *V = optimizeSnPrintFString(CI, B)) {
2590 return V;
2593 if (isKnownNonZero(CI->getOperand(1), DL))
2594 annotateNonNullBasedOnAccess(CI, 0);
2595 return nullptr;
2598 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2599 optimizeErrorReporting(CI, B, 0);
2601 // All the optimizations depend on the format string.
2602 StringRef FormatStr;
2603 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2604 return nullptr;
2606 // Do not do any of the following transformations if the fprintf return
2607 // value is used, in general the fprintf return value is not compatible
2608 // with fwrite(), fputc() or fputs().
2609 if (!CI->use_empty())
2610 return nullptr;
2612 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2613 if (CI->getNumArgOperands() == 2) {
2614 // Could handle %% -> % if we cared.
2615 if (FormatStr.find('%') != StringRef::npos)
2616 return nullptr; // We found a format specifier.
2618 return emitFWrite(
2619 CI->getArgOperand(1),
2620 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2621 CI->getArgOperand(0), B, DL, TLI);
2624 // The remaining optimizations require the format string to be "%s" or "%c"
2625 // and have an extra operand.
2626 if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2627 CI->getNumArgOperands() < 3)
2628 return nullptr;
2630 // Decode the second character of the format string.
2631 if (FormatStr[1] == 'c') {
2632 // fprintf(F, "%c", chr) --> fputc(chr, F)
2633 if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2634 return nullptr;
2635 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2638 if (FormatStr[1] == 's') {
2639 // fprintf(F, "%s", str) --> fputs(str, F)
2640 if (!CI->getArgOperand(2)->getType()->isPointerTy())
2641 return nullptr;
2642 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2644 return nullptr;
2647 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2648 Function *Callee = CI->getCalledFunction();
2649 FunctionType *FT = Callee->getFunctionType();
2650 if (Value *V = optimizeFPrintFString(CI, B)) {
2651 return V;
2654 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2655 // floating point arguments.
2656 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2657 Module *M = B.GetInsertBlock()->getParent()->getParent();
2658 FunctionCallee FIPrintFFn =
2659 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2660 CallInst *New = cast<CallInst>(CI->clone());
2661 New->setCalledFunction(FIPrintFFn);
2662 B.Insert(New);
2663 return New;
2666 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2667 // 128-bit floating point arguments.
2668 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2669 Module *M = B.GetInsertBlock()->getParent()->getParent();
2670 auto SmallFPrintFFn =
2671 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2672 FT, Callee->getAttributes());
2673 CallInst *New = cast<CallInst>(CI->clone());
2674 New->setCalledFunction(SmallFPrintFFn);
2675 B.Insert(New);
2676 return New;
2679 return nullptr;
2682 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2683 optimizeErrorReporting(CI, B, 3);
2685 // Get the element size and count.
2686 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2687 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2688 if (SizeC && CountC) {
2689 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2691 // If this is writing zero records, remove the call (it's a noop).
2692 if (Bytes == 0)
2693 return ConstantInt::get(CI->getType(), 0);
2695 // If this is writing one byte, turn it into fputc.
2696 // This optimisation is only valid, if the return value is unused.
2697 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2698 Value *Char = B.CreateLoad(B.getInt8Ty(),
2699 castToCStr(CI->getArgOperand(0), B), "char");
2700 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2701 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2705 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2706 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2707 CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2708 TLI);
2710 return nullptr;
2713 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2714 optimizeErrorReporting(CI, B, 1);
2716 // Don't rewrite fputs to fwrite when optimising for size because fwrite
2717 // requires more arguments and thus extra MOVs are required.
2718 bool OptForSize = CI->getFunction()->hasOptSize() ||
2719 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
2720 if (OptForSize)
2721 return nullptr;
2723 // Check if has any use
2724 if (!CI->use_empty()) {
2725 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2726 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2727 TLI);
2728 else
2729 // We can't optimize if return value is used.
2730 return nullptr;
2733 // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2734 uint64_t Len = GetStringLength(CI->getArgOperand(0));
2735 if (!Len)
2736 return nullptr;
2738 // Known to have no uses (see above).
2739 return emitFWrite(
2740 CI->getArgOperand(0),
2741 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2742 CI->getArgOperand(1), B, DL, TLI);
2745 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2746 optimizeErrorReporting(CI, B, 1);
2748 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2749 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2750 TLI);
2752 return nullptr;
2755 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2756 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2757 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2759 return nullptr;
2762 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2763 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2764 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2765 CI->getArgOperand(2), B, TLI);
2767 return nullptr;
2770 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2771 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2772 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2773 CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2774 TLI);
2776 return nullptr;
2779 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2780 annotateNonNullBasedOnAccess(CI, 0);
2781 if (!CI->use_empty())
2782 return nullptr;
2784 // Check for a constant string.
2785 // puts("") -> putchar('\n')
2786 StringRef Str;
2787 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2788 return emitPutChar(B.getInt32('\n'), B, TLI);
2790 return nullptr;
2793 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilder<> &B) {
2794 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2795 return B.CreateMemMove(CI->getArgOperand(1), 1, CI->getArgOperand(0), 1,
2796 CI->getArgOperand(2));
2799 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2800 LibFunc Func;
2801 SmallString<20> FloatFuncName = FuncName;
2802 FloatFuncName += 'f';
2803 if (TLI->getLibFunc(FloatFuncName, Func))
2804 return TLI->has(Func);
2805 return false;
2808 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2809 IRBuilder<> &Builder) {
2810 LibFunc Func;
2811 Function *Callee = CI->getCalledFunction();
2812 // Check for string/memory library functions.
2813 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2814 // Make sure we never change the calling convention.
2815 assert((ignoreCallingConv(Func) ||
2816 isCallingConvCCompatible(CI)) &&
2817 "Optimizing string/memory libcall would change the calling convention");
2818 switch (Func) {
2819 case LibFunc_strcat:
2820 return optimizeStrCat(CI, Builder);
2821 case LibFunc_strncat:
2822 return optimizeStrNCat(CI, Builder);
2823 case LibFunc_strchr:
2824 return optimizeStrChr(CI, Builder);
2825 case LibFunc_strrchr:
2826 return optimizeStrRChr(CI, Builder);
2827 case LibFunc_strcmp:
2828 return optimizeStrCmp(CI, Builder);
2829 case LibFunc_strncmp:
2830 return optimizeStrNCmp(CI, Builder);
2831 case LibFunc_strcpy:
2832 return optimizeStrCpy(CI, Builder);
2833 case LibFunc_stpcpy:
2834 return optimizeStpCpy(CI, Builder);
2835 case LibFunc_strncpy:
2836 return optimizeStrNCpy(CI, Builder);
2837 case LibFunc_strlen:
2838 return optimizeStrLen(CI, Builder);
2839 case LibFunc_strpbrk:
2840 return optimizeStrPBrk(CI, Builder);
2841 case LibFunc_strndup:
2842 return optimizeStrNDup(CI, Builder);
2843 case LibFunc_strtol:
2844 case LibFunc_strtod:
2845 case LibFunc_strtof:
2846 case LibFunc_strtoul:
2847 case LibFunc_strtoll:
2848 case LibFunc_strtold:
2849 case LibFunc_strtoull:
2850 return optimizeStrTo(CI, Builder);
2851 case LibFunc_strspn:
2852 return optimizeStrSpn(CI, Builder);
2853 case LibFunc_strcspn:
2854 return optimizeStrCSpn(CI, Builder);
2855 case LibFunc_strstr:
2856 return optimizeStrStr(CI, Builder);
2857 case LibFunc_memchr:
2858 return optimizeMemChr(CI, Builder);
2859 case LibFunc_memrchr:
2860 return optimizeMemRChr(CI, Builder);
2861 case LibFunc_bcmp:
2862 return optimizeBCmp(CI, Builder);
2863 case LibFunc_memcmp:
2864 return optimizeMemCmp(CI, Builder);
2865 case LibFunc_memcpy:
2866 return optimizeMemCpy(CI, Builder);
2867 case LibFunc_mempcpy:
2868 return optimizeMemPCpy(CI, Builder);
2869 case LibFunc_memmove:
2870 return optimizeMemMove(CI, Builder);
2871 case LibFunc_memset:
2872 return optimizeMemSet(CI, Builder);
2873 case LibFunc_realloc:
2874 return optimizeRealloc(CI, Builder);
2875 case LibFunc_wcslen:
2876 return optimizeWcslen(CI, Builder);
2877 case LibFunc_bcopy:
2878 return optimizeBCopy(CI, Builder);
2879 default:
2880 break;
2883 return nullptr;
2886 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2887 LibFunc Func,
2888 IRBuilder<> &Builder) {
2889 // Don't optimize calls that require strict floating point semantics.
2890 if (CI->isStrictFP())
2891 return nullptr;
2893 if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2894 return V;
2896 switch (Func) {
2897 case LibFunc_sinpif:
2898 case LibFunc_sinpi:
2899 case LibFunc_cospif:
2900 case LibFunc_cospi:
2901 return optimizeSinCosPi(CI, Builder);
2902 case LibFunc_powf:
2903 case LibFunc_pow:
2904 case LibFunc_powl:
2905 return optimizePow(CI, Builder);
2906 case LibFunc_exp2l:
2907 case LibFunc_exp2:
2908 case LibFunc_exp2f:
2909 return optimizeExp2(CI, Builder);
2910 case LibFunc_fabsf:
2911 case LibFunc_fabs:
2912 case LibFunc_fabsl:
2913 return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2914 case LibFunc_sqrtf:
2915 case LibFunc_sqrt:
2916 case LibFunc_sqrtl:
2917 return optimizeSqrt(CI, Builder);
2918 case LibFunc_logf:
2919 case LibFunc_log:
2920 case LibFunc_logl:
2921 case LibFunc_log10f:
2922 case LibFunc_log10:
2923 case LibFunc_log10l:
2924 case LibFunc_log1pf:
2925 case LibFunc_log1p:
2926 case LibFunc_log1pl:
2927 case LibFunc_log2f:
2928 case LibFunc_log2:
2929 case LibFunc_log2l:
2930 case LibFunc_logbf:
2931 case LibFunc_logb:
2932 case LibFunc_logbl:
2933 return optimizeLog(CI, Builder);
2934 case LibFunc_tan:
2935 case LibFunc_tanf:
2936 case LibFunc_tanl:
2937 return optimizeTan(CI, Builder);
2938 case LibFunc_ceil:
2939 return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2940 case LibFunc_floor:
2941 return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2942 case LibFunc_round:
2943 return replaceUnaryCall(CI, Builder, Intrinsic::round);
2944 case LibFunc_nearbyint:
2945 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2946 case LibFunc_rint:
2947 return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2948 case LibFunc_trunc:
2949 return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2950 case LibFunc_acos:
2951 case LibFunc_acosh:
2952 case LibFunc_asin:
2953 case LibFunc_asinh:
2954 case LibFunc_atan:
2955 case LibFunc_atanh:
2956 case LibFunc_cbrt:
2957 case LibFunc_cosh:
2958 case LibFunc_exp:
2959 case LibFunc_exp10:
2960 case LibFunc_expm1:
2961 case LibFunc_cos:
2962 case LibFunc_sin:
2963 case LibFunc_sinh:
2964 case LibFunc_tanh:
2965 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2966 return optimizeUnaryDoubleFP(CI, Builder, true);
2967 return nullptr;
2968 case LibFunc_copysign:
2969 if (hasFloatVersion(CI->getCalledFunction()->getName()))
2970 return optimizeBinaryDoubleFP(CI, Builder);
2971 return nullptr;
2972 case LibFunc_fminf:
2973 case LibFunc_fmin:
2974 case LibFunc_fminl:
2975 case LibFunc_fmaxf:
2976 case LibFunc_fmax:
2977 case LibFunc_fmaxl:
2978 return optimizeFMinFMax(CI, Builder);
2979 case LibFunc_cabs:
2980 case LibFunc_cabsf:
2981 case LibFunc_cabsl:
2982 return optimizeCAbs(CI, Builder);
2983 default:
2984 return nullptr;
2988 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2989 // TODO: Split out the code below that operates on FP calls so that
2990 // we can all non-FP calls with the StrictFP attribute to be
2991 // optimized.
2992 if (CI->isNoBuiltin())
2993 return nullptr;
2995 LibFunc Func;
2996 Function *Callee = CI->getCalledFunction();
2998 SmallVector<OperandBundleDef, 2> OpBundles;
2999 CI->getOperandBundlesAsDefs(OpBundles);
3000 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3001 bool isCallingConvC = isCallingConvCCompatible(CI);
3003 // Command-line parameter overrides instruction attribute.
3004 // This can't be moved to optimizeFloatingPointLibCall() because it may be
3005 // used by the intrinsic optimizations.
3006 if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3007 UnsafeFPShrink = EnableUnsafeFPShrink;
3008 else if (isa<FPMathOperator>(CI) && CI->isFast())
3009 UnsafeFPShrink = true;
3011 // First, check for intrinsics.
3012 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3013 if (!isCallingConvC)
3014 return nullptr;
3015 // The FP intrinsics have corresponding constrained versions so we don't
3016 // need to check for the StrictFP attribute here.
3017 switch (II->getIntrinsicID()) {
3018 case Intrinsic::pow:
3019 return optimizePow(CI, Builder);
3020 case Intrinsic::exp2:
3021 return optimizeExp2(CI, Builder);
3022 case Intrinsic::log:
3023 case Intrinsic::log2:
3024 case Intrinsic::log10:
3025 return optimizeLog(CI, Builder);
3026 case Intrinsic::sqrt:
3027 return optimizeSqrt(CI, Builder);
3028 // TODO: Use foldMallocMemset() with memset intrinsic.
3029 case Intrinsic::memset:
3030 return optimizeMemSet(CI, Builder);
3031 case Intrinsic::memcpy:
3032 return optimizeMemCpy(CI, Builder);
3033 case Intrinsic::memmove:
3034 return optimizeMemMove(CI, Builder);
3035 default:
3036 return nullptr;
3040 // Also try to simplify calls to fortified library functions.
3041 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
3042 // Try to further simplify the result.
3043 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3044 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3045 // Use an IR Builder from SimplifiedCI if available instead of CI
3046 // to guarantee we reach all uses we might replace later on.
3047 IRBuilder<> TmpBuilder(SimplifiedCI);
3048 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
3049 // If we were able to further simplify, remove the now redundant call.
3050 substituteInParent(SimplifiedCI, V);
3051 return V;
3054 return SimplifiedFortifiedCI;
3057 // Then check for known library functions.
3058 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3059 // We never change the calling convention.
3060 if (!ignoreCallingConv(Func) && !isCallingConvC)
3061 return nullptr;
3062 if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3063 return V;
3064 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3065 return V;
3066 switch (Func) {
3067 case LibFunc_ffs:
3068 case LibFunc_ffsl:
3069 case LibFunc_ffsll:
3070 return optimizeFFS(CI, Builder);
3071 case LibFunc_fls:
3072 case LibFunc_flsl:
3073 case LibFunc_flsll:
3074 return optimizeFls(CI, Builder);
3075 case LibFunc_abs:
3076 case LibFunc_labs:
3077 case LibFunc_llabs:
3078 return optimizeAbs(CI, Builder);
3079 case LibFunc_isdigit:
3080 return optimizeIsDigit(CI, Builder);
3081 case LibFunc_isascii:
3082 return optimizeIsAscii(CI, Builder);
3083 case LibFunc_toascii:
3084 return optimizeToAscii(CI, Builder);
3085 case LibFunc_atoi:
3086 case LibFunc_atol:
3087 case LibFunc_atoll:
3088 return optimizeAtoi(CI, Builder);
3089 case LibFunc_strtol:
3090 case LibFunc_strtoll:
3091 return optimizeStrtol(CI, Builder);
3092 case LibFunc_printf:
3093 return optimizePrintF(CI, Builder);
3094 case LibFunc_sprintf:
3095 return optimizeSPrintF(CI, Builder);
3096 case LibFunc_snprintf:
3097 return optimizeSnPrintF(CI, Builder);
3098 case LibFunc_fprintf:
3099 return optimizeFPrintF(CI, Builder);
3100 case LibFunc_fwrite:
3101 return optimizeFWrite(CI, Builder);
3102 case LibFunc_fread:
3103 return optimizeFRead(CI, Builder);
3104 case LibFunc_fputs:
3105 return optimizeFPuts(CI, Builder);
3106 case LibFunc_fgets:
3107 return optimizeFGets(CI, Builder);
3108 case LibFunc_fputc:
3109 return optimizeFPutc(CI, Builder);
3110 case LibFunc_fgetc:
3111 return optimizeFGetc(CI, Builder);
3112 case LibFunc_puts:
3113 return optimizePuts(CI, Builder);
3114 case LibFunc_perror:
3115 return optimizeErrorReporting(CI, Builder);
3116 case LibFunc_vfprintf:
3117 case LibFunc_fiprintf:
3118 return optimizeErrorReporting(CI, Builder, 0);
3119 default:
3120 return nullptr;
3123 return nullptr;
3126 LibCallSimplifier::LibCallSimplifier(
3127 const DataLayout &DL, const TargetLibraryInfo *TLI,
3128 OptimizationRemarkEmitter &ORE,
3129 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3130 function_ref<void(Instruction *, Value *)> Replacer,
3131 function_ref<void(Instruction *)> Eraser)
3132 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3133 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3135 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3136 // Indirect through the replacer used in this instance.
3137 Replacer(I, With);
3140 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3141 Eraser(I);
3144 // TODO:
3145 // Additional cases that we need to add to this file:
3147 // cbrt:
3148 // * cbrt(expN(X)) -> expN(x/3)
3149 // * cbrt(sqrt(x)) -> pow(x,1/6)
3150 // * cbrt(cbrt(x)) -> pow(x,1/9)
3152 // exp, expf, expl:
3153 // * exp(log(x)) -> x
3155 // log, logf, logl:
3156 // * log(exp(x)) -> x
3157 // * log(exp(y)) -> y*log(e)
3158 // * log(exp10(y)) -> y*log(10)
3159 // * log(sqrt(x)) -> 0.5*log(x)
3161 // pow, powf, powl:
3162 // * pow(sqrt(x),y) -> pow(x,y*0.5)
3163 // * pow(pow(x,y),z)-> pow(x,y*z)
3165 // signbit:
3166 // * signbit(cnst) -> cnst'
3167 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3169 // sqrt, sqrtf, sqrtl:
3170 // * sqrt(expN(x)) -> expN(x*0.5)
3171 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3172 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3175 //===----------------------------------------------------------------------===//
3176 // Fortified Library Call Optimizations
3177 //===----------------------------------------------------------------------===//
3179 bool
3180 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3181 unsigned ObjSizeOp,
3182 Optional<unsigned> SizeOp,
3183 Optional<unsigned> StrOp,
3184 Optional<unsigned> FlagOp) {
3185 // If this function takes a flag argument, the implementation may use it to
3186 // perform extra checks. Don't fold into the non-checking variant.
3187 if (FlagOp) {
3188 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3189 if (!Flag || !Flag->isZero())
3190 return false;
3193 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3194 return true;
3196 if (ConstantInt *ObjSizeCI =
3197 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3198 if (ObjSizeCI->isMinusOne())
3199 return true;
3200 // If the object size wasn't -1 (unknown), bail out if we were asked to.
3201 if (OnlyLowerUnknownSize)
3202 return false;
3203 if (StrOp) {
3204 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3205 // If the length is 0 we don't know how long it is and so we can't
3206 // remove the check.
3207 if (Len)
3208 annotateDereferenceableBytes(CI, *StrOp, Len);
3209 else
3210 return false;
3211 return ObjSizeCI->getZExtValue() >= Len;
3214 if (SizeOp) {
3215 if (ConstantInt *SizeCI =
3216 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3217 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3220 return false;
3223 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3224 IRBuilder<> &B) {
3225 if (isFortifiedCallFoldable(CI, 3, 2)) {
3226 CallInst *NewCI = B.CreateMemCpy(
3227 CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, CI->getArgOperand(2));
3228 NewCI->setAttributes(CI->getAttributes());
3229 return CI->getArgOperand(0);
3231 return nullptr;
3234 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3235 IRBuilder<> &B) {
3236 if (isFortifiedCallFoldable(CI, 3, 2)) {
3237 CallInst *NewCI = B.CreateMemMove(
3238 CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, CI->getArgOperand(2));
3239 NewCI->setAttributes(CI->getAttributes());
3240 return CI->getArgOperand(0);
3242 return nullptr;
3245 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3246 IRBuilder<> &B) {
3247 // TODO: Try foldMallocMemset() here.
3249 if (isFortifiedCallFoldable(CI, 3, 2)) {
3250 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3251 CallInst *NewCI =
3252 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
3253 NewCI->setAttributes(CI->getAttributes());
3254 return CI->getArgOperand(0);
3256 return nullptr;
3259 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3260 IRBuilder<> &B,
3261 LibFunc Func) {
3262 const DataLayout &DL = CI->getModule()->getDataLayout();
3263 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3264 *ObjSize = CI->getArgOperand(2);
3266 // __stpcpy_chk(x,x,...) -> x+strlen(x)
3267 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3268 Value *StrLen = emitStrLen(Src, B, DL, TLI);
3269 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3272 // If a) we don't have any length information, or b) we know this will
3273 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3274 // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3275 // TODO: It might be nice to get a maximum length out of the possible
3276 // string lengths for varying.
3277 if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3278 if (Func == LibFunc_strcpy_chk)
3279 return emitStrCpy(Dst, Src, B, TLI);
3280 else
3281 return emitStpCpy(Dst, Src, B, TLI);
3284 if (OnlyLowerUnknownSize)
3285 return nullptr;
3287 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3288 uint64_t Len = GetStringLength(Src);
3289 if (Len)
3290 annotateDereferenceableBytes(CI, 1, Len);
3291 else
3292 return nullptr;
3294 Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3295 Value *LenV = ConstantInt::get(SizeTTy, Len);
3296 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3297 // If the function was an __stpcpy_chk, and we were able to fold it into
3298 // a __memcpy_chk, we still need to return the correct end pointer.
3299 if (Ret && Func == LibFunc_stpcpy_chk)
3300 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3301 return Ret;
3304 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3305 IRBuilder<> &B,
3306 LibFunc Func) {
3307 if (isFortifiedCallFoldable(CI, 3, 2)) {
3308 if (Func == LibFunc_strncpy_chk)
3309 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3310 CI->getArgOperand(2), B, TLI);
3311 else
3312 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3313 CI->getArgOperand(2), B, TLI);
3316 return nullptr;
3319 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3320 IRBuilder<> &B) {
3321 if (isFortifiedCallFoldable(CI, 4, 3))
3322 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3323 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3325 return nullptr;
3328 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3329 IRBuilder<> &B) {
3330 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3331 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end());
3332 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3333 CI->getArgOperand(4), VariadicArgs, B, TLI);
3336 return nullptr;
3339 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3340 IRBuilder<> &B) {
3341 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3342 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end());
3343 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3344 B, TLI);
3347 return nullptr;
3350 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3351 IRBuilder<> &B) {
3352 if (isFortifiedCallFoldable(CI, 2))
3353 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3355 return nullptr;
3358 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3359 IRBuilder<> &B) {
3360 if (isFortifiedCallFoldable(CI, 3))
3361 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3362 CI->getArgOperand(2), B, TLI);
3364 return nullptr;
3367 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3368 IRBuilder<> &B) {
3369 if (isFortifiedCallFoldable(CI, 3))
3370 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3371 CI->getArgOperand(2), B, TLI);
3373 return nullptr;
3376 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3377 IRBuilder<> &B) {
3378 if (isFortifiedCallFoldable(CI, 3))
3379 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3380 CI->getArgOperand(2), B, TLI);
3382 return nullptr;
3385 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3386 IRBuilder<> &B) {
3387 if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3388 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3389 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3391 return nullptr;
3394 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3395 IRBuilder<> &B) {
3396 if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3397 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3398 CI->getArgOperand(4), B, TLI);
3400 return nullptr;
3403 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
3404 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3405 // Some clang users checked for _chk libcall availability using:
3406 // __has_builtin(__builtin___memcpy_chk)
3407 // When compiling with -fno-builtin, this is always true.
3408 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3409 // end up with fortified libcalls, which isn't acceptable in a freestanding
3410 // environment which only provides their non-fortified counterparts.
3412 // Until we change clang and/or teach external users to check for availability
3413 // differently, disregard the "nobuiltin" attribute and TLI::has.
3415 // PR23093.
3417 LibFunc Func;
3418 Function *Callee = CI->getCalledFunction();
3420 SmallVector<OperandBundleDef, 2> OpBundles;
3421 CI->getOperandBundlesAsDefs(OpBundles);
3422 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3423 bool isCallingConvC = isCallingConvCCompatible(CI);
3425 // First, check that this is a known library functions and that the prototype
3426 // is correct.
3427 if (!TLI->getLibFunc(*Callee, Func))
3428 return nullptr;
3430 // We never change the calling convention.
3431 if (!ignoreCallingConv(Func) && !isCallingConvC)
3432 return nullptr;
3434 switch (Func) {
3435 case LibFunc_memcpy_chk:
3436 return optimizeMemCpyChk(CI, Builder);
3437 case LibFunc_memmove_chk:
3438 return optimizeMemMoveChk(CI, Builder);
3439 case LibFunc_memset_chk:
3440 return optimizeMemSetChk(CI, Builder);
3441 case LibFunc_stpcpy_chk:
3442 case LibFunc_strcpy_chk:
3443 return optimizeStrpCpyChk(CI, Builder, Func);
3444 case LibFunc_stpncpy_chk:
3445 case LibFunc_strncpy_chk:
3446 return optimizeStrpNCpyChk(CI, Builder, Func);
3447 case LibFunc_memccpy_chk:
3448 return optimizeMemCCpyChk(CI, Builder);
3449 case LibFunc_snprintf_chk:
3450 return optimizeSNPrintfChk(CI, Builder);
3451 case LibFunc_sprintf_chk:
3452 return optimizeSPrintfChk(CI, Builder);
3453 case LibFunc_strcat_chk:
3454 return optimizeStrCatChk(CI, Builder);
3455 case LibFunc_strlcat_chk:
3456 return optimizeStrLCat(CI, Builder);
3457 case LibFunc_strncat_chk:
3458 return optimizeStrNCatChk(CI, Builder);
3459 case LibFunc_strlcpy_chk:
3460 return optimizeStrLCpyChk(CI, Builder);
3461 case LibFunc_vsnprintf_chk:
3462 return optimizeVSNPrintfChk(CI, Builder);
3463 case LibFunc_vsprintf_chk:
3464 return optimizeVSPrintfChk(CI, Builder);
3465 default:
3466 break;
3468 return nullptr;
3471 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3472 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3473 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}