[InstCombine] Signed saturation patterns
[llvm-complete.git] / test / Transforms / InstCombine / xor2.ll
blobfe969769a02008b74c55a70fa3cd2a8c204ef38b
1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2 ; RUN: opt < %s -instcombine -S | FileCheck %s
4 ; PR1253
5 define i1 @test0(i32 %A) {
6 ; CHECK-LABEL: @test0(
7 ; CHECK-NEXT:    [[C:%.*]] = icmp slt i32 [[A:%.*]], 0
8 ; CHECK-NEXT:    ret i1 [[C]]
10   %B = xor i32 %A, -2147483648
11   %C = icmp sgt i32 %B, -1
12   ret i1 %C
15 define <2 x i1> @test0vec(<2 x i32> %A) {
16 ; CHECK-LABEL: @test0vec(
17 ; CHECK-NEXT:    [[C:%.*]] = icmp slt <2 x i32> [[A:%.*]], zeroinitializer
18 ; CHECK-NEXT:    ret <2 x i1> [[C]]
20   %B = xor <2 x i32> %A, <i32 -2147483648, i32 -2147483648>
21   %C = icmp sgt <2 x i32> %B, <i32 -1, i32 -1>
22   ret <2 x i1> %C
25 define i1 @test1(i32 %A) {
26 ; CHECK-LABEL: @test1(
27 ; CHECK-NEXT:    [[C:%.*]] = icmp slt i32 [[A:%.*]], 0
28 ; CHECK-NEXT:    ret i1 [[C]]
30   %B = xor i32 %A, 12345
31   %C = icmp slt i32 %B, 0
32   ret i1 %C
35 ; PR1014
36 define i32 @test2(i32 %tmp1) {
37 ; CHECK-LABEL: @test2(
38 ; CHECK-NEXT:    [[OVM:%.*]] = and i32 [[TMP1:%.*]], 32
39 ; CHECK-NEXT:    [[OV1101:%.*]] = or i32 [[OVM]], 8
40 ; CHECK-NEXT:    ret i32 [[OV1101]]
42   %ovm = and i32 %tmp1, 32
43   %ov3 = add i32 %ovm, 145
44   %ov110 = xor i32 %ov3, 153
45   ret i32 %ov110
48 define i32 @test3(i32 %tmp1) {
49 ; CHECK-LABEL: @test3(
50 ; CHECK-NEXT:    [[OVM:%.*]] = and i32 [[TMP1:%.*]], 32
51 ; CHECK-NEXT:    [[OV1101:%.*]] = or i32 [[OVM]], 8
52 ; CHECK-NEXT:    ret i32 [[OV1101]]
54   %ovm = or i32 %tmp1, 145
55   %ov31 = and i32 %ovm, 177
56   %ov110 = xor i32 %ov31, 153
57   ret i32 %ov110
60 ; defect-2 in rdar://12329730
61 ; (X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
62 ;   where the "X" has more than one use
63 define i32 @test5(i32 %val1) {
64 ; CHECK-LABEL: @test5(
65 ; CHECK-NEXT:    [[XOR:%.*]] = xor i32 [[VAL1:%.*]], 1234
66 ; CHECK-NEXT:    [[SHR:%.*]] = lshr i32 [[VAL1]], 8
67 ; CHECK-NEXT:    [[XOR1:%.*]] = xor i32 [[SHR]], 5
68 ; CHECK-NEXT:    [[ADD:%.*]] = add i32 [[XOR1]], [[XOR]]
69 ; CHECK-NEXT:    ret i32 [[ADD]]
71   %xor = xor i32 %val1, 1234
72   %shr = lshr i32 %xor, 8
73   %xor1 = xor i32 %shr, 1
74   %add = add i32 %xor1, %xor
75   ret i32 %add
78 ; defect-1 in rdar://12329730
79 ; Simplify (X^Y) -> X or Y in the user's context if we know that
80 ; only bits from X or Y are demanded.
81 ; e.g. the "x ^ 1234" can be optimized into x in the context of "t >> 16".
82 ;  Put in other word, t >> 16 -> x >> 16.
83 ; unsigned foo(unsigned x) { unsigned t = x ^ 1234; ;  return (t >> 16) + t;}
84 define i32 @test6(i32 %x) {
85 ; CHECK-LABEL: @test6(
86 ; CHECK-NEXT:    [[XOR:%.*]] = xor i32 [[X:%.*]], 1234
87 ; CHECK-NEXT:    [[SHR:%.*]] = lshr i32 [[X]], 16
88 ; CHECK-NEXT:    [[ADD:%.*]] = add i32 [[SHR]], [[XOR]]
89 ; CHECK-NEXT:    ret i32 [[ADD]]
91   %xor = xor i32 %x, 1234
92   %shr = lshr i32 %xor, 16
93   %add = add i32 %shr, %xor
94   ret i32 %add
98 ; (A | B) ^ (~A) -> (A | ~B)
99 define i32 @test7(i32 %a, i32 %b) {
100 ; CHECK-LABEL: @test7(
101 ; CHECK-NEXT:    [[B_NOT:%.*]] = xor i32 [[B:%.*]], -1
102 ; CHECK-NEXT:    [[XOR:%.*]] = or i32 [[B_NOT]], [[A:%.*]]
103 ; CHECK-NEXT:    ret i32 [[XOR]]
105   %or = or i32 %a, %b
106   %neg = xor i32 %a, -1
107   %xor = xor i32 %or, %neg
108   ret i32 %xor
111 ; (~A) ^ (A | B) -> (A | ~B)
112 define i32 @test8(i32 %a, i32 %b) {
113 ; CHECK-LABEL: @test8(
114 ; CHECK-NEXT:    [[B_NOT:%.*]] = xor i32 [[B:%.*]], -1
115 ; CHECK-NEXT:    [[XOR:%.*]] = or i32 [[B_NOT]], [[A:%.*]]
116 ; CHECK-NEXT:    ret i32 [[XOR]]
118   %neg = xor i32 %a, -1
119   %or = or i32 %a, %b
120   %xor = xor i32 %neg, %or
121   ret i32 %xor
124 ; (A & B) ^ (A ^ B) -> (A | B)
125 define i32 @test9(i32 %b, i32 %c) {
126 ; CHECK-LABEL: @test9(
127 ; CHECK-NEXT:    [[XOR2:%.*]] = or i32 [[B:%.*]], [[C:%.*]]
128 ; CHECK-NEXT:    ret i32 [[XOR2]]
130   %and = and i32 %b, %c
131   %xor = xor i32 %b, %c
132   %xor2 = xor i32 %and, %xor
133   ret i32 %xor2
136 ; (A & B) ^ (B ^ A) -> (A | B)
137 define i32 @test9b(i32 %b, i32 %c) {
138 ; CHECK-LABEL: @test9b(
139 ; CHECK-NEXT:    [[XOR2:%.*]] = or i32 [[B:%.*]], [[C:%.*]]
140 ; CHECK-NEXT:    ret i32 [[XOR2]]
142   %and = and i32 %b, %c
143   %xor = xor i32 %c, %b
144   %xor2 = xor i32 %and, %xor
145   ret i32 %xor2
148 ; (A ^ B) ^ (A & B) -> (A | B)
149 define i32 @test10(i32 %b, i32 %c) {
150 ; CHECK-LABEL: @test10(
151 ; CHECK-NEXT:    [[XOR2:%.*]] = or i32 [[B:%.*]], [[C:%.*]]
152 ; CHECK-NEXT:    ret i32 [[XOR2]]
154   %xor = xor i32 %b, %c
155   %and = and i32 %b, %c
156   %xor2 = xor i32 %xor, %and
157   ret i32 %xor2
160 ; (A ^ B) ^ (A & B) -> (A | B)
161 define i32 @test10b(i32 %b, i32 %c) {
162 ; CHECK-LABEL: @test10b(
163 ; CHECK-NEXT:    [[XOR2:%.*]] = or i32 [[B:%.*]], [[C:%.*]]
164 ; CHECK-NEXT:    ret i32 [[XOR2]]
166   %xor = xor i32 %b, %c
167   %and = and i32 %c, %b
168   %xor2 = xor i32 %xor, %and
169   ret i32 %xor2
172 define i32 @test11(i32 %A, i32 %B) {
173 ; CHECK-LABEL: @test11(
174 ; CHECK-NEXT:    ret i32 0
176   %xor1 = xor i32 %B, %A
177   %not = xor i32 %A, -1
178   %xor2 = xor i32 %not, %B
179   %and = and i32 %xor1, %xor2
180   ret i32 %and
183 define i32 @test11b(i32 %A, i32 %B) {
184 ; CHECK-LABEL: @test11b(
185 ; CHECK-NEXT:    ret i32 0
187   %xor1 = xor i32 %B, %A
188   %not = xor i32 %A, -1
189   %xor2 = xor i32 %not, %B
190   %and = and i32 %xor2, %xor1
191   ret i32 %and
194 define i32 @test11c(i32 %A, i32 %B) {
195 ; CHECK-LABEL: @test11c(
196 ; CHECK-NEXT:    [[XOR1:%.*]] = xor i32 [[A:%.*]], [[B:%.*]]
197 ; CHECK-NEXT:    [[NOT:%.*]] = xor i32 [[A]], -1
198 ; CHECK-NEXT:    [[XOR2:%.*]] = xor i32 [[NOT]], [[B]]
199 ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[XOR1]], [[XOR2]]
200 ; CHECK-NEXT:    ret i32 [[AND]]
202   %xor1 = xor i32 %A, %B
203   %not = xor i32 %A, -1
204   %xor2 = xor i32 %not, %B
205   %and = and i32 %xor1, %xor2
206   ret i32 %and
209 define i32 @test11d(i32 %A, i32 %B) {
210 ; CHECK-LABEL: @test11d(
211 ; CHECK-NEXT:    [[XOR1:%.*]] = xor i32 [[A:%.*]], [[B:%.*]]
212 ; CHECK-NEXT:    [[NOT:%.*]] = xor i32 [[A]], -1
213 ; CHECK-NEXT:    [[XOR2:%.*]] = xor i32 [[NOT]], [[B]]
214 ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[XOR2]], [[XOR1]]
215 ; CHECK-NEXT:    ret i32 [[AND]]
217   %xor1 = xor i32 %A, %B
218   %not = xor i32 %A, -1
219   %xor2 = xor i32 %not, %B
220   %and = and i32 %xor2, %xor1
221   ret i32 %and
224 define i32 @test11e(i32 %A, i32 %B, i32 %C) {
225 ; CHECK-LABEL: @test11e(
226 ; CHECK-NEXT:    [[FORCE:%.*]] = mul i32 [[B:%.*]], [[C:%.*]]
227 ; CHECK-NEXT:    [[XOR1:%.*]] = xor i32 [[FORCE]], [[A:%.*]]
228 ; CHECK-NEXT:    [[NOT:%.*]] = xor i32 [[A]], -1
229 ; CHECK-NEXT:    [[XOR2:%.*]] = xor i32 [[FORCE]], [[NOT]]
230 ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[XOR1]], [[XOR2]]
231 ; CHECK-NEXT:    ret i32 [[AND]]
233   %force = mul i32 %B, %C
234   %xor1 = xor i32 %force, %A
235   %not = xor i32 %A, -1
236   %xor2 = xor i32 %force, %not
237   %and = and i32 %xor1, %xor2
238   ret i32 %and
241 define i32 @test11f(i32 %A, i32 %B, i32 %C) {
242 ; CHECK-LABEL: @test11f(
243 ; CHECK-NEXT:    [[FORCE:%.*]] = mul i32 [[B:%.*]], [[C:%.*]]
244 ; CHECK-NEXT:    [[XOR1:%.*]] = xor i32 [[FORCE]], [[A:%.*]]
245 ; CHECK-NEXT:    [[NOT:%.*]] = xor i32 [[A]], -1
246 ; CHECK-NEXT:    [[XOR2:%.*]] = xor i32 [[FORCE]], [[NOT]]
247 ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[XOR2]], [[XOR1]]
248 ; CHECK-NEXT:    ret i32 [[AND]]
250   %force = mul i32 %B, %C
251   %xor1 = xor i32 %force, %A
252   %not = xor i32 %A, -1
253   %xor2 = xor i32 %force, %not
254   %and = and i32 %xor2, %xor1
255   ret i32 %and
258 define i32 @test12(i32 %a, i32 %b) {
259 ; CHECK-LABEL: @test12(
260 ; CHECK-NEXT:    [[TMP1:%.*]] = and i32 [[A:%.*]], [[B:%.*]]
261 ; CHECK-NEXT:    [[XOR:%.*]] = xor i32 [[TMP1]], -1
262 ; CHECK-NEXT:    ret i32 [[XOR]]
264   %negb = xor i32 %b, -1
265   %and = and i32 %a, %negb
266   %nega = xor i32 %a, -1
267   %xor = xor i32 %and, %nega
268   ret i32 %xor
271 define i32 @test12commuted(i32 %a, i32 %b) {
272 ; CHECK-LABEL: @test12commuted(
273 ; CHECK-NEXT:    [[TMP1:%.*]] = and i32 [[A:%.*]], [[B:%.*]]
274 ; CHECK-NEXT:    [[XOR:%.*]] = xor i32 [[TMP1]], -1
275 ; CHECK-NEXT:    ret i32 [[XOR]]
277   %negb = xor i32 %b, -1
278   %and = and i32 %negb, %a
279   %nega = xor i32 %a, -1
280   %xor = xor i32 %and, %nega
281   ret i32 %xor
284 ; This is a test of canonicalization via operand complexity.
285 ; The final xor has a binary operator and a (fake) unary operator,
286 ; so binary (more complex) should come first.
288 define i32 @test13(i32 %a, i32 %b) {
289 ; CHECK-LABEL: @test13(
290 ; CHECK-NEXT:    [[TMP1:%.*]] = and i32 [[A:%.*]], [[B:%.*]]
291 ; CHECK-NEXT:    [[XOR:%.*]] = xor i32 [[TMP1]], -1
292 ; CHECK-NEXT:    ret i32 [[XOR]]
294   %nega = xor i32 %a, -1
295   %negb = xor i32 %b, -1
296   %and = and i32 %a, %negb
297   %xor = xor i32 %nega, %and
298   ret i32 %xor
301 define i32 @test13commuted(i32 %a, i32 %b) {
302 ; CHECK-LABEL: @test13commuted(
303 ; CHECK-NEXT:    [[TMP1:%.*]] = and i32 [[A:%.*]], [[B:%.*]]
304 ; CHECK-NEXT:    [[XOR:%.*]] = xor i32 [[TMP1]], -1
305 ; CHECK-NEXT:    ret i32 [[XOR]]
307   %nega = xor i32 %a, -1
308   %negb = xor i32 %b, -1
309   %and = and i32 %negb, %a
310   %xor = xor i32 %nega, %and
311   ret i32 %xor
314 ; (A ^ C) ^ (A | B) -> ((~A) & B) ^ C
316 define i32 @xor_or_xor_common_op_commute1(i32 %a, i32 %b, i32 %c) {
317 ; CHECK-LABEL: @xor_or_xor_common_op_commute1(
318 ; CHECK-NEXT:    [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
319 ; CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], [[B:%.*]]
320 ; CHECK-NEXT:    [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
321 ; CHECK-NEXT:    ret i32 [[R]]
323   %ac = xor i32 %a, %c
324   %ab = or i32 %a, %b
325   %r = xor i32 %ac, %ab
326   ret i32 %r
329 ; (C ^ A) ^ (A | B) -> ((~A) & B) ^ C
331 define i32 @xor_or_xor_common_op_commute2(i32 %a, i32 %b, i32 %c) {
332 ; CHECK-LABEL: @xor_or_xor_common_op_commute2(
333 ; CHECK-NEXT:    [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
334 ; CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], [[B:%.*]]
335 ; CHECK-NEXT:    [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
336 ; CHECK-NEXT:    ret i32 [[R]]
338   %ac = xor i32 %c, %a
339   %ab = or i32 %a, %b
340   %r = xor i32 %ac, %ab
341   ret i32 %r
344 ; (A ^ C) ^ (B | A) -> ((~A) & B) ^ C
346 define i32 @xor_or_xor_common_op_commute3(i32 %a, i32 %b, i32 %c) {
347 ; CHECK-LABEL: @xor_or_xor_common_op_commute3(
348 ; CHECK-NEXT:    [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
349 ; CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], [[B:%.*]]
350 ; CHECK-NEXT:    [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
351 ; CHECK-NEXT:    ret i32 [[R]]
353   %ac = xor i32 %a, %c
354   %ab = or i32 %b, %a
355   %r = xor i32 %ac, %ab
356   ret i32 %r
359 ; (C ^ A) ^ (B | A) -> ((~A) & B) ^ C
361 define i32 @xor_or_xor_common_op_commute4(i32 %a, i32 %b, i32 %c) {
362 ; CHECK-LABEL: @xor_or_xor_common_op_commute4(
363 ; CHECK-NEXT:    [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
364 ; CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], [[B:%.*]]
365 ; CHECK-NEXT:    [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
366 ; CHECK-NEXT:    ret i32 [[R]]
368   %ac = xor i32 %c, %a
369   %ab = or i32 %b, %a
370   %r = xor i32 %ac, %ab
371   ret i32 %r
374 ; (A | B) ^ (A ^ C) -> ((~A) & B) ^ C
376 define i32 @xor_or_xor_common_op_commute5(i32 %a, i32 %b, i32 %c) {
377 ; CHECK-LABEL: @xor_or_xor_common_op_commute5(
378 ; CHECK-NEXT:    [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
379 ; CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], [[B:%.*]]
380 ; CHECK-NEXT:    [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
381 ; CHECK-NEXT:    ret i32 [[R]]
383   %ac = xor i32 %a, %c
384   %ab = or i32 %a, %b
385   %r = xor i32 %ab, %ac
386   ret i32 %r
389 ; (A | B) ^ (C ^ A) -> ((~A) & B) ^ C
391 define i32 @xor_or_xor_common_op_commute6(i32 %a, i32 %b, i32 %c) {
392 ; CHECK-LABEL: @xor_or_xor_common_op_commute6(
393 ; CHECK-NEXT:    [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
394 ; CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], [[B:%.*]]
395 ; CHECK-NEXT:    [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
396 ; CHECK-NEXT:    ret i32 [[R]]
398   %ac = xor i32 %c, %a
399   %ab = or i32 %a, %b
400   %r = xor i32 %ab, %ac
401   ret i32 %r
404 ; (B | A) ^ (A ^ C) -> ((~A) & B) ^ C
406 define i32 @xor_or_xor_common_op_commute7(i32 %a, i32 %b, i32 %c) {
407 ; CHECK-LABEL: @xor_or_xor_common_op_commute7(
408 ; CHECK-NEXT:    [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
409 ; CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], [[B:%.*]]
410 ; CHECK-NEXT:    [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
411 ; CHECK-NEXT:    ret i32 [[R]]
413   %ac = xor i32 %a, %c
414   %ab = or i32 %b, %a
415   %r = xor i32 %ab, %ac
416   ret i32 %r
419 ; (B | A) ^ (C ^ A) -> ((~A) & B) ^ C
421 define i32 @xor_or_xor_common_op_commute8(i32 %a, i32 %b, i32 %c) {
422 ; CHECK-LABEL: @xor_or_xor_common_op_commute8(
423 ; CHECK-NEXT:    [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
424 ; CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], [[B:%.*]]
425 ; CHECK-NEXT:    [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
426 ; CHECK-NEXT:    ret i32 [[R]]
428   %ac = xor i32 %c, %a
429   %ab = or i32 %b, %a
430   %r = xor i32 %ab, %ac
431   ret i32 %r
434 define i32 @xor_or_xor_common_op_extra_use1(i32 %a, i32 %b, i32 %c, i32* %p) {
435 ; CHECK-LABEL: @xor_or_xor_common_op_extra_use1(
436 ; CHECK-NEXT:    [[AC:%.*]] = xor i32 [[A:%.*]], [[C:%.*]]
437 ; CHECK-NEXT:    store i32 [[AC]], i32* [[P:%.*]], align 4
438 ; CHECK-NEXT:    [[AB:%.*]] = or i32 [[A]], [[B:%.*]]
439 ; CHECK-NEXT:    [[R:%.*]] = xor i32 [[AC]], [[AB]]
440 ; CHECK-NEXT:    ret i32 [[R]]
442   %ac = xor i32 %a, %c
443   store i32 %ac, i32* %p
444   %ab = or i32 %a, %b
445   %r = xor i32 %ac, %ab
446   ret i32 %r
449 define i32 @xor_or_xor_common_op_extra_use2(i32 %a, i32 %b, i32 %c, i32* %p) {
450 ; CHECK-LABEL: @xor_or_xor_common_op_extra_use2(
451 ; CHECK-NEXT:    [[AC:%.*]] = xor i32 [[A:%.*]], [[C:%.*]]
452 ; CHECK-NEXT:    [[AB:%.*]] = or i32 [[A]], [[B:%.*]]
453 ; CHECK-NEXT:    store i32 [[AB]], i32* [[P:%.*]], align 4
454 ; CHECK-NEXT:    [[R:%.*]] = xor i32 [[AC]], [[AB]]
455 ; CHECK-NEXT:    ret i32 [[R]]
457   %ac = xor i32 %a, %c
458   %ab = or i32 %a, %b
459   store i32 %ab, i32* %p
460   %r = xor i32 %ac, %ab
461   ret i32 %r
464 define i32 @xor_or_xor_common_op_extra_use3(i32 %a, i32 %b, i32 %c, i32* %p1, i32* %p2) {
465 ; CHECK-LABEL: @xor_or_xor_common_op_extra_use3(
466 ; CHECK-NEXT:    [[AC:%.*]] = xor i32 [[A:%.*]], [[C:%.*]]
467 ; CHECK-NEXT:    store i32 [[AC]], i32* [[P1:%.*]], align 4
468 ; CHECK-NEXT:    [[AB:%.*]] = or i32 [[A]], [[B:%.*]]
469 ; CHECK-NEXT:    store i32 [[AB]], i32* [[P2:%.*]], align 4
470 ; CHECK-NEXT:    [[R:%.*]] = xor i32 [[AC]], [[AB]]
471 ; CHECK-NEXT:    ret i32 [[R]]
473   %ac = xor i32 %a, %c
474   store i32 %ac, i32* %p1
475   %ab = or i32 %a, %b
476   store i32 %ab, i32* %p2
477   %r = xor i32 %ac, %ab
478   ret i32 %r
481 define i8 @test15(i8 %A, i8 %B) {
482 ; CHECK-LABEL: @test15(
483 ; CHECK-NEXT:    [[XOR1:%.*]] = xor i8 [[B:%.*]], [[A:%.*]]
484 ; CHECK-NEXT:    [[NOT:%.*]] = xor i8 [[A]], 33
485 ; CHECK-NEXT:    [[XOR2:%.*]] = xor i8 [[NOT]], [[B]]
486 ; CHECK-NEXT:    [[AND:%.*]] = and i8 [[XOR1]], -34
487 ; CHECK-NEXT:    [[RES:%.*]] = mul i8 [[AND]], [[XOR2]]
488 ; CHECK-NEXT:    ret i8 [[RES]]
490   %xor1 = xor i8 %B, %A
491   %not = xor i8 %A, 33
492   %xor2 = xor i8 %not, %B
493   %and = and i8 %xor1, %xor2
494   %res = mul i8 %and, %xor2 ; to increase the use count for the xor
495   ret i8 %res
498 define i8 @test16(i8 %A, i8 %B) {
499 ; CHECK-LABEL: @test16(
500 ; CHECK-NEXT:    [[XOR1:%.*]] = xor i8 [[B:%.*]], [[A:%.*]]
501 ; CHECK-NEXT:    [[NOT:%.*]] = xor i8 [[A]], 33
502 ; CHECK-NEXT:    [[XOR2:%.*]] = xor i8 [[NOT]], [[B]]
503 ; CHECK-NEXT:    [[AND:%.*]] = and i8 [[XOR1]], -34
504 ; CHECK-NEXT:    [[RES:%.*]] = mul i8 [[AND]], [[XOR2]]
505 ; CHECK-NEXT:    ret i8 [[RES]]
507   %xor1 = xor i8 %B, %A
508   %not = xor i8 %A, 33
509   %xor2 = xor i8 %not, %B
510   %and = and i8 %xor2, %xor1
511   %res = mul i8 %and, %xor2 ; to increase the use count for the xor
512   ret i8 %res