1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file provides a LoopVectorizationPlanner class.
11 /// InnerLoopVectorizer vectorizes loops which contain only one basic
12 /// LoopVectorizationPlanner - drives the vectorization process after having
13 /// passed Legality checks.
14 /// The planner builds and optimizes the Vectorization Plans which record the
15 /// decisions how to vectorize the given loop. In particular, represent the
16 /// control-flow of the vectorized version, the replication of instructions that
17 /// are to be scalarized, and interleave access groups.
19 /// Also provides a VPlan-based builder utility analogous to IRBuilder.
20 /// It provides an instruction-level API for generating VPInstructions while
21 /// abstracting away the Recipe manipulation details.
22 //===----------------------------------------------------------------------===//
24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
34 /// VPlan-based builder utility analogous to IRBuilder.
37 VPBasicBlock
*BB
= nullptr;
38 VPBasicBlock::iterator InsertPt
= VPBasicBlock::iterator();
40 VPInstruction
*createInstruction(unsigned Opcode
,
41 ArrayRef
<VPValue
*> Operands
) {
42 VPInstruction
*Instr
= new VPInstruction(Opcode
, Operands
);
44 BB
->insert(Instr
, InsertPt
);
48 VPInstruction
*createInstruction(unsigned Opcode
,
49 std::initializer_list
<VPValue
*> Operands
) {
50 return createInstruction(Opcode
, ArrayRef
<VPValue
*>(Operands
));
56 /// Clear the insertion point: created instructions will not be inserted into
58 void clearInsertionPoint() {
60 InsertPt
= VPBasicBlock::iterator();
63 VPBasicBlock
*getInsertBlock() const { return BB
; }
64 VPBasicBlock::iterator
getInsertPoint() const { return InsertPt
; }
66 /// InsertPoint - A saved insertion point.
68 VPBasicBlock
*Block
= nullptr;
69 VPBasicBlock::iterator Point
;
72 /// Creates a new insertion point which doesn't point to anything.
73 VPInsertPoint() = default;
75 /// Creates a new insertion point at the given location.
76 VPInsertPoint(VPBasicBlock
*InsertBlock
, VPBasicBlock::iterator InsertPoint
)
77 : Block(InsertBlock
), Point(InsertPoint
) {}
79 /// Returns true if this insert point is set.
80 bool isSet() const { return Block
!= nullptr; }
82 VPBasicBlock
*getBlock() const { return Block
; }
83 VPBasicBlock::iterator
getPoint() const { return Point
; }
86 /// Sets the current insert point to a previously-saved location.
87 void restoreIP(VPInsertPoint IP
) {
89 setInsertPoint(IP
.getBlock(), IP
.getPoint());
91 clearInsertionPoint();
94 /// This specifies that created VPInstructions should be appended to the end
95 /// of the specified block.
96 void setInsertPoint(VPBasicBlock
*TheBB
) {
97 assert(TheBB
&& "Attempting to set a null insert point");
102 /// This specifies that created instructions should be inserted at the
104 void setInsertPoint(VPBasicBlock
*TheBB
, VPBasicBlock::iterator IP
) {
109 /// Insert and return the specified instruction.
110 VPInstruction
*insert(VPInstruction
*I
) const {
111 BB
->insert(I
, InsertPt
);
115 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
116 /// its underlying Instruction.
117 VPValue
*createNaryOp(unsigned Opcode
, ArrayRef
<VPValue
*> Operands
,
118 Instruction
*Inst
= nullptr) {
119 VPInstruction
*NewVPInst
= createInstruction(Opcode
, Operands
);
120 NewVPInst
->setUnderlyingValue(Inst
);
123 VPValue
*createNaryOp(unsigned Opcode
,
124 std::initializer_list
<VPValue
*> Operands
,
125 Instruction
*Inst
= nullptr) {
126 return createNaryOp(Opcode
, ArrayRef
<VPValue
*>(Operands
), Inst
);
129 VPValue
*createNot(VPValue
*Operand
) {
130 return createInstruction(VPInstruction::Not
, {Operand
});
133 VPValue
*createAnd(VPValue
*LHS
, VPValue
*RHS
) {
134 return createInstruction(Instruction::BinaryOps::And
, {LHS
, RHS
});
137 VPValue
*createOr(VPValue
*LHS
, VPValue
*RHS
) {
138 return createInstruction(Instruction::BinaryOps::Or
, {LHS
, RHS
});
141 //===--------------------------------------------------------------------===//
143 //===--------------------------------------------------------------------===//
145 /// RAII object that stores the current insertion point and restores it when
146 /// the object is destroyed.
147 class InsertPointGuard
{
150 VPBasicBlock::iterator Point
;
153 InsertPointGuard(VPBuilder
&B
)
154 : Builder(B
), Block(B
.getInsertBlock()), Point(B
.getInsertPoint()) {}
156 InsertPointGuard(const InsertPointGuard
&) = delete;
157 InsertPointGuard
&operator=(const InsertPointGuard
&) = delete;
159 ~InsertPointGuard() { Builder
.restoreIP(VPInsertPoint(Block
, Point
)); }
163 /// TODO: The following VectorizationFactor was pulled out of
164 /// LoopVectorizationCostModel class. LV also deals with
165 /// VectorizerParams::VectorizationFactor and VectorizationCostTy.
166 /// We need to streamline them.
168 /// Information about vectorization costs
169 struct VectorizationFactor
{
170 // Vector width with best cost
172 // Cost of the loop with that width
175 // Width 1 means no vectorization, cost 0 means uncomputed cost.
176 static VectorizationFactor
Disabled() { return {1, 0}; }
178 bool operator==(const VectorizationFactor
&rhs
) const {
179 return Width
== rhs
.Width
&& Cost
== rhs
.Cost
;
183 /// Planner drives the vectorization process after having passed
185 class LoopVectorizationPlanner
{
186 /// The loop that we evaluate.
189 /// Loop Info analysis.
192 /// Target Library Info.
193 const TargetLibraryInfo
*TLI
;
195 /// Target Transform Info.
196 const TargetTransformInfo
*TTI
;
198 /// The legality analysis.
199 LoopVectorizationLegality
*Legal
;
201 /// The profitability analysis.
202 LoopVectorizationCostModel
&CM
;
204 SmallVector
<VPlanPtr
, 4> VPlans
;
206 /// This class is used to enable the VPlan to invoke a method of ILV. This is
207 /// needed until the method is refactored out of ILV and becomes reusable.
208 struct VPCallbackILV
: public VPCallback
{
209 InnerLoopVectorizer
&ILV
;
211 VPCallbackILV(InnerLoopVectorizer
&ILV
) : ILV(ILV
) {}
213 Value
*getOrCreateVectorValues(Value
*V
, unsigned Part
) override
;
216 /// A builder used to construct the current plan.
223 LoopVectorizationPlanner(Loop
*L
, LoopInfo
*LI
, const TargetLibraryInfo
*TLI
,
224 const TargetTransformInfo
*TTI
,
225 LoopVectorizationLegality
*Legal
,
226 LoopVectorizationCostModel
&CM
)
227 : OrigLoop(L
), LI(LI
), TLI(TLI
), TTI(TTI
), Legal(Legal
), CM(CM
) {}
229 /// Plan how to best vectorize, return the best VF and its cost, or None if
230 /// vectorization and interleaving should be avoided up front.
231 Optional
<VectorizationFactor
> plan(unsigned UserVF
);
233 /// Use the VPlan-native path to plan how to best vectorize, return the best
235 VectorizationFactor
planInVPlanNativePath(unsigned UserVF
);
237 /// Finalize the best decision and dispose of all other VPlans.
238 void setBestPlan(unsigned VF
, unsigned UF
);
240 /// Generate the IR code for the body of the vectorized loop according to the
241 /// best selected VPlan.
242 void executePlan(InnerLoopVectorizer
&LB
, DominatorTree
*DT
);
244 void printPlans(raw_ostream
&O
) {
245 for (const auto &Plan
: VPlans
)
249 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
250 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
251 /// returned value holds for the entire \p Range.
253 getDecisionAndClampRange(const std::function
<bool(unsigned)> &Predicate
,
257 /// Collect the instructions from the original loop that would be trivially
258 /// dead in the vectorized loop if generated.
259 void collectTriviallyDeadInstructions(
260 SmallPtrSetImpl
<Instruction
*> &DeadInstructions
);
262 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
263 /// according to the information gathered by Legal when it checked if it is
264 /// legal to vectorize the loop.
265 void buildVPlans(unsigned MinVF
, unsigned MaxVF
);
268 /// Build a VPlan according to the information gathered by Legal. \return a
269 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
270 /// exclusive, possibly decreasing \p Range.End.
271 VPlanPtr
buildVPlan(VFRange
&Range
);
273 /// Build a VPlan using VPRecipes according to the information gather by
274 /// Legal. This method is only used for the legacy inner loop vectorizer.
276 buildVPlanWithVPRecipes(VFRange
&Range
, SmallPtrSetImpl
<Value
*> &NeedDef
,
277 SmallPtrSetImpl
<Instruction
*> &DeadInstructions
);
279 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
280 /// according to the information gathered by Legal when it checked if it is
281 /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
282 void buildVPlansWithVPRecipes(unsigned MinVF
, unsigned MaxVF
);
287 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H