[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Vectorize / LoadStoreVectorizer.cpp
blobf44976c723ec05463cd501d856faddf15bb16d8e
1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass merges loads/stores to/from sequential memory addresses into vector
10 // loads/stores. Although there's nothing GPU-specific in here, this pass is
11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs.
13 // (For simplicity below we talk about loads only, but everything also applies
14 // to stores.)
16 // This pass is intended to be run late in the pipeline, after other
17 // vectorization opportunities have been exploited. So the assumption here is
18 // that immediately following our new vector load we'll need to extract out the
19 // individual elements of the load, so we can operate on them individually.
21 // On CPUs this transformation is usually not beneficial, because extracting the
22 // elements of a vector register is expensive on most architectures. It's
23 // usually better just to load each element individually into its own scalar
24 // register.
26 // However, nVidia and AMD GPUs don't have proper vector registers. Instead, a
27 // "vector load" loads directly into a series of scalar registers. In effect,
28 // extracting the elements of the vector is free. It's therefore always
29 // beneficial to vectorize a sequence of loads on these architectures.
31 // Vectorizing (perhaps a better name might be "coalescing") loads can have
32 // large performance impacts on GPU kernels, and opportunities for vectorizing
33 // are common in GPU code. This pass tries very hard to find such
34 // opportunities; its runtime is quadratic in the number of loads in a BB.
36 // Some CPU architectures, such as ARM, have instructions that load into
37 // multiple scalar registers, similar to a GPU vectorized load. In theory ARM
38 // could use this pass (with some modifications), but currently it implements
39 // its own pass to do something similar to what we do here.
41 #include "llvm/ADT/APInt.h"
42 #include "llvm/ADT/ArrayRef.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/PostOrderIterator.h"
45 #include "llvm/ADT/STLExtras.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallVector.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/ADT/iterator_range.h"
50 #include "llvm/Analysis/AliasAnalysis.h"
51 #include "llvm/Analysis/MemoryLocation.h"
52 #include "llvm/Analysis/OrderedBasicBlock.h"
53 #include "llvm/Analysis/ScalarEvolution.h"
54 #include "llvm/Analysis/TargetTransformInfo.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Analysis/ValueTracking.h"
57 #include "llvm/Analysis/VectorUtils.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/InstrTypes.h"
67 #include "llvm/IR/Instruction.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/IntrinsicInst.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/KnownBits.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Vectorize.h"
81 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
82 #include <algorithm>
83 #include <cassert>
84 #include <cstdlib>
85 #include <tuple>
86 #include <utility>
88 using namespace llvm;
90 #define DEBUG_TYPE "load-store-vectorizer"
92 STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
93 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
95 // FIXME: Assuming stack alignment of 4 is always good enough
96 static const unsigned StackAdjustedAlignment = 4;
98 namespace {
100 /// ChainID is an arbitrary token that is allowed to be different only for the
101 /// accesses that are guaranteed to be considered non-consecutive by
102 /// Vectorizer::isConsecutiveAccess. It's used for grouping instructions
103 /// together and reducing the number of instructions the main search operates on
104 /// at a time, i.e. this is to reduce compile time and nothing else as the main
105 /// search has O(n^2) time complexity. The underlying type of ChainID should not
106 /// be relied upon.
107 using ChainID = const Value *;
108 using InstrList = SmallVector<Instruction *, 8>;
109 using InstrListMap = MapVector<ChainID, InstrList>;
111 class Vectorizer {
112 Function &F;
113 AliasAnalysis &AA;
114 DominatorTree &DT;
115 ScalarEvolution &SE;
116 TargetTransformInfo &TTI;
117 const DataLayout &DL;
118 IRBuilder<> Builder;
120 public:
121 Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT,
122 ScalarEvolution &SE, TargetTransformInfo &TTI)
123 : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI),
124 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
126 bool run();
128 private:
129 unsigned getPointerAddressSpace(Value *I);
131 unsigned getAlignment(LoadInst *LI) const {
132 unsigned Align = LI->getAlignment();
133 if (Align != 0)
134 return Align;
136 return DL.getABITypeAlignment(LI->getType());
139 unsigned getAlignment(StoreInst *SI) const {
140 unsigned Align = SI->getAlignment();
141 if (Align != 0)
142 return Align;
144 return DL.getABITypeAlignment(SI->getValueOperand()->getType());
147 static const unsigned MaxDepth = 3;
149 bool isConsecutiveAccess(Value *A, Value *B);
150 bool areConsecutivePointers(Value *PtrA, Value *PtrB, APInt PtrDelta,
151 unsigned Depth = 0) const;
152 bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta,
153 unsigned Depth) const;
154 bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta,
155 unsigned Depth) const;
157 /// After vectorization, reorder the instructions that I depends on
158 /// (the instructions defining its operands), to ensure they dominate I.
159 void reorder(Instruction *I);
161 /// Returns the first and the last instructions in Chain.
162 std::pair<BasicBlock::iterator, BasicBlock::iterator>
163 getBoundaryInstrs(ArrayRef<Instruction *> Chain);
165 /// Erases the original instructions after vectorizing.
166 void eraseInstructions(ArrayRef<Instruction *> Chain);
168 /// "Legalize" the vector type that would be produced by combining \p
169 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the
170 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is
171 /// expected to have more than 4 elements.
172 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
173 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits);
175 /// Finds the largest prefix of Chain that's vectorizable, checking for
176 /// intervening instructions which may affect the memory accessed by the
177 /// instructions within Chain.
179 /// The elements of \p Chain must be all loads or all stores and must be in
180 /// address order.
181 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain);
183 /// Collects load and store instructions to vectorize.
184 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB);
186 /// Processes the collected instructions, the \p Map. The values of \p Map
187 /// should be all loads or all stores.
188 bool vectorizeChains(InstrListMap &Map);
190 /// Finds the load/stores to consecutive memory addresses and vectorizes them.
191 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs);
193 /// Vectorizes the load instructions in Chain.
194 bool
195 vectorizeLoadChain(ArrayRef<Instruction *> Chain,
196 SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
198 /// Vectorizes the store instructions in Chain.
199 bool
200 vectorizeStoreChain(ArrayRef<Instruction *> Chain,
201 SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
203 /// Check if this load/store access is misaligned accesses.
204 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
205 unsigned Alignment);
208 class LoadStoreVectorizerLegacyPass : public FunctionPass {
209 public:
210 static char ID;
212 LoadStoreVectorizerLegacyPass() : FunctionPass(ID) {
213 initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry());
216 bool runOnFunction(Function &F) override;
218 StringRef getPassName() const override {
219 return "GPU Load and Store Vectorizer";
222 void getAnalysisUsage(AnalysisUsage &AU) const override {
223 AU.addRequired<AAResultsWrapperPass>();
224 AU.addRequired<ScalarEvolutionWrapperPass>();
225 AU.addRequired<DominatorTreeWrapperPass>();
226 AU.addRequired<TargetTransformInfoWrapperPass>();
227 AU.setPreservesCFG();
231 } // end anonymous namespace
233 char LoadStoreVectorizerLegacyPass::ID = 0;
235 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
236 "Vectorize load and Store instructions", false, false)
237 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
238 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
239 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
240 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
241 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
242 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
243 "Vectorize load and store instructions", false, false)
245 Pass *llvm::createLoadStoreVectorizerPass() {
246 return new LoadStoreVectorizerLegacyPass();
249 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) {
250 // Don't vectorize when the attribute NoImplicitFloat is used.
251 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
252 return false;
254 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
255 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
256 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
257 TargetTransformInfo &TTI =
258 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
260 Vectorizer V(F, AA, DT, SE, TTI);
261 return V.run();
264 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
265 // Don't vectorize when the attribute NoImplicitFloat is used.
266 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
267 return PreservedAnalyses::all();
269 AliasAnalysis &AA = AM.getResult<AAManager>(F);
270 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
271 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
272 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
274 Vectorizer V(F, AA, DT, SE, TTI);
275 bool Changed = V.run();
276 PreservedAnalyses PA;
277 PA.preserveSet<CFGAnalyses>();
278 return Changed ? PA : PreservedAnalyses::all();
281 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in
282 // vectors of Instructions.
283 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) {
284 SmallVector<Value *, 8> VL(IL.begin(), IL.end());
285 propagateMetadata(I, VL);
288 // Vectorizer Implementation
289 bool Vectorizer::run() {
290 bool Changed = false;
292 // Scan the blocks in the function in post order.
293 for (BasicBlock *BB : post_order(&F)) {
294 InstrListMap LoadRefs, StoreRefs;
295 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB);
296 Changed |= vectorizeChains(LoadRefs);
297 Changed |= vectorizeChains(StoreRefs);
300 return Changed;
303 unsigned Vectorizer::getPointerAddressSpace(Value *I) {
304 if (LoadInst *L = dyn_cast<LoadInst>(I))
305 return L->getPointerAddressSpace();
306 if (StoreInst *S = dyn_cast<StoreInst>(I))
307 return S->getPointerAddressSpace();
308 return -1;
311 // FIXME: Merge with llvm::isConsecutiveAccess
312 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
313 Value *PtrA = getLoadStorePointerOperand(A);
314 Value *PtrB = getLoadStorePointerOperand(B);
315 unsigned ASA = getPointerAddressSpace(A);
316 unsigned ASB = getPointerAddressSpace(B);
318 // Check that the address spaces match and that the pointers are valid.
319 if (!PtrA || !PtrB || (ASA != ASB))
320 return false;
322 // Make sure that A and B are different pointers of the same size type.
323 Type *PtrATy = PtrA->getType()->getPointerElementType();
324 Type *PtrBTy = PtrB->getType()->getPointerElementType();
325 if (PtrA == PtrB ||
326 PtrATy->isVectorTy() != PtrBTy->isVectorTy() ||
327 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) ||
328 DL.getTypeStoreSize(PtrATy->getScalarType()) !=
329 DL.getTypeStoreSize(PtrBTy->getScalarType()))
330 return false;
332 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
333 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy));
335 return areConsecutivePointers(PtrA, PtrB, Size);
338 bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB,
339 APInt PtrDelta, unsigned Depth) const {
340 unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType());
341 APInt OffsetA(PtrBitWidth, 0);
342 APInt OffsetB(PtrBitWidth, 0);
343 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
344 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
346 unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType());
348 if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType()))
349 return false;
351 // In case if we have to shrink the pointer
352 // stripAndAccumulateInBoundsConstantOffsets should properly handle a
353 // possible overflow and the value should fit into a smallest data type
354 // used in the cast/gep chain.
355 assert(OffsetA.getMinSignedBits() <= NewPtrBitWidth &&
356 OffsetB.getMinSignedBits() <= NewPtrBitWidth);
358 OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth);
359 OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth);
360 PtrDelta = PtrDelta.sextOrTrunc(NewPtrBitWidth);
362 APInt OffsetDelta = OffsetB - OffsetA;
364 // Check if they are based on the same pointer. That makes the offsets
365 // sufficient.
366 if (PtrA == PtrB)
367 return OffsetDelta == PtrDelta;
369 // Compute the necessary base pointer delta to have the necessary final delta
370 // equal to the pointer delta requested.
371 APInt BaseDelta = PtrDelta - OffsetDelta;
373 // Compute the distance with SCEV between the base pointers.
374 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
375 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
376 const SCEV *C = SE.getConstant(BaseDelta);
377 const SCEV *X = SE.getAddExpr(PtrSCEVA, C);
378 if (X == PtrSCEVB)
379 return true;
381 // The above check will not catch the cases where one of the pointers is
382 // factorized but the other one is not, such as (C + (S * (A + B))) vs
383 // (AS + BS). Get the minus scev. That will allow re-combining the expresions
384 // and getting the simplified difference.
385 const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA);
386 if (C == Dist)
387 return true;
389 // Sometimes even this doesn't work, because SCEV can't always see through
390 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking
391 // things the hard way.
392 return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth);
395 bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB,
396 APInt PtrDelta,
397 unsigned Depth) const {
398 auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
399 auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
400 if (!GEPA || !GEPB)
401 return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth);
403 // Look through GEPs after checking they're the same except for the last
404 // index.
405 if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
406 GEPA->getPointerOperand() != GEPB->getPointerOperand())
407 return false;
408 gep_type_iterator GTIA = gep_type_begin(GEPA);
409 gep_type_iterator GTIB = gep_type_begin(GEPB);
410 for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
411 if (GTIA.getOperand() != GTIB.getOperand())
412 return false;
413 ++GTIA;
414 ++GTIB;
417 Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
418 Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
419 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
420 OpA->getType() != OpB->getType())
421 return false;
423 if (PtrDelta.isNegative()) {
424 if (PtrDelta.isMinSignedValue())
425 return false;
426 PtrDelta.negate();
427 std::swap(OpA, OpB);
429 uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType());
430 if (PtrDelta.urem(Stride) != 0)
431 return false;
432 unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits();
433 APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth);
435 // Only look through a ZExt/SExt.
436 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
437 return false;
439 bool Signed = isa<SExtInst>(OpA);
441 // At this point A could be a function parameter, i.e. not an instruction
442 Value *ValA = OpA->getOperand(0);
443 OpB = dyn_cast<Instruction>(OpB->getOperand(0));
444 if (!OpB || ValA->getType() != OpB->getType())
445 return false;
447 // Now we need to prove that adding IdxDiff to ValA won't overflow.
448 bool Safe = false;
449 // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
450 // ValA, we're okay.
451 if (OpB->getOpcode() == Instruction::Add &&
452 isa<ConstantInt>(OpB->getOperand(1)) &&
453 IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue())) {
454 if (Signed)
455 Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap();
456 else
457 Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap();
460 unsigned BitWidth = ValA->getType()->getScalarSizeInBits();
462 // Second attempt:
463 // If all set bits of IdxDiff or any higher order bit other than the sign bit
464 // are known to be zero in ValA, we can add Diff to it while guaranteeing no
465 // overflow of any sort.
466 if (!Safe) {
467 OpA = dyn_cast<Instruction>(ValA);
468 if (!OpA)
469 return false;
470 KnownBits Known(BitWidth);
471 computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT);
472 APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
473 if (Signed)
474 BitsAllowedToBeSet.clearBit(BitWidth - 1);
475 if (BitsAllowedToBeSet.ult(IdxDiff))
476 return false;
479 const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
480 const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
481 const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth));
482 const SCEV *X = SE.getAddExpr(OffsetSCEVA, C);
483 return X == OffsetSCEVB;
486 bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB,
487 const APInt &PtrDelta,
488 unsigned Depth) const {
489 if (Depth++ == MaxDepth)
490 return false;
492 if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
493 if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
494 return SelectA->getCondition() == SelectB->getCondition() &&
495 areConsecutivePointers(SelectA->getTrueValue(),
496 SelectB->getTrueValue(), PtrDelta, Depth) &&
497 areConsecutivePointers(SelectA->getFalseValue(),
498 SelectB->getFalseValue(), PtrDelta, Depth);
501 return false;
504 void Vectorizer::reorder(Instruction *I) {
505 OrderedBasicBlock OBB(I->getParent());
506 SmallPtrSet<Instruction *, 16> InstructionsToMove;
507 SmallVector<Instruction *, 16> Worklist;
509 Worklist.push_back(I);
510 while (!Worklist.empty()) {
511 Instruction *IW = Worklist.pop_back_val();
512 int NumOperands = IW->getNumOperands();
513 for (int i = 0; i < NumOperands; i++) {
514 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
515 if (!IM || IM->getOpcode() == Instruction::PHI)
516 continue;
518 // If IM is in another BB, no need to move it, because this pass only
519 // vectorizes instructions within one BB.
520 if (IM->getParent() != I->getParent())
521 continue;
523 if (!OBB.dominates(IM, I)) {
524 InstructionsToMove.insert(IM);
525 Worklist.push_back(IM);
530 // All instructions to move should follow I. Start from I, not from begin().
531 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;
532 ++BBI) {
533 if (!InstructionsToMove.count(&*BBI))
534 continue;
535 Instruction *IM = &*BBI;
536 --BBI;
537 IM->removeFromParent();
538 IM->insertBefore(I);
542 std::pair<BasicBlock::iterator, BasicBlock::iterator>
543 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) {
544 Instruction *C0 = Chain[0];
545 BasicBlock::iterator FirstInstr = C0->getIterator();
546 BasicBlock::iterator LastInstr = C0->getIterator();
548 BasicBlock *BB = C0->getParent();
549 unsigned NumFound = 0;
550 for (Instruction &I : *BB) {
551 if (!is_contained(Chain, &I))
552 continue;
554 ++NumFound;
555 if (NumFound == 1) {
556 FirstInstr = I.getIterator();
558 if (NumFound == Chain.size()) {
559 LastInstr = I.getIterator();
560 break;
564 // Range is [first, last).
565 return std::make_pair(FirstInstr, ++LastInstr);
568 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) {
569 SmallVector<Instruction *, 16> Instrs;
570 for (Instruction *I : Chain) {
571 Value *PtrOperand = getLoadStorePointerOperand(I);
572 assert(PtrOperand && "Instruction must have a pointer operand.");
573 Instrs.push_back(I);
574 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand))
575 Instrs.push_back(GEP);
578 // Erase instructions.
579 for (Instruction *I : Instrs)
580 if (I->use_empty())
581 I->eraseFromParent();
584 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
585 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain,
586 unsigned ElementSizeBits) {
587 unsigned ElementSizeBytes = ElementSizeBits / 8;
588 unsigned SizeBytes = ElementSizeBytes * Chain.size();
589 unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes;
590 if (NumLeft == Chain.size()) {
591 if ((NumLeft & 1) == 0)
592 NumLeft /= 2; // Split even in half
593 else
594 --NumLeft; // Split off last element
595 } else if (NumLeft == 0)
596 NumLeft = 1;
597 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft));
600 ArrayRef<Instruction *>
601 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) {
602 // These are in BB order, unlike Chain, which is in address order.
603 SmallVector<Instruction *, 16> MemoryInstrs;
604 SmallVector<Instruction *, 16> ChainInstrs;
606 bool IsLoadChain = isa<LoadInst>(Chain[0]);
607 LLVM_DEBUG({
608 for (Instruction *I : Chain) {
609 if (IsLoadChain)
610 assert(isa<LoadInst>(I) &&
611 "All elements of Chain must be loads, or all must be stores.");
612 else
613 assert(isa<StoreInst>(I) &&
614 "All elements of Chain must be loads, or all must be stores.");
618 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) {
619 if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
620 if (!is_contained(Chain, &I))
621 MemoryInstrs.push_back(&I);
622 else
623 ChainInstrs.push_back(&I);
624 } else if (isa<IntrinsicInst>(&I) &&
625 cast<IntrinsicInst>(&I)->getIntrinsicID() ==
626 Intrinsic::sideeffect) {
627 // Ignore llvm.sideeffect calls.
628 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) {
629 LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I
630 << '\n');
631 break;
632 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) {
633 LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I
634 << '\n');
635 break;
639 OrderedBasicBlock OBB(Chain[0]->getParent());
641 // Loop until we find an instruction in ChainInstrs that we can't vectorize.
642 unsigned ChainInstrIdx = 0;
643 Instruction *BarrierMemoryInstr = nullptr;
645 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) {
646 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx];
648 // If a barrier memory instruction was found, chain instructions that follow
649 // will not be added to the valid prefix.
650 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, ChainInstr))
651 break;
653 // Check (in BB order) if any instruction prevents ChainInstr from being
654 // vectorized. Find and store the first such "conflicting" instruction.
655 for (Instruction *MemInstr : MemoryInstrs) {
656 // If a barrier memory instruction was found, do not check past it.
657 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, MemInstr))
658 break;
660 auto *MemLoad = dyn_cast<LoadInst>(MemInstr);
661 auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr);
662 if (MemLoad && ChainLoad)
663 continue;
665 // We can ignore the alias if the we have a load store pair and the load
666 // is known to be invariant. The load cannot be clobbered by the store.
667 auto IsInvariantLoad = [](const LoadInst *LI) -> bool {
668 return LI->hasMetadata(LLVMContext::MD_invariant_load);
671 // We can ignore the alias as long as the load comes before the store,
672 // because that means we won't be moving the load past the store to
673 // vectorize it (the vectorized load is inserted at the location of the
674 // first load in the chain).
675 if (isa<StoreInst>(MemInstr) && ChainLoad &&
676 (IsInvariantLoad(ChainLoad) || OBB.dominates(ChainLoad, MemInstr)))
677 continue;
679 // Same case, but in reverse.
680 if (MemLoad && isa<StoreInst>(ChainInstr) &&
681 (IsInvariantLoad(MemLoad) || OBB.dominates(MemLoad, ChainInstr)))
682 continue;
684 if (!AA.isNoAlias(MemoryLocation::get(MemInstr),
685 MemoryLocation::get(ChainInstr))) {
686 LLVM_DEBUG({
687 dbgs() << "LSV: Found alias:\n"
688 " Aliasing instruction and pointer:\n"
689 << " " << *MemInstr << '\n'
690 << " " << *getLoadStorePointerOperand(MemInstr) << '\n'
691 << " Aliased instruction and pointer:\n"
692 << " " << *ChainInstr << '\n'
693 << " " << *getLoadStorePointerOperand(ChainInstr) << '\n';
695 // Save this aliasing memory instruction as a barrier, but allow other
696 // instructions that precede the barrier to be vectorized with this one.
697 BarrierMemoryInstr = MemInstr;
698 break;
701 // Continue the search only for store chains, since vectorizing stores that
702 // precede an aliasing load is valid. Conversely, vectorizing loads is valid
703 // up to an aliasing store, but should not pull loads from further down in
704 // the basic block.
705 if (IsLoadChain && BarrierMemoryInstr) {
706 // The BarrierMemoryInstr is a store that precedes ChainInstr.
707 assert(OBB.dominates(BarrierMemoryInstr, ChainInstr));
708 break;
712 // Find the largest prefix of Chain whose elements are all in
713 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of
714 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB
715 // order.)
716 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs(
717 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx);
718 unsigned ChainIdx = 0;
719 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) {
720 if (!VectorizableChainInstrs.count(Chain[ChainIdx]))
721 break;
723 return Chain.slice(0, ChainIdx);
726 static ChainID getChainID(const Value *Ptr, const DataLayout &DL) {
727 const Value *ObjPtr = GetUnderlyingObject(Ptr, DL);
728 if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
729 // The select's themselves are distinct instructions even if they share the
730 // same condition and evaluate to consecutive pointers for true and false
731 // values of the condition. Therefore using the select's themselves for
732 // grouping instructions would put consecutive accesses into different lists
733 // and they won't be even checked for being consecutive, and won't be
734 // vectorized.
735 return Sel->getCondition();
737 return ObjPtr;
740 std::pair<InstrListMap, InstrListMap>
741 Vectorizer::collectInstructions(BasicBlock *BB) {
742 InstrListMap LoadRefs;
743 InstrListMap StoreRefs;
745 for (Instruction &I : *BB) {
746 if (!I.mayReadOrWriteMemory())
747 continue;
749 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
750 if (!LI->isSimple())
751 continue;
753 // Skip if it's not legal.
754 if (!TTI.isLegalToVectorizeLoad(LI))
755 continue;
757 Type *Ty = LI->getType();
758 if (!VectorType::isValidElementType(Ty->getScalarType()))
759 continue;
761 // Skip weird non-byte sizes. They probably aren't worth the effort of
762 // handling correctly.
763 unsigned TySize = DL.getTypeSizeInBits(Ty);
764 if ((TySize % 8) != 0)
765 continue;
767 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
768 // functions are currently using an integer type for the vectorized
769 // load/store, and does not support casting between the integer type and a
770 // vector of pointers (e.g. i64 to <2 x i16*>)
771 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
772 continue;
774 Value *Ptr = LI->getPointerOperand();
775 unsigned AS = Ptr->getType()->getPointerAddressSpace();
776 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
778 unsigned VF = VecRegSize / TySize;
779 VectorType *VecTy = dyn_cast<VectorType>(Ty);
781 // No point in looking at these if they're too big to vectorize.
782 if (TySize > VecRegSize / 2 ||
783 (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
784 continue;
786 // Make sure all the users of a vector are constant-index extracts.
787 if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) {
788 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
789 return EEI && isa<ConstantInt>(EEI->getOperand(1));
791 continue;
793 // Save the load locations.
794 const ChainID ID = getChainID(Ptr, DL);
795 LoadRefs[ID].push_back(LI);
796 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
797 if (!SI->isSimple())
798 continue;
800 // Skip if it's not legal.
801 if (!TTI.isLegalToVectorizeStore(SI))
802 continue;
804 Type *Ty = SI->getValueOperand()->getType();
805 if (!VectorType::isValidElementType(Ty->getScalarType()))
806 continue;
808 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
809 // functions are currently using an integer type for the vectorized
810 // load/store, and does not support casting between the integer type and a
811 // vector of pointers (e.g. i64 to <2 x i16*>)
812 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
813 continue;
815 // Skip weird non-byte sizes. They probably aren't worth the effort of
816 // handling correctly.
817 unsigned TySize = DL.getTypeSizeInBits(Ty);
818 if ((TySize % 8) != 0)
819 continue;
821 Value *Ptr = SI->getPointerOperand();
822 unsigned AS = Ptr->getType()->getPointerAddressSpace();
823 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
825 unsigned VF = VecRegSize / TySize;
826 VectorType *VecTy = dyn_cast<VectorType>(Ty);
828 // No point in looking at these if they're too big to vectorize.
829 if (TySize > VecRegSize / 2 ||
830 (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
831 continue;
833 if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) {
834 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
835 return EEI && isa<ConstantInt>(EEI->getOperand(1));
837 continue;
839 // Save store location.
840 const ChainID ID = getChainID(Ptr, DL);
841 StoreRefs[ID].push_back(SI);
845 return {LoadRefs, StoreRefs};
848 bool Vectorizer::vectorizeChains(InstrListMap &Map) {
849 bool Changed = false;
851 for (const std::pair<ChainID, InstrList> &Chain : Map) {
852 unsigned Size = Chain.second.size();
853 if (Size < 2)
854 continue;
856 LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n");
858 // Process the stores in chunks of 64.
859 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) {
860 unsigned Len = std::min<unsigned>(CE - CI, 64);
861 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len);
862 Changed |= vectorizeInstructions(Chunk);
866 return Changed;
869 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) {
870 LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size()
871 << " instructions.\n");
872 SmallVector<int, 16> Heads, Tails;
873 int ConsecutiveChain[64];
875 // Do a quadratic search on all of the given loads/stores and find all of the
876 // pairs of loads/stores that follow each other.
877 for (int i = 0, e = Instrs.size(); i < e; ++i) {
878 ConsecutiveChain[i] = -1;
879 for (int j = e - 1; j >= 0; --j) {
880 if (i == j)
881 continue;
883 if (isConsecutiveAccess(Instrs[i], Instrs[j])) {
884 if (ConsecutiveChain[i] != -1) {
885 int CurDistance = std::abs(ConsecutiveChain[i] - i);
886 int NewDistance = std::abs(ConsecutiveChain[i] - j);
887 if (j < i || NewDistance > CurDistance)
888 continue; // Should not insert.
891 Tails.push_back(j);
892 Heads.push_back(i);
893 ConsecutiveChain[i] = j;
898 bool Changed = false;
899 SmallPtrSet<Instruction *, 16> InstructionsProcessed;
901 for (int Head : Heads) {
902 if (InstructionsProcessed.count(Instrs[Head]))
903 continue;
904 bool LongerChainExists = false;
905 for (unsigned TIt = 0; TIt < Tails.size(); TIt++)
906 if (Head == Tails[TIt] &&
907 !InstructionsProcessed.count(Instrs[Heads[TIt]])) {
908 LongerChainExists = true;
909 break;
911 if (LongerChainExists)
912 continue;
914 // We found an instr that starts a chain. Now follow the chain and try to
915 // vectorize it.
916 SmallVector<Instruction *, 16> Operands;
917 int I = Head;
918 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) {
919 if (InstructionsProcessed.count(Instrs[I]))
920 break;
922 Operands.push_back(Instrs[I]);
923 I = ConsecutiveChain[I];
926 bool Vectorized = false;
927 if (isa<LoadInst>(*Operands.begin()))
928 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed);
929 else
930 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed);
932 Changed |= Vectorized;
935 return Changed;
938 bool Vectorizer::vectorizeStoreChain(
939 ArrayRef<Instruction *> Chain,
940 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
941 StoreInst *S0 = cast<StoreInst>(Chain[0]);
943 // If the vector has an int element, default to int for the whole store.
944 Type *StoreTy = nullptr;
945 for (Instruction *I : Chain) {
946 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType();
947 if (StoreTy->isIntOrIntVectorTy())
948 break;
950 if (StoreTy->isPtrOrPtrVectorTy()) {
951 StoreTy = Type::getIntNTy(F.getParent()->getContext(),
952 DL.getTypeSizeInBits(StoreTy));
953 break;
956 assert(StoreTy && "Failed to find store type");
958 unsigned Sz = DL.getTypeSizeInBits(StoreTy);
959 unsigned AS = S0->getPointerAddressSpace();
960 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
961 unsigned VF = VecRegSize / Sz;
962 unsigned ChainSize = Chain.size();
963 unsigned Alignment = getAlignment(S0);
965 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
966 InstructionsProcessed->insert(Chain.begin(), Chain.end());
967 return false;
970 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
971 if (NewChain.empty()) {
972 // No vectorization possible.
973 InstructionsProcessed->insert(Chain.begin(), Chain.end());
974 return false;
976 if (NewChain.size() == 1) {
977 // Failed after the first instruction. Discard it and try the smaller chain.
978 InstructionsProcessed->insert(NewChain.front());
979 return false;
982 // Update Chain to the valid vectorizable subchain.
983 Chain = NewChain;
984 ChainSize = Chain.size();
986 // Check if it's legal to vectorize this chain. If not, split the chain and
987 // try again.
988 unsigned EltSzInBytes = Sz / 8;
989 unsigned SzInBytes = EltSzInBytes * ChainSize;
991 VectorType *VecTy;
992 VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy);
993 if (VecStoreTy)
994 VecTy = VectorType::get(StoreTy->getScalarType(),
995 Chain.size() * VecStoreTy->getNumElements());
996 else
997 VecTy = VectorType::get(StoreTy, Chain.size());
999 // If it's more than the max vector size or the target has a better
1000 // vector factor, break it into two pieces.
1001 unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy);
1002 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
1003 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
1004 " Creating two separate arrays.\n");
1005 return vectorizeStoreChain(Chain.slice(0, TargetVF),
1006 InstructionsProcessed) |
1007 vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed);
1010 LLVM_DEBUG({
1011 dbgs() << "LSV: Stores to vectorize:\n";
1012 for (Instruction *I : Chain)
1013 dbgs() << " " << *I << "\n";
1016 // We won't try again to vectorize the elements of the chain, regardless of
1017 // whether we succeed below.
1018 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1020 // If the store is going to be misaligned, don't vectorize it.
1021 if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
1022 if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
1023 auto Chains = splitOddVectorElts(Chain, Sz);
1024 return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
1025 vectorizeStoreChain(Chains.second, InstructionsProcessed);
1028 unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(),
1029 StackAdjustedAlignment,
1030 DL, S0, nullptr, &DT);
1031 if (NewAlign != 0)
1032 Alignment = NewAlign;
1035 if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) {
1036 auto Chains = splitOddVectorElts(Chain, Sz);
1037 return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
1038 vectorizeStoreChain(Chains.second, InstructionsProcessed);
1041 BasicBlock::iterator First, Last;
1042 std::tie(First, Last) = getBoundaryInstrs(Chain);
1043 Builder.SetInsertPoint(&*Last);
1045 Value *Vec = UndefValue::get(VecTy);
1047 if (VecStoreTy) {
1048 unsigned VecWidth = VecStoreTy->getNumElements();
1049 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1050 StoreInst *Store = cast<StoreInst>(Chain[I]);
1051 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) {
1052 unsigned NewIdx = J + I * VecWidth;
1053 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(),
1054 Builder.getInt32(J));
1055 if (Extract->getType() != StoreTy->getScalarType())
1056 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
1058 Value *Insert =
1059 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx));
1060 Vec = Insert;
1063 } else {
1064 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1065 StoreInst *Store = cast<StoreInst>(Chain[I]);
1066 Value *Extract = Store->getValueOperand();
1067 if (Extract->getType() != StoreTy->getScalarType())
1068 Extract =
1069 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType());
1071 Value *Insert =
1072 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I));
1073 Vec = Insert;
1077 StoreInst *SI = Builder.CreateAlignedStore(
1078 Vec,
1079 Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)),
1080 Alignment);
1081 propagateMetadata(SI, Chain);
1083 eraseInstructions(Chain);
1084 ++NumVectorInstructions;
1085 NumScalarsVectorized += Chain.size();
1086 return true;
1089 bool Vectorizer::vectorizeLoadChain(
1090 ArrayRef<Instruction *> Chain,
1091 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
1092 LoadInst *L0 = cast<LoadInst>(Chain[0]);
1094 // If the vector has an int element, default to int for the whole load.
1095 Type *LoadTy = nullptr;
1096 for (const auto &V : Chain) {
1097 LoadTy = cast<LoadInst>(V)->getType();
1098 if (LoadTy->isIntOrIntVectorTy())
1099 break;
1101 if (LoadTy->isPtrOrPtrVectorTy()) {
1102 LoadTy = Type::getIntNTy(F.getParent()->getContext(),
1103 DL.getTypeSizeInBits(LoadTy));
1104 break;
1107 assert(LoadTy && "Can't determine LoadInst type from chain");
1109 unsigned Sz = DL.getTypeSizeInBits(LoadTy);
1110 unsigned AS = L0->getPointerAddressSpace();
1111 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
1112 unsigned VF = VecRegSize / Sz;
1113 unsigned ChainSize = Chain.size();
1114 unsigned Alignment = getAlignment(L0);
1116 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
1117 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1118 return false;
1121 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
1122 if (NewChain.empty()) {
1123 // No vectorization possible.
1124 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1125 return false;
1127 if (NewChain.size() == 1) {
1128 // Failed after the first instruction. Discard it and try the smaller chain.
1129 InstructionsProcessed->insert(NewChain.front());
1130 return false;
1133 // Update Chain to the valid vectorizable subchain.
1134 Chain = NewChain;
1135 ChainSize = Chain.size();
1137 // Check if it's legal to vectorize this chain. If not, split the chain and
1138 // try again.
1139 unsigned EltSzInBytes = Sz / 8;
1140 unsigned SzInBytes = EltSzInBytes * ChainSize;
1141 VectorType *VecTy;
1142 VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy);
1143 if (VecLoadTy)
1144 VecTy = VectorType::get(LoadTy->getScalarType(),
1145 Chain.size() * VecLoadTy->getNumElements());
1146 else
1147 VecTy = VectorType::get(LoadTy, Chain.size());
1149 // If it's more than the max vector size or the target has a better
1150 // vector factor, break it into two pieces.
1151 unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy);
1152 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
1153 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
1154 " Creating two separate arrays.\n");
1155 return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) |
1156 vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed);
1159 // We won't try again to vectorize the elements of the chain, regardless of
1160 // whether we succeed below.
1161 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1163 // If the load is going to be misaligned, don't vectorize it.
1164 if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
1165 if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
1166 auto Chains = splitOddVectorElts(Chain, Sz);
1167 return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
1168 vectorizeLoadChain(Chains.second, InstructionsProcessed);
1171 Alignment = getOrEnforceKnownAlignment(
1172 L0->getPointerOperand(), StackAdjustedAlignment, DL, L0, nullptr, &DT);
1175 if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) {
1176 auto Chains = splitOddVectorElts(Chain, Sz);
1177 return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
1178 vectorizeLoadChain(Chains.second, InstructionsProcessed);
1181 LLVM_DEBUG({
1182 dbgs() << "LSV: Loads to vectorize:\n";
1183 for (Instruction *I : Chain)
1184 I->dump();
1187 // getVectorizablePrefix already computed getBoundaryInstrs. The value of
1188 // Last may have changed since then, but the value of First won't have. If it
1189 // matters, we could compute getBoundaryInstrs only once and reuse it here.
1190 BasicBlock::iterator First, Last;
1191 std::tie(First, Last) = getBoundaryInstrs(Chain);
1192 Builder.SetInsertPoint(&*First);
1194 Value *Bitcast =
1195 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS));
1196 LoadInst *LI = Builder.CreateAlignedLoad(VecTy, Bitcast, Alignment);
1197 propagateMetadata(LI, Chain);
1199 if (VecLoadTy) {
1200 SmallVector<Instruction *, 16> InstrsToErase;
1202 unsigned VecWidth = VecLoadTy->getNumElements();
1203 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1204 for (auto Use : Chain[I]->users()) {
1205 // All users of vector loads are ExtractElement instructions with
1206 // constant indices, otherwise we would have bailed before now.
1207 Instruction *UI = cast<Instruction>(Use);
1208 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue();
1209 unsigned NewIdx = Idx + I * VecWidth;
1210 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx),
1211 UI->getName());
1212 if (V->getType() != UI->getType())
1213 V = Builder.CreateBitCast(V, UI->getType());
1215 // Replace the old instruction.
1216 UI->replaceAllUsesWith(V);
1217 InstrsToErase.push_back(UI);
1221 // Bitcast might not be an Instruction, if the value being loaded is a
1222 // constant. In that case, no need to reorder anything.
1223 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
1224 reorder(BitcastInst);
1226 for (auto I : InstrsToErase)
1227 I->eraseFromParent();
1228 } else {
1229 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1230 Value *CV = Chain[I];
1231 Value *V =
1232 Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName());
1233 if (V->getType() != CV->getType()) {
1234 V = Builder.CreateBitOrPointerCast(V, CV->getType());
1237 // Replace the old instruction.
1238 CV->replaceAllUsesWith(V);
1241 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
1242 reorder(BitcastInst);
1245 eraseInstructions(Chain);
1247 ++NumVectorInstructions;
1248 NumScalarsVectorized += Chain.size();
1249 return true;
1252 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
1253 unsigned Alignment) {
1254 if (Alignment % SzInBytes == 0)
1255 return false;
1257 bool Fast = false;
1258 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(),
1259 SzInBytes * 8, AddressSpace,
1260 Alignment, &Fast);
1261 LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows
1262 << " and fast? " << Fast << "\n";);
1263 return !Allows || !Fast;