1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the ELF-specific dumper for llvm-readobj.
12 //===----------------------------------------------------------------------===//
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
17 #include "ObjDumper.h"
18 #include "StackMapPrinter.h"
19 #include "llvm-readobj.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Object/ELFObjectFile.h"
37 #include "llvm/Object/ELFTypes.h"
38 #include "llvm/Object/Error.h"
39 #include "llvm/Object/ObjectFile.h"
40 #include "llvm/Object/RelocationResolver.h"
41 #include "llvm/Object/StackMapParser.h"
42 #include "llvm/Support/AMDGPUMetadata.h"
43 #include "llvm/Support/ARMAttributeParser.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Endian.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/FormatVariadic.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/LEB128.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/MipsABIFlags.h"
55 #include "llvm/Support/ScopedPrinter.h"
56 #include "llvm/Support/raw_ostream.h"
65 #include <system_error>
66 #include <unordered_set>
70 using namespace llvm::object
;
73 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
77 #define ENUM_ENT(enum, altName) \
78 { #enum, altName, ELF::enum }
80 #define ENUM_ENT_1(enum) \
81 { #enum, #enum, ELF::enum }
83 #define LLVM_READOBJ_PHDR_ENUM(ns, enum) \
85 return std::string(#enum).substr(3);
87 #define TYPEDEF_ELF_TYPES(ELFT) \
88 using ELFO = ELFFile<ELFT>; \
89 using Elf_Addr = typename ELFT::Addr; \
90 using Elf_Shdr = typename ELFT::Shdr; \
91 using Elf_Sym = typename ELFT::Sym; \
92 using Elf_Dyn = typename ELFT::Dyn; \
93 using Elf_Dyn_Range = typename ELFT::DynRange; \
94 using Elf_Rel = typename ELFT::Rel; \
95 using Elf_Rela = typename ELFT::Rela; \
96 using Elf_Relr = typename ELFT::Relr; \
97 using Elf_Rel_Range = typename ELFT::RelRange; \
98 using Elf_Rela_Range = typename ELFT::RelaRange; \
99 using Elf_Relr_Range = typename ELFT::RelrRange; \
100 using Elf_Phdr = typename ELFT::Phdr; \
101 using Elf_Half = typename ELFT::Half; \
102 using Elf_Ehdr = typename ELFT::Ehdr; \
103 using Elf_Word = typename ELFT::Word; \
104 using Elf_Hash = typename ELFT::Hash; \
105 using Elf_GnuHash = typename ELFT::GnuHash; \
106 using Elf_Note = typename ELFT::Note; \
107 using Elf_Sym_Range = typename ELFT::SymRange; \
108 using Elf_Versym = typename ELFT::Versym; \
109 using Elf_Verneed = typename ELFT::Verneed; \
110 using Elf_Vernaux = typename ELFT::Vernaux; \
111 using Elf_Verdef = typename ELFT::Verdef; \
112 using Elf_Verdaux = typename ELFT::Verdaux; \
113 using Elf_CGProfile = typename ELFT::CGProfile; \
114 using uintX_t = typename ELFT::uint;
118 template <class ELFT
> class DumpStyle
;
120 /// Represents a contiguous uniform range in the file. We cannot just create a
121 /// range directly because when creating one of these from the .dynamic table
122 /// the size, entity size and virtual address are different entries in arbitrary
123 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
124 struct DynRegionInfo
{
125 DynRegionInfo(StringRef ObjName
) : FileName(ObjName
) {}
126 DynRegionInfo(const void *A
, uint64_t S
, uint64_t ES
, StringRef ObjName
)
127 : Addr(A
), Size(S
), EntSize(ES
), FileName(ObjName
) {}
129 /// Address in current address space.
130 const void *Addr
= nullptr;
131 /// Size in bytes of the region.
133 /// Size of each entity in the region.
134 uint64_t EntSize
= 0;
136 /// Name of the file. Used for error reporting.
139 template <typename Type
> ArrayRef
<Type
> getAsArrayRef() const {
140 const Type
*Start
= reinterpret_cast<const Type
*>(Addr
);
142 return {Start
, Start
};
143 if (EntSize
!= sizeof(Type
) || Size
% EntSize
) {
144 // TODO: Add a section index to this warning.
145 reportWarning(createError("invalid section size (" + Twine(Size
) +
146 ") or entity size (" + Twine(EntSize
) + ")"),
148 return {Start
, Start
};
150 return {Start
, Start
+ (Size
/ EntSize
)};
154 template <typename ELFT
> class ELFDumper
: public ObjDumper
{
156 ELFDumper(const object::ELFObjectFile
<ELFT
> *ObjF
, ScopedPrinter
&Writer
);
158 void printFileHeaders() override
;
159 void printSectionHeaders() override
;
160 void printRelocations() override
;
161 void printDynamicRelocations() override
;
162 void printSymbols(bool PrintSymbols
, bool PrintDynamicSymbols
) override
;
163 void printHashSymbols() override
;
164 void printUnwindInfo() override
;
166 void printDynamicTable() override
;
167 void printNeededLibraries() override
;
168 void printProgramHeaders(bool PrintProgramHeaders
,
169 cl::boolOrDefault PrintSectionMapping
) override
;
170 void printHashTable() override
;
171 void printGnuHashTable() override
;
172 void printLoadName() override
;
173 void printVersionInfo() override
;
174 void printGroupSections() override
;
176 void printAttributes() override
;
177 void printMipsPLTGOT() override
;
178 void printMipsABIFlags() override
;
179 void printMipsReginfo() override
;
180 void printMipsOptions() override
;
182 void printStackMap() const override
;
184 void printHashHistogram() override
;
186 void printCGProfile() override
;
187 void printAddrsig() override
;
189 void printNotes() override
;
191 void printELFLinkerOptions() override
;
192 void printStackSizes() override
;
194 const object::ELFObjectFile
<ELFT
> *getElfObject() const { return ObjF
; };
197 std::unique_ptr
<DumpStyle
<ELFT
>> ELFDumperStyle
;
199 TYPEDEF_ELF_TYPES(ELFT
)
201 DynRegionInfo
checkDRI(DynRegionInfo DRI
) {
202 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
203 if (DRI
.Addr
< Obj
->base() ||
204 reinterpret_cast<const uint8_t *>(DRI
.Addr
) + DRI
.Size
>
205 Obj
->base() + Obj
->getBufSize())
206 reportError(errorCodeToError(llvm::object::object_error::parse_failed
),
207 ObjF
->getFileName());
211 DynRegionInfo
createDRIFrom(const Elf_Phdr
*P
, uintX_t EntSize
) {
212 return checkDRI({ObjF
->getELFFile()->base() + P
->p_offset
, P
->p_filesz
,
213 EntSize
, ObjF
->getFileName()});
216 DynRegionInfo
createDRIFrom(const Elf_Shdr
*S
) {
217 return checkDRI({ObjF
->getELFFile()->base() + S
->sh_offset
, S
->sh_size
,
218 S
->sh_entsize
, ObjF
->getFileName()});
221 std::pair
<const Elf_Phdr
*, const Elf_Shdr
*>
222 findDynamic(const ELFFile
<ELFT
> *Obj
);
223 void loadDynamicTable(const ELFFile
<ELFT
> *Obj
);
224 void parseDynamicTable();
226 StringRef
getSymbolVersion(StringRef StrTab
, const Elf_Sym
*symb
,
227 bool &IsDefault
) const;
228 void LoadVersionMap() const;
229 void LoadVersionNeeds(const Elf_Shdr
*ec
) const;
230 void LoadVersionDefs(const Elf_Shdr
*sec
) const;
232 const object::ELFObjectFile
<ELFT
> *ObjF
;
233 DynRegionInfo DynRelRegion
;
234 DynRegionInfo DynRelaRegion
;
235 DynRegionInfo DynRelrRegion
;
236 DynRegionInfo DynPLTRelRegion
;
237 DynRegionInfo DynSymRegion
;
238 DynRegionInfo DynamicTable
;
239 StringRef DynamicStringTable
;
240 std::string SOName
= "<Not found>";
241 const Elf_Hash
*HashTable
= nullptr;
242 const Elf_GnuHash
*GnuHashTable
= nullptr;
243 const Elf_Shdr
*DotSymtabSec
= nullptr;
244 const Elf_Shdr
*DotCGProfileSec
= nullptr;
245 const Elf_Shdr
*DotAddrsigSec
= nullptr;
246 StringRef DynSymtabName
;
247 ArrayRef
<Elf_Word
> ShndxTable
;
249 const Elf_Shdr
*SymbolVersionSection
= nullptr; // .gnu.version
250 const Elf_Shdr
*SymbolVersionNeedSection
= nullptr; // .gnu.version_r
251 const Elf_Shdr
*SymbolVersionDefSection
= nullptr; // .gnu.version_d
253 // Records for each version index the corresponding Verdef or Vernaux entry.
254 // This is filled the first time LoadVersionMap() is called.
255 class VersionMapEntry
: public PointerIntPair
<const void *, 1> {
257 // If the integer is 0, this is an Elf_Verdef*.
258 // If the integer is 1, this is an Elf_Vernaux*.
259 VersionMapEntry() : PointerIntPair
<const void *, 1>(nullptr, 0) {}
260 VersionMapEntry(const Elf_Verdef
*verdef
)
261 : PointerIntPair
<const void *, 1>(verdef
, 0) {}
262 VersionMapEntry(const Elf_Vernaux
*vernaux
)
263 : PointerIntPair
<const void *, 1>(vernaux
, 1) {}
265 bool isNull() const { return getPointer() == nullptr; }
266 bool isVerdef() const { return !isNull() && getInt() == 0; }
267 bool isVernaux() const { return !isNull() && getInt() == 1; }
268 const Elf_Verdef
*getVerdef() const {
269 return isVerdef() ? (const Elf_Verdef
*)getPointer() : nullptr;
271 const Elf_Vernaux
*getVernaux() const {
272 return isVernaux() ? (const Elf_Vernaux
*)getPointer() : nullptr;
275 mutable SmallVector
<VersionMapEntry
, 16> VersionMap
;
278 Elf_Dyn_Range
dynamic_table() const {
279 // A valid .dynamic section contains an array of entries terminated
280 // with a DT_NULL entry. However, sometimes the section content may
281 // continue past the DT_NULL entry, so to dump the section correctly,
282 // we first find the end of the entries by iterating over them.
283 Elf_Dyn_Range Table
= DynamicTable
.getAsArrayRef
<Elf_Dyn
>();
286 while (Size
< Table
.size())
287 if (Table
[Size
++].getTag() == DT_NULL
)
290 return Table
.slice(0, Size
);
293 Elf_Sym_Range
dynamic_symbols() const {
294 return DynSymRegion
.getAsArrayRef
<Elf_Sym
>();
297 Elf_Rel_Range
dyn_rels() const;
298 Elf_Rela_Range
dyn_relas() const;
299 Elf_Relr_Range
dyn_relrs() const;
300 std::string
getFullSymbolName(const Elf_Sym
*Symbol
, StringRef StrTable
,
301 bool IsDynamic
) const;
302 void getSectionNameIndex(const Elf_Sym
*Symbol
, const Elf_Sym
*FirstSym
,
303 StringRef
&SectionName
,
304 unsigned &SectionIndex
) const;
305 std::string
getStaticSymbolName(uint32_t Index
) const;
306 std::string
getDynamicString(uint64_t Value
) const;
307 StringRef
getSymbolVersionByIndex(StringRef StrTab
,
308 uint32_t VersionSymbolIndex
,
309 bool &IsDefault
) const;
311 void printSymbolsHelper(bool IsDynamic
) const;
312 void printDynamicEntry(raw_ostream
&OS
, uint64_t Type
, uint64_t Value
) const;
314 const Elf_Shdr
*getDotSymtabSec() const { return DotSymtabSec
; }
315 const Elf_Shdr
*getDotCGProfileSec() const { return DotCGProfileSec
; }
316 const Elf_Shdr
*getDotAddrsigSec() const { return DotAddrsigSec
; }
317 ArrayRef
<Elf_Word
> getShndxTable() const { return ShndxTable
; }
318 StringRef
getDynamicStringTable() const { return DynamicStringTable
; }
319 const DynRegionInfo
&getDynRelRegion() const { return DynRelRegion
; }
320 const DynRegionInfo
&getDynRelaRegion() const { return DynRelaRegion
; }
321 const DynRegionInfo
&getDynRelrRegion() const { return DynRelrRegion
; }
322 const DynRegionInfo
&getDynPLTRelRegion() const { return DynPLTRelRegion
; }
323 const DynRegionInfo
&getDynamicTableRegion() const { return DynamicTable
; }
324 const Elf_Hash
*getHashTable() const { return HashTable
; }
325 const Elf_GnuHash
*getGnuHashTable() const { return GnuHashTable
; }
328 template <class ELFT
>
329 void ELFDumper
<ELFT
>::printSymbolsHelper(bool IsDynamic
) const {
330 StringRef StrTable
, SymtabName
;
332 Elf_Sym_Range
Syms(nullptr, nullptr);
333 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
335 StrTable
= DynamicStringTable
;
336 Syms
= dynamic_symbols();
337 SymtabName
= DynSymtabName
;
338 if (DynSymRegion
.Addr
)
339 Entries
= DynSymRegion
.Size
/ DynSymRegion
.EntSize
;
343 StrTable
= unwrapOrError(ObjF
->getFileName(),
344 Obj
->getStringTableForSymtab(*DotSymtabSec
));
345 Syms
= unwrapOrError(ObjF
->getFileName(), Obj
->symbols(DotSymtabSec
));
347 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(DotSymtabSec
));
348 Entries
= DotSymtabSec
->getEntityCount();
350 if (Syms
.begin() == Syms
.end())
353 // The st_other field has 2 logical parts. The first two bits hold the symbol
354 // visibility (STV_*) and the remainder hold other platform-specific values.
355 bool NonVisibilityBitsUsed
= llvm::find_if(Syms
, [](const Elf_Sym
&S
) {
356 return S
.st_other
& ~0x3;
359 ELFDumperStyle
->printSymtabMessage(Obj
, SymtabName
, Entries
,
360 NonVisibilityBitsUsed
);
361 for (const auto &Sym
: Syms
)
362 ELFDumperStyle
->printSymbol(Obj
, &Sym
, Syms
.begin(), StrTable
, IsDynamic
,
363 NonVisibilityBitsUsed
);
366 template <class ELFT
> class MipsGOTParser
;
368 template <typename ELFT
> class DumpStyle
{
370 using Elf_Shdr
= typename
ELFT::Shdr
;
371 using Elf_Sym
= typename
ELFT::Sym
;
372 using Elf_Addr
= typename
ELFT::Addr
;
374 DumpStyle(ELFDumper
<ELFT
> *Dumper
) : Dumper(Dumper
) {
375 FileName
= this->Dumper
->getElfObject()->getFileName();
377 // Dumper reports all non-critical errors as warnings.
378 // It does not print the same warning more than once.
379 WarningHandler
= [this](const Twine
&Msg
) {
380 if (Warnings
.insert(Msg
.str()).second
)
381 reportWarning(createError(Msg
), FileName
);
382 return Error::success();
386 virtual ~DumpStyle() = default;
388 virtual void printFileHeaders(const ELFFile
<ELFT
> *Obj
) = 0;
389 virtual void printGroupSections(const ELFFile
<ELFT
> *Obj
) = 0;
390 virtual void printRelocations(const ELFFile
<ELFT
> *Obj
) = 0;
391 virtual void printSectionHeaders(const ELFFile
<ELFT
> *Obj
) = 0;
392 virtual void printSymbols(const ELFFile
<ELFT
> *Obj
, bool PrintSymbols
,
393 bool PrintDynamicSymbols
) = 0;
394 virtual void printHashSymbols(const ELFFile
<ELFT
> *Obj
) {}
395 virtual void printDynamic(const ELFFile
<ELFT
> *Obj
) {}
396 virtual void printDynamicRelocations(const ELFFile
<ELFT
> *Obj
) = 0;
397 virtual void printSymtabMessage(const ELFFile
<ELFT
> *Obj
, StringRef Name
,
398 size_t Offset
, bool NonVisibilityBitsUsed
) {}
399 virtual void printSymbol(const ELFFile
<ELFT
> *Obj
, const Elf_Sym
*Symbol
,
400 const Elf_Sym
*FirstSym
, StringRef StrTable
,
401 bool IsDynamic
, bool NonVisibilityBitsUsed
) = 0;
402 virtual void printProgramHeaders(const ELFFile
<ELFT
> *Obj
,
403 bool PrintProgramHeaders
,
404 cl::boolOrDefault PrintSectionMapping
) = 0;
405 virtual void printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
406 const Elf_Shdr
*Sec
) = 0;
407 virtual void printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
408 const Elf_Shdr
*Sec
) = 0;
409 virtual void printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
410 const Elf_Shdr
*Sec
) = 0;
411 virtual void printHashHistogram(const ELFFile
<ELFT
> *Obj
) = 0;
412 virtual void printCGProfile(const ELFFile
<ELFT
> *Obj
) = 0;
413 virtual void printAddrsig(const ELFFile
<ELFT
> *Obj
) = 0;
414 virtual void printNotes(const ELFFile
<ELFT
> *Obj
) = 0;
415 virtual void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) = 0;
416 virtual void printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) = 0;
417 void printNonRelocatableStackSizes(const ELFObjectFile
<ELFT
> *Obj
,
418 std::function
<void()> PrintHeader
);
419 void printRelocatableStackSizes(const ELFObjectFile
<ELFT
> *Obj
,
420 std::function
<void()> PrintHeader
);
421 void printFunctionStackSize(const ELFObjectFile
<ELFT
> *Obj
, uint64_t SymValue
,
422 SectionRef FunctionSec
,
423 const StringRef SectionName
, DataExtractor Data
,
425 void printStackSize(const ELFObjectFile
<ELFT
> *Obj
, RelocationRef Rel
,
426 SectionRef FunctionSec
,
427 const StringRef
&StackSizeSectionName
,
428 const RelocationResolver
&Resolver
, DataExtractor Data
);
429 virtual void printStackSizeEntry(uint64_t Size
, StringRef FuncName
) = 0;
430 virtual void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
431 virtual void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
432 const ELFDumper
<ELFT
> *dumper() const { return Dumper
; }
435 std::function
<Error(const Twine
&Msg
)> WarningHandler
;
439 std::unordered_set
<std::string
> Warnings
;
440 const ELFDumper
<ELFT
> *Dumper
;
443 template <typename ELFT
> class GNUStyle
: public DumpStyle
<ELFT
> {
444 formatted_raw_ostream
&OS
;
447 TYPEDEF_ELF_TYPES(ELFT
)
449 GNUStyle(ScopedPrinter
&W
, ELFDumper
<ELFT
> *Dumper
)
450 : DumpStyle
<ELFT
>(Dumper
),
451 OS(static_cast<formatted_raw_ostream
&>(W
.getOStream())) {
452 assert (&W
.getOStream() == &llvm::fouts());
455 void printFileHeaders(const ELFO
*Obj
) override
;
456 void printGroupSections(const ELFFile
<ELFT
> *Obj
) override
;
457 void printRelocations(const ELFO
*Obj
) override
;
458 void printSectionHeaders(const ELFO
*Obj
) override
;
459 void printSymbols(const ELFO
*Obj
, bool PrintSymbols
,
460 bool PrintDynamicSymbols
) override
;
461 void printHashSymbols(const ELFO
*Obj
) override
;
462 void printDynamic(const ELFFile
<ELFT
> *Obj
) override
;
463 void printDynamicRelocations(const ELFO
*Obj
) override
;
464 void printSymtabMessage(const ELFO
*Obj
, StringRef Name
, size_t Offset
,
465 bool NonVisibilityBitsUsed
) override
;
466 void printProgramHeaders(const ELFO
*Obj
, bool PrintProgramHeaders
,
467 cl::boolOrDefault PrintSectionMapping
) override
;
468 void printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
469 const Elf_Shdr
*Sec
) override
;
470 void printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
471 const Elf_Shdr
*Sec
) override
;
472 void printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
473 const Elf_Shdr
*Sec
) override
;
474 void printHashHistogram(const ELFFile
<ELFT
> *Obj
) override
;
475 void printCGProfile(const ELFFile
<ELFT
> *Obj
) override
;
476 void printAddrsig(const ELFFile
<ELFT
> *Obj
) override
;
477 void printNotes(const ELFFile
<ELFT
> *Obj
) override
;
478 void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) override
;
479 void printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) override
;
480 void printStackSizeEntry(uint64_t Size
, StringRef FuncName
) override
;
481 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
482 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
489 Field(StringRef S
, unsigned Col
) : Str(S
), Column(Col
) {}
490 Field(unsigned Col
) : Column(Col
) {}
493 template <typename T
, typename TEnum
>
494 std::string
printEnum(T Value
, ArrayRef
<EnumEntry
<TEnum
>> EnumValues
) {
495 for (const auto &EnumItem
: EnumValues
)
496 if (EnumItem
.Value
== Value
)
497 return EnumItem
.AltName
;
498 return to_hexString(Value
, false);
501 template <typename T
, typename TEnum
>
502 std::string
printFlags(T Value
, ArrayRef
<EnumEntry
<TEnum
>> EnumValues
,
503 TEnum EnumMask1
= {}, TEnum EnumMask2
= {},
504 TEnum EnumMask3
= {}) {
506 for (const auto &Flag
: EnumValues
) {
511 if (Flag
.Value
& EnumMask1
)
512 EnumMask
= EnumMask1
;
513 else if (Flag
.Value
& EnumMask2
)
514 EnumMask
= EnumMask2
;
515 else if (Flag
.Value
& EnumMask3
)
516 EnumMask
= EnumMask3
;
517 bool IsEnum
= (Flag
.Value
& EnumMask
) != 0;
518 if ((!IsEnum
&& (Value
& Flag
.Value
) == Flag
.Value
) ||
519 (IsEnum
&& (Value
& EnumMask
) == Flag
.Value
)) {
528 formatted_raw_ostream
&printField(struct Field F
) {
530 OS
.PadToColumn(F
.Column
);
535 void printHashedSymbol(const ELFO
*Obj
, const Elf_Sym
*FirstSym
, uint32_t Sym
,
536 StringRef StrTable
, uint32_t Bucket
);
537 void printRelocHeader(unsigned SType
);
538 void printRelocation(const ELFO
*Obj
, const Elf_Shdr
*SymTab
,
539 const Elf_Rela
&R
, bool IsRela
);
540 void printRelocation(const ELFO
*Obj
, const Elf_Sym
*Sym
,
541 StringRef SymbolName
, const Elf_Rela
&R
, bool IsRela
);
542 void printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
, const Elf_Sym
*First
,
543 StringRef StrTable
, bool IsDynamic
,
544 bool NonVisibilityBitsUsed
) override
;
545 std::string
getSymbolSectionNdx(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
546 const Elf_Sym
*FirstSym
);
547 void printDynamicRelocation(const ELFO
*Obj
, Elf_Rela R
, bool IsRela
);
548 bool checkTLSSections(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
549 bool checkoffsets(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
550 bool checkVMA(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
551 bool checkPTDynamic(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
552 void printProgramHeaders(const ELFO
*Obj
);
553 void printSectionMapping(const ELFO
*Obj
);
556 template <typename ELFT
> class LLVMStyle
: public DumpStyle
<ELFT
> {
558 TYPEDEF_ELF_TYPES(ELFT
)
560 LLVMStyle(ScopedPrinter
&W
, ELFDumper
<ELFT
> *Dumper
)
561 : DumpStyle
<ELFT
>(Dumper
), W(W
) {}
563 void printFileHeaders(const ELFO
*Obj
) override
;
564 void printGroupSections(const ELFFile
<ELFT
> *Obj
) override
;
565 void printRelocations(const ELFO
*Obj
) override
;
566 void printRelocations(const Elf_Shdr
*Sec
, const ELFO
*Obj
);
567 void printSectionHeaders(const ELFO
*Obj
) override
;
568 void printSymbols(const ELFO
*Obj
, bool PrintSymbols
,
569 bool PrintDynamicSymbols
) override
;
570 void printDynamic(const ELFFile
<ELFT
> *Obj
) override
;
571 void printDynamicRelocations(const ELFO
*Obj
) override
;
572 void printProgramHeaders(const ELFO
*Obj
, bool PrintProgramHeaders
,
573 cl::boolOrDefault PrintSectionMapping
) override
;
574 void printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
575 const Elf_Shdr
*Sec
) override
;
576 void printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
577 const Elf_Shdr
*Sec
) override
;
578 void printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
579 const Elf_Shdr
*Sec
) override
;
580 void printHashHistogram(const ELFFile
<ELFT
> *Obj
) override
;
581 void printCGProfile(const ELFFile
<ELFT
> *Obj
) override
;
582 void printAddrsig(const ELFFile
<ELFT
> *Obj
) override
;
583 void printNotes(const ELFFile
<ELFT
> *Obj
) override
;
584 void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) override
;
585 void printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) override
;
586 void printStackSizeEntry(uint64_t Size
, StringRef FuncName
) override
;
587 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
588 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
591 void printRelocation(const ELFO
*Obj
, Elf_Rela Rel
, const Elf_Shdr
*SymTab
);
592 void printDynamicRelocation(const ELFO
*Obj
, Elf_Rela Rel
);
593 void printSymbols(const ELFO
*Obj
);
594 void printDynamicSymbols(const ELFO
*Obj
);
595 void printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
, const Elf_Sym
*First
,
596 StringRef StrTable
, bool IsDynamic
,
597 bool /*NonVisibilityBitsUsed*/) override
;
598 void printProgramHeaders(const ELFO
*Obj
);
599 void printSectionMapping(const ELFO
*Obj
) {}
604 } // end anonymous namespace
608 template <class ELFT
>
609 static std::error_code
createELFDumper(const ELFObjectFile
<ELFT
> *Obj
,
610 ScopedPrinter
&Writer
,
611 std::unique_ptr
<ObjDumper
> &Result
) {
612 Result
.reset(new ELFDumper
<ELFT
>(Obj
, Writer
));
613 return readobj_error::success
;
616 std::error_code
createELFDumper(const object::ObjectFile
*Obj
,
617 ScopedPrinter
&Writer
,
618 std::unique_ptr
<ObjDumper
> &Result
) {
619 // Little-endian 32-bit
620 if (const ELF32LEObjectFile
*ELFObj
= dyn_cast
<ELF32LEObjectFile
>(Obj
))
621 return createELFDumper(ELFObj
, Writer
, Result
);
624 if (const ELF32BEObjectFile
*ELFObj
= dyn_cast
<ELF32BEObjectFile
>(Obj
))
625 return createELFDumper(ELFObj
, Writer
, Result
);
627 // Little-endian 64-bit
628 if (const ELF64LEObjectFile
*ELFObj
= dyn_cast
<ELF64LEObjectFile
>(Obj
))
629 return createELFDumper(ELFObj
, Writer
, Result
);
632 if (const ELF64BEObjectFile
*ELFObj
= dyn_cast
<ELF64BEObjectFile
>(Obj
))
633 return createELFDumper(ELFObj
, Writer
, Result
);
635 return readobj_error::unsupported_obj_file_format
;
638 } // end namespace llvm
640 // Iterate through the versions needed section, and place each Elf_Vernaux
641 // in the VersionMap according to its index.
642 template <class ELFT
>
643 void ELFDumper
<ELFT
>::LoadVersionNeeds(const Elf_Shdr
*Sec
) const {
644 unsigned VerneedSize
= Sec
->sh_size
; // Size of section in bytes
645 unsigned VerneedEntries
= Sec
->sh_info
; // Number of Verneed entries
646 const uint8_t *VerneedStart
= reinterpret_cast<const uint8_t *>(
647 ObjF
->getELFFile()->base() + Sec
->sh_offset
);
648 const uint8_t *VerneedEnd
= VerneedStart
+ VerneedSize
;
649 // The first Verneed entry is at the start of the section.
650 const uint8_t *VerneedBuf
= VerneedStart
;
651 for (unsigned VerneedIndex
= 0; VerneedIndex
< VerneedEntries
;
653 if (VerneedBuf
+ sizeof(Elf_Verneed
) > VerneedEnd
)
654 report_fatal_error("Section ended unexpectedly while scanning "
655 "version needed records.");
656 const Elf_Verneed
*Verneed
=
657 reinterpret_cast<const Elf_Verneed
*>(VerneedBuf
);
658 if (Verneed
->vn_version
!= ELF::VER_NEED_CURRENT
)
659 report_fatal_error("Unexpected verneed version");
660 // Iterate through the Vernaux entries
661 const uint8_t *VernauxBuf
= VerneedBuf
+ Verneed
->vn_aux
;
662 for (unsigned VernauxIndex
= 0; VernauxIndex
< Verneed
->vn_cnt
;
664 if (VernauxBuf
+ sizeof(Elf_Vernaux
) > VerneedEnd
)
665 report_fatal_error("Section ended unexpected while scanning auxiliary "
666 "version needed records.");
667 const Elf_Vernaux
*Vernaux
=
668 reinterpret_cast<const Elf_Vernaux
*>(VernauxBuf
);
669 size_t Index
= Vernaux
->vna_other
& ELF::VERSYM_VERSION
;
670 if (Index
>= VersionMap
.size())
671 VersionMap
.resize(Index
+ 1);
672 VersionMap
[Index
] = VersionMapEntry(Vernaux
);
673 VernauxBuf
+= Vernaux
->vna_next
;
675 VerneedBuf
+= Verneed
->vn_next
;
679 // Iterate through the version definitions, and place each Elf_Verdef
680 // in the VersionMap according to its index.
681 template <class ELFT
>
682 void ELFDumper
<ELFT
>::LoadVersionDefs(const Elf_Shdr
*Sec
) const {
683 unsigned VerdefSize
= Sec
->sh_size
; // Size of section in bytes
684 unsigned VerdefEntries
= Sec
->sh_info
; // Number of Verdef entries
685 const uint8_t *VerdefStart
= reinterpret_cast<const uint8_t *>(
686 ObjF
->getELFFile()->base() + Sec
->sh_offset
);
687 const uint8_t *VerdefEnd
= VerdefStart
+ VerdefSize
;
688 // The first Verdef entry is at the start of the section.
689 const uint8_t *VerdefBuf
= VerdefStart
;
690 for (unsigned VerdefIndex
= 0; VerdefIndex
< VerdefEntries
; ++VerdefIndex
) {
691 if (VerdefBuf
+ sizeof(Elf_Verdef
) > VerdefEnd
)
692 report_fatal_error("Section ended unexpectedly while scanning "
693 "version definitions.");
694 const Elf_Verdef
*Verdef
= reinterpret_cast<const Elf_Verdef
*>(VerdefBuf
);
695 if (Verdef
->vd_version
!= ELF::VER_DEF_CURRENT
)
696 report_fatal_error("Unexpected verdef version");
697 size_t Index
= Verdef
->vd_ndx
& ELF::VERSYM_VERSION
;
698 if (Index
>= VersionMap
.size())
699 VersionMap
.resize(Index
+ 1);
700 VersionMap
[Index
] = VersionMapEntry(Verdef
);
701 VerdefBuf
+= Verdef
->vd_next
;
705 template <class ELFT
> void ELFDumper
<ELFT
>::LoadVersionMap() const {
706 // If there is no dynamic symtab or version table, there is nothing to do.
707 if (!DynSymRegion
.Addr
|| !SymbolVersionSection
)
710 // Has the VersionMap already been loaded?
711 if (!VersionMap
.empty())
714 // The first two version indexes are reserved.
715 // Index 0 is LOCAL, index 1 is GLOBAL.
716 VersionMap
.push_back(VersionMapEntry());
717 VersionMap
.push_back(VersionMapEntry());
719 if (SymbolVersionDefSection
)
720 LoadVersionDefs(SymbolVersionDefSection
);
722 if (SymbolVersionNeedSection
)
723 LoadVersionNeeds(SymbolVersionNeedSection
);
726 template <typename ELFT
>
727 StringRef ELFDumper
<ELFT
>::getSymbolVersion(StringRef StrTab
,
729 bool &IsDefault
) const {
730 // This is a dynamic symbol. Look in the GNU symbol version table.
731 if (!SymbolVersionSection
) {
737 // Determine the position in the symbol table of this entry.
738 size_t EntryIndex
= (reinterpret_cast<uintptr_t>(Sym
) -
739 reinterpret_cast<uintptr_t>(DynSymRegion
.Addr
)) /
742 // Get the corresponding version index entry.
743 const Elf_Versym
*Versym
= unwrapOrError(
744 ObjF
->getFileName(), ObjF
->getELFFile()->template getEntry
<Elf_Versym
>(
745 SymbolVersionSection
, EntryIndex
));
746 return this->getSymbolVersionByIndex(StrTab
, Versym
->vs_index
, IsDefault
);
749 static std::string
maybeDemangle(StringRef Name
) {
750 return opts::Demangle
? demangle(Name
) : Name
.str();
753 template <typename ELFT
>
754 std::string ELFDumper
<ELFT
>::getStaticSymbolName(uint32_t Index
) const {
755 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
756 StringRef StrTable
= unwrapOrError(
757 ObjF
->getFileName(), Obj
->getStringTableForSymtab(*DotSymtabSec
));
759 unwrapOrError(ObjF
->getFileName(), Obj
->symbols(DotSymtabSec
));
760 if (Index
>= Syms
.size())
761 reportError(createError("Invalid symbol index"), ObjF
->getFileName());
762 const Elf_Sym
*Sym
= &Syms
[Index
];
763 return maybeDemangle(
764 unwrapOrError(ObjF
->getFileName(), Sym
->getName(StrTable
)));
767 template <typename ELFT
>
768 StringRef ELFDumper
<ELFT
>::getSymbolVersionByIndex(StringRef StrTab
,
769 uint32_t SymbolVersionIndex
,
770 bool &IsDefault
) const {
771 size_t VersionIndex
= SymbolVersionIndex
& VERSYM_VERSION
;
773 // Special markers for unversioned symbols.
774 if (VersionIndex
== VER_NDX_LOCAL
|| VersionIndex
== VER_NDX_GLOBAL
) {
779 // Lookup this symbol in the version table.
781 if (VersionIndex
>= VersionMap
.size() || VersionMap
[VersionIndex
].isNull())
782 reportError(createError("Invalid version entry"), ObjF
->getFileName());
783 const VersionMapEntry
&Entry
= VersionMap
[VersionIndex
];
785 // Get the version name string.
787 if (Entry
.isVerdef()) {
788 // The first Verdaux entry holds the name.
789 NameOffset
= Entry
.getVerdef()->getAux()->vda_name
;
790 IsDefault
= !(SymbolVersionIndex
& VERSYM_HIDDEN
);
792 NameOffset
= Entry
.getVernaux()->vna_name
;
795 if (NameOffset
>= StrTab
.size())
796 reportError(createError("Invalid string offset"), ObjF
->getFileName());
797 return StrTab
.data() + NameOffset
;
800 template <typename ELFT
>
801 std::string ELFDumper
<ELFT
>::getFullSymbolName(const Elf_Sym
*Symbol
,
803 bool IsDynamic
) const {
804 std::string SymbolName
= maybeDemangle(
805 unwrapOrError(ObjF
->getFileName(), Symbol
->getName(StrTable
)));
807 if (SymbolName
.empty() && Symbol
->getType() == ELF::STT_SECTION
) {
808 unsigned SectionIndex
;
809 StringRef SectionName
;
810 Elf_Sym_Range Syms
= unwrapOrError(
811 ObjF
->getFileName(), ObjF
->getELFFile()->symbols(DotSymtabSec
));
812 getSectionNameIndex(Symbol
, Syms
.begin(), SectionName
, SectionIndex
);
820 StringRef Version
= getSymbolVersion(StrTable
, &*Symbol
, IsDefault
);
821 if (!Version
.empty()) {
822 SymbolName
+= (IsDefault
? "@@" : "@");
823 SymbolName
+= Version
;
828 template <typename ELFT
>
829 void ELFDumper
<ELFT
>::getSectionNameIndex(const Elf_Sym
*Symbol
,
830 const Elf_Sym
*FirstSym
,
831 StringRef
&SectionName
,
832 unsigned &SectionIndex
) const {
833 SectionIndex
= Symbol
->st_shndx
;
834 if (Symbol
->isUndefined())
835 SectionName
= "Undefined";
836 else if (Symbol
->isProcessorSpecific())
837 SectionName
= "Processor Specific";
838 else if (Symbol
->isOSSpecific())
839 SectionName
= "Operating System Specific";
840 else if (Symbol
->isAbsolute())
841 SectionName
= "Absolute";
842 else if (Symbol
->isCommon())
843 SectionName
= "Common";
844 else if (Symbol
->isReserved() && SectionIndex
!= SHN_XINDEX
)
845 SectionName
= "Reserved";
847 if (SectionIndex
== SHN_XINDEX
)
848 SectionIndex
= unwrapOrError(ObjF
->getFileName(),
849 object::getExtendedSymbolTableIndex
<ELFT
>(
850 Symbol
, FirstSym
, ShndxTable
));
851 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
852 const typename
ELFT::Shdr
*Sec
=
853 unwrapOrError(ObjF
->getFileName(), Obj
->getSection(SectionIndex
));
854 SectionName
= unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(Sec
));
858 template <class ELFO
>
859 static const typename
ELFO::Elf_Shdr
*
860 findNotEmptySectionByAddress(const ELFO
*Obj
, StringRef FileName
,
862 for (const auto &Shdr
: unwrapOrError(FileName
, Obj
->sections()))
863 if (Shdr
.sh_addr
== Addr
&& Shdr
.sh_size
> 0)
868 template <class ELFO
>
869 static const typename
ELFO::Elf_Shdr
*
870 findSectionByName(const ELFO
&Obj
, StringRef FileName
, StringRef Name
) {
871 for (const auto &Shdr
: unwrapOrError(FileName
, Obj
.sections()))
872 if (Name
== unwrapOrError(FileName
, Obj
.getSectionName(&Shdr
)))
877 static const EnumEntry
<unsigned> ElfClass
[] = {
878 {"None", "none", ELF::ELFCLASSNONE
},
879 {"32-bit", "ELF32", ELF::ELFCLASS32
},
880 {"64-bit", "ELF64", ELF::ELFCLASS64
},
883 static const EnumEntry
<unsigned> ElfDataEncoding
[] = {
884 {"None", "none", ELF::ELFDATANONE
},
885 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB
},
886 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB
},
889 static const EnumEntry
<unsigned> ElfObjectFileType
[] = {
890 {"None", "NONE (none)", ELF::ET_NONE
},
891 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL
},
892 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC
},
893 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN
},
894 {"Core", "CORE (Core file)", ELF::ET_CORE
},
897 static const EnumEntry
<unsigned> ElfOSABI
[] = {
898 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE
},
899 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX
},
900 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD
},
901 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX
},
902 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD
},
903 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS
},
904 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX
},
905 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX
},
906 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD
},
907 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64
},
908 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO
},
909 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD
},
910 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS
},
911 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK
},
912 {"AROS", "AROS", ELF::ELFOSABI_AROS
},
913 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS
},
914 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI
},
915 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE
}
918 static const EnumEntry
<unsigned> SymVersionFlags
[] = {
919 {"Base", "BASE", VER_FLG_BASE
},
920 {"Weak", "WEAK", VER_FLG_WEAK
},
921 {"Info", "INFO", VER_FLG_INFO
}};
923 static const EnumEntry
<unsigned> AMDGPUElfOSABI
[] = {
924 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA
},
925 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL
},
926 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D
}
929 static const EnumEntry
<unsigned> ARMElfOSABI
[] = {
930 {"ARM", "ARM", ELF::ELFOSABI_ARM
}
933 static const EnumEntry
<unsigned> C6000ElfOSABI
[] = {
934 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI
},
935 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX
}
938 static const EnumEntry
<unsigned> ElfMachineType
[] = {
939 ENUM_ENT(EM_NONE
, "None"),
940 ENUM_ENT(EM_M32
, "WE32100"),
941 ENUM_ENT(EM_SPARC
, "Sparc"),
942 ENUM_ENT(EM_386
, "Intel 80386"),
943 ENUM_ENT(EM_68K
, "MC68000"),
944 ENUM_ENT(EM_88K
, "MC88000"),
945 ENUM_ENT(EM_IAMCU
, "EM_IAMCU"),
946 ENUM_ENT(EM_860
, "Intel 80860"),
947 ENUM_ENT(EM_MIPS
, "MIPS R3000"),
948 ENUM_ENT(EM_S370
, "IBM System/370"),
949 ENUM_ENT(EM_MIPS_RS3_LE
, "MIPS R3000 little-endian"),
950 ENUM_ENT(EM_PARISC
, "HPPA"),
951 ENUM_ENT(EM_VPP500
, "Fujitsu VPP500"),
952 ENUM_ENT(EM_SPARC32PLUS
, "Sparc v8+"),
953 ENUM_ENT(EM_960
, "Intel 80960"),
954 ENUM_ENT(EM_PPC
, "PowerPC"),
955 ENUM_ENT(EM_PPC64
, "PowerPC64"),
956 ENUM_ENT(EM_S390
, "IBM S/390"),
957 ENUM_ENT(EM_SPU
, "SPU"),
958 ENUM_ENT(EM_V800
, "NEC V800 series"),
959 ENUM_ENT(EM_FR20
, "Fujistsu FR20"),
960 ENUM_ENT(EM_RH32
, "TRW RH-32"),
961 ENUM_ENT(EM_RCE
, "Motorola RCE"),
962 ENUM_ENT(EM_ARM
, "ARM"),
963 ENUM_ENT(EM_ALPHA
, "EM_ALPHA"),
964 ENUM_ENT(EM_SH
, "Hitachi SH"),
965 ENUM_ENT(EM_SPARCV9
, "Sparc v9"),
966 ENUM_ENT(EM_TRICORE
, "Siemens Tricore"),
967 ENUM_ENT(EM_ARC
, "ARC"),
968 ENUM_ENT(EM_H8_300
, "Hitachi H8/300"),
969 ENUM_ENT(EM_H8_300H
, "Hitachi H8/300H"),
970 ENUM_ENT(EM_H8S
, "Hitachi H8S"),
971 ENUM_ENT(EM_H8_500
, "Hitachi H8/500"),
972 ENUM_ENT(EM_IA_64
, "Intel IA-64"),
973 ENUM_ENT(EM_MIPS_X
, "Stanford MIPS-X"),
974 ENUM_ENT(EM_COLDFIRE
, "Motorola Coldfire"),
975 ENUM_ENT(EM_68HC12
, "Motorola MC68HC12 Microcontroller"),
976 ENUM_ENT(EM_MMA
, "Fujitsu Multimedia Accelerator"),
977 ENUM_ENT(EM_PCP
, "Siemens PCP"),
978 ENUM_ENT(EM_NCPU
, "Sony nCPU embedded RISC processor"),
979 ENUM_ENT(EM_NDR1
, "Denso NDR1 microprocesspr"),
980 ENUM_ENT(EM_STARCORE
, "Motorola Star*Core processor"),
981 ENUM_ENT(EM_ME16
, "Toyota ME16 processor"),
982 ENUM_ENT(EM_ST100
, "STMicroelectronics ST100 processor"),
983 ENUM_ENT(EM_TINYJ
, "Advanced Logic Corp. TinyJ embedded processor"),
984 ENUM_ENT(EM_X86_64
, "Advanced Micro Devices X86-64"),
985 ENUM_ENT(EM_PDSP
, "Sony DSP processor"),
986 ENUM_ENT(EM_PDP10
, "Digital Equipment Corp. PDP-10"),
987 ENUM_ENT(EM_PDP11
, "Digital Equipment Corp. PDP-11"),
988 ENUM_ENT(EM_FX66
, "Siemens FX66 microcontroller"),
989 ENUM_ENT(EM_ST9PLUS
, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
990 ENUM_ENT(EM_ST7
, "STMicroelectronics ST7 8-bit microcontroller"),
991 ENUM_ENT(EM_68HC16
, "Motorola MC68HC16 Microcontroller"),
992 ENUM_ENT(EM_68HC11
, "Motorola MC68HC11 Microcontroller"),
993 ENUM_ENT(EM_68HC08
, "Motorola MC68HC08 Microcontroller"),
994 ENUM_ENT(EM_68HC05
, "Motorola MC68HC05 Microcontroller"),
995 ENUM_ENT(EM_SVX
, "Silicon Graphics SVx"),
996 ENUM_ENT(EM_ST19
, "STMicroelectronics ST19 8-bit microcontroller"),
997 ENUM_ENT(EM_VAX
, "Digital VAX"),
998 ENUM_ENT(EM_CRIS
, "Axis Communications 32-bit embedded processor"),
999 ENUM_ENT(EM_JAVELIN
, "Infineon Technologies 32-bit embedded cpu"),
1000 ENUM_ENT(EM_FIREPATH
, "Element 14 64-bit DSP processor"),
1001 ENUM_ENT(EM_ZSP
, "LSI Logic's 16-bit DSP processor"),
1002 ENUM_ENT(EM_MMIX
, "Donald Knuth's educational 64-bit processor"),
1003 ENUM_ENT(EM_HUANY
, "Harvard Universitys's machine-independent object format"),
1004 ENUM_ENT(EM_PRISM
, "Vitesse Prism"),
1005 ENUM_ENT(EM_AVR
, "Atmel AVR 8-bit microcontroller"),
1006 ENUM_ENT(EM_FR30
, "Fujitsu FR30"),
1007 ENUM_ENT(EM_D10V
, "Mitsubishi D10V"),
1008 ENUM_ENT(EM_D30V
, "Mitsubishi D30V"),
1009 ENUM_ENT(EM_V850
, "NEC v850"),
1010 ENUM_ENT(EM_M32R
, "Renesas M32R (formerly Mitsubishi M32r)"),
1011 ENUM_ENT(EM_MN10300
, "Matsushita MN10300"),
1012 ENUM_ENT(EM_MN10200
, "Matsushita MN10200"),
1013 ENUM_ENT(EM_PJ
, "picoJava"),
1014 ENUM_ENT(EM_OPENRISC
, "OpenRISC 32-bit embedded processor"),
1015 ENUM_ENT(EM_ARC_COMPACT
, "EM_ARC_COMPACT"),
1016 ENUM_ENT(EM_XTENSA
, "Tensilica Xtensa Processor"),
1017 ENUM_ENT(EM_VIDEOCORE
, "Alphamosaic VideoCore processor"),
1018 ENUM_ENT(EM_TMM_GPP
, "Thompson Multimedia General Purpose Processor"),
1019 ENUM_ENT(EM_NS32K
, "National Semiconductor 32000 series"),
1020 ENUM_ENT(EM_TPC
, "Tenor Network TPC processor"),
1021 ENUM_ENT(EM_SNP1K
, "EM_SNP1K"),
1022 ENUM_ENT(EM_ST200
, "STMicroelectronics ST200 microcontroller"),
1023 ENUM_ENT(EM_IP2K
, "Ubicom IP2xxx 8-bit microcontrollers"),
1024 ENUM_ENT(EM_MAX
, "MAX Processor"),
1025 ENUM_ENT(EM_CR
, "National Semiconductor CompactRISC"),
1026 ENUM_ENT(EM_F2MC16
, "Fujitsu F2MC16"),
1027 ENUM_ENT(EM_MSP430
, "Texas Instruments msp430 microcontroller"),
1028 ENUM_ENT(EM_BLACKFIN
, "Analog Devices Blackfin"),
1029 ENUM_ENT(EM_SE_C33
, "S1C33 Family of Seiko Epson processors"),
1030 ENUM_ENT(EM_SEP
, "Sharp embedded microprocessor"),
1031 ENUM_ENT(EM_ARCA
, "Arca RISC microprocessor"),
1032 ENUM_ENT(EM_UNICORE
, "Unicore"),
1033 ENUM_ENT(EM_EXCESS
, "eXcess 16/32/64-bit configurable embedded CPU"),
1034 ENUM_ENT(EM_DXP
, "Icera Semiconductor Inc. Deep Execution Processor"),
1035 ENUM_ENT(EM_ALTERA_NIOS2
, "Altera Nios"),
1036 ENUM_ENT(EM_CRX
, "National Semiconductor CRX microprocessor"),
1037 ENUM_ENT(EM_XGATE
, "Motorola XGATE embedded processor"),
1038 ENUM_ENT(EM_C166
, "Infineon Technologies xc16x"),
1039 ENUM_ENT(EM_M16C
, "Renesas M16C"),
1040 ENUM_ENT(EM_DSPIC30F
, "Microchip Technology dsPIC30F Digital Signal Controller"),
1041 ENUM_ENT(EM_CE
, "Freescale Communication Engine RISC core"),
1042 ENUM_ENT(EM_M32C
, "Renesas M32C"),
1043 ENUM_ENT(EM_TSK3000
, "Altium TSK3000 core"),
1044 ENUM_ENT(EM_RS08
, "Freescale RS08 embedded processor"),
1045 ENUM_ENT(EM_SHARC
, "EM_SHARC"),
1046 ENUM_ENT(EM_ECOG2
, "Cyan Technology eCOG2 microprocessor"),
1047 ENUM_ENT(EM_SCORE7
, "SUNPLUS S+Core"),
1048 ENUM_ENT(EM_DSP24
, "New Japan Radio (NJR) 24-bit DSP Processor"),
1049 ENUM_ENT(EM_VIDEOCORE3
, "Broadcom VideoCore III processor"),
1050 ENUM_ENT(EM_LATTICEMICO32
, "Lattice Mico32"),
1051 ENUM_ENT(EM_SE_C17
, "Seiko Epson C17 family"),
1052 ENUM_ENT(EM_TI_C6000
, "Texas Instruments TMS320C6000 DSP family"),
1053 ENUM_ENT(EM_TI_C2000
, "Texas Instruments TMS320C2000 DSP family"),
1054 ENUM_ENT(EM_TI_C5500
, "Texas Instruments TMS320C55x DSP family"),
1055 ENUM_ENT(EM_MMDSP_PLUS
, "STMicroelectronics 64bit VLIW Data Signal Processor"),
1056 ENUM_ENT(EM_CYPRESS_M8C
, "Cypress M8C microprocessor"),
1057 ENUM_ENT(EM_R32C
, "Renesas R32C series microprocessors"),
1058 ENUM_ENT(EM_TRIMEDIA
, "NXP Semiconductors TriMedia architecture family"),
1059 ENUM_ENT(EM_HEXAGON
, "Qualcomm Hexagon"),
1060 ENUM_ENT(EM_8051
, "Intel 8051 and variants"),
1061 ENUM_ENT(EM_STXP7X
, "STMicroelectronics STxP7x family"),
1062 ENUM_ENT(EM_NDS32
, "Andes Technology compact code size embedded RISC processor family"),
1063 ENUM_ENT(EM_ECOG1
, "Cyan Technology eCOG1 microprocessor"),
1064 ENUM_ENT(EM_ECOG1X
, "Cyan Technology eCOG1X family"),
1065 ENUM_ENT(EM_MAXQ30
, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1066 ENUM_ENT(EM_XIMO16
, "New Japan Radio (NJR) 16-bit DSP Processor"),
1067 ENUM_ENT(EM_MANIK
, "M2000 Reconfigurable RISC Microprocessor"),
1068 ENUM_ENT(EM_CRAYNV2
, "Cray Inc. NV2 vector architecture"),
1069 ENUM_ENT(EM_RX
, "Renesas RX"),
1070 ENUM_ENT(EM_METAG
, "Imagination Technologies Meta processor architecture"),
1071 ENUM_ENT(EM_MCST_ELBRUS
, "MCST Elbrus general purpose hardware architecture"),
1072 ENUM_ENT(EM_ECOG16
, "Cyan Technology eCOG16 family"),
1073 ENUM_ENT(EM_CR16
, "Xilinx MicroBlaze"),
1074 ENUM_ENT(EM_ETPU
, "Freescale Extended Time Processing Unit"),
1075 ENUM_ENT(EM_SLE9X
, "Infineon Technologies SLE9X core"),
1076 ENUM_ENT(EM_L10M
, "EM_L10M"),
1077 ENUM_ENT(EM_K10M
, "EM_K10M"),
1078 ENUM_ENT(EM_AARCH64
, "AArch64"),
1079 ENUM_ENT(EM_AVR32
, "Atmel Corporation 32-bit microprocessor family"),
1080 ENUM_ENT(EM_STM8
, "STMicroeletronics STM8 8-bit microcontroller"),
1081 ENUM_ENT(EM_TILE64
, "Tilera TILE64 multicore architecture family"),
1082 ENUM_ENT(EM_TILEPRO
, "Tilera TILEPro multicore architecture family"),
1083 ENUM_ENT(EM_CUDA
, "NVIDIA CUDA architecture"),
1084 ENUM_ENT(EM_TILEGX
, "Tilera TILE-Gx multicore architecture family"),
1085 ENUM_ENT(EM_CLOUDSHIELD
, "EM_CLOUDSHIELD"),
1086 ENUM_ENT(EM_COREA_1ST
, "EM_COREA_1ST"),
1087 ENUM_ENT(EM_COREA_2ND
, "EM_COREA_2ND"),
1088 ENUM_ENT(EM_ARC_COMPACT2
, "EM_ARC_COMPACT2"),
1089 ENUM_ENT(EM_OPEN8
, "EM_OPEN8"),
1090 ENUM_ENT(EM_RL78
, "Renesas RL78"),
1091 ENUM_ENT(EM_VIDEOCORE5
, "Broadcom VideoCore V processor"),
1092 ENUM_ENT(EM_78KOR
, "EM_78KOR"),
1093 ENUM_ENT(EM_56800EX
, "EM_56800EX"),
1094 ENUM_ENT(EM_AMDGPU
, "EM_AMDGPU"),
1095 ENUM_ENT(EM_RISCV
, "RISC-V"),
1096 ENUM_ENT(EM_LANAI
, "EM_LANAI"),
1097 ENUM_ENT(EM_BPF
, "EM_BPF"),
1100 static const EnumEntry
<unsigned> ElfSymbolBindings
[] = {
1101 {"Local", "LOCAL", ELF::STB_LOCAL
},
1102 {"Global", "GLOBAL", ELF::STB_GLOBAL
},
1103 {"Weak", "WEAK", ELF::STB_WEAK
},
1104 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE
}};
1106 static const EnumEntry
<unsigned> ElfSymbolVisibilities
[] = {
1107 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT
},
1108 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL
},
1109 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN
},
1110 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED
}};
1112 static const EnumEntry
<unsigned> AMDGPUSymbolTypes
[] = {
1113 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL
}
1116 static const char *getGroupType(uint32_t Flag
) {
1117 if (Flag
& ELF::GRP_COMDAT
)
1123 static const EnumEntry
<unsigned> ElfSectionFlags
[] = {
1124 ENUM_ENT(SHF_WRITE
, "W"),
1125 ENUM_ENT(SHF_ALLOC
, "A"),
1126 ENUM_ENT(SHF_EXCLUDE
, "E"),
1127 ENUM_ENT(SHF_EXECINSTR
, "X"),
1128 ENUM_ENT(SHF_MERGE
, "M"),
1129 ENUM_ENT(SHF_STRINGS
, "S"),
1130 ENUM_ENT(SHF_INFO_LINK
, "I"),
1131 ENUM_ENT(SHF_LINK_ORDER
, "L"),
1132 ENUM_ENT(SHF_OS_NONCONFORMING
, "o"),
1133 ENUM_ENT(SHF_GROUP
, "G"),
1134 ENUM_ENT(SHF_TLS
, "T"),
1135 ENUM_ENT(SHF_MASKOS
, "o"),
1136 ENUM_ENT(SHF_MASKPROC
, "p"),
1137 ENUM_ENT_1(SHF_COMPRESSED
),
1140 static const EnumEntry
<unsigned> ElfXCoreSectionFlags
[] = {
1141 LLVM_READOBJ_ENUM_ENT(ELF
, XCORE_SHF_CP_SECTION
),
1142 LLVM_READOBJ_ENUM_ENT(ELF
, XCORE_SHF_DP_SECTION
)
1145 static const EnumEntry
<unsigned> ElfARMSectionFlags
[] = {
1146 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_ARM_PURECODE
)
1149 static const EnumEntry
<unsigned> ElfHexagonSectionFlags
[] = {
1150 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_HEX_GPREL
)
1153 static const EnumEntry
<unsigned> ElfMipsSectionFlags
[] = {
1154 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NODUPES
),
1155 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NAMES
),
1156 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_LOCAL
),
1157 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NOSTRIP
),
1158 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_GPREL
),
1159 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_MERGE
),
1160 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_ADDR
),
1161 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_STRING
)
1164 static const EnumEntry
<unsigned> ElfX86_64SectionFlags
[] = {
1165 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_X86_64_LARGE
)
1168 static std::string
getGNUFlags(uint64_t Flags
) {
1170 for (auto Entry
: ElfSectionFlags
) {
1171 uint64_t Flag
= Entry
.Value
& Flags
;
1172 Flags
&= ~Entry
.Value
;
1174 case ELF::SHF_WRITE
:
1175 case ELF::SHF_ALLOC
:
1176 case ELF::SHF_EXECINSTR
:
1177 case ELF::SHF_MERGE
:
1178 case ELF::SHF_STRINGS
:
1179 case ELF::SHF_INFO_LINK
:
1180 case ELF::SHF_LINK_ORDER
:
1181 case ELF::SHF_OS_NONCONFORMING
:
1182 case ELF::SHF_GROUP
:
1184 case ELF::SHF_EXCLUDE
:
1185 Str
+= Entry
.AltName
;
1188 if (Flag
& ELF::SHF_MASKOS
)
1190 else if (Flag
& ELF::SHF_MASKPROC
)
1199 static const char *getElfSegmentType(unsigned Arch
, unsigned Type
) {
1200 // Check potentially overlapped processor-specific
1201 // program header type.
1204 switch (Type
) { LLVM_READOBJ_ENUM_CASE(ELF
, PT_ARM_EXIDX
); }
1207 case ELF::EM_MIPS_RS3_LE
:
1209 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_REGINFO
);
1210 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_RTPROC
);
1211 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_OPTIONS
);
1212 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_ABIFLAGS
);
1218 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NULL
);
1219 LLVM_READOBJ_ENUM_CASE(ELF
, PT_LOAD
);
1220 LLVM_READOBJ_ENUM_CASE(ELF
, PT_DYNAMIC
);
1221 LLVM_READOBJ_ENUM_CASE(ELF
, PT_INTERP
);
1222 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NOTE
);
1223 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SHLIB
);
1224 LLVM_READOBJ_ENUM_CASE(ELF
, PT_PHDR
);
1225 LLVM_READOBJ_ENUM_CASE(ELF
, PT_TLS
);
1227 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_EH_FRAME
);
1228 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SUNW_UNWIND
);
1230 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_STACK
);
1231 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_RELRO
);
1233 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_RANDOMIZE
);
1234 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_WXNEEDED
);
1235 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_BOOTDATA
);
1242 static std::string
getElfPtType(unsigned Arch
, unsigned Type
) {
1244 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_NULL
)
1245 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_LOAD
)
1246 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_DYNAMIC
)
1247 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_INTERP
)
1248 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_NOTE
)
1249 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_SHLIB
)
1250 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_PHDR
)
1251 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_TLS
)
1252 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_EH_FRAME
)
1253 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_SUNW_UNWIND
)
1254 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_STACK
)
1255 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_RELRO
)
1257 // All machine specific PT_* types
1260 if (Type
== ELF::PT_ARM_EXIDX
)
1264 case ELF::EM_MIPS_RS3_LE
:
1266 case PT_MIPS_REGINFO
:
1268 case PT_MIPS_RTPROC
:
1270 case PT_MIPS_OPTIONS
:
1272 case PT_MIPS_ABIFLAGS
:
1278 return std::string("<unknown>: ") + to_string(format_hex(Type
, 1));
1281 static const EnumEntry
<unsigned> ElfSegmentFlags
[] = {
1282 LLVM_READOBJ_ENUM_ENT(ELF
, PF_X
),
1283 LLVM_READOBJ_ENUM_ENT(ELF
, PF_W
),
1284 LLVM_READOBJ_ENUM_ENT(ELF
, PF_R
)
1287 static const EnumEntry
<unsigned> ElfHeaderMipsFlags
[] = {
1288 ENUM_ENT(EF_MIPS_NOREORDER
, "noreorder"),
1289 ENUM_ENT(EF_MIPS_PIC
, "pic"),
1290 ENUM_ENT(EF_MIPS_CPIC
, "cpic"),
1291 ENUM_ENT(EF_MIPS_ABI2
, "abi2"),
1292 ENUM_ENT(EF_MIPS_32BITMODE
, "32bitmode"),
1293 ENUM_ENT(EF_MIPS_FP64
, "fp64"),
1294 ENUM_ENT(EF_MIPS_NAN2008
, "nan2008"),
1295 ENUM_ENT(EF_MIPS_ABI_O32
, "o32"),
1296 ENUM_ENT(EF_MIPS_ABI_O64
, "o64"),
1297 ENUM_ENT(EF_MIPS_ABI_EABI32
, "eabi32"),
1298 ENUM_ENT(EF_MIPS_ABI_EABI64
, "eabi64"),
1299 ENUM_ENT(EF_MIPS_MACH_3900
, "3900"),
1300 ENUM_ENT(EF_MIPS_MACH_4010
, "4010"),
1301 ENUM_ENT(EF_MIPS_MACH_4100
, "4100"),
1302 ENUM_ENT(EF_MIPS_MACH_4650
, "4650"),
1303 ENUM_ENT(EF_MIPS_MACH_4120
, "4120"),
1304 ENUM_ENT(EF_MIPS_MACH_4111
, "4111"),
1305 ENUM_ENT(EF_MIPS_MACH_SB1
, "sb1"),
1306 ENUM_ENT(EF_MIPS_MACH_OCTEON
, "octeon"),
1307 ENUM_ENT(EF_MIPS_MACH_XLR
, "xlr"),
1308 ENUM_ENT(EF_MIPS_MACH_OCTEON2
, "octeon2"),
1309 ENUM_ENT(EF_MIPS_MACH_OCTEON3
, "octeon3"),
1310 ENUM_ENT(EF_MIPS_MACH_5400
, "5400"),
1311 ENUM_ENT(EF_MIPS_MACH_5900
, "5900"),
1312 ENUM_ENT(EF_MIPS_MACH_5500
, "5500"),
1313 ENUM_ENT(EF_MIPS_MACH_9000
, "9000"),
1314 ENUM_ENT(EF_MIPS_MACH_LS2E
, "loongson-2e"),
1315 ENUM_ENT(EF_MIPS_MACH_LS2F
, "loongson-2f"),
1316 ENUM_ENT(EF_MIPS_MACH_LS3A
, "loongson-3a"),
1317 ENUM_ENT(EF_MIPS_MICROMIPS
, "micromips"),
1318 ENUM_ENT(EF_MIPS_ARCH_ASE_M16
, "mips16"),
1319 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX
, "mdmx"),
1320 ENUM_ENT(EF_MIPS_ARCH_1
, "mips1"),
1321 ENUM_ENT(EF_MIPS_ARCH_2
, "mips2"),
1322 ENUM_ENT(EF_MIPS_ARCH_3
, "mips3"),
1323 ENUM_ENT(EF_MIPS_ARCH_4
, "mips4"),
1324 ENUM_ENT(EF_MIPS_ARCH_5
, "mips5"),
1325 ENUM_ENT(EF_MIPS_ARCH_32
, "mips32"),
1326 ENUM_ENT(EF_MIPS_ARCH_64
, "mips64"),
1327 ENUM_ENT(EF_MIPS_ARCH_32R2
, "mips32r2"),
1328 ENUM_ENT(EF_MIPS_ARCH_64R2
, "mips64r2"),
1329 ENUM_ENT(EF_MIPS_ARCH_32R6
, "mips32r6"),
1330 ENUM_ENT(EF_MIPS_ARCH_64R6
, "mips64r6")
1333 static const EnumEntry
<unsigned> ElfHeaderAMDGPUFlags
[] = {
1334 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_NONE
),
1335 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R600
),
1336 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R630
),
1337 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RS880
),
1338 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV670
),
1339 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV710
),
1340 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV730
),
1341 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV770
),
1342 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CEDAR
),
1343 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CYPRESS
),
1344 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_JUNIPER
),
1345 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_REDWOOD
),
1346 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_SUMO
),
1347 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_BARTS
),
1348 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAICOS
),
1349 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAYMAN
),
1350 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_TURKS
),
1351 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX600
),
1352 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX601
),
1353 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX700
),
1354 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX701
),
1355 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX702
),
1356 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX703
),
1357 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX704
),
1358 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX801
),
1359 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX802
),
1360 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX803
),
1361 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX810
),
1362 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX900
),
1363 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX902
),
1364 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX904
),
1365 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX906
),
1366 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX908
),
1367 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX909
),
1368 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1010
),
1369 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1011
),
1370 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1012
),
1371 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_XNACK
),
1372 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_SRAM_ECC
)
1375 static const EnumEntry
<unsigned> ElfHeaderRISCVFlags
[] = {
1376 ENUM_ENT(EF_RISCV_RVC
, "RVC"),
1377 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE
, "single-float ABI"),
1378 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE
, "double-float ABI"),
1379 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD
, "quad-float ABI"),
1380 ENUM_ENT(EF_RISCV_RVE
, "RVE")
1383 static const EnumEntry
<unsigned> ElfSymOtherFlags
[] = {
1384 LLVM_READOBJ_ENUM_ENT(ELF
, STV_INTERNAL
),
1385 LLVM_READOBJ_ENUM_ENT(ELF
, STV_HIDDEN
),
1386 LLVM_READOBJ_ENUM_ENT(ELF
, STV_PROTECTED
)
1389 static const EnumEntry
<unsigned> ElfMipsSymOtherFlags
[] = {
1390 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1391 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1392 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PIC
),
1393 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MICROMIPS
)
1396 static const EnumEntry
<unsigned> ElfMips16SymOtherFlags
[] = {
1397 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1398 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1399 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MIPS16
)
1402 static const char *getElfMipsOptionsOdkType(unsigned Odk
) {
1404 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_NULL
);
1405 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_REGINFO
);
1406 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_EXCEPTIONS
);
1407 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAD
);
1408 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWPATCH
);
1409 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_FILL
);
1410 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_TAGS
);
1411 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWAND
);
1412 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWOR
);
1413 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_GP_GROUP
);
1414 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_IDENT
);
1415 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAGESIZE
);
1421 template <typename ELFT
>
1422 std::pair
<const typename
ELFT::Phdr
*, const typename
ELFT::Shdr
*>
1423 ELFDumper
<ELFT
>::findDynamic(const ELFFile
<ELFT
> *Obj
) {
1424 // Try to locate the PT_DYNAMIC header.
1425 const Elf_Phdr
*DynamicPhdr
= nullptr;
1426 for (const Elf_Phdr
&Phdr
:
1427 unwrapOrError(ObjF
->getFileName(), Obj
->program_headers())) {
1428 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
)
1430 DynamicPhdr
= &Phdr
;
1434 // Try to locate the .dynamic section in the sections header table.
1435 const Elf_Shdr
*DynamicSec
= nullptr;
1436 for (const Elf_Shdr
&Sec
:
1437 unwrapOrError(ObjF
->getFileName(), Obj
->sections())) {
1438 if (Sec
.sh_type
!= ELF::SHT_DYNAMIC
)
1444 if (DynamicPhdr
&& DynamicPhdr
->p_offset
+ DynamicPhdr
->p_filesz
>
1445 ObjF
->getMemoryBufferRef().getBufferSize()) {
1448 "PT_DYNAMIC segment offset + size exceeds the size of the file"),
1449 ObjF
->getFileName());
1450 // Don't use the broken dynamic header.
1451 DynamicPhdr
= nullptr;
1454 if (DynamicPhdr
&& DynamicSec
) {
1456 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(DynamicSec
));
1457 if (DynamicSec
->sh_addr
+ DynamicSec
->sh_size
>
1458 DynamicPhdr
->p_vaddr
+ DynamicPhdr
->p_memsz
||
1459 DynamicSec
->sh_addr
< DynamicPhdr
->p_vaddr
)
1460 reportWarning(createError("The SHT_DYNAMIC section '" + Name
+
1461 "' is not contained within the "
1462 "PT_DYNAMIC segment"),
1463 ObjF
->getFileName());
1465 if (DynamicSec
->sh_addr
!= DynamicPhdr
->p_vaddr
)
1466 reportWarning(createError("The SHT_DYNAMIC section '" + Name
+
1467 "' is not at the start of "
1468 "PT_DYNAMIC segment"),
1469 ObjF
->getFileName());
1472 return std::make_pair(DynamicPhdr
, DynamicSec
);
1475 template <typename ELFT
>
1476 void ELFDumper
<ELFT
>::loadDynamicTable(const ELFFile
<ELFT
> *Obj
) {
1477 const Elf_Phdr
*DynamicPhdr
;
1478 const Elf_Shdr
*DynamicSec
;
1479 std::tie(DynamicPhdr
, DynamicSec
) = findDynamic(Obj
);
1480 if (!DynamicPhdr
&& !DynamicSec
)
1483 DynRegionInfo
FromPhdr(ObjF
->getFileName());
1484 bool IsPhdrTableValid
= false;
1486 FromPhdr
= createDRIFrom(DynamicPhdr
, sizeof(Elf_Dyn
));
1487 IsPhdrTableValid
= !FromPhdr
.getAsArrayRef
<Elf_Dyn
>().empty();
1490 // Locate the dynamic table described in a section header.
1491 // Ignore sh_entsize and use the expected value for entry size explicitly.
1492 // This allows us to dump dynamic sections with a broken sh_entsize
1494 DynRegionInfo
FromSec(ObjF
->getFileName());
1495 bool IsSecTableValid
= false;
1498 checkDRI({ObjF
->getELFFile()->base() + DynamicSec
->sh_offset
,
1499 DynamicSec
->sh_size
, sizeof(Elf_Dyn
), ObjF
->getFileName()});
1500 IsSecTableValid
= !FromSec
.getAsArrayRef
<Elf_Dyn
>().empty();
1503 // When we only have information from one of the SHT_DYNAMIC section header or
1504 // PT_DYNAMIC program header, just use that.
1505 if (!DynamicPhdr
|| !DynamicSec
) {
1506 if ((DynamicPhdr
&& IsPhdrTableValid
) || (DynamicSec
&& IsSecTableValid
)) {
1507 DynamicTable
= DynamicPhdr
? FromPhdr
: FromSec
;
1508 parseDynamicTable();
1510 reportWarning(createError("no valid dynamic table was found"),
1511 ObjF
->getFileName());
1516 // At this point we have tables found from the section header and from the
1517 // dynamic segment. Usually they match, but we have to do sanity checks to
1520 if (FromPhdr
.Addr
!= FromSec
.Addr
)
1521 reportWarning(createError("SHT_DYNAMIC section header and PT_DYNAMIC "
1522 "program header disagree about "
1523 "the location of the dynamic table"),
1524 ObjF
->getFileName());
1526 if (!IsPhdrTableValid
&& !IsSecTableValid
) {
1527 reportWarning(createError("no valid dynamic table was found"),
1528 ObjF
->getFileName());
1532 // Information in the PT_DYNAMIC program header has priority over the information
1533 // in a section header.
1534 if (IsPhdrTableValid
) {
1535 if (!IsSecTableValid
)
1538 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"),
1539 ObjF
->getFileName());
1540 DynamicTable
= FromPhdr
;
1544 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"),
1545 ObjF
->getFileName());
1546 DynamicTable
= FromSec
;
1549 parseDynamicTable();
1552 template <typename ELFT
>
1553 ELFDumper
<ELFT
>::ELFDumper(const object::ELFObjectFile
<ELFT
> *ObjF
,
1554 ScopedPrinter
&Writer
)
1555 : ObjDumper(Writer
), ObjF(ObjF
), DynRelRegion(ObjF
->getFileName()),
1556 DynRelaRegion(ObjF
->getFileName()), DynRelrRegion(ObjF
->getFileName()),
1557 DynPLTRelRegion(ObjF
->getFileName()), DynSymRegion(ObjF
->getFileName()),
1558 DynamicTable(ObjF
->getFileName()) {
1559 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
1560 for (const Elf_Shdr
&Sec
:
1561 unwrapOrError(ObjF
->getFileName(), Obj
->sections())) {
1562 switch (Sec
.sh_type
) {
1563 case ELF::SHT_SYMTAB
:
1565 DotSymtabSec
= &Sec
;
1567 case ELF::SHT_DYNSYM
:
1568 if (!DynSymRegion
.Size
) {
1569 DynSymRegion
= createDRIFrom(&Sec
);
1570 // This is only used (if Elf_Shdr present)for naming section in GNU
1573 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(&Sec
));
1575 if (Expected
<StringRef
> E
= Obj
->getStringTableForSymtab(Sec
))
1576 DynamicStringTable
= *E
;
1578 reportWarning(E
.takeError(), ObjF
->getFileName());
1581 case ELF::SHT_SYMTAB_SHNDX
:
1582 ShndxTable
= unwrapOrError(ObjF
->getFileName(), Obj
->getSHNDXTable(Sec
));
1584 case ELF::SHT_GNU_versym
:
1585 if (!SymbolVersionSection
)
1586 SymbolVersionSection
= &Sec
;
1588 case ELF::SHT_GNU_verdef
:
1589 if (!SymbolVersionDefSection
)
1590 SymbolVersionDefSection
= &Sec
;
1592 case ELF::SHT_GNU_verneed
:
1593 if (!SymbolVersionNeedSection
)
1594 SymbolVersionNeedSection
= &Sec
;
1596 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE
:
1597 if (!DotCGProfileSec
)
1598 DotCGProfileSec
= &Sec
;
1600 case ELF::SHT_LLVM_ADDRSIG
:
1602 DotAddrsigSec
= &Sec
;
1607 loadDynamicTable(Obj
);
1609 if (opts::Output
== opts::GNU
)
1610 ELFDumperStyle
.reset(new GNUStyle
<ELFT
>(Writer
, this));
1612 ELFDumperStyle
.reset(new LLVMStyle
<ELFT
>(Writer
, this));
1615 static const char *getTypeString(unsigned Arch
, uint64_t Type
) {
1616 #define DYNAMIC_TAG(n, v)
1621 #define AARCH64_DYNAMIC_TAG(name, value) \
1624 #include "llvm/BinaryFormat/DynamicTags.def"
1625 #undef AARCH64_DYNAMIC_TAG
1631 #define HEXAGON_DYNAMIC_TAG(name, value) \
1634 #include "llvm/BinaryFormat/DynamicTags.def"
1635 #undef HEXAGON_DYNAMIC_TAG
1641 #define MIPS_DYNAMIC_TAG(name, value) \
1644 #include "llvm/BinaryFormat/DynamicTags.def"
1645 #undef MIPS_DYNAMIC_TAG
1651 #define PPC64_DYNAMIC_TAG(name, value) \
1654 #include "llvm/BinaryFormat/DynamicTags.def"
1655 #undef PPC64_DYNAMIC_TAG
1661 // Now handle all dynamic tags except the architecture specific ones
1662 #define AARCH64_DYNAMIC_TAG(name, value)
1663 #define MIPS_DYNAMIC_TAG(name, value)
1664 #define HEXAGON_DYNAMIC_TAG(name, value)
1665 #define PPC64_DYNAMIC_TAG(name, value)
1666 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
1667 #define DYNAMIC_TAG_MARKER(name, value)
1668 #define DYNAMIC_TAG(name, value) \
1671 #include "llvm/BinaryFormat/DynamicTags.def"
1673 #undef AARCH64_DYNAMIC_TAG
1674 #undef MIPS_DYNAMIC_TAG
1675 #undef HEXAGON_DYNAMIC_TAG
1676 #undef PPC64_DYNAMIC_TAG
1677 #undef DYNAMIC_TAG_MARKER
1683 template <typename ELFT
> void ELFDumper
<ELFT
>::parseDynamicTable() {
1684 auto toMappedAddr
= [&](uint64_t Tag
, uint64_t VAddr
) -> const uint8_t * {
1685 auto MappedAddrOrError
= ObjF
->getELFFile()->toMappedAddr(VAddr
);
1686 if (!MappedAddrOrError
) {
1688 createError("Unable to parse DT_" +
1689 Twine(getTypeString(
1690 ObjF
->getELFFile()->getHeader()->e_machine
, Tag
)) +
1691 ": " + llvm::toString(MappedAddrOrError
.takeError()));
1693 reportWarning(std::move(Err
), ObjF
->getFileName());
1696 return MappedAddrOrError
.get();
1699 uint64_t SONameOffset
= 0;
1700 const char *StringTableBegin
= nullptr;
1701 uint64_t StringTableSize
= 0;
1702 for (const Elf_Dyn
&Dyn
: dynamic_table()) {
1703 switch (Dyn
.d_tag
) {
1705 HashTable
= reinterpret_cast<const Elf_Hash
*>(
1706 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
1708 case ELF::DT_GNU_HASH
:
1709 GnuHashTable
= reinterpret_cast<const Elf_GnuHash
*>(
1710 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
1712 case ELF::DT_STRTAB
:
1713 StringTableBegin
= reinterpret_cast<const char *>(
1714 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
1717 StringTableSize
= Dyn
.getVal();
1719 case ELF::DT_SYMTAB
: {
1720 // Often we find the information about the dynamic symbol table
1721 // location in the SHT_DYNSYM section header. However, the value in
1722 // DT_SYMTAB has priority, because it is used by dynamic loaders to
1723 // locate .dynsym at runtime. The location we find in the section header
1724 // and the location we find here should match. If we can't map the
1725 // DT_SYMTAB value to an address (e.g. when there are no program headers), we
1726 // ignore its value.
1727 if (const uint8_t *VA
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr())) {
1728 // EntSize is non-zero if the dynamic symbol table has been found via a
1730 if (DynSymRegion
.EntSize
&& VA
!= DynSymRegion
.Addr
)
1733 "SHT_DYNSYM section header and DT_SYMTAB disagree about "
1734 "the location of the dynamic symbol table"),
1735 ObjF
->getFileName());
1737 DynSymRegion
.Addr
= VA
;
1738 DynSymRegion
.EntSize
= sizeof(Elf_Sym
);
1743 DynRelaRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1745 case ELF::DT_RELASZ
:
1746 DynRelaRegion
.Size
= Dyn
.getVal();
1748 case ELF::DT_RELAENT
:
1749 DynRelaRegion
.EntSize
= Dyn
.getVal();
1751 case ELF::DT_SONAME
:
1752 SONameOffset
= Dyn
.getVal();
1755 DynRelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1758 DynRelRegion
.Size
= Dyn
.getVal();
1760 case ELF::DT_RELENT
:
1761 DynRelRegion
.EntSize
= Dyn
.getVal();
1764 case ELF::DT_ANDROID_RELR
:
1765 DynRelrRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1767 case ELF::DT_RELRSZ
:
1768 case ELF::DT_ANDROID_RELRSZ
:
1769 DynRelrRegion
.Size
= Dyn
.getVal();
1771 case ELF::DT_RELRENT
:
1772 case ELF::DT_ANDROID_RELRENT
:
1773 DynRelrRegion
.EntSize
= Dyn
.getVal();
1775 case ELF::DT_PLTREL
:
1776 if (Dyn
.getVal() == DT_REL
)
1777 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rel
);
1778 else if (Dyn
.getVal() == DT_RELA
)
1779 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rela
);
1781 reportError(createError(Twine("unknown DT_PLTREL value of ") +
1782 Twine((uint64_t)Dyn
.getVal())),
1783 ObjF
->getFileName());
1785 case ELF::DT_JMPREL
:
1786 DynPLTRelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1788 case ELF::DT_PLTRELSZ
:
1789 DynPLTRelRegion
.Size
= Dyn
.getVal();
1793 if (StringTableBegin
)
1794 DynamicStringTable
= StringRef(StringTableBegin
, StringTableSize
);
1795 SOName
= getDynamicString(SONameOffset
);
1798 template <typename ELFT
>
1799 typename ELFDumper
<ELFT
>::Elf_Rel_Range ELFDumper
<ELFT
>::dyn_rels() const {
1800 return DynRelRegion
.getAsArrayRef
<Elf_Rel
>();
1803 template <typename ELFT
>
1804 typename ELFDumper
<ELFT
>::Elf_Rela_Range ELFDumper
<ELFT
>::dyn_relas() const {
1805 return DynRelaRegion
.getAsArrayRef
<Elf_Rela
>();
1808 template <typename ELFT
>
1809 typename ELFDumper
<ELFT
>::Elf_Relr_Range ELFDumper
<ELFT
>::dyn_relrs() const {
1810 return DynRelrRegion
.getAsArrayRef
<Elf_Relr
>();
1813 template <class ELFT
> void ELFDumper
<ELFT
>::printFileHeaders() {
1814 ELFDumperStyle
->printFileHeaders(ObjF
->getELFFile());
1817 template <class ELFT
> void ELFDumper
<ELFT
>::printSectionHeaders() {
1818 ELFDumperStyle
->printSectionHeaders(ObjF
->getELFFile());
1821 template <class ELFT
> void ELFDumper
<ELFT
>::printRelocations() {
1822 ELFDumperStyle
->printRelocations(ObjF
->getELFFile());
1825 template <class ELFT
>
1826 void ELFDumper
<ELFT
>::printProgramHeaders(
1827 bool PrintProgramHeaders
, cl::boolOrDefault PrintSectionMapping
) {
1828 ELFDumperStyle
->printProgramHeaders(ObjF
->getELFFile(), PrintProgramHeaders
,
1829 PrintSectionMapping
);
1832 template <typename ELFT
> void ELFDumper
<ELFT
>::printVersionInfo() {
1833 // Dump version symbol section.
1834 ELFDumperStyle
->printVersionSymbolSection(ObjF
->getELFFile(),
1835 SymbolVersionSection
);
1837 // Dump version definition section.
1838 ELFDumperStyle
->printVersionDefinitionSection(ObjF
->getELFFile(),
1839 SymbolVersionDefSection
);
1841 // Dump version dependency section.
1842 ELFDumperStyle
->printVersionDependencySection(ObjF
->getELFFile(),
1843 SymbolVersionNeedSection
);
1846 template <class ELFT
> void ELFDumper
<ELFT
>::printDynamicRelocations() {
1847 ELFDumperStyle
->printDynamicRelocations(ObjF
->getELFFile());
1850 template <class ELFT
>
1851 void ELFDumper
<ELFT
>::printSymbols(bool PrintSymbols
,
1852 bool PrintDynamicSymbols
) {
1853 ELFDumperStyle
->printSymbols(ObjF
->getELFFile(), PrintSymbols
,
1854 PrintDynamicSymbols
);
1857 template <class ELFT
> void ELFDumper
<ELFT
>::printHashSymbols() {
1858 ELFDumperStyle
->printHashSymbols(ObjF
->getELFFile());
1861 template <class ELFT
> void ELFDumper
<ELFT
>::printHashHistogram() {
1862 ELFDumperStyle
->printHashHistogram(ObjF
->getELFFile());
1865 template <class ELFT
> void ELFDumper
<ELFT
>::printCGProfile() {
1866 ELFDumperStyle
->printCGProfile(ObjF
->getELFFile());
1869 template <class ELFT
> void ELFDumper
<ELFT
>::printNotes() {
1870 ELFDumperStyle
->printNotes(ObjF
->getELFFile());
1873 template <class ELFT
> void ELFDumper
<ELFT
>::printELFLinkerOptions() {
1874 ELFDumperStyle
->printELFLinkerOptions(ObjF
->getELFFile());
1877 template <class ELFT
> void ELFDumper
<ELFT
>::printStackSizes() {
1878 ELFDumperStyle
->printStackSizes(ObjF
);
1881 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
1882 { #enum, prefix##_##enum }
1884 static const EnumEntry
<unsigned> ElfDynamicDTFlags
[] = {
1885 LLVM_READOBJ_DT_FLAG_ENT(DF
, ORIGIN
),
1886 LLVM_READOBJ_DT_FLAG_ENT(DF
, SYMBOLIC
),
1887 LLVM_READOBJ_DT_FLAG_ENT(DF
, TEXTREL
),
1888 LLVM_READOBJ_DT_FLAG_ENT(DF
, BIND_NOW
),
1889 LLVM_READOBJ_DT_FLAG_ENT(DF
, STATIC_TLS
)
1892 static const EnumEntry
<unsigned> ElfDynamicDTFlags1
[] = {
1893 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOW
),
1894 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAL
),
1895 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GROUP
),
1896 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODELETE
),
1897 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, LOADFLTR
),
1898 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INITFIRST
),
1899 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOOPEN
),
1900 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ORIGIN
),
1901 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DIRECT
),
1902 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, TRANS
),
1903 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INTERPOSE
),
1904 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODEFLIB
),
1905 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODUMP
),
1906 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, CONFALT
),
1907 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ENDFILTEE
),
1908 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELDNE
),
1909 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELPND
),
1910 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODIRECT
),
1911 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, IGNMULDEF
),
1912 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOKSYMS
),
1913 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOHDR
),
1914 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, EDITED
),
1915 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NORELOC
),
1916 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SYMINTPOSE
),
1917 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAUDIT
),
1918 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SINGLETON
)
1921 static const EnumEntry
<unsigned> ElfDynamicDTMipsFlags
[] = {
1922 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NONE
),
1923 LLVM_READOBJ_DT_FLAG_ENT(RHF
, QUICKSTART
),
1924 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NOTPOT
),
1925 LLVM_READOBJ_DT_FLAG_ENT(RHS
, NO_LIBRARY_REPLACEMENT
),
1926 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_MOVE
),
1927 LLVM_READOBJ_DT_FLAG_ENT(RHF
, SGI_ONLY
),
1928 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_INIT
),
1929 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DELTA_C_PLUS_PLUS
),
1930 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_START_INIT
),
1931 LLVM_READOBJ_DT_FLAG_ENT(RHF
, PIXIE
),
1932 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DEFAULT_DELAY_LOAD
),
1933 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTART
),
1934 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTARTED
),
1935 LLVM_READOBJ_DT_FLAG_ENT(RHF
, CORD
),
1936 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_UNRES_UNDEF
),
1937 LLVM_READOBJ_DT_FLAG_ENT(RHF
, RLD_ORDER_SAFE
)
1940 #undef LLVM_READOBJ_DT_FLAG_ENT
1942 template <typename T
, typename TFlag
>
1943 void printFlags(T Value
, ArrayRef
<EnumEntry
<TFlag
>> Flags
, raw_ostream
&OS
) {
1944 using FlagEntry
= EnumEntry
<TFlag
>;
1945 using FlagVector
= SmallVector
<FlagEntry
, 10>;
1946 FlagVector SetFlags
;
1948 for (const auto &Flag
: Flags
) {
1949 if (Flag
.Value
== 0)
1952 if ((Value
& Flag
.Value
) == Flag
.Value
)
1953 SetFlags
.push_back(Flag
);
1956 for (const auto &Flag
: SetFlags
) {
1957 OS
<< Flag
.Name
<< " ";
1961 template <class ELFT
>
1962 void ELFDumper
<ELFT
>::printDynamicEntry(raw_ostream
&OS
, uint64_t Type
,
1963 uint64_t Value
) const {
1964 const char *ConvChar
=
1965 (opts::Output
== opts::GNU
) ? "0x%" PRIx64
: "0x%" PRIX64
;
1967 // Handle custom printing of architecture specific tags
1968 switch (ObjF
->getELFFile()->getHeader()->e_machine
) {
1971 case DT_AARCH64_BTI_PLT
:
1972 case DT_AARCH64_PAC_PLT
:
1981 case DT_HEXAGON_VER
:
1984 case DT_HEXAGON_SYMSZ
:
1985 case DT_HEXAGON_PLT
:
1986 OS
<< format(ConvChar
, Value
);
1994 case DT_MIPS_RLD_VERSION
:
1995 case DT_MIPS_LOCAL_GOTNO
:
1996 case DT_MIPS_SYMTABNO
:
1997 case DT_MIPS_UNREFEXTNO
:
2000 case DT_MIPS_TIME_STAMP
:
2001 case DT_MIPS_ICHECKSUM
:
2002 case DT_MIPS_IVERSION
:
2003 case DT_MIPS_BASE_ADDRESS
:
2005 case DT_MIPS_CONFLICT
:
2006 case DT_MIPS_LIBLIST
:
2007 case DT_MIPS_CONFLICTNO
:
2008 case DT_MIPS_LIBLISTNO
:
2009 case DT_MIPS_GOTSYM
:
2010 case DT_MIPS_HIPAGENO
:
2011 case DT_MIPS_RLD_MAP
:
2012 case DT_MIPS_DELTA_CLASS
:
2013 case DT_MIPS_DELTA_CLASS_NO
:
2014 case DT_MIPS_DELTA_INSTANCE
:
2015 case DT_MIPS_DELTA_RELOC
:
2016 case DT_MIPS_DELTA_RELOC_NO
:
2017 case DT_MIPS_DELTA_SYM
:
2018 case DT_MIPS_DELTA_SYM_NO
:
2019 case DT_MIPS_DELTA_CLASSSYM
:
2020 case DT_MIPS_DELTA_CLASSSYM_NO
:
2021 case DT_MIPS_CXX_FLAGS
:
2022 case DT_MIPS_PIXIE_INIT
:
2023 case DT_MIPS_SYMBOL_LIB
:
2024 case DT_MIPS_LOCALPAGE_GOTIDX
:
2025 case DT_MIPS_LOCAL_GOTIDX
:
2026 case DT_MIPS_HIDDEN_GOTIDX
:
2027 case DT_MIPS_PROTECTED_GOTIDX
:
2028 case DT_MIPS_OPTIONS
:
2029 case DT_MIPS_INTERFACE
:
2030 case DT_MIPS_DYNSTR_ALIGN
:
2031 case DT_MIPS_INTERFACE_SIZE
:
2032 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
2033 case DT_MIPS_PERF_SUFFIX
:
2034 case DT_MIPS_COMPACT_SIZE
:
2035 case DT_MIPS_GP_VALUE
:
2036 case DT_MIPS_AUX_DYNAMIC
:
2037 case DT_MIPS_PLTGOT
:
2039 case DT_MIPS_RLD_MAP_REL
:
2040 OS
<< format(ConvChar
, Value
);
2043 printFlags(Value
, makeArrayRef(ElfDynamicDTMipsFlags
), OS
);
2055 if (Value
== DT_REL
) {
2058 } else if (Value
== DT_RELA
) {
2074 case DT_PREINIT_ARRAY
:
2081 OS
<< format(ConvChar
, Value
);
2096 case DT_INIT_ARRAYSZ
:
2097 case DT_FINI_ARRAYSZ
:
2098 case DT_PREINIT_ARRAYSZ
:
2099 case DT_ANDROID_RELSZ
:
2100 case DT_ANDROID_RELASZ
:
2101 OS
<< Value
<< " (bytes)";
2110 const std::map
<uint64_t, const char*> TagNames
= {
2111 {DT_NEEDED
, "Shared library"},
2112 {DT_SONAME
, "Library soname"},
2113 {DT_AUXILIARY
, "Auxiliary library"},
2114 {DT_USED
, "Not needed object"},
2115 {DT_FILTER
, "Filter library"},
2116 {DT_RPATH
, "Library rpath"},
2117 {DT_RUNPATH
, "Library runpath"},
2119 OS
<< TagNames
.at(Type
) << ": [" << getDynamicString(Value
) << "]";
2123 printFlags(Value
, makeArrayRef(ElfDynamicDTFlags
), OS
);
2126 printFlags(Value
, makeArrayRef(ElfDynamicDTFlags1
), OS
);
2129 OS
<< format(ConvChar
, Value
);
2134 template <class ELFT
>
2135 std::string ELFDumper
<ELFT
>::getDynamicString(uint64_t Value
) const {
2136 if (DynamicStringTable
.empty())
2137 return "<String table is empty or was not found>";
2138 if (Value
< DynamicStringTable
.size())
2139 return DynamicStringTable
.data() + Value
;
2140 return Twine("<Invalid offset 0x" + utohexstr(Value
) + ">").str();
2143 template <class ELFT
> void ELFDumper
<ELFT
>::printUnwindInfo() {
2144 DwarfCFIEH::PrinterContext
<ELFT
> Ctx(W
, ObjF
);
2145 Ctx
.printUnwindInformation();
2150 template <> void ELFDumper
<ELF32LE
>::printUnwindInfo() {
2151 const ELFFile
<ELF32LE
> *Obj
= ObjF
->getELFFile();
2152 const unsigned Machine
= Obj
->getHeader()->e_machine
;
2153 if (Machine
== EM_ARM
) {
2154 ARM::EHABI::PrinterContext
<ELF32LE
> Ctx(W
, Obj
, ObjF
->getFileName(),
2156 Ctx
.PrintUnwindInformation();
2158 DwarfCFIEH::PrinterContext
<ELF32LE
> Ctx(W
, ObjF
);
2159 Ctx
.printUnwindInformation();
2162 } // end anonymous namespace
2164 template <class ELFT
> void ELFDumper
<ELFT
>::printDynamicTable() {
2165 ELFDumperStyle
->printDynamic(ObjF
->getELFFile());
2168 template <class ELFT
> void ELFDumper
<ELFT
>::printNeededLibraries() {
2169 ListScope
D(W
, "NeededLibraries");
2171 std::vector
<std::string
> Libs
;
2172 for (const auto &Entry
: dynamic_table())
2173 if (Entry
.d_tag
== ELF::DT_NEEDED
)
2174 Libs
.push_back(getDynamicString(Entry
.d_un
.d_val
));
2176 llvm::stable_sort(Libs
);
2178 for (const auto &L
: Libs
)
2179 W
.startLine() << L
<< "\n";
2182 template <typename ELFT
> void ELFDumper
<ELFT
>::printHashTable() {
2183 DictScope
D(W
, "HashTable");
2186 W
.printNumber("Num Buckets", HashTable
->nbucket
);
2187 W
.printNumber("Num Chains", HashTable
->nchain
);
2188 W
.printList("Buckets", HashTable
->buckets());
2189 W
.printList("Chains", HashTable
->chains());
2192 template <typename ELFT
> void ELFDumper
<ELFT
>::printGnuHashTable() {
2193 DictScope
D(W
, "GnuHashTable");
2196 W
.printNumber("Num Buckets", GnuHashTable
->nbuckets
);
2197 W
.printNumber("First Hashed Symbol Index", GnuHashTable
->symndx
);
2198 W
.printNumber("Num Mask Words", GnuHashTable
->maskwords
);
2199 W
.printNumber("Shift Count", GnuHashTable
->shift2
);
2200 W
.printHexList("Bloom Filter", GnuHashTable
->filter());
2201 W
.printList("Buckets", GnuHashTable
->buckets());
2202 Elf_Sym_Range Syms
= dynamic_symbols();
2203 unsigned NumSyms
= std::distance(Syms
.begin(), Syms
.end());
2205 reportError(createError("No dynamic symbol section"), ObjF
->getFileName());
2206 W
.printHexList("Values", GnuHashTable
->values(NumSyms
));
2209 template <typename ELFT
> void ELFDumper
<ELFT
>::printLoadName() {
2210 W
.printString("LoadName", SOName
);
2213 template <class ELFT
> void ELFDumper
<ELFT
>::printAttributes() {
2214 W
.startLine() << "Attributes not implemented.\n";
2219 template <> void ELFDumper
<ELF32LE
>::printAttributes() {
2220 const ELFFile
<ELF32LE
> *Obj
= ObjF
->getELFFile();
2221 if (Obj
->getHeader()->e_machine
!= EM_ARM
) {
2222 W
.startLine() << "Attributes not implemented.\n";
2226 DictScope
BA(W
, "BuildAttributes");
2227 for (const ELFO::Elf_Shdr
&Sec
:
2228 unwrapOrError(ObjF
->getFileName(), Obj
->sections())) {
2229 if (Sec
.sh_type
!= ELF::SHT_ARM_ATTRIBUTES
)
2232 ArrayRef
<uint8_t> Contents
=
2233 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionContents(&Sec
));
2234 if (Contents
[0] != ARMBuildAttrs::Format_Version
) {
2235 errs() << "unrecognised FormatVersion: 0x"
2236 << Twine::utohexstr(Contents
[0]) << '\n';
2240 W
.printHex("FormatVersion", Contents
[0]);
2241 if (Contents
.size() == 1)
2244 ARMAttributeParser(&W
).Parse(Contents
, true);
2248 template <class ELFT
> class MipsGOTParser
{
2250 TYPEDEF_ELF_TYPES(ELFT
)
2251 using Entry
= typename
ELFO::Elf_Addr
;
2252 using Entries
= ArrayRef
<Entry
>;
2254 const bool IsStatic
;
2255 const ELFO
* const Obj
;
2257 MipsGOTParser(const ELFO
*Obj
, StringRef FileName
, Elf_Dyn_Range DynTable
,
2258 Elf_Sym_Range DynSyms
);
2260 bool hasGot() const { return !GotEntries
.empty(); }
2261 bool hasPlt() const { return !PltEntries
.empty(); }
2263 uint64_t getGp() const;
2265 const Entry
*getGotLazyResolver() const;
2266 const Entry
*getGotModulePointer() const;
2267 const Entry
*getPltLazyResolver() const;
2268 const Entry
*getPltModulePointer() const;
2270 Entries
getLocalEntries() const;
2271 Entries
getGlobalEntries() const;
2272 Entries
getOtherEntries() const;
2273 Entries
getPltEntries() const;
2275 uint64_t getGotAddress(const Entry
* E
) const;
2276 int64_t getGotOffset(const Entry
* E
) const;
2277 const Elf_Sym
*getGotSym(const Entry
*E
) const;
2279 uint64_t getPltAddress(const Entry
* E
) const;
2280 const Elf_Sym
*getPltSym(const Entry
*E
) const;
2282 StringRef
getPltStrTable() const { return PltStrTable
; }
2285 const Elf_Shdr
*GotSec
;
2289 const Elf_Shdr
*PltSec
;
2290 const Elf_Shdr
*PltRelSec
;
2291 const Elf_Shdr
*PltSymTable
;
2294 Elf_Sym_Range GotDynSyms
;
2295 StringRef PltStrTable
;
2301 } // end anonymous namespace
2303 template <class ELFT
>
2304 MipsGOTParser
<ELFT
>::MipsGOTParser(const ELFO
*Obj
, StringRef FileName
,
2305 Elf_Dyn_Range DynTable
,
2306 Elf_Sym_Range DynSyms
)
2307 : IsStatic(DynTable
.empty()), Obj(Obj
), GotSec(nullptr), LocalNum(0),
2308 GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr),
2309 FileName(FileName
) {
2310 // See "Global Offset Table" in Chapter 5 in the following document
2311 // for detailed GOT description.
2312 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2314 // Find static GOT secton.
2316 GotSec
= findSectionByName(*Obj
, FileName
, ".got");
2318 reportError(createError("Cannot find .got section"), FileName
);
2320 ArrayRef
<uint8_t> Content
=
2321 unwrapOrError(FileName
, Obj
->getSectionContents(GotSec
));
2322 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
2323 Content
.size() / sizeof(Entry
));
2324 LocalNum
= GotEntries
.size();
2328 // Lookup dynamic table tags which define GOT/PLT layouts.
2329 Optional
<uint64_t> DtPltGot
;
2330 Optional
<uint64_t> DtLocalGotNum
;
2331 Optional
<uint64_t> DtGotSym
;
2332 Optional
<uint64_t> DtMipsPltGot
;
2333 Optional
<uint64_t> DtJmpRel
;
2334 for (const auto &Entry
: DynTable
) {
2335 switch (Entry
.getTag()) {
2336 case ELF::DT_PLTGOT
:
2337 DtPltGot
= Entry
.getVal();
2339 case ELF::DT_MIPS_LOCAL_GOTNO
:
2340 DtLocalGotNum
= Entry
.getVal();
2342 case ELF::DT_MIPS_GOTSYM
:
2343 DtGotSym
= Entry
.getVal();
2345 case ELF::DT_MIPS_PLTGOT
:
2346 DtMipsPltGot
= Entry
.getVal();
2348 case ELF::DT_JMPREL
:
2349 DtJmpRel
= Entry
.getVal();
2354 // Find dynamic GOT section.
2355 if (DtPltGot
|| DtLocalGotNum
|| DtGotSym
) {
2357 report_fatal_error("Cannot find PLTGOT dynamic table tag.");
2359 report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag.");
2361 report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag.");
2363 size_t DynSymTotal
= DynSyms
.size();
2364 if (*DtGotSym
> DynSymTotal
)
2366 createError("MIPS_GOTSYM exceeds a number of dynamic symbols"),
2369 GotSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtPltGot
);
2371 reportError(createError("There is no not empty GOT section at 0x" +
2372 Twine::utohexstr(*DtPltGot
)),
2375 LocalNum
= *DtLocalGotNum
;
2376 GlobalNum
= DynSymTotal
- *DtGotSym
;
2378 ArrayRef
<uint8_t> Content
=
2379 unwrapOrError(FileName
, Obj
->getSectionContents(GotSec
));
2380 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
2381 Content
.size() / sizeof(Entry
));
2382 GotDynSyms
= DynSyms
.drop_front(*DtGotSym
);
2385 // Find PLT section.
2386 if (DtMipsPltGot
|| DtJmpRel
) {
2388 report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag.");
2390 report_fatal_error("Cannot find JMPREL dynamic table tag.");
2392 PltSec
= findNotEmptySectionByAddress(Obj
, FileName
, * DtMipsPltGot
);
2394 report_fatal_error("There is no not empty PLTGOT section at 0x " +
2395 Twine::utohexstr(*DtMipsPltGot
));
2397 PltRelSec
= findNotEmptySectionByAddress(Obj
, FileName
, * DtJmpRel
);
2399 report_fatal_error("There is no not empty RELPLT section at 0x" +
2400 Twine::utohexstr(*DtJmpRel
));
2402 ArrayRef
<uint8_t> PltContent
=
2403 unwrapOrError(FileName
, Obj
->getSectionContents(PltSec
));
2404 PltEntries
= Entries(reinterpret_cast<const Entry
*>(PltContent
.data()),
2405 PltContent
.size() / sizeof(Entry
));
2407 PltSymTable
= unwrapOrError(FileName
, Obj
->getSection(PltRelSec
->sh_link
));
2409 unwrapOrError(FileName
, Obj
->getStringTableForSymtab(*PltSymTable
));
2413 template <class ELFT
> uint64_t MipsGOTParser
<ELFT
>::getGp() const {
2414 return GotSec
->sh_addr
+ 0x7ff0;
2417 template <class ELFT
>
2418 const typename MipsGOTParser
<ELFT
>::Entry
*
2419 MipsGOTParser
<ELFT
>::getGotLazyResolver() const {
2420 return LocalNum
> 0 ? &GotEntries
[0] : nullptr;
2423 template <class ELFT
>
2424 const typename MipsGOTParser
<ELFT
>::Entry
*
2425 MipsGOTParser
<ELFT
>::getGotModulePointer() const {
2428 const Entry
&E
= GotEntries
[1];
2429 if ((E
>> (sizeof(Entry
) * 8 - 1)) == 0)
2434 template <class ELFT
>
2435 typename MipsGOTParser
<ELFT
>::Entries
2436 MipsGOTParser
<ELFT
>::getLocalEntries() const {
2437 size_t Skip
= getGotModulePointer() ? 2 : 1;
2438 if (LocalNum
- Skip
<= 0)
2440 return GotEntries
.slice(Skip
, LocalNum
- Skip
);
2443 template <class ELFT
>
2444 typename MipsGOTParser
<ELFT
>::Entries
2445 MipsGOTParser
<ELFT
>::getGlobalEntries() const {
2448 return GotEntries
.slice(LocalNum
, GlobalNum
);
2451 template <class ELFT
>
2452 typename MipsGOTParser
<ELFT
>::Entries
2453 MipsGOTParser
<ELFT
>::getOtherEntries() const {
2454 size_t OtherNum
= GotEntries
.size() - LocalNum
- GlobalNum
;
2457 return GotEntries
.slice(LocalNum
+ GlobalNum
, OtherNum
);
2460 template <class ELFT
>
2461 uint64_t MipsGOTParser
<ELFT
>::getGotAddress(const Entry
*E
) const {
2462 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
2463 return GotSec
->sh_addr
+ Offset
;
2466 template <class ELFT
>
2467 int64_t MipsGOTParser
<ELFT
>::getGotOffset(const Entry
*E
) const {
2468 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
2469 return Offset
- 0x7ff0;
2472 template <class ELFT
>
2473 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
2474 MipsGOTParser
<ELFT
>::getGotSym(const Entry
*E
) const {
2475 int64_t Offset
= std::distance(GotEntries
.data(), E
);
2476 return &GotDynSyms
[Offset
- LocalNum
];
2479 template <class ELFT
>
2480 const typename MipsGOTParser
<ELFT
>::Entry
*
2481 MipsGOTParser
<ELFT
>::getPltLazyResolver() const {
2482 return PltEntries
.empty() ? nullptr : &PltEntries
[0];
2485 template <class ELFT
>
2486 const typename MipsGOTParser
<ELFT
>::Entry
*
2487 MipsGOTParser
<ELFT
>::getPltModulePointer() const {
2488 return PltEntries
.size() < 2 ? nullptr : &PltEntries
[1];
2491 template <class ELFT
>
2492 typename MipsGOTParser
<ELFT
>::Entries
2493 MipsGOTParser
<ELFT
>::getPltEntries() const {
2494 if (PltEntries
.size() <= 2)
2496 return PltEntries
.slice(2, PltEntries
.size() - 2);
2499 template <class ELFT
>
2500 uint64_t MipsGOTParser
<ELFT
>::getPltAddress(const Entry
*E
) const {
2501 int64_t Offset
= std::distance(PltEntries
.data(), E
) * sizeof(Entry
);
2502 return PltSec
->sh_addr
+ Offset
;
2505 template <class ELFT
>
2506 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
2507 MipsGOTParser
<ELFT
>::getPltSym(const Entry
*E
) const {
2508 int64_t Offset
= std::distance(getPltEntries().data(), E
);
2509 if (PltRelSec
->sh_type
== ELF::SHT_REL
) {
2510 Elf_Rel_Range Rels
= unwrapOrError(FileName
, Obj
->rels(PltRelSec
));
2511 return unwrapOrError(FileName
,
2512 Obj
->getRelocationSymbol(&Rels
[Offset
], PltSymTable
));
2514 Elf_Rela_Range Rels
= unwrapOrError(FileName
, Obj
->relas(PltRelSec
));
2515 return unwrapOrError(FileName
,
2516 Obj
->getRelocationSymbol(&Rels
[Offset
], PltSymTable
));
2520 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsPLTGOT() {
2521 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2522 if (Obj
->getHeader()->e_machine
!= EM_MIPS
)
2523 reportError(createError("MIPS PLT GOT is available for MIPS targets only"),
2524 ObjF
->getFileName());
2526 MipsGOTParser
<ELFT
> Parser(Obj
, ObjF
->getFileName(), dynamic_table(),
2528 if (Parser
.hasGot())
2529 ELFDumperStyle
->printMipsGOT(Parser
);
2530 if (Parser
.hasPlt())
2531 ELFDumperStyle
->printMipsPLT(Parser
);
2534 static const EnumEntry
<unsigned> ElfMipsISAExtType
[] = {
2535 {"None", Mips::AFL_EXT_NONE
},
2536 {"Broadcom SB-1", Mips::AFL_EXT_SB1
},
2537 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON
},
2538 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2
},
2539 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP
},
2540 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3
},
2541 {"LSI R4010", Mips::AFL_EXT_4010
},
2542 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E
},
2543 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F
},
2544 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A
},
2545 {"MIPS R4650", Mips::AFL_EXT_4650
},
2546 {"MIPS R5900", Mips::AFL_EXT_5900
},
2547 {"MIPS R10000", Mips::AFL_EXT_10000
},
2548 {"NEC VR4100", Mips::AFL_EXT_4100
},
2549 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111
},
2550 {"NEC VR4120", Mips::AFL_EXT_4120
},
2551 {"NEC VR5400", Mips::AFL_EXT_5400
},
2552 {"NEC VR5500", Mips::AFL_EXT_5500
},
2553 {"RMI Xlr", Mips::AFL_EXT_XLR
},
2554 {"Toshiba R3900", Mips::AFL_EXT_3900
}
2557 static const EnumEntry
<unsigned> ElfMipsASEFlags
[] = {
2558 {"DSP", Mips::AFL_ASE_DSP
},
2559 {"DSPR2", Mips::AFL_ASE_DSPR2
},
2560 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA
},
2561 {"MCU", Mips::AFL_ASE_MCU
},
2562 {"MDMX", Mips::AFL_ASE_MDMX
},
2563 {"MIPS-3D", Mips::AFL_ASE_MIPS3D
},
2564 {"MT", Mips::AFL_ASE_MT
},
2565 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS
},
2566 {"VZ", Mips::AFL_ASE_VIRT
},
2567 {"MSA", Mips::AFL_ASE_MSA
},
2568 {"MIPS16", Mips::AFL_ASE_MIPS16
},
2569 {"microMIPS", Mips::AFL_ASE_MICROMIPS
},
2570 {"XPA", Mips::AFL_ASE_XPA
},
2571 {"CRC", Mips::AFL_ASE_CRC
},
2572 {"GINV", Mips::AFL_ASE_GINV
},
2575 static const EnumEntry
<unsigned> ElfMipsFpABIType
[] = {
2576 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY
},
2577 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE
},
2578 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE
},
2579 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT
},
2580 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2581 Mips::Val_GNU_MIPS_ABI_FP_OLD_64
},
2582 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX
},
2583 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64
},
2584 {"Hard float compat (32-bit CPU, 64-bit FPU)",
2585 Mips::Val_GNU_MIPS_ABI_FP_64A
}
2588 static const EnumEntry
<unsigned> ElfMipsFlags1
[] {
2589 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG
},
2592 static int getMipsRegisterSize(uint8_t Flag
) {
2594 case Mips::AFL_REG_NONE
:
2596 case Mips::AFL_REG_32
:
2598 case Mips::AFL_REG_64
:
2600 case Mips::AFL_REG_128
:
2607 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsABIFlags() {
2608 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2609 const Elf_Shdr
*Shdr
=
2610 findSectionByName(*Obj
, ObjF
->getFileName(), ".MIPS.abiflags");
2612 W
.startLine() << "There is no .MIPS.abiflags section in the file.\n";
2615 ArrayRef
<uint8_t> Sec
=
2616 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionContents(Shdr
));
2617 if (Sec
.size() != sizeof(Elf_Mips_ABIFlags
<ELFT
>)) {
2618 W
.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
2622 auto *Flags
= reinterpret_cast<const Elf_Mips_ABIFlags
<ELFT
> *>(Sec
.data());
2624 raw_ostream
&OS
= W
.getOStream();
2625 DictScope
GS(W
, "MIPS ABI Flags");
2627 W
.printNumber("Version", Flags
->version
);
2628 W
.startLine() << "ISA: ";
2629 if (Flags
->isa_rev
<= 1)
2630 OS
<< format("MIPS%u", Flags
->isa_level
);
2632 OS
<< format("MIPS%ur%u", Flags
->isa_level
, Flags
->isa_rev
);
2634 W
.printEnum("ISA Extension", Flags
->isa_ext
, makeArrayRef(ElfMipsISAExtType
));
2635 W
.printFlags("ASEs", Flags
->ases
, makeArrayRef(ElfMipsASEFlags
));
2636 W
.printEnum("FP ABI", Flags
->fp_abi
, makeArrayRef(ElfMipsFpABIType
));
2637 W
.printNumber("GPR size", getMipsRegisterSize(Flags
->gpr_size
));
2638 W
.printNumber("CPR1 size", getMipsRegisterSize(Flags
->cpr1_size
));
2639 W
.printNumber("CPR2 size", getMipsRegisterSize(Flags
->cpr2_size
));
2640 W
.printFlags("Flags 1", Flags
->flags1
, makeArrayRef(ElfMipsFlags1
));
2641 W
.printHex("Flags 2", Flags
->flags2
);
2644 template <class ELFT
>
2645 static void printMipsReginfoData(ScopedPrinter
&W
,
2646 const Elf_Mips_RegInfo
<ELFT
> &Reginfo
) {
2647 W
.printHex("GP", Reginfo
.ri_gp_value
);
2648 W
.printHex("General Mask", Reginfo
.ri_gprmask
);
2649 W
.printHex("Co-Proc Mask0", Reginfo
.ri_cprmask
[0]);
2650 W
.printHex("Co-Proc Mask1", Reginfo
.ri_cprmask
[1]);
2651 W
.printHex("Co-Proc Mask2", Reginfo
.ri_cprmask
[2]);
2652 W
.printHex("Co-Proc Mask3", Reginfo
.ri_cprmask
[3]);
2655 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsReginfo() {
2656 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2657 const Elf_Shdr
*Shdr
= findSectionByName(*Obj
, ObjF
->getFileName(), ".reginfo");
2659 W
.startLine() << "There is no .reginfo section in the file.\n";
2662 ArrayRef
<uint8_t> Sec
=
2663 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionContents(Shdr
));
2664 if (Sec
.size() != sizeof(Elf_Mips_RegInfo
<ELFT
>)) {
2665 W
.startLine() << "The .reginfo section has a wrong size.\n";
2669 DictScope
GS(W
, "MIPS RegInfo");
2670 auto *Reginfo
= reinterpret_cast<const Elf_Mips_RegInfo
<ELFT
> *>(Sec
.data());
2671 printMipsReginfoData(W
, *Reginfo
);
2674 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsOptions() {
2675 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2676 const Elf_Shdr
*Shdr
=
2677 findSectionByName(*Obj
, ObjF
->getFileName(), ".MIPS.options");
2679 W
.startLine() << "There is no .MIPS.options section in the file.\n";
2683 DictScope
GS(W
, "MIPS Options");
2685 ArrayRef
<uint8_t> Sec
=
2686 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionContents(Shdr
));
2687 while (!Sec
.empty()) {
2688 if (Sec
.size() < sizeof(Elf_Mips_Options
<ELFT
>)) {
2689 W
.startLine() << "The .MIPS.options section has a wrong size.\n";
2692 auto *O
= reinterpret_cast<const Elf_Mips_Options
<ELFT
> *>(Sec
.data());
2693 DictScope
GS(W
, getElfMipsOptionsOdkType(O
->kind
));
2696 printMipsReginfoData(W
, O
->getRegInfo());
2699 W
.startLine() << "Unsupported MIPS options tag.\n";
2702 Sec
= Sec
.slice(O
->size
);
2706 template <class ELFT
> void ELFDumper
<ELFT
>::printStackMap() const {
2707 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2708 const Elf_Shdr
*StackMapSection
= nullptr;
2709 for (const auto &Sec
: unwrapOrError(ObjF
->getFileName(), Obj
->sections())) {
2711 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(&Sec
));
2712 if (Name
== ".llvm_stackmaps") {
2713 StackMapSection
= &Sec
;
2718 if (!StackMapSection
)
2721 ArrayRef
<uint8_t> StackMapContentsArray
= unwrapOrError(
2722 ObjF
->getFileName(), Obj
->getSectionContents(StackMapSection
));
2724 prettyPrintStackMap(
2725 W
, StackMapParser
<ELFT::TargetEndianness
>(StackMapContentsArray
));
2728 template <class ELFT
> void ELFDumper
<ELFT
>::printGroupSections() {
2729 ELFDumperStyle
->printGroupSections(ObjF
->getELFFile());
2732 template <class ELFT
> void ELFDumper
<ELFT
>::printAddrsig() {
2733 ELFDumperStyle
->printAddrsig(ObjF
->getELFFile());
2736 static inline void printFields(formatted_raw_ostream
&OS
, StringRef Str1
,
2740 OS
.PadToColumn(37u);
2745 template <class ELFT
>
2746 static std::string
getSectionHeadersNumString(const ELFFile
<ELFT
> *Obj
,
2747 StringRef FileName
) {
2748 const typename
ELFT::Ehdr
*ElfHeader
= Obj
->getHeader();
2749 if (ElfHeader
->e_shnum
!= 0)
2750 return to_string(ElfHeader
->e_shnum
);
2752 ArrayRef
<typename
ELFT::Shdr
> Arr
= unwrapOrError(FileName
, Obj
->sections());
2755 return "0 (" + to_string(Arr
[0].sh_size
) + ")";
2758 template <class ELFT
>
2759 static std::string
getSectionHeaderTableIndexString(const ELFFile
<ELFT
> *Obj
,
2760 StringRef FileName
) {
2761 const typename
ELFT::Ehdr
*ElfHeader
= Obj
->getHeader();
2762 if (ElfHeader
->e_shstrndx
!= SHN_XINDEX
)
2763 return to_string(ElfHeader
->e_shstrndx
);
2765 ArrayRef
<typename
ELFT::Shdr
> Arr
= unwrapOrError(FileName
, Obj
->sections());
2767 return "65535 (corrupt: out of range)";
2768 return to_string(ElfHeader
->e_shstrndx
) + " (" + to_string(Arr
[0].sh_link
) +
2772 template <class ELFT
> void GNUStyle
<ELFT
>::printFileHeaders(const ELFO
*Obj
) {
2773 const Elf_Ehdr
*e
= Obj
->getHeader();
2774 OS
<< "ELF Header:\n";
2777 for (int i
= 0; i
< ELF::EI_NIDENT
; i
++)
2778 OS
<< format(" %02x", static_cast<int>(e
->e_ident
[i
]));
2780 Str
= printEnum(e
->e_ident
[ELF::EI_CLASS
], makeArrayRef(ElfClass
));
2781 printFields(OS
, "Class:", Str
);
2782 Str
= printEnum(e
->e_ident
[ELF::EI_DATA
], makeArrayRef(ElfDataEncoding
));
2783 printFields(OS
, "Data:", Str
);
2786 OS
.PadToColumn(37u);
2787 OS
<< to_hexString(e
->e_ident
[ELF::EI_VERSION
]);
2788 if (e
->e_version
== ELF::EV_CURRENT
)
2791 Str
= printEnum(e
->e_ident
[ELF::EI_OSABI
], makeArrayRef(ElfOSABI
));
2792 printFields(OS
, "OS/ABI:", Str
);
2793 Str
= "0x" + to_hexString(e
->e_ident
[ELF::EI_ABIVERSION
]);
2794 printFields(OS
, "ABI Version:", Str
);
2795 Str
= printEnum(e
->e_type
, makeArrayRef(ElfObjectFileType
));
2796 printFields(OS
, "Type:", Str
);
2797 Str
= printEnum(e
->e_machine
, makeArrayRef(ElfMachineType
));
2798 printFields(OS
, "Machine:", Str
);
2799 Str
= "0x" + to_hexString(e
->e_version
);
2800 printFields(OS
, "Version:", Str
);
2801 Str
= "0x" + to_hexString(e
->e_entry
);
2802 printFields(OS
, "Entry point address:", Str
);
2803 Str
= to_string(e
->e_phoff
) + " (bytes into file)";
2804 printFields(OS
, "Start of program headers:", Str
);
2805 Str
= to_string(e
->e_shoff
) + " (bytes into file)";
2806 printFields(OS
, "Start of section headers:", Str
);
2807 std::string ElfFlags
;
2808 if (e
->e_machine
== EM_MIPS
)
2810 printFlags(e
->e_flags
, makeArrayRef(ElfHeaderMipsFlags
),
2811 unsigned(ELF::EF_MIPS_ARCH
), unsigned(ELF::EF_MIPS_ABI
),
2812 unsigned(ELF::EF_MIPS_MACH
));
2813 else if (e
->e_machine
== EM_RISCV
)
2814 ElfFlags
= printFlags(e
->e_flags
, makeArrayRef(ElfHeaderRISCVFlags
));
2815 Str
= "0x" + to_hexString(e
->e_flags
);
2816 if (!ElfFlags
.empty())
2817 Str
= Str
+ ", " + ElfFlags
;
2818 printFields(OS
, "Flags:", Str
);
2819 Str
= to_string(e
->e_ehsize
) + " (bytes)";
2820 printFields(OS
, "Size of this header:", Str
);
2821 Str
= to_string(e
->e_phentsize
) + " (bytes)";
2822 printFields(OS
, "Size of program headers:", Str
);
2823 Str
= to_string(e
->e_phnum
);
2824 printFields(OS
, "Number of program headers:", Str
);
2825 Str
= to_string(e
->e_shentsize
) + " (bytes)";
2826 printFields(OS
, "Size of section headers:", Str
);
2827 Str
= getSectionHeadersNumString(Obj
, this->FileName
);
2828 printFields(OS
, "Number of section headers:", Str
);
2829 Str
= getSectionHeaderTableIndexString(Obj
, this->FileName
);
2830 printFields(OS
, "Section header string table index:", Str
);
2834 struct GroupMember
{
2839 struct GroupSection
{
2841 std::string Signature
;
2847 std::vector
<GroupMember
> Members
;
2850 template <class ELFT
>
2851 std::vector
<GroupSection
> getGroups(const ELFFile
<ELFT
> *Obj
,
2852 StringRef FileName
) {
2853 using Elf_Shdr
= typename
ELFT::Shdr
;
2854 using Elf_Sym
= typename
ELFT::Sym
;
2855 using Elf_Word
= typename
ELFT::Word
;
2857 std::vector
<GroupSection
> Ret
;
2859 for (const Elf_Shdr
&Sec
: unwrapOrError(FileName
, Obj
->sections())) {
2861 if (Sec
.sh_type
!= ELF::SHT_GROUP
)
2864 const Elf_Shdr
*Symtab
=
2865 unwrapOrError(FileName
, Obj
->getSection(Sec
.sh_link
));
2866 StringRef StrTable
=
2867 unwrapOrError(FileName
, Obj
->getStringTableForSymtab(*Symtab
));
2868 const Elf_Sym
*Sym
= unwrapOrError(
2869 FileName
, Obj
->template getEntry
<Elf_Sym
>(Symtab
, Sec
.sh_info
));
2870 auto Data
= unwrapOrError(
2871 FileName
, Obj
->template getSectionContentsAsArray
<Elf_Word
>(&Sec
));
2873 StringRef Name
= unwrapOrError(FileName
, Obj
->getSectionName(&Sec
));
2874 StringRef Signature
= StrTable
.data() + Sym
->st_name
;
2875 Ret
.push_back({Name
,
2876 maybeDemangle(Signature
),
2884 std::vector
<GroupMember
> &GM
= Ret
.back().Members
;
2885 for (uint32_t Ndx
: Data
.slice(1)) {
2886 auto Sec
= unwrapOrError(FileName
, Obj
->getSection(Ndx
));
2887 const StringRef Name
= unwrapOrError(FileName
, Obj
->getSectionName(Sec
));
2888 GM
.push_back({Name
, Ndx
});
2894 DenseMap
<uint64_t, const GroupSection
*>
2895 mapSectionsToGroups(ArrayRef
<GroupSection
> Groups
) {
2896 DenseMap
<uint64_t, const GroupSection
*> Ret
;
2897 for (const GroupSection
&G
: Groups
)
2898 for (const GroupMember
&GM
: G
.Members
)
2899 Ret
.insert({GM
.Index
, &G
});
2905 template <class ELFT
> void GNUStyle
<ELFT
>::printGroupSections(const ELFO
*Obj
) {
2906 std::vector
<GroupSection
> V
= getGroups
<ELFT
>(Obj
, this->FileName
);
2907 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
2908 for (const GroupSection
&G
: V
) {
2910 << getGroupType(G
.Type
) << " group section ["
2911 << format_decimal(G
.Index
, 5) << "] `" << G
.Name
<< "' [" << G
.Signature
2912 << "] contains " << G
.Members
.size() << " sections:\n"
2913 << " [Index] Name\n";
2914 for (const GroupMember
&GM
: G
.Members
) {
2915 const GroupSection
*MainGroup
= Map
[GM
.Index
];
2916 if (MainGroup
!= &G
) {
2918 errs() << "Error: section [" << format_decimal(GM
.Index
, 5)
2919 << "] in group section [" << format_decimal(G
.Index
, 5)
2920 << "] already in group section ["
2921 << format_decimal(MainGroup
->Index
, 5) << "]";
2925 OS
<< " [" << format_decimal(GM
.Index
, 5) << "] " << GM
.Name
<< "\n";
2930 OS
<< "There are no section groups in this file.\n";
2933 template <class ELFT
>
2934 void GNUStyle
<ELFT
>::printRelocation(const ELFO
*Obj
, const Elf_Shdr
*SymTab
,
2935 const Elf_Rela
&R
, bool IsRela
) {
2936 const Elf_Sym
*Sym
=
2937 unwrapOrError(this->FileName
, Obj
->getRelocationSymbol(&R
, SymTab
));
2938 std::string TargetName
;
2939 if (Sym
&& Sym
->getType() == ELF::STT_SECTION
) {
2940 const Elf_Shdr
*Sec
= unwrapOrError(
2942 Obj
->getSection(Sym
, SymTab
, this->dumper()->getShndxTable()));
2943 TargetName
= unwrapOrError(this->FileName
, Obj
->getSectionName(Sec
));
2945 StringRef StrTable
=
2946 unwrapOrError(this->FileName
, Obj
->getStringTableForSymtab(*SymTab
));
2947 TargetName
= this->dumper()->getFullSymbolName(
2948 Sym
, StrTable
, SymTab
->sh_type
== SHT_DYNSYM
/* IsDynamic */);
2950 printRelocation(Obj
, Sym
, TargetName
, R
, IsRela
);
2953 template <class ELFT
>
2954 void GNUStyle
<ELFT
>::printRelocation(const ELFO
*Obj
, const Elf_Sym
*Sym
,
2955 StringRef SymbolName
, const Elf_Rela
&R
,
2957 // First two fields are bit width dependent. The rest of them are fixed width.
2958 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
2959 Field Fields
[5] = {0, 10 + Bias
, 19 + 2 * Bias
, 42 + 2 * Bias
, 53 + 2 * Bias
};
2960 unsigned Width
= ELFT::Is64Bits
? 16 : 8;
2962 Fields
[0].Str
= to_string(format_hex_no_prefix(R
.r_offset
, Width
));
2963 Fields
[1].Str
= to_string(format_hex_no_prefix(R
.r_info
, Width
));
2965 SmallString
<32> RelocName
;
2966 Obj
->getRelocationTypeName(R
.getType(Obj
->isMips64EL()), RelocName
);
2967 Fields
[2].Str
= RelocName
.c_str();
2969 if (Sym
&& (!SymbolName
.empty() || Sym
->getValue() != 0))
2970 Fields
[3].Str
= to_string(format_hex_no_prefix(Sym
->getValue(), Width
));
2972 Fields
[4].Str
= SymbolName
;
2973 for (const Field
&F
: Fields
)
2978 int64_t RelAddend
= R
.r_addend
;
2979 if (!SymbolName
.empty()) {
2980 if (R
.r_addend
< 0) {
2982 RelAddend
= std::abs(RelAddend
);
2987 Addend
+= to_hexString(RelAddend
, false);
2989 OS
<< Addend
<< "\n";
2992 template <class ELFT
> void GNUStyle
<ELFT
>::printRelocHeader(unsigned SType
) {
2993 bool IsRela
= SType
== ELF::SHT_RELA
|| SType
== ELF::SHT_ANDROID_RELA
;
2994 bool IsRelr
= SType
== ELF::SHT_RELR
|| SType
== ELF::SHT_ANDROID_RELR
;
2999 if (IsRelr
&& opts::RawRelr
)
3005 << " Symbol's Value Symbol's Name";
3007 OS
<< " Info Type Sym. Value Symbol's Name";
3013 template <class ELFT
> void GNUStyle
<ELFT
>::printRelocations(const ELFO
*Obj
) {
3014 bool HasRelocSections
= false;
3015 for (const Elf_Shdr
&Sec
: unwrapOrError(this->FileName
, Obj
->sections())) {
3016 if (Sec
.sh_type
!= ELF::SHT_REL
&& Sec
.sh_type
!= ELF::SHT_RELA
&&
3017 Sec
.sh_type
!= ELF::SHT_RELR
&& Sec
.sh_type
!= ELF::SHT_ANDROID_REL
&&
3018 Sec
.sh_type
!= ELF::SHT_ANDROID_RELA
&&
3019 Sec
.sh_type
!= ELF::SHT_ANDROID_RELR
)
3021 HasRelocSections
= true;
3022 StringRef Name
= unwrapOrError(this->FileName
, Obj
->getSectionName(&Sec
));
3023 unsigned Entries
= Sec
.getEntityCount();
3024 std::vector
<Elf_Rela
> AndroidRelas
;
3025 if (Sec
.sh_type
== ELF::SHT_ANDROID_REL
||
3026 Sec
.sh_type
== ELF::SHT_ANDROID_RELA
) {
3027 // Android's packed relocation section needs to be unpacked first
3028 // to get the actual number of entries.
3029 AndroidRelas
= unwrapOrError(this->FileName
, Obj
->android_relas(&Sec
));
3030 Entries
= AndroidRelas
.size();
3032 std::vector
<Elf_Rela
> RelrRelas
;
3033 if (!opts::RawRelr
&& (Sec
.sh_type
== ELF::SHT_RELR
||
3034 Sec
.sh_type
== ELF::SHT_ANDROID_RELR
)) {
3035 // .relr.dyn relative relocation section needs to be unpacked first
3036 // to get the actual number of entries.
3037 Elf_Relr_Range Relrs
= unwrapOrError(this->FileName
, Obj
->relrs(&Sec
));
3038 RelrRelas
= unwrapOrError(this->FileName
, Obj
->decode_relrs(Relrs
));
3039 Entries
= RelrRelas
.size();
3041 uintX_t Offset
= Sec
.sh_offset
;
3042 OS
<< "\nRelocation section '" << Name
<< "' at offset 0x"
3043 << to_hexString(Offset
, false) << " contains " << Entries
3045 printRelocHeader(Sec
.sh_type
);
3046 const Elf_Shdr
*SymTab
=
3047 unwrapOrError(this->FileName
, Obj
->getSection(Sec
.sh_link
));
3048 switch (Sec
.sh_type
) {
3050 for (const auto &R
: unwrapOrError(this->FileName
, Obj
->rels(&Sec
))) {
3052 Rela
.r_offset
= R
.r_offset
;
3053 Rela
.r_info
= R
.r_info
;
3055 printRelocation(Obj
, SymTab
, Rela
, false);
3059 for (const auto &R
: unwrapOrError(this->FileName
, Obj
->relas(&Sec
)))
3060 printRelocation(Obj
, SymTab
, R
, true);
3063 case ELF::SHT_ANDROID_RELR
:
3065 for (const auto &R
: unwrapOrError(this->FileName
, Obj
->relrs(&Sec
)))
3066 OS
<< to_string(format_hex_no_prefix(R
, ELFT::Is64Bits
? 16 : 8))
3069 for (const auto &R
: RelrRelas
)
3070 printRelocation(Obj
, SymTab
, R
, false);
3072 case ELF::SHT_ANDROID_REL
:
3073 case ELF::SHT_ANDROID_RELA
:
3074 for (const auto &R
: AndroidRelas
)
3075 printRelocation(Obj
, SymTab
, R
, Sec
.sh_type
== ELF::SHT_ANDROID_RELA
);
3079 if (!HasRelocSections
)
3080 OS
<< "\nThere are no relocations in this file.\n";
3083 // Print the offset of a particular section from anyone of the ranges:
3084 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3085 // If 'Type' does not fall within any of those ranges, then a string is
3086 // returned as '<unknown>' followed by the type value.
3087 static std::string
getSectionTypeOffsetString(unsigned Type
) {
3088 if (Type
>= SHT_LOOS
&& Type
<= SHT_HIOS
)
3089 return "LOOS+0x" + to_hexString(Type
- SHT_LOOS
);
3090 else if (Type
>= SHT_LOPROC
&& Type
<= SHT_HIPROC
)
3091 return "LOPROC+0x" + to_hexString(Type
- SHT_LOPROC
);
3092 else if (Type
>= SHT_LOUSER
&& Type
<= SHT_HIUSER
)
3093 return "LOUSER+0x" + to_hexString(Type
- SHT_LOUSER
);
3094 return "0x" + to_hexString(Type
) + ": <unknown>";
3097 static std::string
getSectionTypeString(unsigned Arch
, unsigned Type
) {
3098 using namespace ELF
;
3105 case SHT_ARM_PREEMPTMAP
:
3106 return "ARM_PREEMPTMAP";
3107 case SHT_ARM_ATTRIBUTES
:
3108 return "ARM_ATTRIBUTES";
3109 case SHT_ARM_DEBUGOVERLAY
:
3110 return "ARM_DEBUGOVERLAY";
3111 case SHT_ARM_OVERLAYSECTION
:
3112 return "ARM_OVERLAYSECTION";
3117 case SHT_X86_64_UNWIND
:
3118 return "X86_64_UNWIND";
3122 case EM_MIPS_RS3_LE
:
3124 case SHT_MIPS_REGINFO
:
3125 return "MIPS_REGINFO";
3126 case SHT_MIPS_OPTIONS
:
3127 return "MIPS_OPTIONS";
3128 case SHT_MIPS_DWARF
:
3129 return "MIPS_DWARF";
3130 case SHT_MIPS_ABIFLAGS
:
3131 return "MIPS_ABIFLAGS";
3160 case SHT_INIT_ARRAY
:
3161 return "INIT_ARRAY";
3162 case SHT_FINI_ARRAY
:
3163 return "FINI_ARRAY";
3164 case SHT_PREINIT_ARRAY
:
3165 return "PREINIT_ARRAY";
3168 case SHT_SYMTAB_SHNDX
:
3169 return "SYMTAB SECTION INDICES";
3170 case SHT_ANDROID_REL
:
3171 return "ANDROID_REL";
3172 case SHT_ANDROID_RELA
:
3173 return "ANDROID_RELA";
3175 case SHT_ANDROID_RELR
:
3177 case SHT_LLVM_ODRTAB
:
3178 return "LLVM_ODRTAB";
3179 case SHT_LLVM_LINKER_OPTIONS
:
3180 return "LLVM_LINKER_OPTIONS";
3181 case SHT_LLVM_CALL_GRAPH_PROFILE
:
3182 return "LLVM_CALL_GRAPH_PROFILE";
3183 case SHT_LLVM_ADDRSIG
:
3184 return "LLVM_ADDRSIG";
3185 case SHT_LLVM_DEPENDENT_LIBRARIES
:
3186 return "LLVM_DEPENDENT_LIBRARIES";
3187 case SHT_LLVM_SYMPART
:
3188 return "LLVM_SYMPART";
3189 case SHT_LLVM_PART_EHDR
:
3190 return "LLVM_PART_EHDR";
3191 case SHT_LLVM_PART_PHDR
:
3192 return "LLVM_PART_PHDR";
3193 // FIXME: Parse processor specific GNU attributes
3194 case SHT_GNU_ATTRIBUTES
:
3195 return "ATTRIBUTES";
3198 case SHT_GNU_verdef
:
3200 case SHT_GNU_verneed
:
3202 case SHT_GNU_versym
:
3205 return getSectionTypeOffsetString(Type
);
3210 template <class ELFT
>
3211 void GNUStyle
<ELFT
>::printSectionHeaders(const ELFO
*Obj
) {
3212 unsigned Bias
= ELFT::Is64Bits
? 0 : 8;
3213 ArrayRef
<Elf_Shdr
> Sections
= unwrapOrError(this->FileName
, Obj
->sections());
3214 OS
<< "There are " << to_string(Sections
.size())
3215 << " section headers, starting at offset "
3216 << "0x" << to_hexString(Obj
->getHeader()->e_shoff
, false) << ":\n\n";
3217 OS
<< "Section Headers:\n";
3218 Field Fields
[11] = {
3219 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3220 {"Address", 41}, {"Off", 58 - Bias
}, {"Size", 65 - Bias
},
3221 {"ES", 72 - Bias
}, {"Flg", 75 - Bias
}, {"Lk", 79 - Bias
},
3222 {"Inf", 82 - Bias
}, {"Al", 86 - Bias
}};
3223 for (auto &F
: Fields
)
3227 const ELFObjectFile
<ELFT
> *ElfObj
= this->dumper()->getElfObject();
3228 size_t SectionIndex
= 0;
3229 for (const Elf_Shdr
&Sec
: Sections
) {
3230 Fields
[0].Str
= to_string(SectionIndex
);
3231 Fields
[1].Str
= unwrapOrError
<StringRef
>(
3232 ElfObj
->getFileName(), Obj
->getSectionName(&Sec
, this->WarningHandler
));
3234 getSectionTypeString(Obj
->getHeader()->e_machine
, Sec
.sh_type
);
3236 to_string(format_hex_no_prefix(Sec
.sh_addr
, ELFT::Is64Bits
? 16 : 8));
3237 Fields
[4].Str
= to_string(format_hex_no_prefix(Sec
.sh_offset
, 6));
3238 Fields
[5].Str
= to_string(format_hex_no_prefix(Sec
.sh_size
, 6));
3239 Fields
[6].Str
= to_string(format_hex_no_prefix(Sec
.sh_entsize
, 2));
3240 Fields
[7].Str
= getGNUFlags(Sec
.sh_flags
);
3241 Fields
[8].Str
= to_string(Sec
.sh_link
);
3242 Fields
[9].Str
= to_string(Sec
.sh_info
);
3243 Fields
[10].Str
= to_string(Sec
.sh_addralign
);
3245 OS
.PadToColumn(Fields
[0].Column
);
3246 OS
<< "[" << right_justify(Fields
[0].Str
, 2) << "]";
3247 for (int i
= 1; i
< 7; i
++)
3248 printField(Fields
[i
]);
3249 OS
.PadToColumn(Fields
[7].Column
);
3250 OS
<< right_justify(Fields
[7].Str
, 3);
3251 OS
.PadToColumn(Fields
[8].Column
);
3252 OS
<< right_justify(Fields
[8].Str
, 2);
3253 OS
.PadToColumn(Fields
[9].Column
);
3254 OS
<< right_justify(Fields
[9].Str
, 3);
3255 OS
.PadToColumn(Fields
[10].Column
);
3256 OS
<< right_justify(Fields
[10].Str
, 2);
3260 OS
<< "Key to Flags:\n"
3261 << " W (write), A (alloc), X (execute), M (merge), S (strings), l "
3263 << " I (info), L (link order), G (group), T (TLS), E (exclude),\
3265 << " O (extra OS processing required) o (OS specific),\
3266 p (processor specific)\n";
3269 template <class ELFT
>
3270 void GNUStyle
<ELFT
>::printSymtabMessage(const ELFO
*Obj
, StringRef Name
,
3272 bool NonVisibilityBitsUsed
) {
3274 OS
<< "\nSymbol table '" << Name
<< "' contains " << Entries
3277 OS
<< "\n Symbol table for image:\n";
3280 OS
<< " Num: Value Size Type Bind Vis";
3282 OS
<< " Num: Value Size Type Bind Vis";
3284 if (NonVisibilityBitsUsed
)
3286 OS
<< " Ndx Name\n";
3289 template <class ELFT
>
3290 std::string GNUStyle
<ELFT
>::getSymbolSectionNdx(const ELFO
*Obj
,
3291 const Elf_Sym
*Symbol
,
3292 const Elf_Sym
*FirstSym
) {
3293 unsigned SectionIndex
= Symbol
->st_shndx
;
3294 switch (SectionIndex
) {
3295 case ELF::SHN_UNDEF
:
3299 case ELF::SHN_COMMON
:
3301 case ELF::SHN_XINDEX
:
3302 return to_string(format_decimal(
3303 unwrapOrError(this->FileName
,
3304 object::getExtendedSymbolTableIndex
<ELFT
>(
3305 Symbol
, FirstSym
, this->dumper()->getShndxTable())),
3309 // Processor specific
3310 if (SectionIndex
>= ELF::SHN_LOPROC
&& SectionIndex
<= ELF::SHN_HIPROC
)
3311 return std::string("PRC[0x") +
3312 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
3314 if (SectionIndex
>= ELF::SHN_LOOS
&& SectionIndex
<= ELF::SHN_HIOS
)
3315 return std::string("OS[0x") +
3316 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
3317 // Architecture reserved:
3318 if (SectionIndex
>= ELF::SHN_LORESERVE
&&
3319 SectionIndex
<= ELF::SHN_HIRESERVE
)
3320 return std::string("RSV[0x") +
3321 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
3322 // A normal section with an index
3323 return to_string(format_decimal(SectionIndex
, 3));
3327 template <class ELFT
>
3328 void GNUStyle
<ELFT
>::printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
3329 const Elf_Sym
*FirstSym
, StringRef StrTable
,
3330 bool IsDynamic
, bool NonVisibilityBitsUsed
) {
3332 static bool Dynamic
= true;
3334 // If this function was called with a different value from IsDynamic
3335 // from last call, happens when we move from dynamic to static symbol
3336 // table, "Num" field should be reset.
3337 if (!Dynamic
!= !IsDynamic
) {
3342 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3343 Field Fields
[8] = {0, 8, 17 + Bias
, 23 + Bias
,
3344 31 + Bias
, 38 + Bias
, 48 + Bias
, 51 + Bias
};
3345 Fields
[0].Str
= to_string(format_decimal(Idx
++, 6)) + ":";
3346 Fields
[1].Str
= to_string(
3347 format_hex_no_prefix(Symbol
->st_value
, ELFT::Is64Bits
? 16 : 8));
3348 Fields
[2].Str
= to_string(format_decimal(Symbol
->st_size
, 5));
3350 unsigned char SymbolType
= Symbol
->getType();
3351 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
3352 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
3353 Fields
[3].Str
= printEnum(SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
3355 Fields
[3].Str
= printEnum(SymbolType
, makeArrayRef(ElfSymbolTypes
));
3358 printEnum(Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
3360 printEnum(Symbol
->getVisibility(), makeArrayRef(ElfSymbolVisibilities
));
3361 if (Symbol
->st_other
& ~0x3)
3363 " [<other: " + to_string(format_hex(Symbol
->st_other
, 2)) + ">]";
3365 Fields
[6].Column
+= NonVisibilityBitsUsed
? 13 : 0;
3366 Fields
[6].Str
= getSymbolSectionNdx(Obj
, Symbol
, FirstSym
);
3369 this->dumper()->getFullSymbolName(Symbol
, StrTable
, IsDynamic
);
3370 for (auto &Entry
: Fields
)
3375 template <class ELFT
>
3376 void GNUStyle
<ELFT
>::printHashedSymbol(const ELFO
*Obj
, const Elf_Sym
*FirstSym
,
3377 uint32_t Sym
, StringRef StrTable
,
3379 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3380 Field Fields
[9] = {0, 6, 11, 20 + Bias
, 25 + Bias
,
3381 34 + Bias
, 41 + Bias
, 49 + Bias
, 53 + Bias
};
3382 Fields
[0].Str
= to_string(format_decimal(Sym
, 5));
3383 Fields
[1].Str
= to_string(format_decimal(Bucket
, 3)) + ":";
3385 const auto Symbol
= FirstSym
+ Sym
;
3386 Fields
[2].Str
= to_string(
3387 format_hex_no_prefix(Symbol
->st_value
, ELFT::Is64Bits
? 16 : 8));
3388 Fields
[3].Str
= to_string(format_decimal(Symbol
->st_size
, 5));
3390 unsigned char SymbolType
= Symbol
->getType();
3391 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
3392 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
3393 Fields
[4].Str
= printEnum(SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
3395 Fields
[4].Str
= printEnum(SymbolType
, makeArrayRef(ElfSymbolTypes
));
3398 printEnum(Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
3400 printEnum(Symbol
->getVisibility(), makeArrayRef(ElfSymbolVisibilities
));
3401 Fields
[7].Str
= getSymbolSectionNdx(Obj
, Symbol
, FirstSym
);
3402 Fields
[8].Str
= this->dumper()->getFullSymbolName(Symbol
, StrTable
, true);
3404 for (auto &Entry
: Fields
)
3409 template <class ELFT
>
3410 void GNUStyle
<ELFT
>::printSymbols(const ELFO
*Obj
, bool PrintSymbols
,
3411 bool PrintDynamicSymbols
) {
3412 if (!PrintSymbols
&& !PrintDynamicSymbols
)
3414 // GNU readelf prints both the .dynsym and .symtab with --symbols.
3415 this->dumper()->printSymbolsHelper(true);
3417 this->dumper()->printSymbolsHelper(false);
3420 template <class ELFT
> void GNUStyle
<ELFT
>::printHashSymbols(const ELFO
*Obj
) {
3421 if (this->dumper()->getDynamicStringTable().empty())
3423 auto StringTable
= this->dumper()->getDynamicStringTable();
3424 auto DynSyms
= this->dumper()->dynamic_symbols();
3426 // Try printing .hash
3427 if (auto SysVHash
= this->dumper()->getHashTable()) {
3428 OS
<< "\n Symbol table of .hash for image:\n";
3430 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3432 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3435 auto Buckets
= SysVHash
->buckets();
3436 auto Chains
= SysVHash
->chains();
3437 for (uint32_t Buc
= 0; Buc
< SysVHash
->nbucket
; Buc
++) {
3438 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
3440 for (uint32_t Ch
= Buckets
[Buc
]; Ch
< SysVHash
->nchain
; Ch
= Chains
[Ch
]) {
3441 if (Ch
== ELF::STN_UNDEF
)
3443 printHashedSymbol(Obj
, &DynSyms
[0], Ch
, StringTable
, Buc
);
3448 // Try printing .gnu.hash
3449 if (auto GnuHash
= this->dumper()->getGnuHashTable()) {
3450 OS
<< "\n Symbol table of .gnu.hash for image:\n";
3452 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3454 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3456 auto Buckets
= GnuHash
->buckets();
3457 for (uint32_t Buc
= 0; Buc
< GnuHash
->nbuckets
; Buc
++) {
3458 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
3460 uint32_t Index
= Buckets
[Buc
];
3461 uint32_t GnuHashable
= Index
- GnuHash
->symndx
;
3462 // Print whole chain
3464 printHashedSymbol(Obj
, &DynSyms
[0], Index
++, StringTable
, Buc
);
3465 // Chain ends at symbol with stopper bit
3466 if ((GnuHash
->values(DynSyms
.size())[GnuHashable
++] & 1) == 1)
3473 static inline std::string
printPhdrFlags(unsigned Flag
) {
3475 Str
= (Flag
& PF_R
) ? "R" : " ";
3476 Str
+= (Flag
& PF_W
) ? "W" : " ";
3477 Str
+= (Flag
& PF_X
) ? "E" : " ";
3481 // SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
3482 // PT_TLS must only have SHF_TLS sections
3483 template <class ELFT
>
3484 bool GNUStyle
<ELFT
>::checkTLSSections(const Elf_Phdr
&Phdr
,
3485 const Elf_Shdr
&Sec
) {
3486 return (((Sec
.sh_flags
& ELF::SHF_TLS
) &&
3487 ((Phdr
.p_type
== ELF::PT_TLS
) || (Phdr
.p_type
== ELF::PT_LOAD
) ||
3488 (Phdr
.p_type
== ELF::PT_GNU_RELRO
))) ||
3489 (!(Sec
.sh_flags
& ELF::SHF_TLS
) && Phdr
.p_type
!= ELF::PT_TLS
));
3492 // Non-SHT_NOBITS must have its offset inside the segment
3493 // Only non-zero section can be at end of segment
3494 template <class ELFT
>
3495 bool GNUStyle
<ELFT
>::checkoffsets(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3496 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
3499 (Sec
.sh_type
== ELF::SHT_NOBITS
) && ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0);
3500 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3502 (IsSpecial
&& Phdr
.p_type
!= ELF::PT_TLS
) ? 0 : Sec
.sh_size
;
3503 if (Sec
.sh_offset
>= Phdr
.p_offset
)
3504 return ((Sec
.sh_offset
+ SectionSize
<= Phdr
.p_filesz
+ Phdr
.p_offset
)
3505 /*only non-zero sized sections at end*/
3506 && (Sec
.sh_offset
+ 1 <= Phdr
.p_offset
+ Phdr
.p_filesz
));
3510 // SHF_ALLOC must have VMA inside segment
3511 // Only non-zero section can be at end of segment
3512 template <class ELFT
>
3513 bool GNUStyle
<ELFT
>::checkVMA(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3514 if (!(Sec
.sh_flags
& ELF::SHF_ALLOC
))
3517 (Sec
.sh_type
== ELF::SHT_NOBITS
) && ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0);
3518 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3520 (IsSpecial
&& Phdr
.p_type
!= ELF::PT_TLS
) ? 0 : Sec
.sh_size
;
3521 if (Sec
.sh_addr
>= Phdr
.p_vaddr
)
3522 return ((Sec
.sh_addr
+ SectionSize
<= Phdr
.p_vaddr
+ Phdr
.p_memsz
) &&
3523 (Sec
.sh_addr
+ 1 <= Phdr
.p_vaddr
+ Phdr
.p_memsz
));
3527 // No section with zero size must be at start or end of PT_DYNAMIC
3528 template <class ELFT
>
3529 bool GNUStyle
<ELFT
>::checkPTDynamic(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3530 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
|| Sec
.sh_size
!= 0 || Phdr
.p_memsz
== 0)
3532 // Is section within the phdr both based on offset and VMA ?
3533 return ((Sec
.sh_type
== ELF::SHT_NOBITS
) ||
3534 (Sec
.sh_offset
> Phdr
.p_offset
&&
3535 Sec
.sh_offset
< Phdr
.p_offset
+ Phdr
.p_filesz
)) &&
3536 (!(Sec
.sh_flags
& ELF::SHF_ALLOC
) ||
3537 (Sec
.sh_addr
> Phdr
.p_vaddr
&& Sec
.sh_addr
< Phdr
.p_memsz
));
3540 template <class ELFT
>
3541 void GNUStyle
<ELFT
>::printProgramHeaders(
3542 const ELFO
*Obj
, bool PrintProgramHeaders
,
3543 cl::boolOrDefault PrintSectionMapping
) {
3544 if (PrintProgramHeaders
)
3545 printProgramHeaders(Obj
);
3547 // Display the section mapping along with the program headers, unless
3548 // -section-mapping is explicitly set to false.
3549 if (PrintSectionMapping
!= cl::BOU_FALSE
)
3550 printSectionMapping(Obj
);
3553 template <class ELFT
>
3554 void GNUStyle
<ELFT
>::printProgramHeaders(const ELFO
*Obj
) {
3555 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3556 const Elf_Ehdr
*Header
= Obj
->getHeader();
3557 Field Fields
[8] = {2, 17, 26, 37 + Bias
,
3558 48 + Bias
, 56 + Bias
, 64 + Bias
, 68 + Bias
};
3559 OS
<< "\nElf file type is "
3560 << printEnum(Header
->e_type
, makeArrayRef(ElfObjectFileType
)) << "\n"
3561 << "Entry point " << format_hex(Header
->e_entry
, 3) << "\n"
3562 << "There are " << Header
->e_phnum
<< " program headers,"
3563 << " starting at offset " << Header
->e_phoff
<< "\n\n"
3564 << "Program Headers:\n";
3566 OS
<< " Type Offset VirtAddr PhysAddr "
3567 << " FileSiz MemSiz Flg Align\n";
3569 OS
<< " Type Offset VirtAddr PhysAddr FileSiz "
3570 << "MemSiz Flg Align\n";
3572 unsigned Width
= ELFT::Is64Bits
? 18 : 10;
3573 unsigned SizeWidth
= ELFT::Is64Bits
? 8 : 7;
3574 for (const auto &Phdr
:
3575 unwrapOrError(this->FileName
, Obj
->program_headers())) {
3576 Fields
[0].Str
= getElfPtType(Header
->e_machine
, Phdr
.p_type
);
3577 Fields
[1].Str
= to_string(format_hex(Phdr
.p_offset
, 8));
3578 Fields
[2].Str
= to_string(format_hex(Phdr
.p_vaddr
, Width
));
3579 Fields
[3].Str
= to_string(format_hex(Phdr
.p_paddr
, Width
));
3580 Fields
[4].Str
= to_string(format_hex(Phdr
.p_filesz
, SizeWidth
));
3581 Fields
[5].Str
= to_string(format_hex(Phdr
.p_memsz
, SizeWidth
));
3582 Fields
[6].Str
= printPhdrFlags(Phdr
.p_flags
);
3583 Fields
[7].Str
= to_string(format_hex(Phdr
.p_align
, 1));
3584 for (auto Field
: Fields
)
3586 if (Phdr
.p_type
== ELF::PT_INTERP
) {
3587 OS
<< "\n [Requesting program interpreter: ";
3588 OS
<< reinterpret_cast<const char *>(Obj
->base()) + Phdr
.p_offset
<< "]";
3594 template <class ELFT
>
3595 void GNUStyle
<ELFT
>::printSectionMapping(const ELFO
*Obj
) {
3596 OS
<< "\n Section to Segment mapping:\n Segment Sections...\n";
3597 DenseSet
<const Elf_Shdr
*> BelongsToSegment
;
3599 for (const Elf_Phdr
&Phdr
:
3600 unwrapOrError(this->FileName
, Obj
->program_headers())) {
3601 std::string Sections
;
3602 OS
<< format(" %2.2d ", Phnum
++);
3603 for (const Elf_Shdr
&Sec
: unwrapOrError(this->FileName
, Obj
->sections())) {
3604 // Check if each section is in a segment and then print mapping.
3605 // readelf additionally makes sure it does not print zero sized sections
3606 // at end of segments and for PT_DYNAMIC both start and end of section
3607 // .tbss must only be shown in PT_TLS section.
3608 bool TbssInNonTLS
= (Sec
.sh_type
== ELF::SHT_NOBITS
) &&
3609 ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0) &&
3610 Phdr
.p_type
!= ELF::PT_TLS
;
3611 if (!TbssInNonTLS
&& checkTLSSections(Phdr
, Sec
) &&
3612 checkoffsets(Phdr
, Sec
) && checkVMA(Phdr
, Sec
) &&
3613 checkPTDynamic(Phdr
, Sec
) && (Sec
.sh_type
!= ELF::SHT_NULL
)) {
3615 unwrapOrError(this->FileName
, Obj
->getSectionName(&Sec
)).str() +
3617 BelongsToSegment
.insert(&Sec
);
3620 OS
<< Sections
<< "\n";
3624 // Display sections that do not belong to a segment.
3625 std::string Sections
;
3626 for (const Elf_Shdr
&Sec
: unwrapOrError(this->FileName
, Obj
->sections())) {
3627 if (BelongsToSegment
.find(&Sec
) == BelongsToSegment
.end())
3629 unwrapOrError(this->FileName
, Obj
->getSectionName(&Sec
)).str() + ' ';
3631 if (!Sections
.empty()) {
3632 OS
<< " None " << Sections
<< '\n';
3638 template <class ELFT
> struct RelSymbol
{
3639 const typename
ELFT::Sym
*Sym
;
3643 template <class ELFT
>
3644 RelSymbol
<ELFT
> getSymbolForReloc(const ELFFile
<ELFT
> *Obj
, StringRef FileName
,
3645 const ELFDumper
<ELFT
> *Dumper
,
3646 const typename
ELFT::Rela
&Reloc
) {
3647 uint32_t SymIndex
= Reloc
.getSymbol(Obj
->isMips64EL());
3648 const typename
ELFT::Sym
*Sym
= Dumper
->dynamic_symbols().begin() + SymIndex
;
3649 Expected
<StringRef
> ErrOrName
= Sym
->getName(Dumper
->getDynamicStringTable());
3653 Name
= maybeDemangle(*ErrOrName
);
3656 createError("unable to get name of the dynamic symbol with index " +
3657 Twine(SymIndex
) + ": " + toString(ErrOrName
.takeError())),
3662 return {Sym
, std::move(Name
)};
3666 template <class ELFT
>
3667 void GNUStyle
<ELFT
>::printDynamicRelocation(const ELFO
*Obj
, Elf_Rela R
,
3669 RelSymbol
<ELFT
> S
= getSymbolForReloc(Obj
, this->FileName
, this->dumper(), R
);
3670 printRelocation(Obj
, S
.Sym
, S
.Name
, R
, IsRela
);
3673 template <class ELFT
> void GNUStyle
<ELFT
>::printDynamic(const ELFO
*Obj
) {
3674 Elf_Dyn_Range Table
= this->dumper()->dynamic_table();
3678 const DynRegionInfo
&DynamicTableRegion
=
3679 this->dumper()->getDynamicTableRegion();
3681 OS
<< "Dynamic section at offset "
3682 << format_hex(reinterpret_cast<const uint8_t *>(DynamicTableRegion
.Addr
) -
3685 << " contains " << Table
.size() << " entries:\n";
3687 bool Is64
= ELFT::Is64Bits
;
3689 OS
<< " Tag Type Name/Value\n";
3691 OS
<< " Tag Type Name/Value\n";
3692 for (auto Entry
: Table
) {
3693 uintX_t Tag
= Entry
.getTag();
3694 std::string TypeString
= std::string("(") +
3695 getTypeString(Obj
->getHeader()->e_machine
, Tag
) +
3697 OS
<< " " << format_hex(Tag
, Is64
? 18 : 10)
3698 << format(" %-20s ", TypeString
.c_str());
3699 this->dumper()->printDynamicEntry(OS
, Tag
, Entry
.getVal());
3704 template <class ELFT
>
3705 void GNUStyle
<ELFT
>::printDynamicRelocations(const ELFO
*Obj
) {
3706 const DynRegionInfo
&DynRelRegion
= this->dumper()->getDynRelRegion();
3707 const DynRegionInfo
&DynRelaRegion
= this->dumper()->getDynRelaRegion();
3708 const DynRegionInfo
&DynRelrRegion
= this->dumper()->getDynRelrRegion();
3709 const DynRegionInfo
&DynPLTRelRegion
= this->dumper()->getDynPLTRelRegion();
3710 if (DynRelaRegion
.Size
> 0) {
3711 OS
<< "\n'RELA' relocation section at offset "
3712 << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion
.Addr
) -
3715 << " contains " << DynRelaRegion
.Size
<< " bytes:\n";
3716 printRelocHeader(ELF::SHT_RELA
);
3717 for (const Elf_Rela
&Rela
: this->dumper()->dyn_relas())
3718 printDynamicRelocation(Obj
, Rela
, true);
3720 if (DynRelRegion
.Size
> 0) {
3721 OS
<< "\n'REL' relocation section at offset "
3722 << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion
.Addr
) -
3725 << " contains " << DynRelRegion
.Size
<< " bytes:\n";
3726 printRelocHeader(ELF::SHT_REL
);
3727 for (const Elf_Rel
&Rel
: this->dumper()->dyn_rels()) {
3729 Rela
.r_offset
= Rel
.r_offset
;
3730 Rela
.r_info
= Rel
.r_info
;
3732 printDynamicRelocation(Obj
, Rela
, false);
3735 if (DynRelrRegion
.Size
> 0) {
3736 OS
<< "\n'RELR' relocation section at offset "
3737 << format_hex(reinterpret_cast<const uint8_t *>(DynRelrRegion
.Addr
) -
3740 << " contains " << DynRelrRegion
.Size
<< " bytes:\n";
3741 printRelocHeader(ELF::SHT_REL
);
3742 Elf_Relr_Range Relrs
= this->dumper()->dyn_relrs();
3743 std::vector
<Elf_Rela
> RelrRelas
=
3744 unwrapOrError(this->FileName
, Obj
->decode_relrs(Relrs
));
3745 for (const Elf_Rela
&Rela
: RelrRelas
) {
3746 printDynamicRelocation(Obj
, Rela
, false);
3749 if (DynPLTRelRegion
.Size
) {
3750 OS
<< "\n'PLT' relocation section at offset "
3751 << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion
.Addr
) -
3754 << " contains " << DynPLTRelRegion
.Size
<< " bytes:\n";
3756 if (DynPLTRelRegion
.EntSize
== sizeof(Elf_Rela
)) {
3757 printRelocHeader(ELF::SHT_RELA
);
3758 for (const Elf_Rela
&Rela
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rela
>())
3759 printDynamicRelocation(Obj
, Rela
, true);
3761 printRelocHeader(ELF::SHT_REL
);
3762 for (const Elf_Rel
&Rel
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rel
>()) {
3764 Rela
.r_offset
= Rel
.r_offset
;
3765 Rela
.r_info
= Rel
.r_info
;
3767 printDynamicRelocation(Obj
, Rela
, false);
3772 template <class ELFT
>
3773 static void printGNUVersionSectionProlog(formatted_raw_ostream
&OS
,
3774 const Twine
&Name
, unsigned EntriesNum
,
3775 const ELFFile
<ELFT
> *Obj
,
3776 const typename
ELFT::Shdr
*Sec
,
3777 StringRef FileName
) {
3778 StringRef SecName
= unwrapOrError(FileName
, Obj
->getSectionName(Sec
));
3779 OS
<< Name
<< " section '" << SecName
<< "' "
3780 << "contains " << EntriesNum
<< " entries:\n";
3782 const typename
ELFT::Shdr
*SymTab
=
3783 unwrapOrError(FileName
, Obj
->getSection(Sec
->sh_link
));
3784 StringRef SymTabName
= unwrapOrError(FileName
, Obj
->getSectionName(SymTab
));
3785 OS
<< " Addr: " << format_hex_no_prefix(Sec
->sh_addr
, 16)
3786 << " Offset: " << format_hex(Sec
->sh_offset
, 8)
3787 << " Link: " << Sec
->sh_link
<< " (" << SymTabName
<< ")\n";
3790 template <class ELFT
>
3791 void GNUStyle
<ELFT
>::printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
3792 const Elf_Shdr
*Sec
) {
3796 unsigned Entries
= Sec
->sh_size
/ sizeof(Elf_Versym
);
3797 printGNUVersionSectionProlog(OS
, "Version symbols", Entries
, Obj
, Sec
,
3800 const uint8_t *VersymBuf
=
3801 reinterpret_cast<const uint8_t *>(Obj
->base() + Sec
->sh_offset
);
3802 const ELFDumper
<ELFT
> *Dumper
= this->dumper();
3803 StringRef StrTable
= Dumper
->getDynamicStringTable();
3805 // readelf prints 4 entries per line.
3806 for (uint64_t VersymRow
= 0; VersymRow
< Entries
; VersymRow
+= 4) {
3807 OS
<< " " << format_hex_no_prefix(VersymRow
, 3) << ":";
3809 for (uint64_t VersymIndex
= 0;
3810 (VersymIndex
< 4) && (VersymIndex
+ VersymRow
) < Entries
;
3812 const Elf_Versym
*Versym
=
3813 reinterpret_cast<const Elf_Versym
*>(VersymBuf
);
3814 switch (Versym
->vs_index
) {
3816 OS
<< " 0 (*local*) ";
3819 OS
<< " 1 (*global*) ";
3822 OS
<< format("%4x%c", Versym
->vs_index
& VERSYM_VERSION
,
3823 Versym
->vs_index
& VERSYM_HIDDEN
? 'h' : ' ');
3825 bool IsDefault
= true;
3826 std::string VersionName
= Dumper
->getSymbolVersionByIndex(
3827 StrTable
, Versym
->vs_index
, IsDefault
);
3829 if (!VersionName
.empty())
3830 VersionName
= "(" + VersionName
+ ")";
3832 VersionName
= "(*invalid*)";
3833 OS
<< left_justify(VersionName
, 13);
3835 VersymBuf
+= sizeof(Elf_Versym
);
3842 static std::string
versionFlagToString(unsigned Flags
) {
3847 auto AddFlag
= [&Ret
, &Flags
](unsigned Flag
, StringRef Name
) {
3848 if (!(Flags
& Flag
))
3856 AddFlag(VER_FLG_BASE
, "BASE");
3857 AddFlag(VER_FLG_WEAK
, "WEAK");
3858 AddFlag(VER_FLG_INFO
, "INFO");
3859 AddFlag(~0, "<unknown>");
3863 template <class ELFT
>
3864 void GNUStyle
<ELFT
>::printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
3865 const Elf_Shdr
*Sec
) {
3869 unsigned VerDefsNum
= Sec
->sh_info
;
3870 printGNUVersionSectionProlog(OS
, "Version definition", VerDefsNum
, Obj
, Sec
,
3873 const Elf_Shdr
*StrTabSec
=
3874 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
3875 StringRef
StringTable(
3876 reinterpret_cast<const char *>(Obj
->base() + StrTabSec
->sh_offset
),
3877 (size_t)StrTabSec
->sh_size
);
3879 const uint8_t *VerdefBuf
=
3880 unwrapOrError(this->FileName
, Obj
->getSectionContents(Sec
)).data();
3881 const uint8_t *Begin
= VerdefBuf
;
3883 while (VerDefsNum
--) {
3884 const Elf_Verdef
*Verdef
= reinterpret_cast<const Elf_Verdef
*>(VerdefBuf
);
3885 OS
<< format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u",
3886 VerdefBuf
- Begin
, (unsigned)Verdef
->vd_version
,
3887 versionFlagToString(Verdef
->vd_flags
).c_str(),
3888 (unsigned)Verdef
->vd_ndx
, (unsigned)Verdef
->vd_cnt
);
3890 const uint8_t *VerdauxBuf
= VerdefBuf
+ Verdef
->vd_aux
;
3891 const Elf_Verdaux
*Verdaux
=
3892 reinterpret_cast<const Elf_Verdaux
*>(VerdauxBuf
);
3893 OS
<< format(" Name: %s\n",
3894 StringTable
.drop_front(Verdaux
->vda_name
).data());
3896 for (unsigned I
= 1; I
< Verdef
->vd_cnt
; ++I
) {
3897 VerdauxBuf
+= Verdaux
->vda_next
;
3898 Verdaux
= reinterpret_cast<const Elf_Verdaux
*>(VerdauxBuf
);
3899 OS
<< format(" 0x%04x: Parent %u: %s\n", VerdauxBuf
- Begin
, I
,
3900 StringTable
.drop_front(Verdaux
->vda_name
).data());
3903 VerdefBuf
+= Verdef
->vd_next
;
3908 template <class ELFT
>
3909 void GNUStyle
<ELFT
>::printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
3910 const Elf_Shdr
*Sec
) {
3914 unsigned VerneedNum
= Sec
->sh_info
;
3915 printGNUVersionSectionProlog(OS
, "Version needs", VerneedNum
, Obj
, Sec
,
3918 ArrayRef
<uint8_t> SecData
=
3919 unwrapOrError(this->FileName
, Obj
->getSectionContents(Sec
));
3921 const Elf_Shdr
*StrTabSec
=
3922 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
3923 StringRef StringTable
= {
3924 reinterpret_cast<const char *>(Obj
->base() + StrTabSec
->sh_offset
),
3925 (size_t)StrTabSec
->sh_size
};
3927 const uint8_t *VerneedBuf
= SecData
.data();
3928 for (unsigned I
= 0; I
< VerneedNum
; ++I
) {
3929 const Elf_Verneed
*Verneed
=
3930 reinterpret_cast<const Elf_Verneed
*>(VerneedBuf
);
3932 OS
<< format(" 0x%04x: Version: %u File: %s Cnt: %u\n",
3933 reinterpret_cast<const uint8_t *>(Verneed
) - SecData
.begin(),
3934 (unsigned)Verneed
->vn_version
,
3935 StringTable
.drop_front(Verneed
->vn_file
).data(),
3936 (unsigned)Verneed
->vn_cnt
);
3938 const uint8_t *VernauxBuf
= VerneedBuf
+ Verneed
->vn_aux
;
3939 for (unsigned J
= 0; J
< Verneed
->vn_cnt
; ++J
) {
3940 const Elf_Vernaux
*Vernaux
=
3941 reinterpret_cast<const Elf_Vernaux
*>(VernauxBuf
);
3943 OS
<< format(" 0x%04x: Name: %s Flags: %s Version: %u\n",
3944 reinterpret_cast<const uint8_t *>(Vernaux
) - SecData
.begin(),
3945 StringTable
.drop_front(Vernaux
->vna_name
).data(),
3946 versionFlagToString(Vernaux
->vna_flags
).c_str(),
3947 (unsigned)Vernaux
->vna_other
);
3948 VernauxBuf
+= Vernaux
->vna_next
;
3950 VerneedBuf
+= Verneed
->vn_next
;
3955 // Hash histogram shows statistics of how efficient the hash was for the
3956 // dynamic symbol table. The table shows number of hash buckets for different
3957 // lengths of chains as absolute number and percentage of the total buckets.
3958 // Additionally cumulative coverage of symbols for each set of buckets.
3959 template <class ELFT
>
3960 void GNUStyle
<ELFT
>::printHashHistogram(const ELFFile
<ELFT
> *Obj
) {
3961 // Print histogram for .hash section
3962 if (const Elf_Hash
*HashTable
= this->dumper()->getHashTable()) {
3963 size_t NBucket
= HashTable
->nbucket
;
3964 size_t NChain
= HashTable
->nchain
;
3965 ArrayRef
<Elf_Word
> Buckets
= HashTable
->buckets();
3966 ArrayRef
<Elf_Word
> Chains
= HashTable
->chains();
3967 size_t TotalSyms
= 0;
3968 // If hash table is correct, we have at least chains with 0 length
3969 size_t MaxChain
= 1;
3970 size_t CumulativeNonZero
= 0;
3972 if (NChain
== 0 || NBucket
== 0)
3975 std::vector
<size_t> ChainLen(NBucket
, 0);
3976 // Go over all buckets and and note chain lengths of each bucket (total
3977 // unique chain lengths).
3978 for (size_t B
= 0; B
< NBucket
; B
++) {
3979 for (size_t C
= Buckets
[B
]; C
> 0 && C
< NChain
; C
= Chains
[C
])
3980 if (MaxChain
<= ++ChainLen
[B
])
3982 TotalSyms
+= ChainLen
[B
];
3988 std::vector
<size_t> Count(MaxChain
, 0) ;
3989 // Count how long is the chain for each bucket
3990 for (size_t B
= 0; B
< NBucket
; B
++)
3991 ++Count
[ChainLen
[B
]];
3992 // Print Number of buckets with each chain lengths and their cumulative
3993 // coverage of the symbols
3994 OS
<< "Histogram for bucket list length (total of " << NBucket
3996 << " Length Number % of total Coverage\n";
3997 for (size_t I
= 0; I
< MaxChain
; I
++) {
3998 CumulativeNonZero
+= Count
[I
] * I
;
3999 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
4000 (Count
[I
] * 100.0) / NBucket
,
4001 (CumulativeNonZero
* 100.0) / TotalSyms
);
4005 // Print histogram for .gnu.hash section
4006 if (const Elf_GnuHash
*GnuHashTable
= this->dumper()->getGnuHashTable()) {
4007 size_t NBucket
= GnuHashTable
->nbuckets
;
4008 ArrayRef
<Elf_Word
> Buckets
= GnuHashTable
->buckets();
4009 unsigned NumSyms
= this->dumper()->dynamic_symbols().size();
4012 ArrayRef
<Elf_Word
> Chains
= GnuHashTable
->values(NumSyms
);
4013 size_t Symndx
= GnuHashTable
->symndx
;
4014 size_t TotalSyms
= 0;
4015 size_t MaxChain
= 1;
4016 size_t CumulativeNonZero
= 0;
4018 if (Chains
.empty() || NBucket
== 0)
4021 std::vector
<size_t> ChainLen(NBucket
, 0);
4023 for (size_t B
= 0; B
< NBucket
; B
++) {
4027 for (size_t C
= Buckets
[B
] - Symndx
;
4028 C
< Chains
.size() && (Chains
[C
] & 1) == 0; C
++)
4029 if (MaxChain
< ++Len
)
4039 std::vector
<size_t> Count(MaxChain
, 0) ;
4040 for (size_t B
= 0; B
< NBucket
; B
++)
4041 ++Count
[ChainLen
[B
]];
4042 // Print Number of buckets with each chain lengths and their cumulative
4043 // coverage of the symbols
4044 OS
<< "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4046 << " Length Number % of total Coverage\n";
4047 for (size_t I
= 0; I
<MaxChain
; I
++) {
4048 CumulativeNonZero
+= Count
[I
] * I
;
4049 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
4050 (Count
[I
] * 100.0) / NBucket
,
4051 (CumulativeNonZero
* 100.0) / TotalSyms
);
4056 template <class ELFT
>
4057 void GNUStyle
<ELFT
>::printCGProfile(const ELFFile
<ELFT
> *Obj
) {
4058 OS
<< "GNUStyle::printCGProfile not implemented\n";
4061 template <class ELFT
>
4062 void GNUStyle
<ELFT
>::printAddrsig(const ELFFile
<ELFT
> *Obj
) {
4063 OS
<< "GNUStyle::printAddrsig not implemented\n";
4066 static StringRef
getGenericNoteTypeName(const uint32_t NT
) {
4067 static const struct {
4071 {ELF::NT_VERSION
, "NT_VERSION (version)"},
4072 {ELF::NT_ARCH
, "NT_ARCH (architecture)"},
4073 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN
, "OPEN"},
4074 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC
, "func"},
4077 for (const auto &Note
: Notes
)
4084 static StringRef
getCoreNoteTypeName(const uint32_t NT
) {
4085 static const struct {
4089 {ELF::NT_PRSTATUS
, "NT_PRSTATUS (prstatus structure)"},
4090 {ELF::NT_FPREGSET
, "NT_FPREGSET (floating point registers)"},
4091 {ELF::NT_PRPSINFO
, "NT_PRPSINFO (prpsinfo structure)"},
4092 {ELF::NT_TASKSTRUCT
, "NT_TASKSTRUCT (task structure)"},
4093 {ELF::NT_AUXV
, "NT_AUXV (auxiliary vector)"},
4094 {ELF::NT_PSTATUS
, "NT_PSTATUS (pstatus structure)"},
4095 {ELF::NT_FPREGS
, "NT_FPREGS (floating point registers)"},
4096 {ELF::NT_PSINFO
, "NT_PSINFO (psinfo structure)"},
4097 {ELF::NT_LWPSTATUS
, "NT_LWPSTATUS (lwpstatus_t structure)"},
4098 {ELF::NT_LWPSINFO
, "NT_LWPSINFO (lwpsinfo_t structure)"},
4099 {ELF::NT_WIN32PSTATUS
, "NT_WIN32PSTATUS (win32_pstatus structure)"},
4101 {ELF::NT_PPC_VMX
, "NT_PPC_VMX (ppc Altivec registers)"},
4102 {ELF::NT_PPC_VSX
, "NT_PPC_VSX (ppc VSX registers)"},
4103 {ELF::NT_PPC_TAR
, "NT_PPC_TAR (ppc TAR register)"},
4104 {ELF::NT_PPC_PPR
, "NT_PPC_PPR (ppc PPR register)"},
4105 {ELF::NT_PPC_DSCR
, "NT_PPC_DSCR (ppc DSCR register)"},
4106 {ELF::NT_PPC_EBB
, "NT_PPC_EBB (ppc EBB registers)"},
4107 {ELF::NT_PPC_PMU
, "NT_PPC_PMU (ppc PMU registers)"},
4108 {ELF::NT_PPC_TM_CGPR
, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
4109 {ELF::NT_PPC_TM_CFPR
,
4110 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
4111 {ELF::NT_PPC_TM_CVMX
,
4112 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
4113 {ELF::NT_PPC_TM_CVSX
, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
4114 {ELF::NT_PPC_TM_SPR
, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
4115 {ELF::NT_PPC_TM_CTAR
, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
4116 {ELF::NT_PPC_TM_CPPR
, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
4117 {ELF::NT_PPC_TM_CDSCR
,
4118 "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
4120 {ELF::NT_386_TLS
, "NT_386_TLS (x86 TLS information)"},
4121 {ELF::NT_386_IOPERM
, "NT_386_IOPERM (x86 I/O permissions)"},
4122 {ELF::NT_X86_XSTATE
, "NT_X86_XSTATE (x86 XSAVE extended state)"},
4124 {ELF::NT_S390_HIGH_GPRS
,
4125 "NT_S390_HIGH_GPRS (s390 upper register halves)"},
4126 {ELF::NT_S390_TIMER
, "NT_S390_TIMER (s390 timer register)"},
4127 {ELF::NT_S390_TODCMP
, "NT_S390_TODCMP (s390 TOD comparator register)"},
4128 {ELF::NT_S390_TODPREG
,
4129 "NT_S390_TODPREG (s390 TOD programmable register)"},
4130 {ELF::NT_S390_CTRS
, "NT_S390_CTRS (s390 control registers)"},
4131 {ELF::NT_S390_PREFIX
, "NT_S390_PREFIX (s390 prefix register)"},
4132 {ELF::NT_S390_LAST_BREAK
,
4133 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
4134 {ELF::NT_S390_SYSTEM_CALL
,
4135 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
4136 {ELF::NT_S390_TDB
, "NT_S390_TDB (s390 transaction diagnostic block)"},
4137 {ELF::NT_S390_VXRS_LOW
,
4138 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
4139 {ELF::NT_S390_VXRS_HIGH
,
4140 "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
4141 {ELF::NT_S390_GS_CB
, "NT_S390_GS_CB (s390 guarded-storage registers)"},
4142 {ELF::NT_S390_GS_BC
,
4143 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
4145 {ELF::NT_ARM_VFP
, "NT_ARM_VFP (arm VFP registers)"},
4146 {ELF::NT_ARM_TLS
, "NT_ARM_TLS (AArch TLS registers)"},
4147 {ELF::NT_ARM_HW_BREAK
,
4148 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
4149 {ELF::NT_ARM_HW_WATCH
,
4150 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
4152 {ELF::NT_FILE
, "NT_FILE (mapped files)"},
4153 {ELF::NT_PRXFPREG
, "NT_PRXFPREG (user_xfpregs structure)"},
4154 {ELF::NT_SIGINFO
, "NT_SIGINFO (siginfo_t data)"},
4157 for (const auto &Note
: Notes
)
4164 static std::string
getGNUNoteTypeName(const uint32_t NT
) {
4165 static const struct {
4169 {ELF::NT_GNU_ABI_TAG
, "NT_GNU_ABI_TAG (ABI version tag)"},
4170 {ELF::NT_GNU_HWCAP
, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
4171 {ELF::NT_GNU_BUILD_ID
, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
4172 {ELF::NT_GNU_GOLD_VERSION
, "NT_GNU_GOLD_VERSION (gold version)"},
4173 {ELF::NT_GNU_PROPERTY_TYPE_0
, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
4176 for (const auto &Note
: Notes
)
4178 return std::string(Note
.Name
);
4181 raw_string_ostream
OS(string
);
4182 OS
<< format("Unknown note type (0x%08x)", NT
);
4186 static std::string
getFreeBSDNoteTypeName(const uint32_t NT
) {
4187 static const struct {
4191 {ELF::NT_FREEBSD_THRMISC
, "NT_THRMISC (thrmisc structure)"},
4192 {ELF::NT_FREEBSD_PROCSTAT_PROC
, "NT_PROCSTAT_PROC (proc data)"},
4193 {ELF::NT_FREEBSD_PROCSTAT_FILES
, "NT_PROCSTAT_FILES (files data)"},
4194 {ELF::NT_FREEBSD_PROCSTAT_VMMAP
, "NT_PROCSTAT_VMMAP (vmmap data)"},
4195 {ELF::NT_FREEBSD_PROCSTAT_GROUPS
, "NT_PROCSTAT_GROUPS (groups data)"},
4196 {ELF::NT_FREEBSD_PROCSTAT_UMASK
, "NT_PROCSTAT_UMASK (umask data)"},
4197 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT
, "NT_PROCSTAT_RLIMIT (rlimit data)"},
4198 {ELF::NT_FREEBSD_PROCSTAT_OSREL
, "NT_PROCSTAT_OSREL (osreldate data)"},
4199 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS
,
4200 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
4201 {ELF::NT_FREEBSD_PROCSTAT_AUXV
, "NT_PROCSTAT_AUXV (auxv data)"},
4204 for (const auto &Note
: Notes
)
4206 return std::string(Note
.Name
);
4209 raw_string_ostream
OS(string
);
4210 OS
<< format("Unknown note type (0x%08x)", NT
);
4214 static std::string
getAMDNoteTypeName(const uint32_t NT
) {
4215 static const struct {
4218 } Notes
[] = {{ELF::NT_AMD_AMDGPU_HSA_METADATA
,
4219 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
4220 {ELF::NT_AMD_AMDGPU_ISA
, "NT_AMD_AMDGPU_ISA (ISA Version)"},
4221 {ELF::NT_AMD_AMDGPU_PAL_METADATA
,
4222 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}};
4224 for (const auto &Note
: Notes
)
4226 return std::string(Note
.Name
);
4229 raw_string_ostream
OS(string
);
4230 OS
<< format("Unknown note type (0x%08x)", NT
);
4234 static std::string
getAMDGPUNoteTypeName(const uint32_t NT
) {
4235 if (NT
== ELF::NT_AMDGPU_METADATA
)
4236 return std::string("NT_AMDGPU_METADATA (AMDGPU Metadata)");
4239 raw_string_ostream
OS(string
);
4240 OS
<< format("Unknown note type (0x%08x)", NT
);
4244 template <typename ELFT
>
4245 static std::string
getGNUProperty(uint32_t Type
, uint32_t DataSize
,
4246 ArrayRef
<uint8_t> Data
) {
4248 raw_string_ostream
OS(str
);
4250 auto DumpBit
= [&](uint32_t Flag
, StringRef Name
) {
4251 if (PrData
& Flag
) {
4261 OS
<< format("<application-specific type 0x%x>", Type
);
4263 case GNU_PROPERTY_STACK_SIZE
: {
4264 OS
<< "stack size: ";
4265 if (DataSize
== sizeof(typename
ELFT::uint
))
4266 OS
<< formatv("{0:x}",
4267 (uint64_t)(*(const typename
ELFT::Addr
*)Data
.data()));
4269 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4272 case GNU_PROPERTY_NO_COPY_ON_PROTECTED
:
4273 OS
<< "no copy on protected";
4275 OS
<< format(" <corrupt length: 0x%x>", DataSize
);
4277 case GNU_PROPERTY_AARCH64_FEATURE_1_AND
:
4278 case GNU_PROPERTY_X86_FEATURE_1_AND
:
4279 OS
<< ((Type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) ? "aarch64 feature: "
4281 if (DataSize
!= 4) {
4282 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4285 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
4290 if (Type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) {
4291 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI
, "BTI");
4292 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC
, "PAC");
4294 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT
, "IBT");
4295 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK
, "SHSTK");
4298 OS
<< format("<unknown flags: 0x%x>", PrData
);
4300 case GNU_PROPERTY_X86_ISA_1_NEEDED
:
4301 case GNU_PROPERTY_X86_ISA_1_USED
:
4303 << (Type
== GNU_PROPERTY_X86_ISA_1_NEEDED
? "needed: " : "used: ");
4304 if (DataSize
!= 4) {
4305 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4308 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
4313 DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV
, "CMOV");
4314 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE
, "SSE");
4315 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2
, "SSE2");
4316 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3
, "SSE3");
4317 DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3
, "SSSE3");
4318 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1
, "SSE4_1");
4319 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2
, "SSE4_2");
4320 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX
, "AVX");
4321 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2
, "AVX2");
4322 DumpBit(GNU_PROPERTY_X86_ISA_1_FMA
, "FMA");
4323 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F
, "AVX512F");
4324 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD
, "AVX512CD");
4325 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER
, "AVX512ER");
4326 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF
, "AVX512PF");
4327 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL
, "AVX512VL");
4328 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ
, "AVX512DQ");
4329 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW
, "AVX512BW");
4330 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS
, "AVX512_4FMAPS");
4331 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW
, "AVX512_4VNNIW");
4332 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG
, "AVX512_BITALG");
4333 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA
, "AVX512_IFMA");
4334 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI
, "AVX512_VBMI");
4335 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2
, "AVX512_VBMI2");
4336 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI
, "AVX512_VNNI");
4338 OS
<< format("<unknown flags: 0x%x>", PrData
);
4341 case GNU_PROPERTY_X86_FEATURE_2_NEEDED
:
4342 case GNU_PROPERTY_X86_FEATURE_2_USED
:
4343 OS
<< "x86 feature "
4344 << (Type
== GNU_PROPERTY_X86_FEATURE_2_NEEDED
? "needed: " : "used: ");
4345 if (DataSize
!= 4) {
4346 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4349 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
4354 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86
, "x86");
4355 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87
, "x87");
4356 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX
, "MMX");
4357 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM
, "XMM");
4358 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM
, "YMM");
4359 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM
, "ZMM");
4360 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR
, "FXSR");
4361 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE
, "XSAVE");
4362 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT
, "XSAVEOPT");
4363 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC
, "XSAVEC");
4365 OS
<< format("<unknown flags: 0x%x>", PrData
);
4370 template <typename ELFT
>
4371 static SmallVector
<std::string
, 4> getGNUPropertyList(ArrayRef
<uint8_t> Arr
) {
4372 using Elf_Word
= typename
ELFT::Word
;
4374 SmallVector
<std::string
, 4> Properties
;
4375 while (Arr
.size() >= 8) {
4376 uint32_t Type
= *reinterpret_cast<const Elf_Word
*>(Arr
.data());
4377 uint32_t DataSize
= *reinterpret_cast<const Elf_Word
*>(Arr
.data() + 4);
4378 Arr
= Arr
.drop_front(8);
4380 // Take padding size into account if present.
4381 uint64_t PaddedSize
= alignTo(DataSize
, sizeof(typename
ELFT::uint
));
4383 raw_string_ostream
OS(str
);
4384 if (Arr
.size() < PaddedSize
) {
4385 OS
<< format("<corrupt type (0x%x) datasz: 0x%x>", Type
, DataSize
);
4386 Properties
.push_back(OS
.str());
4389 Properties
.push_back(
4390 getGNUProperty
<ELFT
>(Type
, DataSize
, Arr
.take_front(PaddedSize
)));
4391 Arr
= Arr
.drop_front(PaddedSize
);
4395 Properties
.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
4406 template <typename ELFT
> static GNUAbiTag
getGNUAbiTag(ArrayRef
<uint8_t> Desc
) {
4407 typedef typename
ELFT::Word Elf_Word
;
4409 ArrayRef
<Elf_Word
> Words(reinterpret_cast<const Elf_Word
*>(Desc
.begin()),
4410 reinterpret_cast<const Elf_Word
*>(Desc
.end()));
4412 if (Words
.size() < 4)
4413 return {"", "", /*IsValid=*/false};
4415 static const char *OSNames
[] = {
4416 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
4418 StringRef OSName
= "Unknown";
4419 if (Words
[0] < array_lengthof(OSNames
))
4420 OSName
= OSNames
[Words
[0]];
4421 uint32_t Major
= Words
[1], Minor
= Words
[2], Patch
= Words
[3];
4423 raw_string_ostream
ABI(str
);
4424 ABI
<< Major
<< "." << Minor
<< "." << Patch
;
4425 return {OSName
, ABI
.str(), /*IsValid=*/true};
4428 static std::string
getGNUBuildId(ArrayRef
<uint8_t> Desc
) {
4430 raw_string_ostream
OS(str
);
4431 for (const auto &B
: Desc
)
4432 OS
<< format_hex_no_prefix(B
, 2);
4436 static StringRef
getGNUGoldVersion(ArrayRef
<uint8_t> Desc
) {
4437 return StringRef(reinterpret_cast<const char *>(Desc
.data()), Desc
.size());
4440 template <typename ELFT
>
4441 static void printGNUNote(raw_ostream
&OS
, uint32_t NoteType
,
4442 ArrayRef
<uint8_t> Desc
) {
4446 case ELF::NT_GNU_ABI_TAG
: {
4447 const GNUAbiTag
&AbiTag
= getGNUAbiTag
<ELFT
>(Desc
);
4448 if (!AbiTag
.IsValid
)
4449 OS
<< " <corrupt GNU_ABI_TAG>";
4451 OS
<< " OS: " << AbiTag
.OSName
<< ", ABI: " << AbiTag
.ABI
;
4454 case ELF::NT_GNU_BUILD_ID
: {
4455 OS
<< " Build ID: " << getGNUBuildId(Desc
);
4458 case ELF::NT_GNU_GOLD_VERSION
:
4459 OS
<< " Version: " << getGNUGoldVersion(Desc
);
4461 case ELF::NT_GNU_PROPERTY_TYPE_0
:
4462 OS
<< " Properties:";
4463 for (const auto &Property
: getGNUPropertyList
<ELFT
>(Desc
))
4464 OS
<< " " << Property
<< "\n";
4475 template <typename ELFT
>
4476 static AMDNote
getAMDNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
) {
4480 case ELF::NT_AMD_AMDGPU_HSA_METADATA
:
4483 std::string(reinterpret_cast<const char *>(Desc
.data()), Desc
.size())};
4484 case ELF::NT_AMD_AMDGPU_ISA
:
4487 std::string(reinterpret_cast<const char *>(Desc
.data()), Desc
.size())};
4496 template <typename ELFT
>
4497 static AMDGPUNote
getAMDGPUNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
) {
4501 case ELF::NT_AMDGPU_METADATA
: {
4502 auto MsgPackString
=
4503 StringRef(reinterpret_cast<const char *>(Desc
.data()), Desc
.size());
4504 msgpack::Document MsgPackDoc
;
4505 if (!MsgPackDoc
.readFromBlob(MsgPackString
, /*Multi=*/false))
4506 return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
4508 AMDGPU::HSAMD::V3::MetadataVerifier
Verifier(true);
4509 if (!Verifier
.verify(MsgPackDoc
.getRoot()))
4510 return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
4512 std::string HSAMetadataString
;
4513 raw_string_ostream
StrOS(HSAMetadataString
);
4514 MsgPackDoc
.toYAML(StrOS
);
4516 return {"AMDGPU Metadata", StrOS
.str()};
4521 struct CoreFileMapping
{
4522 uint64_t Start
, End
, Offset
;
4528 std::vector
<CoreFileMapping
> Mappings
;
4531 static Expected
<CoreNote
> readCoreNote(DataExtractor Desc
) {
4532 // Expected format of the NT_FILE note description:
4533 // 1. # of file mappings (call it N)
4535 // 3. N (start, end, offset) triples
4536 // 4. N packed filenames (null delimited)
4537 // Each field is an Elf_Addr, except for filenames which are char* strings.
4540 const int Bytes
= Desc
.getAddressSize();
4542 if (!Desc
.isValidOffsetForAddress(2))
4543 return createStringError(object_error::parse_failed
,
4544 "malformed note: header too short");
4545 if (Desc
.getData().back() != 0)
4546 return createStringError(object_error::parse_failed
,
4547 "malformed note: not NUL terminated");
4549 uint64_t DescOffset
= 0;
4550 uint64_t FileCount
= Desc
.getAddress(&DescOffset
);
4551 Ret
.PageSize
= Desc
.getAddress(&DescOffset
);
4553 if (!Desc
.isValidOffsetForAddress(3 * FileCount
* Bytes
))
4554 return createStringError(object_error::parse_failed
,
4555 "malformed note: too short for number of files");
4557 uint64_t FilenamesOffset
= 0;
4558 DataExtractor
Filenames(
4559 Desc
.getData().drop_front(DescOffset
+ 3 * FileCount
* Bytes
),
4560 Desc
.isLittleEndian(), Desc
.getAddressSize());
4562 Ret
.Mappings
.resize(FileCount
);
4563 for (CoreFileMapping
&Mapping
: Ret
.Mappings
) {
4564 if (!Filenames
.isValidOffsetForDataOfSize(FilenamesOffset
, 1))
4565 return createStringError(object_error::parse_failed
,
4566 "malformed note: too few filenames");
4567 Mapping
.Start
= Desc
.getAddress(&DescOffset
);
4568 Mapping
.End
= Desc
.getAddress(&DescOffset
);
4569 Mapping
.Offset
= Desc
.getAddress(&DescOffset
);
4570 Mapping
.Filename
= Filenames
.getCStrRef(&FilenamesOffset
);
4576 template <typename ELFT
>
4577 static void printCoreNote(raw_ostream
&OS
, const CoreNote
&Note
) {
4578 // Length of "0x<address>" string.
4579 const int FieldWidth
= ELFT::Is64Bits
? 18 : 10;
4581 OS
<< " Page size: " << format_decimal(Note
.PageSize
, 0) << '\n';
4582 OS
<< " " << right_justify("Start", FieldWidth
) << " "
4583 << right_justify("End", FieldWidth
) << " "
4584 << right_justify("Page Offset", FieldWidth
) << '\n';
4585 for (const CoreFileMapping
&Mapping
: Note
.Mappings
) {
4586 OS
<< " " << format_hex(Mapping
.Start
, FieldWidth
) << " "
4587 << format_hex(Mapping
.End
, FieldWidth
) << " "
4588 << format_hex(Mapping
.Offset
, FieldWidth
) << "\n "
4589 << Mapping
.Filename
<< '\n';
4593 template <class ELFT
>
4594 void GNUStyle
<ELFT
>::printNotes(const ELFFile
<ELFT
> *Obj
) {
4595 auto PrintHeader
= [&](const typename
ELFT::Off Offset
,
4596 const typename
ELFT::Addr Size
) {
4597 OS
<< "Displaying notes found at file offset " << format_hex(Offset
, 10)
4598 << " with length " << format_hex(Size
, 10) << ":\n"
4599 << " Owner Data size \tDescription\n";
4602 auto ProcessNote
= [&](const Elf_Note
&Note
) {
4603 StringRef Name
= Note
.getName();
4604 ArrayRef
<uint8_t> Descriptor
= Note
.getDesc();
4605 Elf_Word Type
= Note
.getType();
4607 // Print the note owner/type.
4608 OS
<< " " << left_justify(Name
, 20) << ' '
4609 << format_hex(Descriptor
.size(), 10) << '\t';
4610 if (Name
== "GNU") {
4611 OS
<< getGNUNoteTypeName(Type
) << '\n';
4612 } else if (Name
== "FreeBSD") {
4613 OS
<< getFreeBSDNoteTypeName(Type
) << '\n';
4614 } else if (Name
== "AMD") {
4615 OS
<< getAMDNoteTypeName(Type
) << '\n';
4616 } else if (Name
== "AMDGPU") {
4617 OS
<< getAMDGPUNoteTypeName(Type
) << '\n';
4619 StringRef NoteType
= Obj
->getHeader()->e_type
== ELF::ET_CORE
4620 ? getCoreNoteTypeName(Type
)
4621 : getGenericNoteTypeName(Type
);
4622 if (!NoteType
.empty())
4623 OS
<< NoteType
<< '\n';
4625 OS
<< "Unknown note type: (" << format_hex(Type
, 10) << ")\n";
4628 // Print the description, or fallback to printing raw bytes for unknown
4630 if (Name
== "GNU") {
4631 printGNUNote
<ELFT
>(OS
, Type
, Descriptor
);
4632 } else if (Name
== "AMD") {
4633 const AMDNote N
= getAMDNote
<ELFT
>(Type
, Descriptor
);
4634 if (!N
.Type
.empty())
4635 OS
<< " " << N
.Type
<< ":\n " << N
.Value
<< '\n';
4636 } else if (Name
== "AMDGPU") {
4637 const AMDGPUNote N
= getAMDGPUNote
<ELFT
>(Type
, Descriptor
);
4638 if (!N
.Type
.empty())
4639 OS
<< " " << N
.Type
<< ":\n " << N
.Value
<< '\n';
4640 } else if (Name
== "CORE") {
4641 if (Type
== ELF::NT_FILE
) {
4642 DataExtractor
DescExtractor(Descriptor
,
4643 ELFT::TargetEndianness
== support::little
,
4645 Expected
<CoreNote
> Note
= readCoreNote(DescExtractor
);
4647 printCoreNote
<ELFT
>(OS
, *Note
);
4649 reportWarning(Note
.takeError(), this->FileName
);
4651 } else if (!Descriptor
.empty()) {
4652 OS
<< " description data:";
4653 for (uint8_t B
: Descriptor
)
4654 OS
<< " " << format("%02x", B
);
4659 ArrayRef
<Elf_Shdr
> Sections
= unwrapOrError(this->FileName
, Obj
->sections());
4660 if (Obj
->getHeader()->e_type
!= ELF::ET_CORE
&& !Sections
.empty()) {
4661 for (const auto &S
: Sections
) {
4662 if (S
.sh_type
!= SHT_NOTE
)
4664 PrintHeader(S
.sh_offset
, S
.sh_size
);
4665 Error Err
= Error::success();
4666 for (const auto &Note
: Obj
->notes(S
, Err
))
4669 reportError(std::move(Err
), this->FileName
);
4672 for (const auto &P
:
4673 unwrapOrError(this->FileName
, Obj
->program_headers())) {
4674 if (P
.p_type
!= PT_NOTE
)
4676 PrintHeader(P
.p_offset
, P
.p_filesz
);
4677 Error Err
= Error::success();
4678 for (const auto &Note
: Obj
->notes(P
, Err
))
4681 reportError(std::move(Err
), this->FileName
);
4686 template <class ELFT
>
4687 void GNUStyle
<ELFT
>::printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) {
4688 OS
<< "printELFLinkerOptions not implemented!\n";
4691 template <class ELFT
>
4692 void DumpStyle
<ELFT
>::printFunctionStackSize(
4693 const ELFObjectFile
<ELFT
> *Obj
, uint64_t SymValue
, SectionRef FunctionSec
,
4694 const StringRef SectionName
, DataExtractor Data
, uint64_t *Offset
) {
4695 // This function ignores potentially erroneous input, unless it is directly
4696 // related to stack size reporting.
4698 for (const ELFSymbolRef
&Symbol
: Obj
->symbols()) {
4699 Expected
<uint64_t> SymAddrOrErr
= Symbol
.getAddress();
4700 if (!SymAddrOrErr
) {
4701 consumeError(SymAddrOrErr
.takeError());
4704 if (Symbol
.getELFType() == ELF::STT_FUNC
&& *SymAddrOrErr
== SymValue
) {
4705 // Check if the symbol is in the right section.
4706 if (FunctionSec
.containsSymbol(Symbol
)) {
4713 std::string FuncName
= "?";
4714 // A valid SymbolRef has a non-null object file pointer.
4715 if (FuncSym
.BasicSymbolRef::getObject()) {
4716 // Extract the symbol name.
4717 Expected
<StringRef
> FuncNameOrErr
= FuncSym
.getName();
4719 FuncName
= maybeDemangle(*FuncNameOrErr
);
4721 consumeError(FuncNameOrErr
.takeError());
4724 createError("could not identify function symbol for stack size entry"),
4725 Obj
->getFileName());
4728 // Extract the size. The expectation is that Offset is pointing to the right
4729 // place, i.e. past the function address.
4730 uint64_t PrevOffset
= *Offset
;
4731 uint64_t StackSize
= Data
.getULEB128(Offset
);
4732 // getULEB128() does not advance Offset if it is not able to extract a valid
4734 if (*Offset
== PrevOffset
)
4736 createStringError(object_error::parse_failed
,
4737 "could not extract a valid stack size in section %s",
4738 SectionName
.data()),
4739 Obj
->getFileName());
4741 printStackSizeEntry(StackSize
, FuncName
);
4744 template <class ELFT
>
4745 void GNUStyle
<ELFT
>::printStackSizeEntry(uint64_t Size
, StringRef FuncName
) {
4747 OS
<< format_decimal(Size
, 11);
4749 OS
<< FuncName
<< "\n";
4752 template <class ELFT
>
4753 void DumpStyle
<ELFT
>::printStackSize(const ELFObjectFile
<ELFT
> *Obj
,
4754 RelocationRef Reloc
,
4755 SectionRef FunctionSec
,
4756 const StringRef
&StackSizeSectionName
,
4757 const RelocationResolver
&Resolver
,
4758 DataExtractor Data
) {
4759 // This function ignores potentially erroneous input, unless it is directly
4760 // related to stack size reporting.
4761 object::symbol_iterator RelocSym
= Reloc
.getSymbol();
4762 uint64_t RelocSymValue
= 0;
4763 StringRef FileStr
= Obj
->getFileName();
4764 if (RelocSym
!= Obj
->symbol_end()) {
4765 // Ensure that the relocation symbol is in the function section, i.e. the
4766 // section where the functions whose stack sizes we are reporting are
4768 StringRef SymName
= "?";
4769 Expected
<StringRef
> NameOrErr
= RelocSym
->getName();
4771 SymName
= *NameOrErr
;
4773 consumeError(NameOrErr
.takeError());
4775 auto SectionOrErr
= RelocSym
->getSection();
4776 if (!SectionOrErr
) {
4778 createError("cannot identify the section for relocation symbol " +
4781 consumeError(SectionOrErr
.takeError());
4782 } else if (*SectionOrErr
!= FunctionSec
) {
4783 reportWarning(createError("relocation symbol " + SymName
+
4784 " is not in the expected section"),
4786 // Pretend that the symbol is in the correct section and report its
4787 // stack size anyway.
4788 FunctionSec
= **SectionOrErr
;
4791 Expected
<uint64_t> RelocSymValueOrErr
= RelocSym
->getValue();
4792 if (RelocSymValueOrErr
)
4793 RelocSymValue
= *RelocSymValueOrErr
;
4795 consumeError(RelocSymValueOrErr
.takeError());
4798 uint64_t Offset
= Reloc
.getOffset();
4799 if (!Data
.isValidOffsetForDataOfSize(Offset
, sizeof(Elf_Addr
) + 1))
4801 createStringError(object_error::parse_failed
,
4802 "found invalid relocation offset into section %s "
4803 "while trying to extract a stack size entry",
4804 StackSizeSectionName
.data()),
4807 uint64_t Addend
= Data
.getAddress(&Offset
);
4808 uint64_t SymValue
= Resolver(Reloc
, RelocSymValue
, Addend
);
4809 this->printFunctionStackSize(Obj
, SymValue
, FunctionSec
, StackSizeSectionName
,
4813 // Used for printing section names in places where possible errors can be
4815 static StringRef
getSectionName(const SectionRef
&Sec
) {
4816 Expected
<StringRef
> NameOrErr
= Sec
.getName();
4819 consumeError(NameOrErr
.takeError());
4823 template <class ELFT
>
4824 void DumpStyle
<ELFT
>::printNonRelocatableStackSizes(
4825 const ELFObjectFile
<ELFT
> *Obj
, std::function
<void()> PrintHeader
) {
4826 // This function ignores potentially erroneous input, unless it is directly
4827 // related to stack size reporting.
4828 const ELFFile
<ELFT
> *EF
= Obj
->getELFFile();
4829 StringRef FileStr
= Obj
->getFileName();
4830 for (const SectionRef
&Sec
: Obj
->sections()) {
4831 StringRef SectionName
= getSectionName(Sec
);
4832 if (SectionName
!= ".stack_sizes")
4835 const Elf_Shdr
*ElfSec
= Obj
->getSection(Sec
.getRawDataRefImpl());
4836 ArrayRef
<uint8_t> Contents
=
4837 unwrapOrError(this->FileName
, EF
->getSectionContents(ElfSec
));
4838 DataExtractor
Data(Contents
, Obj
->isLittleEndian(), sizeof(Elf_Addr
));
4839 // A .stack_sizes section header's sh_link field is supposed to point
4840 // to the section that contains the functions whose stack sizes are
4842 const Elf_Shdr
*FunctionELFSec
=
4843 unwrapOrError(this->FileName
, EF
->getSection(ElfSec
->sh_link
));
4844 uint64_t Offset
= 0;
4845 while (Offset
< Contents
.size()) {
4846 // The function address is followed by a ULEB representing the stack
4847 // size. Check for an extra byte before we try to process the entry.
4848 if (!Data
.isValidOffsetForDataOfSize(Offset
, sizeof(Elf_Addr
) + 1)) {
4851 object_error::parse_failed
,
4852 "section %s ended while trying to extract a stack size entry",
4853 SectionName
.data()),
4856 uint64_t SymValue
= Data
.getAddress(&Offset
);
4857 printFunctionStackSize(Obj
, SymValue
, Obj
->toSectionRef(FunctionELFSec
),
4858 SectionName
, Data
, &Offset
);
4863 template <class ELFT
>
4864 void DumpStyle
<ELFT
>::printRelocatableStackSizes(
4865 const ELFObjectFile
<ELFT
> *Obj
, std::function
<void()> PrintHeader
) {
4866 const ELFFile
<ELFT
> *EF
= Obj
->getELFFile();
4868 // Build a map between stack size sections and their corresponding relocation
4870 llvm::MapVector
<SectionRef
, SectionRef
> StackSizeRelocMap
;
4871 const SectionRef NullSection
{};
4873 for (const SectionRef
&Sec
: Obj
->sections()) {
4874 StringRef SectionName
;
4875 if (Expected
<StringRef
> NameOrErr
= Sec
.getName())
4876 SectionName
= *NameOrErr
;
4878 consumeError(NameOrErr
.takeError());
4880 // A stack size section that we haven't encountered yet is mapped to the
4881 // null section until we find its corresponding relocation section.
4882 if (SectionName
== ".stack_sizes")
4883 if (StackSizeRelocMap
.count(Sec
) == 0) {
4884 StackSizeRelocMap
[Sec
] = NullSection
;
4888 // Check relocation sections if they are relocating contents of a
4889 // stack sizes section.
4890 const Elf_Shdr
*ElfSec
= Obj
->getSection(Sec
.getRawDataRefImpl());
4891 uint32_t SectionType
= ElfSec
->sh_type
;
4892 if (SectionType
!= ELF::SHT_RELA
&& SectionType
!= ELF::SHT_REL
)
4895 SectionRef Contents
= *Sec
.getRelocatedSection();
4896 const Elf_Shdr
*ContentsSec
= Obj
->getSection(Contents
.getRawDataRefImpl());
4897 Expected
<StringRef
> ContentsSectionNameOrErr
=
4898 EF
->getSectionName(ContentsSec
);
4899 if (!ContentsSectionNameOrErr
) {
4900 consumeError(ContentsSectionNameOrErr
.takeError());
4903 if (*ContentsSectionNameOrErr
!= ".stack_sizes")
4905 // Insert a mapping from the stack sizes section to its relocation section.
4906 StackSizeRelocMap
[Obj
->toSectionRef(ContentsSec
)] = Sec
;
4909 for (const auto &StackSizeMapEntry
: StackSizeRelocMap
) {
4911 const SectionRef
&StackSizesSec
= StackSizeMapEntry
.first
;
4912 const SectionRef
&RelocSec
= StackSizeMapEntry
.second
;
4914 // Warn about stack size sections without a relocation section.
4915 StringRef StackSizeSectionName
= getSectionName(StackSizesSec
);
4916 if (RelocSec
== NullSection
) {
4917 reportWarning(createError("section " + StackSizeSectionName
+
4918 " does not have a corresponding "
4919 "relocation section"),
4920 Obj
->getFileName());
4924 // A .stack_sizes section header's sh_link field is supposed to point
4925 // to the section that contains the functions whose stack sizes are
4927 const Elf_Shdr
*StackSizesELFSec
=
4928 Obj
->getSection(StackSizesSec
.getRawDataRefImpl());
4929 const SectionRef FunctionSec
= Obj
->toSectionRef(unwrapOrError(
4930 this->FileName
, EF
->getSection(StackSizesELFSec
->sh_link
)));
4932 bool (*IsSupportedFn
)(uint64_t);
4933 RelocationResolver Resolver
;
4934 std::tie(IsSupportedFn
, Resolver
) = getRelocationResolver(*Obj
);
4935 auto Contents
= unwrapOrError(this->FileName
, StackSizesSec
.getContents());
4936 DataExtractor
Data(Contents
, Obj
->isLittleEndian(), sizeof(Elf_Addr
));
4937 for (const RelocationRef
&Reloc
: RelocSec
.relocations()) {
4938 if (!IsSupportedFn(Reloc
.getType()))
4939 reportError(createStringError(
4940 object_error::parse_failed
,
4941 "unsupported relocation type in section %s: %s",
4942 getSectionName(RelocSec
).data(),
4943 EF
->getRelocationTypeName(Reloc
.getType()).data()),
4944 Obj
->getFileName());
4945 this->printStackSize(Obj
, Reloc
, FunctionSec
, StackSizeSectionName
,
4951 template <class ELFT
>
4952 void GNUStyle
<ELFT
>::printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) {
4953 bool HeaderHasBeenPrinted
= false;
4954 auto PrintHeader
= [&]() {
4955 if (HeaderHasBeenPrinted
)
4957 OS
<< "\nStack Sizes:\n";
4962 HeaderHasBeenPrinted
= true;
4965 // For non-relocatable objects, look directly for sections whose name starts
4966 // with .stack_sizes and process the contents.
4967 if (Obj
->isRelocatableObject())
4968 this->printRelocatableStackSizes(Obj
, PrintHeader
);
4970 this->printNonRelocatableStackSizes(Obj
, PrintHeader
);
4973 template <class ELFT
>
4974 void GNUStyle
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
4975 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
4976 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
4978 OS
<< format_hex_no_prefix(Parser
.getGotAddress(E
), 8 + Bias
);
4979 OS
.PadToColumn(11 + Bias
);
4980 OS
<< format_decimal(Parser
.getGotOffset(E
), 6) << "(gp)";
4981 OS
.PadToColumn(22 + Bias
);
4982 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
4983 OS
.PadToColumn(31 + 2 * Bias
);
4984 OS
<< Purpose
<< "\n";
4987 OS
<< (Parser
.IsStatic
? "Static GOT:\n" : "Primary GOT:\n");
4988 OS
<< " Canonical gp value: "
4989 << format_hex_no_prefix(Parser
.getGp(), 8 + Bias
) << "\n\n";
4991 OS
<< " Reserved entries:\n";
4993 OS
<< " Address Access Initial Purpose\n";
4995 OS
<< " Address Access Initial Purpose\n";
4996 PrintEntry(Parser
.getGotLazyResolver(), "Lazy resolver");
4997 if (Parser
.getGotModulePointer())
4998 PrintEntry(Parser
.getGotModulePointer(), "Module pointer (GNU extension)");
5000 if (!Parser
.getLocalEntries().empty()) {
5002 OS
<< " Local entries:\n";
5004 OS
<< " Address Access Initial\n";
5006 OS
<< " Address Access Initial\n";
5007 for (auto &E
: Parser
.getLocalEntries())
5011 if (Parser
.IsStatic
)
5014 if (!Parser
.getGlobalEntries().empty()) {
5016 OS
<< " Global entries:\n";
5018 OS
<< " Address Access Initial Sym.Val."
5019 << " Type Ndx Name\n";
5021 OS
<< " Address Access Initial Sym.Val. Type Ndx Name\n";
5022 for (auto &E
: Parser
.getGlobalEntries()) {
5023 const Elf_Sym
*Sym
= Parser
.getGotSym(&E
);
5024 std::string SymName
= this->dumper()->getFullSymbolName(
5025 Sym
, this->dumper()->getDynamicStringTable(), false);
5028 OS
<< to_string(format_hex_no_prefix(Parser
.getGotAddress(&E
), 8 + Bias
));
5029 OS
.PadToColumn(11 + Bias
);
5030 OS
<< to_string(format_decimal(Parser
.getGotOffset(&E
), 6)) + "(gp)";
5031 OS
.PadToColumn(22 + Bias
);
5032 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
5033 OS
.PadToColumn(31 + 2 * Bias
);
5034 OS
<< to_string(format_hex_no_prefix(Sym
->st_value
, 8 + Bias
));
5035 OS
.PadToColumn(40 + 3 * Bias
);
5036 OS
<< printEnum(Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
5037 OS
.PadToColumn(48 + 3 * Bias
);
5038 OS
<< getSymbolSectionNdx(Parser
.Obj
, Sym
,
5039 this->dumper()->dynamic_symbols().begin());
5040 OS
.PadToColumn(52 + 3 * Bias
);
5041 OS
<< SymName
<< "\n";
5045 if (!Parser
.getOtherEntries().empty())
5046 OS
<< "\n Number of TLS and multi-GOT entries "
5047 << Parser
.getOtherEntries().size() << "\n";
5050 template <class ELFT
>
5051 void GNUStyle
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
5052 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
5053 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
5055 OS
<< format_hex_no_prefix(Parser
.getPltAddress(E
), 8 + Bias
);
5056 OS
.PadToColumn(11 + Bias
);
5057 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
5058 OS
.PadToColumn(20 + 2 * Bias
);
5059 OS
<< Purpose
<< "\n";
5062 OS
<< "PLT GOT:\n\n";
5064 OS
<< " Reserved entries:\n";
5065 OS
<< " Address Initial Purpose\n";
5066 PrintEntry(Parser
.getPltLazyResolver(), "PLT lazy resolver");
5067 if (Parser
.getPltModulePointer())
5068 PrintEntry(Parser
.getPltModulePointer(), "Module pointer");
5070 if (!Parser
.getPltEntries().empty()) {
5072 OS
<< " Entries:\n";
5073 OS
<< " Address Initial Sym.Val. Type Ndx Name\n";
5074 for (auto &E
: Parser
.getPltEntries()) {
5075 const Elf_Sym
*Sym
= Parser
.getPltSym(&E
);
5076 std::string SymName
= this->dumper()->getFullSymbolName(
5077 Sym
, this->dumper()->getDynamicStringTable(), false);
5080 OS
<< to_string(format_hex_no_prefix(Parser
.getPltAddress(&E
), 8 + Bias
));
5081 OS
.PadToColumn(11 + Bias
);
5082 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
5083 OS
.PadToColumn(20 + 2 * Bias
);
5084 OS
<< to_string(format_hex_no_prefix(Sym
->st_value
, 8 + Bias
));
5085 OS
.PadToColumn(29 + 3 * Bias
);
5086 OS
<< printEnum(Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
5087 OS
.PadToColumn(37 + 3 * Bias
);
5088 OS
<< getSymbolSectionNdx(Parser
.Obj
, Sym
,
5089 this->dumper()->dynamic_symbols().begin());
5090 OS
.PadToColumn(41 + 3 * Bias
);
5091 OS
<< SymName
<< "\n";
5096 template <class ELFT
> void LLVMStyle
<ELFT
>::printFileHeaders(const ELFO
*Obj
) {
5097 const Elf_Ehdr
*E
= Obj
->getHeader();
5099 DictScope
D(W
, "ElfHeader");
5101 DictScope
D(W
, "Ident");
5102 W
.printBinary("Magic", makeArrayRef(E
->e_ident
).slice(ELF::EI_MAG0
, 4));
5103 W
.printEnum("Class", E
->e_ident
[ELF::EI_CLASS
], makeArrayRef(ElfClass
));
5104 W
.printEnum("DataEncoding", E
->e_ident
[ELF::EI_DATA
],
5105 makeArrayRef(ElfDataEncoding
));
5106 W
.printNumber("FileVersion", E
->e_ident
[ELF::EI_VERSION
]);
5108 auto OSABI
= makeArrayRef(ElfOSABI
);
5109 if (E
->e_ident
[ELF::EI_OSABI
] >= ELF::ELFOSABI_FIRST_ARCH
&&
5110 E
->e_ident
[ELF::EI_OSABI
] <= ELF::ELFOSABI_LAST_ARCH
) {
5111 switch (E
->e_machine
) {
5112 case ELF::EM_AMDGPU
:
5113 OSABI
= makeArrayRef(AMDGPUElfOSABI
);
5116 OSABI
= makeArrayRef(ARMElfOSABI
);
5118 case ELF::EM_TI_C6000
:
5119 OSABI
= makeArrayRef(C6000ElfOSABI
);
5123 W
.printEnum("OS/ABI", E
->e_ident
[ELF::EI_OSABI
], OSABI
);
5124 W
.printNumber("ABIVersion", E
->e_ident
[ELF::EI_ABIVERSION
]);
5125 W
.printBinary("Unused", makeArrayRef(E
->e_ident
).slice(ELF::EI_PAD
));
5128 W
.printEnum("Type", E
->e_type
, makeArrayRef(ElfObjectFileType
));
5129 W
.printEnum("Machine", E
->e_machine
, makeArrayRef(ElfMachineType
));
5130 W
.printNumber("Version", E
->e_version
);
5131 W
.printHex("Entry", E
->e_entry
);
5132 W
.printHex("ProgramHeaderOffset", E
->e_phoff
);
5133 W
.printHex("SectionHeaderOffset", E
->e_shoff
);
5134 if (E
->e_machine
== EM_MIPS
)
5135 W
.printFlags("Flags", E
->e_flags
, makeArrayRef(ElfHeaderMipsFlags
),
5136 unsigned(ELF::EF_MIPS_ARCH
), unsigned(ELF::EF_MIPS_ABI
),
5137 unsigned(ELF::EF_MIPS_MACH
));
5138 else if (E
->e_machine
== EM_AMDGPU
)
5139 W
.printFlags("Flags", E
->e_flags
, makeArrayRef(ElfHeaderAMDGPUFlags
),
5140 unsigned(ELF::EF_AMDGPU_MACH
));
5141 else if (E
->e_machine
== EM_RISCV
)
5142 W
.printFlags("Flags", E
->e_flags
, makeArrayRef(ElfHeaderRISCVFlags
));
5144 W
.printFlags("Flags", E
->e_flags
);
5145 W
.printNumber("HeaderSize", E
->e_ehsize
);
5146 W
.printNumber("ProgramHeaderEntrySize", E
->e_phentsize
);
5147 W
.printNumber("ProgramHeaderCount", E
->e_phnum
);
5148 W
.printNumber("SectionHeaderEntrySize", E
->e_shentsize
);
5149 W
.printString("SectionHeaderCount",
5150 getSectionHeadersNumString(Obj
, this->FileName
));
5151 W
.printString("StringTableSectionIndex",
5152 getSectionHeaderTableIndexString(Obj
, this->FileName
));
5156 template <class ELFT
>
5157 void LLVMStyle
<ELFT
>::printGroupSections(const ELFO
*Obj
) {
5158 DictScope
Lists(W
, "Groups");
5159 std::vector
<GroupSection
> V
= getGroups
<ELFT
>(Obj
, this->FileName
);
5160 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
5161 for (const GroupSection
&G
: V
) {
5162 DictScope
D(W
, "Group");
5163 W
.printNumber("Name", G
.Name
, G
.ShName
);
5164 W
.printNumber("Index", G
.Index
);
5165 W
.printNumber("Link", G
.Link
);
5166 W
.printNumber("Info", G
.Info
);
5167 W
.printHex("Type", getGroupType(G
.Type
), G
.Type
);
5168 W
.startLine() << "Signature: " << G
.Signature
<< "\n";
5170 ListScope
L(W
, "Section(s) in group");
5171 for (const GroupMember
&GM
: G
.Members
) {
5172 const GroupSection
*MainGroup
= Map
[GM
.Index
];
5173 if (MainGroup
!= &G
) {
5175 errs() << "Error: " << GM
.Name
<< " (" << GM
.Index
5176 << ") in a group " + G
.Name
+ " (" << G
.Index
5177 << ") is already in a group " + MainGroup
->Name
+ " ("
5178 << MainGroup
->Index
<< ")\n";
5182 W
.startLine() << GM
.Name
<< " (" << GM
.Index
<< ")\n";
5187 W
.startLine() << "There are no group sections in the file.\n";
5190 template <class ELFT
> void LLVMStyle
<ELFT
>::printRelocations(const ELFO
*Obj
) {
5191 ListScope
D(W
, "Relocations");
5193 int SectionNumber
= -1;
5194 for (const Elf_Shdr
&Sec
: unwrapOrError(this->FileName
, Obj
->sections())) {
5197 if (Sec
.sh_type
!= ELF::SHT_REL
&& Sec
.sh_type
!= ELF::SHT_RELA
&&
5198 Sec
.sh_type
!= ELF::SHT_RELR
&& Sec
.sh_type
!= ELF::SHT_ANDROID_REL
&&
5199 Sec
.sh_type
!= ELF::SHT_ANDROID_RELA
&&
5200 Sec
.sh_type
!= ELF::SHT_ANDROID_RELR
)
5203 StringRef Name
= unwrapOrError(this->FileName
, Obj
->getSectionName(&Sec
));
5205 W
.startLine() << "Section (" << SectionNumber
<< ") " << Name
<< " {\n";
5208 printRelocations(&Sec
, Obj
);
5211 W
.startLine() << "}\n";
5215 template <class ELFT
>
5216 void LLVMStyle
<ELFT
>::printRelocations(const Elf_Shdr
*Sec
, const ELFO
*Obj
) {
5217 const Elf_Shdr
*SymTab
=
5218 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
5220 switch (Sec
->sh_type
) {
5222 for (const Elf_Rel
&R
: unwrapOrError(this->FileName
, Obj
->rels(Sec
))) {
5224 Rela
.r_offset
= R
.r_offset
;
5225 Rela
.r_info
= R
.r_info
;
5227 printRelocation(Obj
, Rela
, SymTab
);
5231 for (const Elf_Rela
&R
: unwrapOrError(this->FileName
, Obj
->relas(Sec
)))
5232 printRelocation(Obj
, R
, SymTab
);
5235 case ELF::SHT_ANDROID_RELR
: {
5236 Elf_Relr_Range Relrs
= unwrapOrError(this->FileName
, Obj
->relrs(Sec
));
5237 if (opts::RawRelr
) {
5238 for (const Elf_Relr
&R
: Relrs
)
5239 W
.startLine() << W
.hex(R
) << "\n";
5241 std::vector
<Elf_Rela
> RelrRelas
=
5242 unwrapOrError(this->FileName
, Obj
->decode_relrs(Relrs
));
5243 for (const Elf_Rela
&R
: RelrRelas
)
5244 printRelocation(Obj
, R
, SymTab
);
5248 case ELF::SHT_ANDROID_REL
:
5249 case ELF::SHT_ANDROID_RELA
:
5250 for (const Elf_Rela
&R
:
5251 unwrapOrError(this->FileName
, Obj
->android_relas(Sec
)))
5252 printRelocation(Obj
, R
, SymTab
);
5257 template <class ELFT
>
5258 void LLVMStyle
<ELFT
>::printRelocation(const ELFO
*Obj
, Elf_Rela Rel
,
5259 const Elf_Shdr
*SymTab
) {
5260 SmallString
<32> RelocName
;
5261 Obj
->getRelocationTypeName(Rel
.getType(Obj
->isMips64EL()), RelocName
);
5262 std::string TargetName
;
5263 const Elf_Sym
*Sym
=
5264 unwrapOrError(this->FileName
, Obj
->getRelocationSymbol(&Rel
, SymTab
));
5265 if (Sym
&& Sym
->getType() == ELF::STT_SECTION
) {
5266 const Elf_Shdr
*Sec
= unwrapOrError(
5268 Obj
->getSection(Sym
, SymTab
, this->dumper()->getShndxTable()));
5269 TargetName
= unwrapOrError(this->FileName
, Obj
->getSectionName(Sec
));
5271 StringRef StrTable
=
5272 unwrapOrError(this->FileName
, Obj
->getStringTableForSymtab(*SymTab
));
5273 TargetName
= this->dumper()->getFullSymbolName(
5274 Sym
, StrTable
, SymTab
->sh_type
== SHT_DYNSYM
/* IsDynamic */);
5277 if (opts::ExpandRelocs
) {
5278 DictScope
Group(W
, "Relocation");
5279 W
.printHex("Offset", Rel
.r_offset
);
5280 W
.printNumber("Type", RelocName
, (int)Rel
.getType(Obj
->isMips64EL()));
5281 W
.printNumber("Symbol", !TargetName
.empty() ? TargetName
: "-",
5282 Rel
.getSymbol(Obj
->isMips64EL()));
5283 W
.printHex("Addend", Rel
.r_addend
);
5285 raw_ostream
&OS
= W
.startLine();
5286 OS
<< W
.hex(Rel
.r_offset
) << " " << RelocName
<< " "
5287 << (!TargetName
.empty() ? TargetName
: "-") << " " << W
.hex(Rel
.r_addend
)
5292 template <class ELFT
>
5293 void LLVMStyle
<ELFT
>::printSectionHeaders(const ELFO
*Obj
) {
5294 ListScope
SectionsD(W
, "Sections");
5296 int SectionIndex
= -1;
5297 ArrayRef
<Elf_Shdr
> Sections
= unwrapOrError(this->FileName
, Obj
->sections());
5298 const ELFObjectFile
<ELFT
> *ElfObj
= this->dumper()->getElfObject();
5299 for (const Elf_Shdr
&Sec
: Sections
) {
5300 StringRef Name
= unwrapOrError(
5301 ElfObj
->getFileName(), Obj
->getSectionName(&Sec
, this->WarningHandler
));
5302 DictScope
SectionD(W
, "Section");
5303 W
.printNumber("Index", ++SectionIndex
);
5304 W
.printNumber("Name", Name
, Sec
.sh_name
);
5307 object::getELFSectionTypeName(Obj
->getHeader()->e_machine
, Sec
.sh_type
),
5309 std::vector
<EnumEntry
<unsigned>> SectionFlags(std::begin(ElfSectionFlags
),
5310 std::end(ElfSectionFlags
));
5311 switch (Obj
->getHeader()->e_machine
) {
5313 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfARMSectionFlags
),
5314 std::end(ElfARMSectionFlags
));
5317 SectionFlags
.insert(SectionFlags
.end(),
5318 std::begin(ElfHexagonSectionFlags
),
5319 std::end(ElfHexagonSectionFlags
));
5322 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfMipsSectionFlags
),
5323 std::end(ElfMipsSectionFlags
));
5326 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfX86_64SectionFlags
),
5327 std::end(ElfX86_64SectionFlags
));
5330 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfXCoreSectionFlags
),
5331 std::end(ElfXCoreSectionFlags
));
5337 W
.printFlags("Flags", Sec
.sh_flags
, makeArrayRef(SectionFlags
));
5338 W
.printHex("Address", Sec
.sh_addr
);
5339 W
.printHex("Offset", Sec
.sh_offset
);
5340 W
.printNumber("Size", Sec
.sh_size
);
5341 W
.printNumber("Link", Sec
.sh_link
);
5342 W
.printNumber("Info", Sec
.sh_info
);
5343 W
.printNumber("AddressAlignment", Sec
.sh_addralign
);
5344 W
.printNumber("EntrySize", Sec
.sh_entsize
);
5346 if (opts::SectionRelocations
) {
5347 ListScope
D(W
, "Relocations");
5348 printRelocations(&Sec
, Obj
);
5351 if (opts::SectionSymbols
) {
5352 ListScope
D(W
, "Symbols");
5353 const Elf_Shdr
*Symtab
= this->dumper()->getDotSymtabSec();
5354 StringRef StrTable
=
5355 unwrapOrError(this->FileName
, Obj
->getStringTableForSymtab(*Symtab
));
5357 for (const Elf_Sym
&Sym
:
5358 unwrapOrError(this->FileName
, Obj
->symbols(Symtab
))) {
5359 const Elf_Shdr
*SymSec
= unwrapOrError(
5361 Obj
->getSection(&Sym
, Symtab
, this->dumper()->getShndxTable()));
5365 unwrapOrError(this->FileName
, Obj
->symbols(Symtab
)).begin(),
5366 StrTable
, false, false);
5370 if (opts::SectionData
&& Sec
.sh_type
!= ELF::SHT_NOBITS
) {
5371 ArrayRef
<uint8_t> Data
=
5372 unwrapOrError(this->FileName
, Obj
->getSectionContents(&Sec
));
5375 StringRef(reinterpret_cast<const char *>(Data
.data()), Data
.size()));
5380 template <class ELFT
>
5381 void LLVMStyle
<ELFT
>::printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
5382 const Elf_Sym
*First
, StringRef StrTable
,
5384 bool /*NonVisibilityBitsUsed*/) {
5385 unsigned SectionIndex
= 0;
5386 StringRef SectionName
;
5387 this->dumper()->getSectionNameIndex(Symbol
, First
, SectionName
, SectionIndex
);
5388 std::string FullSymbolName
=
5389 this->dumper()->getFullSymbolName(Symbol
, StrTable
, IsDynamic
);
5390 unsigned char SymbolType
= Symbol
->getType();
5392 DictScope
D(W
, "Symbol");
5393 W
.printNumber("Name", FullSymbolName
, Symbol
->st_name
);
5394 W
.printHex("Value", Symbol
->st_value
);
5395 W
.printNumber("Size", Symbol
->st_size
);
5396 W
.printEnum("Binding", Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
5397 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
5398 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
5399 W
.printEnum("Type", SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
5401 W
.printEnum("Type", SymbolType
, makeArrayRef(ElfSymbolTypes
));
5402 if (Symbol
->st_other
== 0)
5403 // Usually st_other flag is zero. Do not pollute the output
5404 // by flags enumeration in that case.
5405 W
.printNumber("Other", 0);
5407 std::vector
<EnumEntry
<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags
),
5408 std::end(ElfSymOtherFlags
));
5409 if (Obj
->getHeader()->e_machine
== EM_MIPS
) {
5410 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
5411 // flag overlapped with other ST_MIPS_xxx flags. So consider both
5412 // cases separately.
5413 if ((Symbol
->st_other
& STO_MIPS_MIPS16
) == STO_MIPS_MIPS16
)
5414 SymOtherFlags
.insert(SymOtherFlags
.end(),
5415 std::begin(ElfMips16SymOtherFlags
),
5416 std::end(ElfMips16SymOtherFlags
));
5418 SymOtherFlags
.insert(SymOtherFlags
.end(),
5419 std::begin(ElfMipsSymOtherFlags
),
5420 std::end(ElfMipsSymOtherFlags
));
5422 W
.printFlags("Other", Symbol
->st_other
, makeArrayRef(SymOtherFlags
), 0x3u
);
5424 W
.printHex("Section", SectionName
, SectionIndex
);
5427 template <class ELFT
>
5428 void LLVMStyle
<ELFT
>::printSymbols(const ELFO
*Obj
, bool PrintSymbols
,
5429 bool PrintDynamicSymbols
) {
5432 if (PrintDynamicSymbols
)
5433 printDynamicSymbols(Obj
);
5436 template <class ELFT
> void LLVMStyle
<ELFT
>::printSymbols(const ELFO
*Obj
) {
5437 ListScope
Group(W
, "Symbols");
5438 this->dumper()->printSymbolsHelper(false);
5441 template <class ELFT
>
5442 void LLVMStyle
<ELFT
>::printDynamicSymbols(const ELFO
*Obj
) {
5443 ListScope
Group(W
, "DynamicSymbols");
5444 this->dumper()->printSymbolsHelper(true);
5447 template <class ELFT
> void LLVMStyle
<ELFT
>::printDynamic(const ELFFile
<ELFT
> *Obj
) {
5448 Elf_Dyn_Range Table
= this->dumper()->dynamic_table();
5452 raw_ostream
&OS
= W
.getOStream();
5453 W
.startLine() << "DynamicSection [ (" << Table
.size() << " entries)\n";
5455 bool Is64
= ELFT::Is64Bits
;
5457 W
.startLine() << " Tag Type Name/Value\n";
5459 W
.startLine() << " Tag Type Name/Value\n";
5460 for (auto Entry
: Table
) {
5461 uintX_t Tag
= Entry
.getTag();
5462 W
.startLine() << " " << format_hex(Tag
, Is64
? 18 : 10, true) << " "
5464 getTypeString(Obj
->getHeader()->e_machine
, Tag
));
5465 this->dumper()->printDynamicEntry(OS
, Tag
, Entry
.getVal());
5469 W
.startLine() << "]\n";
5472 template <class ELFT
>
5473 void LLVMStyle
<ELFT
>::printDynamicRelocations(const ELFO
*Obj
) {
5474 const DynRegionInfo
&DynRelRegion
= this->dumper()->getDynRelRegion();
5475 const DynRegionInfo
&DynRelaRegion
= this->dumper()->getDynRelaRegion();
5476 const DynRegionInfo
&DynRelrRegion
= this->dumper()->getDynRelrRegion();
5477 const DynRegionInfo
&DynPLTRelRegion
= this->dumper()->getDynPLTRelRegion();
5478 if (DynRelRegion
.Size
&& DynRelaRegion
.Size
)
5479 report_fatal_error("There are both REL and RELA dynamic relocations");
5480 W
.startLine() << "Dynamic Relocations {\n";
5482 if (DynRelaRegion
.Size
> 0)
5483 for (const Elf_Rela
&Rela
: this->dumper()->dyn_relas())
5484 printDynamicRelocation(Obj
, Rela
);
5486 for (const Elf_Rel
&Rel
: this->dumper()->dyn_rels()) {
5488 Rela
.r_offset
= Rel
.r_offset
;
5489 Rela
.r_info
= Rel
.r_info
;
5491 printDynamicRelocation(Obj
, Rela
);
5493 if (DynRelrRegion
.Size
> 0) {
5494 Elf_Relr_Range Relrs
= this->dumper()->dyn_relrs();
5495 std::vector
<Elf_Rela
> RelrRelas
=
5496 unwrapOrError(this->FileName
, Obj
->decode_relrs(Relrs
));
5497 for (const Elf_Rela
&Rela
: RelrRelas
)
5498 printDynamicRelocation(Obj
, Rela
);
5500 if (DynPLTRelRegion
.EntSize
== sizeof(Elf_Rela
))
5501 for (const Elf_Rela
&Rela
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rela
>())
5502 printDynamicRelocation(Obj
, Rela
);
5504 for (const Elf_Rel
&Rel
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rel
>()) {
5506 Rela
.r_offset
= Rel
.r_offset
;
5507 Rela
.r_info
= Rel
.r_info
;
5509 printDynamicRelocation(Obj
, Rela
);
5512 W
.startLine() << "}\n";
5515 template <class ELFT
>
5516 void LLVMStyle
<ELFT
>::printDynamicRelocation(const ELFO
*Obj
, Elf_Rela Rel
) {
5517 SmallString
<32> RelocName
;
5518 Obj
->getRelocationTypeName(Rel
.getType(Obj
->isMips64EL()), RelocName
);
5519 std::string SymbolName
=
5520 getSymbolForReloc(Obj
, this->FileName
, this->dumper(), Rel
).Name
;
5522 if (opts::ExpandRelocs
) {
5523 DictScope
Group(W
, "Relocation");
5524 W
.printHex("Offset", Rel
.r_offset
);
5525 W
.printNumber("Type", RelocName
, (int)Rel
.getType(Obj
->isMips64EL()));
5526 W
.printString("Symbol", !SymbolName
.empty() ? SymbolName
: "-");
5527 W
.printHex("Addend", Rel
.r_addend
);
5529 raw_ostream
&OS
= W
.startLine();
5530 OS
<< W
.hex(Rel
.r_offset
) << " " << RelocName
<< " "
5531 << (!SymbolName
.empty() ? SymbolName
: "-") << " " << W
.hex(Rel
.r_addend
)
5536 template <class ELFT
>
5537 void LLVMStyle
<ELFT
>::printProgramHeaders(
5538 const ELFO
*Obj
, bool PrintProgramHeaders
,
5539 cl::boolOrDefault PrintSectionMapping
) {
5540 if (PrintProgramHeaders
)
5541 printProgramHeaders(Obj
);
5542 if (PrintSectionMapping
== cl::BOU_TRUE
)
5543 printSectionMapping(Obj
);
5546 template <class ELFT
>
5547 void LLVMStyle
<ELFT
>::printProgramHeaders(const ELFO
*Obj
) {
5548 ListScope
L(W
, "ProgramHeaders");
5550 for (const Elf_Phdr
&Phdr
:
5551 unwrapOrError(this->FileName
, Obj
->program_headers())) {
5552 DictScope
P(W
, "ProgramHeader");
5554 getElfSegmentType(Obj
->getHeader()->e_machine
, Phdr
.p_type
),
5556 W
.printHex("Offset", Phdr
.p_offset
);
5557 W
.printHex("VirtualAddress", Phdr
.p_vaddr
);
5558 W
.printHex("PhysicalAddress", Phdr
.p_paddr
);
5559 W
.printNumber("FileSize", Phdr
.p_filesz
);
5560 W
.printNumber("MemSize", Phdr
.p_memsz
);
5561 W
.printFlags("Flags", Phdr
.p_flags
, makeArrayRef(ElfSegmentFlags
));
5562 W
.printNumber("Alignment", Phdr
.p_align
);
5566 template <class ELFT
>
5567 void LLVMStyle
<ELFT
>::printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
5568 const Elf_Shdr
*Sec
) {
5569 DictScope
SS(W
, "Version symbols");
5573 StringRef SecName
= unwrapOrError(this->FileName
, Obj
->getSectionName(Sec
));
5574 W
.printNumber("Section Name", SecName
, Sec
->sh_name
);
5575 W
.printHex("Address", Sec
->sh_addr
);
5576 W
.printHex("Offset", Sec
->sh_offset
);
5577 W
.printNumber("Link", Sec
->sh_link
);
5579 const uint8_t *VersymBuf
=
5580 reinterpret_cast<const uint8_t *>(Obj
->base() + Sec
->sh_offset
);
5581 const ELFDumper
<ELFT
> *Dumper
= this->dumper();
5582 StringRef StrTable
= Dumper
->getDynamicStringTable();
5584 // Same number of entries in the dynamic symbol table (DT_SYMTAB).
5585 ListScope
Syms(W
, "Symbols");
5586 for (const Elf_Sym
&Sym
: Dumper
->dynamic_symbols()) {
5587 DictScope
S(W
, "Symbol");
5588 const Elf_Versym
*Versym
= reinterpret_cast<const Elf_Versym
*>(VersymBuf
);
5589 std::string FullSymbolName
=
5590 Dumper
->getFullSymbolName(&Sym
, StrTable
, true /* IsDynamic */);
5591 W
.printNumber("Version", Versym
->vs_index
& VERSYM_VERSION
);
5592 W
.printString("Name", FullSymbolName
);
5593 VersymBuf
+= sizeof(Elf_Versym
);
5597 template <class ELFT
>
5598 void LLVMStyle
<ELFT
>::printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
5599 const Elf_Shdr
*Sec
) {
5600 DictScope
SD(W
, "SHT_GNU_verdef");
5604 const uint8_t *SecStartAddress
=
5605 reinterpret_cast<const uint8_t *>(Obj
->base() + Sec
->sh_offset
);
5606 const uint8_t *SecEndAddress
= SecStartAddress
+ Sec
->sh_size
;
5607 const uint8_t *VerdefBuf
= SecStartAddress
;
5608 const Elf_Shdr
*StrTab
=
5609 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
5611 unsigned VerDefsNum
= Sec
->sh_info
;
5612 while (VerDefsNum
--) {
5613 if (VerdefBuf
+ sizeof(Elf_Verdef
) > SecEndAddress
)
5614 // FIXME: report_fatal_error is not a good way to report error. We should
5615 // emit a parsing error here and below.
5616 report_fatal_error("invalid offset in the section");
5618 const Elf_Verdef
*Verdef
= reinterpret_cast<const Elf_Verdef
*>(VerdefBuf
);
5619 DictScope
Def(W
, "Definition");
5620 W
.printNumber("Version", Verdef
->vd_version
);
5621 W
.printEnum("Flags", Verdef
->vd_flags
, makeArrayRef(SymVersionFlags
));
5622 W
.printNumber("Index", Verdef
->vd_ndx
);
5623 W
.printNumber("Hash", Verdef
->vd_hash
);
5624 W
.printString("Name", StringRef(reinterpret_cast<const char *>(
5625 Obj
->base() + StrTab
->sh_offset
+
5626 Verdef
->getAux()->vda_name
)));
5627 if (!Verdef
->vd_cnt
)
5628 report_fatal_error("at least one definition string must exist");
5629 if (Verdef
->vd_cnt
> 2)
5630 report_fatal_error("more than one predecessor is not expected");
5632 if (Verdef
->vd_cnt
== 2) {
5633 const uint8_t *VerdauxBuf
=
5634 VerdefBuf
+ Verdef
->vd_aux
+ Verdef
->getAux()->vda_next
;
5635 const Elf_Verdaux
*Verdaux
=
5636 reinterpret_cast<const Elf_Verdaux
*>(VerdauxBuf
);
5637 W
.printString("Predecessor",
5638 StringRef(reinterpret_cast<const char *>(
5639 Obj
->base() + StrTab
->sh_offset
+ Verdaux
->vda_name
)));
5641 VerdefBuf
+= Verdef
->vd_next
;
5645 template <class ELFT
>
5646 void LLVMStyle
<ELFT
>::printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
5647 const Elf_Shdr
*Sec
) {
5648 DictScope
SD(W
, "SHT_GNU_verneed");
5652 const uint8_t *SecData
=
5653 reinterpret_cast<const uint8_t *>(Obj
->base() + Sec
->sh_offset
);
5654 const Elf_Shdr
*StrTab
=
5655 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
5657 const uint8_t *VerneedBuf
= SecData
;
5658 unsigned VerneedNum
= Sec
->sh_info
;
5659 for (unsigned I
= 0; I
< VerneedNum
; ++I
) {
5660 const Elf_Verneed
*Verneed
=
5661 reinterpret_cast<const Elf_Verneed
*>(VerneedBuf
);
5662 DictScope
Entry(W
, "Dependency");
5663 W
.printNumber("Version", Verneed
->vn_version
);
5664 W
.printNumber("Count", Verneed
->vn_cnt
);
5665 W
.printString("FileName",
5666 StringRef(reinterpret_cast<const char *>(
5667 Obj
->base() + StrTab
->sh_offset
+ Verneed
->vn_file
)));
5669 const uint8_t *VernauxBuf
= VerneedBuf
+ Verneed
->vn_aux
;
5670 ListScope
L(W
, "Entries");
5671 for (unsigned J
= 0; J
< Verneed
->vn_cnt
; ++J
) {
5672 const Elf_Vernaux
*Vernaux
=
5673 reinterpret_cast<const Elf_Vernaux
*>(VernauxBuf
);
5674 DictScope
Entry(W
, "Entry");
5675 W
.printNumber("Hash", Vernaux
->vna_hash
);
5676 W
.printEnum("Flags", Vernaux
->vna_flags
, makeArrayRef(SymVersionFlags
));
5677 W
.printNumber("Index", Vernaux
->vna_other
);
5678 W
.printString("Name",
5679 StringRef(reinterpret_cast<const char *>(
5680 Obj
->base() + StrTab
->sh_offset
+ Vernaux
->vna_name
)));
5681 VernauxBuf
+= Vernaux
->vna_next
;
5683 VerneedBuf
+= Verneed
->vn_next
;
5687 template <class ELFT
>
5688 void LLVMStyle
<ELFT
>::printHashHistogram(const ELFFile
<ELFT
> *Obj
) {
5689 W
.startLine() << "Hash Histogram not implemented!\n";
5692 template <class ELFT
>
5693 void LLVMStyle
<ELFT
>::printCGProfile(const ELFFile
<ELFT
> *Obj
) {
5694 ListScope
L(W
, "CGProfile");
5695 if (!this->dumper()->getDotCGProfileSec())
5697 auto CGProfile
= unwrapOrError(
5698 this->FileName
, Obj
->template getSectionContentsAsArray
<Elf_CGProfile
>(
5699 this->dumper()->getDotCGProfileSec()));
5700 for (const Elf_CGProfile
&CGPE
: CGProfile
) {
5701 DictScope
D(W
, "CGProfileEntry");
5702 W
.printNumber("From", this->dumper()->getStaticSymbolName(CGPE
.cgp_from
),
5704 W
.printNumber("To", this->dumper()->getStaticSymbolName(CGPE
.cgp_to
),
5706 W
.printNumber("Weight", CGPE
.cgp_weight
);
5710 template <class ELFT
>
5711 void LLVMStyle
<ELFT
>::printAddrsig(const ELFFile
<ELFT
> *Obj
) {
5712 ListScope
L(W
, "Addrsig");
5713 if (!this->dumper()->getDotAddrsigSec())
5715 ArrayRef
<uint8_t> Contents
= unwrapOrError(
5717 Obj
->getSectionContents(this->dumper()->getDotAddrsigSec()));
5718 const uint8_t *Cur
= Contents
.begin();
5719 const uint8_t *End
= Contents
.end();
5720 while (Cur
!= End
) {
5723 uint64_t SymIndex
= decodeULEB128(Cur
, &Size
, End
, &Err
);
5725 reportError(createError(Err
), this->FileName
);
5727 W
.printNumber("Sym", this->dumper()->getStaticSymbolName(SymIndex
),
5733 template <typename ELFT
>
5734 static void printGNUNoteLLVMStyle(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
,
5739 case ELF::NT_GNU_ABI_TAG
: {
5740 const GNUAbiTag
&AbiTag
= getGNUAbiTag
<ELFT
>(Desc
);
5741 if (!AbiTag
.IsValid
) {
5742 W
.printString("ABI", "<corrupt GNU_ABI_TAG>");
5744 W
.printString("OS", AbiTag
.OSName
);
5745 W
.printString("ABI", AbiTag
.ABI
);
5749 case ELF::NT_GNU_BUILD_ID
: {
5750 W
.printString("Build ID", getGNUBuildId(Desc
));
5753 case ELF::NT_GNU_GOLD_VERSION
:
5754 W
.printString("Version", getGNUGoldVersion(Desc
));
5756 case ELF::NT_GNU_PROPERTY_TYPE_0
:
5757 ListScope
D(W
, "Property");
5758 for (const auto &Property
: getGNUPropertyList
<ELFT
>(Desc
))
5759 W
.printString(Property
);
5764 static void printCoreNoteLLVMStyle(const CoreNote
&Note
, ScopedPrinter
&W
) {
5765 W
.printNumber("Page Size", Note
.PageSize
);
5766 for (const CoreFileMapping
&Mapping
: Note
.Mappings
) {
5767 ListScope
D(W
, "Mapping");
5768 W
.printHex("Start", Mapping
.Start
);
5769 W
.printHex("End", Mapping
.End
);
5770 W
.printHex("Offset", Mapping
.Offset
);
5771 W
.printString("Filename", Mapping
.Filename
);
5775 template <class ELFT
>
5776 void LLVMStyle
<ELFT
>::printNotes(const ELFFile
<ELFT
> *Obj
) {
5777 ListScope
L(W
, "Notes");
5779 auto PrintHeader
= [&](const typename
ELFT::Off Offset
,
5780 const typename
ELFT::Addr Size
) {
5781 W
.printHex("Offset", Offset
);
5782 W
.printHex("Size", Size
);
5785 auto ProcessNote
= [&](const Elf_Note
&Note
) {
5786 DictScope
D2(W
, "Note");
5787 StringRef Name
= Note
.getName();
5788 ArrayRef
<uint8_t> Descriptor
= Note
.getDesc();
5789 Elf_Word Type
= Note
.getType();
5791 // Print the note owner/type.
5792 W
.printString("Owner", Name
);
5793 W
.printHex("Data size", Descriptor
.size());
5794 if (Name
== "GNU") {
5795 W
.printString("Type", getGNUNoteTypeName(Type
));
5796 } else if (Name
== "FreeBSD") {
5797 W
.printString("Type", getFreeBSDNoteTypeName(Type
));
5798 } else if (Name
== "AMD") {
5799 W
.printString("Type", getAMDNoteTypeName(Type
));
5800 } else if (Name
== "AMDGPU") {
5801 W
.printString("Type", getAMDGPUNoteTypeName(Type
));
5803 StringRef NoteType
= Obj
->getHeader()->e_type
== ELF::ET_CORE
5804 ? getCoreNoteTypeName(Type
)
5805 : getGenericNoteTypeName(Type
);
5806 if (!NoteType
.empty())
5807 W
.printString("Type", NoteType
);
5809 W
.printString("Type",
5810 "Unknown (" + to_string(format_hex(Type
, 10)) + ")");
5813 // Print the description, or fallback to printing raw bytes for unknown
5815 if (Name
== "GNU") {
5816 printGNUNoteLLVMStyle
<ELFT
>(Type
, Descriptor
, W
);
5817 } else if (Name
== "AMD") {
5818 const AMDNote N
= getAMDNote
<ELFT
>(Type
, Descriptor
);
5819 if (!N
.Type
.empty())
5820 W
.printString(N
.Type
, N
.Value
);
5821 } else if (Name
== "AMDGPU") {
5822 const AMDGPUNote N
= getAMDGPUNote
<ELFT
>(Type
, Descriptor
);
5823 if (!N
.Type
.empty())
5824 W
.printString(N
.Type
, N
.Value
);
5825 } else if (Name
== "CORE") {
5826 if (Type
== ELF::NT_FILE
) {
5827 DataExtractor
DescExtractor(Descriptor
,
5828 ELFT::TargetEndianness
== support::little
,
5830 Expected
<CoreNote
> Note
= readCoreNote(DescExtractor
);
5832 printCoreNoteLLVMStyle(*Note
, W
);
5834 reportWarning(Note
.takeError(), this->FileName
);
5836 } else if (!Descriptor
.empty()) {
5837 W
.printBinaryBlock("Description data", Descriptor
);
5841 ArrayRef
<Elf_Shdr
> Sections
= unwrapOrError(this->FileName
, Obj
->sections());
5842 if (Obj
->getHeader()->e_type
!= ELF::ET_CORE
&& !Sections
.empty()) {
5843 for (const auto &S
: Sections
) {
5844 if (S
.sh_type
!= SHT_NOTE
)
5846 DictScope
D(W
, "NoteSection");
5847 PrintHeader(S
.sh_offset
, S
.sh_size
);
5848 Error Err
= Error::success();
5849 for (const auto &Note
: Obj
->notes(S
, Err
))
5852 reportError(std::move(Err
), this->FileName
);
5855 for (const auto &P
:
5856 unwrapOrError(this->FileName
, Obj
->program_headers())) {
5857 if (P
.p_type
!= PT_NOTE
)
5859 DictScope
D(W
, "NoteSection");
5860 PrintHeader(P
.p_offset
, P
.p_filesz
);
5861 Error Err
= Error::success();
5862 for (const auto &Note
: Obj
->notes(P
, Err
))
5865 reportError(std::move(Err
), this->FileName
);
5870 template <class ELFT
>
5871 void LLVMStyle
<ELFT
>::printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) {
5872 ListScope
L(W
, "LinkerOptions");
5874 for (const Elf_Shdr
&Shdr
: unwrapOrError(this->FileName
, Obj
->sections())) {
5875 if (Shdr
.sh_type
!= ELF::SHT_LLVM_LINKER_OPTIONS
)
5878 ArrayRef
<uint8_t> Contents
=
5879 unwrapOrError(this->FileName
, Obj
->getSectionContents(&Shdr
));
5880 for (const uint8_t *P
= Contents
.begin(), *E
= Contents
.end(); P
< E
; ) {
5881 StringRef Key
= StringRef(reinterpret_cast<const char *>(P
));
5883 StringRef(reinterpret_cast<const char *>(P
) + Key
.size() + 1);
5885 W
.printString(Key
, Value
);
5887 P
= P
+ Key
.size() + Value
.size() + 2;
5892 template <class ELFT
>
5893 void LLVMStyle
<ELFT
>::printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) {
5894 ListScope
L(W
, "StackSizes");
5895 if (Obj
->isRelocatableObject())
5896 this->printRelocatableStackSizes(Obj
, []() {});
5898 this->printNonRelocatableStackSizes(Obj
, []() {});
5901 template <class ELFT
>
5902 void LLVMStyle
<ELFT
>::printStackSizeEntry(uint64_t Size
, StringRef FuncName
) {
5903 DictScope
D(W
, "Entry");
5904 W
.printString("Function", FuncName
);
5905 W
.printHex("Size", Size
);
5908 template <class ELFT
>
5909 void LLVMStyle
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
5910 auto PrintEntry
= [&](const Elf_Addr
*E
) {
5911 W
.printHex("Address", Parser
.getGotAddress(E
));
5912 W
.printNumber("Access", Parser
.getGotOffset(E
));
5913 W
.printHex("Initial", *E
);
5916 DictScope
GS(W
, Parser
.IsStatic
? "Static GOT" : "Primary GOT");
5918 W
.printHex("Canonical gp value", Parser
.getGp());
5920 ListScope
RS(W
, "Reserved entries");
5922 DictScope
D(W
, "Entry");
5923 PrintEntry(Parser
.getGotLazyResolver());
5924 W
.printString("Purpose", StringRef("Lazy resolver"));
5927 if (Parser
.getGotModulePointer()) {
5928 DictScope
D(W
, "Entry");
5929 PrintEntry(Parser
.getGotModulePointer());
5930 W
.printString("Purpose", StringRef("Module pointer (GNU extension)"));
5934 ListScope
LS(W
, "Local entries");
5935 for (auto &E
: Parser
.getLocalEntries()) {
5936 DictScope
D(W
, "Entry");
5941 if (Parser
.IsStatic
)
5945 ListScope
GS(W
, "Global entries");
5946 for (auto &E
: Parser
.getGlobalEntries()) {
5947 DictScope
D(W
, "Entry");
5951 const Elf_Sym
*Sym
= Parser
.getGotSym(&E
);
5952 W
.printHex("Value", Sym
->st_value
);
5953 W
.printEnum("Type", Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
5955 unsigned SectionIndex
= 0;
5956 StringRef SectionName
;
5957 this->dumper()->getSectionNameIndex(
5958 Sym
, this->dumper()->dynamic_symbols().begin(), SectionName
,
5960 W
.printHex("Section", SectionName
, SectionIndex
);
5962 std::string SymName
= this->dumper()->getFullSymbolName(
5963 Sym
, this->dumper()->getDynamicStringTable(), true);
5964 W
.printNumber("Name", SymName
, Sym
->st_name
);
5968 W
.printNumber("Number of TLS and multi-GOT entries",
5969 uint64_t(Parser
.getOtherEntries().size()));
5972 template <class ELFT
>
5973 void LLVMStyle
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
5974 auto PrintEntry
= [&](const Elf_Addr
*E
) {
5975 W
.printHex("Address", Parser
.getPltAddress(E
));
5976 W
.printHex("Initial", *E
);
5979 DictScope
GS(W
, "PLT GOT");
5982 ListScope
RS(W
, "Reserved entries");
5984 DictScope
D(W
, "Entry");
5985 PrintEntry(Parser
.getPltLazyResolver());
5986 W
.printString("Purpose", StringRef("PLT lazy resolver"));
5989 if (auto E
= Parser
.getPltModulePointer()) {
5990 DictScope
D(W
, "Entry");
5992 W
.printString("Purpose", StringRef("Module pointer"));
5996 ListScope
LS(W
, "Entries");
5997 for (auto &E
: Parser
.getPltEntries()) {
5998 DictScope
D(W
, "Entry");
6001 const Elf_Sym
*Sym
= Parser
.getPltSym(&E
);
6002 W
.printHex("Value", Sym
->st_value
);
6003 W
.printEnum("Type", Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
6005 unsigned SectionIndex
= 0;
6006 StringRef SectionName
;
6007 this->dumper()->getSectionNameIndex(
6008 Sym
, this->dumper()->dynamic_symbols().begin(), SectionName
,
6010 W
.printHex("Section", SectionName
, SectionIndex
);
6012 std::string SymName
=
6013 this->dumper()->getFullSymbolName(Sym
, Parser
.getPltStrTable(), true);
6014 W
.printNumber("Name", SymName
, Sym
->st_name
);