1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the DAG Matcher optimizer.
11 //===----------------------------------------------------------------------===//
13 #include "DAGISelMatcher.h"
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/StringSet.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/raw_ostream.h"
20 #define DEBUG_TYPE "isel-opt"
22 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
23 /// into single compound nodes like RecordChild.
24 static void ContractNodes(std::unique_ptr
<Matcher
> &MatcherPtr
,
25 const CodeGenDAGPatterns
&CGP
) {
26 // If we reached the end of the chain, we're done.
27 Matcher
*N
= MatcherPtr
.get();
30 // If we have a scope node, walk down all of the children.
31 if (ScopeMatcher
*Scope
= dyn_cast
<ScopeMatcher
>(N
)) {
32 for (unsigned i
= 0, e
= Scope
->getNumChildren(); i
!= e
; ++i
) {
33 std::unique_ptr
<Matcher
> Child(Scope
->takeChild(i
));
34 ContractNodes(Child
, CGP
);
35 Scope
->resetChild(i
, Child
.release());
40 // If we found a movechild node with a node that comes in a 'foochild' form,
42 if (MoveChildMatcher
*MC
= dyn_cast
<MoveChildMatcher
>(N
)) {
43 Matcher
*New
= nullptr;
44 if (RecordMatcher
*RM
= dyn_cast
<RecordMatcher
>(MC
->getNext()))
45 if (MC
->getChildNo() < 8) // Only have RecordChild0...7
46 New
= new RecordChildMatcher(MC
->getChildNo(), RM
->getWhatFor(),
49 if (CheckTypeMatcher
*CT
= dyn_cast
<CheckTypeMatcher
>(MC
->getNext()))
50 if (MC
->getChildNo() < 8 && // Only have CheckChildType0...7
51 CT
->getResNo() == 0) // CheckChildType checks res #0
52 New
= new CheckChildTypeMatcher(MC
->getChildNo(), CT
->getType());
54 if (CheckSameMatcher
*CS
= dyn_cast
<CheckSameMatcher
>(MC
->getNext()))
55 if (MC
->getChildNo() < 4) // Only have CheckChildSame0...3
56 New
= new CheckChildSameMatcher(MC
->getChildNo(), CS
->getMatchNumber());
58 if (CheckIntegerMatcher
*CI
= dyn_cast
<CheckIntegerMatcher
>(MC
->getNext()))
59 if (MC
->getChildNo() < 5) // Only have CheckChildInteger0...4
60 New
= new CheckChildIntegerMatcher(MC
->getChildNo(), CI
->getValue());
62 if (auto *CCC
= dyn_cast
<CheckCondCodeMatcher
>(MC
->getNext()))
63 if (MC
->getChildNo() == 2) // Only have CheckChild2CondCode
64 New
= new CheckChild2CondCodeMatcher(CCC
->getCondCodeName());
67 // Insert the new node.
68 New
->setNext(MatcherPtr
.release());
69 MatcherPtr
.reset(New
);
70 // Remove the old one.
71 MC
->setNext(MC
->getNext()->takeNext());
72 return ContractNodes(MatcherPtr
, CGP
);
76 // Zap movechild -> moveparent.
77 if (MoveChildMatcher
*MC
= dyn_cast
<MoveChildMatcher
>(N
))
78 if (MoveParentMatcher
*MP
=
79 dyn_cast
<MoveParentMatcher
>(MC
->getNext())) {
80 MatcherPtr
.reset(MP
->takeNext());
81 return ContractNodes(MatcherPtr
, CGP
);
84 // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
85 if (EmitNodeMatcher
*EN
= dyn_cast
<EmitNodeMatcher
>(N
))
86 if (CompleteMatchMatcher
*CM
=
87 dyn_cast
<CompleteMatchMatcher
>(EN
->getNext())) {
88 // We can only use MorphNodeTo if the result values match up.
89 unsigned RootResultFirst
= EN
->getFirstResultSlot();
90 bool ResultsMatch
= true;
91 for (unsigned i
= 0, e
= CM
->getNumResults(); i
!= e
; ++i
)
92 if (CM
->getResult(i
) != RootResultFirst
+i
)
95 // If the selected node defines a subset of the glue/chain results, we
96 // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the
97 // matched pattern has a chain but the root node doesn't.
98 const PatternToMatch
&Pattern
= CM
->getPattern();
100 if (!EN
->hasChain() &&
101 Pattern
.getSrcPattern()->NodeHasProperty(SDNPHasChain
, CGP
))
102 ResultsMatch
= false;
104 // If the matched node has glue and the output root doesn't, we can't
107 // NOTE: Strictly speaking, we don't have to check for glue here
108 // because the code in the pattern generator doesn't handle it right. We
109 // do it anyway for thoroughness.
110 if (!EN
->hasOutFlag() &&
111 Pattern
.getSrcPattern()->NodeHasProperty(SDNPOutGlue
, CGP
))
112 ResultsMatch
= false;
115 // If the root result node defines more results than the source root node
116 // *and* has a chain or glue input, then we can't match it because it
117 // would end up replacing the extra result with the chain/glue.
119 if ((EN
->hasGlue() || EN
->hasChain()) &&
120 EN
->getNumNonChainGlueVTs() > ... need to get no results reliably
...)
125 const SmallVectorImpl
<MVT::SimpleValueType
> &VTs
= EN
->getVTList();
126 const SmallVectorImpl
<unsigned> &Operands
= EN
->getOperandList();
127 MatcherPtr
.reset(new MorphNodeToMatcher(EN
->getOpcodeName(),
129 EN
->hasChain(), EN
->hasInFlag(),
132 EN
->getNumFixedArityOperands(),
137 // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
141 ContractNodes(N
->getNextPtr(), CGP
);
144 // If we have a CheckType/CheckChildType/Record node followed by a
145 // CheckOpcode, invert the two nodes. We prefer to do structural checks
146 // before type checks, as this opens opportunities for factoring on targets
147 // like X86 where many operations are valid on multiple types.
148 if ((isa
<CheckTypeMatcher
>(N
) || isa
<CheckChildTypeMatcher
>(N
) ||
149 isa
<RecordMatcher
>(N
)) &&
150 isa
<CheckOpcodeMatcher
>(N
->getNext())) {
151 // Unlink the two nodes from the list.
152 Matcher
*CheckType
= MatcherPtr
.release();
153 Matcher
*CheckOpcode
= CheckType
->takeNext();
154 Matcher
*Tail
= CheckOpcode
->takeNext();
157 MatcherPtr
.reset(CheckOpcode
);
158 CheckOpcode
->setNext(CheckType
);
159 CheckType
->setNext(Tail
);
160 return ContractNodes(MatcherPtr
, CGP
);
164 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
165 /// specified kind. Return null if we didn't find one otherwise return the
167 static Matcher
*FindNodeWithKind(Matcher
*M
, Matcher::KindTy Kind
) {
168 for (; M
; M
= M
->getNext())
169 if (M
->getKind() == Kind
)
175 /// FactorNodes - Turn matches like this:
177 /// OPC_CheckType i32
179 /// OPC_CheckType i32
182 /// OPC_CheckType i32
187 static void FactorNodes(std::unique_ptr
<Matcher
> &InputMatcherPtr
) {
188 // Look for a push node. Iterates instead of recurses to reduce stack usage.
189 ScopeMatcher
*Scope
= nullptr;
190 std::unique_ptr
<Matcher
> *RebindableMatcherPtr
= &InputMatcherPtr
;
192 // If we reached the end of the chain, we're done.
193 Matcher
*N
= RebindableMatcherPtr
->get();
196 // If this is not a push node, just scan for one.
197 Scope
= dyn_cast
<ScopeMatcher
>(N
);
199 RebindableMatcherPtr
= &(N
->getNextPtr());
201 std::unique_ptr
<Matcher
> &MatcherPtr
= *RebindableMatcherPtr
;
203 // Okay, pull together the children of the scope node into a vector so we can
204 // inspect it more easily.
205 SmallVector
<Matcher
*, 32> OptionsToMatch
;
207 for (unsigned i
= 0, e
= Scope
->getNumChildren(); i
!= e
; ++i
) {
208 // Factor the subexpression.
209 std::unique_ptr
<Matcher
> Child(Scope
->takeChild(i
));
213 // If the child is a ScopeMatcher we can just merge its contents.
214 if (auto *SM
= dyn_cast
<ScopeMatcher
>(Child
.get())) {
215 for (unsigned j
= 0, e
= SM
->getNumChildren(); j
!= e
; ++j
)
216 OptionsToMatch
.push_back(SM
->takeChild(j
));
218 OptionsToMatch
.push_back(Child
.release());
223 SmallVector
<Matcher
*, 32> NewOptionsToMatch
;
225 // Loop over options to match, merging neighboring patterns with identical
226 // starting nodes into a shared matcher.
227 for (unsigned OptionIdx
= 0, e
= OptionsToMatch
.size(); OptionIdx
!= e
;) {
228 // Find the set of matchers that start with this node.
229 Matcher
*Optn
= OptionsToMatch
[OptionIdx
++];
231 if (OptionIdx
== e
) {
232 NewOptionsToMatch
.push_back(Optn
);
236 // See if the next option starts with the same matcher. If the two
237 // neighbors *do* start with the same matcher, we can factor the matcher out
238 // of at least these two patterns. See what the maximal set we can merge
240 SmallVector
<Matcher
*, 8> EqualMatchers
;
241 EqualMatchers
.push_back(Optn
);
243 // Factor all of the known-equal matchers after this one into the same
245 while (OptionIdx
!= e
&& OptionsToMatch
[OptionIdx
]->isEqual(Optn
))
246 EqualMatchers
.push_back(OptionsToMatch
[OptionIdx
++]);
248 // If we found a non-equal matcher, see if it is contradictory with the
249 // current node. If so, we know that the ordering relation between the
250 // current sets of nodes and this node don't matter. Look past it to see if
251 // we can merge anything else into this matching group.
252 unsigned Scan
= OptionIdx
;
254 // If we ran out of stuff to scan, we're done.
255 if (Scan
== e
) break;
257 Matcher
*ScanMatcher
= OptionsToMatch
[Scan
];
259 // If we found an entry that matches out matcher, merge it into the set to
261 if (Optn
->isEqual(ScanMatcher
)) {
262 // If is equal after all, add the option to EqualMatchers and remove it
263 // from OptionsToMatch.
264 EqualMatchers
.push_back(ScanMatcher
);
265 OptionsToMatch
.erase(OptionsToMatch
.begin()+Scan
);
270 // If the option we're checking for contradicts the start of the list,
272 if (Optn
->isContradictory(ScanMatcher
)) {
277 // If we're scanning for a simple node, see if it occurs later in the
278 // sequence. If so, and if we can move it up, it might be contradictory
279 // or the same as what we're looking for. If so, reorder it.
280 if (Optn
->isSimplePredicateOrRecordNode()) {
281 Matcher
*M2
= FindNodeWithKind(ScanMatcher
, Optn
->getKind());
282 if (M2
&& M2
!= ScanMatcher
&&
283 M2
->canMoveBefore(ScanMatcher
) &&
284 (M2
->isEqual(Optn
) || M2
->isContradictory(Optn
))) {
285 Matcher
*MatcherWithoutM2
= ScanMatcher
->unlinkNode(M2
);
286 M2
->setNext(MatcherWithoutM2
);
287 OptionsToMatch
[Scan
] = M2
;
292 // Otherwise, we don't know how to handle this entry, we have to bail.
297 // Don't print it's obvious nothing extra could be merged anyway.
299 LLVM_DEBUG(errs() << "Couldn't merge this:\n"; Optn
->print(errs(), 4);
300 errs() << "into this:\n";
301 OptionsToMatch
[Scan
]->print(errs(), 4);
302 if (Scan
+ 1 != e
) OptionsToMatch
[Scan
+ 1]->printOne(errs());
303 if (Scan
+ 2 < e
) OptionsToMatch
[Scan
+ 2]->printOne(errs());
307 // If we only found one option starting with this matcher, no factoring is
309 if (EqualMatchers
.size() == 1) {
310 NewOptionsToMatch
.push_back(EqualMatchers
[0]);
314 // Factor these checks by pulling the first node off each entry and
315 // discarding it. Take the first one off the first entry to reuse.
316 Matcher
*Shared
= Optn
;
317 Optn
= Optn
->takeNext();
318 EqualMatchers
[0] = Optn
;
320 // Remove and delete the first node from the other matchers we're factoring.
321 for (unsigned i
= 1, e
= EqualMatchers
.size(); i
!= e
; ++i
) {
322 Matcher
*Tmp
= EqualMatchers
[i
]->takeNext();
323 delete EqualMatchers
[i
];
324 EqualMatchers
[i
] = Tmp
;
327 Shared
->setNext(new ScopeMatcher(EqualMatchers
));
329 // Recursively factor the newly created node.
330 FactorNodes(Shared
->getNextPtr());
332 NewOptionsToMatch
.push_back(Shared
);
335 // If we're down to a single pattern to match, then we don't need this scope
337 if (NewOptionsToMatch
.size() == 1) {
338 MatcherPtr
.reset(NewOptionsToMatch
[0]);
342 if (NewOptionsToMatch
.empty()) {
347 // If our factoring failed (didn't achieve anything) see if we can simplify in
350 // Check to see if all of the leading entries are now opcode checks. If so,
351 // we can convert this Scope to be a OpcodeSwitch instead.
352 bool AllOpcodeChecks
= true, AllTypeChecks
= true;
353 for (unsigned i
= 0, e
= NewOptionsToMatch
.size(); i
!= e
; ++i
) {
354 // Check to see if this breaks a series of CheckOpcodeMatchers.
355 if (AllOpcodeChecks
&&
356 !isa
<CheckOpcodeMatcher
>(NewOptionsToMatch
[i
])) {
359 errs() << "FAILING OPC #" << i
<< "\n";
360 NewOptionsToMatch
[i
]->dump();
363 AllOpcodeChecks
= false;
366 // Check to see if this breaks a series of CheckTypeMatcher's.
368 CheckTypeMatcher
*CTM
=
369 cast_or_null
<CheckTypeMatcher
>(FindNodeWithKind(NewOptionsToMatch
[i
],
370 Matcher::CheckType
));
372 // iPTR checks could alias any other case without us knowing, don't
374 CTM
->getType() == MVT::iPTR
||
375 // SwitchType only works for result #0.
376 CTM
->getResNo() != 0 ||
377 // If the CheckType isn't at the start of the list, see if we can move
379 !CTM
->canMoveBefore(NewOptionsToMatch
[i
])) {
381 if (i
> 3 && AllTypeChecks
) {
382 errs() << "FAILING TYPE #" << i
<< "\n";
383 NewOptionsToMatch
[i
]->dump();
386 AllTypeChecks
= false;
391 // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
392 if (AllOpcodeChecks
) {
394 SmallVector
<std::pair
<const SDNodeInfo
*, Matcher
*>, 8> Cases
;
395 for (unsigned i
= 0, e
= NewOptionsToMatch
.size(); i
!= e
; ++i
) {
396 CheckOpcodeMatcher
*COM
= cast
<CheckOpcodeMatcher
>(NewOptionsToMatch
[i
]);
397 assert(Opcodes
.insert(COM
->getOpcode().getEnumName()).second
&&
398 "Duplicate opcodes not factored?");
399 Cases
.push_back(std::make_pair(&COM
->getOpcode(), COM
->takeNext()));
403 MatcherPtr
.reset(new SwitchOpcodeMatcher(Cases
));
407 // If all the options are CheckType's, we can form the SwitchType, woot.
409 DenseMap
<unsigned, unsigned> TypeEntry
;
410 SmallVector
<std::pair
<MVT::SimpleValueType
, Matcher
*>, 8> Cases
;
411 for (unsigned i
= 0, e
= NewOptionsToMatch
.size(); i
!= e
; ++i
) {
412 Matcher
* M
= FindNodeWithKind(NewOptionsToMatch
[i
], Matcher::CheckType
);
413 assert(M
&& isa
<CheckTypeMatcher
>(M
) && "Unknown Matcher type");
415 auto *CTM
= cast
<CheckTypeMatcher
>(M
);
416 Matcher
*MatcherWithoutCTM
= NewOptionsToMatch
[i
]->unlinkNode(CTM
);
417 MVT::SimpleValueType CTMTy
= CTM
->getType();
420 unsigned &Entry
= TypeEntry
[CTMTy
];
422 // If we have unfactored duplicate types, then we should factor them.
423 Matcher
*PrevMatcher
= Cases
[Entry
-1].second
;
424 if (ScopeMatcher
*SM
= dyn_cast
<ScopeMatcher
>(PrevMatcher
)) {
425 SM
->setNumChildren(SM
->getNumChildren()+1);
426 SM
->resetChild(SM
->getNumChildren()-1, MatcherWithoutCTM
);
430 Matcher
*Entries
[2] = { PrevMatcher
, MatcherWithoutCTM
};
431 Cases
[Entry
-1].second
= new ScopeMatcher(Entries
);
435 Entry
= Cases
.size()+1;
436 Cases
.push_back(std::make_pair(CTMTy
, MatcherWithoutCTM
));
439 // Make sure we recursively factor any scopes we may have created.
440 for (auto &M
: Cases
) {
441 if (ScopeMatcher
*SM
= dyn_cast
<ScopeMatcher
>(M
.second
)) {
442 std::unique_ptr
<Matcher
> Scope(SM
);
444 M
.second
= Scope
.release();
445 assert(M
.second
&& "null matcher");
449 if (Cases
.size() != 1) {
450 MatcherPtr
.reset(new SwitchTypeMatcher(Cases
));
452 // If we factored and ended up with one case, create it now.
453 MatcherPtr
.reset(new CheckTypeMatcher(Cases
[0].first
, 0));
454 MatcherPtr
->setNext(Cases
[0].second
);
460 // Reassemble the Scope node with the adjusted children.
461 Scope
->setNumChildren(NewOptionsToMatch
.size());
462 for (unsigned i
= 0, e
= NewOptionsToMatch
.size(); i
!= e
; ++i
)
463 Scope
->resetChild(i
, NewOptionsToMatch
[i
]);
467 llvm::OptimizeMatcher(std::unique_ptr
<Matcher
> &MatcherPtr
,
468 const CodeGenDAGPatterns
&CGP
) {
469 ContractNodes(MatcherPtr
, CGP
);
470 FactorNodes(MatcherPtr
);