[InstCombine] Signed saturation patterns
[llvm-complete.git] / tools / llvm-exegesis / lib / Assembler.cpp
blob4983823df0fcc2a4c36bab4ac8cb96125e697f53
1 //===-- Assembler.cpp -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "Assembler.h"
11 #include "SnippetRepetitor.h"
12 #include "Target.h"
13 #include "llvm/Analysis/TargetLibraryInfo.h"
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineModuleInfo.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/TargetInstrInfo.h"
20 #include "llvm/CodeGen/TargetPassConfig.h"
21 #include "llvm/CodeGen/TargetSubtargetInfo.h"
22 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
23 #include "llvm/IR/LegacyPassManager.h"
24 #include "llvm/MC/MCInstrInfo.h"
25 #include "llvm/Support/Alignment.h"
26 #include "llvm/Support/MemoryBuffer.h"
28 namespace llvm {
29 namespace exegesis {
31 static constexpr const char ModuleID[] = "ExegesisInfoTest";
32 static constexpr const char FunctionID[] = "foo";
33 static const Align kFunctionAlignment(4096);
35 // Fills the given basic block with register setup code, and returns true if
36 // all registers could be setup correctly.
37 static bool generateSnippetSetupCode(
38 const ExegesisTarget &ET, const MCSubtargetInfo *const MSI,
39 ArrayRef<RegisterValue> RegisterInitialValues, BasicBlockFiller &BBF) {
40 bool IsSnippetSetupComplete = true;
41 for (const RegisterValue &RV : RegisterInitialValues) {
42 // Load a constant in the register.
43 const auto SetRegisterCode = ET.setRegTo(*MSI, RV.Register, RV.Value);
44 if (SetRegisterCode.empty())
45 IsSnippetSetupComplete = false;
46 BBF.addInstructions(SetRegisterCode);
48 return IsSnippetSetupComplete;
51 // Small utility function to add named passes.
52 static bool addPass(PassManagerBase &PM, StringRef PassName,
53 TargetPassConfig &TPC) {
54 const PassRegistry *PR = PassRegistry::getPassRegistry();
55 const PassInfo *PI = PR->getPassInfo(PassName);
56 if (!PI) {
57 errs() << " run-pass " << PassName << " is not registered.\n";
58 return true;
61 if (!PI->getNormalCtor()) {
62 errs() << " cannot create pass: " << PI->getPassName() << "\n";
63 return true;
65 Pass *P = PI->getNormalCtor()();
66 std::string Banner = std::string("After ") + std::string(P->getPassName());
67 PM.add(P);
68 TPC.printAndVerify(Banner);
70 return false;
73 MachineFunction &createVoidVoidPtrMachineFunction(StringRef FunctionID,
74 Module *Module,
75 MachineModuleInfo *MMI) {
76 Type *const ReturnType = Type::getInt32Ty(Module->getContext());
77 Type *const MemParamType = PointerType::get(
78 Type::getInt8Ty(Module->getContext()), 0 /*default address space*/);
79 FunctionType *FunctionType =
80 FunctionType::get(ReturnType, {MemParamType}, false);
81 Function *const F = Function::Create(
82 FunctionType, GlobalValue::InternalLinkage, FunctionID, Module);
83 // Making sure we can create a MachineFunction out of this Function even if it
84 // contains no IR.
85 F->setIsMaterializable(true);
86 return MMI->getOrCreateMachineFunction(*F);
89 BasicBlockFiller::BasicBlockFiller(MachineFunction &MF, MachineBasicBlock *MBB,
90 const MCInstrInfo *MCII)
91 : MF(MF), MBB(MBB), MCII(MCII) {}
93 void BasicBlockFiller::addInstruction(const MCInst &Inst, const DebugLoc &DL) {
94 const unsigned Opcode = Inst.getOpcode();
95 const MCInstrDesc &MCID = MCII->get(Opcode);
96 MachineInstrBuilder Builder = BuildMI(MBB, DL, MCID);
97 for (unsigned OpIndex = 0, E = Inst.getNumOperands(); OpIndex < E;
98 ++OpIndex) {
99 const MCOperand &Op = Inst.getOperand(OpIndex);
100 if (Op.isReg()) {
101 const bool IsDef = OpIndex < MCID.getNumDefs();
102 unsigned Flags = 0;
103 const MCOperandInfo &OpInfo = MCID.operands().begin()[OpIndex];
104 if (IsDef && !OpInfo.isOptionalDef())
105 Flags |= RegState::Define;
106 Builder.addReg(Op.getReg(), Flags);
107 } else if (Op.isImm()) {
108 Builder.addImm(Op.getImm());
109 } else if (!Op.isValid()) {
110 llvm_unreachable("Operand is not set");
111 } else {
112 llvm_unreachable("Not yet implemented");
117 void BasicBlockFiller::addInstructions(ArrayRef<MCInst> Insts,
118 const DebugLoc &DL) {
119 for (const MCInst &Inst : Insts)
120 addInstruction(Inst, DL);
123 void BasicBlockFiller::addReturn(const DebugLoc &DL) {
124 // Insert the return code.
125 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
126 if (TII->getReturnOpcode() < TII->getNumOpcodes()) {
127 BuildMI(MBB, DL, TII->get(TII->getReturnOpcode()));
128 } else {
129 MachineIRBuilder MIB(MF);
130 MIB.setMBB(*MBB);
131 MF.getSubtarget().getCallLowering()->lowerReturn(MIB, nullptr, {});
135 FunctionFiller::FunctionFiller(MachineFunction &MF,
136 std::vector<unsigned> RegistersSetUp)
137 : MF(MF), MCII(MF.getTarget().getMCInstrInfo()), Entry(addBasicBlock()),
138 RegistersSetUp(std::move(RegistersSetUp)) {}
140 BasicBlockFiller FunctionFiller::addBasicBlock() {
141 MachineBasicBlock *MBB = MF.CreateMachineBasicBlock();
142 MF.push_back(MBB);
143 return BasicBlockFiller(MF, MBB, MCII);
146 ArrayRef<unsigned> FunctionFiller::getRegistersSetUp() const {
147 return RegistersSetUp;
150 static std::unique_ptr<Module>
151 createModule(const std::unique_ptr<LLVMContext> &Context, const DataLayout DL) {
152 auto Mod = std::make_unique<Module>(ModuleID, *Context);
153 Mod->setDataLayout(DL);
154 return Mod;
157 BitVector getFunctionReservedRegs(const TargetMachine &TM) {
158 std::unique_ptr<LLVMContext> Context = std::make_unique<LLVMContext>();
159 std::unique_ptr<Module> Module = createModule(Context, TM.createDataLayout());
160 // TODO: This only works for targets implementing LLVMTargetMachine.
161 const LLVMTargetMachine &LLVMTM = static_cast<const LLVMTargetMachine &>(TM);
162 std::unique_ptr<MachineModuleInfoWrapperPass> MMIWP =
163 std::make_unique<MachineModuleInfoWrapperPass>(&LLVMTM);
164 MachineFunction &MF = createVoidVoidPtrMachineFunction(
165 FunctionID, Module.get(), &MMIWP.get()->getMMI());
166 // Saving reserved registers for client.
167 return MF.getSubtarget().getRegisterInfo()->getReservedRegs(MF);
170 void assembleToStream(const ExegesisTarget &ET,
171 std::unique_ptr<LLVMTargetMachine> TM,
172 ArrayRef<unsigned> LiveIns,
173 ArrayRef<RegisterValue> RegisterInitialValues,
174 const FillFunction &Fill, raw_pwrite_stream &AsmStream) {
175 auto Context = std::make_unique<LLVMContext>();
176 std::unique_ptr<Module> Module =
177 createModule(Context, TM->createDataLayout());
178 auto MMIWP = std::make_unique<MachineModuleInfoWrapperPass>(TM.get());
179 MachineFunction &MF = createVoidVoidPtrMachineFunction(
180 FunctionID, Module.get(), &MMIWP.get()->getMMI());
181 MF.ensureAlignment(kFunctionAlignment);
183 // We need to instruct the passes that we're done with SSA and virtual
184 // registers.
185 auto &Properties = MF.getProperties();
186 Properties.set(MachineFunctionProperties::Property::NoVRegs);
187 Properties.reset(MachineFunctionProperties::Property::IsSSA);
188 Properties.set(MachineFunctionProperties::Property::NoPHIs);
190 for (const unsigned Reg : LiveIns)
191 MF.getRegInfo().addLiveIn(Reg);
193 std::vector<unsigned> RegistersSetUp;
194 for (const auto &InitValue : RegisterInitialValues) {
195 RegistersSetUp.push_back(InitValue.Register);
197 FunctionFiller Sink(MF, std::move(RegistersSetUp));
198 auto Entry = Sink.getEntry();
199 for (const unsigned Reg : LiveIns)
200 Entry.MBB->addLiveIn(Reg);
202 const bool IsSnippetSetupComplete = generateSnippetSetupCode(
203 ET, TM->getMCSubtargetInfo(), RegisterInitialValues, Entry);
205 // If the snippet setup is not complete, we disable liveliness tracking. This
206 // means that we won't know what values are in the registers.
207 if (!IsSnippetSetupComplete)
208 Properties.reset(MachineFunctionProperties::Property::TracksLiveness);
210 Fill(Sink);
212 // prologue/epilogue pass needs the reserved registers to be frozen, this
213 // is usually done by the SelectionDAGISel pass.
214 MF.getRegInfo().freezeReservedRegs(MF);
216 // We create the pass manager, run the passes to populate AsmBuffer.
217 MCContext &MCContext = MMIWP->getMMI().getContext();
218 legacy::PassManager PM;
220 TargetLibraryInfoImpl TLII(Triple(Module->getTargetTriple()));
221 PM.add(new TargetLibraryInfoWrapperPass(TLII));
223 TargetPassConfig *TPC = TM->createPassConfig(PM);
224 PM.add(TPC);
225 PM.add(MMIWP.release());
226 TPC->printAndVerify("MachineFunctionGenerator::assemble");
227 // Add target-specific passes.
228 ET.addTargetSpecificPasses(PM);
229 TPC->printAndVerify("After ExegesisTarget::addTargetSpecificPasses");
230 // Adding the following passes:
231 // - postrapseudos: expands pseudo return instructions used on some targets.
232 // - machineverifier: checks that the MachineFunction is well formed.
233 // - prologepilog: saves and restore callee saved registers.
234 for (const char *PassName :
235 {"postrapseudos", "machineverifier", "prologepilog"})
236 if (addPass(PM, PassName, *TPC))
237 report_fatal_error("Unable to add a mandatory pass");
238 TPC->setInitialized();
240 // AsmPrinter is responsible for generating the assembly into AsmBuffer.
241 if (TM->addAsmPrinter(PM, AsmStream, nullptr, TargetMachine::CGFT_ObjectFile,
242 MCContext))
243 report_fatal_error("Cannot add AsmPrinter passes");
245 PM.run(*Module); // Run all the passes
248 object::OwningBinary<object::ObjectFile>
249 getObjectFromBuffer(StringRef InputData) {
250 // Storing the generated assembly into a MemoryBuffer that owns the memory.
251 std::unique_ptr<MemoryBuffer> Buffer =
252 MemoryBuffer::getMemBufferCopy(InputData);
253 // Create the ObjectFile from the MemoryBuffer.
254 std::unique_ptr<object::ObjectFile> Obj =
255 cantFail(object::ObjectFile::createObjectFile(Buffer->getMemBufferRef()));
256 // Returning both the MemoryBuffer and the ObjectFile.
257 return object::OwningBinary<object::ObjectFile>(std::move(Obj),
258 std::move(Buffer));
261 object::OwningBinary<object::ObjectFile> getObjectFromFile(StringRef Filename) {
262 return cantFail(object::ObjectFile::createObjectFile(Filename));
265 namespace {
267 // Implementation of this class relies on the fact that a single object with a
268 // single function will be loaded into memory.
269 class TrackingSectionMemoryManager : public SectionMemoryManager {
270 public:
271 explicit TrackingSectionMemoryManager(uintptr_t *CodeSize)
272 : CodeSize(CodeSize) {}
274 uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
275 unsigned SectionID,
276 StringRef SectionName) override {
277 *CodeSize = Size;
278 return SectionMemoryManager::allocateCodeSection(Size, Alignment, SectionID,
279 SectionName);
282 private:
283 uintptr_t *const CodeSize = nullptr;
286 } // namespace
288 ExecutableFunction::ExecutableFunction(
289 std::unique_ptr<LLVMTargetMachine> TM,
290 object::OwningBinary<object::ObjectFile> &&ObjectFileHolder)
291 : Context(std::make_unique<LLVMContext>()) {
292 assert(ObjectFileHolder.getBinary() && "cannot create object file");
293 // Initializing the execution engine.
294 // We need to use the JIT EngineKind to be able to add an object file.
295 LLVMLinkInMCJIT();
296 uintptr_t CodeSize = 0;
297 std::string Error;
298 ExecEngine.reset(
299 EngineBuilder(createModule(Context, TM->createDataLayout()))
300 .setErrorStr(&Error)
301 .setMCPU(TM->getTargetCPU())
302 .setEngineKind(EngineKind::JIT)
303 .setMCJITMemoryManager(
304 std::make_unique<TrackingSectionMemoryManager>(&CodeSize))
305 .create(TM.release()));
306 if (!ExecEngine)
307 report_fatal_error(Error);
308 // Adding the generated object file containing the assembled function.
309 // The ExecutionEngine makes sure the object file is copied into an
310 // executable page.
311 ExecEngine->addObjectFile(std::move(ObjectFileHolder));
312 // Fetching function bytes.
313 const uint64_t FunctionAddress = ExecEngine->getFunctionAddress(FunctionID);
314 assert(isAligned(kFunctionAlignment, FunctionAddress) &&
315 "function is not properly aligned");
316 FunctionBytes =
317 StringRef(reinterpret_cast<const char *>(FunctionAddress), CodeSize);
320 } // namespace exegesis
321 } // namespace llvm