[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / Vectorize / VPlan.h
blob44d8a198f27e847dad02ae9b823f3d86ccfecd53
1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file contains the declarations of the Vectorization Plan base classes:
11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
12 /// VPBlockBase, together implementing a Hierarchical CFG;
13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
14 /// treated as proper graphs for generic algorithms;
15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
16 /// within VPBasicBlocks;
17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
18 /// instruction;
19 /// 5. The VPlan class holding a candidate for vectorization;
20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format;
21 /// These are documented in docs/VectorizationPlan.rst.
23 //===----------------------------------------------------------------------===//
25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
28 #include "VPlanLoopInfo.h"
29 #include "VPlanValue.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/DepthFirstIterator.h"
32 #include "llvm/ADT/GraphTraits.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/ilist.h"
39 #include "llvm/ADT/ilist_node.h"
40 #include "llvm/Analysis/VectorUtils.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstddef>
45 #include <map>
46 #include <string>
48 namespace llvm {
50 class LoopVectorizationLegality;
51 class LoopVectorizationCostModel;
52 class BasicBlock;
53 class DominatorTree;
54 class InnerLoopVectorizer;
55 template <class T> class InterleaveGroup;
56 class LoopInfo;
57 class raw_ostream;
58 class Value;
59 class VPBasicBlock;
60 class VPRegionBlock;
61 class VPlan;
62 class VPlanSlp;
64 /// A range of powers-of-2 vectorization factors with fixed start and
65 /// adjustable end. The range includes start and excludes end, e.g.,:
66 /// [1, 9) = {1, 2, 4, 8}
67 struct VFRange {
68 // A power of 2.
69 const unsigned Start;
71 // Need not be a power of 2. If End <= Start range is empty.
72 unsigned End;
75 using VPlanPtr = std::unique_ptr<VPlan>;
77 /// In what follows, the term "input IR" refers to code that is fed into the
78 /// vectorizer whereas the term "output IR" refers to code that is generated by
79 /// the vectorizer.
81 /// VPIteration represents a single point in the iteration space of the output
82 /// (vectorized and/or unrolled) IR loop.
83 struct VPIteration {
84 /// in [0..UF)
85 unsigned Part;
87 /// in [0..VF)
88 unsigned Lane;
91 /// This is a helper struct for maintaining vectorization state. It's used for
92 /// mapping values from the original loop to their corresponding values in
93 /// the new loop. Two mappings are maintained: one for vectorized values and
94 /// one for scalarized values. Vectorized values are represented with UF
95 /// vector values in the new loop, and scalarized values are represented with
96 /// UF x VF scalar values in the new loop. UF and VF are the unroll and
97 /// vectorization factors, respectively.
98 ///
99 /// Entries can be added to either map with setVectorValue and setScalarValue,
100 /// which assert that an entry was not already added before. If an entry is to
101 /// replace an existing one, call resetVectorValue and resetScalarValue. This is
102 /// currently needed to modify the mapped values during "fix-up" operations that
103 /// occur once the first phase of widening is complete. These operations include
104 /// type truncation and the second phase of recurrence widening.
106 /// Entries from either map can be retrieved using the getVectorValue and
107 /// getScalarValue functions, which assert that the desired value exists.
108 struct VectorizerValueMap {
109 friend struct VPTransformState;
111 private:
112 /// The unroll factor. Each entry in the vector map contains UF vector values.
113 unsigned UF;
115 /// The vectorization factor. Each entry in the scalar map contains UF x VF
116 /// scalar values.
117 unsigned VF;
119 /// The vector and scalar map storage. We use std::map and not DenseMap
120 /// because insertions to DenseMap invalidate its iterators.
121 using VectorParts = SmallVector<Value *, 2>;
122 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
123 std::map<Value *, VectorParts> VectorMapStorage;
124 std::map<Value *, ScalarParts> ScalarMapStorage;
126 public:
127 /// Construct an empty map with the given unroll and vectorization factors.
128 VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
130 /// \return True if the map has any vector entry for \p Key.
131 bool hasAnyVectorValue(Value *Key) const {
132 return VectorMapStorage.count(Key);
135 /// \return True if the map has a vector entry for \p Key and \p Part.
136 bool hasVectorValue(Value *Key, unsigned Part) const {
137 assert(Part < UF && "Queried Vector Part is too large.");
138 if (!hasAnyVectorValue(Key))
139 return false;
140 const VectorParts &Entry = VectorMapStorage.find(Key)->second;
141 assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
142 return Entry[Part] != nullptr;
145 /// \return True if the map has any scalar entry for \p Key.
146 bool hasAnyScalarValue(Value *Key) const {
147 return ScalarMapStorage.count(Key);
150 /// \return True if the map has a scalar entry for \p Key and \p Instance.
151 bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
152 assert(Instance.Part < UF && "Queried Scalar Part is too large.");
153 assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
154 if (!hasAnyScalarValue(Key))
155 return false;
156 const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
157 assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
158 assert(Entry[Instance.Part].size() == VF &&
159 "ScalarParts has wrong dimensions.");
160 return Entry[Instance.Part][Instance.Lane] != nullptr;
163 /// Retrieve the existing vector value that corresponds to \p Key and
164 /// \p Part.
165 Value *getVectorValue(Value *Key, unsigned Part) {
166 assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
167 return VectorMapStorage[Key][Part];
170 /// Retrieve the existing scalar value that corresponds to \p Key and
171 /// \p Instance.
172 Value *getScalarValue(Value *Key, const VPIteration &Instance) {
173 assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
174 return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
177 /// Set a vector value associated with \p Key and \p Part. Assumes such a
178 /// value is not already set. If it is, use resetVectorValue() instead.
179 void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
180 assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
181 if (!VectorMapStorage.count(Key)) {
182 VectorParts Entry(UF);
183 VectorMapStorage[Key] = Entry;
185 VectorMapStorage[Key][Part] = Vector;
188 /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
189 /// value is not already set.
190 void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
191 assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
192 if (!ScalarMapStorage.count(Key)) {
193 ScalarParts Entry(UF);
194 // TODO: Consider storing uniform values only per-part, as they occupy
195 // lane 0 only, keeping the other VF-1 redundant entries null.
196 for (unsigned Part = 0; Part < UF; ++Part)
197 Entry[Part].resize(VF, nullptr);
198 ScalarMapStorage[Key] = Entry;
200 ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
203 /// Reset the vector value associated with \p Key for the given \p Part.
204 /// This function can be used to update values that have already been
205 /// vectorized. This is the case for "fix-up" operations including type
206 /// truncation and the second phase of recurrence vectorization.
207 void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
208 assert(hasVectorValue(Key, Part) && "Vector value not set for part");
209 VectorMapStorage[Key][Part] = Vector;
212 /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
213 /// This function can be used to update values that have already been
214 /// scalarized. This is the case for "fix-up" operations including scalar phi
215 /// nodes for scalarized and predicated instructions.
216 void resetScalarValue(Value *Key, const VPIteration &Instance,
217 Value *Scalar) {
218 assert(hasScalarValue(Key, Instance) &&
219 "Scalar value not set for part and lane");
220 ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
224 /// This class is used to enable the VPlan to invoke a method of ILV. This is
225 /// needed until the method is refactored out of ILV and becomes reusable.
226 struct VPCallback {
227 virtual ~VPCallback() {}
228 virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
231 /// VPTransformState holds information passed down when "executing" a VPlan,
232 /// needed for generating the output IR.
233 struct VPTransformState {
234 VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
235 IRBuilder<> &Builder, VectorizerValueMap &ValueMap,
236 InnerLoopVectorizer *ILV, VPCallback &Callback)
237 : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
238 ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
240 /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
241 unsigned VF;
242 unsigned UF;
244 /// Hold the indices to generate specific scalar instructions. Null indicates
245 /// that all instances are to be generated, using either scalar or vector
246 /// instructions.
247 Optional<VPIteration> Instance;
249 struct DataState {
250 /// A type for vectorized values in the new loop. Each value from the
251 /// original loop, when vectorized, is represented by UF vector values in
252 /// the new unrolled loop, where UF is the unroll factor.
253 typedef SmallVector<Value *, 2> PerPartValuesTy;
255 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
256 } Data;
258 /// Get the generated Value for a given VPValue and a given Part. Note that
259 /// as some Defs are still created by ILV and managed in its ValueMap, this
260 /// method will delegate the call to ILV in such cases in order to provide
261 /// callers a consistent API.
262 /// \see set.
263 Value *get(VPValue *Def, unsigned Part) {
264 // If Values have been set for this Def return the one relevant for \p Part.
265 if (Data.PerPartOutput.count(Def))
266 return Data.PerPartOutput[Def][Part];
267 // Def is managed by ILV: bring the Values from ValueMap.
268 return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
271 /// Set the generated Value for a given VPValue and a given Part.
272 void set(VPValue *Def, Value *V, unsigned Part) {
273 if (!Data.PerPartOutput.count(Def)) {
274 DataState::PerPartValuesTy Entry(UF);
275 Data.PerPartOutput[Def] = Entry;
277 Data.PerPartOutput[Def][Part] = V;
280 /// Hold state information used when constructing the CFG of the output IR,
281 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
282 struct CFGState {
283 /// The previous VPBasicBlock visited. Initially set to null.
284 VPBasicBlock *PrevVPBB = nullptr;
286 /// The previous IR BasicBlock created or used. Initially set to the new
287 /// header BasicBlock.
288 BasicBlock *PrevBB = nullptr;
290 /// The last IR BasicBlock in the output IR. Set to the new latch
291 /// BasicBlock, used for placing the newly created BasicBlocks.
292 BasicBlock *LastBB = nullptr;
294 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
295 /// of replication, maps the BasicBlock of the last replica created.
296 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
298 /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
299 /// up at the end of vector code generation.
300 SmallVector<VPBasicBlock *, 8> VPBBsToFix;
302 CFGState() = default;
303 } CFG;
305 /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
306 LoopInfo *LI;
308 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
309 DominatorTree *DT;
311 /// Hold a reference to the IRBuilder used to generate output IR code.
312 IRBuilder<> &Builder;
314 /// Hold a reference to the Value state information used when generating the
315 /// Values of the output IR.
316 VectorizerValueMap &ValueMap;
318 /// Hold a reference to a mapping between VPValues in VPlan and original
319 /// Values they correspond to.
320 VPValue2ValueTy VPValue2Value;
322 /// Hold the trip count of the scalar loop.
323 Value *TripCount = nullptr;
325 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
326 InnerLoopVectorizer *ILV;
328 VPCallback &Callback;
331 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
332 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
333 class VPBlockBase {
334 friend class VPBlockUtils;
336 private:
337 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
339 /// An optional name for the block.
340 std::string Name;
342 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
343 /// it is a topmost VPBlockBase.
344 VPRegionBlock *Parent = nullptr;
346 /// List of predecessor blocks.
347 SmallVector<VPBlockBase *, 1> Predecessors;
349 /// List of successor blocks.
350 SmallVector<VPBlockBase *, 1> Successors;
352 /// Successor selector, null for zero or single successor blocks.
353 VPValue *CondBit = nullptr;
355 /// Current block predicate - null if the block does not need a predicate.
356 VPValue *Predicate = nullptr;
358 /// Add \p Successor as the last successor to this block.
359 void appendSuccessor(VPBlockBase *Successor) {
360 assert(Successor && "Cannot add nullptr successor!");
361 Successors.push_back(Successor);
364 /// Add \p Predecessor as the last predecessor to this block.
365 void appendPredecessor(VPBlockBase *Predecessor) {
366 assert(Predecessor && "Cannot add nullptr predecessor!");
367 Predecessors.push_back(Predecessor);
370 /// Remove \p Predecessor from the predecessors of this block.
371 void removePredecessor(VPBlockBase *Predecessor) {
372 auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
373 assert(Pos && "Predecessor does not exist");
374 Predecessors.erase(Pos);
377 /// Remove \p Successor from the successors of this block.
378 void removeSuccessor(VPBlockBase *Successor) {
379 auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
380 assert(Pos && "Successor does not exist");
381 Successors.erase(Pos);
384 protected:
385 VPBlockBase(const unsigned char SC, const std::string &N)
386 : SubclassID(SC), Name(N) {}
388 public:
389 /// An enumeration for keeping track of the concrete subclass of VPBlockBase
390 /// that are actually instantiated. Values of this enumeration are kept in the
391 /// SubclassID field of the VPBlockBase objects. They are used for concrete
392 /// type identification.
393 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
395 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
397 virtual ~VPBlockBase() = default;
399 const std::string &getName() const { return Name; }
401 void setName(const Twine &newName) { Name = newName.str(); }
403 /// \return an ID for the concrete type of this object.
404 /// This is used to implement the classof checks. This should not be used
405 /// for any other purpose, as the values may change as LLVM evolves.
406 unsigned getVPBlockID() const { return SubclassID; }
408 VPRegionBlock *getParent() { return Parent; }
409 const VPRegionBlock *getParent() const { return Parent; }
411 void setParent(VPRegionBlock *P) { Parent = P; }
413 /// \return the VPBasicBlock that is the entry of this VPBlockBase,
414 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
415 /// VPBlockBase is a VPBasicBlock, it is returned.
416 const VPBasicBlock *getEntryBasicBlock() const;
417 VPBasicBlock *getEntryBasicBlock();
419 /// \return the VPBasicBlock that is the exit of this VPBlockBase,
420 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
421 /// VPBlockBase is a VPBasicBlock, it is returned.
422 const VPBasicBlock *getExitBasicBlock() const;
423 VPBasicBlock *getExitBasicBlock();
425 const VPBlocksTy &getSuccessors() const { return Successors; }
426 VPBlocksTy &getSuccessors() { return Successors; }
428 const VPBlocksTy &getPredecessors() const { return Predecessors; }
429 VPBlocksTy &getPredecessors() { return Predecessors; }
431 /// \return the successor of this VPBlockBase if it has a single successor.
432 /// Otherwise return a null pointer.
433 VPBlockBase *getSingleSuccessor() const {
434 return (Successors.size() == 1 ? *Successors.begin() : nullptr);
437 /// \return the predecessor of this VPBlockBase if it has a single
438 /// predecessor. Otherwise return a null pointer.
439 VPBlockBase *getSinglePredecessor() const {
440 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
443 size_t getNumSuccessors() const { return Successors.size(); }
444 size_t getNumPredecessors() const { return Predecessors.size(); }
446 /// An Enclosing Block of a block B is any block containing B, including B
447 /// itself. \return the closest enclosing block starting from "this", which
448 /// has successors. \return the root enclosing block if all enclosing blocks
449 /// have no successors.
450 VPBlockBase *getEnclosingBlockWithSuccessors();
452 /// \return the closest enclosing block starting from "this", which has
453 /// predecessors. \return the root enclosing block if all enclosing blocks
454 /// have no predecessors.
455 VPBlockBase *getEnclosingBlockWithPredecessors();
457 /// \return the successors either attached directly to this VPBlockBase or, if
458 /// this VPBlockBase is the exit block of a VPRegionBlock and has no
459 /// successors of its own, search recursively for the first enclosing
460 /// VPRegionBlock that has successors and return them. If no such
461 /// VPRegionBlock exists, return the (empty) successors of the topmost
462 /// VPBlockBase reached.
463 const VPBlocksTy &getHierarchicalSuccessors() {
464 return getEnclosingBlockWithSuccessors()->getSuccessors();
467 /// \return the hierarchical successor of this VPBlockBase if it has a single
468 /// hierarchical successor. Otherwise return a null pointer.
469 VPBlockBase *getSingleHierarchicalSuccessor() {
470 return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
473 /// \return the predecessors either attached directly to this VPBlockBase or,
474 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
475 /// predecessors of its own, search recursively for the first enclosing
476 /// VPRegionBlock that has predecessors and return them. If no such
477 /// VPRegionBlock exists, return the (empty) predecessors of the topmost
478 /// VPBlockBase reached.
479 const VPBlocksTy &getHierarchicalPredecessors() {
480 return getEnclosingBlockWithPredecessors()->getPredecessors();
483 /// \return the hierarchical predecessor of this VPBlockBase if it has a
484 /// single hierarchical predecessor. Otherwise return a null pointer.
485 VPBlockBase *getSingleHierarchicalPredecessor() {
486 return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
489 /// \return the condition bit selecting the successor.
490 VPValue *getCondBit() { return CondBit; }
492 const VPValue *getCondBit() const { return CondBit; }
494 void setCondBit(VPValue *CV) { CondBit = CV; }
496 VPValue *getPredicate() { return Predicate; }
498 const VPValue *getPredicate() const { return Predicate; }
500 void setPredicate(VPValue *Pred) { Predicate = Pred; }
502 /// Set a given VPBlockBase \p Successor as the single successor of this
503 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
504 /// This VPBlockBase must have no successors.
505 void setOneSuccessor(VPBlockBase *Successor) {
506 assert(Successors.empty() && "Setting one successor when others exist.");
507 appendSuccessor(Successor);
510 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
511 /// successors of this VPBlockBase. \p Condition is set as the successor
512 /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
513 /// IfFalse. This VPBlockBase must have no successors.
514 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
515 VPValue *Condition) {
516 assert(Successors.empty() && "Setting two successors when others exist.");
517 assert(Condition && "Setting two successors without condition!");
518 CondBit = Condition;
519 appendSuccessor(IfTrue);
520 appendSuccessor(IfFalse);
523 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
524 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
525 /// as successor of any VPBasicBlock in \p NewPreds.
526 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
527 assert(Predecessors.empty() && "Block predecessors already set.");
528 for (auto *Pred : NewPreds)
529 appendPredecessor(Pred);
532 /// Remove all the predecessor of this block.
533 void clearPredecessors() { Predecessors.clear(); }
535 /// Remove all the successors of this block and set to null its condition bit
536 void clearSuccessors() {
537 Successors.clear();
538 CondBit = nullptr;
541 /// The method which generates the output IR that correspond to this
542 /// VPBlockBase, thereby "executing" the VPlan.
543 virtual void execute(struct VPTransformState *State) = 0;
545 /// Delete all blocks reachable from a given VPBlockBase, inclusive.
546 static void deleteCFG(VPBlockBase *Entry);
548 void printAsOperand(raw_ostream &OS, bool PrintType) const {
549 OS << getName();
552 void print(raw_ostream &OS) const {
553 // TODO: Only printing VPBB name for now since we only have dot printing
554 // support for VPInstructions/Recipes.
555 printAsOperand(OS, false);
558 /// Return true if it is legal to hoist instructions into this block.
559 bool isLegalToHoistInto() {
560 // There are currently no constraints that prevent an instruction to be
561 // hoisted into a VPBlockBase.
562 return true;
566 /// VPRecipeBase is a base class modeling a sequence of one or more output IR
567 /// instructions.
568 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
569 friend VPBasicBlock;
571 private:
572 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
574 /// Each VPRecipe belongs to a single VPBasicBlock.
575 VPBasicBlock *Parent = nullptr;
577 public:
578 /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
579 /// that is actually instantiated. Values of this enumeration are kept in the
580 /// SubclassID field of the VPRecipeBase objects. They are used for concrete
581 /// type identification.
582 using VPRecipeTy = enum {
583 VPBlendSC,
584 VPBranchOnMaskSC,
585 VPInstructionSC,
586 VPInterleaveSC,
587 VPPredInstPHISC,
588 VPReplicateSC,
589 VPWidenIntOrFpInductionSC,
590 VPWidenMemoryInstructionSC,
591 VPWidenPHISC,
592 VPWidenSC,
595 VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
596 virtual ~VPRecipeBase() = default;
598 /// \return an ID for the concrete type of this object.
599 /// This is used to implement the classof checks. This should not be used
600 /// for any other purpose, as the values may change as LLVM evolves.
601 unsigned getVPRecipeID() const { return SubclassID; }
603 /// \return the VPBasicBlock which this VPRecipe belongs to.
604 VPBasicBlock *getParent() { return Parent; }
605 const VPBasicBlock *getParent() const { return Parent; }
607 /// The method which generates the output IR instructions that correspond to
608 /// this VPRecipe, thereby "executing" the VPlan.
609 virtual void execute(struct VPTransformState &State) = 0;
611 /// Each recipe prints itself.
612 virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
614 /// Insert an unlinked recipe into a basic block immediately before
615 /// the specified recipe.
616 void insertBefore(VPRecipeBase *InsertPos);
618 /// Unlink this recipe from its current VPBasicBlock and insert it into
619 /// the VPBasicBlock that MovePos lives in, right after MovePos.
620 void moveAfter(VPRecipeBase *MovePos);
622 /// This method unlinks 'this' from the containing basic block and deletes it.
624 /// \returns an iterator pointing to the element after the erased one
625 iplist<VPRecipeBase>::iterator eraseFromParent();
628 /// This is a concrete Recipe that models a single VPlan-level instruction.
629 /// While as any Recipe it may generate a sequence of IR instructions when
630 /// executed, these instructions would always form a single-def expression as
631 /// the VPInstruction is also a single def-use vertex.
632 class VPInstruction : public VPUser, public VPRecipeBase {
633 friend class VPlanHCFGTransforms;
634 friend class VPlanSlp;
636 public:
637 /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
638 enum {
639 Not = Instruction::OtherOpsEnd + 1,
640 ICmpULE,
641 SLPLoad,
642 SLPStore,
645 private:
646 typedef unsigned char OpcodeTy;
647 OpcodeTy Opcode;
649 /// Utility method serving execute(): generates a single instance of the
650 /// modeled instruction.
651 void generateInstruction(VPTransformState &State, unsigned Part);
653 protected:
654 Instruction *getUnderlyingInstr() {
655 return cast_or_null<Instruction>(getUnderlyingValue());
658 void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
660 public:
661 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
662 : VPUser(VPValue::VPInstructionSC, Operands),
663 VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
665 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
666 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
668 /// Method to support type inquiry through isa, cast, and dyn_cast.
669 static inline bool classof(const VPValue *V) {
670 return V->getVPValueID() == VPValue::VPInstructionSC;
673 VPInstruction *clone() const {
674 SmallVector<VPValue *, 2> Operands(operands());
675 return new VPInstruction(Opcode, Operands);
678 /// Method to support type inquiry through isa, cast, and dyn_cast.
679 static inline bool classof(const VPRecipeBase *R) {
680 return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
683 unsigned getOpcode() const { return Opcode; }
685 /// Generate the instruction.
686 /// TODO: We currently execute only per-part unless a specific instance is
687 /// provided.
688 void execute(VPTransformState &State) override;
690 /// Print the Recipe.
691 void print(raw_ostream &O, const Twine &Indent) const override;
693 /// Print the VPInstruction.
694 void print(raw_ostream &O) const;
696 /// Return true if this instruction may modify memory.
697 bool mayWriteToMemory() const {
698 // TODO: we can use attributes of the called function to rule out memory
699 // modifications.
700 return Opcode == Instruction::Store || Opcode == Instruction::Call ||
701 Opcode == Instruction::Invoke || Opcode == SLPStore;
705 /// VPWidenRecipe is a recipe for producing a copy of vector type for each
706 /// Instruction in its ingredients independently, in order. This recipe covers
707 /// most of the traditional vectorization cases where each ingredient transforms
708 /// into a vectorized version of itself.
709 class VPWidenRecipe : public VPRecipeBase {
710 private:
711 /// Hold the ingredients by pointing to their original BasicBlock location.
712 BasicBlock::iterator Begin;
713 BasicBlock::iterator End;
715 public:
716 VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) {
717 End = I->getIterator();
718 Begin = End++;
721 ~VPWidenRecipe() override = default;
723 /// Method to support type inquiry through isa, cast, and dyn_cast.
724 static inline bool classof(const VPRecipeBase *V) {
725 return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
728 /// Produce widened copies of all Ingredients.
729 void execute(VPTransformState &State) override;
731 /// Augment the recipe to include Instr, if it lies at its End.
732 bool appendInstruction(Instruction *Instr) {
733 if (End != Instr->getIterator())
734 return false;
735 End++;
736 return true;
739 /// Print the recipe.
740 void print(raw_ostream &O, const Twine &Indent) const override;
743 /// A recipe for handling phi nodes of integer and floating-point inductions,
744 /// producing their vector and scalar values.
745 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
746 private:
747 PHINode *IV;
748 TruncInst *Trunc;
750 public:
751 VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
752 : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
753 ~VPWidenIntOrFpInductionRecipe() override = default;
755 /// Method to support type inquiry through isa, cast, and dyn_cast.
756 static inline bool classof(const VPRecipeBase *V) {
757 return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
760 /// Generate the vectorized and scalarized versions of the phi node as
761 /// needed by their users.
762 void execute(VPTransformState &State) override;
764 /// Print the recipe.
765 void print(raw_ostream &O, const Twine &Indent) const override;
768 /// A recipe for handling all phi nodes except for integer and FP inductions.
769 class VPWidenPHIRecipe : public VPRecipeBase {
770 private:
771 PHINode *Phi;
773 public:
774 VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
775 ~VPWidenPHIRecipe() override = default;
777 /// Method to support type inquiry through isa, cast, and dyn_cast.
778 static inline bool classof(const VPRecipeBase *V) {
779 return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
782 /// Generate the phi/select nodes.
783 void execute(VPTransformState &State) override;
785 /// Print the recipe.
786 void print(raw_ostream &O, const Twine &Indent) const override;
789 /// A recipe for vectorizing a phi-node as a sequence of mask-based select
790 /// instructions.
791 class VPBlendRecipe : public VPRecipeBase {
792 private:
793 PHINode *Phi;
795 /// The blend operation is a User of a mask, if not null.
796 std::unique_ptr<VPUser> User;
798 public:
799 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks)
800 : VPRecipeBase(VPBlendSC), Phi(Phi) {
801 assert((Phi->getNumIncomingValues() == 1 ||
802 Phi->getNumIncomingValues() == Masks.size()) &&
803 "Expected the same number of incoming values and masks");
804 if (!Masks.empty())
805 User.reset(new VPUser(Masks));
808 /// Method to support type inquiry through isa, cast, and dyn_cast.
809 static inline bool classof(const VPRecipeBase *V) {
810 return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
813 /// Generate the phi/select nodes.
814 void execute(VPTransformState &State) override;
816 /// Print the recipe.
817 void print(raw_ostream &O, const Twine &Indent) const override;
820 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load
821 /// or stores into one wide load/store and shuffles.
822 class VPInterleaveRecipe : public VPRecipeBase {
823 private:
824 const InterleaveGroup<Instruction> *IG;
825 std::unique_ptr<VPUser> User;
827 public:
828 VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Mask)
829 : VPRecipeBase(VPInterleaveSC), IG(IG) {
830 if (Mask) // Create a VPInstruction to register as a user of the mask.
831 User.reset(new VPUser({Mask}));
833 ~VPInterleaveRecipe() override = default;
835 /// Method to support type inquiry through isa, cast, and dyn_cast.
836 static inline bool classof(const VPRecipeBase *V) {
837 return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
840 /// Generate the wide load or store, and shuffles.
841 void execute(VPTransformState &State) override;
843 /// Print the recipe.
844 void print(raw_ostream &O, const Twine &Indent) const override;
846 const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
849 /// VPReplicateRecipe replicates a given instruction producing multiple scalar
850 /// copies of the original scalar type, one per lane, instead of producing a
851 /// single copy of widened type for all lanes. If the instruction is known to be
852 /// uniform only one copy, per lane zero, will be generated.
853 class VPReplicateRecipe : public VPRecipeBase {
854 private:
855 /// The instruction being replicated.
856 Instruction *Ingredient;
858 /// Indicator if only a single replica per lane is needed.
859 bool IsUniform;
861 /// Indicator if the replicas are also predicated.
862 bool IsPredicated;
864 /// Indicator if the scalar values should also be packed into a vector.
865 bool AlsoPack;
867 public:
868 VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
869 : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
870 IsPredicated(IsPredicated) {
871 // Retain the previous behavior of predicateInstructions(), where an
872 // insert-element of a predicated instruction got hoisted into the
873 // predicated basic block iff it was its only user. This is achieved by
874 // having predicated instructions also pack their values into a vector by
875 // default unless they have a replicated user which uses their scalar value.
876 AlsoPack = IsPredicated && !I->use_empty();
879 ~VPReplicateRecipe() override = default;
881 /// Method to support type inquiry through isa, cast, and dyn_cast.
882 static inline bool classof(const VPRecipeBase *V) {
883 return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
886 /// Generate replicas of the desired Ingredient. Replicas will be generated
887 /// for all parts and lanes unless a specific part and lane are specified in
888 /// the \p State.
889 void execute(VPTransformState &State) override;
891 void setAlsoPack(bool Pack) { AlsoPack = Pack; }
893 /// Print the recipe.
894 void print(raw_ostream &O, const Twine &Indent) const override;
897 /// A recipe for generating conditional branches on the bits of a mask.
898 class VPBranchOnMaskRecipe : public VPRecipeBase {
899 private:
900 std::unique_ptr<VPUser> User;
902 public:
903 VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
904 if (BlockInMask) // nullptr means all-one mask.
905 User.reset(new VPUser({BlockInMask}));
908 /// Method to support type inquiry through isa, cast, and dyn_cast.
909 static inline bool classof(const VPRecipeBase *V) {
910 return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
913 /// Generate the extraction of the appropriate bit from the block mask and the
914 /// conditional branch.
915 void execute(VPTransformState &State) override;
917 /// Print the recipe.
918 void print(raw_ostream &O, const Twine &Indent) const override {
919 O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
920 if (User)
921 O << *User->getOperand(0);
922 else
923 O << " All-One";
924 O << "\\l\"";
928 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
929 /// control converges back from a Branch-on-Mask. The phi nodes are needed in
930 /// order to merge values that are set under such a branch and feed their uses.
931 /// The phi nodes can be scalar or vector depending on the users of the value.
932 /// This recipe works in concert with VPBranchOnMaskRecipe.
933 class VPPredInstPHIRecipe : public VPRecipeBase {
934 private:
935 Instruction *PredInst;
937 public:
938 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
939 /// nodes after merging back from a Branch-on-Mask.
940 VPPredInstPHIRecipe(Instruction *PredInst)
941 : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
942 ~VPPredInstPHIRecipe() override = default;
944 /// Method to support type inquiry through isa, cast, and dyn_cast.
945 static inline bool classof(const VPRecipeBase *V) {
946 return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
949 /// Generates phi nodes for live-outs as needed to retain SSA form.
950 void execute(VPTransformState &State) override;
952 /// Print the recipe.
953 void print(raw_ostream &O, const Twine &Indent) const override;
956 /// A Recipe for widening load/store operations.
957 /// TODO: We currently execute only per-part unless a specific instance is
958 /// provided.
959 class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
960 private:
961 Instruction &Instr;
962 std::unique_ptr<VPUser> User;
964 public:
965 VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask)
966 : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) {
967 if (Mask) // Create a VPInstruction to register as a user of the mask.
968 User.reset(new VPUser({Mask}));
971 /// Method to support type inquiry through isa, cast, and dyn_cast.
972 static inline bool classof(const VPRecipeBase *V) {
973 return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
976 /// Generate the wide load/store.
977 void execute(VPTransformState &State) override;
979 /// Print the recipe.
980 void print(raw_ostream &O, const Twine &Indent) const override;
983 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
984 /// holds a sequence of zero or more VPRecipe's each representing a sequence of
985 /// output IR instructions.
986 class VPBasicBlock : public VPBlockBase {
987 public:
988 using RecipeListTy = iplist<VPRecipeBase>;
990 private:
991 /// The VPRecipes held in the order of output instructions to generate.
992 RecipeListTy Recipes;
994 public:
995 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
996 : VPBlockBase(VPBasicBlockSC, Name.str()) {
997 if (Recipe)
998 appendRecipe(Recipe);
1001 ~VPBasicBlock() override { Recipes.clear(); }
1003 /// Instruction iterators...
1004 using iterator = RecipeListTy::iterator;
1005 using const_iterator = RecipeListTy::const_iterator;
1006 using reverse_iterator = RecipeListTy::reverse_iterator;
1007 using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
1009 //===--------------------------------------------------------------------===//
1010 /// Recipe iterator methods
1012 inline iterator begin() { return Recipes.begin(); }
1013 inline const_iterator begin() const { return Recipes.begin(); }
1014 inline iterator end() { return Recipes.end(); }
1015 inline const_iterator end() const { return Recipes.end(); }
1017 inline reverse_iterator rbegin() { return Recipes.rbegin(); }
1018 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
1019 inline reverse_iterator rend() { return Recipes.rend(); }
1020 inline const_reverse_iterator rend() const { return Recipes.rend(); }
1022 inline size_t size() const { return Recipes.size(); }
1023 inline bool empty() const { return Recipes.empty(); }
1024 inline const VPRecipeBase &front() const { return Recipes.front(); }
1025 inline VPRecipeBase &front() { return Recipes.front(); }
1026 inline const VPRecipeBase &back() const { return Recipes.back(); }
1027 inline VPRecipeBase &back() { return Recipes.back(); }
1029 /// Returns a reference to the list of recipes.
1030 RecipeListTy &getRecipeList() { return Recipes; }
1032 /// Returns a pointer to a member of the recipe list.
1033 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
1034 return &VPBasicBlock::Recipes;
1037 /// Method to support type inquiry through isa, cast, and dyn_cast.
1038 static inline bool classof(const VPBlockBase *V) {
1039 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
1042 void insert(VPRecipeBase *Recipe, iterator InsertPt) {
1043 assert(Recipe && "No recipe to append.");
1044 assert(!Recipe->Parent && "Recipe already in VPlan");
1045 Recipe->Parent = this;
1046 Recipes.insert(InsertPt, Recipe);
1049 /// Augment the existing recipes of a VPBasicBlock with an additional
1050 /// \p Recipe as the last recipe.
1051 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
1053 /// The method which generates the output IR instructions that correspond to
1054 /// this VPBasicBlock, thereby "executing" the VPlan.
1055 void execute(struct VPTransformState *State) override;
1057 private:
1058 /// Create an IR BasicBlock to hold the output instructions generated by this
1059 /// VPBasicBlock, and return it. Update the CFGState accordingly.
1060 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
1063 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
1064 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
1065 /// A VPRegionBlock may indicate that its contents are to be replicated several
1066 /// times. This is designed to support predicated scalarization, in which a
1067 /// scalar if-then code structure needs to be generated VF * UF times. Having
1068 /// this replication indicator helps to keep a single model for multiple
1069 /// candidate VF's. The actual replication takes place only once the desired VF
1070 /// and UF have been determined.
1071 class VPRegionBlock : public VPBlockBase {
1072 private:
1073 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
1074 VPBlockBase *Entry;
1076 /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
1077 VPBlockBase *Exit;
1079 /// An indicator whether this region is to generate multiple replicated
1080 /// instances of output IR corresponding to its VPBlockBases.
1081 bool IsReplicator;
1083 public:
1084 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
1085 const std::string &Name = "", bool IsReplicator = false)
1086 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
1087 IsReplicator(IsReplicator) {
1088 assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
1089 assert(Exit->getSuccessors().empty() && "Exit block has successors.");
1090 Entry->setParent(this);
1091 Exit->setParent(this);
1093 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
1094 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
1095 IsReplicator(IsReplicator) {}
1097 ~VPRegionBlock() override {
1098 if (Entry)
1099 deleteCFG(Entry);
1102 /// Method to support type inquiry through isa, cast, and dyn_cast.
1103 static inline bool classof(const VPBlockBase *V) {
1104 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
1107 const VPBlockBase *getEntry() const { return Entry; }
1108 VPBlockBase *getEntry() { return Entry; }
1110 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
1111 /// EntryBlock must have no predecessors.
1112 void setEntry(VPBlockBase *EntryBlock) {
1113 assert(EntryBlock->getPredecessors().empty() &&
1114 "Entry block cannot have predecessors.");
1115 Entry = EntryBlock;
1116 EntryBlock->setParent(this);
1119 // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
1120 // specific interface of llvm::Function, instead of using
1121 // GraphTraints::getEntryNode. We should add a new template parameter to
1122 // DominatorTreeBase representing the Graph type.
1123 VPBlockBase &front() const { return *Entry; }
1125 const VPBlockBase *getExit() const { return Exit; }
1126 VPBlockBase *getExit() { return Exit; }
1128 /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
1129 /// ExitBlock must have no successors.
1130 void setExit(VPBlockBase *ExitBlock) {
1131 assert(ExitBlock->getSuccessors().empty() &&
1132 "Exit block cannot have successors.");
1133 Exit = ExitBlock;
1134 ExitBlock->setParent(this);
1137 /// An indicator whether this region is to generate multiple replicated
1138 /// instances of output IR corresponding to its VPBlockBases.
1139 bool isReplicator() const { return IsReplicator; }
1141 /// The method which generates the output IR instructions that correspond to
1142 /// this VPRegionBlock, thereby "executing" the VPlan.
1143 void execute(struct VPTransformState *State) override;
1146 /// VPlan models a candidate for vectorization, encoding various decisions take
1147 /// to produce efficient output IR, including which branches, basic-blocks and
1148 /// output IR instructions to generate, and their cost. VPlan holds a
1149 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
1150 /// VPBlock.
1151 class VPlan {
1152 friend class VPlanPrinter;
1154 private:
1155 /// Hold the single entry to the Hierarchical CFG of the VPlan.
1156 VPBlockBase *Entry;
1158 /// Holds the VFs applicable to this VPlan.
1159 SmallSet<unsigned, 2> VFs;
1161 /// Holds the name of the VPlan, for printing.
1162 std::string Name;
1164 /// Holds all the external definitions created for this VPlan.
1165 // TODO: Introduce a specific representation for external definitions in
1166 // VPlan. External definitions must be immutable and hold a pointer to its
1167 // underlying IR that will be used to implement its structural comparison
1168 // (operators '==' and '<').
1169 SmallPtrSet<VPValue *, 16> VPExternalDefs;
1171 /// Represents the backedge taken count of the original loop, for folding
1172 /// the tail.
1173 VPValue *BackedgeTakenCount = nullptr;
1175 /// Holds a mapping between Values and their corresponding VPValue inside
1176 /// VPlan.
1177 Value2VPValueTy Value2VPValue;
1179 /// Holds the VPLoopInfo analysis for this VPlan.
1180 VPLoopInfo VPLInfo;
1182 /// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
1183 SmallVector<VPValue *, 4> VPCBVs;
1185 public:
1186 VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
1188 ~VPlan() {
1189 if (Entry)
1190 VPBlockBase::deleteCFG(Entry);
1191 for (auto &MapEntry : Value2VPValue)
1192 if (MapEntry.second != BackedgeTakenCount)
1193 delete MapEntry.second;
1194 if (BackedgeTakenCount)
1195 delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not.
1196 for (VPValue *Def : VPExternalDefs)
1197 delete Def;
1198 for (VPValue *CBV : VPCBVs)
1199 delete CBV;
1202 /// Generate the IR code for this VPlan.
1203 void execute(struct VPTransformState *State);
1205 VPBlockBase *getEntry() { return Entry; }
1206 const VPBlockBase *getEntry() const { return Entry; }
1208 VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
1210 /// The backedge taken count of the original loop.
1211 VPValue *getOrCreateBackedgeTakenCount() {
1212 if (!BackedgeTakenCount)
1213 BackedgeTakenCount = new VPValue();
1214 return BackedgeTakenCount;
1217 void addVF(unsigned VF) { VFs.insert(VF); }
1219 bool hasVF(unsigned VF) { return VFs.count(VF); }
1221 const std::string &getName() const { return Name; }
1223 void setName(const Twine &newName) { Name = newName.str(); }
1225 /// Add \p VPVal to the pool of external definitions if it's not already
1226 /// in the pool.
1227 void addExternalDef(VPValue *VPVal) {
1228 VPExternalDefs.insert(VPVal);
1231 /// Add \p CBV to the vector of condition bit values.
1232 void addCBV(VPValue *CBV) {
1233 VPCBVs.push_back(CBV);
1236 void addVPValue(Value *V) {
1237 assert(V && "Trying to add a null Value to VPlan");
1238 assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
1239 Value2VPValue[V] = new VPValue();
1242 VPValue *getVPValue(Value *V) {
1243 assert(V && "Trying to get the VPValue of a null Value");
1244 assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
1245 return Value2VPValue[V];
1248 /// Return the VPLoopInfo analysis for this VPlan.
1249 VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
1250 const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
1252 private:
1253 /// Add to the given dominator tree the header block and every new basic block
1254 /// that was created between it and the latch block, inclusive.
1255 static void updateDominatorTree(DominatorTree *DT,
1256 BasicBlock *LoopPreHeaderBB,
1257 BasicBlock *LoopLatchBB);
1260 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is
1261 /// indented and follows the dot format.
1262 class VPlanPrinter {
1263 friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
1264 friend inline raw_ostream &operator<<(raw_ostream &OS,
1265 const struct VPlanIngredient &I);
1267 private:
1268 raw_ostream &OS;
1269 VPlan &Plan;
1270 unsigned Depth;
1271 unsigned TabWidth = 2;
1272 std::string Indent;
1273 unsigned BID = 0;
1274 SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
1276 VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
1278 /// Handle indentation.
1279 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
1281 /// Print a given \p Block of the Plan.
1282 void dumpBlock(const VPBlockBase *Block);
1284 /// Print the information related to the CFG edges going out of a given
1285 /// \p Block, followed by printing the successor blocks themselves.
1286 void dumpEdges(const VPBlockBase *Block);
1288 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
1289 /// its successor blocks.
1290 void dumpBasicBlock(const VPBasicBlock *BasicBlock);
1292 /// Print a given \p Region of the Plan.
1293 void dumpRegion(const VPRegionBlock *Region);
1295 unsigned getOrCreateBID(const VPBlockBase *Block) {
1296 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
1299 const Twine getOrCreateName(const VPBlockBase *Block);
1301 const Twine getUID(const VPBlockBase *Block);
1303 /// Print the information related to a CFG edge between two VPBlockBases.
1304 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
1305 const Twine &Label);
1307 void dump();
1309 static void printAsIngredient(raw_ostream &O, Value *V);
1312 struct VPlanIngredient {
1313 Value *V;
1315 VPlanIngredient(Value *V) : V(V) {}
1318 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
1319 VPlanPrinter::printAsIngredient(OS, I.V);
1320 return OS;
1323 inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
1324 VPlanPrinter Printer(OS, Plan);
1325 Printer.dump();
1326 return OS;
1329 //===----------------------------------------------------------------------===//
1330 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs //
1331 //===----------------------------------------------------------------------===//
1333 // The following set of template specializations implement GraphTraits to treat
1334 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
1335 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
1336 // VPBlockBase is a VPRegionBlock, this specialization provides access to its
1337 // successors/predecessors but not to the blocks inside the region.
1339 template <> struct GraphTraits<VPBlockBase *> {
1340 using NodeRef = VPBlockBase *;
1341 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1343 static NodeRef getEntryNode(NodeRef N) { return N; }
1345 static inline ChildIteratorType child_begin(NodeRef N) {
1346 return N->getSuccessors().begin();
1349 static inline ChildIteratorType child_end(NodeRef N) {
1350 return N->getSuccessors().end();
1354 template <> struct GraphTraits<const VPBlockBase *> {
1355 using NodeRef = const VPBlockBase *;
1356 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
1358 static NodeRef getEntryNode(NodeRef N) { return N; }
1360 static inline ChildIteratorType child_begin(NodeRef N) {
1361 return N->getSuccessors().begin();
1364 static inline ChildIteratorType child_end(NodeRef N) {
1365 return N->getSuccessors().end();
1369 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead
1370 // of successors for the inverse traversal.
1371 template <> struct GraphTraits<Inverse<VPBlockBase *>> {
1372 using NodeRef = VPBlockBase *;
1373 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1375 static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
1377 static inline ChildIteratorType child_begin(NodeRef N) {
1378 return N->getPredecessors().begin();
1381 static inline ChildIteratorType child_end(NodeRef N) {
1382 return N->getPredecessors().end();
1386 // The following set of template specializations implement GraphTraits to
1387 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important
1388 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
1389 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
1390 // there won't be automatic recursion into other VPBlockBases that turn to be
1391 // VPRegionBlocks.
1393 template <>
1394 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
1395 using GraphRef = VPRegionBlock *;
1396 using nodes_iterator = df_iterator<NodeRef>;
1398 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1400 static nodes_iterator nodes_begin(GraphRef N) {
1401 return nodes_iterator::begin(N->getEntry());
1404 static nodes_iterator nodes_end(GraphRef N) {
1405 // df_iterator::end() returns an empty iterator so the node used doesn't
1406 // matter.
1407 return nodes_iterator::end(N);
1411 template <>
1412 struct GraphTraits<const VPRegionBlock *>
1413 : public GraphTraits<const VPBlockBase *> {
1414 using GraphRef = const VPRegionBlock *;
1415 using nodes_iterator = df_iterator<NodeRef>;
1417 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1419 static nodes_iterator nodes_begin(GraphRef N) {
1420 return nodes_iterator::begin(N->getEntry());
1423 static nodes_iterator nodes_end(GraphRef N) {
1424 // df_iterator::end() returns an empty iterator so the node used doesn't
1425 // matter.
1426 return nodes_iterator::end(N);
1430 template <>
1431 struct GraphTraits<Inverse<VPRegionBlock *>>
1432 : public GraphTraits<Inverse<VPBlockBase *>> {
1433 using GraphRef = VPRegionBlock *;
1434 using nodes_iterator = df_iterator<NodeRef>;
1436 static NodeRef getEntryNode(Inverse<GraphRef> N) {
1437 return N.Graph->getExit();
1440 static nodes_iterator nodes_begin(GraphRef N) {
1441 return nodes_iterator::begin(N->getExit());
1444 static nodes_iterator nodes_end(GraphRef N) {
1445 // df_iterator::end() returns an empty iterator so the node used doesn't
1446 // matter.
1447 return nodes_iterator::end(N);
1451 //===----------------------------------------------------------------------===//
1452 // VPlan Utilities
1453 //===----------------------------------------------------------------------===//
1455 /// Class that provides utilities for VPBlockBases in VPlan.
1456 class VPBlockUtils {
1457 public:
1458 VPBlockUtils() = delete;
1460 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
1461 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
1462 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
1463 /// has more than one successor, its conditional bit is propagated to \p
1464 /// NewBlock. \p NewBlock must have neither successors nor predecessors.
1465 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
1466 assert(NewBlock->getSuccessors().empty() &&
1467 "Can't insert new block with successors.");
1468 // TODO: move successors from BlockPtr to NewBlock when this functionality
1469 // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
1470 // already has successors.
1471 BlockPtr->setOneSuccessor(NewBlock);
1472 NewBlock->setPredecessors({BlockPtr});
1473 NewBlock->setParent(BlockPtr->getParent());
1476 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
1477 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
1478 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
1479 /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
1480 /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
1481 /// must have neither successors nor predecessors.
1482 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
1483 VPValue *Condition, VPBlockBase *BlockPtr) {
1484 assert(IfTrue->getSuccessors().empty() &&
1485 "Can't insert IfTrue with successors.");
1486 assert(IfFalse->getSuccessors().empty() &&
1487 "Can't insert IfFalse with successors.");
1488 BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
1489 IfTrue->setPredecessors({BlockPtr});
1490 IfFalse->setPredecessors({BlockPtr});
1491 IfTrue->setParent(BlockPtr->getParent());
1492 IfFalse->setParent(BlockPtr->getParent());
1495 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
1496 /// the successors of \p From and \p From to the predecessors of \p To. Both
1497 /// VPBlockBases must have the same parent, which can be null. Both
1498 /// VPBlockBases can be already connected to other VPBlockBases.
1499 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
1500 assert((From->getParent() == To->getParent()) &&
1501 "Can't connect two block with different parents");
1502 assert(From->getNumSuccessors() < 2 &&
1503 "Blocks can't have more than two successors.");
1504 From->appendSuccessor(To);
1505 To->appendPredecessor(From);
1508 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
1509 /// from the successors of \p From and \p From from the predecessors of \p To.
1510 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
1511 assert(To && "Successor to disconnect is null.");
1512 From->removeSuccessor(To);
1513 To->removePredecessor(From);
1516 /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge.
1517 static bool isBackEdge(const VPBlockBase *FromBlock,
1518 const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) {
1519 assert(FromBlock->getParent() == ToBlock->getParent() &&
1520 FromBlock->getParent() && "Must be in same region");
1521 const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock);
1522 const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock);
1523 if (!FromLoop || !ToLoop || FromLoop != ToLoop)
1524 return false;
1526 // A back-edge is a branch from the loop latch to its header.
1527 return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader();
1530 /// Returns true if \p Block is a loop latch
1531 static bool blockIsLoopLatch(const VPBlockBase *Block,
1532 const VPLoopInfo *VPLInfo) {
1533 if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block))
1534 return ParentVPL->isLoopLatch(Block);
1536 return false;
1539 /// Count and return the number of succesors of \p PredBlock excluding any
1540 /// backedges.
1541 static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock,
1542 VPLoopInfo *VPLI) {
1543 unsigned Count = 0;
1544 for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) {
1545 if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI))
1546 Count++;
1548 return Count;
1552 class VPInterleavedAccessInfo {
1553 private:
1554 DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
1555 InterleaveGroupMap;
1557 /// Type for mapping of instruction based interleave groups to VPInstruction
1558 /// interleave groups
1559 using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
1560 InterleaveGroup<VPInstruction> *>;
1562 /// Recursively \p Region and populate VPlan based interleave groups based on
1563 /// \p IAI.
1564 void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
1565 InterleavedAccessInfo &IAI);
1566 /// Recursively traverse \p Block and populate VPlan based interleave groups
1567 /// based on \p IAI.
1568 void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1569 InterleavedAccessInfo &IAI);
1571 public:
1572 VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
1574 ~VPInterleavedAccessInfo() {
1575 SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
1576 // Avoid releasing a pointer twice.
1577 for (auto &I : InterleaveGroupMap)
1578 DelSet.insert(I.second);
1579 for (auto *Ptr : DelSet)
1580 delete Ptr;
1583 /// Get the interleave group that \p Instr belongs to.
1585 /// \returns nullptr if doesn't have such group.
1586 InterleaveGroup<VPInstruction> *
1587 getInterleaveGroup(VPInstruction *Instr) const {
1588 if (InterleaveGroupMap.count(Instr))
1589 return InterleaveGroupMap.find(Instr)->second;
1590 return nullptr;
1594 /// Class that maps (parts of) an existing VPlan to trees of combined
1595 /// VPInstructions.
1596 class VPlanSlp {
1597 private:
1598 enum class OpMode { Failed, Load, Opcode };
1600 /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
1601 /// DenseMap keys.
1602 struct BundleDenseMapInfo {
1603 static SmallVector<VPValue *, 4> getEmptyKey() {
1604 return {reinterpret_cast<VPValue *>(-1)};
1607 static SmallVector<VPValue *, 4> getTombstoneKey() {
1608 return {reinterpret_cast<VPValue *>(-2)};
1611 static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
1612 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1615 static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
1616 const SmallVector<VPValue *, 4> &RHS) {
1617 return LHS == RHS;
1621 /// Mapping of values in the original VPlan to a combined VPInstruction.
1622 DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
1623 BundleToCombined;
1625 VPInterleavedAccessInfo &IAI;
1627 /// Basic block to operate on. For now, only instructions in a single BB are
1628 /// considered.
1629 const VPBasicBlock &BB;
1631 /// Indicates whether we managed to combine all visited instructions or not.
1632 bool CompletelySLP = true;
1634 /// Width of the widest combined bundle in bits.
1635 unsigned WidestBundleBits = 0;
1637 using MultiNodeOpTy =
1638 typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
1640 // Input operand bundles for the current multi node. Each multi node operand
1641 // bundle contains values not matching the multi node's opcode. They will
1642 // be reordered in reorderMultiNodeOps, once we completed building a
1643 // multi node.
1644 SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
1646 /// Indicates whether we are building a multi node currently.
1647 bool MultiNodeActive = false;
1649 /// Check if we can vectorize Operands together.
1650 bool areVectorizable(ArrayRef<VPValue *> Operands) const;
1652 /// Add combined instruction \p New for the bundle \p Operands.
1653 void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
1655 /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
1656 VPInstruction *markFailed();
1658 /// Reorder operands in the multi node to maximize sequential memory access
1659 /// and commutative operations.
1660 SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
1662 /// Choose the best candidate to use for the lane after \p Last. The set of
1663 /// candidates to choose from are values with an opcode matching \p Last's
1664 /// or loads consecutive to \p Last.
1665 std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
1666 SmallPtrSetImpl<VPValue *> &Candidates,
1667 VPInterleavedAccessInfo &IAI);
1669 /// Print bundle \p Values to dbgs().
1670 void dumpBundle(ArrayRef<VPValue *> Values);
1672 public:
1673 VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
1675 ~VPlanSlp() {
1676 for (auto &KV : BundleToCombined)
1677 delete KV.second;
1680 /// Tries to build an SLP tree rooted at \p Operands and returns a
1681 /// VPInstruction combining \p Operands, if they can be combined.
1682 VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
1684 /// Return the width of the widest combined bundle in bits.
1685 unsigned getWidestBundleBits() const { return WidestBundleBits; }
1687 /// Return true if all visited instruction can be combined.
1688 bool isCompletelySLP() const { return CompletelySLP; }
1690 } // end namespace llvm
1692 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H