[InstCombine] Signed saturation patterns
[llvm-complete.git] / tools / llvm-xray / xray-color-helper.cpp
blobc09cad3ba7d248c0552dc34c6d06f28acbabfb2c
1 //===-- xray-graph.cpp: XRay Function Call Graph Renderer -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A class to get a color from a specified gradient.
11 //===----------------------------------------------------------------------===//
13 #include "xray-color-helper.h"
14 #include "llvm/Support/FormatVariadic.h"
15 #include "llvm/Support/raw_ostream.h"
17 using namespace llvm;
18 using namespace xray;
20 // Sequential ColorMaps, which are used to represent information
21 // from some minimum to some maximum.
23 static const std::tuple<uint8_t, uint8_t, uint8_t> SequentialMaps[][9] = {
24 {// The greys color scheme from http://colorbrewer2.org/
25 std::make_tuple(255, 255, 255), std::make_tuple(240, 240, 240),
26 std::make_tuple(217, 217, 217), std::make_tuple(189, 189, 189),
27 std::make_tuple(150, 150, 150), std::make_tuple(115, 115, 115),
28 std::make_tuple(82, 82, 82), std::make_tuple(37, 37, 37),
29 std::make_tuple(0, 0, 0)},
30 {// The OrRd color scheme from http://colorbrewer2.org/
31 std::make_tuple(255, 247, 236), std::make_tuple(254, 232, 200),
32 std::make_tuple(253, 212, 158), std::make_tuple(253, 187, 132),
33 std::make_tuple(252, 141, 89), std::make_tuple(239, 101, 72),
34 std::make_tuple(215, 48, 31), std::make_tuple(179, 0, 0),
35 std::make_tuple(127, 0, 0)},
36 {// The PuBu color scheme from http://colorbrewer2.org/
37 std::make_tuple(255, 247, 251), std::make_tuple(236, 231, 242),
38 std::make_tuple(208, 209, 230), std::make_tuple(166, 189, 219),
39 std::make_tuple(116, 169, 207), std::make_tuple(54, 144, 192),
40 std::make_tuple(5, 112, 176), std::make_tuple(4, 90, 141),
41 std::make_tuple(2, 56, 88)}};
43 // Sequential Maps extend the last colors given out of range inputs.
44 static const std::tuple<uint8_t, uint8_t, uint8_t> SequentialBounds[][2] = {
45 {// The Bounds for the greys color scheme
46 std::make_tuple(255, 255, 255), std::make_tuple(0, 0, 0)},
47 {// The Bounds for the OrRd color Scheme
48 std::make_tuple(255, 247, 236), std::make_tuple(127, 0, 0)},
49 {// The Bounds for the PuBu color Scheme
50 std::make_tuple(255, 247, 251), std::make_tuple(2, 56, 88)}};
52 ColorHelper::ColorHelper(ColorHelper::SequentialScheme S)
53 : MinIn(0.0), MaxIn(1.0), ColorMap(SequentialMaps[static_cast<int>(S)]),
54 BoundMap(SequentialBounds[static_cast<int>(S)]) {}
56 // Diverging ColorMaps, which are used to represent information
57 // representing differenes, or a range that goes from negative to positive.
58 // These take an input in the range [-1,1].
60 static const std::tuple<uint8_t, uint8_t, uint8_t> DivergingCoeffs[][11] = {
61 {// The PiYG color scheme from http://colorbrewer2.org/
62 std::make_tuple(142, 1, 82), std::make_tuple(197, 27, 125),
63 std::make_tuple(222, 119, 174), std::make_tuple(241, 182, 218),
64 std::make_tuple(253, 224, 239), std::make_tuple(247, 247, 247),
65 std::make_tuple(230, 245, 208), std::make_tuple(184, 225, 134),
66 std::make_tuple(127, 188, 65), std::make_tuple(77, 146, 33),
67 std::make_tuple(39, 100, 25)}};
69 // Diverging maps use out of bounds ranges to show missing data. Missing Right
70 // Being below min, and missing left being above max.
71 static const std::tuple<uint8_t, uint8_t, uint8_t> DivergingBounds[][2] = {
72 {// The PiYG color scheme has green and red for missing right and left
73 // respectively.
74 std::make_tuple(255, 0, 0), std::make_tuple(0, 255, 0)}};
76 ColorHelper::ColorHelper(ColorHelper::DivergingScheme S)
77 : MinIn(-1.0), MaxIn(1.0), ColorMap(DivergingCoeffs[static_cast<int>(S)]),
78 BoundMap(DivergingBounds[static_cast<int>(S)]) {}
80 // Takes a tuple of uint8_ts representing a color in RGB and converts them to
81 // HSV represented by a tuple of doubles
82 static std::tuple<double, double, double>
83 convertToHSV(const std::tuple<uint8_t, uint8_t, uint8_t> &Color) {
84 double Scaled[3] = {std::get<0>(Color) / 255.0, std::get<1>(Color) / 255.0,
85 std::get<2>(Color) / 255.0};
86 int Min = 0;
87 int Max = 0;
88 for (int i = 1; i < 3; ++i) {
89 if (Scaled[i] < Scaled[Min])
90 Min = i;
91 if (Scaled[i] > Scaled[Max])
92 Max = i;
95 double C = Scaled[Max] - Scaled[Min];
97 double HPrime =
98 (C == 0) ? 0 : (Scaled[(Max + 1) % 3] - Scaled[(Max + 2) % 3]) / C;
99 HPrime = HPrime + 2.0 * Max;
101 double H = (HPrime < 0) ? (HPrime + 6.0) * 60
102 : HPrime * 60; // Scale to between 0 and 360
103 double V = Scaled[Max];
105 double S = (V == 0.0) ? 0.0 : C / V;
107 return std::make_tuple(H, S, V);
110 // Takes a double precision number, clips it between 0 and 1 and then converts
111 // that to an integer between 0x00 and 0xFF with proxpper rounding.
112 static uint8_t unitIntervalTo8BitChar(double B) {
113 double n = std::max(std::min(B, 1.0), 0.0);
114 return static_cast<uint8_t>(255 * n + 0.5);
117 // Takes a typle of doubles representing a color in HSV and converts them to
118 // RGB represented as a tuple of uint8_ts
119 static std::tuple<uint8_t, uint8_t, uint8_t>
120 convertToRGB(const std::tuple<double, double, double> &Color) {
121 const double &H = std::get<0>(Color);
122 const double &S = std::get<1>(Color);
123 const double &V = std::get<2>(Color);
125 double C = V * S;
127 double HPrime = H / 60;
128 double X = C * (1 - std::abs(std::fmod(HPrime, 2.0) - 1));
130 double RGB1[3];
131 int HPrimeInt = static_cast<int>(HPrime);
132 if (HPrimeInt % 2 == 0) {
133 RGB1[(HPrimeInt / 2) % 3] = C;
134 RGB1[(HPrimeInt / 2 + 1) % 3] = X;
135 RGB1[(HPrimeInt / 2 + 2) % 3] = 0.0;
136 } else {
137 RGB1[(HPrimeInt / 2) % 3] = X;
138 RGB1[(HPrimeInt / 2 + 1) % 3] = C;
139 RGB1[(HPrimeInt / 2 + 2) % 3] = 0.0;
142 double Min = V - C;
143 double RGB2[3] = {RGB1[0] + Min, RGB1[1] + Min, RGB1[2] + Min};
145 return std::make_tuple(unitIntervalTo8BitChar(RGB2[0]),
146 unitIntervalTo8BitChar(RGB2[1]),
147 unitIntervalTo8BitChar(RGB2[2]));
150 // The Hue component of the HSV interpolation Routine
151 static double interpolateHue(double H0, double H1, double T) {
152 double D = H1 - H0;
153 if (H0 > H1) {
154 std::swap(H0, H1);
156 D = -D;
157 T = 1 - T;
160 if (D <= 180) {
161 return H0 + T * (H1 - H0);
162 } else {
163 H0 = H0 + 360;
164 return std::fmod(H0 + T * (H1 - H0) + 720, 360);
168 // Interpolates between two HSV Colors both represented as a tuple of doubles
169 // Returns an HSV Color represented as a tuple of doubles
170 static std::tuple<double, double, double>
171 interpolateHSV(const std::tuple<double, double, double> &C0,
172 const std::tuple<double, double, double> &C1, double T) {
173 double H = interpolateHue(std::get<0>(C0), std::get<0>(C1), T);
174 double S = std::get<1>(C0) + T * (std::get<1>(C1) - std::get<1>(C0));
175 double V = std::get<2>(C0) + T * (std::get<2>(C1) - std::get<2>(C0));
176 return std::make_tuple(H, S, V);
179 // Get the Color as a tuple of uint8_ts
180 std::tuple<uint8_t, uint8_t, uint8_t>
181 ColorHelper::getColorTuple(double Point) const {
182 assert(!ColorMap.empty() && "ColorMap must not be empty!");
183 assert(!BoundMap.empty() && "BoundMap must not be empty!");
185 if (Point < MinIn)
186 return BoundMap[0];
187 if (Point > MaxIn)
188 return BoundMap[1];
190 size_t MaxIndex = ColorMap.size() - 1;
191 double IntervalWidth = MaxIn - MinIn;
192 double OffsetP = Point - MinIn;
193 double SectionWidth = IntervalWidth / static_cast<double>(MaxIndex);
194 size_t SectionNo = std::floor(OffsetP / SectionWidth);
195 double T = (OffsetP - SectionNo * SectionWidth) / SectionWidth;
197 auto &RGBColor0 = ColorMap[SectionNo];
198 auto &RGBColor1 = ColorMap[std::min(SectionNo + 1, MaxIndex)];
200 auto HSVColor0 = convertToHSV(RGBColor0);
201 auto HSVColor1 = convertToHSV(RGBColor1);
203 auto InterpolatedHSVColor = interpolateHSV(HSVColor0, HSVColor1, T);
204 return convertToRGB(InterpolatedHSVColor);
207 // A helper method to convert a color represented as tuple of uint8s to a hex
208 // string.
209 std::string
210 ColorHelper::getColorString(std::tuple<uint8_t, uint8_t, uint8_t> t) {
211 return llvm::formatv("#{0:X-2}{1:X-2}{2:X-2}", std::get<0>(t), std::get<1>(t),
212 std::get<2>(t));
215 // Gets a color in a gradient given a number in the interval [0,1], it does this
216 // by evaluating a polynomial which maps [0, 1] -> [0, 1] for each of the R G
217 // and B values in the color. It then converts this [0,1] colors to a 24 bit
218 // color as a hex string.
219 std::string ColorHelper::getColorString(double Point) const {
220 return getColorString(getColorTuple(Point));