[InstCombine] Signed saturation patterns
[llvm-complete.git] / test / CodeGen / Mips / cconv / arguments-hard-float.ll
blobe98a11a8064c8fca3e07baf74921851ab32b3562
1 ; RUN: llc -march=mips -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32,O32BE %s
2 ; RUN: llc -march=mipsel -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32,O32LE %s
4 ; RUN-TODO: llc -march=mips64 -relocation-model=static -target-abi o32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
5 ; RUN-TODO: llc -march=mips64el -relocation-model=static -target-abi o32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
7 ; RUN: llc -march=mips64 -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s
8 ; RUN: llc -march=mips64el -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s
10 ; RUN: llc -march=mips64 -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s
11 ; RUN: llc -march=mips64el -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s
13 ; Test the floating point arguments for all ABI's and byte orders as specified
14 ; by section 5 of MD00305 (MIPS ABIs Described).
16 ; N32/N64 are identical in this area so their checks have been combined into
17 ; the 'NEW' prefix (the N stands for New).
19 @bytes = global [11 x i8] zeroinitializer
20 @dwords = global [11 x i64] zeroinitializer
21 @floats = global [11 x float] zeroinitializer
22 @doubles = global [11 x double] zeroinitializer
24 define void @double_args(double %a, double %b, double %c, double %d, double %e,
25                          double %f, double %g, double %h, double %i) nounwind {
26 entry:
27         %0 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1
28         store volatile double %a, double* %0
29         %1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 2
30         store volatile double %b, double* %1
31         %2 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 3
32         store volatile double %c, double* %2
33         %3 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 4
34         store volatile double %d, double* %3
35         %4 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 5
36         store volatile double %e, double* %4
37         %5 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 6
38         store volatile double %f, double* %5
39         %6 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 7
40         store volatile double %g, double* %6
41         %7 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 8
42         store volatile double %h, double* %7
43         %8 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 9
44         store volatile double %i, double* %8
45         ret void
48 ; ALL-LABEL: double_args:
49 ; We won't test the way the global address is calculated in this test. This is
50 ; just to get the register number for the other checks.
51 ; SYM32-DAG:           addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
52 ; SYM64-DAG:           daddiu [[R2:\$[0-9]]], ${{[0-9]+}}, %lo(doubles)
54 ; The first argument is floating point so floating point registers are used.
55 ; The first argument is the same for O32/N32/N64 but the second argument differs
56 ; by register
57 ; ALL-DAG:           sdc1 $f12, 8([[R2]])
58 ; O32-DAG:           sdc1 $f14, 16([[R2]])
59 ; NEW-DAG:           sdc1 $f13, 16([[R2]])
61 ; O32 has run out of argument registers and starts using the stack
62 ; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 16($sp)
63 ; O32-DAG:           sdc1 [[F1]], 24([[R2]])
64 ; NEW-DAG:           sdc1 $f14, 24([[R2]])
65 ; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 24($sp)
66 ; O32-DAG:           sdc1 [[F1]], 32([[R2]])
67 ; NEW-DAG:           sdc1 $f15, 32([[R2]])
68 ; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 32($sp)
69 ; O32-DAG:           sdc1 [[F1]], 40([[R2]])
70 ; NEW-DAG:           sdc1 $f16, 40([[R2]])
71 ; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 40($sp)
72 ; O32-DAG:           sdc1 [[F1]], 48([[R2]])
73 ; NEW-DAG:           sdc1 $f17, 48([[R2]])
74 ; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 48($sp)
75 ; O32-DAG:           sdc1 [[F1]], 56([[R2]])
76 ; NEW-DAG:           sdc1 $f18, 56([[R2]])
77 ; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 56($sp)
78 ; O32-DAG:           sdc1 [[F1]], 64([[R2]])
79 ; NEW-DAG:           sdc1 $f19, 64([[R2]])
81 ; N32/N64 have run out of registers and start using the stack too
82 ; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 64($sp)
83 ; O32-DAG:           sdc1 [[F1]], 72([[R2]])
84 ; NEW-DAG:           ldc1 [[F1:\$f[0-9]+]], 0($sp)
85 ; NEW-DAG:           sdc1 [[F1]], 72([[R2]])
87 define void @float_args(float %a, float %b, float %c, float %d, float %e,
88                         float %f, float %g, float %h, float %i) nounwind {
89 entry:
90         %0 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1
91         store volatile float %a, float* %0
92         %1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 2
93         store volatile float %b, float* %1
94         %2 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 3
95         store volatile float %c, float* %2
96         %3 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 4
97         store volatile float %d, float* %3
98         %4 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 5
99         store volatile float %e, float* %4
100         %5 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 6
101         store volatile float %f, float* %5
102         %6 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 7
103         store volatile float %g, float* %6
104         %7 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 8
105         store volatile float %h, float* %7
106         %8 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 9
107         store volatile float %i, float* %8
108         ret void
111 ; ALL-LABEL: float_args:
112 ; We won't test the way the global address is calculated in this test. This is
113 ; just to get the register number for the other checks.
114 ; SYM32-DAG:           addiu  [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
115 ; SYM64-DAG:           daddiu [[R1:\$[0-9]]], ${{[0-9]+}}, %lo(floats)
117 ; The first argument is floating point so floating point registers are used.
118 ; The first argument is the same for O32/N32/N64 but the second argument differs
119 ; by register
120 ; ALL-DAG:           swc1 $f12, 4([[R1]])
121 ; O32-DAG:           swc1 $f14, 8([[R1]])
122 ; NEW-DAG:           swc1 $f13, 8([[R1]])
124 ; O32 has run out of argument registers and (in theory) starts using the stack
125 ; I've yet to find a reference in the documentation about this but GCC uses up
126 ; the remaining two argument slots in the GPR's first. We'll do the same for
127 ; compatibility.
128 ; O32-DAG:           mtc1 $6, $f0
129 ; O32-DAG:           swc1 $f0, 12([[R1]])
130 ; NEW-DAG:           swc1 $f14, 12([[R1]])
131 ; O32-DAG:           mtc1 $7, $f0
132 ; O32-DAG:           swc1 $f0, 16([[R1]])
133 ; NEW-DAG:           swc1 $f15, 16([[R1]])
135 ; O32 is definitely out of registers now and switches to the stack.
136 ; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 16($sp)
137 ; O32-DAG:           swc1 [[F1]], 20([[R1]])
138 ; NEW-DAG:           swc1 $f16, 20([[R1]])
139 ; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 20($sp)
140 ; O32-DAG:           swc1 [[F1]], 24([[R1]])
141 ; NEW-DAG:           swc1 $f17, 24([[R1]])
142 ; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 24($sp)
143 ; O32-DAG:           swc1 [[F1]], 28([[R1]])
144 ; NEW-DAG:           swc1 $f18, 28([[R1]])
145 ; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 28($sp)
146 ; O32-DAG:           swc1 [[F1]], 32([[R1]])
147 ; NEW-DAG:           swc1 $f19, 32([[R1]])
149 ; N32/N64 have run out of registers and start using the stack too
150 ; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 32($sp)
151 ; O32-DAG:           swc1 [[F1]], 36([[R1]])
152 ; NEW-DAG:           lwc1 [[F1:\$f[0-9]+]], 0($sp)
153 ; NEW-DAG:           swc1 [[F1]], 36([[R1]])
156 define void @double_arg2(i8 %a, double %b) nounwind {
157 entry:
158         %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
159         store volatile i8 %a, i8* %0
160         %1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1
161         store volatile double %b, double* %1
162         ret void
165 ; ALL-LABEL: double_arg2:
166 ; We won't test the way the global address is calculated in this test. This is
167 ; just to get the register number for the other checks.
168 ; SYM32-DAG:           addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
169 ; SYM64-DAG:           daddiu [[R1:\$[0-9]]], ${{[0-9]+}}, %lo(bytes)
170 ; SYM32-DAG:           addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
171 ; SYM64-DAG:           daddiu [[R2:\$[0-9]]], ${{[0-9]+}}, %lo(doubles)
173 ; The first argument is the same in O32/N32/N64.
174 ; ALL-DAG:           sb $4, 1([[R1]])
176 ; The first argument isn't floating point so floating point registers are not
177 ; used in O32, but N32/N64 will still use them.
178 ; The second slot is insufficiently aligned for double on O32 so it is skipped.
179 ; Also, double occupies two slots on O32 and only one for N32/N64.
180 ; O32LE-DAG:           mtc1 $6, [[F1:\$f[0-9]*[02468]+]]
181 ; O32LE-DAG:           mtc1 $7, [[F2:\$f[0-9]*[13579]+]]
182 ; O32BE-DAG:           mtc1 $6, [[F2:\$f[0-9]*[13579]+]]
183 ; O32BE-DAG:           mtc1 $7, [[F1:\$f[0-9]*[02468]+]]
184 ; O32-DAG:           sdc1 [[F1]], 8([[R2]])
185 ; NEW-DAG:           sdc1 $f13, 8([[R2]])
187 define void @float_arg2(i8 %a, float %b) nounwind {
188 entry:
189         %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
190         store volatile i8 %a, i8* %0
191         %1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1
192         store volatile float %b, float* %1
193         ret void
196 ; ALL-LABEL: float_arg2:
197 ; We won't test the way the global address is calculated in this test. This is
198 ; just to get the register number for the other checks.
199 ; SYM32-DAG:           addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
200 ; SYM64-DAG:           daddiu [[R1:\$[0-9]]], ${{[0-9]+}}, %lo(bytes)
201 ; SYM32-DAG:           addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
202 ; SYM64-DAG:           daddiu [[R2:\$[0-9]]], ${{[0-9]+}}, %lo(floats)
204 ; The first argument is the same in O32/N32/N64.
205 ; ALL-DAG:           sb $4, 1([[R1]])
207 ; The first argument isn't floating point so floating point registers are not
208 ; used in O32, but N32/N64 will still use them.
209 ; MD00305 and GCC disagree on this one. MD00305 says that floats are treated
210 ; as 8-byte aligned and occupy two slots on O32. GCC is treating them as 4-byte
211 ; aligned and occupying one slot. We'll use GCC's definition.
212 ; O32-DAG:           mtc1 $5, $f0
213 ; O32-DAG:           swc1 $f0, 4([[R2]])
214 ; NEW-DAG:           swc1 $f13, 4([[R2]])