1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
115 using namespace llvm
;
116 using namespace llvm::PatternMatch
;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls
, "Number of tail calls");
121 STATISTIC(NumMovwMovt
, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals
, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted
,
124 "Number of constants with their storage promoted into constant pools");
127 ARMInterworking("arm-interworking", cl::Hidden
,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
131 static cl::opt
<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden
,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt
<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden
,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
140 static cl::opt
<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden
,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs
[] = {
147 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT
, MVT PromotedLdStVT
,
151 MVT PromotedBitwiseVT
) {
152 if (VT
!= PromotedLdStVT
) {
153 setOperationAction(ISD::LOAD
, VT
, Promote
);
154 AddPromotedToType (ISD::LOAD
, VT
, PromotedLdStVT
);
156 setOperationAction(ISD::STORE
, VT
, Promote
);
157 AddPromotedToType (ISD::STORE
, VT
, PromotedLdStVT
);
160 MVT ElemTy
= VT
.getVectorElementType();
161 if (ElemTy
!= MVT::f64
)
162 setOperationAction(ISD::SETCC
, VT
, Custom
);
163 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
165 if (ElemTy
== MVT::i32
) {
166 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
167 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
168 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
169 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
171 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
172 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
173 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
174 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
176 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
177 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
178 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Legal
);
180 setOperationAction(ISD::SELECT
, VT
, Expand
);
181 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
182 setOperationAction(ISD::VSELECT
, VT
, Expand
);
183 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
184 if (VT
.isInteger()) {
185 setOperationAction(ISD::SHL
, VT
, Custom
);
186 setOperationAction(ISD::SRA
, VT
, Custom
);
187 setOperationAction(ISD::SRL
, VT
, Custom
);
190 // Promote all bit-wise operations.
191 if (VT
.isInteger() && VT
!= PromotedBitwiseVT
) {
192 setOperationAction(ISD::AND
, VT
, Promote
);
193 AddPromotedToType (ISD::AND
, VT
, PromotedBitwiseVT
);
194 setOperationAction(ISD::OR
, VT
, Promote
);
195 AddPromotedToType (ISD::OR
, VT
, PromotedBitwiseVT
);
196 setOperationAction(ISD::XOR
, VT
, Promote
);
197 AddPromotedToType (ISD::XOR
, VT
, PromotedBitwiseVT
);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV
, VT
, Expand
);
202 setOperationAction(ISD::UDIV
, VT
, Expand
);
203 setOperationAction(ISD::FDIV
, VT
, Expand
);
204 setOperationAction(ISD::SREM
, VT
, Expand
);
205 setOperationAction(ISD::UREM
, VT
, Expand
);
206 setOperationAction(ISD::FREM
, VT
, Expand
);
208 if (!VT
.isFloatingPoint() &&
209 VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
210 for (auto Opcode
: {ISD::ABS
, ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
211 setOperationAction(Opcode
, VT
, Legal
);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT
) {
215 addRegisterClass(VT
, &ARM::DPRRegClass
);
216 addTypeForNEON(VT
, MVT::f64
, MVT::v2i32
);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT
) {
220 addRegisterClass(VT
, &ARM::DPairRegClass
);
221 addTypeForNEON(VT
, MVT::v2f64
, MVT::v4i32
);
224 void ARMTargetLowering::setAllExpand(MVT VT
) {
225 for (unsigned Opc
= 0; Opc
< ISD::BUILTIN_OP_END
; ++Opc
)
226 setOperationAction(Opc
, VT
, Expand
);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST
, VT
, Legal
);
232 setOperationAction(ISD::LOAD
, VT
, Legal
);
233 setOperationAction(ISD::STORE
, VT
, Legal
);
234 setOperationAction(ISD::UNDEF
, VT
, Legal
);
237 void ARMTargetLowering::addAllExtLoads(const MVT From
, const MVT To
,
238 LegalizeAction Action
) {
239 setLoadExtAction(ISD::EXTLOAD
, From
, To
, Action
);
240 setLoadExtAction(ISD::ZEXTLOAD
, From
, To
, Action
);
241 setLoadExtAction(ISD::SEXTLOAD
, From
, To
, Action
);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP
) {
245 const MVT IntTypes
[] = { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
};
247 for (auto VT
: IntTypes
) {
248 addRegisterClass(VT
, &ARM::MQPRRegClass
);
249 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
250 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
252 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
253 setOperationAction(ISD::SHL
, VT
, Custom
);
254 setOperationAction(ISD::SRA
, VT
, Custom
);
255 setOperationAction(ISD::SRL
, VT
, Custom
);
256 setOperationAction(ISD::SMIN
, VT
, Legal
);
257 setOperationAction(ISD::SMAX
, VT
, Legal
);
258 setOperationAction(ISD::UMIN
, VT
, Legal
);
259 setOperationAction(ISD::UMAX
, VT
, Legal
);
260 setOperationAction(ISD::ABS
, VT
, Legal
);
261 setOperationAction(ISD::SETCC
, VT
, Custom
);
263 // No native support for these.
264 setOperationAction(ISD::UDIV
, VT
, Expand
);
265 setOperationAction(ISD::SDIV
, VT
, Expand
);
266 setOperationAction(ISD::UREM
, VT
, Expand
);
267 setOperationAction(ISD::SREM
, VT
, Expand
);
268 setOperationAction(ISD::CTPOP
, VT
, Expand
);
271 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Legal
);
274 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
275 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
276 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
277 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
280 // Pre and Post inc are supported on loads and stores
281 for (unsigned im
= (unsigned)ISD::PRE_INC
;
282 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
283 setIndexedLoadAction(im
, VT
, Legal
);
284 setIndexedStoreAction(im
, VT
, Legal
);
288 const MVT FloatTypes
[] = { MVT::v8f16
, MVT::v4f32
};
289 for (auto VT
: FloatTypes
) {
290 addRegisterClass(VT
, &ARM::MQPRRegClass
);
294 // These are legal or custom whether we have MVE.fp or not
295 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
296 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
297 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
.getVectorElementType(), Custom
);
298 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
299 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
300 setOperationAction(ISD::BUILD_VECTOR
, VT
.getVectorElementType(), Custom
);
301 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Legal
);
302 setOperationAction(ISD::SETCC
, VT
, Custom
);
304 // Pre and Post inc are supported on loads and stores
305 for (unsigned im
= (unsigned)ISD::PRE_INC
;
306 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
307 setIndexedLoadAction(im
, VT
, Legal
);
308 setIndexedStoreAction(im
, VT
, Legal
);
312 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
313 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
314 setOperationAction(ISD::FROUND
, VT
, Legal
);
316 // No native support for these.
317 setOperationAction(ISD::FDIV
, VT
, Expand
);
318 setOperationAction(ISD::FREM
, VT
, Expand
);
319 setOperationAction(ISD::FSQRT
, VT
, Expand
);
320 setOperationAction(ISD::FSIN
, VT
, Expand
);
321 setOperationAction(ISD::FCOS
, VT
, Expand
);
322 setOperationAction(ISD::FPOW
, VT
, Expand
);
323 setOperationAction(ISD::FLOG
, VT
, Expand
);
324 setOperationAction(ISD::FLOG2
, VT
, Expand
);
325 setOperationAction(ISD::FLOG10
, VT
, Expand
);
326 setOperationAction(ISD::FEXP
, VT
, Expand
);
327 setOperationAction(ISD::FEXP2
, VT
, Expand
);
328 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
332 // We 'support' these types up to bitcast/load/store level, regardless of
333 // MVE integer-only / float support. Only doing FP data processing on the FP
334 // vector types is inhibited at integer-only level.
335 const MVT LongTypes
[] = { MVT::v2i64
, MVT::v2f64
};
336 for (auto VT
: LongTypes
) {
337 addRegisterClass(VT
, &ARM::MQPRRegClass
);
339 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
340 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
341 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
343 // We can do bitwise operations on v2i64 vectors
344 setOperationAction(ISD::AND
, MVT::v2i64
, Legal
);
345 setOperationAction(ISD::OR
, MVT::v2i64
, Legal
);
346 setOperationAction(ISD::XOR
, MVT::v2i64
, Legal
);
348 // It is legal to extload from v4i8 to v4i16 or v4i32.
349 addAllExtLoads(MVT::v8i16
, MVT::v8i8
, Legal
);
350 addAllExtLoads(MVT::v4i32
, MVT::v4i16
, Legal
);
351 addAllExtLoads(MVT::v4i32
, MVT::v4i8
, Legal
);
353 // Some truncating stores are legal too.
354 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Legal
);
355 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Legal
);
356 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Legal
);
358 // Pre and Post inc on these are legal, given the correct extends
359 for (unsigned im
= (unsigned)ISD::PRE_INC
;
360 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
361 setIndexedLoadAction(im
, MVT::v8i8
, Legal
);
362 setIndexedStoreAction(im
, MVT::v8i8
, Legal
);
363 setIndexedLoadAction(im
, MVT::v4i8
, Legal
);
364 setIndexedStoreAction(im
, MVT::v4i8
, Legal
);
365 setIndexedLoadAction(im
, MVT::v4i16
, Legal
);
366 setIndexedStoreAction(im
, MVT::v4i16
, Legal
);
370 const MVT pTypes
[] = {MVT::v16i1
, MVT::v8i1
, MVT::v4i1
};
371 for (auto VT
: pTypes
) {
372 addRegisterClass(VT
, &ARM::VCCRRegClass
);
373 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
374 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
375 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
376 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
377 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
378 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
379 setOperationAction(ISD::SETCC
, VT
, Custom
);
380 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
381 setOperationAction(ISD::LOAD
, VT
, Custom
);
382 setOperationAction(ISD::STORE
, VT
, Custom
);
386 ARMTargetLowering::ARMTargetLowering(const TargetMachine
&TM
,
387 const ARMSubtarget
&STI
)
388 : TargetLowering(TM
), Subtarget(&STI
) {
389 RegInfo
= Subtarget
->getRegisterInfo();
390 Itins
= Subtarget
->getInstrItineraryData();
392 setBooleanContents(ZeroOrOneBooleanContent
);
393 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
395 if (!Subtarget
->isTargetDarwin() && !Subtarget
->isTargetIOS() &&
396 !Subtarget
->isTargetWatchOS()) {
397 bool IsHFTarget
= TM
.Options
.FloatABIType
== FloatABI::Hard
;
398 for (int LCID
= 0; LCID
< RTLIB::UNKNOWN_LIBCALL
; ++LCID
)
399 setLibcallCallingConv(static_cast<RTLIB::Libcall
>(LCID
),
400 IsHFTarget
? CallingConv::ARM_AAPCS_VFP
401 : CallingConv::ARM_AAPCS
);
404 if (Subtarget
->isTargetMachO()) {
405 // Uses VFP for Thumb libfuncs if available.
406 if (Subtarget
->isThumb() && Subtarget
->hasVFP2Base() &&
407 Subtarget
->hasARMOps() && !Subtarget
->useSoftFloat()) {
408 static const struct {
409 const RTLIB::Libcall Op
;
410 const char * const Name
;
411 const ISD::CondCode Cond
;
413 // Single-precision floating-point arithmetic.
414 { RTLIB::ADD_F32
, "__addsf3vfp", ISD::SETCC_INVALID
},
415 { RTLIB::SUB_F32
, "__subsf3vfp", ISD::SETCC_INVALID
},
416 { RTLIB::MUL_F32
, "__mulsf3vfp", ISD::SETCC_INVALID
},
417 { RTLIB::DIV_F32
, "__divsf3vfp", ISD::SETCC_INVALID
},
419 // Double-precision floating-point arithmetic.
420 { RTLIB::ADD_F64
, "__adddf3vfp", ISD::SETCC_INVALID
},
421 { RTLIB::SUB_F64
, "__subdf3vfp", ISD::SETCC_INVALID
},
422 { RTLIB::MUL_F64
, "__muldf3vfp", ISD::SETCC_INVALID
},
423 { RTLIB::DIV_F64
, "__divdf3vfp", ISD::SETCC_INVALID
},
425 // Single-precision comparisons.
426 { RTLIB::OEQ_F32
, "__eqsf2vfp", ISD::SETNE
},
427 { RTLIB::UNE_F32
, "__nesf2vfp", ISD::SETNE
},
428 { RTLIB::OLT_F32
, "__ltsf2vfp", ISD::SETNE
},
429 { RTLIB::OLE_F32
, "__lesf2vfp", ISD::SETNE
},
430 { RTLIB::OGE_F32
, "__gesf2vfp", ISD::SETNE
},
431 { RTLIB::OGT_F32
, "__gtsf2vfp", ISD::SETNE
},
432 { RTLIB::UO_F32
, "__unordsf2vfp", ISD::SETNE
},
433 { RTLIB::O_F32
, "__unordsf2vfp", ISD::SETEQ
},
435 // Double-precision comparisons.
436 { RTLIB::OEQ_F64
, "__eqdf2vfp", ISD::SETNE
},
437 { RTLIB::UNE_F64
, "__nedf2vfp", ISD::SETNE
},
438 { RTLIB::OLT_F64
, "__ltdf2vfp", ISD::SETNE
},
439 { RTLIB::OLE_F64
, "__ledf2vfp", ISD::SETNE
},
440 { RTLIB::OGE_F64
, "__gedf2vfp", ISD::SETNE
},
441 { RTLIB::OGT_F64
, "__gtdf2vfp", ISD::SETNE
},
442 { RTLIB::UO_F64
, "__unorddf2vfp", ISD::SETNE
},
443 { RTLIB::O_F64
, "__unorddf2vfp", ISD::SETEQ
},
445 // Floating-point to integer conversions.
446 // i64 conversions are done via library routines even when generating VFP
447 // instructions, so use the same ones.
448 { RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp", ISD::SETCC_INVALID
},
449 { RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp", ISD::SETCC_INVALID
},
450 { RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp", ISD::SETCC_INVALID
},
451 { RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp", ISD::SETCC_INVALID
},
453 // Conversions between floating types.
454 { RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp", ISD::SETCC_INVALID
},
455 { RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp", ISD::SETCC_INVALID
},
457 // Integer to floating-point conversions.
458 // i64 conversions are done via library routines even when generating VFP
459 // instructions, so use the same ones.
460 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
461 // e.g., __floatunsidf vs. __floatunssidfvfp.
462 { RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp", ISD::SETCC_INVALID
},
463 { RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp", ISD::SETCC_INVALID
},
464 { RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp", ISD::SETCC_INVALID
},
465 { RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp", ISD::SETCC_INVALID
},
468 for (const auto &LC
: LibraryCalls
) {
469 setLibcallName(LC
.Op
, LC
.Name
);
470 if (LC
.Cond
!= ISD::SETCC_INVALID
)
471 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
476 // These libcalls are not available in 32-bit.
477 setLibcallName(RTLIB::SHL_I128
, nullptr);
478 setLibcallName(RTLIB::SRL_I128
, nullptr);
479 setLibcallName(RTLIB::SRA_I128
, nullptr);
482 if (Subtarget
->isAAPCS_ABI() &&
483 (Subtarget
->isTargetAEABI() || Subtarget
->isTargetGNUAEABI() ||
484 Subtarget
->isTargetMuslAEABI() || Subtarget
->isTargetAndroid())) {
485 static const struct {
486 const RTLIB::Libcall Op
;
487 const char * const Name
;
488 const CallingConv::ID CC
;
489 const ISD::CondCode Cond
;
491 // Double-precision floating-point arithmetic helper functions
492 // RTABI chapter 4.1.2, Table 2
493 { RTLIB::ADD_F64
, "__aeabi_dadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
494 { RTLIB::DIV_F64
, "__aeabi_ddiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
495 { RTLIB::MUL_F64
, "__aeabi_dmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
496 { RTLIB::SUB_F64
, "__aeabi_dsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
498 // Double-precision floating-point comparison helper functions
499 // RTABI chapter 4.1.2, Table 3
500 { RTLIB::OEQ_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
501 { RTLIB::UNE_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
502 { RTLIB::OLT_F64
, "__aeabi_dcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
503 { RTLIB::OLE_F64
, "__aeabi_dcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
504 { RTLIB::OGE_F64
, "__aeabi_dcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
505 { RTLIB::OGT_F64
, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
506 { RTLIB::UO_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
507 { RTLIB::O_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
509 // Single-precision floating-point arithmetic helper functions
510 // RTABI chapter 4.1.2, Table 4
511 { RTLIB::ADD_F32
, "__aeabi_fadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
512 { RTLIB::DIV_F32
, "__aeabi_fdiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
513 { RTLIB::MUL_F32
, "__aeabi_fmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
514 { RTLIB::SUB_F32
, "__aeabi_fsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
516 // Single-precision floating-point comparison helper functions
517 // RTABI chapter 4.1.2, Table 5
518 { RTLIB::OEQ_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
519 { RTLIB::UNE_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
520 { RTLIB::OLT_F32
, "__aeabi_fcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
521 { RTLIB::OLE_F32
, "__aeabi_fcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
522 { RTLIB::OGE_F32
, "__aeabi_fcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
523 { RTLIB::OGT_F32
, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
524 { RTLIB::UO_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
525 { RTLIB::O_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
527 // Floating-point to integer conversions.
528 // RTABI chapter 4.1.2, Table 6
529 { RTLIB::FPTOSINT_F64_I32
, "__aeabi_d2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
530 { RTLIB::FPTOUINT_F64_I32
, "__aeabi_d2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
531 { RTLIB::FPTOSINT_F64_I64
, "__aeabi_d2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
532 { RTLIB::FPTOUINT_F64_I64
, "__aeabi_d2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
533 { RTLIB::FPTOSINT_F32_I32
, "__aeabi_f2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
534 { RTLIB::FPTOUINT_F32_I32
, "__aeabi_f2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
535 { RTLIB::FPTOSINT_F32_I64
, "__aeabi_f2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
536 { RTLIB::FPTOUINT_F32_I64
, "__aeabi_f2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
538 // Conversions between floating types.
539 // RTABI chapter 4.1.2, Table 7
540 { RTLIB::FPROUND_F64_F32
, "__aeabi_d2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
541 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
542 { RTLIB::FPEXT_F32_F64
, "__aeabi_f2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
544 // Integer to floating-point conversions.
545 // RTABI chapter 4.1.2, Table 8
546 { RTLIB::SINTTOFP_I32_F64
, "__aeabi_i2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
547 { RTLIB::UINTTOFP_I32_F64
, "__aeabi_ui2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
548 { RTLIB::SINTTOFP_I64_F64
, "__aeabi_l2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
549 { RTLIB::UINTTOFP_I64_F64
, "__aeabi_ul2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
550 { RTLIB::SINTTOFP_I32_F32
, "__aeabi_i2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
551 { RTLIB::UINTTOFP_I32_F32
, "__aeabi_ui2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
552 { RTLIB::SINTTOFP_I64_F32
, "__aeabi_l2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
553 { RTLIB::UINTTOFP_I64_F32
, "__aeabi_ul2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
555 // Long long helper functions
556 // RTABI chapter 4.2, Table 9
557 { RTLIB::MUL_I64
, "__aeabi_lmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
558 { RTLIB::SHL_I64
, "__aeabi_llsl", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
559 { RTLIB::SRL_I64
, "__aeabi_llsr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
560 { RTLIB::SRA_I64
, "__aeabi_lasr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
562 // Integer division functions
563 // RTABI chapter 4.3.1
564 { RTLIB::SDIV_I8
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
565 { RTLIB::SDIV_I16
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
566 { RTLIB::SDIV_I32
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
567 { RTLIB::SDIV_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
568 { RTLIB::UDIV_I8
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
569 { RTLIB::UDIV_I16
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
570 { RTLIB::UDIV_I32
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
571 { RTLIB::UDIV_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
574 for (const auto &LC
: LibraryCalls
) {
575 setLibcallName(LC
.Op
, LC
.Name
);
576 setLibcallCallingConv(LC
.Op
, LC
.CC
);
577 if (LC
.Cond
!= ISD::SETCC_INVALID
)
578 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
581 // EABI dependent RTLIB
582 if (TM
.Options
.EABIVersion
== EABI::EABI4
||
583 TM
.Options
.EABIVersion
== EABI::EABI5
) {
584 static const struct {
585 const RTLIB::Libcall Op
;
586 const char *const Name
;
587 const CallingConv::ID CC
;
588 const ISD::CondCode Cond
;
589 } MemOpsLibraryCalls
[] = {
591 // RTABI chapter 4.3.4
592 { RTLIB::MEMCPY
, "__aeabi_memcpy", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
593 { RTLIB::MEMMOVE
, "__aeabi_memmove", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
594 { RTLIB::MEMSET
, "__aeabi_memset", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
597 for (const auto &LC
: MemOpsLibraryCalls
) {
598 setLibcallName(LC
.Op
, LC
.Name
);
599 setLibcallCallingConv(LC
.Op
, LC
.CC
);
600 if (LC
.Cond
!= ISD::SETCC_INVALID
)
601 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
606 if (Subtarget
->isTargetWindows()) {
607 static const struct {
608 const RTLIB::Libcall Op
;
609 const char * const Name
;
610 const CallingConv::ID CC
;
612 { RTLIB::FPTOSINT_F32_I64
, "__stoi64", CallingConv::ARM_AAPCS_VFP
},
613 { RTLIB::FPTOSINT_F64_I64
, "__dtoi64", CallingConv::ARM_AAPCS_VFP
},
614 { RTLIB::FPTOUINT_F32_I64
, "__stou64", CallingConv::ARM_AAPCS_VFP
},
615 { RTLIB::FPTOUINT_F64_I64
, "__dtou64", CallingConv::ARM_AAPCS_VFP
},
616 { RTLIB::SINTTOFP_I64_F32
, "__i64tos", CallingConv::ARM_AAPCS_VFP
},
617 { RTLIB::SINTTOFP_I64_F64
, "__i64tod", CallingConv::ARM_AAPCS_VFP
},
618 { RTLIB::UINTTOFP_I64_F32
, "__u64tos", CallingConv::ARM_AAPCS_VFP
},
619 { RTLIB::UINTTOFP_I64_F64
, "__u64tod", CallingConv::ARM_AAPCS_VFP
},
622 for (const auto &LC
: LibraryCalls
) {
623 setLibcallName(LC
.Op
, LC
.Name
);
624 setLibcallCallingConv(LC
.Op
, LC
.CC
);
628 // Use divmod compiler-rt calls for iOS 5.0 and later.
629 if (Subtarget
->isTargetMachO() &&
630 !(Subtarget
->isTargetIOS() &&
631 Subtarget
->getTargetTriple().isOSVersionLT(5, 0))) {
632 setLibcallName(RTLIB::SDIVREM_I32
, "__divmodsi4");
633 setLibcallName(RTLIB::UDIVREM_I32
, "__udivmodsi4");
636 // The half <-> float conversion functions are always soft-float on
637 // non-watchos platforms, but are needed for some targets which use a
638 // hard-float calling convention by default.
639 if (!Subtarget
->isTargetWatchABI()) {
640 if (Subtarget
->isAAPCS_ABI()) {
641 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_AAPCS
);
642 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_AAPCS
);
643 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_AAPCS
);
645 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_APCS
);
646 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_APCS
);
647 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_APCS
);
651 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
652 // a __gnu_ prefix (which is the default).
653 if (Subtarget
->isTargetAEABI()) {
654 static const struct {
655 const RTLIB::Libcall Op
;
656 const char * const Name
;
657 const CallingConv::ID CC
;
659 { RTLIB::FPROUND_F32_F16
, "__aeabi_f2h", CallingConv::ARM_AAPCS
},
660 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
},
661 { RTLIB::FPEXT_F16_F32
, "__aeabi_h2f", CallingConv::ARM_AAPCS
},
664 for (const auto &LC
: LibraryCalls
) {
665 setLibcallName(LC
.Op
, LC
.Name
);
666 setLibcallCallingConv(LC
.Op
, LC
.CC
);
670 if (Subtarget
->isThumb1Only())
671 addRegisterClass(MVT::i32
, &ARM::tGPRRegClass
);
673 addRegisterClass(MVT::i32
, &ARM::GPRRegClass
);
675 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only() &&
676 Subtarget
->hasFPRegs()) {
677 addRegisterClass(MVT::f32
, &ARM::SPRRegClass
);
678 addRegisterClass(MVT::f64
, &ARM::DPRRegClass
);
679 if (!Subtarget
->hasVFP2Base())
680 setAllExpand(MVT::f32
);
681 if (!Subtarget
->hasFP64())
682 setAllExpand(MVT::f64
);
685 if (Subtarget
->hasFullFP16()) {
686 addRegisterClass(MVT::f16
, &ARM::HPRRegClass
);
687 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
688 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
689 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
691 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
692 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
695 for (MVT VT
: MVT::vector_valuetypes()) {
696 for (MVT InnerVT
: MVT::vector_valuetypes()) {
697 setTruncStoreAction(VT
, InnerVT
, Expand
);
698 addAllExtLoads(VT
, InnerVT
, Expand
);
701 setOperationAction(ISD::MULHS
, VT
, Expand
);
702 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
703 setOperationAction(ISD::MULHU
, VT
, Expand
);
704 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
706 setOperationAction(ISD::BSWAP
, VT
, Expand
);
709 setOperationAction(ISD::ConstantFP
, MVT::f32
, Custom
);
710 setOperationAction(ISD::ConstantFP
, MVT::f64
, Custom
);
712 setOperationAction(ISD::READ_REGISTER
, MVT::i64
, Custom
);
713 setOperationAction(ISD::WRITE_REGISTER
, MVT::i64
, Custom
);
715 if (Subtarget
->hasMVEIntegerOps())
716 addMVEVectorTypes(Subtarget
->hasMVEFloatOps());
718 // Combine low-overhead loop intrinsics so that we can lower i1 types.
719 if (Subtarget
->hasLOB()) {
720 setTargetDAGCombine(ISD::BRCOND
);
721 setTargetDAGCombine(ISD::BR_CC
);
724 if (Subtarget
->hasNEON()) {
725 addDRTypeForNEON(MVT::v2f32
);
726 addDRTypeForNEON(MVT::v8i8
);
727 addDRTypeForNEON(MVT::v4i16
);
728 addDRTypeForNEON(MVT::v2i32
);
729 addDRTypeForNEON(MVT::v1i64
);
731 addQRTypeForNEON(MVT::v4f32
);
732 addQRTypeForNEON(MVT::v2f64
);
733 addQRTypeForNEON(MVT::v16i8
);
734 addQRTypeForNEON(MVT::v8i16
);
735 addQRTypeForNEON(MVT::v4i32
);
736 addQRTypeForNEON(MVT::v2i64
);
738 if (Subtarget
->hasFullFP16()) {
739 addQRTypeForNEON(MVT::v8f16
);
740 addDRTypeForNEON(MVT::v4f16
);
744 if (Subtarget
->hasMVEIntegerOps() || Subtarget
->hasNEON()) {
745 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
746 // none of Neon, MVE or VFP supports any arithmetic operations on it.
747 setOperationAction(ISD::FADD
, MVT::v2f64
, Expand
);
748 setOperationAction(ISD::FSUB
, MVT::v2f64
, Expand
);
749 setOperationAction(ISD::FMUL
, MVT::v2f64
, Expand
);
750 // FIXME: Code duplication: FDIV and FREM are expanded always, see
751 // ARMTargetLowering::addTypeForNEON method for details.
752 setOperationAction(ISD::FDIV
, MVT::v2f64
, Expand
);
753 setOperationAction(ISD::FREM
, MVT::v2f64
, Expand
);
754 // FIXME: Create unittest.
755 // In another words, find a way when "copysign" appears in DAG with vector
757 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Expand
);
758 // FIXME: Code duplication: SETCC has custom operation action, see
759 // ARMTargetLowering::addTypeForNEON method for details.
760 setOperationAction(ISD::SETCC
, MVT::v2f64
, Expand
);
761 // FIXME: Create unittest for FNEG and for FABS.
762 setOperationAction(ISD::FNEG
, MVT::v2f64
, Expand
);
763 setOperationAction(ISD::FABS
, MVT::v2f64
, Expand
);
764 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Expand
);
765 setOperationAction(ISD::FSIN
, MVT::v2f64
, Expand
);
766 setOperationAction(ISD::FCOS
, MVT::v2f64
, Expand
);
767 setOperationAction(ISD::FPOW
, MVT::v2f64
, Expand
);
768 setOperationAction(ISD::FLOG
, MVT::v2f64
, Expand
);
769 setOperationAction(ISD::FLOG2
, MVT::v2f64
, Expand
);
770 setOperationAction(ISD::FLOG10
, MVT::v2f64
, Expand
);
771 setOperationAction(ISD::FEXP
, MVT::v2f64
, Expand
);
772 setOperationAction(ISD::FEXP2
, MVT::v2f64
, Expand
);
773 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
774 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Expand
);
775 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Expand
);
776 setOperationAction(ISD::FRINT
, MVT::v2f64
, Expand
);
777 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Expand
);
778 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Expand
);
779 setOperationAction(ISD::FMA
, MVT::v2f64
, Expand
);
782 if (Subtarget
->hasNEON()) {
783 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
784 // supported for v4f32.
785 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
786 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
787 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
788 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
789 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
790 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
791 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
792 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
793 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
794 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Expand
);
795 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Expand
);
796 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
797 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
798 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Expand
);
800 // Mark v2f32 intrinsics.
801 setOperationAction(ISD::FSQRT
, MVT::v2f32
, Expand
);
802 setOperationAction(ISD::FSIN
, MVT::v2f32
, Expand
);
803 setOperationAction(ISD::FCOS
, MVT::v2f32
, Expand
);
804 setOperationAction(ISD::FPOW
, MVT::v2f32
, Expand
);
805 setOperationAction(ISD::FLOG
, MVT::v2f32
, Expand
);
806 setOperationAction(ISD::FLOG2
, MVT::v2f32
, Expand
);
807 setOperationAction(ISD::FLOG10
, MVT::v2f32
, Expand
);
808 setOperationAction(ISD::FEXP
, MVT::v2f32
, Expand
);
809 setOperationAction(ISD::FEXP2
, MVT::v2f32
, Expand
);
810 setOperationAction(ISD::FCEIL
, MVT::v2f32
, Expand
);
811 setOperationAction(ISD::FTRUNC
, MVT::v2f32
, Expand
);
812 setOperationAction(ISD::FRINT
, MVT::v2f32
, Expand
);
813 setOperationAction(ISD::FNEARBYINT
, MVT::v2f32
, Expand
);
814 setOperationAction(ISD::FFLOOR
, MVT::v2f32
, Expand
);
816 // Neon does not support some operations on v1i64 and v2i64 types.
817 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
818 // Custom handling for some quad-vector types to detect VMULL.
819 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
820 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
821 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
822 // Custom handling for some vector types to avoid expensive expansions
823 setOperationAction(ISD::SDIV
, MVT::v4i16
, Custom
);
824 setOperationAction(ISD::SDIV
, MVT::v8i8
, Custom
);
825 setOperationAction(ISD::UDIV
, MVT::v4i16
, Custom
);
826 setOperationAction(ISD::UDIV
, MVT::v8i8
, Custom
);
827 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
828 // a destination type that is wider than the source, and nor does
829 // it have a FP_TO_[SU]INT instruction with a narrower destination than
831 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
832 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
833 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
834 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
835 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i16
, Custom
);
836 setOperationAction(ISD::FP_TO_UINT
, MVT::v8i16
, Custom
);
837 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i16
, Custom
);
838 setOperationAction(ISD::FP_TO_SINT
, MVT::v8i16
, Custom
);
840 setOperationAction(ISD::FP_ROUND
, MVT::v2f32
, Expand
);
841 setOperationAction(ISD::FP_EXTEND
, MVT::v2f64
, Expand
);
843 // NEON does not have single instruction CTPOP for vectors with element
844 // types wider than 8-bits. However, custom lowering can leverage the
845 // v8i8/v16i8 vcnt instruction.
846 setOperationAction(ISD::CTPOP
, MVT::v2i32
, Custom
);
847 setOperationAction(ISD::CTPOP
, MVT::v4i32
, Custom
);
848 setOperationAction(ISD::CTPOP
, MVT::v4i16
, Custom
);
849 setOperationAction(ISD::CTPOP
, MVT::v8i16
, Custom
);
850 setOperationAction(ISD::CTPOP
, MVT::v1i64
, Custom
);
851 setOperationAction(ISD::CTPOP
, MVT::v2i64
, Custom
);
853 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
854 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
856 // NEON does not have single instruction CTTZ for vectors.
857 setOperationAction(ISD::CTTZ
, MVT::v8i8
, Custom
);
858 setOperationAction(ISD::CTTZ
, MVT::v4i16
, Custom
);
859 setOperationAction(ISD::CTTZ
, MVT::v2i32
, Custom
);
860 setOperationAction(ISD::CTTZ
, MVT::v1i64
, Custom
);
862 setOperationAction(ISD::CTTZ
, MVT::v16i8
, Custom
);
863 setOperationAction(ISD::CTTZ
, MVT::v8i16
, Custom
);
864 setOperationAction(ISD::CTTZ
, MVT::v4i32
, Custom
);
865 setOperationAction(ISD::CTTZ
, MVT::v2i64
, Custom
);
867 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i8
, Custom
);
868 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i16
, Custom
);
869 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i32
, Custom
);
870 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v1i64
, Custom
);
872 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v16i8
, Custom
);
873 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i16
, Custom
);
874 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i32
, Custom
);
875 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i64
, Custom
);
877 // NEON only has FMA instructions as of VFP4.
878 if (!Subtarget
->hasVFP4Base()) {
879 setOperationAction(ISD::FMA
, MVT::v2f32
, Expand
);
880 setOperationAction(ISD::FMA
, MVT::v4f32
, Expand
);
883 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
884 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
885 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
886 setTargetDAGCombine(ISD::SHL
);
887 setTargetDAGCombine(ISD::SRL
);
888 setTargetDAGCombine(ISD::SRA
);
889 setTargetDAGCombine(ISD::SIGN_EXTEND
);
890 setTargetDAGCombine(ISD::ZERO_EXTEND
);
891 setTargetDAGCombine(ISD::ANY_EXTEND
);
892 setTargetDAGCombine(ISD::STORE
);
893 setTargetDAGCombine(ISD::FP_TO_SINT
);
894 setTargetDAGCombine(ISD::FP_TO_UINT
);
895 setTargetDAGCombine(ISD::FDIV
);
896 setTargetDAGCombine(ISD::LOAD
);
898 // It is legal to extload from v4i8 to v4i16 or v4i32.
899 for (MVT Ty
: {MVT::v8i8
, MVT::v4i8
, MVT::v2i8
, MVT::v4i16
, MVT::v2i16
,
901 for (MVT VT
: MVT::integer_vector_valuetypes()) {
902 setLoadExtAction(ISD::EXTLOAD
, VT
, Ty
, Legal
);
903 setLoadExtAction(ISD::ZEXTLOAD
, VT
, Ty
, Legal
);
904 setLoadExtAction(ISD::SEXTLOAD
, VT
, Ty
, Legal
);
909 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
910 setTargetDAGCombine(ISD::BUILD_VECTOR
);
911 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
912 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
915 if (!Subtarget
->hasFP64()) {
916 // When targeting a floating-point unit with only single-precision
917 // operations, f64 is legal for the few double-precision instructions which
918 // are present However, no double-precision operations other than moves,
919 // loads and stores are provided by the hardware.
920 setOperationAction(ISD::FADD
, MVT::f64
, Expand
);
921 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
922 setOperationAction(ISD::FMUL
, MVT::f64
, Expand
);
923 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
924 setOperationAction(ISD::FDIV
, MVT::f64
, Expand
);
925 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
926 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
927 setOperationAction(ISD::FGETSIGN
, MVT::f64
, Expand
);
928 setOperationAction(ISD::FNEG
, MVT::f64
, Expand
);
929 setOperationAction(ISD::FABS
, MVT::f64
, Expand
);
930 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
931 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
932 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
933 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
934 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
935 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
936 setOperationAction(ISD::FLOG10
, MVT::f64
, Expand
);
937 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
938 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
939 setOperationAction(ISD::FCEIL
, MVT::f64
, Expand
);
940 setOperationAction(ISD::FTRUNC
, MVT::f64
, Expand
);
941 setOperationAction(ISD::FRINT
, MVT::f64
, Expand
);
942 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Expand
);
943 setOperationAction(ISD::FFLOOR
, MVT::f64
, Expand
);
944 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
945 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
946 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
947 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
948 setOperationAction(ISD::FP_TO_SINT
, MVT::f64
, Custom
);
949 setOperationAction(ISD::FP_TO_UINT
, MVT::f64
, Custom
);
950 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
953 if (!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) {
954 setOperationAction(ISD::FP_EXTEND
, MVT::f64
, Custom
);
955 if (Subtarget
->hasFullFP16())
956 setOperationAction(ISD::FP_ROUND
, MVT::f16
, Custom
);
959 if (!Subtarget
->hasFP16())
960 setOperationAction(ISD::FP_EXTEND
, MVT::f32
, Custom
);
962 if (!Subtarget
->hasFP64())
963 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
965 computeRegisterProperties(Subtarget
->getRegisterInfo());
967 // ARM does not have floating-point extending loads.
968 for (MVT VT
: MVT::fp_valuetypes()) {
969 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
970 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
973 // ... or truncating stores
974 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
975 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
976 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
978 // ARM does not have i1 sign extending load.
979 for (MVT VT
: MVT::integer_valuetypes())
980 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
982 // ARM supports all 4 flavors of integer indexed load / store.
983 if (!Subtarget
->isThumb1Only()) {
984 for (unsigned im
= (unsigned)ISD::PRE_INC
;
985 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
986 setIndexedLoadAction(im
, MVT::i1
, Legal
);
987 setIndexedLoadAction(im
, MVT::i8
, Legal
);
988 setIndexedLoadAction(im
, MVT::i16
, Legal
);
989 setIndexedLoadAction(im
, MVT::i32
, Legal
);
990 setIndexedStoreAction(im
, MVT::i1
, Legal
);
991 setIndexedStoreAction(im
, MVT::i8
, Legal
);
992 setIndexedStoreAction(im
, MVT::i16
, Legal
);
993 setIndexedStoreAction(im
, MVT::i32
, Legal
);
996 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
997 setIndexedLoadAction(ISD::POST_INC
, MVT::i32
, Legal
);
998 setIndexedStoreAction(ISD::POST_INC
, MVT::i32
, Legal
);
1001 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
1002 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
1003 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
1004 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
1006 setOperationAction(ISD::ADDCARRY
, MVT::i32
, Custom
);
1007 setOperationAction(ISD::SUBCARRY
, MVT::i32
, Custom
);
1009 // i64 operation support.
1010 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
1011 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
1012 if (Subtarget
->isThumb1Only()) {
1013 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
1014 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
1016 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6Ops()
1017 || (Subtarget
->isThumb2() && !Subtarget
->hasDSP()))
1018 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
1020 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
1021 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
1022 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
1023 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
1024 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
1025 setOperationAction(ISD::INTRINSIC_VOID
, MVT::Other
, Custom
);
1026 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
1028 // MVE lowers 64 bit shifts to lsll and lsrl
1029 // assuming that ISD::SRL and SRA of i64 are already marked custom
1030 if (Subtarget
->hasMVEIntegerOps())
1031 setOperationAction(ISD::SHL
, MVT::i64
, Custom
);
1033 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1034 if (Subtarget
->isThumb1Only()) {
1035 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
1036 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
1037 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
1040 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops())
1041 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
1043 // ARM does not have ROTL.
1044 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
1045 for (MVT VT
: MVT::vector_valuetypes()) {
1046 setOperationAction(ISD::ROTL
, VT
, Expand
);
1047 setOperationAction(ISD::ROTR
, VT
, Expand
);
1049 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
1050 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
1051 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb1Only()) {
1052 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
1053 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, LibCall
);
1056 // @llvm.readcyclecounter requires the Performance Monitors extension.
1057 // Default to the 0 expansion on unsupported platforms.
1058 // FIXME: Technically there are older ARM CPUs that have
1059 // implementation-specific ways of obtaining this information.
1060 if (Subtarget
->hasPerfMon())
1061 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
1063 // Only ARMv6 has BSWAP.
1064 if (!Subtarget
->hasV6Ops())
1065 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
1067 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
1068 : Subtarget
->hasDivideInARMMode();
1070 // These are expanded into libcalls if the cpu doesn't have HW divider.
1071 setOperationAction(ISD::SDIV
, MVT::i32
, LibCall
);
1072 setOperationAction(ISD::UDIV
, MVT::i32
, LibCall
);
1075 if (Subtarget
->isTargetWindows() && !Subtarget
->hasDivideInThumbMode()) {
1076 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
1077 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
1079 setOperationAction(ISD::SDIV
, MVT::i64
, Custom
);
1080 setOperationAction(ISD::UDIV
, MVT::i64
, Custom
);
1083 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
1084 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
1086 // Register based DivRem for AEABI (RTABI 4.2)
1087 if (Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
1088 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
1089 Subtarget
->isTargetWindows()) {
1090 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
1091 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
1092 HasStandaloneRem
= false;
1094 if (Subtarget
->isTargetWindows()) {
1096 const RTLIB::Libcall Op
;
1097 const char * const Name
;
1098 const CallingConv::ID CC
;
1099 } LibraryCalls
[] = {
1100 { RTLIB::SDIVREM_I8
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1101 { RTLIB::SDIVREM_I16
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1102 { RTLIB::SDIVREM_I32
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1103 { RTLIB::SDIVREM_I64
, "__rt_sdiv64", CallingConv::ARM_AAPCS
},
1105 { RTLIB::UDIVREM_I8
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1106 { RTLIB::UDIVREM_I16
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1107 { RTLIB::UDIVREM_I32
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1108 { RTLIB::UDIVREM_I64
, "__rt_udiv64", CallingConv::ARM_AAPCS
},
1111 for (const auto &LC
: LibraryCalls
) {
1112 setLibcallName(LC
.Op
, LC
.Name
);
1113 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1117 const RTLIB::Libcall Op
;
1118 const char * const Name
;
1119 const CallingConv::ID CC
;
1120 } LibraryCalls
[] = {
1121 { RTLIB::SDIVREM_I8
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1122 { RTLIB::SDIVREM_I16
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1123 { RTLIB::SDIVREM_I32
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1124 { RTLIB::SDIVREM_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
},
1126 { RTLIB::UDIVREM_I8
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1127 { RTLIB::UDIVREM_I16
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1128 { RTLIB::UDIVREM_I32
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1129 { RTLIB::UDIVREM_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
},
1132 for (const auto &LC
: LibraryCalls
) {
1133 setLibcallName(LC
.Op
, LC
.Name
);
1134 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1138 setOperationAction(ISD::SDIVREM
, MVT::i32
, Custom
);
1139 setOperationAction(ISD::UDIVREM
, MVT::i32
, Custom
);
1140 setOperationAction(ISD::SDIVREM
, MVT::i64
, Custom
);
1141 setOperationAction(ISD::UDIVREM
, MVT::i64
, Custom
);
1143 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
1144 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
1147 if (Subtarget
->isTargetWindows() && Subtarget
->getTargetTriple().isOSMSVCRT())
1148 for (auto &VT
: {MVT::f32
, MVT::f64
})
1149 setOperationAction(ISD::FPOWI
, VT
, Custom
);
1151 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
1152 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
1153 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
1154 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
1156 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
1157 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
1159 // Use the default implementation.
1160 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
1161 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
1162 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
1163 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
1164 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
1165 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
1167 if (Subtarget
->isTargetWindows())
1168 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
1170 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
1172 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1173 // the default expansion.
1174 InsertFencesForAtomic
= false;
1175 if (Subtarget
->hasAnyDataBarrier() &&
1176 (!Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps())) {
1177 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1178 // to ldrex/strex loops already.
1179 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
1180 if (!Subtarget
->isThumb() || !Subtarget
->isMClass())
1181 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
1183 // On v8, we have particularly efficient implementations of atomic fences
1184 // if they can be combined with nearby atomic loads and stores.
1185 if (!Subtarget
->hasAcquireRelease() ||
1186 getTargetMachine().getOptLevel() == 0) {
1187 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1188 InsertFencesForAtomic
= true;
1191 // If there's anything we can use as a barrier, go through custom lowering
1192 // for ATOMIC_FENCE.
1193 // If target has DMB in thumb, Fences can be inserted.
1194 if (Subtarget
->hasDataBarrier())
1195 InsertFencesForAtomic
= true;
1197 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
,
1198 Subtarget
->hasAnyDataBarrier() ? Custom
: Expand
);
1200 // Set them all for expansion, which will force libcalls.
1201 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Expand
);
1202 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, Expand
);
1203 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, Expand
);
1204 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Expand
);
1205 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Expand
);
1206 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, Expand
);
1207 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, Expand
);
1208 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, Expand
);
1209 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, Expand
);
1210 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, Expand
);
1211 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, Expand
);
1212 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, Expand
);
1213 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1214 // Unordered/Monotonic case.
1215 if (!InsertFencesForAtomic
) {
1216 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
1217 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
1221 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
1223 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1224 if (!Subtarget
->hasV6Ops()) {
1225 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
1226 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
1228 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
1230 if (!Subtarget
->useSoftFloat() && Subtarget
->hasFPRegs() &&
1231 !Subtarget
->isThumb1Only()) {
1232 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1233 // iff target supports vfp2.
1234 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
1235 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
1238 // We want to custom lower some of our intrinsics.
1239 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
1240 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
1241 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
1242 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH
, MVT::Other
, Custom
);
1243 if (Subtarget
->useSjLjEH())
1244 setLibcallName(RTLIB::UNWIND_RESUME
, "_Unwind_SjLj_Resume");
1246 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
1247 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
1248 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
1249 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
1250 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
1251 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
1252 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1253 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
1254 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
1255 if (Subtarget
->hasFullFP16()) {
1256 setOperationAction(ISD::SETCC
, MVT::f16
, Expand
);
1257 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
1258 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
1261 setOperationAction(ISD::SETCCCARRY
, MVT::i32
, Custom
);
1263 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
1264 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
1265 if (Subtarget
->hasFullFP16())
1266 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
1267 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
1268 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
1269 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
1271 // We don't support sin/cos/fmod/copysign/pow
1272 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1273 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
1274 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
1275 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1276 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
1277 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
1278 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1279 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
1280 if (!Subtarget
->useSoftFloat() && Subtarget
->hasVFP2Base() &&
1281 !Subtarget
->isThumb1Only()) {
1282 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
1283 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
1285 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1286 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
1288 if (!Subtarget
->hasVFP4Base()) {
1289 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1290 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
1293 // Various VFP goodness
1294 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only()) {
1295 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1296 if (!Subtarget
->hasFPARMv8Base() || !Subtarget
->hasFP64()) {
1297 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
1298 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
1301 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1302 if (!Subtarget
->hasFP16()) {
1303 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
1304 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
1308 // Use __sincos_stret if available.
1309 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
1310 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
1311 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
1312 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
1315 // FP-ARMv8 implements a lot of rounding-like FP operations.
1316 if (Subtarget
->hasFPARMv8Base()) {
1317 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
1318 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
1319 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
1320 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
1321 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
1322 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
1323 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
1324 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
1325 if (Subtarget
->hasNEON()) {
1326 setOperationAction(ISD::FMINNUM
, MVT::v2f32
, Legal
);
1327 setOperationAction(ISD::FMAXNUM
, MVT::v2f32
, Legal
);
1328 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1329 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1332 if (Subtarget
->hasFP64()) {
1333 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
1334 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
1335 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
1336 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
1337 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
1338 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
1339 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
1340 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
1344 // FP16 often need to be promoted to call lib functions
1345 if (Subtarget
->hasFullFP16()) {
1346 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
1347 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Expand
);
1348 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
1349 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
1350 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
1351 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
1352 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
1353 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
1354 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
1355 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
1356 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
1357 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
1359 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
1362 if (Subtarget
->hasNEON()) {
1363 // vmin and vmax aren't available in a scalar form, so we use
1364 // a NEON instruction with an undef lane instead.
1365 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
1366 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
1367 setOperationAction(ISD::FMINIMUM
, MVT::f32
, Legal
);
1368 setOperationAction(ISD::FMAXIMUM
, MVT::f32
, Legal
);
1369 setOperationAction(ISD::FMINIMUM
, MVT::v2f32
, Legal
);
1370 setOperationAction(ISD::FMAXIMUM
, MVT::v2f32
, Legal
);
1371 setOperationAction(ISD::FMINIMUM
, MVT::v4f32
, Legal
);
1372 setOperationAction(ISD::FMAXIMUM
, MVT::v4f32
, Legal
);
1374 if (Subtarget
->hasFullFP16()) {
1375 setOperationAction(ISD::FMINNUM
, MVT::v4f16
, Legal
);
1376 setOperationAction(ISD::FMAXNUM
, MVT::v4f16
, Legal
);
1377 setOperationAction(ISD::FMINNUM
, MVT::v8f16
, Legal
);
1378 setOperationAction(ISD::FMAXNUM
, MVT::v8f16
, Legal
);
1380 setOperationAction(ISD::FMINIMUM
, MVT::v4f16
, Legal
);
1381 setOperationAction(ISD::FMAXIMUM
, MVT::v4f16
, Legal
);
1382 setOperationAction(ISD::FMINIMUM
, MVT::v8f16
, Legal
);
1383 setOperationAction(ISD::FMAXIMUM
, MVT::v8f16
, Legal
);
1387 // We have target-specific dag combine patterns for the following nodes:
1388 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1389 setTargetDAGCombine(ISD::ADD
);
1390 setTargetDAGCombine(ISD::SUB
);
1391 setTargetDAGCombine(ISD::MUL
);
1392 setTargetDAGCombine(ISD::AND
);
1393 setTargetDAGCombine(ISD::OR
);
1394 setTargetDAGCombine(ISD::XOR
);
1396 if (Subtarget
->hasV6Ops())
1397 setTargetDAGCombine(ISD::SRL
);
1398 if (Subtarget
->isThumb1Only())
1399 setTargetDAGCombine(ISD::SHL
);
1401 setStackPointerRegisterToSaveRestore(ARM::SP
);
1403 if (Subtarget
->useSoftFloat() || Subtarget
->isThumb1Only() ||
1404 !Subtarget
->hasVFP2Base() || Subtarget
->hasMinSize())
1405 setSchedulingPreference(Sched::RegPressure
);
1407 setSchedulingPreference(Sched::Hybrid
);
1409 //// temporary - rewrite interface to use type
1410 MaxStoresPerMemset
= 8;
1411 MaxStoresPerMemsetOptSize
= 4;
1412 MaxStoresPerMemcpy
= 4; // For @llvm.memcpy -> sequence of stores
1413 MaxStoresPerMemcpyOptSize
= 2;
1414 MaxStoresPerMemmove
= 4; // For @llvm.memmove -> sequence of stores
1415 MaxStoresPerMemmoveOptSize
= 2;
1417 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1418 // are at least 4 bytes aligned.
1419 setMinStackArgumentAlignment(4);
1421 // Prefer likely predicted branches to selects on out-of-order cores.
1422 PredictableSelectIsExpensive
= Subtarget
->getSchedModel().isOutOfOrder();
1424 setPrefLoopAlignment(
1425 llvm::Align(1ULL << Subtarget
->getPrefLoopLogAlignment()));
1427 setMinFunctionAlignment(Subtarget
->isThumb() ? llvm::Align(2)
1430 if (Subtarget
->isThumb() || Subtarget
->isThumb2())
1431 setTargetDAGCombine(ISD::ABS
);
1434 bool ARMTargetLowering::useSoftFloat() const {
1435 return Subtarget
->useSoftFloat();
1438 // FIXME: It might make sense to define the representative register class as the
1439 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1440 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1441 // SPR's representative would be DPR_VFP2. This should work well if register
1442 // pressure tracking were modified such that a register use would increment the
1443 // pressure of the register class's representative and all of it's super
1444 // classes' representatives transitively. We have not implemented this because
1445 // of the difficulty prior to coalescing of modeling operand register classes
1446 // due to the common occurrence of cross class copies and subregister insertions
1448 std::pair
<const TargetRegisterClass
*, uint8_t>
1449 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1451 const TargetRegisterClass
*RRC
= nullptr;
1453 switch (VT
.SimpleTy
) {
1455 return TargetLowering::findRepresentativeClass(TRI
, VT
);
1456 // Use DPR as representative register class for all floating point
1457 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1458 // the cost is 1 for both f32 and f64.
1459 case MVT::f32
: case MVT::f64
: case MVT::v8i8
: case MVT::v4i16
:
1460 case MVT::v2i32
: case MVT::v1i64
: case MVT::v2f32
:
1461 RRC
= &ARM::DPRRegClass
;
1462 // When NEON is used for SP, only half of the register file is available
1463 // because operations that define both SP and DP results will be constrained
1464 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1465 // coalescing by double-counting the SP regs. See the FIXME above.
1466 if (Subtarget
->useNEONForSinglePrecisionFP())
1469 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1470 case MVT::v4f32
: case MVT::v2f64
:
1471 RRC
= &ARM::DPRRegClass
;
1475 RRC
= &ARM::DPRRegClass
;
1479 RRC
= &ARM::DPRRegClass
;
1483 return std::make_pair(RRC
, Cost
);
1486 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1487 switch ((ARMISD::NodeType
)Opcode
) {
1488 case ARMISD::FIRST_NUMBER
: break;
1489 case ARMISD::Wrapper
: return "ARMISD::Wrapper";
1490 case ARMISD::WrapperPIC
: return "ARMISD::WrapperPIC";
1491 case ARMISD::WrapperJT
: return "ARMISD::WrapperJT";
1492 case ARMISD::COPY_STRUCT_BYVAL
: return "ARMISD::COPY_STRUCT_BYVAL";
1493 case ARMISD::CALL
: return "ARMISD::CALL";
1494 case ARMISD::CALL_PRED
: return "ARMISD::CALL_PRED";
1495 case ARMISD::CALL_NOLINK
: return "ARMISD::CALL_NOLINK";
1496 case ARMISD::BRCOND
: return "ARMISD::BRCOND";
1497 case ARMISD::BR_JT
: return "ARMISD::BR_JT";
1498 case ARMISD::BR2_JT
: return "ARMISD::BR2_JT";
1499 case ARMISD::RET_FLAG
: return "ARMISD::RET_FLAG";
1500 case ARMISD::INTRET_FLAG
: return "ARMISD::INTRET_FLAG";
1501 case ARMISD::PIC_ADD
: return "ARMISD::PIC_ADD";
1502 case ARMISD::CMP
: return "ARMISD::CMP";
1503 case ARMISD::CMN
: return "ARMISD::CMN";
1504 case ARMISD::CMPZ
: return "ARMISD::CMPZ";
1505 case ARMISD::CMPFP
: return "ARMISD::CMPFP";
1506 case ARMISD::CMPFPw0
: return "ARMISD::CMPFPw0";
1507 case ARMISD::BCC_i64
: return "ARMISD::BCC_i64";
1508 case ARMISD::FMSTAT
: return "ARMISD::FMSTAT";
1510 case ARMISD::CMOV
: return "ARMISD::CMOV";
1511 case ARMISD::SUBS
: return "ARMISD::SUBS";
1513 case ARMISD::SSAT
: return "ARMISD::SSAT";
1514 case ARMISD::USAT
: return "ARMISD::USAT";
1516 case ARMISD::ASRL
: return "ARMISD::ASRL";
1517 case ARMISD::LSRL
: return "ARMISD::LSRL";
1518 case ARMISD::LSLL
: return "ARMISD::LSLL";
1520 case ARMISD::SRL_FLAG
: return "ARMISD::SRL_FLAG";
1521 case ARMISD::SRA_FLAG
: return "ARMISD::SRA_FLAG";
1522 case ARMISD::RRX
: return "ARMISD::RRX";
1524 case ARMISD::ADDC
: return "ARMISD::ADDC";
1525 case ARMISD::ADDE
: return "ARMISD::ADDE";
1526 case ARMISD::SUBC
: return "ARMISD::SUBC";
1527 case ARMISD::SUBE
: return "ARMISD::SUBE";
1528 case ARMISD::LSLS
: return "ARMISD::LSLS";
1530 case ARMISD::VMOVRRD
: return "ARMISD::VMOVRRD";
1531 case ARMISD::VMOVDRR
: return "ARMISD::VMOVDRR";
1532 case ARMISD::VMOVhr
: return "ARMISD::VMOVhr";
1533 case ARMISD::VMOVrh
: return "ARMISD::VMOVrh";
1534 case ARMISD::VMOVSR
: return "ARMISD::VMOVSR";
1536 case ARMISD::EH_SJLJ_SETJMP
: return "ARMISD::EH_SJLJ_SETJMP";
1537 case ARMISD::EH_SJLJ_LONGJMP
: return "ARMISD::EH_SJLJ_LONGJMP";
1538 case ARMISD::EH_SJLJ_SETUP_DISPATCH
: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1540 case ARMISD::TC_RETURN
: return "ARMISD::TC_RETURN";
1542 case ARMISD::THREAD_POINTER
:return "ARMISD::THREAD_POINTER";
1544 case ARMISD::DYN_ALLOC
: return "ARMISD::DYN_ALLOC";
1546 case ARMISD::MEMBARRIER_MCR
: return "ARMISD::MEMBARRIER_MCR";
1548 case ARMISD::PRELOAD
: return "ARMISD::PRELOAD";
1550 case ARMISD::WIN__CHKSTK
: return "ARMISD::WIN__CHKSTK";
1551 case ARMISD::WIN__DBZCHK
: return "ARMISD::WIN__DBZCHK";
1553 case ARMISD::PREDICATE_CAST
: return "ARMISD::PREDICATE_CAST";
1554 case ARMISD::VCMP
: return "ARMISD::VCMP";
1555 case ARMISD::VCMPZ
: return "ARMISD::VCMPZ";
1556 case ARMISD::VTST
: return "ARMISD::VTST";
1558 case ARMISD::VSHLs
: return "ARMISD::VSHLs";
1559 case ARMISD::VSHLu
: return "ARMISD::VSHLu";
1560 case ARMISD::VSHLIMM
: return "ARMISD::VSHLIMM";
1561 case ARMISD::VSHRsIMM
: return "ARMISD::VSHRsIMM";
1562 case ARMISD::VSHRuIMM
: return "ARMISD::VSHRuIMM";
1563 case ARMISD::VRSHRsIMM
: return "ARMISD::VRSHRsIMM";
1564 case ARMISD::VRSHRuIMM
: return "ARMISD::VRSHRuIMM";
1565 case ARMISD::VRSHRNIMM
: return "ARMISD::VRSHRNIMM";
1566 case ARMISD::VQSHLsIMM
: return "ARMISD::VQSHLsIMM";
1567 case ARMISD::VQSHLuIMM
: return "ARMISD::VQSHLuIMM";
1568 case ARMISD::VQSHLsuIMM
: return "ARMISD::VQSHLsuIMM";
1569 case ARMISD::VQSHRNsIMM
: return "ARMISD::VQSHRNsIMM";
1570 case ARMISD::VQSHRNuIMM
: return "ARMISD::VQSHRNuIMM";
1571 case ARMISD::VQSHRNsuIMM
: return "ARMISD::VQSHRNsuIMM";
1572 case ARMISD::VQRSHRNsIMM
: return "ARMISD::VQRSHRNsIMM";
1573 case ARMISD::VQRSHRNuIMM
: return "ARMISD::VQRSHRNuIMM";
1574 case ARMISD::VQRSHRNsuIMM
: return "ARMISD::VQRSHRNsuIMM";
1575 case ARMISD::VSLIIMM
: return "ARMISD::VSLIIMM";
1576 case ARMISD::VSRIIMM
: return "ARMISD::VSRIIMM";
1577 case ARMISD::VGETLANEu
: return "ARMISD::VGETLANEu";
1578 case ARMISD::VGETLANEs
: return "ARMISD::VGETLANEs";
1579 case ARMISD::VMOVIMM
: return "ARMISD::VMOVIMM";
1580 case ARMISD::VMVNIMM
: return "ARMISD::VMVNIMM";
1581 case ARMISD::VMOVFPIMM
: return "ARMISD::VMOVFPIMM";
1582 case ARMISD::VDUP
: return "ARMISD::VDUP";
1583 case ARMISD::VDUPLANE
: return "ARMISD::VDUPLANE";
1584 case ARMISD::VEXT
: return "ARMISD::VEXT";
1585 case ARMISD::VREV64
: return "ARMISD::VREV64";
1586 case ARMISD::VREV32
: return "ARMISD::VREV32";
1587 case ARMISD::VREV16
: return "ARMISD::VREV16";
1588 case ARMISD::VZIP
: return "ARMISD::VZIP";
1589 case ARMISD::VUZP
: return "ARMISD::VUZP";
1590 case ARMISD::VTRN
: return "ARMISD::VTRN";
1591 case ARMISD::VTBL1
: return "ARMISD::VTBL1";
1592 case ARMISD::VTBL2
: return "ARMISD::VTBL2";
1593 case ARMISD::VMULLs
: return "ARMISD::VMULLs";
1594 case ARMISD::VMULLu
: return "ARMISD::VMULLu";
1595 case ARMISD::UMAAL
: return "ARMISD::UMAAL";
1596 case ARMISD::UMLAL
: return "ARMISD::UMLAL";
1597 case ARMISD::SMLAL
: return "ARMISD::SMLAL";
1598 case ARMISD::SMLALBB
: return "ARMISD::SMLALBB";
1599 case ARMISD::SMLALBT
: return "ARMISD::SMLALBT";
1600 case ARMISD::SMLALTB
: return "ARMISD::SMLALTB";
1601 case ARMISD::SMLALTT
: return "ARMISD::SMLALTT";
1602 case ARMISD::SMULWB
: return "ARMISD::SMULWB";
1603 case ARMISD::SMULWT
: return "ARMISD::SMULWT";
1604 case ARMISD::SMLALD
: return "ARMISD::SMLALD";
1605 case ARMISD::SMLALDX
: return "ARMISD::SMLALDX";
1606 case ARMISD::SMLSLD
: return "ARMISD::SMLSLD";
1607 case ARMISD::SMLSLDX
: return "ARMISD::SMLSLDX";
1608 case ARMISD::SMMLAR
: return "ARMISD::SMMLAR";
1609 case ARMISD::SMMLSR
: return "ARMISD::SMMLSR";
1610 case ARMISD::BUILD_VECTOR
: return "ARMISD::BUILD_VECTOR";
1611 case ARMISD::BFI
: return "ARMISD::BFI";
1612 case ARMISD::VORRIMM
: return "ARMISD::VORRIMM";
1613 case ARMISD::VBICIMM
: return "ARMISD::VBICIMM";
1614 case ARMISD::VBSL
: return "ARMISD::VBSL";
1615 case ARMISD::MEMCPY
: return "ARMISD::MEMCPY";
1616 case ARMISD::VLD1DUP
: return "ARMISD::VLD1DUP";
1617 case ARMISD::VLD2DUP
: return "ARMISD::VLD2DUP";
1618 case ARMISD::VLD3DUP
: return "ARMISD::VLD3DUP";
1619 case ARMISD::VLD4DUP
: return "ARMISD::VLD4DUP";
1620 case ARMISD::VLD1_UPD
: return "ARMISD::VLD1_UPD";
1621 case ARMISD::VLD2_UPD
: return "ARMISD::VLD2_UPD";
1622 case ARMISD::VLD3_UPD
: return "ARMISD::VLD3_UPD";
1623 case ARMISD::VLD4_UPD
: return "ARMISD::VLD4_UPD";
1624 case ARMISD::VLD2LN_UPD
: return "ARMISD::VLD2LN_UPD";
1625 case ARMISD::VLD3LN_UPD
: return "ARMISD::VLD3LN_UPD";
1626 case ARMISD::VLD4LN_UPD
: return "ARMISD::VLD4LN_UPD";
1627 case ARMISD::VLD1DUP_UPD
: return "ARMISD::VLD1DUP_UPD";
1628 case ARMISD::VLD2DUP_UPD
: return "ARMISD::VLD2DUP_UPD";
1629 case ARMISD::VLD3DUP_UPD
: return "ARMISD::VLD3DUP_UPD";
1630 case ARMISD::VLD4DUP_UPD
: return "ARMISD::VLD4DUP_UPD";
1631 case ARMISD::VST1_UPD
: return "ARMISD::VST1_UPD";
1632 case ARMISD::VST2_UPD
: return "ARMISD::VST2_UPD";
1633 case ARMISD::VST3_UPD
: return "ARMISD::VST3_UPD";
1634 case ARMISD::VST4_UPD
: return "ARMISD::VST4_UPD";
1635 case ARMISD::VST2LN_UPD
: return "ARMISD::VST2LN_UPD";
1636 case ARMISD::VST3LN_UPD
: return "ARMISD::VST3LN_UPD";
1637 case ARMISD::VST4LN_UPD
: return "ARMISD::VST4LN_UPD";
1638 case ARMISD::WLS
: return "ARMISD::WLS";
1639 case ARMISD::LE
: return "ARMISD::LE";
1640 case ARMISD::LOOP_DEC
: return "ARMISD::LOOP_DEC";
1641 case ARMISD::CSINV
: return "ARMISD::CSINV";
1642 case ARMISD::CSNEG
: return "ARMISD::CSNEG";
1643 case ARMISD::CSINC
: return "ARMISD::CSINC";
1648 EVT
ARMTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1651 return getPointerTy(DL
);
1653 // MVE has a predicate register.
1654 if (Subtarget
->hasMVEIntegerOps() &&
1655 (VT
== MVT::v4i32
|| VT
== MVT::v8i16
|| VT
== MVT::v16i8
))
1656 return MVT::getVectorVT(MVT::i1
, VT
.getVectorElementCount());
1657 return VT
.changeVectorElementTypeToInteger();
1660 /// getRegClassFor - Return the register class that should be used for the
1661 /// specified value type.
1662 const TargetRegisterClass
*
1663 ARMTargetLowering::getRegClassFor(MVT VT
, bool isDivergent
) const {
1665 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1666 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1667 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1669 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
1670 if (VT
== MVT::v4i64
)
1671 return &ARM::QQPRRegClass
;
1672 if (VT
== MVT::v8i64
)
1673 return &ARM::QQQQPRRegClass
;
1675 return TargetLowering::getRegClassFor(VT
);
1678 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1679 // source/dest is aligned and the copy size is large enough. We therefore want
1680 // to align such objects passed to memory intrinsics.
1681 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst
*CI
, unsigned &MinSize
,
1682 unsigned &PrefAlign
) const {
1683 if (!isa
<MemIntrinsic
>(CI
))
1686 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1687 // cycle faster than 4-byte aligned LDM.
1688 PrefAlign
= (Subtarget
->hasV6Ops() && !Subtarget
->isMClass() ? 8 : 4);
1692 // Create a fast isel object.
1694 ARMTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1695 const TargetLibraryInfo
*libInfo
) const {
1696 return ARM::createFastISel(funcInfo
, libInfo
);
1699 Sched::Preference
ARMTargetLowering::getSchedulingPreference(SDNode
*N
) const {
1700 unsigned NumVals
= N
->getNumValues();
1702 return Sched::RegPressure
;
1704 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
1705 EVT VT
= N
->getValueType(i
);
1706 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
1708 if (VT
.isFloatingPoint() || VT
.isVector())
1712 if (!N
->isMachineOpcode())
1713 return Sched::RegPressure
;
1715 // Load are scheduled for latency even if there instruction itinerary
1716 // is not available.
1717 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1718 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1720 if (MCID
.getNumDefs() == 0)
1721 return Sched::RegPressure
;
1722 if (!Itins
->isEmpty() &&
1723 Itins
->getOperandCycle(MCID
.getSchedClass(), 0) > 2)
1726 return Sched::RegPressure
;
1729 //===----------------------------------------------------------------------===//
1731 //===----------------------------------------------------------------------===//
1733 static bool isSRL16(const SDValue
&Op
) {
1734 if (Op
.getOpcode() != ISD::SRL
)
1736 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1737 return Const
->getZExtValue() == 16;
1741 static bool isSRA16(const SDValue
&Op
) {
1742 if (Op
.getOpcode() != ISD::SRA
)
1744 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1745 return Const
->getZExtValue() == 16;
1749 static bool isSHL16(const SDValue
&Op
) {
1750 if (Op
.getOpcode() != ISD::SHL
)
1752 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1753 return Const
->getZExtValue() == 16;
1757 // Check for a signed 16-bit value. We special case SRA because it makes it
1758 // more simple when also looking for SRAs that aren't sign extending a
1759 // smaller value. Without the check, we'd need to take extra care with
1760 // checking order for some operations.
1761 static bool isS16(const SDValue
&Op
, SelectionDAG
&DAG
) {
1763 return isSHL16(Op
.getOperand(0));
1764 return DAG
.ComputeNumSignBits(Op
) == 17;
1767 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1768 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
1770 default: llvm_unreachable("Unknown condition code!");
1771 case ISD::SETNE
: return ARMCC::NE
;
1772 case ISD::SETEQ
: return ARMCC::EQ
;
1773 case ISD::SETGT
: return ARMCC::GT
;
1774 case ISD::SETGE
: return ARMCC::GE
;
1775 case ISD::SETLT
: return ARMCC::LT
;
1776 case ISD::SETLE
: return ARMCC::LE
;
1777 case ISD::SETUGT
: return ARMCC::HI
;
1778 case ISD::SETUGE
: return ARMCC::HS
;
1779 case ISD::SETULT
: return ARMCC::LO
;
1780 case ISD::SETULE
: return ARMCC::LS
;
1784 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1785 static void FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
1786 ARMCC::CondCodes
&CondCode2
, bool &InvalidOnQNaN
) {
1787 CondCode2
= ARMCC::AL
;
1788 InvalidOnQNaN
= true;
1790 default: llvm_unreachable("Unknown FP condition!");
1793 CondCode
= ARMCC::EQ
;
1794 InvalidOnQNaN
= false;
1797 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
1799 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
1800 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
1801 case ISD::SETOLE
: CondCode
= ARMCC::LS
; break;
1803 CondCode
= ARMCC::MI
;
1804 CondCode2
= ARMCC::GT
;
1805 InvalidOnQNaN
= false;
1807 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
1808 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
1810 CondCode
= ARMCC::EQ
;
1811 CondCode2
= ARMCC::VS
;
1812 InvalidOnQNaN
= false;
1814 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
1815 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
1817 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
1819 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
1822 CondCode
= ARMCC::NE
;
1823 InvalidOnQNaN
= false;
1828 //===----------------------------------------------------------------------===//
1829 // Calling Convention Implementation
1830 //===----------------------------------------------------------------------===//
1832 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1833 /// account presence of floating point hardware and calling convention
1834 /// limitations, such as support for variadic functions.
1836 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC
,
1837 bool isVarArg
) const {
1840 report_fatal_error("Unsupported calling convention");
1841 case CallingConv::ARM_AAPCS
:
1842 case CallingConv::ARM_APCS
:
1843 case CallingConv::GHC
:
1845 case CallingConv::PreserveMost
:
1846 return CallingConv::PreserveMost
;
1847 case CallingConv::ARM_AAPCS_VFP
:
1848 case CallingConv::Swift
:
1849 return isVarArg
? CallingConv::ARM_AAPCS
: CallingConv::ARM_AAPCS_VFP
;
1850 case CallingConv::C
:
1851 if (!Subtarget
->isAAPCS_ABI())
1852 return CallingConv::ARM_APCS
;
1853 else if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() &&
1854 getTargetMachine().Options
.FloatABIType
== FloatABI::Hard
&&
1856 return CallingConv::ARM_AAPCS_VFP
;
1858 return CallingConv::ARM_AAPCS
;
1859 case CallingConv::Fast
:
1860 case CallingConv::CXX_FAST_TLS
:
1861 if (!Subtarget
->isAAPCS_ABI()) {
1862 if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() && !isVarArg
)
1863 return CallingConv::Fast
;
1864 return CallingConv::ARM_APCS
;
1865 } else if (Subtarget
->hasVFP2Base() &&
1866 !Subtarget
->isThumb1Only() && !isVarArg
)
1867 return CallingConv::ARM_AAPCS_VFP
;
1869 return CallingConv::ARM_AAPCS
;
1873 CCAssignFn
*ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1874 bool isVarArg
) const {
1875 return CCAssignFnForNode(CC
, false, isVarArg
);
1878 CCAssignFn
*ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1879 bool isVarArg
) const {
1880 return CCAssignFnForNode(CC
, true, isVarArg
);
1883 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1884 /// CallingConvention.
1885 CCAssignFn
*ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC
,
1887 bool isVarArg
) const {
1888 switch (getEffectiveCallingConv(CC
, isVarArg
)) {
1890 report_fatal_error("Unsupported calling convention");
1891 case CallingConv::ARM_APCS
:
1892 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1893 case CallingConv::ARM_AAPCS
:
1894 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1895 case CallingConv::ARM_AAPCS_VFP
:
1896 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1897 case CallingConv::Fast
:
1898 return (Return
? RetFastCC_ARM_APCS
: FastCC_ARM_APCS
);
1899 case CallingConv::GHC
:
1900 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS_GHC
);
1901 case CallingConv::PreserveMost
:
1902 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1906 /// LowerCallResult - Lower the result values of a call into the
1907 /// appropriate copies out of appropriate physical registers.
1908 SDValue
ARMTargetLowering::LowerCallResult(
1909 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
1910 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1911 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
1912 SDValue ThisVal
) const {
1913 // Assign locations to each value returned by this call.
1914 SmallVector
<CCValAssign
, 16> RVLocs
;
1915 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1917 CCInfo
.AnalyzeCallResult(Ins
, CCAssignFnForReturn(CallConv
, isVarArg
));
1919 // Copy all of the result registers out of their specified physreg.
1920 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1921 CCValAssign VA
= RVLocs
[i
];
1923 // Pass 'this' value directly from the argument to return value, to avoid
1924 // reg unit interference
1925 if (i
== 0 && isThisReturn
) {
1926 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i32
&&
1927 "unexpected return calling convention register assignment");
1928 InVals
.push_back(ThisVal
);
1933 if (VA
.needsCustom()) {
1934 // Handle f64 or half of a v2f64.
1935 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1937 Chain
= Lo
.getValue(1);
1938 InFlag
= Lo
.getValue(2);
1939 VA
= RVLocs
[++i
]; // skip ahead to next loc
1940 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1942 Chain
= Hi
.getValue(1);
1943 InFlag
= Hi
.getValue(2);
1944 if (!Subtarget
->isLittle())
1946 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1948 if (VA
.getLocVT() == MVT::v2f64
) {
1949 SDValue Vec
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
1950 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1951 DAG
.getConstant(0, dl
, MVT::i32
));
1953 VA
= RVLocs
[++i
]; // skip ahead to next loc
1954 Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1955 Chain
= Lo
.getValue(1);
1956 InFlag
= Lo
.getValue(2);
1957 VA
= RVLocs
[++i
]; // skip ahead to next loc
1958 Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1959 Chain
= Hi
.getValue(1);
1960 InFlag
= Hi
.getValue(2);
1961 if (!Subtarget
->isLittle())
1963 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1964 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1965 DAG
.getConstant(1, dl
, MVT::i32
));
1968 Val
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getLocVT(),
1970 Chain
= Val
.getValue(1);
1971 InFlag
= Val
.getValue(2);
1974 switch (VA
.getLocInfo()) {
1975 default: llvm_unreachable("Unknown loc info!");
1976 case CCValAssign::Full
: break;
1977 case CCValAssign::BCvt
:
1978 Val
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), Val
);
1982 InVals
.push_back(Val
);
1988 /// LowerMemOpCallTo - Store the argument to the stack.
1989 SDValue
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
,
1990 SDValue Arg
, const SDLoc
&dl
,
1992 const CCValAssign
&VA
,
1993 ISD::ArgFlagsTy Flags
) const {
1994 unsigned LocMemOffset
= VA
.getLocMemOffset();
1995 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
1996 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
1998 return DAG
.getStore(
1999 Chain
, dl
, Arg
, PtrOff
,
2000 MachinePointerInfo::getStack(DAG
.getMachineFunction(), LocMemOffset
));
2003 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc
&dl
, SelectionDAG
&DAG
,
2004 SDValue Chain
, SDValue
&Arg
,
2005 RegsToPassVector
&RegsToPass
,
2006 CCValAssign
&VA
, CCValAssign
&NextVA
,
2008 SmallVectorImpl
<SDValue
> &MemOpChains
,
2009 ISD::ArgFlagsTy Flags
) const {
2010 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2011 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2012 unsigned id
= Subtarget
->isLittle() ? 0 : 1;
2013 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), fmrrd
.getValue(id
)));
2015 if (NextVA
.isRegLoc())
2016 RegsToPass
.push_back(std::make_pair(NextVA
.getLocReg(), fmrrd
.getValue(1-id
)));
2018 assert(NextVA
.isMemLoc());
2019 if (!StackPtr
.getNode())
2020 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
,
2021 getPointerTy(DAG
.getDataLayout()));
2023 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, fmrrd
.getValue(1-id
),
2029 /// LowerCall - Lowering a call into a callseq_start <-
2030 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2033 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
2034 SmallVectorImpl
<SDValue
> &InVals
) const {
2035 SelectionDAG
&DAG
= CLI
.DAG
;
2037 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
2038 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
2039 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
2040 SDValue Chain
= CLI
.Chain
;
2041 SDValue Callee
= CLI
.Callee
;
2042 bool &isTailCall
= CLI
.IsTailCall
;
2043 CallingConv::ID CallConv
= CLI
.CallConv
;
2044 bool doesNotRet
= CLI
.DoesNotReturn
;
2045 bool isVarArg
= CLI
.IsVarArg
;
2047 MachineFunction
&MF
= DAG
.getMachineFunction();
2048 bool isStructRet
= (Outs
.empty()) ? false : Outs
[0].Flags
.isSRet();
2049 bool isThisReturn
= false;
2050 auto Attr
= MF
.getFunction().getFnAttribute("disable-tail-calls");
2051 bool PreferIndirect
= false;
2053 // Disable tail calls if they're not supported.
2054 if (!Subtarget
->supportsTailCall() || Attr
.getValueAsString() == "true")
2057 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2058 // If we're optimizing for minimum size and the function is called three or
2059 // more times in this block, we can improve codesize by calling indirectly
2060 // as BLXr has a 16-bit encoding.
2061 auto *GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
2063 auto *BB
= CLI
.CS
.getParent();
2064 PreferIndirect
= Subtarget
->isThumb() && Subtarget
->hasMinSize() &&
2065 count_if(GV
->users(), [&BB
](const User
*U
) {
2066 return isa
<Instruction
>(U
) &&
2067 cast
<Instruction
>(U
)->getParent() == BB
;
2072 // Check if it's really possible to do a tail call.
2073 isTailCall
= IsEligibleForTailCallOptimization(
2074 Callee
, CallConv
, isVarArg
, isStructRet
,
2075 MF
.getFunction().hasStructRetAttr(), Outs
, OutVals
, Ins
, DAG
,
2077 if (!isTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
2078 report_fatal_error("failed to perform tail call elimination on a call "
2079 "site marked musttail");
2080 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2081 // detected sibcalls.
2086 // Analyze operands of the call, assigning locations to each operand.
2087 SmallVector
<CCValAssign
, 16> ArgLocs
;
2088 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
2090 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CallConv
, isVarArg
));
2092 // Get a count of how many bytes are to be pushed on the stack.
2093 unsigned NumBytes
= CCInfo
.getNextStackOffset();
2096 // For tail calls, memory operands are available in our caller's stack.
2099 // Adjust the stack pointer for the new arguments...
2100 // These operations are automatically eliminated by the prolog/epilog pass
2101 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
2105 DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
, getPointerTy(DAG
.getDataLayout()));
2107 RegsToPassVector RegsToPass
;
2108 SmallVector
<SDValue
, 8> MemOpChains
;
2110 // Walk the register/memloc assignments, inserting copies/loads. In the case
2111 // of tail call optimization, arguments are handled later.
2112 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2114 ++i
, ++realArgIdx
) {
2115 CCValAssign
&VA
= ArgLocs
[i
];
2116 SDValue Arg
= OutVals
[realArgIdx
];
2117 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2118 bool isByVal
= Flags
.isByVal();
2120 // Promote the value if needed.
2121 switch (VA
.getLocInfo()) {
2122 default: llvm_unreachable("Unknown loc info!");
2123 case CCValAssign::Full
: break;
2124 case CCValAssign::SExt
:
2125 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2127 case CCValAssign::ZExt
:
2128 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2130 case CCValAssign::AExt
:
2131 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2133 case CCValAssign::BCvt
:
2134 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2138 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2139 if (VA
.needsCustom()) {
2140 if (VA
.getLocVT() == MVT::v2f64
) {
2141 SDValue Op0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2142 DAG
.getConstant(0, dl
, MVT::i32
));
2143 SDValue Op1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2144 DAG
.getConstant(1, dl
, MVT::i32
));
2146 PassF64ArgInRegs(dl
, DAG
, Chain
, Op0
, RegsToPass
,
2147 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2149 VA
= ArgLocs
[++i
]; // skip ahead to next loc
2150 if (VA
.isRegLoc()) {
2151 PassF64ArgInRegs(dl
, DAG
, Chain
, Op1
, RegsToPass
,
2152 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2154 assert(VA
.isMemLoc());
2156 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Op1
,
2157 dl
, DAG
, VA
, Flags
));
2160 PassF64ArgInRegs(dl
, DAG
, Chain
, Arg
, RegsToPass
, VA
, ArgLocs
[++i
],
2161 StackPtr
, MemOpChains
, Flags
);
2163 } else if (VA
.isRegLoc()) {
2164 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
2165 Outs
[0].VT
== MVT::i32
) {
2166 assert(VA
.getLocVT() == MVT::i32
&&
2167 "unexpected calling convention register assignment");
2168 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i32
&&
2169 "unexpected use of 'returned'");
2170 isThisReturn
= true;
2172 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2173 } else if (isByVal
) {
2174 assert(VA
.isMemLoc());
2175 unsigned offset
= 0;
2177 // True if this byval aggregate will be split between registers
2179 unsigned ByValArgsCount
= CCInfo
.getInRegsParamsCount();
2180 unsigned CurByValIdx
= CCInfo
.getInRegsParamsProcessed();
2182 if (CurByValIdx
< ByValArgsCount
) {
2184 unsigned RegBegin
, RegEnd
;
2185 CCInfo
.getInRegsParamInfo(CurByValIdx
, RegBegin
, RegEnd
);
2188 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2190 for (i
= 0, j
= RegBegin
; j
< RegEnd
; i
++, j
++) {
2191 SDValue Const
= DAG
.getConstant(4*i
, dl
, MVT::i32
);
2192 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
2193 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
2194 MachinePointerInfo(),
2195 DAG
.InferPtrAlignment(AddArg
));
2196 MemOpChains
.push_back(Load
.getValue(1));
2197 RegsToPass
.push_back(std::make_pair(j
, Load
));
2200 // If parameter size outsides register area, "offset" value
2201 // helps us to calculate stack slot for remained part properly.
2202 offset
= RegEnd
- RegBegin
;
2204 CCInfo
.nextInRegsParam();
2207 if (Flags
.getByValSize() > 4*offset
) {
2208 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2209 unsigned LocMemOffset
= VA
.getLocMemOffset();
2210 SDValue StkPtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2211 SDValue Dst
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, StkPtrOff
);
2212 SDValue SrcOffset
= DAG
.getIntPtrConstant(4*offset
, dl
);
2213 SDValue Src
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, SrcOffset
);
2214 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize() - 4*offset
, dl
,
2216 SDValue AlignNode
= DAG
.getConstant(Flags
.getByValAlign(), dl
,
2219 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2220 SDValue Ops
[] = { Chain
, Dst
, Src
, SizeNode
, AlignNode
};
2221 MemOpChains
.push_back(DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
,
2224 } else if (!isTailCall
) {
2225 assert(VA
.isMemLoc());
2227 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
2228 dl
, DAG
, VA
, Flags
));
2232 if (!MemOpChains
.empty())
2233 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
2235 // Build a sequence of copy-to-reg nodes chained together with token chain
2236 // and flag operands which copy the outgoing args into the appropriate regs.
2238 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2239 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2240 RegsToPass
[i
].second
, InFlag
);
2241 InFlag
= Chain
.getValue(1);
2244 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2245 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2246 // node so that legalize doesn't hack it.
2247 bool isDirect
= false;
2249 const TargetMachine
&TM
= getTargetMachine();
2250 const Module
*Mod
= MF
.getFunction().getParent();
2251 const GlobalValue
*GV
= nullptr;
2252 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2253 GV
= G
->getGlobal();
2255 !TM
.shouldAssumeDSOLocal(*Mod
, GV
) && Subtarget
->isTargetMachO();
2257 bool isARMFunc
= !Subtarget
->isThumb() || (isStub
&& !Subtarget
->isMClass());
2258 bool isLocalARMFunc
= false;
2259 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2260 auto PtrVt
= getPointerTy(DAG
.getDataLayout());
2262 if (Subtarget
->genLongCalls()) {
2263 assert((!isPositionIndependent() || Subtarget
->isTargetWindows()) &&
2264 "long-calls codegen is not position independent!");
2265 // Handle a global address or an external symbol. If it's not one of
2266 // those, the target's already in a register, so we don't need to do
2268 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2269 // Create a constant pool entry for the callee address
2270 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2271 ARMConstantPoolValue
*CPV
=
2272 ARMConstantPoolConstant::Create(GV
, ARMPCLabelIndex
, ARMCP::CPValue
, 0);
2274 // Get the address of the callee into a register
2275 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2276 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2277 Callee
= DAG
.getLoad(
2278 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2279 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2280 } else if (ExternalSymbolSDNode
*S
=dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2281 const char *Sym
= S
->getSymbol();
2283 // Create a constant pool entry for the callee address
2284 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2285 ARMConstantPoolValue
*CPV
=
2286 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2287 ARMPCLabelIndex
, 0);
2288 // Get the address of the callee into a register
2289 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2290 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2291 Callee
= DAG
.getLoad(
2292 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2293 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2295 } else if (isa
<GlobalAddressSDNode
>(Callee
)) {
2296 if (!PreferIndirect
) {
2298 bool isDef
= GV
->isStrongDefinitionForLinker();
2300 // ARM call to a local ARM function is predicable.
2301 isLocalARMFunc
= !Subtarget
->isThumb() && (isDef
|| !ARMInterworking
);
2302 // tBX takes a register source operand.
2303 if (isStub
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2304 assert(Subtarget
->isTargetMachO() && "WrapperPIC use on non-MachO?");
2305 Callee
= DAG
.getNode(
2306 ARMISD::WrapperPIC
, dl
, PtrVt
,
2307 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, ARMII::MO_NONLAZY
));
2308 Callee
= DAG
.getLoad(
2309 PtrVt
, dl
, DAG
.getEntryNode(), Callee
,
2310 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
2311 /* Alignment = */ 0, MachineMemOperand::MODereferenceable
|
2312 MachineMemOperand::MOInvariant
);
2313 } else if (Subtarget
->isTargetCOFF()) {
2314 assert(Subtarget
->isTargetWindows() &&
2315 "Windows is the only supported COFF target");
2316 unsigned TargetFlags
= GV
->hasDLLImportStorageClass()
2317 ? ARMII::MO_DLLIMPORT
2318 : ARMII::MO_NO_FLAG
;
2319 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, /*offset=*/0,
2321 if (GV
->hasDLLImportStorageClass())
2323 DAG
.getLoad(PtrVt
, dl
, DAG
.getEntryNode(),
2324 DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
, Callee
),
2325 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2327 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, 0);
2330 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2332 // tBX takes a register source operand.
2333 const char *Sym
= S
->getSymbol();
2334 if (isARMFunc
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2335 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2336 ARMConstantPoolValue
*CPV
=
2337 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2338 ARMPCLabelIndex
, 4);
2339 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2340 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2341 Callee
= DAG
.getLoad(
2342 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2343 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2344 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
2345 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVt
, Callee
, PICLabel
);
2347 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVt
, 0);
2351 // FIXME: handle tail calls differently.
2353 if (Subtarget
->isThumb()) {
2354 if ((!isDirect
|| isARMFunc
) && !Subtarget
->hasV5TOps())
2355 CallOpc
= ARMISD::CALL_NOLINK
;
2357 CallOpc
= ARMISD::CALL
;
2359 if (!isDirect
&& !Subtarget
->hasV5TOps())
2360 CallOpc
= ARMISD::CALL_NOLINK
;
2361 else if (doesNotRet
&& isDirect
&& Subtarget
->hasRetAddrStack() &&
2362 // Emit regular call when code size is the priority
2363 !Subtarget
->hasMinSize())
2364 // "mov lr, pc; b _foo" to avoid confusing the RSP
2365 CallOpc
= ARMISD::CALL_NOLINK
;
2367 CallOpc
= isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
;
2370 std::vector
<SDValue
> Ops
;
2371 Ops
.push_back(Chain
);
2372 Ops
.push_back(Callee
);
2374 // Add argument registers to the end of the list so that they are known live
2376 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2377 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2378 RegsToPass
[i
].second
.getValueType()));
2380 // Add a register mask operand representing the call-preserved registers.
2382 const uint32_t *Mask
;
2383 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
2385 // For 'this' returns, use the R0-preserving mask if applicable
2386 Mask
= ARI
->getThisReturnPreservedMask(MF
, CallConv
);
2388 // Set isThisReturn to false if the calling convention is not one that
2389 // allows 'returned' to be modeled in this way, so LowerCallResult does
2390 // not try to pass 'this' straight through
2391 isThisReturn
= false;
2392 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2395 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2397 assert(Mask
&& "Missing call preserved mask for calling convention");
2398 Ops
.push_back(DAG
.getRegisterMask(Mask
));
2401 if (InFlag
.getNode())
2402 Ops
.push_back(InFlag
);
2404 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2406 MF
.getFrameInfo().setHasTailCall();
2407 return DAG
.getNode(ARMISD::TC_RETURN
, dl
, NodeTys
, Ops
);
2410 // Returns a chain and a flag for retval copy to use.
2411 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, Ops
);
2412 InFlag
= Chain
.getValue(1);
2414 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
2415 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
2417 InFlag
= Chain
.getValue(1);
2419 // Handle result values, copying them out of physregs into vregs that we
2421 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
2422 InVals
, isThisReturn
,
2423 isThisReturn
? OutVals
[0] : SDValue());
2426 /// HandleByVal - Every parameter *after* a byval parameter is passed
2427 /// on the stack. Remember the next parameter register to allocate,
2428 /// and then confiscate the rest of the parameter registers to insure
2430 void ARMTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
2431 unsigned Align
) const {
2432 // Byval (as with any stack) slots are always at least 4 byte aligned.
2433 Align
= std::max(Align
, 4U);
2435 unsigned Reg
= State
->AllocateReg(GPRArgRegs
);
2439 unsigned AlignInRegs
= Align
/ 4;
2440 unsigned Waste
= (ARM::R4
- Reg
) % AlignInRegs
;
2441 for (unsigned i
= 0; i
< Waste
; ++i
)
2442 Reg
= State
->AllocateReg(GPRArgRegs
);
2447 unsigned Excess
= 4 * (ARM::R4
- Reg
);
2449 // Special case when NSAA != SP and parameter size greater than size of
2450 // all remained GPR regs. In that case we can't split parameter, we must
2451 // send it to stack. We also must set NCRN to R4, so waste all
2452 // remained registers.
2453 const unsigned NSAAOffset
= State
->getNextStackOffset();
2454 if (NSAAOffset
!= 0 && Size
> Excess
) {
2455 while (State
->AllocateReg(GPRArgRegs
))
2460 // First register for byval parameter is the first register that wasn't
2461 // allocated before this method call, so it would be "reg".
2462 // If parameter is small enough to be saved in range [reg, r4), then
2463 // the end (first after last) register would be reg + param-size-in-regs,
2464 // else parameter would be splitted between registers and stack,
2465 // end register would be r4 in this case.
2466 unsigned ByValRegBegin
= Reg
;
2467 unsigned ByValRegEnd
= std::min
<unsigned>(Reg
+ Size
/ 4, ARM::R4
);
2468 State
->addInRegsParamInfo(ByValRegBegin
, ByValRegEnd
);
2469 // Note, first register is allocated in the beginning of function already,
2470 // allocate remained amount of registers we need.
2471 for (unsigned i
= Reg
+ 1; i
!= ByValRegEnd
; ++i
)
2472 State
->AllocateReg(GPRArgRegs
);
2473 // A byval parameter that is split between registers and memory needs its
2474 // size truncated here.
2475 // In the case where the entire structure fits in registers, we set the
2476 // size in memory to zero.
2477 Size
= std::max
<int>(Size
- Excess
, 0);
2480 /// MatchingStackOffset - Return true if the given stack call argument is
2481 /// already available in the same position (relatively) of the caller's
2482 /// incoming argument stack.
2484 bool MatchingStackOffset(SDValue Arg
, unsigned Offset
, ISD::ArgFlagsTy Flags
,
2485 MachineFrameInfo
&MFI
, const MachineRegisterInfo
*MRI
,
2486 const TargetInstrInfo
*TII
) {
2487 unsigned Bytes
= Arg
.getValueSizeInBits() / 8;
2488 int FI
= std::numeric_limits
<int>::max();
2489 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
2490 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
2491 if (!Register::isVirtualRegister(VR
))
2493 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
2496 if (!Flags
.isByVal()) {
2497 if (!TII
->isLoadFromStackSlot(*Def
, FI
))
2502 } else if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
2503 if (Flags
.isByVal())
2504 // ByVal argument is passed in as a pointer but it's now being
2505 // dereferenced. e.g.
2506 // define @foo(%struct.X* %A) {
2507 // tail call @bar(%struct.X* byval %A)
2510 SDValue Ptr
= Ld
->getBasePtr();
2511 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
2514 FI
= FINode
->getIndex();
2518 assert(FI
!= std::numeric_limits
<int>::max());
2519 if (!MFI
.isFixedObjectIndex(FI
))
2521 return Offset
== MFI
.getObjectOffset(FI
) && Bytes
== MFI
.getObjectSize(FI
);
2524 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2525 /// for tail call optimization. Targets which want to do tail call
2526 /// optimization should implement this function.
2527 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2528 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
2529 bool isCalleeStructRet
, bool isCallerStructRet
,
2530 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2531 const SmallVectorImpl
<SDValue
> &OutVals
,
2532 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
,
2533 const bool isIndirect
) const {
2534 MachineFunction
&MF
= DAG
.getMachineFunction();
2535 const Function
&CallerF
= MF
.getFunction();
2536 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
2538 assert(Subtarget
->supportsTailCall());
2540 // Indirect tail calls cannot be optimized for Thumb1 if the args
2541 // to the call take up r0-r3. The reason is that there are no legal registers
2542 // left to hold the pointer to the function to be called.
2543 if (Subtarget
->isThumb1Only() && Outs
.size() >= 4 &&
2544 (!isa
<GlobalAddressSDNode
>(Callee
.getNode()) || isIndirect
))
2547 // Look for obvious safe cases to perform tail call optimization that do not
2548 // require ABI changes. This is what gcc calls sibcall.
2550 // Exception-handling functions need a special set of instructions to indicate
2551 // a return to the hardware. Tail-calling another function would probably
2553 if (CallerF
.hasFnAttribute("interrupt"))
2556 // Also avoid sibcall optimization if either caller or callee uses struct
2557 // return semantics.
2558 if (isCalleeStructRet
|| isCallerStructRet
)
2561 // Externally-defined functions with weak linkage should not be
2562 // tail-called on ARM when the OS does not support dynamic
2563 // pre-emption of symbols, as the AAELF spec requires normal calls
2564 // to undefined weak functions to be replaced with a NOP or jump to the
2565 // next instruction. The behaviour of branch instructions in this
2566 // situation (as used for tail calls) is implementation-defined, so we
2567 // cannot rely on the linker replacing the tail call with a return.
2568 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2569 const GlobalValue
*GV
= G
->getGlobal();
2570 const Triple
&TT
= getTargetMachine().getTargetTriple();
2571 if (GV
->hasExternalWeakLinkage() &&
2572 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
2576 // Check that the call results are passed in the same way.
2577 LLVMContext
&C
= *DAG
.getContext();
2578 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
2579 CCAssignFnForReturn(CalleeCC
, isVarArg
),
2580 CCAssignFnForReturn(CallerCC
, isVarArg
)))
2582 // The callee has to preserve all registers the caller needs to preserve.
2583 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2584 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
2585 if (CalleeCC
!= CallerCC
) {
2586 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
2587 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
2591 // If Caller's vararg or byval argument has been split between registers and
2592 // stack, do not perform tail call, since part of the argument is in caller's
2594 const ARMFunctionInfo
*AFI_Caller
= MF
.getInfo
<ARMFunctionInfo
>();
2595 if (AFI_Caller
->getArgRegsSaveSize())
2598 // If the callee takes no arguments then go on to check the results of the
2600 if (!Outs
.empty()) {
2601 // Check if stack adjustment is needed. For now, do not do this if any
2602 // argument is passed on the stack.
2603 SmallVector
<CCValAssign
, 16> ArgLocs
;
2604 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
2605 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
2606 if (CCInfo
.getNextStackOffset()) {
2607 // Check if the arguments are already laid out in the right way as
2608 // the caller's fixed stack objects.
2609 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2610 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
2611 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
2612 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2614 ++i
, ++realArgIdx
) {
2615 CCValAssign
&VA
= ArgLocs
[i
];
2616 EVT RegVT
= VA
.getLocVT();
2617 SDValue Arg
= OutVals
[realArgIdx
];
2618 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2619 if (VA
.getLocInfo() == CCValAssign::Indirect
)
2621 if (VA
.needsCustom()) {
2622 // f64 and vector types are split into multiple registers or
2623 // register/stack-slot combinations. The types will not match
2624 // the registers; give up on memory f64 refs until we figure
2625 // out what to do about this.
2628 if (!ArgLocs
[++i
].isRegLoc())
2630 if (RegVT
== MVT::v2f64
) {
2631 if (!ArgLocs
[++i
].isRegLoc())
2633 if (!ArgLocs
[++i
].isRegLoc())
2636 } else if (!VA
.isRegLoc()) {
2637 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
,
2644 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2645 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
2653 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
2654 MachineFunction
&MF
, bool isVarArg
,
2655 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2656 LLVMContext
&Context
) const {
2657 SmallVector
<CCValAssign
, 16> RVLocs
;
2658 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
2659 return CCInfo
.CheckReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2662 static SDValue
LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
2663 const SDLoc
&DL
, SelectionDAG
&DAG
) {
2664 const MachineFunction
&MF
= DAG
.getMachineFunction();
2665 const Function
&F
= MF
.getFunction();
2667 StringRef IntKind
= F
.getFnAttribute("interrupt").getValueAsString();
2669 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2670 // version of the "preferred return address". These offsets affect the return
2671 // instruction if this is a return from PL1 without hypervisor extensions.
2672 // IRQ/FIQ: +4 "subs pc, lr, #4"
2673 // SWI: 0 "subs pc, lr, #0"
2674 // ABORT: +4 "subs pc, lr, #4"
2675 // UNDEF: +4/+2 "subs pc, lr, #0"
2676 // UNDEF varies depending on where the exception came from ARM or Thumb
2677 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2680 if (IntKind
== "" || IntKind
== "IRQ" || IntKind
== "FIQ" ||
2683 else if (IntKind
== "SWI" || IntKind
== "UNDEF")
2686 report_fatal_error("Unsupported interrupt attribute. If present, value "
2687 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2689 RetOps
.insert(RetOps
.begin() + 1,
2690 DAG
.getConstant(LROffset
, DL
, MVT::i32
, false));
2692 return DAG
.getNode(ARMISD::INTRET_FLAG
, DL
, MVT::Other
, RetOps
);
2696 ARMTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
2698 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2699 const SmallVectorImpl
<SDValue
> &OutVals
,
2700 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
2701 // CCValAssign - represent the assignment of the return value to a location.
2702 SmallVector
<CCValAssign
, 16> RVLocs
;
2704 // CCState - Info about the registers and stack slots.
2705 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
2708 // Analyze outgoing return values.
2709 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2712 SmallVector
<SDValue
, 4> RetOps
;
2713 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
2714 bool isLittleEndian
= Subtarget
->isLittle();
2716 MachineFunction
&MF
= DAG
.getMachineFunction();
2717 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2718 AFI
->setReturnRegsCount(RVLocs
.size());
2720 // Copy the result values into the output registers.
2721 for (unsigned i
= 0, realRVLocIdx
= 0;
2723 ++i
, ++realRVLocIdx
) {
2724 CCValAssign
&VA
= RVLocs
[i
];
2725 assert(VA
.isRegLoc() && "Can only return in registers!");
2727 SDValue Arg
= OutVals
[realRVLocIdx
];
2728 bool ReturnF16
= false;
2730 if (Subtarget
->hasFullFP16() && Subtarget
->isTargetHardFloat()) {
2731 // Half-precision return values can be returned like this:
2733 // t11 f16 = fadd ...
2734 // t12: i16 = bitcast t11
2735 // t13: i32 = zero_extend t12
2736 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2738 // to avoid code generation for bitcasts, we simply set Arg to the node
2739 // that produces the f16 value, t11 in this case.
2741 if (Arg
.getValueType() == MVT::f32
&& Arg
.getOpcode() == ISD::BITCAST
) {
2742 SDValue ZE
= Arg
.getOperand(0);
2743 if (ZE
.getOpcode() == ISD::ZERO_EXTEND
&& ZE
.getValueType() == MVT::i32
) {
2744 SDValue BC
= ZE
.getOperand(0);
2745 if (BC
.getOpcode() == ISD::BITCAST
&& BC
.getValueType() == MVT::i16
) {
2746 Arg
= BC
.getOperand(0);
2753 switch (VA
.getLocInfo()) {
2754 default: llvm_unreachable("Unknown loc info!");
2755 case CCValAssign::Full
: break;
2756 case CCValAssign::BCvt
:
2758 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2762 if (VA
.needsCustom()) {
2763 if (VA
.getLocVT() == MVT::v2f64
) {
2764 // Extract the first half and return it in two registers.
2765 SDValue Half
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2766 DAG
.getConstant(0, dl
, MVT::i32
));
2767 SDValue HalfGPRs
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2768 DAG
.getVTList(MVT::i32
, MVT::i32
), Half
);
2770 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2771 HalfGPRs
.getValue(isLittleEndian
? 0 : 1),
2773 Flag
= Chain
.getValue(1);
2774 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2775 VA
= RVLocs
[++i
]; // skip ahead to next loc
2776 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2777 HalfGPRs
.getValue(isLittleEndian
? 1 : 0),
2779 Flag
= Chain
.getValue(1);
2780 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2781 VA
= RVLocs
[++i
]; // skip ahead to next loc
2783 // Extract the 2nd half and fall through to handle it as an f64 value.
2784 Arg
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2785 DAG
.getConstant(1, dl
, MVT::i32
));
2787 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2789 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2790 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2791 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2792 fmrrd
.getValue(isLittleEndian
? 0 : 1),
2794 Flag
= Chain
.getValue(1);
2795 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2796 VA
= RVLocs
[++i
]; // skip ahead to next loc
2797 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2798 fmrrd
.getValue(isLittleEndian
? 1 : 0),
2801 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
2803 // Guarantee that all emitted copies are
2804 // stuck together, avoiding something bad.
2805 Flag
= Chain
.getValue(1);
2806 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(),
2807 ReturnF16
? MVT::f16
: VA
.getLocVT()));
2809 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2810 const MCPhysReg
*I
=
2811 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
2814 if (ARM::GPRRegClass
.contains(*I
))
2815 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i32
));
2816 else if (ARM::DPRRegClass
.contains(*I
))
2817 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
2819 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2823 // Update chain and glue.
2826 RetOps
.push_back(Flag
);
2828 // CPUs which aren't M-class use a special sequence to return from
2829 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2830 // though we use "subs pc, lr, #N").
2832 // M-class CPUs actually use a normal return sequence with a special
2833 // (hardware-provided) value in LR, so the normal code path works.
2834 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2835 !Subtarget
->isMClass()) {
2836 if (Subtarget
->isThumb1Only())
2837 report_fatal_error("interrupt attribute is not supported in Thumb1");
2838 return LowerInterruptReturn(RetOps
, dl
, DAG
);
2841 return DAG
.getNode(ARMISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
2844 bool ARMTargetLowering::isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const {
2845 if (N
->getNumValues() != 1)
2847 if (!N
->hasNUsesOfValue(1, 0))
2850 SDValue TCChain
= Chain
;
2851 SDNode
*Copy
= *N
->use_begin();
2852 if (Copy
->getOpcode() == ISD::CopyToReg
) {
2853 // If the copy has a glue operand, we conservatively assume it isn't safe to
2854 // perform a tail call.
2855 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2857 TCChain
= Copy
->getOperand(0);
2858 } else if (Copy
->getOpcode() == ARMISD::VMOVRRD
) {
2859 SDNode
*VMov
= Copy
;
2860 // f64 returned in a pair of GPRs.
2861 SmallPtrSet
<SDNode
*, 2> Copies
;
2862 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2864 if (UI
->getOpcode() != ISD::CopyToReg
)
2868 if (Copies
.size() > 2)
2871 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2873 SDValue UseChain
= UI
->getOperand(0);
2874 if (Copies
.count(UseChain
.getNode()))
2878 // We are at the top of this chain.
2879 // If the copy has a glue operand, we conservatively assume it
2880 // isn't safe to perform a tail call.
2881 if (UI
->getOperand(UI
->getNumOperands()-1).getValueType() == MVT::Glue
)
2887 } else if (Copy
->getOpcode() == ISD::BITCAST
) {
2888 // f32 returned in a single GPR.
2889 if (!Copy
->hasOneUse())
2891 Copy
= *Copy
->use_begin();
2892 if (Copy
->getOpcode() != ISD::CopyToReg
|| !Copy
->hasNUsesOfValue(1, 0))
2894 // If the copy has a glue operand, we conservatively assume it isn't safe to
2895 // perform a tail call.
2896 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2898 TCChain
= Copy
->getOperand(0);
2903 bool HasRet
= false;
2904 for (SDNode::use_iterator UI
= Copy
->use_begin(), UE
= Copy
->use_end();
2906 if (UI
->getOpcode() != ARMISD::RET_FLAG
&&
2907 UI
->getOpcode() != ARMISD::INTRET_FLAG
)
2919 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
2920 if (!Subtarget
->supportsTailCall())
2924 CI
->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2925 if (!CI
->isTailCall() || Attr
.getValueAsString() == "true")
2931 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2932 // and pass the lower and high parts through.
2933 static SDValue
LowerWRITE_REGISTER(SDValue Op
, SelectionDAG
&DAG
) {
2935 SDValue WriteValue
= Op
->getOperand(2);
2937 // This function is only supposed to be called for i64 type argument.
2938 assert(WriteValue
.getValueType() == MVT::i64
2939 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2941 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2942 DAG
.getConstant(0, DL
, MVT::i32
));
2943 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2944 DAG
.getConstant(1, DL
, MVT::i32
));
2945 SDValue Ops
[] = { Op
->getOperand(0), Op
->getOperand(1), Lo
, Hi
};
2946 return DAG
.getNode(ISD::WRITE_REGISTER
, DL
, MVT::Other
, Ops
);
2949 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2950 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2951 // one of the above mentioned nodes. It has to be wrapped because otherwise
2952 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2953 // be used to form addressing mode. These wrapped nodes will be selected
2955 SDValue
ARMTargetLowering::LowerConstantPool(SDValue Op
,
2956 SelectionDAG
&DAG
) const {
2957 EVT PtrVT
= Op
.getValueType();
2958 // FIXME there is no actual debug info here
2960 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2963 // When generating execute-only code Constant Pools must be promoted to the
2964 // global data section. It's a bit ugly that we can't share them across basic
2965 // blocks, but this way we guarantee that execute-only behaves correct with
2966 // position-independent addressing modes.
2967 if (Subtarget
->genExecuteOnly()) {
2968 auto AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
2969 auto T
= const_cast<Type
*>(CP
->getType());
2970 auto C
= const_cast<Constant
*>(CP
->getConstVal());
2971 auto M
= const_cast<Module
*>(DAG
.getMachineFunction().
2972 getFunction().getParent());
2973 auto GV
= new GlobalVariable(
2974 *M
, T
, /*isConstant=*/true, GlobalVariable::InternalLinkage
, C
,
2975 Twine(DAG
.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2976 Twine(DAG
.getMachineFunction().getFunctionNumber()) + "_" +
2977 Twine(AFI
->createPICLabelUId())
2979 SDValue GA
= DAG
.getTargetGlobalAddress(dyn_cast
<GlobalValue
>(GV
),
2981 return LowerGlobalAddress(GA
, DAG
);
2984 if (CP
->isMachineConstantPoolEntry())
2985 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
2986 CP
->getAlignment());
2988 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
2989 CP
->getAlignment());
2990 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Res
);
2993 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2994 return MachineJumpTableInfo::EK_Inline
;
2997 SDValue
ARMTargetLowering::LowerBlockAddress(SDValue Op
,
2998 SelectionDAG
&DAG
) const {
2999 MachineFunction
&MF
= DAG
.getMachineFunction();
3000 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3001 unsigned ARMPCLabelIndex
= 0;
3003 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3004 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
3006 bool IsPositionIndependent
= isPositionIndependent() || Subtarget
->isROPI();
3007 if (!IsPositionIndependent
) {
3008 CPAddr
= DAG
.getTargetConstantPool(BA
, PtrVT
, 4);
3010 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3011 ARMPCLabelIndex
= AFI
->createPICLabelUId();
3012 ARMConstantPoolValue
*CPV
=
3013 ARMConstantPoolConstant::Create(BA
, ARMPCLabelIndex
,
3014 ARMCP::CPBlockAddress
, PCAdj
);
3015 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3017 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, CPAddr
);
3018 SDValue Result
= DAG
.getLoad(
3019 PtrVT
, DL
, DAG
.getEntryNode(), CPAddr
,
3020 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3021 if (!IsPositionIndependent
)
3023 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, DL
, MVT::i32
);
3024 return DAG
.getNode(ARMISD::PIC_ADD
, DL
, PtrVT
, Result
, PICLabel
);
3027 /// Convert a TLS address reference into the correct sequence of loads
3028 /// and calls to compute the variable's address for Darwin, and return an
3029 /// SDValue containing the final node.
3031 /// Darwin only has one TLS scheme which must be capable of dealing with the
3032 /// fully general situation, in the worst case. This means:
3033 /// + "extern __thread" declaration.
3034 /// + Defined in a possibly unknown dynamic library.
3036 /// The general system is that each __thread variable has a [3 x i32] descriptor
3037 /// which contains information used by the runtime to calculate the address. The
3038 /// only part of this the compiler needs to know about is the first word, which
3039 /// contains a function pointer that must be called with the address of the
3040 /// entire descriptor in "r0".
3042 /// Since this descriptor may be in a different unit, in general access must
3043 /// proceed along the usual ARM rules. A common sequence to produce is:
3045 /// movw rT1, :lower16:_var$non_lazy_ptr
3046 /// movt rT1, :upper16:_var$non_lazy_ptr
3050 /// [...address now in r0...]
3052 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op
,
3053 SelectionDAG
&DAG
) const {
3054 assert(Subtarget
->isTargetDarwin() &&
3055 "This function expects a Darwin target");
3058 // First step is to get the address of the actua global symbol. This is where
3059 // the TLS descriptor lives.
3060 SDValue DescAddr
= LowerGlobalAddressDarwin(Op
, DAG
);
3062 // The first entry in the descriptor is a function pointer that we must call
3063 // to obtain the address of the variable.
3064 SDValue Chain
= DAG
.getEntryNode();
3065 SDValue FuncTLVGet
= DAG
.getLoad(
3066 MVT::i32
, DL
, Chain
, DescAddr
,
3067 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
3068 /* Alignment = */ 4,
3069 MachineMemOperand::MONonTemporal
| MachineMemOperand::MODereferenceable
|
3070 MachineMemOperand::MOInvariant
);
3071 Chain
= FuncTLVGet
.getValue(1);
3073 MachineFunction
&F
= DAG
.getMachineFunction();
3074 MachineFrameInfo
&MFI
= F
.getFrameInfo();
3075 MFI
.setAdjustsStack(true);
3077 // TLS calls preserve all registers except those that absolutely must be
3078 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3081 getTargetMachine().getSubtargetImpl(F
.getFunction())->getRegisterInfo();
3082 auto ARI
= static_cast<const ARMRegisterInfo
*>(TRI
);
3083 const uint32_t *Mask
= ARI
->getTLSCallPreservedMask(DAG
.getMachineFunction());
3085 // Finally, we can make the call. This is just a degenerate version of a
3086 // normal AArch64 call node: r0 takes the address of the descriptor, and
3087 // returns the address of the variable in this thread.
3088 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R0
, DescAddr
, SDValue());
3090 DAG
.getNode(ARMISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
3091 Chain
, FuncTLVGet
, DAG
.getRegister(ARM::R0
, MVT::i32
),
3092 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
3093 return DAG
.getCopyFromReg(Chain
, DL
, ARM::R0
, MVT::i32
, Chain
.getValue(1));
3097 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op
,
3098 SelectionDAG
&DAG
) const {
3099 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
3101 SDValue Chain
= DAG
.getEntryNode();
3102 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3105 // Load the current TEB (thread environment block)
3106 SDValue Ops
[] = {Chain
,
3107 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
3108 DAG
.getConstant(15, DL
, MVT::i32
),
3109 DAG
.getConstant(0, DL
, MVT::i32
),
3110 DAG
.getConstant(13, DL
, MVT::i32
),
3111 DAG
.getConstant(0, DL
, MVT::i32
),
3112 DAG
.getConstant(2, DL
, MVT::i32
)};
3113 SDValue CurrentTEB
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
3114 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
3116 SDValue TEB
= CurrentTEB
.getValue(0);
3117 Chain
= CurrentTEB
.getValue(1);
3119 // Load the ThreadLocalStoragePointer from the TEB
3120 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3122 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x2c, DL
));
3123 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
3125 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3126 // offset into the TLSArray.
3128 // Load the TLS index from the C runtime
3130 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, ARMII::MO_NO_FLAG
);
3131 TLSIndex
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, TLSIndex
);
3132 TLSIndex
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
3134 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
3135 DAG
.getConstant(2, DL
, MVT::i32
));
3136 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
3137 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
3138 MachinePointerInfo());
3140 // Get the offset of the start of the .tls section (section base)
3141 const auto *GA
= cast
<GlobalAddressSDNode
>(Op
);
3142 auto *CPV
= ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMCP::SECREL
);
3143 SDValue Offset
= DAG
.getLoad(
3144 PtrVT
, DL
, Chain
, DAG
.getNode(ARMISD::Wrapper
, DL
, MVT::i32
,
3145 DAG
.getTargetConstantPool(CPV
, PtrVT
, 4)),
3146 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3148 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLS
, Offset
);
3151 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3153 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
3154 SelectionDAG
&DAG
) const {
3156 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3157 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3158 MachineFunction
&MF
= DAG
.getMachineFunction();
3159 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3160 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3161 ARMConstantPoolValue
*CPV
=
3162 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3163 ARMCP::CPValue
, PCAdj
, ARMCP::TLSGD
, true);
3164 SDValue Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3165 Argument
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Argument
);
3166 Argument
= DAG
.getLoad(
3167 PtrVT
, dl
, DAG
.getEntryNode(), Argument
,
3168 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3169 SDValue Chain
= Argument
.getValue(1);
3171 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3172 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Argument
, PICLabel
);
3174 // call __tls_get_addr.
3177 Entry
.Node
= Argument
;
3178 Entry
.Ty
= (Type
*) Type::getInt32Ty(*DAG
.getContext());
3179 Args
.push_back(Entry
);
3181 // FIXME: is there useful debug info available here?
3182 TargetLowering::CallLoweringInfo
CLI(DAG
);
3183 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3184 CallingConv::C
, Type::getInt32Ty(*DAG
.getContext()),
3185 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), std::move(Args
));
3187 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3188 return CallResult
.first
;
3191 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3192 // "local exec" model.
3194 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
3196 TLSModel::Model model
) const {
3197 const GlobalValue
*GV
= GA
->getGlobal();
3200 SDValue Chain
= DAG
.getEntryNode();
3201 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3202 // Get the Thread Pointer
3203 SDValue ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3205 if (model
== TLSModel::InitialExec
) {
3206 MachineFunction
&MF
= DAG
.getMachineFunction();
3207 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3208 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3209 // Initial exec model.
3210 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3211 ARMConstantPoolValue
*CPV
=
3212 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3213 ARMCP::CPValue
, PCAdj
, ARMCP::GOTTPOFF
,
3215 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3216 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3217 Offset
= DAG
.getLoad(
3218 PtrVT
, dl
, Chain
, Offset
,
3219 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3220 Chain
= Offset
.getValue(1);
3222 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3223 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Offset
, PICLabel
);
3225 Offset
= DAG
.getLoad(
3226 PtrVT
, dl
, Chain
, Offset
,
3227 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3230 assert(model
== TLSModel::LocalExec
);
3231 ARMConstantPoolValue
*CPV
=
3232 ARMConstantPoolConstant::Create(GV
, ARMCP::TPOFF
);
3233 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3234 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3235 Offset
= DAG
.getLoad(
3236 PtrVT
, dl
, Chain
, Offset
,
3237 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3240 // The address of the thread local variable is the add of the thread
3241 // pointer with the offset of the variable.
3242 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
3246 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
3247 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3248 if (DAG
.getTarget().useEmulatedTLS())
3249 return LowerToTLSEmulatedModel(GA
, DAG
);
3251 if (Subtarget
->isTargetDarwin())
3252 return LowerGlobalTLSAddressDarwin(Op
, DAG
);
3254 if (Subtarget
->isTargetWindows())
3255 return LowerGlobalTLSAddressWindows(Op
, DAG
);
3257 // TODO: implement the "local dynamic" model
3258 assert(Subtarget
->isTargetELF() && "Only ELF implemented here");
3259 TLSModel::Model model
= getTargetMachine().getTLSModel(GA
->getGlobal());
3262 case TLSModel::GeneralDynamic
:
3263 case TLSModel::LocalDynamic
:
3264 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
3265 case TLSModel::InitialExec
:
3266 case TLSModel::LocalExec
:
3267 return LowerToTLSExecModels(GA
, DAG
, model
);
3269 llvm_unreachable("bogus TLS model");
3272 /// Return true if all users of V are within function F, looking through
3274 static bool allUsersAreInFunction(const Value
*V
, const Function
*F
) {
3275 SmallVector
<const User
*,4> Worklist
;
3276 for (auto *U
: V
->users())
3277 Worklist
.push_back(U
);
3278 while (!Worklist
.empty()) {
3279 auto *U
= Worklist
.pop_back_val();
3280 if (isa
<ConstantExpr
>(U
)) {
3281 for (auto *UU
: U
->users())
3282 Worklist
.push_back(UU
);
3286 auto *I
= dyn_cast
<Instruction
>(U
);
3287 if (!I
|| I
->getParent()->getParent() != F
)
3293 static SDValue
promoteToConstantPool(const ARMTargetLowering
*TLI
,
3294 const GlobalValue
*GV
, SelectionDAG
&DAG
,
3295 EVT PtrVT
, const SDLoc
&dl
) {
3296 // If we're creating a pool entry for a constant global with unnamed address,
3297 // and the global is small enough, we can emit it inline into the constant pool
3298 // to save ourselves an indirection.
3300 // This is a win if the constant is only used in one function (so it doesn't
3301 // need to be duplicated) or duplicating the constant wouldn't increase code
3302 // size (implying the constant is no larger than 4 bytes).
3303 const Function
&F
= DAG
.getMachineFunction().getFunction();
3305 // We rely on this decision to inline being idemopotent and unrelated to the
3306 // use-site. We know that if we inline a variable at one use site, we'll
3307 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3308 // doesn't know about this optimization, so bail out if it's enabled else
3309 // we could decide to inline here (and thus never emit the GV) but require
3310 // the GV from fast-isel generated code.
3311 if (!EnableConstpoolPromotion
||
3312 DAG
.getMachineFunction().getTarget().Options
.EnableFastISel
)
3315 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
3316 if (!GVar
|| !GVar
->hasInitializer() ||
3317 !GVar
->isConstant() || !GVar
->hasGlobalUnnamedAddr() ||
3318 !GVar
->hasLocalLinkage())
3321 // If we inline a value that contains relocations, we move the relocations
3322 // from .data to .text. This is not allowed in position-independent code.
3323 auto *Init
= GVar
->getInitializer();
3324 if ((TLI
->isPositionIndependent() || TLI
->getSubtarget()->isROPI()) &&
3325 Init
->needsRelocation())
3328 // The constant islands pass can only really deal with alignment requests
3329 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3330 // any type wanting greater alignment requirements than 4 bytes. We also
3331 // can only promote constants that are multiples of 4 bytes in size or
3332 // are paddable to a multiple of 4. Currently we only try and pad constants
3333 // that are strings for simplicity.
3334 auto *CDAInit
= dyn_cast
<ConstantDataArray
>(Init
);
3335 unsigned Size
= DAG
.getDataLayout().getTypeAllocSize(Init
->getType());
3336 unsigned Align
= DAG
.getDataLayout().getPreferredAlignment(GVar
);
3337 unsigned RequiredPadding
= 4 - (Size
% 4);
3338 bool PaddingPossible
=
3339 RequiredPadding
== 4 || (CDAInit
&& CDAInit
->isString());
3340 if (!PaddingPossible
|| Align
> 4 || Size
> ConstpoolPromotionMaxSize
||
3344 unsigned PaddedSize
= Size
+ ((RequiredPadding
== 4) ? 0 : RequiredPadding
);
3345 MachineFunction
&MF
= DAG
.getMachineFunction();
3346 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3348 // We can't bloat the constant pool too much, else the ConstantIslands pass
3349 // may fail to converge. If we haven't promoted this global yet (it may have
3350 // multiple uses), and promoting it would increase the constant pool size (Sz
3351 // > 4), ensure we have space to do so up to MaxTotal.
3352 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
) && Size
> 4)
3353 if (AFI
->getPromotedConstpoolIncrease() + PaddedSize
- 4 >=
3354 ConstpoolPromotionMaxTotal
)
3357 // This is only valid if all users are in a single function; we can't clone
3358 // the constant in general. The LLVM IR unnamed_addr allows merging
3359 // constants, but not cloning them.
3361 // We could potentially allow cloning if we could prove all uses of the
3362 // constant in the current function don't care about the address, like
3363 // printf format strings. But that isn't implemented for now.
3364 if (!allUsersAreInFunction(GVar
, &F
))
3367 // We're going to inline this global. Pad it out if needed.
3368 if (RequiredPadding
!= 4) {
3369 StringRef S
= CDAInit
->getAsString();
3371 SmallVector
<uint8_t,16> V(S
.size());
3372 std::copy(S
.bytes_begin(), S
.bytes_end(), V
.begin());
3373 while (RequiredPadding
--)
3375 Init
= ConstantDataArray::get(*DAG
.getContext(), V
);
3378 auto CPVal
= ARMConstantPoolConstant::Create(GVar
, Init
);
3380 DAG
.getTargetConstantPool(CPVal
, PtrVT
, /*Align=*/4);
3381 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
)) {
3382 AFI
->markGlobalAsPromotedToConstantPool(GVar
);
3383 AFI
->setPromotedConstpoolIncrease(AFI
->getPromotedConstpoolIncrease() +
3386 ++NumConstpoolPromoted
;
3387 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3390 bool ARMTargetLowering::isReadOnly(const GlobalValue
*GV
) const {
3391 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
3392 if (!(GV
= GA
->getBaseObject()))
3394 if (const auto *V
= dyn_cast
<GlobalVariable
>(GV
))
3395 return V
->isConstant();
3396 return isa
<Function
>(GV
);
3399 SDValue
ARMTargetLowering::LowerGlobalAddress(SDValue Op
,
3400 SelectionDAG
&DAG
) const {
3401 switch (Subtarget
->getTargetTriple().getObjectFormat()) {
3402 default: llvm_unreachable("unknown object format");
3404 return LowerGlobalAddressWindows(Op
, DAG
);
3406 return LowerGlobalAddressELF(Op
, DAG
);
3408 return LowerGlobalAddressDarwin(Op
, DAG
);
3412 SDValue
ARMTargetLowering::LowerGlobalAddressELF(SDValue Op
,
3413 SelectionDAG
&DAG
) const {
3414 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3416 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3417 const TargetMachine
&TM
= getTargetMachine();
3418 bool IsRO
= isReadOnly(GV
);
3420 // promoteToConstantPool only if not generating XO text section
3421 if (TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
) && !Subtarget
->genExecuteOnly())
3422 if (SDValue V
= promoteToConstantPool(this, GV
, DAG
, PtrVT
, dl
))
3425 if (isPositionIndependent()) {
3426 bool UseGOT_PREL
= !TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
);
3427 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3428 UseGOT_PREL
? ARMII::MO_GOT
: 0);
3429 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3432 DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3433 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3435 } else if (Subtarget
->isROPI() && IsRO
) {
3437 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
);
3438 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3440 } else if (Subtarget
->isRWPI() && !IsRO
) {
3443 if (Subtarget
->useMovt()) {
3445 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_SBREL
);
3446 RelAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
, G
);
3447 } else { // use literal pool for address constant
3448 ARMConstantPoolValue
*CPV
=
3449 ARMConstantPoolConstant::Create(GV
, ARMCP::SBREL
);
3450 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3451 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3452 RelAddr
= DAG
.getLoad(
3453 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3454 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3456 SDValue SB
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, ARM::R9
, PtrVT
);
3457 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SB
, RelAddr
);
3461 // If we have T2 ops, we can materialize the address directly via movt/movw
3462 // pair. This is always cheaper.
3463 if (Subtarget
->useMovt()) {
3465 // FIXME: Once remat is capable of dealing with instructions with register
3466 // operands, expand this into two nodes.
3467 return DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
,
3468 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
));
3470 SDValue CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 4);
3471 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3473 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3474 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3478 SDValue
ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op
,
3479 SelectionDAG
&DAG
) const {
3480 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3481 "ROPI/RWPI not currently supported for Darwin");
3482 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3484 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3486 if (Subtarget
->useMovt())
3489 // FIXME: Once remat is capable of dealing with instructions with register
3490 // operands, expand this into multiple nodes
3492 isPositionIndependent() ? ARMISD::WrapperPIC
: ARMISD::Wrapper
;
3494 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_NONLAZY
);
3495 SDValue Result
= DAG
.getNode(Wrapper
, dl
, PtrVT
, G
);
3497 if (Subtarget
->isGVIndirectSymbol(GV
))
3498 Result
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3499 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3503 SDValue
ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op
,
3504 SelectionDAG
&DAG
) const {
3505 assert(Subtarget
->isTargetWindows() && "non-Windows COFF is not supported");
3506 assert(Subtarget
->useMovt() &&
3507 "Windows on ARM expects to use movw/movt");
3508 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3509 "ROPI/RWPI not currently supported for Windows");
3511 const TargetMachine
&TM
= getTargetMachine();
3512 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3513 ARMII::TOF TargetFlags
= ARMII::MO_NO_FLAG
;
3514 if (GV
->hasDLLImportStorageClass())
3515 TargetFlags
= ARMII::MO_DLLIMPORT
;
3516 else if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
3517 TargetFlags
= ARMII::MO_COFFSTUB
;
3518 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3524 // FIXME: Once remat is capable of dealing with instructions with register
3525 // operands, expand this into two nodes.
3526 Result
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
,
3527 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, /*offset=*/0,
3529 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
3530 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
3531 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3536 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3538 SDValue Val
= DAG
.getConstant(0, dl
, MVT::i32
);
3539 return DAG
.getNode(ARMISD::EH_SJLJ_SETJMP
, dl
,
3540 DAG
.getVTList(MVT::i32
, MVT::Other
), Op
.getOperand(0),
3541 Op
.getOperand(1), Val
);
3545 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3547 return DAG
.getNode(ARMISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
, Op
.getOperand(0),
3548 Op
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
3551 SDValue
ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
,
3552 SelectionDAG
&DAG
) const {
3554 return DAG
.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH
, dl
, MVT::Other
,
3558 SDValue
ARMTargetLowering::LowerINTRINSIC_VOID(
3559 SDValue Op
, SelectionDAG
&DAG
, const ARMSubtarget
*Subtarget
) const {
3561 cast
<ConstantSDNode
>(
3562 Op
.getOperand(Op
.getOperand(0).getValueType() == MVT::Other
))
3566 return SDValue(); // Don't custom lower most intrinsics.
3567 case Intrinsic::arm_gnu_eabi_mcount
: {
3568 MachineFunction
&MF
= DAG
.getMachineFunction();
3569 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3571 SDValue Chain
= Op
.getOperand(0);
3572 // call "\01__gnu_mcount_nc"
3573 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
3574 const uint32_t *Mask
=
3575 ARI
->getCallPreservedMask(DAG
.getMachineFunction(), CallingConv::C
);
3576 assert(Mask
&& "Missing call preserved mask for calling convention");
3577 // Mark LR an implicit live-in.
3578 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
3579 SDValue ReturnAddress
=
3580 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, PtrVT
);
3581 std::vector
<EVT
> ResultTys
= {MVT::Other
, MVT::Glue
};
3583 DAG
.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT
, 0);
3584 SDValue RegisterMask
= DAG
.getRegisterMask(Mask
);
3585 if (Subtarget
->isThumb())
3588 ARM::tBL_PUSHLR
, dl
, ResultTys
,
3589 {ReturnAddress
, DAG
.getTargetConstant(ARMCC::AL
, dl
, PtrVT
),
3590 DAG
.getRegister(0, PtrVT
), Callee
, RegisterMask
, Chain
}),
3593 DAG
.getMachineNode(ARM::BL_PUSHLR
, dl
, ResultTys
,
3594 {ReturnAddress
, Callee
, RegisterMask
, Chain
}),
3601 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
,
3602 const ARMSubtarget
*Subtarget
) const {
3603 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3606 default: return SDValue(); // Don't custom lower most intrinsics.
3607 case Intrinsic::thread_pointer
: {
3608 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3609 return DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3611 case Intrinsic::eh_sjlj_lsda
: {
3612 MachineFunction
&MF
= DAG
.getMachineFunction();
3613 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3614 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3615 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3617 bool IsPositionIndependent
= isPositionIndependent();
3618 unsigned PCAdj
= IsPositionIndependent
? (Subtarget
->isThumb() ? 4 : 8) : 0;
3619 ARMConstantPoolValue
*CPV
=
3620 ARMConstantPoolConstant::Create(&MF
.getFunction(), ARMPCLabelIndex
,
3621 ARMCP::CPLSDA
, PCAdj
);
3622 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3623 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3624 SDValue Result
= DAG
.getLoad(
3625 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3626 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3628 if (IsPositionIndependent
) {
3629 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3630 Result
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Result
, PICLabel
);
3634 case Intrinsic::arm_neon_vabs
:
3635 return DAG
.getNode(ISD::ABS
, SDLoc(Op
), Op
.getValueType(),
3637 case Intrinsic::arm_neon_vmulls
:
3638 case Intrinsic::arm_neon_vmullu
: {
3639 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmulls
)
3640 ? ARMISD::VMULLs
: ARMISD::VMULLu
;
3641 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3642 Op
.getOperand(1), Op
.getOperand(2));
3644 case Intrinsic::arm_neon_vminnm
:
3645 case Intrinsic::arm_neon_vmaxnm
: {
3646 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminnm
)
3647 ? ISD::FMINNUM
: ISD::FMAXNUM
;
3648 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3649 Op
.getOperand(1), Op
.getOperand(2));
3651 case Intrinsic::arm_neon_vminu
:
3652 case Intrinsic::arm_neon_vmaxu
: {
3653 if (Op
.getValueType().isFloatingPoint())
3655 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminu
)
3656 ? ISD::UMIN
: ISD::UMAX
;
3657 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3658 Op
.getOperand(1), Op
.getOperand(2));
3660 case Intrinsic::arm_neon_vmins
:
3661 case Intrinsic::arm_neon_vmaxs
: {
3662 // v{min,max}s is overloaded between signed integers and floats.
3663 if (!Op
.getValueType().isFloatingPoint()) {
3664 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3665 ? ISD::SMIN
: ISD::SMAX
;
3666 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3667 Op
.getOperand(1), Op
.getOperand(2));
3669 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3670 ? ISD::FMINIMUM
: ISD::FMAXIMUM
;
3671 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3672 Op
.getOperand(1), Op
.getOperand(2));
3674 case Intrinsic::arm_neon_vtbl1
:
3675 return DAG
.getNode(ARMISD::VTBL1
, SDLoc(Op
), Op
.getValueType(),
3676 Op
.getOperand(1), Op
.getOperand(2));
3677 case Intrinsic::arm_neon_vtbl2
:
3678 return DAG
.getNode(ARMISD::VTBL2
, SDLoc(Op
), Op
.getValueType(),
3679 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
3683 static SDValue
LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
,
3684 const ARMSubtarget
*Subtarget
) {
3686 ConstantSDNode
*SSIDNode
= cast
<ConstantSDNode
>(Op
.getOperand(2));
3687 auto SSID
= static_cast<SyncScope::ID
>(SSIDNode
->getZExtValue());
3688 if (SSID
== SyncScope::SingleThread
)
3691 if (!Subtarget
->hasDataBarrier()) {
3692 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3693 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3695 assert(Subtarget
->hasV6Ops() && !Subtarget
->isThumb() &&
3696 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3697 return DAG
.getNode(ARMISD::MEMBARRIER_MCR
, dl
, MVT::Other
, Op
.getOperand(0),
3698 DAG
.getConstant(0, dl
, MVT::i32
));
3701 ConstantSDNode
*OrdN
= cast
<ConstantSDNode
>(Op
.getOperand(1));
3702 AtomicOrdering Ord
= static_cast<AtomicOrdering
>(OrdN
->getZExtValue());
3703 ARM_MB::MemBOpt Domain
= ARM_MB::ISH
;
3704 if (Subtarget
->isMClass()) {
3705 // Only a full system barrier exists in the M-class architectures.
3706 Domain
= ARM_MB::SY
;
3707 } else if (Subtarget
->preferISHSTBarriers() &&
3708 Ord
== AtomicOrdering::Release
) {
3709 // Swift happens to implement ISHST barriers in a way that's compatible with
3710 // Release semantics but weaker than ISH so we'd be fools not to use
3711 // it. Beware: other processors probably don't!
3712 Domain
= ARM_MB::ISHST
;
3715 return DAG
.getNode(ISD::INTRINSIC_VOID
, dl
, MVT::Other
, Op
.getOperand(0),
3716 DAG
.getConstant(Intrinsic::arm_dmb
, dl
, MVT::i32
),
3717 DAG
.getConstant(Domain
, dl
, MVT::i32
));
3720 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
,
3721 const ARMSubtarget
*Subtarget
) {
3722 // ARM pre v5TE and Thumb1 does not have preload instructions.
3723 if (!(Subtarget
->isThumb2() ||
3724 (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TEOps())))
3725 // Just preserve the chain.
3726 return Op
.getOperand(0);
3729 unsigned isRead
= ~cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() & 1;
3731 (!Subtarget
->hasV7Ops() || !Subtarget
->hasMPExtension()))
3732 // ARMv7 with MP extension has PLDW.
3733 return Op
.getOperand(0);
3735 unsigned isData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
3736 if (Subtarget
->isThumb()) {
3738 isRead
= ~isRead
& 1;
3739 isData
= ~isData
& 1;
3742 return DAG
.getNode(ARMISD::PRELOAD
, dl
, MVT::Other
, Op
.getOperand(0),
3743 Op
.getOperand(1), DAG
.getConstant(isRead
, dl
, MVT::i32
),
3744 DAG
.getConstant(isData
, dl
, MVT::i32
));
3747 static SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
3748 MachineFunction
&MF
= DAG
.getMachineFunction();
3749 ARMFunctionInfo
*FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
3751 // vastart just stores the address of the VarArgsFrameIndex slot into the
3752 // memory location argument.
3754 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
3755 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3756 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3757 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3758 MachinePointerInfo(SV
));
3761 SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign
&VA
,
3762 CCValAssign
&NextVA
,
3765 const SDLoc
&dl
) const {
3766 MachineFunction
&MF
= DAG
.getMachineFunction();
3767 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3769 const TargetRegisterClass
*RC
;
3770 if (AFI
->isThumb1OnlyFunction())
3771 RC
= &ARM::tGPRRegClass
;
3773 RC
= &ARM::GPRRegClass
;
3775 // Transform the arguments stored in physical registers into virtual ones.
3776 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3777 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3780 if (NextVA
.isMemLoc()) {
3781 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3782 int FI
= MFI
.CreateFixedObject(4, NextVA
.getLocMemOffset(), true);
3784 // Create load node to retrieve arguments from the stack.
3785 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3786 ArgValue2
= DAG
.getLoad(
3787 MVT::i32
, dl
, Root
, FIN
,
3788 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3790 Reg
= MF
.addLiveIn(NextVA
.getLocReg(), RC
);
3791 ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3793 if (!Subtarget
->isLittle())
3794 std::swap (ArgValue
, ArgValue2
);
3795 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, ArgValue
, ArgValue2
);
3798 // The remaining GPRs hold either the beginning of variable-argument
3799 // data, or the beginning of an aggregate passed by value (usually
3800 // byval). Either way, we allocate stack slots adjacent to the data
3801 // provided by our caller, and store the unallocated registers there.
3802 // If this is a variadic function, the va_list pointer will begin with
3803 // these values; otherwise, this reassembles a (byval) structure that
3804 // was split between registers and memory.
3805 // Return: The frame index registers were stored into.
3806 int ARMTargetLowering::StoreByValRegs(CCState
&CCInfo
, SelectionDAG
&DAG
,
3807 const SDLoc
&dl
, SDValue
&Chain
,
3808 const Value
*OrigArg
,
3809 unsigned InRegsParamRecordIdx
,
3810 int ArgOffset
, unsigned ArgSize
) const {
3811 // Currently, two use-cases possible:
3812 // Case #1. Non-var-args function, and we meet first byval parameter.
3813 // Setup first unallocated register as first byval register;
3814 // eat all remained registers
3815 // (these two actions are performed by HandleByVal method).
3816 // Then, here, we initialize stack frame with
3817 // "store-reg" instructions.
3818 // Case #2. Var-args function, that doesn't contain byval parameters.
3819 // The same: eat all remained unallocated registers,
3820 // initialize stack frame.
3822 MachineFunction
&MF
= DAG
.getMachineFunction();
3823 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3824 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3825 unsigned RBegin
, REnd
;
3826 if (InRegsParamRecordIdx
< CCInfo
.getInRegsParamsCount()) {
3827 CCInfo
.getInRegsParamInfo(InRegsParamRecordIdx
, RBegin
, REnd
);
3829 unsigned RBeginIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3830 RBegin
= RBeginIdx
== 4 ? (unsigned)ARM::R4
: GPRArgRegs
[RBeginIdx
];
3835 ArgOffset
= -4 * (ARM::R4
- RBegin
);
3837 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3838 int FrameIndex
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false);
3839 SDValue FIN
= DAG
.getFrameIndex(FrameIndex
, PtrVT
);
3841 SmallVector
<SDValue
, 4> MemOps
;
3842 const TargetRegisterClass
*RC
=
3843 AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
3845 for (unsigned Reg
= RBegin
, i
= 0; Reg
< REnd
; ++Reg
, ++i
) {
3846 unsigned VReg
= MF
.addLiveIn(Reg
, RC
);
3847 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
3848 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
3849 MachinePointerInfo(OrigArg
, 4 * i
));
3850 MemOps
.push_back(Store
);
3851 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FIN
, DAG
.getConstant(4, dl
, PtrVT
));
3854 if (!MemOps
.empty())
3855 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
3859 // Setup stack frame, the va_list pointer will start from.
3860 void ARMTargetLowering::VarArgStyleRegisters(CCState
&CCInfo
, SelectionDAG
&DAG
,
3861 const SDLoc
&dl
, SDValue
&Chain
,
3863 unsigned TotalArgRegsSaveSize
,
3864 bool ForceMutable
) const {
3865 MachineFunction
&MF
= DAG
.getMachineFunction();
3866 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3868 // Try to store any remaining integer argument regs
3869 // to their spots on the stack so that they may be loaded by dereferencing
3870 // the result of va_next.
3871 // If there is no regs to be stored, just point address after last
3872 // argument passed via stack.
3873 int FrameIndex
= StoreByValRegs(CCInfo
, DAG
, dl
, Chain
, nullptr,
3874 CCInfo
.getInRegsParamsCount(),
3875 CCInfo
.getNextStackOffset(),
3876 std::max(4U, TotalArgRegsSaveSize
));
3877 AFI
->setVarArgsFrameIndex(FrameIndex
);
3880 SDValue
ARMTargetLowering::LowerFormalArguments(
3881 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3882 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3883 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3884 MachineFunction
&MF
= DAG
.getMachineFunction();
3885 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3887 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3889 // Assign locations to all of the incoming arguments.
3890 SmallVector
<CCValAssign
, 16> ArgLocs
;
3891 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3893 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
3895 SmallVector
<SDValue
, 16> ArgValues
;
3897 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3898 unsigned CurArgIdx
= 0;
3900 // Initially ArgRegsSaveSize is zero.
3901 // Then we increase this value each time we meet byval parameter.
3902 // We also increase this value in case of varargs function.
3903 AFI
->setArgRegsSaveSize(0);
3905 // Calculate the amount of stack space that we need to allocate to store
3906 // byval and variadic arguments that are passed in registers.
3907 // We need to know this before we allocate the first byval or variadic
3908 // argument, as they will be allocated a stack slot below the CFA (Canonical
3909 // Frame Address, the stack pointer at entry to the function).
3910 unsigned ArgRegBegin
= ARM::R4
;
3911 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3912 if (CCInfo
.getInRegsParamsProcessed() >= CCInfo
.getInRegsParamsCount())
3915 CCValAssign
&VA
= ArgLocs
[i
];
3916 unsigned Index
= VA
.getValNo();
3917 ISD::ArgFlagsTy Flags
= Ins
[Index
].Flags
;
3918 if (!Flags
.isByVal())
3921 assert(VA
.isMemLoc() && "unexpected byval pointer in reg");
3922 unsigned RBegin
, REnd
;
3923 CCInfo
.getInRegsParamInfo(CCInfo
.getInRegsParamsProcessed(), RBegin
, REnd
);
3924 ArgRegBegin
= std::min(ArgRegBegin
, RBegin
);
3926 CCInfo
.nextInRegsParam();
3928 CCInfo
.rewindByValRegsInfo();
3930 int lastInsIndex
= -1;
3931 if (isVarArg
&& MFI
.hasVAStart()) {
3932 unsigned RegIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3933 if (RegIdx
!= array_lengthof(GPRArgRegs
))
3934 ArgRegBegin
= std::min(ArgRegBegin
, (unsigned)GPRArgRegs
[RegIdx
]);
3937 unsigned TotalArgRegsSaveSize
= 4 * (ARM::R4
- ArgRegBegin
);
3938 AFI
->setArgRegsSaveSize(TotalArgRegsSaveSize
);
3939 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3941 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3942 CCValAssign
&VA
= ArgLocs
[i
];
3943 if (Ins
[VA
.getValNo()].isOrigArg()) {
3944 std::advance(CurOrigArg
,
3945 Ins
[VA
.getValNo()].getOrigArgIndex() - CurArgIdx
);
3946 CurArgIdx
= Ins
[VA
.getValNo()].getOrigArgIndex();
3948 // Arguments stored in registers.
3949 if (VA
.isRegLoc()) {
3950 EVT RegVT
= VA
.getLocVT();
3952 if (VA
.needsCustom()) {
3953 // f64 and vector types are split up into multiple registers or
3954 // combinations of registers and stack slots.
3955 if (VA
.getLocVT() == MVT::v2f64
) {
3956 SDValue ArgValue1
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3958 VA
= ArgLocs
[++i
]; // skip ahead to next loc
3960 if (VA
.isMemLoc()) {
3961 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), true);
3962 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3963 ArgValue2
= DAG
.getLoad(MVT::f64
, dl
, Chain
, FIN
,
3964 MachinePointerInfo::getFixedStack(
3965 DAG
.getMachineFunction(), FI
));
3967 ArgValue2
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3970 ArgValue
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
3971 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3972 ArgValue
, ArgValue1
,
3973 DAG
.getIntPtrConstant(0, dl
));
3974 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3975 ArgValue
, ArgValue2
,
3976 DAG
.getIntPtrConstant(1, dl
));
3978 ArgValue
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
3980 const TargetRegisterClass
*RC
;
3983 if (RegVT
== MVT::f16
)
3984 RC
= &ARM::HPRRegClass
;
3985 else if (RegVT
== MVT::f32
)
3986 RC
= &ARM::SPRRegClass
;
3987 else if (RegVT
== MVT::f64
|| RegVT
== MVT::v4f16
)
3988 RC
= &ARM::DPRRegClass
;
3989 else if (RegVT
== MVT::v2f64
|| RegVT
== MVT::v8f16
)
3990 RC
= &ARM::QPRRegClass
;
3991 else if (RegVT
== MVT::i32
)
3992 RC
= AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3993 : &ARM::GPRRegClass
;
3995 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3997 // Transform the arguments in physical registers into virtual ones.
3998 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3999 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
4001 // If this value is passed in r0 and has the returned attribute (e.g.
4002 // C++ 'structors), record this fact for later use.
4003 if (VA
.getLocReg() == ARM::R0
&& Ins
[VA
.getValNo()].Flags
.isReturned()) {
4004 AFI
->setPreservesR0();
4008 // If this is an 8 or 16-bit value, it is really passed promoted
4009 // to 32 bits. Insert an assert[sz]ext to capture this, then
4010 // truncate to the right size.
4011 switch (VA
.getLocInfo()) {
4012 default: llvm_unreachable("Unknown loc info!");
4013 case CCValAssign::Full
: break;
4014 case CCValAssign::BCvt
:
4015 ArgValue
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), ArgValue
);
4017 case CCValAssign::SExt
:
4018 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
4019 DAG
.getValueType(VA
.getValVT()));
4020 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4022 case CCValAssign::ZExt
:
4023 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
4024 DAG
.getValueType(VA
.getValVT()));
4025 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4029 InVals
.push_back(ArgValue
);
4030 } else { // VA.isRegLoc()
4032 assert(VA
.isMemLoc());
4033 assert(VA
.getValVT() != MVT::i64
&& "i64 should already be lowered");
4035 int index
= VA
.getValNo();
4037 // Some Ins[] entries become multiple ArgLoc[] entries.
4038 // Process them only once.
4039 if (index
!= lastInsIndex
)
4041 ISD::ArgFlagsTy Flags
= Ins
[index
].Flags
;
4042 // FIXME: For now, all byval parameter objects are marked mutable.
4043 // This can be changed with more analysis.
4044 // In case of tail call optimization mark all arguments mutable.
4045 // Since they could be overwritten by lowering of arguments in case of
4047 if (Flags
.isByVal()) {
4048 assert(Ins
[index
].isOrigArg() &&
4049 "Byval arguments cannot be implicit");
4050 unsigned CurByValIndex
= CCInfo
.getInRegsParamsProcessed();
4052 int FrameIndex
= StoreByValRegs(
4053 CCInfo
, DAG
, dl
, Chain
, &*CurOrigArg
, CurByValIndex
,
4054 VA
.getLocMemOffset(), Flags
.getByValSize());
4055 InVals
.push_back(DAG
.getFrameIndex(FrameIndex
, PtrVT
));
4056 CCInfo
.nextInRegsParam();
4058 unsigned FIOffset
= VA
.getLocMemOffset();
4059 int FI
= MFI
.CreateFixedObject(VA
.getLocVT().getSizeInBits()/8,
4062 // Create load nodes to retrieve arguments from the stack.
4063 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4064 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
4065 MachinePointerInfo::getFixedStack(
4066 DAG
.getMachineFunction(), FI
)));
4068 lastInsIndex
= index
;
4074 if (isVarArg
&& MFI
.hasVAStart())
4075 VarArgStyleRegisters(CCInfo
, DAG
, dl
, Chain
,
4076 CCInfo
.getNextStackOffset(),
4077 TotalArgRegsSaveSize
);
4079 AFI
->setArgumentStackSize(CCInfo
.getNextStackOffset());
4084 /// isFloatingPointZero - Return true if this is +0.0.
4085 static bool isFloatingPointZero(SDValue Op
) {
4086 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
4087 return CFP
->getValueAPF().isPosZero();
4088 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
4089 // Maybe this has already been legalized into the constant pool?
4090 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
4091 SDValue WrapperOp
= Op
.getOperand(1).getOperand(0);
4092 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
4093 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
4094 return CFP
->getValueAPF().isPosZero();
4096 } else if (Op
->getOpcode() == ISD::BITCAST
&&
4097 Op
->getValueType(0) == MVT::f64
) {
4098 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4099 // created by LowerConstantFP().
4100 SDValue BitcastOp
= Op
->getOperand(0);
4101 if (BitcastOp
->getOpcode() == ARMISD::VMOVIMM
&&
4102 isNullConstant(BitcastOp
->getOperand(0)))
4108 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4109 /// the given operands.
4110 SDValue
ARMTargetLowering::getARMCmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
4111 SDValue
&ARMcc
, SelectionDAG
&DAG
,
4112 const SDLoc
&dl
) const {
4113 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
4114 unsigned C
= RHSC
->getZExtValue();
4115 if (!isLegalICmpImmediate((int32_t)C
)) {
4116 // Constant does not fit, try adjusting it by one.
4121 if (C
!= 0x80000000 && isLegalICmpImmediate(C
-1)) {
4122 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
4123 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4128 if (C
!= 0 && isLegalICmpImmediate(C
-1)) {
4129 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
4130 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4135 if (C
!= 0x7fffffff && isLegalICmpImmediate(C
+1)) {
4136 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
4137 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4142 if (C
!= 0xffffffff && isLegalICmpImmediate(C
+1)) {
4143 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
4144 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4149 } else if ((ARM_AM::getShiftOpcForNode(LHS
.getOpcode()) != ARM_AM::no_shift
) &&
4150 (ARM_AM::getShiftOpcForNode(RHS
.getOpcode()) == ARM_AM::no_shift
)) {
4151 // In ARM and Thumb-2, the compare instructions can shift their second
4153 CC
= ISD::getSetCCSwappedOperands(CC
);
4154 std::swap(LHS
, RHS
);
4157 // Thumb1 has very limited immediate modes, so turning an "and" into a
4158 // shift can save multiple instructions.
4160 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4161 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4162 // own. If it's the operand to an unsigned comparison with an immediate,
4163 // we can eliminate one of the shifts: we transform
4164 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4166 // We avoid transforming cases which aren't profitable due to encoding
4169 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4170 // would not; in that case, we're essentially trading one immediate load for
4172 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4173 // 3. C2 is zero; we have other code for this special case.
4175 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4176 // instruction, since the AND is always one instruction anyway, but we could
4177 // use narrow instructions in some cases.
4178 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::AND
&&
4179 LHS
->hasOneUse() && isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4180 LHS
.getValueType() == MVT::i32
&& isa
<ConstantSDNode
>(RHS
) &&
4181 !isSignedIntSetCC(CC
)) {
4182 unsigned Mask
= cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue();
4183 auto *RHSC
= cast
<ConstantSDNode
>(RHS
.getNode());
4184 uint64_t RHSV
= RHSC
->getZExtValue();
4185 if (isMask_32(Mask
) && (RHSV
& ~Mask
) == 0 && Mask
!= 255 && Mask
!= 65535) {
4186 unsigned ShiftBits
= countLeadingZeros(Mask
);
4187 if (RHSV
&& (RHSV
> 255 || (RHSV
<< ShiftBits
) <= 255)) {
4188 SDValue ShiftAmt
= DAG
.getConstant(ShiftBits
, dl
, MVT::i32
);
4189 LHS
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, LHS
.getOperand(0), ShiftAmt
);
4190 RHS
= DAG
.getConstant(RHSV
<< ShiftBits
, dl
, MVT::i32
);
4195 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4196 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4198 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4199 // some tweaks to the heuristics for the previous and->shift transform.
4200 // FIXME: Optimize cases where the LHS isn't a shift.
4201 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::SHL
&&
4202 isa
<ConstantSDNode
>(RHS
) &&
4203 cast
<ConstantSDNode
>(RHS
)->getZExtValue() == 0x80000000U
&&
4204 CC
== ISD::SETUGT
&& isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4205 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() < 31) {
4207 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() + 1;
4208 SDValue Shift
= DAG
.getNode(ARMISD::LSLS
, dl
,
4209 DAG
.getVTList(MVT::i32
, MVT::i32
),
4211 DAG
.getConstant(ShiftAmt
, dl
, MVT::i32
));
4212 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
4213 Shift
.getValue(1), SDValue());
4214 ARMcc
= DAG
.getConstant(ARMCC::HI
, dl
, MVT::i32
);
4215 return Chain
.getValue(1);
4218 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4220 // If the RHS is a constant zero then the V (overflow) flag will never be
4221 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4222 // simpler for other passes (like the peephole optimiser) to deal with.
4223 if (isNullConstant(RHS
)) {
4227 CondCode
= ARMCC::PL
;
4230 CondCode
= ARMCC::MI
;
4235 ARMISD::NodeType CompareType
;
4238 CompareType
= ARMISD::CMP
;
4243 CompareType
= ARMISD::CMPZ
;
4246 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4247 return DAG
.getNode(CompareType
, dl
, MVT::Glue
, LHS
, RHS
);
4250 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4251 SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS
, SDValue RHS
,
4252 SelectionDAG
&DAG
, const SDLoc
&dl
,
4253 bool InvalidOnQNaN
) const {
4254 assert(Subtarget
->hasFP64() || RHS
.getValueType() != MVT::f64
);
4256 SDValue C
= DAG
.getConstant(InvalidOnQNaN
, dl
, MVT::i32
);
4257 if (!isFloatingPointZero(RHS
))
4258 Cmp
= DAG
.getNode(ARMISD::CMPFP
, dl
, MVT::Glue
, LHS
, RHS
, C
);
4260 Cmp
= DAG
.getNode(ARMISD::CMPFPw0
, dl
, MVT::Glue
, LHS
, C
);
4261 return DAG
.getNode(ARMISD::FMSTAT
, dl
, MVT::Glue
, Cmp
);
4264 /// duplicateCmp - Glue values can have only one use, so this function
4265 /// duplicates a comparison node.
4267 ARMTargetLowering::duplicateCmp(SDValue Cmp
, SelectionDAG
&DAG
) const {
4268 unsigned Opc
= Cmp
.getOpcode();
4270 if (Opc
== ARMISD::CMP
|| Opc
== ARMISD::CMPZ
)
4271 return DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4273 assert(Opc
== ARMISD::FMSTAT
&& "unexpected comparison operation");
4274 Cmp
= Cmp
.getOperand(0);
4275 Opc
= Cmp
.getOpcode();
4276 if (Opc
== ARMISD::CMPFP
)
4277 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4278 Cmp
.getOperand(1), Cmp
.getOperand(2));
4280 assert(Opc
== ARMISD::CMPFPw0
&& "unexpected operand of FMSTAT");
4281 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4284 return DAG
.getNode(ARMISD::FMSTAT
, DL
, MVT::Glue
, Cmp
);
4287 // This function returns three things: the arithmetic computation itself
4288 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4289 // comparison and the condition code define the case in which the arithmetic
4290 // computation *does not* overflow.
4291 std::pair
<SDValue
, SDValue
>
4292 ARMTargetLowering::getARMXALUOOp(SDValue Op
, SelectionDAG
&DAG
,
4293 SDValue
&ARMcc
) const {
4294 assert(Op
.getValueType() == MVT::i32
&& "Unsupported value type");
4296 SDValue Value
, OverflowCmp
;
4297 SDValue LHS
= Op
.getOperand(0);
4298 SDValue RHS
= Op
.getOperand(1);
4301 // FIXME: We are currently always generating CMPs because we don't support
4302 // generating CMN through the backend. This is not as good as the natural
4303 // CMP case because it causes a register dependency and cannot be folded
4306 switch (Op
.getOpcode()) {
4308 llvm_unreachable("Unknown overflow instruction!");
4310 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4311 Value
= DAG
.getNode(ISD::ADD
, dl
, Op
.getValueType(), LHS
, RHS
);
4312 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4315 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4316 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4317 // We do not use it in the USUBO case as Value may not be used.
4318 Value
= DAG
.getNode(ARMISD::ADDC
, dl
,
4319 DAG
.getVTList(Op
.getValueType(), MVT::i32
), LHS
, RHS
)
4321 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4324 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4325 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4326 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4329 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4330 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4331 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4334 // We generate a UMUL_LOHI and then check if the high word is 0.
4335 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4336 Value
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
4337 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4339 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4340 DAG
.getConstant(0, dl
, MVT::i32
));
4341 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4344 // We generate a SMUL_LOHI and then check if all the bits of the high word
4345 // are the same as the sign bit of the low word.
4346 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4347 Value
= DAG
.getNode(ISD::SMUL_LOHI
, dl
,
4348 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4350 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4351 DAG
.getNode(ISD::SRA
, dl
, Op
.getValueType(),
4353 DAG
.getConstant(31, dl
, MVT::i32
)));
4354 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4358 return std::make_pair(Value
, OverflowCmp
);
4362 ARMTargetLowering::LowerSignedALUO(SDValue Op
, SelectionDAG
&DAG
) const {
4363 // Let legalize expand this if it isn't a legal type yet.
4364 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4367 SDValue Value
, OverflowCmp
;
4369 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Op
, DAG
, ARMcc
);
4370 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4372 // We use 0 and 1 as false and true values.
4373 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
4374 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
4375 EVT VT
= Op
.getValueType();
4377 SDValue Overflow
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, TVal
, FVal
,
4378 ARMcc
, CCR
, OverflowCmp
);
4380 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
4381 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4384 static SDValue
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry
,
4385 SelectionDAG
&DAG
) {
4386 SDLoc
DL(BoolCarry
);
4387 EVT CarryVT
= BoolCarry
.getValueType();
4389 // This converts the boolean value carry into the carry flag by doing
4390 // ARMISD::SUBC Carry, 1
4391 SDValue Carry
= DAG
.getNode(ARMISD::SUBC
, DL
,
4392 DAG
.getVTList(CarryVT
, MVT::i32
),
4393 BoolCarry
, DAG
.getConstant(1, DL
, CarryVT
));
4394 return Carry
.getValue(1);
4397 static SDValue
ConvertCarryFlagToBooleanCarry(SDValue Flags
, EVT VT
,
4398 SelectionDAG
&DAG
) {
4401 // Now convert the carry flag into a boolean carry. We do this
4402 // using ARMISD:ADDE 0, 0, Carry
4403 return DAG
.getNode(ARMISD::ADDE
, DL
, DAG
.getVTList(VT
, MVT::i32
),
4404 DAG
.getConstant(0, DL
, MVT::i32
),
4405 DAG
.getConstant(0, DL
, MVT::i32
), Flags
);
4408 SDValue
ARMTargetLowering::LowerUnsignedALUO(SDValue Op
,
4409 SelectionDAG
&DAG
) const {
4410 // Let legalize expand this if it isn't a legal type yet.
4411 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4414 SDValue LHS
= Op
.getOperand(0);
4415 SDValue RHS
= Op
.getOperand(1);
4418 EVT VT
= Op
.getValueType();
4419 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
4422 switch (Op
.getOpcode()) {
4424 llvm_unreachable("Unknown overflow instruction!");
4426 Value
= DAG
.getNode(ARMISD::ADDC
, dl
, VTs
, LHS
, RHS
);
4427 // Convert the carry flag into a boolean value.
4428 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4431 Value
= DAG
.getNode(ARMISD::SUBC
, dl
, VTs
, LHS
, RHS
);
4432 // Convert the carry flag into a boolean value.
4433 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4434 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4435 // value. So compute 1 - C.
4436 Overflow
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
4437 DAG
.getConstant(1, dl
, MVT::i32
), Overflow
);
4442 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4445 SDValue
ARMTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
4446 SDValue Cond
= Op
.getOperand(0);
4447 SDValue SelectTrue
= Op
.getOperand(1);
4448 SDValue SelectFalse
= Op
.getOperand(2);
4450 unsigned Opc
= Cond
.getOpcode();
4452 if (Cond
.getResNo() == 1 &&
4453 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4454 Opc
== ISD::USUBO
)) {
4455 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4458 SDValue Value
, OverflowCmp
;
4460 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4461 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4462 EVT VT
= Op
.getValueType();
4464 return getCMOV(dl
, VT
, SelectTrue
, SelectFalse
, ARMcc
, CCR
,
4470 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4471 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4473 if (Cond
.getOpcode() == ARMISD::CMOV
&& Cond
.hasOneUse()) {
4474 const ConstantSDNode
*CMOVTrue
=
4475 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(0));
4476 const ConstantSDNode
*CMOVFalse
=
4477 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
4479 if (CMOVTrue
&& CMOVFalse
) {
4480 unsigned CMOVTrueVal
= CMOVTrue
->getZExtValue();
4481 unsigned CMOVFalseVal
= CMOVFalse
->getZExtValue();
4485 if (CMOVTrueVal
== 1 && CMOVFalseVal
== 0) {
4487 False
= SelectFalse
;
4488 } else if (CMOVTrueVal
== 0 && CMOVFalseVal
== 1) {
4493 if (True
.getNode() && False
.getNode()) {
4494 EVT VT
= Op
.getValueType();
4495 SDValue ARMcc
= Cond
.getOperand(2);
4496 SDValue CCR
= Cond
.getOperand(3);
4497 SDValue Cmp
= duplicateCmp(Cond
.getOperand(4), DAG
);
4498 assert(True
.getValueType() == VT
);
4499 return getCMOV(dl
, VT
, True
, False
, ARMcc
, CCR
, Cmp
, DAG
);
4504 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4505 // undefined bits before doing a full-word comparison with zero.
4506 Cond
= DAG
.getNode(ISD::AND
, dl
, Cond
.getValueType(), Cond
,
4507 DAG
.getConstant(1, dl
, Cond
.getValueType()));
4509 return DAG
.getSelectCC(dl
, Cond
,
4510 DAG
.getConstant(0, dl
, Cond
.getValueType()),
4511 SelectTrue
, SelectFalse
, ISD::SETNE
);
4514 static void checkVSELConstraints(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
4515 bool &swpCmpOps
, bool &swpVselOps
) {
4516 // Start by selecting the GE condition code for opcodes that return true for
4518 if (CC
== ISD::SETUGE
|| CC
== ISD::SETOGE
|| CC
== ISD::SETOLE
||
4519 CC
== ISD::SETULE
|| CC
== ISD::SETGE
|| CC
== ISD::SETLE
)
4520 CondCode
= ARMCC::GE
;
4522 // and GT for opcodes that return false for 'equality'.
4523 else if (CC
== ISD::SETUGT
|| CC
== ISD::SETOGT
|| CC
== ISD::SETOLT
||
4524 CC
== ISD::SETULT
|| CC
== ISD::SETGT
|| CC
== ISD::SETLT
)
4525 CondCode
= ARMCC::GT
;
4527 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4528 // to swap the compare operands.
4529 if (CC
== ISD::SETOLE
|| CC
== ISD::SETULE
|| CC
== ISD::SETOLT
||
4530 CC
== ISD::SETULT
|| CC
== ISD::SETLE
|| CC
== ISD::SETLT
)
4533 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4534 // If we have an unordered opcode, we need to swap the operands to the VSEL
4535 // instruction (effectively negating the condition).
4537 // This also has the effect of swapping which one of 'less' or 'greater'
4538 // returns true, so we also swap the compare operands. It also switches
4539 // whether we return true for 'equality', so we compensate by picking the
4540 // opposite condition code to our original choice.
4541 if (CC
== ISD::SETULE
|| CC
== ISD::SETULT
|| CC
== ISD::SETUGE
||
4542 CC
== ISD::SETUGT
) {
4543 swpCmpOps
= !swpCmpOps
;
4544 swpVselOps
= !swpVselOps
;
4545 CondCode
= CondCode
== ARMCC::GT
? ARMCC::GE
: ARMCC::GT
;
4548 // 'ordered' is 'anything but unordered', so use the VS condition code and
4549 // swap the VSEL operands.
4550 if (CC
== ISD::SETO
) {
4551 CondCode
= ARMCC::VS
;
4555 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4556 // code and swap the VSEL operands. Also do this if we don't care about the
4558 if (CC
== ISD::SETUNE
|| CC
== ISD::SETNE
) {
4559 CondCode
= ARMCC::EQ
;
4564 SDValue
ARMTargetLowering::getCMOV(const SDLoc
&dl
, EVT VT
, SDValue FalseVal
,
4565 SDValue TrueVal
, SDValue ARMcc
, SDValue CCR
,
4566 SDValue Cmp
, SelectionDAG
&DAG
) const {
4567 if (!Subtarget
->hasFP64() && VT
== MVT::f64
) {
4568 FalseVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4569 DAG
.getVTList(MVT::i32
, MVT::i32
), FalseVal
);
4570 TrueVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4571 DAG
.getVTList(MVT::i32
, MVT::i32
), TrueVal
);
4573 SDValue TrueLow
= TrueVal
.getValue(0);
4574 SDValue TrueHigh
= TrueVal
.getValue(1);
4575 SDValue FalseLow
= FalseVal
.getValue(0);
4576 SDValue FalseHigh
= FalseVal
.getValue(1);
4578 SDValue Low
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseLow
, TrueLow
,
4580 SDValue High
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseHigh
, TrueHigh
,
4581 ARMcc
, CCR
, duplicateCmp(Cmp
, DAG
));
4583 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Low
, High
);
4585 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
,
4590 static bool isGTorGE(ISD::CondCode CC
) {
4591 return CC
== ISD::SETGT
|| CC
== ISD::SETGE
;
4594 static bool isLTorLE(ISD::CondCode CC
) {
4595 return CC
== ISD::SETLT
|| CC
== ISD::SETLE
;
4598 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4599 // All of these conditions (and their <= and >= counterparts) will do:
4604 static bool isLowerSaturate(const SDValue LHS
, const SDValue RHS
,
4605 const SDValue TrueVal
, const SDValue FalseVal
,
4606 const ISD::CondCode CC
, const SDValue K
) {
4607 return (isGTorGE(CC
) &&
4608 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
))) ||
4610 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
)));
4613 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4614 static bool isUpperSaturate(const SDValue LHS
, const SDValue RHS
,
4615 const SDValue TrueVal
, const SDValue FalseVal
,
4616 const ISD::CondCode CC
, const SDValue K
) {
4617 return (isGTorGE(CC
) &&
4618 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
))) ||
4620 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
)));
4623 // Check if two chained conditionals could be converted into SSAT or USAT.
4625 // SSAT can replace a set of two conditional selectors that bound a number to an
4626 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4628 // x < -k ? -k : (x > k ? k : x)
4629 // x < -k ? -k : (x < k ? x : k)
4630 // x > -k ? (x > k ? k : x) : -k
4631 // x < k ? (x < -k ? -k : x) : k
4634 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4637 // It returns true if the conversion can be done, false otherwise.
4638 // Additionally, the variable is returned in parameter V, the constant in K and
4639 // usat is set to true if the conditional represents an unsigned saturation
4640 static bool isSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4641 uint64_t &K
, bool &usat
) {
4642 SDValue LHS1
= Op
.getOperand(0);
4643 SDValue RHS1
= Op
.getOperand(1);
4644 SDValue TrueVal1
= Op
.getOperand(2);
4645 SDValue FalseVal1
= Op
.getOperand(3);
4646 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4648 const SDValue Op2
= isa
<ConstantSDNode
>(TrueVal1
) ? FalseVal1
: TrueVal1
;
4649 if (Op2
.getOpcode() != ISD::SELECT_CC
)
4652 SDValue LHS2
= Op2
.getOperand(0);
4653 SDValue RHS2
= Op2
.getOperand(1);
4654 SDValue TrueVal2
= Op2
.getOperand(2);
4655 SDValue FalseVal2
= Op2
.getOperand(3);
4656 ISD::CondCode CC2
= cast
<CondCodeSDNode
>(Op2
.getOperand(4))->get();
4658 // Find out which are the constants and which are the variables
4659 // in each conditional
4660 SDValue
*K1
= isa
<ConstantSDNode
>(LHS1
) ? &LHS1
: isa
<ConstantSDNode
>(RHS1
)
4663 SDValue
*K2
= isa
<ConstantSDNode
>(LHS2
) ? &LHS2
: isa
<ConstantSDNode
>(RHS2
)
4666 SDValue K2Tmp
= isa
<ConstantSDNode
>(TrueVal2
) ? TrueVal2
: FalseVal2
;
4667 SDValue V1Tmp
= (K1
&& *K1
== LHS1
) ? RHS1
: LHS1
;
4668 SDValue V2Tmp
= (K2
&& *K2
== LHS2
) ? RHS2
: LHS2
;
4669 SDValue V2
= (K2Tmp
== TrueVal2
) ? FalseVal2
: TrueVal2
;
4671 // We must detect cases where the original operations worked with 16- or
4672 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4673 // must work with sign-extended values but the select operations return
4674 // the original non-extended value.
4675 SDValue V2TmpReg
= V2Tmp
;
4676 if (V2Tmp
->getOpcode() == ISD::SIGN_EXTEND_INREG
)
4677 V2TmpReg
= V2Tmp
->getOperand(0);
4679 // Check that the registers and the constants have the correct values
4680 // in both conditionals
4681 if (!K1
|| !K2
|| *K1
== Op2
|| *K2
!= K2Tmp
|| V1Tmp
!= V2Tmp
||
4685 // Figure out which conditional is saturating the lower/upper bound.
4686 const SDValue
*LowerCheckOp
=
4687 isLowerSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4689 : isLowerSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4692 const SDValue
*UpperCheckOp
=
4693 isUpperSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4695 : isUpperSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4699 if (!UpperCheckOp
|| !LowerCheckOp
|| LowerCheckOp
== UpperCheckOp
)
4702 // Check that the constant in the lower-bound check is
4703 // the opposite of the constant in the upper-bound check
4704 // in 1's complement.
4705 int64_t Val1
= cast
<ConstantSDNode
>(*K1
)->getSExtValue();
4706 int64_t Val2
= cast
<ConstantSDNode
>(*K2
)->getSExtValue();
4707 int64_t PosVal
= std::max(Val1
, Val2
);
4708 int64_t NegVal
= std::min(Val1
, Val2
);
4710 if (((Val1
> Val2
&& UpperCheckOp
== &Op
) ||
4711 (Val1
< Val2
&& UpperCheckOp
== &Op2
)) &&
4712 isPowerOf2_64(PosVal
+ 1)) {
4714 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4717 else if (NegVal
== 0)
4723 K
= (uint64_t)PosVal
; // At this point, PosVal is guaranteed to be positive
4731 // Check if a condition of the type x < k ? k : x can be converted into a
4732 // bit operation instead of conditional moves.
4733 // Currently this is allowed given:
4734 // - The conditions and values match up
4735 // - k is 0 or -1 (all ones)
4736 // This function will not check the last condition, thats up to the caller
4737 // It returns true if the transformation can be made, and in such case
4738 // returns x in V, and k in SatK.
4739 static bool isLowerSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4742 SDValue LHS
= Op
.getOperand(0);
4743 SDValue RHS
= Op
.getOperand(1);
4744 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4745 SDValue TrueVal
= Op
.getOperand(2);
4746 SDValue FalseVal
= Op
.getOperand(3);
4748 SDValue
*K
= isa
<ConstantSDNode
>(LHS
) ? &LHS
: isa
<ConstantSDNode
>(RHS
)
4752 // No constant operation in comparison, early out
4756 SDValue KTmp
= isa
<ConstantSDNode
>(TrueVal
) ? TrueVal
: FalseVal
;
4757 V
= (KTmp
== TrueVal
) ? FalseVal
: TrueVal
;
4758 SDValue VTmp
= (K
&& *K
== LHS
) ? RHS
: LHS
;
4760 // If the constant on left and right side, or variable on left and right,
4761 // does not match, early out
4762 if (*K
!= KTmp
|| V
!= VTmp
)
4765 if (isLowerSaturate(LHS
, RHS
, TrueVal
, FalseVal
, CC
, *K
)) {
4773 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT
) const {
4775 return !Subtarget
->hasVFP2Base();
4777 return !Subtarget
->hasFP64();
4779 return !Subtarget
->hasFullFP16();
4783 SDValue
ARMTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4784 EVT VT
= Op
.getValueType();
4787 // Try to convert two saturating conditional selects into a single SSAT
4789 uint64_t SatConstant
;
4791 if (((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) || Subtarget
->isThumb2()) &&
4792 isSaturatingConditional(Op
, SatValue
, SatConstant
, SatUSat
)) {
4794 return DAG
.getNode(ARMISD::USAT
, dl
, VT
, SatValue
,
4795 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4797 return DAG
.getNode(ARMISD::SSAT
, dl
, VT
, SatValue
,
4798 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4801 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4802 // into more efficient bit operations, which is possible when k is 0 or -1
4803 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4804 // single instructions. On Thumb the shift and the bit operation will be two
4806 // Only allow this transformation on full-width (32-bit) operations
4807 SDValue LowerSatConstant
;
4808 if (VT
== MVT::i32
&&
4809 isLowerSaturatingConditional(Op
, SatValue
, LowerSatConstant
)) {
4810 SDValue ShiftV
= DAG
.getNode(ISD::SRA
, dl
, VT
, SatValue
,
4811 DAG
.getConstant(31, dl
, VT
));
4812 if (isNullConstant(LowerSatConstant
)) {
4813 SDValue NotShiftV
= DAG
.getNode(ISD::XOR
, dl
, VT
, ShiftV
,
4814 DAG
.getAllOnesConstant(dl
, VT
));
4815 return DAG
.getNode(ISD::AND
, dl
, VT
, SatValue
, NotShiftV
);
4816 } else if (isAllOnesConstant(LowerSatConstant
))
4817 return DAG
.getNode(ISD::OR
, dl
, VT
, SatValue
, ShiftV
);
4820 SDValue LHS
= Op
.getOperand(0);
4821 SDValue RHS
= Op
.getOperand(1);
4822 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4823 SDValue TrueVal
= Op
.getOperand(2);
4824 SDValue FalseVal
= Op
.getOperand(3);
4825 ConstantSDNode
*CFVal
= dyn_cast
<ConstantSDNode
>(FalseVal
);
4826 ConstantSDNode
*CTVal
= dyn_cast
<ConstantSDNode
>(TrueVal
);
4828 if (Subtarget
->hasV8_1MMainlineOps() && CFVal
&& CTVal
&&
4829 LHS
.getValueType() == MVT::i32
&& RHS
.getValueType() == MVT::i32
) {
4830 unsigned TVal
= CTVal
->getZExtValue();
4831 unsigned FVal
= CFVal
->getZExtValue();
4832 unsigned Opcode
= 0;
4834 if (TVal
== ~FVal
) {
4835 Opcode
= ARMISD::CSINV
;
4836 } else if (TVal
== ~FVal
+ 1) {
4837 Opcode
= ARMISD::CSNEG
;
4838 } else if (TVal
+ 1 == FVal
) {
4839 Opcode
= ARMISD::CSINC
;
4840 } else if (TVal
== FVal
+ 1) {
4841 Opcode
= ARMISD::CSINC
;
4842 std::swap(TrueVal
, FalseVal
);
4843 std::swap(TVal
, FVal
);
4844 CC
= ISD::getSetCCInverse(CC
, true);
4848 // If one of the constants is cheaper than another, materialise the
4849 // cheaper one and let the csel generate the other.
4850 if (Opcode
!= ARMISD::CSINC
&&
4851 HasLowerConstantMaterializationCost(FVal
, TVal
, Subtarget
)) {
4852 std::swap(TrueVal
, FalseVal
);
4853 std::swap(TVal
, FVal
);
4854 CC
= ISD::getSetCCInverse(CC
, true);
4857 // Attempt to use ZR checking TVal is 0, possibly inverting the condition
4858 // to get there. CSINC not is invertable like the other two (~(~a) == a,
4859 // -(-a) == a, but (a+1)+1 != a).
4860 if (FVal
== 0 && Opcode
!= ARMISD::CSINC
) {
4861 std::swap(TrueVal
, FalseVal
);
4862 std::swap(TVal
, FVal
);
4863 CC
= ISD::getSetCCInverse(CC
, true);
4866 TrueVal
= DAG
.getRegister(ARM::ZR
, MVT::i32
);
4868 // Drops F's value because we can get it by inverting/negating TVal.
4872 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4873 EVT VT
= TrueVal
.getValueType();
4874 return DAG
.getNode(Opcode
, dl
, VT
, TrueVal
, FalseVal
, ARMcc
, Cmp
);
4878 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4879 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4880 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
4882 // If softenSetCCOperands only returned one value, we should compare it to
4884 if (!RHS
.getNode()) {
4885 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4890 if (LHS
.getValueType() == MVT::i32
) {
4891 // Try to generate VSEL on ARMv8.
4892 // The VSEL instruction can't use all the usual ARM condition
4893 // codes: it only has two bits to select the condition code, so it's
4894 // constrained to use only GE, GT, VS and EQ.
4896 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4897 // swap the operands of the previous compare instruction (effectively
4898 // inverting the compare condition, swapping 'less' and 'greater') and
4899 // sometimes need to swap the operands to the VSEL (which inverts the
4900 // condition in the sense of firing whenever the previous condition didn't)
4901 if (Subtarget
->hasFPARMv8Base() && (TrueVal
.getValueType() == MVT::f16
||
4902 TrueVal
.getValueType() == MVT::f32
||
4903 TrueVal
.getValueType() == MVT::f64
)) {
4904 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4905 if (CondCode
== ARMCC::LT
|| CondCode
== ARMCC::LE
||
4906 CondCode
== ARMCC::VC
|| CondCode
== ARMCC::NE
) {
4907 CC
= ISD::getSetCCInverse(CC
, true);
4908 std::swap(TrueVal
, FalseVal
);
4913 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4914 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4915 // Choose GE over PL, which vsel does now support
4916 if (cast
<ConstantSDNode
>(ARMcc
)->getZExtValue() == ARMCC::PL
)
4917 ARMcc
= DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
);
4918 return getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4921 ARMCC::CondCodes CondCode
, CondCode2
;
4923 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
4925 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4926 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4927 // must use VSEL (limited condition codes), due to not having conditional f16
4929 if (Subtarget
->hasFPARMv8Base() &&
4930 !(isFloatingPointZero(RHS
) && TrueVal
.getValueType() != MVT::f16
) &&
4931 (TrueVal
.getValueType() == MVT::f16
||
4932 TrueVal
.getValueType() == MVT::f32
||
4933 TrueVal
.getValueType() == MVT::f64
)) {
4934 bool swpCmpOps
= false;
4935 bool swpVselOps
= false;
4936 checkVSELConstraints(CC
, CondCode
, swpCmpOps
, swpVselOps
);
4938 if (CondCode
== ARMCC::GT
|| CondCode
== ARMCC::GE
||
4939 CondCode
== ARMCC::VS
|| CondCode
== ARMCC::EQ
) {
4941 std::swap(LHS
, RHS
);
4943 std::swap(TrueVal
, FalseVal
);
4947 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4948 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4949 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4950 SDValue Result
= getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4951 if (CondCode2
!= ARMCC::AL
) {
4952 SDValue ARMcc2
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4953 // FIXME: Needs another CMP because flag can have but one use.
4954 SDValue Cmp2
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4955 Result
= getCMOV(dl
, VT
, Result
, TrueVal
, ARMcc2
, CCR
, Cmp2
, DAG
);
4960 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4961 /// to morph to an integer compare sequence.
4962 static bool canChangeToInt(SDValue Op
, bool &SeenZero
,
4963 const ARMSubtarget
*Subtarget
) {
4964 SDNode
*N
= Op
.getNode();
4965 if (!N
->hasOneUse())
4966 // Otherwise it requires moving the value from fp to integer registers.
4968 if (!N
->getNumValues())
4970 EVT VT
= Op
.getValueType();
4971 if (VT
!= MVT::f32
&& !Subtarget
->isFPBrccSlow())
4972 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4973 // vmrs are very slow, e.g. cortex-a8.
4976 if (isFloatingPointZero(Op
)) {
4980 return ISD::isNormalLoad(N
);
4983 static SDValue
bitcastf32Toi32(SDValue Op
, SelectionDAG
&DAG
) {
4984 if (isFloatingPointZero(Op
))
4985 return DAG
.getConstant(0, SDLoc(Op
), MVT::i32
);
4987 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
))
4988 return DAG
.getLoad(MVT::i32
, SDLoc(Op
), Ld
->getChain(), Ld
->getBasePtr(),
4989 Ld
->getPointerInfo(), Ld
->getAlignment(),
4990 Ld
->getMemOperand()->getFlags());
4992 llvm_unreachable("Unknown VFP cmp argument!");
4995 static void expandf64Toi32(SDValue Op
, SelectionDAG
&DAG
,
4996 SDValue
&RetVal1
, SDValue
&RetVal2
) {
4999 if (isFloatingPointZero(Op
)) {
5000 RetVal1
= DAG
.getConstant(0, dl
, MVT::i32
);
5001 RetVal2
= DAG
.getConstant(0, dl
, MVT::i32
);
5005 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
)) {
5006 SDValue Ptr
= Ld
->getBasePtr();
5008 DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), Ptr
, Ld
->getPointerInfo(),
5009 Ld
->getAlignment(), Ld
->getMemOperand()->getFlags());
5011 EVT PtrType
= Ptr
.getValueType();
5012 unsigned NewAlign
= MinAlign(Ld
->getAlignment(), 4);
5013 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, dl
,
5014 PtrType
, Ptr
, DAG
.getConstant(4, dl
, PtrType
));
5015 RetVal2
= DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), NewPtr
,
5016 Ld
->getPointerInfo().getWithOffset(4), NewAlign
,
5017 Ld
->getMemOperand()->getFlags());
5021 llvm_unreachable("Unknown VFP cmp argument!");
5024 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5025 /// f32 and even f64 comparisons to integer ones.
5027 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op
, SelectionDAG
&DAG
) const {
5028 SDValue Chain
= Op
.getOperand(0);
5029 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5030 SDValue LHS
= Op
.getOperand(2);
5031 SDValue RHS
= Op
.getOperand(3);
5032 SDValue Dest
= Op
.getOperand(4);
5035 bool LHSSeenZero
= false;
5036 bool LHSOk
= canChangeToInt(LHS
, LHSSeenZero
, Subtarget
);
5037 bool RHSSeenZero
= false;
5038 bool RHSOk
= canChangeToInt(RHS
, RHSSeenZero
, Subtarget
);
5039 if (LHSOk
&& RHSOk
&& (LHSSeenZero
|| RHSSeenZero
)) {
5040 // If unsafe fp math optimization is enabled and there are no other uses of
5041 // the CMP operands, and the condition code is EQ or NE, we can optimize it
5042 // to an integer comparison.
5043 if (CC
== ISD::SETOEQ
)
5045 else if (CC
== ISD::SETUNE
)
5048 SDValue Mask
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5050 if (LHS
.getValueType() == MVT::f32
) {
5051 LHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5052 bitcastf32Toi32(LHS
, DAG
), Mask
);
5053 RHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5054 bitcastf32Toi32(RHS
, DAG
), Mask
);
5055 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5056 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5057 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5058 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5063 expandf64Toi32(LHS
, DAG
, LHS1
, LHS2
);
5064 expandf64Toi32(RHS
, DAG
, RHS1
, RHS2
);
5065 LHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, LHS2
, Mask
);
5066 RHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RHS2
, Mask
);
5067 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
5068 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5069 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5070 SDValue Ops
[] = { Chain
, ARMcc
, LHS1
, LHS2
, RHS1
, RHS2
, Dest
};
5071 return DAG
.getNode(ARMISD::BCC_i64
, dl
, VTList
, Ops
);
5077 SDValue
ARMTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
5078 SDValue Chain
= Op
.getOperand(0);
5079 SDValue Cond
= Op
.getOperand(1);
5080 SDValue Dest
= Op
.getOperand(2);
5083 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5085 unsigned Opc
= Cond
.getOpcode();
5086 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5087 !Subtarget
->isThumb1Only();
5088 if (Cond
.getResNo() == 1 &&
5089 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5090 Opc
== ISD::USUBO
|| OptimizeMul
)) {
5091 // Only lower legal XALUO ops.
5092 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
5095 // The actual operation with overflow check.
5096 SDValue Value
, OverflowCmp
;
5098 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
5100 // Reverse the condition code.
5101 ARMCC::CondCodes CondCode
=
5102 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5103 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5104 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5105 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5107 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5114 SDValue
ARMTargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
5115 SDValue Chain
= Op
.getOperand(0);
5116 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5117 SDValue LHS
= Op
.getOperand(2);
5118 SDValue RHS
= Op
.getOperand(3);
5119 SDValue Dest
= Op
.getOperand(4);
5122 if (isUnsupportedFloatingType(LHS
.getValueType())) {
5123 DAG
.getTargetLoweringInfo().softenSetCCOperands(
5124 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
5126 // If softenSetCCOperands only returned one value, we should compare it to
5128 if (!RHS
.getNode()) {
5129 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
5134 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5136 unsigned Opc
= LHS
.getOpcode();
5137 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5138 !Subtarget
->isThumb1Only();
5139 if (LHS
.getResNo() == 1 && (isOneConstant(RHS
) || isNullConstant(RHS
)) &&
5140 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5141 Opc
== ISD::USUBO
|| OptimizeMul
) &&
5142 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5143 // Only lower legal XALUO ops.
5144 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
5147 // The actual operation with overflow check.
5148 SDValue Value
, OverflowCmp
;
5150 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(LHS
.getValue(0), DAG
, ARMcc
);
5152 if ((CC
== ISD::SETNE
) != isOneConstant(RHS
)) {
5153 // Reverse the condition code.
5154 ARMCC::CondCodes CondCode
=
5155 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5156 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5157 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5159 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5161 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5165 if (LHS
.getValueType() == MVT::i32
) {
5167 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5168 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5169 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5170 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5173 if (getTargetMachine().Options
.UnsafeFPMath
&&
5174 (CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
||
5175 CC
== ISD::SETNE
|| CC
== ISD::SETUNE
)) {
5176 if (SDValue Result
= OptimizeVFPBrcond(Op
, DAG
))
5180 ARMCC::CondCodes CondCode
, CondCode2
;
5182 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
5184 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5185 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
5186 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5187 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5188 SDValue Ops
[] = { Chain
, Dest
, ARMcc
, CCR
, Cmp
};
5189 SDValue Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5190 if (CondCode2
!= ARMCC::AL
) {
5191 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
5192 SDValue Ops
[] = { Res
, Dest
, ARMcc
, CCR
, Res
.getValue(1) };
5193 Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5198 SDValue
ARMTargetLowering::LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const {
5199 SDValue Chain
= Op
.getOperand(0);
5200 SDValue Table
= Op
.getOperand(1);
5201 SDValue Index
= Op
.getOperand(2);
5204 EVT PTy
= getPointerTy(DAG
.getDataLayout());
5205 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
5206 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
5207 Table
= DAG
.getNode(ARMISD::WrapperJT
, dl
, MVT::i32
, JTI
);
5208 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
, Index
, DAG
.getConstant(4, dl
, PTy
));
5209 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Index
);
5210 if (Subtarget
->isThumb2() || (Subtarget
->hasV8MBaselineOps() && Subtarget
->isThumb())) {
5211 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5212 // which does another jump to the destination. This also makes it easier
5213 // to translate it to TBB / TBH later (Thumb2 only).
5214 // FIXME: This might not work if the function is extremely large.
5215 return DAG
.getNode(ARMISD::BR2_JT
, dl
, MVT::Other
, Chain
,
5216 Addr
, Op
.getOperand(2), JTI
);
5218 if (isPositionIndependent() || Subtarget
->isROPI()) {
5220 DAG
.getLoad((EVT
)MVT::i32
, dl
, Chain
, Addr
,
5221 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5222 Chain
= Addr
.getValue(1);
5223 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Addr
);
5224 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5227 DAG
.getLoad(PTy
, dl
, Chain
, Addr
,
5228 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5229 Chain
= Addr
.getValue(1);
5230 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5234 static SDValue
LowerVectorFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) {
5235 EVT VT
= Op
.getValueType();
5238 if (Op
.getValueType().getVectorElementType() == MVT::i32
) {
5239 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::f32
)
5241 return DAG
.UnrollVectorOp(Op
.getNode());
5244 const bool HasFullFP16
=
5245 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5248 const EVT OpTy
= Op
.getOperand(0).getValueType();
5249 if (OpTy
== MVT::v4f32
)
5251 else if (OpTy
== MVT::v4f16
&& HasFullFP16
)
5253 else if (OpTy
== MVT::v8f16
&& HasFullFP16
)
5256 llvm_unreachable("Invalid type for custom lowering!");
5258 if (VT
!= MVT::v4i16
&& VT
!= MVT::v8i16
)
5259 return DAG
.UnrollVectorOp(Op
.getNode());
5261 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NewTy
, Op
.getOperand(0));
5262 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op
);
5265 SDValue
ARMTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const {
5266 EVT VT
= Op
.getValueType();
5268 return LowerVectorFP_TO_INT(Op
, DAG
);
5269 if (isUnsupportedFloatingType(Op
.getOperand(0).getValueType())) {
5271 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
5272 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(),
5275 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(),
5277 MakeLibCallOptions CallOptions
;
5278 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5279 CallOptions
, SDLoc(Op
)).first
;
5285 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
5286 EVT VT
= Op
.getValueType();
5289 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i32
) {
5290 if (VT
.getVectorElementType() == MVT::f32
)
5292 return DAG
.UnrollVectorOp(Op
.getNode());
5295 assert((Op
.getOperand(0).getValueType() == MVT::v4i16
||
5296 Op
.getOperand(0).getValueType() == MVT::v8i16
) &&
5297 "Invalid type for custom lowering!");
5299 const bool HasFullFP16
=
5300 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5303 if (VT
== MVT::v4f32
)
5304 DestVecType
= MVT::v4i32
;
5305 else if (VT
== MVT::v4f16
&& HasFullFP16
)
5306 DestVecType
= MVT::v4i16
;
5307 else if (VT
== MVT::v8f16
&& HasFullFP16
)
5308 DestVecType
= MVT::v8i16
;
5310 return DAG
.UnrollVectorOp(Op
.getNode());
5314 switch (Op
.getOpcode()) {
5315 default: llvm_unreachable("Invalid opcode!");
5316 case ISD::SINT_TO_FP
:
5317 CastOpc
= ISD::SIGN_EXTEND
;
5318 Opc
= ISD::SINT_TO_FP
;
5320 case ISD::UINT_TO_FP
:
5321 CastOpc
= ISD::ZERO_EXTEND
;
5322 Opc
= ISD::UINT_TO_FP
;
5326 Op
= DAG
.getNode(CastOpc
, dl
, DestVecType
, Op
.getOperand(0));
5327 return DAG
.getNode(Opc
, dl
, VT
, Op
);
5330 SDValue
ARMTargetLowering::LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const {
5331 EVT VT
= Op
.getValueType();
5333 return LowerVectorINT_TO_FP(Op
, DAG
);
5334 if (isUnsupportedFloatingType(VT
)) {
5336 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
5337 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(),
5340 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(),
5342 MakeLibCallOptions CallOptions
;
5343 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5344 CallOptions
, SDLoc(Op
)).first
;
5350 SDValue
ARMTargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
5351 // Implement fcopysign with a fabs and a conditional fneg.
5352 SDValue Tmp0
= Op
.getOperand(0);
5353 SDValue Tmp1
= Op
.getOperand(1);
5355 EVT VT
= Op
.getValueType();
5356 EVT SrcVT
= Tmp1
.getValueType();
5357 bool InGPR
= Tmp0
.getOpcode() == ISD::BITCAST
||
5358 Tmp0
.getOpcode() == ARMISD::VMOVDRR
;
5359 bool UseNEON
= !InGPR
&& Subtarget
->hasNEON();
5362 // Use VBSL to copy the sign bit.
5363 unsigned EncodedVal
= ARM_AM::createVMOVModImm(0x6, 0x80);
5364 SDValue Mask
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v2i32
,
5365 DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
));
5366 EVT OpVT
= (VT
== MVT::f32
) ? MVT::v2i32
: MVT::v1i64
;
5368 Mask
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5369 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Mask
),
5370 DAG
.getConstant(32, dl
, MVT::i32
));
5371 else /*if (VT == MVT::f32)*/
5372 Tmp0
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp0
);
5373 if (SrcVT
== MVT::f32
) {
5374 Tmp1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp1
);
5376 Tmp1
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5377 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
),
5378 DAG
.getConstant(32, dl
, MVT::i32
));
5379 } else if (VT
== MVT::f32
)
5380 Tmp1
= DAG
.getNode(ARMISD::VSHRuIMM
, dl
, MVT::v1i64
,
5381 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
, Tmp1
),
5382 DAG
.getConstant(32, dl
, MVT::i32
));
5383 Tmp0
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp0
);
5384 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
);
5386 SDValue AllOnes
= DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5388 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v8i8
, AllOnes
);
5389 SDValue MaskNot
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Mask
,
5390 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, AllOnes
));
5392 SDValue Res
= DAG
.getNode(ISD::OR
, dl
, OpVT
,
5393 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp1
, Mask
),
5394 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp0
, MaskNot
));
5395 if (VT
== MVT::f32
) {
5396 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f32
, Res
);
5397 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, Res
,
5398 DAG
.getConstant(0, dl
, MVT::i32
));
5400 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Res
);
5406 // Bitcast operand 1 to i32.
5407 if (SrcVT
== MVT::f64
)
5408 Tmp1
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5410 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp1
);
5412 // Or in the signbit with integer operations.
5413 SDValue Mask1
= DAG
.getConstant(0x80000000, dl
, MVT::i32
);
5414 SDValue Mask2
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5415 Tmp1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp1
, Mask1
);
5416 if (VT
== MVT::f32
) {
5417 Tmp0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5418 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp0
), Mask2
);
5419 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
5420 DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Tmp0
, Tmp1
));
5423 // f64: Or the high part with signbit and then combine two parts.
5424 Tmp0
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5426 SDValue Lo
= Tmp0
.getValue(0);
5427 SDValue Hi
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp0
.getValue(1), Mask2
);
5428 Hi
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Hi
, Tmp1
);
5429 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
5432 SDValue
ARMTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const{
5433 MachineFunction
&MF
= DAG
.getMachineFunction();
5434 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5435 MFI
.setReturnAddressIsTaken(true);
5437 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
5440 EVT VT
= Op
.getValueType();
5442 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5444 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5445 SDValue Offset
= DAG
.getConstant(4, dl
, MVT::i32
);
5446 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(),
5447 DAG
.getNode(ISD::ADD
, dl
, VT
, FrameAddr
, Offset
),
5448 MachinePointerInfo());
5451 // Return LR, which contains the return address. Mark it an implicit live-in.
5452 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
5453 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, VT
);
5456 SDValue
ARMTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
5457 const ARMBaseRegisterInfo
&ARI
=
5458 *static_cast<const ARMBaseRegisterInfo
*>(RegInfo
);
5459 MachineFunction
&MF
= DAG
.getMachineFunction();
5460 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5461 MFI
.setFrameAddressIsTaken(true);
5463 EVT VT
= Op
.getValueType();
5464 SDLoc
dl(Op
); // FIXME probably not meaningful
5465 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5466 Register FrameReg
= ARI
.getFrameRegister(MF
);
5467 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
5469 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
5470 MachinePointerInfo());
5474 // FIXME? Maybe this could be a TableGen attribute on some registers and
5475 // this table could be generated automatically from RegInfo.
5476 unsigned ARMTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
5477 SelectionDAG
&DAG
) const {
5478 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
5479 .Case("sp", ARM::SP
)
5483 report_fatal_error(Twine("Invalid register name \""
5484 + StringRef(RegName
) + "\"."));
5487 // Result is 64 bit value so split into two 32 bit values and return as a
5489 static void ExpandREAD_REGISTER(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
5490 SelectionDAG
&DAG
) {
5493 // This function is only supposed to be called for i64 type destination.
5494 assert(N
->getValueType(0) == MVT::i64
5495 && "ExpandREAD_REGISTER called for non-i64 type result.");
5497 SDValue Read
= DAG
.getNode(ISD::READ_REGISTER
, DL
,
5498 DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
),
5502 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Read
.getValue(0),
5504 Results
.push_back(Read
.getOperand(0));
5507 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5508 /// When \p DstVT, the destination type of \p BC, is on the vector
5509 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5510 /// it might be possible to combine them, such that everything stays on the
5511 /// vector register bank.
5512 /// \p return The node that would replace \p BT, if the combine
5514 static SDValue
CombineVMOVDRRCandidateWithVecOp(const SDNode
*BC
,
5515 SelectionDAG
&DAG
) {
5516 SDValue Op
= BC
->getOperand(0);
5517 EVT DstVT
= BC
->getValueType(0);
5519 // The only vector instruction that can produce a scalar (remember,
5520 // since the bitcast was about to be turned into VMOVDRR, the source
5521 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5522 // Moreover, we can do this combine only if there is one use.
5523 // Finally, if the destination type is not a vector, there is not
5524 // much point on forcing everything on the vector bank.
5525 if (!DstVT
.isVector() || Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5529 // If the index is not constant, we will introduce an additional
5530 // multiply that will stick.
5531 // Give up in that case.
5532 ConstantSDNode
*Index
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5535 unsigned DstNumElt
= DstVT
.getVectorNumElements();
5537 // Compute the new index.
5538 const APInt
&APIntIndex
= Index
->getAPIntValue();
5539 APInt
NewIndex(APIntIndex
.getBitWidth(), DstNumElt
);
5540 NewIndex
*= APIntIndex
;
5541 // Check if the new constant index fits into i32.
5542 if (NewIndex
.getBitWidth() > 32)
5545 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5546 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5548 SDValue ExtractSrc
= Op
.getOperand(0);
5549 EVT VecVT
= EVT::getVectorVT(
5550 *DAG
.getContext(), DstVT
.getScalarType(),
5551 ExtractSrc
.getValueType().getVectorNumElements() * DstNumElt
);
5552 SDValue BitCast
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, ExtractSrc
);
5553 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DstVT
, BitCast
,
5554 DAG
.getConstant(NewIndex
.getZExtValue(), dl
, MVT::i32
));
5557 /// ExpandBITCAST - If the target supports VFP, this function is called to
5558 /// expand a bit convert where either the source or destination type is i64 to
5559 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5560 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5561 /// vectors), since the legalizer won't know what to do with that.
5562 static SDValue
ExpandBITCAST(SDNode
*N
, SelectionDAG
&DAG
,
5563 const ARMSubtarget
*Subtarget
) {
5564 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5566 SDValue Op
= N
->getOperand(0);
5568 // This function is only supposed to be called for i64 types, either as the
5569 // source or destination of the bit convert.
5570 EVT SrcVT
= Op
.getValueType();
5571 EVT DstVT
= N
->getValueType(0);
5572 const bool HasFullFP16
= Subtarget
->hasFullFP16();
5574 if (SrcVT
== MVT::f32
&& DstVT
== MVT::i32
) {
5575 // FullFP16: half values are passed in S-registers, and we don't
5576 // need any of the bitcast and moves:
5578 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5579 // t5: i32 = bitcast t2
5580 // t18: f16 = ARMISD::VMOVhr t5
5581 if (Op
.getOpcode() != ISD::CopyFromReg
||
5582 Op
.getValueType() != MVT::f32
)
5585 auto Move
= N
->use_begin();
5586 if (Move
->getOpcode() != ARMISD::VMOVhr
)
5589 SDValue Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
5590 SDValue Copy
= DAG
.getNode(ISD::CopyFromReg
, SDLoc(Op
), MVT::f16
, Ops
);
5591 DAG
.ReplaceAllUsesWith(*Move
, &Copy
);
5595 if (SrcVT
== MVT::i16
&& DstVT
== MVT::f16
) {
5598 // SoftFP: read half-precision arguments:
5601 // t7: i16 = truncate t2 <~~~~ Op
5602 // t8: f16 = bitcast t7 <~~~~ N
5604 if (Op
.getOperand(0).getValueType() == MVT::i32
)
5605 return DAG
.getNode(ARMISD::VMOVhr
, SDLoc(Op
),
5606 MVT::f16
, Op
.getOperand(0));
5611 // Half-precision return values
5612 if (SrcVT
== MVT::f16
&& DstVT
== MVT::i16
) {
5616 // t11: f16 = fadd t8, t10
5617 // t12: i16 = bitcast t11 <~~~ SDNode N
5618 // t13: i32 = zero_extend t12
5619 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5620 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5622 // transform this into:
5624 // t20: i32 = ARMISD::VMOVrh t11
5625 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5627 auto ZeroExtend
= N
->use_begin();
5628 if (N
->use_size() != 1 || ZeroExtend
->getOpcode() != ISD::ZERO_EXTEND
||
5629 ZeroExtend
->getValueType(0) != MVT::i32
)
5632 auto Copy
= ZeroExtend
->use_begin();
5633 if (Copy
->getOpcode() == ISD::CopyToReg
&&
5634 Copy
->use_begin()->getOpcode() == ARMISD::RET_FLAG
) {
5635 SDValue Cvt
= DAG
.getNode(ARMISD::VMOVrh
, SDLoc(Op
), MVT::i32
, Op
);
5636 DAG
.ReplaceAllUsesWith(*ZeroExtend
, &Cvt
);
5642 if (!(SrcVT
== MVT::i64
|| DstVT
== MVT::i64
))
5645 // Turn i64->f64 into VMOVDRR.
5646 if (SrcVT
== MVT::i64
&& TLI
.isTypeLegal(DstVT
)) {
5647 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5648 // if we can combine the bitcast with its source.
5649 if (SDValue Val
= CombineVMOVDRRCandidateWithVecOp(N
, DAG
))
5652 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5653 DAG
.getConstant(0, dl
, MVT::i32
));
5654 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5655 DAG
.getConstant(1, dl
, MVT::i32
));
5656 return DAG
.getNode(ISD::BITCAST
, dl
, DstVT
,
5657 DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
));
5660 // Turn f64->i64 into VMOVRRD.
5661 if (DstVT
== MVT::i64
&& TLI
.isTypeLegal(SrcVT
)) {
5663 if (DAG
.getDataLayout().isBigEndian() && SrcVT
.isVector() &&
5664 SrcVT
.getVectorNumElements() > 1)
5665 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5666 DAG
.getVTList(MVT::i32
, MVT::i32
),
5667 DAG
.getNode(ARMISD::VREV64
, dl
, SrcVT
, Op
));
5669 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5670 DAG
.getVTList(MVT::i32
, MVT::i32
), Op
);
5671 // Merge the pieces into a single i64 value.
5672 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Cvt
, Cvt
.getValue(1));
5678 /// getZeroVector - Returns a vector of specified type with all zero elements.
5679 /// Zero vectors are used to represent vector negation and in those cases
5680 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5681 /// not support i64 elements, so sometimes the zero vectors will need to be
5682 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5684 static SDValue
getZeroVector(EVT VT
, SelectionDAG
&DAG
, const SDLoc
&dl
) {
5685 assert(VT
.isVector() && "Expected a vector type");
5686 // The canonical modified immediate encoding of a zero vector is....0!
5687 SDValue EncodedVal
= DAG
.getTargetConstant(0, dl
, MVT::i32
);
5688 EVT VmovVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
5689 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, EncodedVal
);
5690 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
5693 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5694 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5695 SDValue
ARMTargetLowering::LowerShiftRightParts(SDValue Op
,
5696 SelectionDAG
&DAG
) const {
5697 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5698 EVT VT
= Op
.getValueType();
5699 unsigned VTBits
= VT
.getSizeInBits();
5701 SDValue ShOpLo
= Op
.getOperand(0);
5702 SDValue ShOpHi
= Op
.getOperand(1);
5703 SDValue ShAmt
= Op
.getOperand(2);
5705 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5706 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5708 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5710 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5711 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5712 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5713 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5714 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5715 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5716 SDValue LoSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5717 SDValue LoBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5718 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5719 ISD::SETGE
, ARMcc
, DAG
, dl
);
5720 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
, LoBigShift
,
5723 SDValue HiSmallShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5724 SDValue HiBigShift
= Opc
== ISD::SRA
5725 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5726 DAG
.getConstant(VTBits
- 1, dl
, VT
))
5727 : DAG
.getConstant(0, dl
, VT
);
5728 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5729 ISD::SETGE
, ARMcc
, DAG
, dl
);
5730 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5733 SDValue Ops
[2] = { Lo
, Hi
};
5734 return DAG
.getMergeValues(Ops
, dl
);
5737 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5738 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5739 SDValue
ARMTargetLowering::LowerShiftLeftParts(SDValue Op
,
5740 SelectionDAG
&DAG
) const {
5741 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5742 EVT VT
= Op
.getValueType();
5743 unsigned VTBits
= VT
.getSizeInBits();
5745 SDValue ShOpLo
= Op
.getOperand(0);
5746 SDValue ShOpHi
= Op
.getOperand(1);
5747 SDValue ShAmt
= Op
.getOperand(2);
5749 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5751 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5752 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5753 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5754 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5755 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5756 SDValue HiSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5758 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5759 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5760 SDValue HiBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5761 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5762 ISD::SETGE
, ARMcc
, DAG
, dl
);
5763 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5766 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5767 ISD::SETGE
, ARMcc
, DAG
, dl
);
5768 SDValue LoSmallShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5769 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
,
5770 DAG
.getConstant(0, dl
, VT
), ARMcc
, CCR
, CmpLo
);
5772 SDValue Ops
[2] = { Lo
, Hi
};
5773 return DAG
.getMergeValues(Ops
, dl
);
5776 SDValue
ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
5777 SelectionDAG
&DAG
) const {
5778 // The rounding mode is in bits 23:22 of the FPSCR.
5779 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5780 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5781 // so that the shift + and get folded into a bitfield extract.
5783 SDValue Ops
[] = { DAG
.getEntryNode(),
5784 DAG
.getConstant(Intrinsic::arm_get_fpscr
, dl
, MVT::i32
) };
5786 SDValue FPSCR
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, dl
, MVT::i32
, Ops
);
5787 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPSCR
,
5788 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
5789 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
5790 DAG
.getConstant(22, dl
, MVT::i32
));
5791 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
5792 DAG
.getConstant(3, dl
, MVT::i32
));
5795 static SDValue
LowerCTTZ(SDNode
*N
, SelectionDAG
&DAG
,
5796 const ARMSubtarget
*ST
) {
5798 EVT VT
= N
->getValueType(0);
5799 if (VT
.isVector()) {
5800 assert(ST
->hasNEON());
5802 // Compute the least significant set bit: LSB = X & -X
5803 SDValue X
= N
->getOperand(0);
5804 SDValue NX
= DAG
.getNode(ISD::SUB
, dl
, VT
, getZeroVector(VT
, DAG
, dl
), X
);
5805 SDValue LSB
= DAG
.getNode(ISD::AND
, dl
, VT
, X
, NX
);
5807 EVT ElemTy
= VT
.getVectorElementType();
5809 if (ElemTy
== MVT::i8
) {
5810 // Compute with: cttz(x) = ctpop(lsb - 1)
5811 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5812 DAG
.getTargetConstant(1, dl
, ElemTy
));
5813 SDValue Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5814 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5817 if ((ElemTy
== MVT::i16
|| ElemTy
== MVT::i32
) &&
5818 (N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
)) {
5819 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5820 unsigned NumBits
= ElemTy
.getSizeInBits();
5821 SDValue WidthMinus1
=
5822 DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5823 DAG
.getTargetConstant(NumBits
- 1, dl
, ElemTy
));
5824 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, LSB
);
5825 return DAG
.getNode(ISD::SUB
, dl
, VT
, WidthMinus1
, CTLZ
);
5828 // Compute with: cttz(x) = ctpop(lsb - 1)
5832 if (ElemTy
== MVT::i64
) {
5833 // Load constant 0xffff'ffff'ffff'ffff to register.
5834 SDValue FF
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5835 DAG
.getTargetConstant(0x1eff, dl
, MVT::i32
));
5836 Bits
= DAG
.getNode(ISD::ADD
, dl
, VT
, LSB
, FF
);
5838 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5839 DAG
.getTargetConstant(1, dl
, ElemTy
));
5840 Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5842 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5845 if (!ST
->hasV6T2Ops())
5848 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, VT
, N
->getOperand(0));
5849 return DAG
.getNode(ISD::CTLZ
, dl
, VT
, rbit
);
5852 static SDValue
LowerCTPOP(SDNode
*N
, SelectionDAG
&DAG
,
5853 const ARMSubtarget
*ST
) {
5854 EVT VT
= N
->getValueType(0);
5857 assert(ST
->hasNEON() && "Custom ctpop lowering requires NEON.");
5858 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
5859 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
5860 "Unexpected type for custom ctpop lowering");
5862 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5863 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
5864 SDValue Res
= DAG
.getBitcast(VT8Bit
, N
->getOperand(0));
5865 Res
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Res
);
5867 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5868 unsigned EltSize
= 8;
5869 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
5870 while (EltSize
!= VT
.getScalarSizeInBits()) {
5871 SmallVector
<SDValue
, 8> Ops
;
5872 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddlu
, DL
,
5873 TLI
.getPointerTy(DAG
.getDataLayout())));
5878 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
5879 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
, Ops
);
5885 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
5886 /// operand of a vector shift operation, where all the elements of the
5887 /// build_vector must have the same constant integer value.
5888 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
5889 // Ignore bit_converts.
5890 while (Op
.getOpcode() == ISD::BITCAST
)
5891 Op
= Op
.getOperand(0);
5892 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
5893 APInt SplatBits
, SplatUndef
;
5894 unsigned SplatBitSize
;
5897 !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
5899 SplatBitSize
> ElementBits
)
5901 Cnt
= SplatBits
.getSExtValue();
5905 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
5906 /// operand of a vector shift left operation. That value must be in the range:
5907 /// 0 <= Value < ElementBits for a left shift; or
5908 /// 0 <= Value <= ElementBits for a long left shift.
5909 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
5910 assert(VT
.isVector() && "vector shift count is not a vector type");
5911 int64_t ElementBits
= VT
.getScalarSizeInBits();
5912 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5914 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
5917 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
5918 /// operand of a vector shift right operation. For a shift opcode, the value
5919 /// is positive, but for an intrinsic the value count must be negative. The
5920 /// absolute value must be in the range:
5921 /// 1 <= |Value| <= ElementBits for a right shift; or
5922 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5923 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, bool isIntrinsic
,
5925 assert(VT
.isVector() && "vector shift count is not a vector type");
5926 int64_t ElementBits
= VT
.getScalarSizeInBits();
5927 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5930 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
5931 if (Cnt
>= -(isNarrow
? ElementBits
/ 2 : ElementBits
) && Cnt
<= -1) {
5938 static SDValue
LowerShift(SDNode
*N
, SelectionDAG
&DAG
,
5939 const ARMSubtarget
*ST
) {
5940 EVT VT
= N
->getValueType(0);
5947 // We essentially have two forms here. Shift by an immediate and shift by a
5948 // vector register (there are also shift by a gpr, but that is just handled
5949 // with a tablegen pattern). We cannot easily match shift by an immediate in
5950 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
5951 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
5952 // signed or unsigned, and a negative shift indicates a shift right).
5953 if (N
->getOpcode() == ISD::SHL
) {
5954 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
))
5955 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
5956 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5957 return DAG
.getNode(ARMISD::VSHLu
, dl
, VT
, N
->getOperand(0),
5961 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
5962 "unexpected vector shift opcode");
5964 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
5965 unsigned VShiftOpc
=
5966 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
5967 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
5968 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5971 // Other right shifts we don't have operations for (we use a shift left by a
5972 // negative number).
5973 EVT ShiftVT
= N
->getOperand(1).getValueType();
5974 SDValue NegatedCount
= DAG
.getNode(
5975 ISD::SUB
, dl
, ShiftVT
, getZeroVector(ShiftVT
, DAG
, dl
), N
->getOperand(1));
5976 unsigned VShiftOpc
=
5977 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHLs
: ARMISD::VSHLu
);
5978 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0), NegatedCount
);
5981 static SDValue
Expand64BitShift(SDNode
*N
, SelectionDAG
&DAG
,
5982 const ARMSubtarget
*ST
) {
5983 EVT VT
= N
->getValueType(0);
5986 // We can get here for a node like i32 = ISD::SHL i32, i64
5990 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
||
5991 N
->getOpcode() == ISD::SHL
) &&
5992 "Unknown shift to lower!");
5994 unsigned ShOpc
= N
->getOpcode();
5995 if (ST
->hasMVEIntegerOps()) {
5996 SDValue ShAmt
= N
->getOperand(1);
5997 unsigned ShPartsOpc
= ARMISD::LSLL
;
5998 ConstantSDNode
*Con
= dyn_cast
<ConstantSDNode
>(ShAmt
);
6000 // If the shift amount is greater than 32 or has a greater bitwidth than 64
6001 // then do the default optimisation
6002 if (ShAmt
->getValueType(0).getSizeInBits() > 64 ||
6003 (Con
&& Con
->getZExtValue() >= 32))
6006 // Extract the lower 32 bits of the shift amount if it's not an i32
6007 if (ShAmt
->getValueType(0) != MVT::i32
)
6008 ShAmt
= DAG
.getZExtOrTrunc(ShAmt
, dl
, MVT::i32
);
6010 if (ShOpc
== ISD::SRL
) {
6012 // There is no t2LSRLr instruction so negate and perform an lsll if the
6013 // shift amount is in a register, emulating a right shift.
6014 ShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
6015 DAG
.getConstant(0, dl
, MVT::i32
), ShAmt
);
6017 // Else generate an lsrl on the immediate shift amount
6018 ShPartsOpc
= ARMISD::LSRL
;
6019 } else if (ShOpc
== ISD::SRA
)
6020 ShPartsOpc
= ARMISD::ASRL
;
6022 // Lower 32 bits of the destination/source
6023 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6024 DAG
.getConstant(0, dl
, MVT::i32
));
6025 // Upper 32 bits of the destination/source
6026 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6027 DAG
.getConstant(1, dl
, MVT::i32
));
6029 // Generate the shift operation as computed above
6030 Lo
= DAG
.getNode(ShPartsOpc
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
), Lo
, Hi
,
6032 // The upper 32 bits come from the second return value of lsll
6033 Hi
= SDValue(Lo
.getNode(), 1);
6034 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6037 // We only lower SRA, SRL of 1 here, all others use generic lowering.
6038 if (!isOneConstant(N
->getOperand(1)) || N
->getOpcode() == ISD::SHL
)
6041 // If we are in thumb mode, we don't have RRX.
6042 if (ST
->isThumb1Only())
6045 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
6046 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6047 DAG
.getConstant(0, dl
, MVT::i32
));
6048 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6049 DAG
.getConstant(1, dl
, MVT::i32
));
6051 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
6052 // captures the result into a carry flag.
6053 unsigned Opc
= N
->getOpcode() == ISD::SRL
? ARMISD::SRL_FLAG
:ARMISD::SRA_FLAG
;
6054 Hi
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::i32
, MVT::Glue
), Hi
);
6056 // The low part is an ARMISD::RRX operand, which shifts the carry in.
6057 Lo
= DAG
.getNode(ARMISD::RRX
, dl
, MVT::i32
, Lo
, Hi
.getValue(1));
6059 // Merge the pieces into a single i64 value.
6060 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6063 static SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
,
6064 const ARMSubtarget
*ST
) {
6065 bool Invert
= false;
6067 unsigned Opc
= ARMCC::AL
;
6069 SDValue Op0
= Op
.getOperand(0);
6070 SDValue Op1
= Op
.getOperand(1);
6071 SDValue CC
= Op
.getOperand(2);
6072 EVT VT
= Op
.getValueType();
6073 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
6078 CmpVT
= Op0
.getValueType().changeVectorElementTypeToInteger();
6080 assert(ST
->hasMVEIntegerOps() &&
6081 "No hardware support for integer vector comparison!");
6083 if (Op
.getValueType().getVectorElementType() != MVT::i1
)
6086 // Make sure we expand floating point setcc to scalar if we do not have
6087 // mve.fp, so that we can handle them from there.
6088 if (Op0
.getValueType().isFloatingPoint() && !ST
->hasMVEFloatOps())
6094 if (Op0
.getValueType().getVectorElementType() == MVT::i64
&&
6095 (SetCCOpcode
== ISD::SETEQ
|| SetCCOpcode
== ISD::SETNE
)) {
6096 // Special-case integer 64-bit equality comparisons. They aren't legal,
6097 // but they can be lowered with a few vector instructions.
6098 unsigned CmpElements
= CmpVT
.getVectorNumElements() * 2;
6099 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, CmpElements
);
6100 SDValue CastOp0
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op0
);
6101 SDValue CastOp1
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op1
);
6102 SDValue Cmp
= DAG
.getNode(ISD::SETCC
, dl
, SplitVT
, CastOp0
, CastOp1
,
6103 DAG
.getCondCode(ISD::SETEQ
));
6104 SDValue Reversed
= DAG
.getNode(ARMISD::VREV64
, dl
, SplitVT
, Cmp
);
6105 SDValue Merged
= DAG
.getNode(ISD::AND
, dl
, SplitVT
, Cmp
, Reversed
);
6106 Merged
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, Merged
);
6107 if (SetCCOpcode
== ISD::SETNE
)
6108 Merged
= DAG
.getNOT(dl
, Merged
, CmpVT
);
6109 Merged
= DAG
.getSExtOrTrunc(Merged
, dl
, VT
);
6113 if (CmpVT
.getVectorElementType() == MVT::i64
)
6114 // 64-bit comparisons are not legal in general.
6117 if (Op1
.getValueType().isFloatingPoint()) {
6118 switch (SetCCOpcode
) {
6119 default: llvm_unreachable("Illegal FP comparison");
6122 if (ST
->hasMVEFloatOps()) {
6123 Opc
= ARMCC::NE
; break;
6125 Invert
= true; LLVM_FALLTHROUGH
;
6128 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6130 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6132 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6134 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6136 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6137 case ISD::SETUGE
: Swap
= true; LLVM_FALLTHROUGH
;
6138 case ISD::SETULE
: Invert
= true; Opc
= ARMCC::GT
; break;
6139 case ISD::SETUGT
: Swap
= true; LLVM_FALLTHROUGH
;
6140 case ISD::SETULT
: Invert
= true; Opc
= ARMCC::GE
; break;
6141 case ISD::SETUEQ
: Invert
= true; LLVM_FALLTHROUGH
;
6143 // Expand this to (OLT | OGT).
6144 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6145 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6146 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6147 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6148 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6150 Result
= DAG
.getNOT(dl
, Result
, VT
);
6153 case ISD::SETUO
: Invert
= true; LLVM_FALLTHROUGH
;
6155 // Expand this to (OLT | OGE).
6156 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6157 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6158 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6159 DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
));
6160 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6162 Result
= DAG
.getNOT(dl
, Result
, VT
);
6167 // Integer comparisons.
6168 switch (SetCCOpcode
) {
6169 default: llvm_unreachable("Illegal integer comparison");
6171 if (ST
->hasMVEIntegerOps()) {
6172 Opc
= ARMCC::NE
; break;
6174 Invert
= true; LLVM_FALLTHROUGH
;
6176 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6177 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6178 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6179 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6180 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6181 case ISD::SETULT
: Swap
= true; LLVM_FALLTHROUGH
;
6182 case ISD::SETUGT
: Opc
= ARMCC::HI
; break;
6183 case ISD::SETULE
: Swap
= true; LLVM_FALLTHROUGH
;
6184 case ISD::SETUGE
: Opc
= ARMCC::HS
; break;
6187 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6188 if (ST
->hasNEON() && Opc
== ARMCC::EQ
) {
6190 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6192 else if (ISD::isBuildVectorAllZeros(Op0
.getNode()))
6195 // Ignore bitconvert.
6196 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::BITCAST
)
6197 AndOp
= AndOp
.getOperand(0);
6199 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::AND
) {
6200 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(0));
6201 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(1));
6202 SDValue Result
= DAG
.getNode(ARMISD::VTST
, dl
, CmpVT
, Op0
, Op1
);
6204 Result
= DAG
.getNOT(dl
, Result
, VT
);
6211 std::swap(Op0
, Op1
);
6213 // If one of the operands is a constant vector zero, attempt to fold the
6214 // comparison to a specialized compare-against-zero form.
6216 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6218 else if (ISD::isBuildVectorAllZeros(Op0
.getNode())) {
6219 if (Opc
== ARMCC::GE
)
6221 else if (Opc
== ARMCC::GT
)
6227 if (SingleOp
.getNode()) {
6228 Result
= DAG
.getNode(ARMISD::VCMPZ
, dl
, CmpVT
, SingleOp
,
6229 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6231 Result
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6232 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6235 Result
= DAG
.getSExtOrTrunc(Result
, dl
, VT
);
6238 Result
= DAG
.getNOT(dl
, Result
, VT
);
6243 static SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) {
6244 SDValue LHS
= Op
.getOperand(0);
6245 SDValue RHS
= Op
.getOperand(1);
6246 SDValue Carry
= Op
.getOperand(2);
6247 SDValue Cond
= Op
.getOperand(3);
6250 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6252 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6253 // have to invert the carry first.
6254 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
6255 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
6256 // This converts the boolean value carry into the carry flag.
6257 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
6259 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
6260 SDValue Cmp
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, LHS
, RHS
, Carry
);
6262 SDValue FVal
= DAG
.getConstant(0, DL
, MVT::i32
);
6263 SDValue TVal
= DAG
.getConstant(1, DL
, MVT::i32
);
6264 SDValue ARMcc
= DAG
.getConstant(
6265 IntCCToARMCC(cast
<CondCodeSDNode
>(Cond
)->get()), DL
, MVT::i32
);
6266 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
6267 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, ARM::CPSR
,
6268 Cmp
.getValue(1), SDValue());
6269 return DAG
.getNode(ARMISD::CMOV
, DL
, Op
.getValueType(), FVal
, TVal
, ARMcc
,
6270 CCR
, Chain
.getValue(1));
6273 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6274 /// valid vector constant for a NEON or MVE instruction with a "modified
6275 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
6276 static SDValue
isVMOVModifiedImm(uint64_t SplatBits
, uint64_t SplatUndef
,
6277 unsigned SplatBitSize
, SelectionDAG
&DAG
,
6278 const SDLoc
&dl
, EVT
&VT
, bool is128Bits
,
6279 VMOVModImmType type
) {
6280 unsigned OpCmode
, Imm
;
6282 // SplatBitSize is set to the smallest size that splats the vector, so a
6283 // zero vector will always have SplatBitSize == 8. However, NEON modified
6284 // immediate instructions others than VMOV do not support the 8-bit encoding
6285 // of a zero vector, and the default encoding of zero is supposed to be the
6290 switch (SplatBitSize
) {
6292 if (type
!= VMOVModImm
)
6294 // Any 1-byte value is OK. Op=0, Cmode=1110.
6295 assert((SplatBits
& ~0xff) == 0 && "one byte splat value is too big");
6298 VT
= is128Bits
? MVT::v16i8
: MVT::v8i8
;
6302 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6303 VT
= is128Bits
? MVT::v8i16
: MVT::v4i16
;
6304 if ((SplatBits
& ~0xff) == 0) {
6305 // Value = 0x00nn: Op=x, Cmode=100x.
6310 if ((SplatBits
& ~0xff00) == 0) {
6311 // Value = 0xnn00: Op=x, Cmode=101x.
6313 Imm
= SplatBits
>> 8;
6319 // NEON's 32-bit VMOV supports splat values where:
6320 // * only one byte is nonzero, or
6321 // * the least significant byte is 0xff and the second byte is nonzero, or
6322 // * the least significant 2 bytes are 0xff and the third is nonzero.
6323 VT
= is128Bits
? MVT::v4i32
: MVT::v2i32
;
6324 if ((SplatBits
& ~0xff) == 0) {
6325 // Value = 0x000000nn: Op=x, Cmode=000x.
6330 if ((SplatBits
& ~0xff00) == 0) {
6331 // Value = 0x0000nn00: Op=x, Cmode=001x.
6333 Imm
= SplatBits
>> 8;
6336 if ((SplatBits
& ~0xff0000) == 0) {
6337 // Value = 0x00nn0000: Op=x, Cmode=010x.
6339 Imm
= SplatBits
>> 16;
6342 if ((SplatBits
& ~0xff000000) == 0) {
6343 // Value = 0xnn000000: Op=x, Cmode=011x.
6345 Imm
= SplatBits
>> 24;
6349 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6350 if (type
== OtherModImm
) return SDValue();
6352 if ((SplatBits
& ~0xffff) == 0 &&
6353 ((SplatBits
| SplatUndef
) & 0xff) == 0xff) {
6354 // Value = 0x0000nnff: Op=x, Cmode=1100.
6356 Imm
= SplatBits
>> 8;
6360 // cmode == 0b1101 is not supported for MVE VMVN
6361 if (type
== MVEVMVNModImm
)
6364 if ((SplatBits
& ~0xffffff) == 0 &&
6365 ((SplatBits
| SplatUndef
) & 0xffff) == 0xffff) {
6366 // Value = 0x00nnffff: Op=x, Cmode=1101.
6368 Imm
= SplatBits
>> 16;
6372 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6373 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6374 // VMOV.I32. A (very) minor optimization would be to replicate the value
6375 // and fall through here to test for a valid 64-bit splat. But, then the
6376 // caller would also need to check and handle the change in size.
6380 if (type
!= VMOVModImm
)
6382 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6383 uint64_t BitMask
= 0xff;
6385 unsigned ImmMask
= 1;
6387 for (int ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
6388 if (((SplatBits
| SplatUndef
) & BitMask
) == BitMask
) {
6391 } else if ((SplatBits
& BitMask
) != 0) {
6398 if (DAG
.getDataLayout().isBigEndian())
6399 // swap higher and lower 32 bit word
6400 Imm
= ((Imm
& 0xf) << 4) | ((Imm
& 0xf0) >> 4);
6402 // Op=1, Cmode=1110.
6404 VT
= is128Bits
? MVT::v2i64
: MVT::v1i64
;
6409 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6412 unsigned EncodedVal
= ARM_AM::createVMOVModImm(OpCmode
, Imm
);
6413 return DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
);
6416 SDValue
ARMTargetLowering::LowerConstantFP(SDValue Op
, SelectionDAG
&DAG
,
6417 const ARMSubtarget
*ST
) const {
6418 EVT VT
= Op
.getValueType();
6419 bool IsDouble
= (VT
== MVT::f64
);
6420 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Op
);
6421 const APFloat
&FPVal
= CFP
->getValueAPF();
6423 // Prevent floating-point constants from using literal loads
6424 // when execute-only is enabled.
6425 if (ST
->genExecuteOnly()) {
6426 // If we can represent the constant as an immediate, don't lower it
6427 if (isFPImmLegal(FPVal
, VT
))
6429 // Otherwise, construct as integer, and move to float register
6430 APInt INTVal
= FPVal
.bitcastToAPInt();
6432 switch (VT
.getSimpleVT().SimpleTy
) {
6434 llvm_unreachable("Unknown floating point type!");
6437 SDValue Lo
= DAG
.getConstant(INTVal
.trunc(32), DL
, MVT::i32
);
6438 SDValue Hi
= DAG
.getConstant(INTVal
.lshr(32).trunc(32), DL
, MVT::i32
);
6439 if (!ST
->isLittle())
6441 return DAG
.getNode(ARMISD::VMOVDRR
, DL
, MVT::f64
, Lo
, Hi
);
6444 return DAG
.getNode(ARMISD::VMOVSR
, DL
, VT
,
6445 DAG
.getConstant(INTVal
, DL
, MVT::i32
));
6449 if (!ST
->hasVFP3Base())
6452 // Use the default (constant pool) lowering for double constants when we have
6454 if (IsDouble
&& !Subtarget
->hasFP64())
6457 // Try splatting with a VMOV.f32...
6458 int ImmVal
= IsDouble
? ARM_AM::getFP64Imm(FPVal
) : ARM_AM::getFP32Imm(FPVal
);
6461 if (IsDouble
|| !ST
->useNEONForSinglePrecisionFP()) {
6462 // We have code in place to select a valid ConstantFP already, no need to
6467 // It's a float and we are trying to use NEON operations where
6468 // possible. Lower it to a splat followed by an extract.
6470 SDValue NewVal
= DAG
.getTargetConstant(ImmVal
, DL
, MVT::i32
);
6471 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVFPIMM
, DL
, MVT::v2f32
,
6473 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecConstant
,
6474 DAG
.getConstant(0, DL
, MVT::i32
));
6477 // The rest of our options are NEON only, make sure that's allowed before
6479 if (!ST
->hasNEON() || (!IsDouble
&& !ST
->useNEONForSinglePrecisionFP()))
6483 uint64_t iVal
= FPVal
.bitcastToAPInt().getZExtValue();
6485 // It wouldn't really be worth bothering for doubles except for one very
6486 // important value, which does happen to match: 0.0. So make sure we don't do
6488 if (IsDouble
&& (iVal
& 0xffffffff) != (iVal
>> 32))
6491 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6492 SDValue NewVal
= isVMOVModifiedImm(iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
),
6493 VMovVT
, false, VMOVModImm
);
6494 if (NewVal
!= SDValue()) {
6496 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVIMM
, DL
, VMovVT
,
6499 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6501 // It's a float: cast and extract a vector element.
6502 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6504 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6505 DAG
.getConstant(0, DL
, MVT::i32
));
6508 // Finally, try a VMVN.i32
6509 NewVal
= isVMOVModifiedImm(~iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
), VMovVT
,
6511 if (NewVal
!= SDValue()) {
6513 SDValue VecConstant
= DAG
.getNode(ARMISD::VMVNIMM
, DL
, VMovVT
, NewVal
);
6516 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6518 // It's a float: cast and extract a vector element.
6519 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6521 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6522 DAG
.getConstant(0, DL
, MVT::i32
));
6528 // check if an VEXT instruction can handle the shuffle mask when the
6529 // vector sources of the shuffle are the same.
6530 static bool isSingletonVEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6531 unsigned NumElts
= VT
.getVectorNumElements();
6533 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6539 // If this is a VEXT shuffle, the immediate value is the index of the first
6540 // element. The other shuffle indices must be the successive elements after
6542 unsigned ExpectedElt
= Imm
;
6543 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6544 // Increment the expected index. If it wraps around, just follow it
6545 // back to index zero and keep going.
6547 if (ExpectedElt
== NumElts
)
6550 if (M
[i
] < 0) continue; // ignore UNDEF indices
6551 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6558 static bool isVEXTMask(ArrayRef
<int> M
, EVT VT
,
6559 bool &ReverseVEXT
, unsigned &Imm
) {
6560 unsigned NumElts
= VT
.getVectorNumElements();
6561 ReverseVEXT
= false;
6563 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6569 // If this is a VEXT shuffle, the immediate value is the index of the first
6570 // element. The other shuffle indices must be the successive elements after
6572 unsigned ExpectedElt
= Imm
;
6573 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6574 // Increment the expected index. If it wraps around, it may still be
6575 // a VEXT but the source vectors must be swapped.
6577 if (ExpectedElt
== NumElts
* 2) {
6582 if (M
[i
] < 0) continue; // ignore UNDEF indices
6583 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6587 // Adjust the index value if the source operands will be swapped.
6594 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6595 /// instruction with the specified blocksize. (The order of the elements
6596 /// within each block of the vector is reversed.)
6597 static bool isVREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6598 assert((BlockSize
==16 || BlockSize
==32 || BlockSize
==64) &&
6599 "Only possible block sizes for VREV are: 16, 32, 64");
6601 unsigned EltSz
= VT
.getScalarSizeInBits();
6605 unsigned NumElts
= VT
.getVectorNumElements();
6606 unsigned BlockElts
= M
[0] + 1;
6607 // If the first shuffle index is UNDEF, be optimistic.
6609 BlockElts
= BlockSize
/ EltSz
;
6611 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6614 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6615 if (M
[i
] < 0) continue; // ignore UNDEF indices
6616 if ((unsigned) M
[i
] != (i
- i
%BlockElts
) + (BlockElts
- 1 - i
%BlockElts
))
6623 static bool isVTBLMask(ArrayRef
<int> M
, EVT VT
) {
6624 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6625 // range, then 0 is placed into the resulting vector. So pretty much any mask
6626 // of 8 elements can work here.
6627 return VT
== MVT::v8i8
&& M
.size() == 8;
6630 static unsigned SelectPairHalf(unsigned Elements
, ArrayRef
<int> Mask
,
6632 if (Mask
.size() == Elements
* 2)
6633 return Index
/ Elements
;
6634 return Mask
[Index
] == 0 ? 0 : 1;
6637 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6638 // checking that pairs of elements in the shuffle mask represent the same index
6639 // in each vector, incrementing the expected index by 2 at each step.
6640 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6641 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6643 // WhichResult gives the offset for each element in the mask based on which
6644 // of the two results it belongs to.
6646 // The transpose can be represented either as:
6647 // result1 = shufflevector v1, v2, result1_shuffle_mask
6648 // result2 = shufflevector v1, v2, result2_shuffle_mask
6649 // where v1/v2 and the shuffle masks have the same number of elements
6650 // (here WhichResult (see below) indicates which result is being checked)
6653 // results = shufflevector v1, v2, shuffle_mask
6654 // where both results are returned in one vector and the shuffle mask has twice
6655 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6656 // want to check the low half and high half of the shuffle mask as if it were
6658 static bool isVTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6659 unsigned EltSz
= VT
.getScalarSizeInBits();
6663 unsigned NumElts
= VT
.getVectorNumElements();
6664 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6667 // If the mask is twice as long as the input vector then we need to check the
6668 // upper and lower parts of the mask with a matching value for WhichResult
6669 // FIXME: A mask with only even values will be rejected in case the first
6670 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6671 // M[0] is used to determine WhichResult
6672 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6673 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6674 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6675 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6676 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ NumElts
+ WhichResult
))
6681 if (M
.size() == NumElts
*2)
6687 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6688 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6689 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6690 static bool isVTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6691 unsigned EltSz
= VT
.getScalarSizeInBits();
6695 unsigned NumElts
= VT
.getVectorNumElements();
6696 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6699 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6700 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6701 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6702 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6703 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ WhichResult
))
6708 if (M
.size() == NumElts
*2)
6714 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6715 // that the mask elements are either all even and in steps of size 2 or all odd
6716 // and in steps of size 2.
6717 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6718 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6720 // Requires similar checks to that of isVTRNMask with
6721 // respect the how results are returned.
6722 static bool isVUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6723 unsigned EltSz
= VT
.getScalarSizeInBits();
6727 unsigned NumElts
= VT
.getVectorNumElements();
6728 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6731 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6732 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6733 for (unsigned j
= 0; j
< NumElts
; ++j
) {
6734 if (M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != 2 * j
+ WhichResult
)
6739 if (M
.size() == NumElts
*2)
6742 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6743 if (VT
.is64BitVector() && EltSz
== 32)
6749 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6750 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6751 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6752 static bool isVUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6753 unsigned EltSz
= VT
.getScalarSizeInBits();
6757 unsigned NumElts
= VT
.getVectorNumElements();
6758 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6761 unsigned Half
= NumElts
/ 2;
6762 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6763 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6764 for (unsigned j
= 0; j
< NumElts
; j
+= Half
) {
6765 unsigned Idx
= WhichResult
;
6766 for (unsigned k
= 0; k
< Half
; ++k
) {
6767 int MIdx
= M
[i
+ j
+ k
];
6768 if (MIdx
>= 0 && (unsigned) MIdx
!= Idx
)
6775 if (M
.size() == NumElts
*2)
6778 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6779 if (VT
.is64BitVector() && EltSz
== 32)
6785 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6786 // that pairs of elements of the shufflemask represent the same index in each
6787 // vector incrementing sequentially through the vectors.
6788 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6789 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6791 // Requires similar checks to that of isVTRNMask with respect the how results
6793 static bool isVZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6794 unsigned EltSz
= VT
.getScalarSizeInBits();
6798 unsigned NumElts
= VT
.getVectorNumElements();
6799 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6802 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6803 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6804 unsigned Idx
= WhichResult
* NumElts
/ 2;
6805 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6806 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6807 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
+ NumElts
))
6813 if (M
.size() == NumElts
*2)
6816 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6817 if (VT
.is64BitVector() && EltSz
== 32)
6823 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6824 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6825 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6826 static bool isVZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6827 unsigned EltSz
= VT
.getScalarSizeInBits();
6831 unsigned NumElts
= VT
.getVectorNumElements();
6832 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6835 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6836 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6837 unsigned Idx
= WhichResult
* NumElts
/ 2;
6838 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6839 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6840 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
))
6846 if (M
.size() == NumElts
*2)
6849 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6850 if (VT
.is64BitVector() && EltSz
== 32)
6856 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6857 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6858 static unsigned isNEONTwoResultShuffleMask(ArrayRef
<int> ShuffleMask
, EVT VT
,
6859 unsigned &WhichResult
,
6862 if (isVTRNMask(ShuffleMask
, VT
, WhichResult
))
6863 return ARMISD::VTRN
;
6864 if (isVUZPMask(ShuffleMask
, VT
, WhichResult
))
6865 return ARMISD::VUZP
;
6866 if (isVZIPMask(ShuffleMask
, VT
, WhichResult
))
6867 return ARMISD::VZIP
;
6870 if (isVTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6871 return ARMISD::VTRN
;
6872 if (isVUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6873 return ARMISD::VUZP
;
6874 if (isVZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6875 return ARMISD::VZIP
;
6880 /// \return true if this is a reverse operation on an vector.
6881 static bool isReverseMask(ArrayRef
<int> M
, EVT VT
) {
6882 unsigned NumElts
= VT
.getVectorNumElements();
6883 // Make sure the mask has the right size.
6884 if (NumElts
!= M
.size())
6887 // Look for <15, ..., 3, -1, 1, 0>.
6888 for (unsigned i
= 0; i
!= NumElts
; ++i
)
6889 if (M
[i
] >= 0 && M
[i
] != (int) (NumElts
- 1 - i
))
6895 // If N is an integer constant that can be moved into a register in one
6896 // instruction, return an SDValue of such a constant (will become a MOV
6897 // instruction). Otherwise return null.
6898 static SDValue
IsSingleInstrConstant(SDValue N
, SelectionDAG
&DAG
,
6899 const ARMSubtarget
*ST
, const SDLoc
&dl
) {
6901 if (!isa
<ConstantSDNode
>(N
))
6903 Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
6905 if (ST
->isThumb1Only()) {
6906 if (Val
<= 255 || ~Val
<= 255)
6907 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6909 if (ARM_AM::getSOImmVal(Val
) != -1 || ARM_AM::getSOImmVal(~Val
) != -1)
6910 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6915 static SDValue
LowerBUILD_VECTOR_i1(SDValue Op
, SelectionDAG
&DAG
,
6916 const ARMSubtarget
*ST
) {
6918 EVT VT
= Op
.getValueType();
6920 assert(ST
->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
6922 unsigned NumElts
= VT
.getVectorNumElements();
6924 unsigned BitsPerBool
;
6928 } else if (NumElts
== 8) {
6931 } else if (NumElts
== 16) {
6937 // First create base with bits set where known
6938 unsigned Bits32
= 0;
6939 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6940 SDValue V
= Op
.getOperand(i
);
6941 if (!isa
<ConstantSDNode
>(V
) && !V
.isUndef())
6943 bool BitSet
= V
.isUndef() ? false : cast
<ConstantSDNode
>(V
)->getZExtValue();
6945 Bits32
|= BoolMask
<< (i
* BitsPerBool
);
6948 // Add in unknown nodes
6949 // FIXME: Handle splats of the same value better.
6950 SDValue Base
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
,
6951 DAG
.getConstant(Bits32
, dl
, MVT::i32
));
6952 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6953 SDValue V
= Op
.getOperand(i
);
6954 if (isa
<ConstantSDNode
>(V
) || V
.isUndef())
6956 Base
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Base
, V
,
6957 DAG
.getConstant(i
, dl
, MVT::i32
));
6963 // If this is a case we can't handle, return null and let the default
6964 // expansion code take care of it.
6965 SDValue
ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
6966 const ARMSubtarget
*ST
) const {
6967 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
6969 EVT VT
= Op
.getValueType();
6971 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
6972 return LowerBUILD_VECTOR_i1(Op
, DAG
, ST
);
6974 APInt SplatBits
, SplatUndef
;
6975 unsigned SplatBitSize
;
6977 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
6978 if (SplatUndef
.isAllOnesValue())
6979 return DAG
.getUNDEF(VT
);
6981 if ((ST
->hasNEON() && SplatBitSize
<= 64) ||
6982 (ST
->hasMVEIntegerOps() && SplatBitSize
<= 32)) {
6983 // Check if an immediate VMOV works.
6985 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
6986 SplatUndef
.getZExtValue(), SplatBitSize
,
6987 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6990 if (Val
.getNode()) {
6991 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, Val
);
6992 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6995 // Try an immediate VMVN.
6996 uint64_t NegatedImm
= (~SplatBits
).getZExtValue();
6997 Val
= isVMOVModifiedImm(
6998 NegatedImm
, SplatUndef
.getZExtValue(), SplatBitSize
,
6999 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
7000 ST
->hasMVEIntegerOps() ? MVEVMVNModImm
: VMVNModImm
);
7001 if (Val
.getNode()) {
7002 SDValue Vmov
= DAG
.getNode(ARMISD::VMVNIMM
, dl
, VmovVT
, Val
);
7003 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
7006 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7007 if ((VT
== MVT::v2f32
|| VT
== MVT::v4f32
) && SplatBitSize
== 32) {
7008 int ImmVal
= ARM_AM::getFP32Imm(SplatBits
);
7010 SDValue Val
= DAG
.getTargetConstant(ImmVal
, dl
, MVT::i32
);
7011 return DAG
.getNode(ARMISD::VMOVFPIMM
, dl
, VT
, Val
);
7017 // Scan through the operands to see if only one value is used.
7019 // As an optimisation, even if more than one value is used it may be more
7020 // profitable to splat with one value then change some lanes.
7022 // Heuristically we decide to do this if the vector has a "dominant" value,
7023 // defined as splatted to more than half of the lanes.
7024 unsigned NumElts
= VT
.getVectorNumElements();
7025 bool isOnlyLowElement
= true;
7026 bool usesOnlyOneValue
= true;
7027 bool hasDominantValue
= false;
7028 bool isConstant
= true;
7030 // Map of the number of times a particular SDValue appears in the
7032 DenseMap
<SDValue
, unsigned> ValueCounts
;
7034 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7035 SDValue V
= Op
.getOperand(i
);
7039 isOnlyLowElement
= false;
7040 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
7043 ValueCounts
.insert(std::make_pair(V
, 0));
7044 unsigned &Count
= ValueCounts
[V
];
7046 // Is this value dominant? (takes up more than half of the lanes)
7047 if (++Count
> (NumElts
/ 2)) {
7048 hasDominantValue
= true;
7052 if (ValueCounts
.size() != 1)
7053 usesOnlyOneValue
= false;
7054 if (!Value
.getNode() && !ValueCounts
.empty())
7055 Value
= ValueCounts
.begin()->first
;
7057 if (ValueCounts
.empty())
7058 return DAG
.getUNDEF(VT
);
7060 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7061 // Keep going if we are hitting this case.
7062 if (isOnlyLowElement
&& !ISD::isNormalLoad(Value
.getNode()))
7063 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
7065 unsigned EltSize
= VT
.getScalarSizeInBits();
7067 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
7068 // i32 and try again.
7069 if (hasDominantValue
&& EltSize
<= 32) {
7073 // If we are VDUPing a value that comes directly from a vector, that will
7074 // cause an unnecessary move to and from a GPR, where instead we could
7075 // just use VDUPLANE. We can only do this if the lane being extracted
7076 // is at a constant index, as the VDUP from lane instructions only have
7077 // constant-index forms.
7078 ConstantSDNode
*constIndex
;
7079 if (Value
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
7080 (constIndex
= dyn_cast
<ConstantSDNode
>(Value
->getOperand(1)))) {
7081 // We need to create a new undef vector to use for the VDUPLANE if the
7082 // size of the vector from which we get the value is different than the
7083 // size of the vector that we need to create. We will insert the element
7084 // such that the register coalescer will remove unnecessary copies.
7085 if (VT
!= Value
->getOperand(0).getValueType()) {
7086 unsigned index
= constIndex
->getAPIntValue().getLimitedValue() %
7087 VT
.getVectorNumElements();
7088 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7089 DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, DAG
.getUNDEF(VT
),
7090 Value
, DAG
.getConstant(index
, dl
, MVT::i32
)),
7091 DAG
.getConstant(index
, dl
, MVT::i32
));
7093 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7094 Value
->getOperand(0), Value
->getOperand(1));
7096 N
= DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Value
);
7098 if (!usesOnlyOneValue
) {
7099 // The dominant value was splatted as 'N', but we now have to insert
7100 // all differing elements.
7101 for (unsigned I
= 0; I
< NumElts
; ++I
) {
7102 if (Op
.getOperand(I
) == Value
)
7104 SmallVector
<SDValue
, 3> Ops
;
7106 Ops
.push_back(Op
.getOperand(I
));
7107 Ops
.push_back(DAG
.getConstant(I
, dl
, MVT::i32
));
7108 N
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Ops
);
7113 if (VT
.getVectorElementType().isFloatingPoint()) {
7114 SmallVector
<SDValue
, 8> Ops
;
7115 MVT FVT
= VT
.getVectorElementType().getSimpleVT();
7116 assert(FVT
== MVT::f32
|| FVT
== MVT::f16
);
7117 MVT IVT
= (FVT
== MVT::f32
) ? MVT::i32
: MVT::i16
;
7118 for (unsigned i
= 0; i
< NumElts
; ++i
)
7119 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, IVT
,
7121 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), IVT
, NumElts
);
7122 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
7123 Val
= LowerBUILD_VECTOR(Val
, DAG
, ST
);
7125 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7127 if (usesOnlyOneValue
) {
7128 SDValue Val
= IsSingleInstrConstant(Value
, DAG
, ST
, dl
);
7129 if (isConstant
&& Val
.getNode())
7130 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Val
);
7134 // If all elements are constants and the case above didn't get hit, fall back
7135 // to the default expansion, which will generate a load from the constant
7140 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7142 SDValue shuffle
= ReconstructShuffle(Op
, DAG
);
7143 if (shuffle
!= SDValue())
7147 if (ST
->hasNEON() && VT
.is128BitVector() && VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) {
7148 // If we haven't found an efficient lowering, try splitting a 128-bit vector
7149 // into two 64-bit vectors; we might discover a better way to lower it.
7150 SmallVector
<SDValue
, 64> Ops(Op
->op_begin(), Op
->op_begin() + NumElts
);
7151 EVT ExtVT
= VT
.getVectorElementType();
7152 EVT HVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
, NumElts
/ 2);
7154 DAG
.getBuildVector(HVT
, dl
, makeArrayRef(&Ops
[0], NumElts
/ 2));
7155 if (Lower
.getOpcode() == ISD::BUILD_VECTOR
)
7156 Lower
= LowerBUILD_VECTOR(Lower
, DAG
, ST
);
7157 SDValue Upper
= DAG
.getBuildVector(
7158 HVT
, dl
, makeArrayRef(&Ops
[NumElts
/ 2], NumElts
/ 2));
7159 if (Upper
.getOpcode() == ISD::BUILD_VECTOR
)
7160 Upper
= LowerBUILD_VECTOR(Upper
, DAG
, ST
);
7162 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Lower
, Upper
);
7165 // Vectors with 32- or 64-bit elements can be built by directly assigning
7166 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
7167 // will be legalized.
7168 if (EltSize
>= 32) {
7169 // Do the expansion with floating-point types, since that is what the VFP
7170 // registers are defined to use, and since i64 is not legal.
7171 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7172 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7173 SmallVector
<SDValue
, 8> Ops
;
7174 for (unsigned i
= 0; i
< NumElts
; ++i
)
7175 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, EltVT
, Op
.getOperand(i
)));
7176 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7177 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7180 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7181 // know the default expansion would otherwise fall back on something even
7182 // worse. For a vector with one or two non-undef values, that's
7183 // scalar_to_vector for the elements followed by a shuffle (provided the
7184 // shuffle is valid for the target) and materialization element by element
7185 // on the stack followed by a load for everything else.
7186 if (!isConstant
&& !usesOnlyOneValue
) {
7187 SDValue Vec
= DAG
.getUNDEF(VT
);
7188 for (unsigned i
= 0 ; i
< NumElts
; ++i
) {
7189 SDValue V
= Op
.getOperand(i
);
7192 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i32
);
7193 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
7201 // Gather data to see if the operation can be modelled as a
7202 // shuffle in combination with VEXTs.
7203 SDValue
ARMTargetLowering::ReconstructShuffle(SDValue Op
,
7204 SelectionDAG
&DAG
) const {
7205 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7207 EVT VT
= Op
.getValueType();
7208 unsigned NumElts
= VT
.getVectorNumElements();
7210 struct ShuffleSourceInfo
{
7212 unsigned MinElt
= std::numeric_limits
<unsigned>::max();
7213 unsigned MaxElt
= 0;
7215 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7216 // be compatible with the shuffle we intend to construct. As a result
7217 // ShuffleVec will be some sliding window into the original Vec.
7220 // Code should guarantee that element i in Vec starts at element "WindowBase
7221 // + i * WindowScale in ShuffleVec".
7223 int WindowScale
= 1;
7225 ShuffleSourceInfo(SDValue Vec
) : Vec(Vec
), ShuffleVec(Vec
) {}
7227 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
7230 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7232 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
7233 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7234 SDValue V
= Op
.getOperand(i
);
7237 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
) {
7238 // A shuffle can only come from building a vector from various
7239 // elements of other vectors.
7241 } else if (!isa
<ConstantSDNode
>(V
.getOperand(1))) {
7242 // Furthermore, shuffles require a constant mask, whereas extractelts
7243 // accept variable indices.
7247 // Add this element source to the list if it's not already there.
7248 SDValue SourceVec
= V
.getOperand(0);
7249 auto Source
= llvm::find(Sources
, SourceVec
);
7250 if (Source
== Sources
.end())
7251 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
7253 // Update the minimum and maximum lane number seen.
7254 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
7255 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
7256 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
7259 // Currently only do something sane when at most two source vectors
7261 if (Sources
.size() > 2)
7264 // Find out the smallest element size among result and two sources, and use
7265 // it as element size to build the shuffle_vector.
7266 EVT SmallestEltTy
= VT
.getVectorElementType();
7267 for (auto &Source
: Sources
) {
7268 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
7269 if (SrcEltTy
.bitsLT(SmallestEltTy
))
7270 SmallestEltTy
= SrcEltTy
;
7272 unsigned ResMultiplier
=
7273 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
7274 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7275 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
7277 // If the source vector is too wide or too narrow, we may nevertheless be able
7278 // to construct a compatible shuffle either by concatenating it with UNDEF or
7279 // extracting a suitable range of elements.
7280 for (auto &Src
: Sources
) {
7281 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
7283 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
7286 // This stage of the search produces a source with the same element type as
7287 // the original, but with a total width matching the BUILD_VECTOR output.
7288 EVT EltVT
= SrcVT
.getVectorElementType();
7289 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
7290 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
7292 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
7293 if (2 * SrcVT
.getSizeInBits() != VT
.getSizeInBits())
7295 // We can pad out the smaller vector for free, so if it's part of a
7298 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
7299 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
7303 if (SrcVT
.getSizeInBits() != 2 * VT
.getSizeInBits())
7306 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
7307 // Span too large for a VEXT to cope
7311 if (Src
.MinElt
>= NumSrcElts
) {
7312 // The extraction can just take the second half
7314 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7315 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7316 Src
.WindowBase
= -NumSrcElts
;
7317 } else if (Src
.MaxElt
< NumSrcElts
) {
7318 // The extraction can just take the first half
7320 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7321 DAG
.getConstant(0, dl
, MVT::i32
));
7323 // An actual VEXT is needed
7325 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7326 DAG
.getConstant(0, dl
, MVT::i32
));
7328 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7329 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7331 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VEXT
, dl
, DestVT
, VEXTSrc1
,
7333 DAG
.getConstant(Src
.MinElt
, dl
, MVT::i32
));
7334 Src
.WindowBase
= -Src
.MinElt
;
7338 // Another possible incompatibility occurs from the vector element types. We
7339 // can fix this by bitcasting the source vectors to the same type we intend
7341 for (auto &Src
: Sources
) {
7342 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
7343 if (SrcEltTy
== SmallestEltTy
)
7345 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
7346 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
7347 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7348 Src
.WindowBase
*= Src
.WindowScale
;
7351 // Final sanity check before we try to actually produce a shuffle.
7352 LLVM_DEBUG(for (auto Src
7354 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
7356 // The stars all align, our next step is to produce the mask for the shuffle.
7357 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
7358 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
7359 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
7360 SDValue Entry
= Op
.getOperand(i
);
7361 if (Entry
.isUndef())
7364 auto Src
= llvm::find(Sources
, Entry
.getOperand(0));
7365 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
7367 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7368 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7370 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
7371 int BitsDefined
= std::min(OrigEltTy
.getSizeInBits(),
7372 VT
.getScalarSizeInBits());
7373 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
7375 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7376 // starting at the appropriate offset.
7377 int *LaneMask
= &Mask
[i
* ResMultiplier
];
7379 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
7380 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
7381 for (int j
= 0; j
< LanesDefined
; ++j
)
7382 LaneMask
[j
] = ExtractBase
+ j
;
7386 // We can't handle more than two sources. This should have already
7387 // been checked before this point.
7388 assert(Sources
.size() <= 2 && "Too many sources!");
7390 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
7391 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
7392 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
7394 SDValue Shuffle
= buildLegalVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
7395 ShuffleOps
[1], Mask
, DAG
);
7398 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
7401 enum ShuffleOpCodes
{
7402 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7411 OP_VUZPL
, // VUZP, left result
7412 OP_VUZPR
, // VUZP, right result
7413 OP_VZIPL
, // VZIP, left result
7414 OP_VZIPR
, // VZIP, right result
7415 OP_VTRNL
, // VTRN, left result
7416 OP_VTRNR
// VTRN, right result
7419 static bool isLegalMVEShuffleOp(unsigned PFEntry
) {
7420 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7433 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7434 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7435 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7436 /// are assumed to be legal.
7437 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7438 if (VT
.getVectorNumElements() == 4 &&
7439 (VT
.is128BitVector() || VT
.is64BitVector())) {
7440 unsigned PFIndexes
[4];
7441 for (unsigned i
= 0; i
!= 4; ++i
) {
7445 PFIndexes
[i
] = M
[i
];
7448 // Compute the index in the perfect shuffle table.
7449 unsigned PFTableIndex
=
7450 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7451 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7452 unsigned Cost
= (PFEntry
>> 30);
7454 if (Cost
<= 4 && (Subtarget
->hasNEON() || isLegalMVEShuffleOp(PFEntry
)))
7458 bool ReverseVEXT
, isV_UNDEF
;
7459 unsigned Imm
, WhichResult
;
7461 unsigned EltSize
= VT
.getScalarSizeInBits();
7462 if (EltSize
>= 32 ||
7463 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7464 isVREVMask(M
, VT
, 64) ||
7465 isVREVMask(M
, VT
, 32) ||
7466 isVREVMask(M
, VT
, 16))
7468 else if (Subtarget
->hasNEON() &&
7469 (isVEXTMask(M
, VT
, ReverseVEXT
, Imm
) ||
7470 isVTBLMask(M
, VT
) ||
7471 isNEONTwoResultShuffleMask(M
, VT
, WhichResult
, isV_UNDEF
)))
7473 else if (Subtarget
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7474 isReverseMask(M
, VT
))
7480 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7481 /// the specified operations to build the shuffle.
7482 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
7483 SDValue RHS
, SelectionDAG
&DAG
,
7485 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7486 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7487 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7489 if (OpNum
== OP_COPY
) {
7490 if (LHSID
== (1*9+2)*9+3) return LHS
;
7491 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7495 SDValue OpLHS
, OpRHS
;
7496 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
7497 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
7498 EVT VT
= OpLHS
.getValueType();
7501 default: llvm_unreachable("Unknown shuffle opcode!");
7503 // VREV divides the vector in half and swaps within the half.
7504 if (VT
.getVectorElementType() == MVT::i32
||
7505 VT
.getVectorElementType() == MVT::f32
)
7506 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, OpLHS
);
7507 // vrev <4 x i16> -> VREV32
7508 if (VT
.getVectorElementType() == MVT::i16
)
7509 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, OpLHS
);
7510 // vrev <4 x i8> -> VREV16
7511 assert(VT
.getVectorElementType() == MVT::i8
);
7512 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, OpLHS
);
7517 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7518 OpLHS
, DAG
.getConstant(OpNum
-OP_VDUP0
, dl
, MVT::i32
));
7522 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
,
7524 DAG
.getConstant(OpNum
- OP_VEXT1
+ 1, dl
, MVT::i32
));
7527 return DAG
.getNode(ARMISD::VUZP
, dl
, DAG
.getVTList(VT
, VT
),
7528 OpLHS
, OpRHS
).getValue(OpNum
-OP_VUZPL
);
7531 return DAG
.getNode(ARMISD::VZIP
, dl
, DAG
.getVTList(VT
, VT
),
7532 OpLHS
, OpRHS
).getValue(OpNum
-OP_VZIPL
);
7535 return DAG
.getNode(ARMISD::VTRN
, dl
, DAG
.getVTList(VT
, VT
),
7536 OpLHS
, OpRHS
).getValue(OpNum
-OP_VTRNL
);
7540 static SDValue
LowerVECTOR_SHUFFLEv8i8(SDValue Op
,
7541 ArrayRef
<int> ShuffleMask
,
7542 SelectionDAG
&DAG
) {
7543 // Check to see if we can use the VTBL instruction.
7544 SDValue V1
= Op
.getOperand(0);
7545 SDValue V2
= Op
.getOperand(1);
7548 SmallVector
<SDValue
, 8> VTBLMask
;
7549 for (ArrayRef
<int>::iterator
7550 I
= ShuffleMask
.begin(), E
= ShuffleMask
.end(); I
!= E
; ++I
)
7551 VTBLMask
.push_back(DAG
.getConstant(*I
, DL
, MVT::i32
));
7553 if (V2
.getNode()->isUndef())
7554 return DAG
.getNode(ARMISD::VTBL1
, DL
, MVT::v8i8
, V1
,
7555 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7557 return DAG
.getNode(ARMISD::VTBL2
, DL
, MVT::v8i8
, V1
, V2
,
7558 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7561 static SDValue
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op
,
7562 SelectionDAG
&DAG
) {
7564 SDValue OpLHS
= Op
.getOperand(0);
7565 EVT VT
= OpLHS
.getValueType();
7567 assert((VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7568 "Expect an v8i16/v16i8 type");
7569 OpLHS
= DAG
.getNode(ARMISD::VREV64
, DL
, VT
, OpLHS
);
7570 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7571 // extract the first 8 bytes into the top double word and the last 8 bytes
7572 // into the bottom double word. The v8i16 case is similar.
7573 unsigned ExtractNum
= (VT
== MVT::v16i8
) ? 8 : 4;
7574 return DAG
.getNode(ARMISD::VEXT
, DL
, VT
, OpLHS
, OpLHS
,
7575 DAG
.getConstant(ExtractNum
, DL
, MVT::i32
));
7578 static EVT
getVectorTyFromPredicateVector(EVT VT
) {
7579 switch (VT
.getSimpleVT().SimpleTy
) {
7587 llvm_unreachable("Unexpected vector predicate type");
7591 static SDValue
PromoteMVEPredVector(SDLoc dl
, SDValue Pred
, EVT VT
,
7592 SelectionDAG
&DAG
) {
7593 // Converting from boolean predicates to integers involves creating a vector
7594 // of all ones or all zeroes and selecting the lanes based upon the real
7597 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl
, MVT::i32
);
7598 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllOnes
);
7601 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl
, MVT::i32
);
7602 AllZeroes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllZeroes
);
7604 // Get full vector type from predicate type
7605 EVT NewVT
= getVectorTyFromPredicateVector(VT
);
7608 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7609 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7610 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7611 // since we know in hardware the sizes are really the same.
7612 if (VT
!= MVT::v16i1
)
7613 RecastV1
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Pred
);
7617 // Select either all ones or zeroes depending upon the real predicate bits.
7618 SDValue PredAsVector
=
7619 DAG
.getNode(ISD::VSELECT
, dl
, MVT::v16i8
, RecastV1
, AllOnes
, AllZeroes
);
7621 // Recast our new predicate-as-integer v16i8 vector into something
7622 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7623 return DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, PredAsVector
);
7626 static SDValue
LowerVECTOR_SHUFFLE_i1(SDValue Op
, SelectionDAG
&DAG
,
7627 const ARMSubtarget
*ST
) {
7628 EVT VT
= Op
.getValueType();
7629 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7630 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7632 assert(ST
->hasMVEIntegerOps() &&
7633 "No support for vector shuffle of boolean predicates");
7635 SDValue V1
= Op
.getOperand(0);
7637 if (isReverseMask(ShuffleMask
, VT
)) {
7638 SDValue cast
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, V1
);
7639 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, cast
);
7640 SDValue srl
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, rbit
,
7641 DAG
.getConstant(16, dl
, MVT::i32
));
7642 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, srl
);
7645 // Until we can come up with optimised cases for every single vector
7646 // shuffle in existence we have chosen the least painful strategy. This is
7647 // to essentially promote the boolean predicate to a 8-bit integer, where
7648 // each predicate represents a byte. Then we fall back on a normal integer
7649 // vector shuffle and convert the result back into a predicate vector. In
7650 // many cases the generated code might be even better than scalar code
7651 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7652 // fields in a register into 8 other arbitrary 2-bit fields!
7653 SDValue PredAsVector
= PromoteMVEPredVector(dl
, V1
, VT
, DAG
);
7654 EVT NewVT
= PredAsVector
.getValueType();
7657 SDValue Shuffled
= DAG
.getVectorShuffle(NewVT
, dl
, PredAsVector
,
7658 DAG
.getUNDEF(NewVT
), ShuffleMask
);
7660 // Now return the result of comparing the shuffled vector with zero,
7661 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7662 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, Shuffled
,
7663 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7666 static SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
7667 const ARMSubtarget
*ST
) {
7668 SDValue V1
= Op
.getOperand(0);
7669 SDValue V2
= Op
.getOperand(1);
7671 EVT VT
= Op
.getValueType();
7672 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7673 unsigned EltSize
= VT
.getScalarSizeInBits();
7675 if (ST
->hasMVEIntegerOps() && EltSize
== 1)
7676 return LowerVECTOR_SHUFFLE_i1(Op
, DAG
, ST
);
7678 // Convert shuffles that are directly supported on NEON to target-specific
7679 // DAG nodes, instead of keeping them as shuffles and matching them again
7680 // during code selection. This is more efficient and avoids the possibility
7681 // of inconsistencies between legalization and selection.
7682 // FIXME: floating-point vectors should be canonicalized to integer vectors
7683 // of the same time so that they get CSEd properly.
7684 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7686 if (EltSize
<= 32) {
7687 if (SVN
->isSplat()) {
7688 int Lane
= SVN
->getSplatIndex();
7689 // If this is undef splat, generate it via "just" vdup, if possible.
7690 if (Lane
== -1) Lane
= 0;
7692 // Test if V1 is a SCALAR_TO_VECTOR.
7693 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
7694 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7696 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7697 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7699 if (Lane
== 0 && V1
.getOpcode() == ISD::BUILD_VECTOR
&&
7700 !isa
<ConstantSDNode
>(V1
.getOperand(0))) {
7701 bool IsScalarToVector
= true;
7702 for (unsigned i
= 1, e
= V1
.getNumOperands(); i
!= e
; ++i
)
7703 if (!V1
.getOperand(i
).isUndef()) {
7704 IsScalarToVector
= false;
7707 if (IsScalarToVector
)
7708 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7710 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
, V1
,
7711 DAG
.getConstant(Lane
, dl
, MVT::i32
));
7714 bool ReverseVEXT
= false;
7716 if (ST
->hasNEON() && isVEXTMask(ShuffleMask
, VT
, ReverseVEXT
, Imm
)) {
7719 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V2
,
7720 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7723 if (isVREVMask(ShuffleMask
, VT
, 64))
7724 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, V1
);
7725 if (isVREVMask(ShuffleMask
, VT
, 32))
7726 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, V1
);
7727 if (isVREVMask(ShuffleMask
, VT
, 16))
7728 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, V1
);
7730 if (ST
->hasNEON() && V2
->isUndef() && isSingletonVEXTMask(ShuffleMask
, VT
, Imm
)) {
7731 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V1
,
7732 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7735 // Check for Neon shuffles that modify both input vectors in place.
7736 // If both results are used, i.e., if there are two shuffles with the same
7737 // source operands and with masks corresponding to both results of one of
7738 // these operations, DAG memoization will ensure that a single node is
7739 // used for both shuffles.
7740 unsigned WhichResult
= 0;
7741 bool isV_UNDEF
= false;
7742 if (ST
->hasNEON()) {
7743 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7744 ShuffleMask
, VT
, WhichResult
, isV_UNDEF
)) {
7747 return DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(VT
, VT
), V1
, V2
)
7748 .getValue(WhichResult
);
7752 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7753 // shuffles that produce a result larger than their operands with:
7754 // shuffle(concat(v1, undef), concat(v2, undef))
7756 // shuffle(concat(v1, v2), undef)
7757 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7759 // This is useful in the general case, but there are special cases where
7760 // native shuffles produce larger results: the two-result ops.
7762 // Look through the concat when lowering them:
7763 // shuffle(concat(v1, v2), undef)
7765 // concat(VZIP(v1, v2):0, :1)
7767 if (ST
->hasNEON() && V1
->getOpcode() == ISD::CONCAT_VECTORS
&& V2
->isUndef()) {
7768 SDValue SubV1
= V1
->getOperand(0);
7769 SDValue SubV2
= V1
->getOperand(1);
7770 EVT SubVT
= SubV1
.getValueType();
7772 // We expect these to have been canonicalized to -1.
7773 assert(llvm::all_of(ShuffleMask
, [&](int i
) {
7774 return i
< (int)VT
.getVectorNumElements();
7775 }) && "Unexpected shuffle index into UNDEF operand!");
7777 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7778 ShuffleMask
, SubVT
, WhichResult
, isV_UNDEF
)) {
7781 assert((WhichResult
== 0) &&
7782 "In-place shuffle of concat can only have one result!");
7783 SDValue Res
= DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(SubVT
, SubVT
),
7785 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Res
.getValue(0),
7791 // If the shuffle is not directly supported and it has 4 elements, use
7792 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7793 unsigned NumElts
= VT
.getVectorNumElements();
7795 unsigned PFIndexes
[4];
7796 for (unsigned i
= 0; i
!= 4; ++i
) {
7797 if (ShuffleMask
[i
] < 0)
7800 PFIndexes
[i
] = ShuffleMask
[i
];
7803 // Compute the index in the perfect shuffle table.
7804 unsigned PFTableIndex
=
7805 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7806 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7807 unsigned Cost
= (PFEntry
>> 30);
7811 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7812 else if (isLegalMVEShuffleOp(PFEntry
)) {
7813 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7814 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7815 unsigned PFEntryLHS
= PerfectShuffleTable
[LHSID
];
7816 unsigned PFEntryRHS
= PerfectShuffleTable
[RHSID
];
7817 if (isLegalMVEShuffleOp(PFEntryLHS
) && isLegalMVEShuffleOp(PFEntryRHS
))
7818 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7823 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7824 if (EltSize
>= 32) {
7825 // Do the expansion with floating-point types, since that is what the VFP
7826 // registers are defined to use, and since i64 is not legal.
7827 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7828 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7829 V1
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V1
);
7830 V2
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V2
);
7831 SmallVector
<SDValue
, 8> Ops
;
7832 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7833 if (ShuffleMask
[i
] < 0)
7834 Ops
.push_back(DAG
.getUNDEF(EltVT
));
7836 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
7837 ShuffleMask
[i
] < (int)NumElts
? V1
: V2
,
7838 DAG
.getConstant(ShuffleMask
[i
] & (NumElts
-1),
7841 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7842 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7845 if (ST
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) && isReverseMask(ShuffleMask
, VT
))
7846 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op
, DAG
);
7848 if (ST
->hasNEON() && VT
== MVT::v8i8
)
7849 if (SDValue NewOp
= LowerVECTOR_SHUFFLEv8i8(Op
, ShuffleMask
, DAG
))
7855 static SDValue
LowerINSERT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7856 const ARMSubtarget
*ST
) {
7857 EVT VecVT
= Op
.getOperand(0).getValueType();
7860 assert(ST
->hasMVEIntegerOps() &&
7861 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7864 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7865 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
7866 unsigned LaneWidth
=
7867 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7868 unsigned Mask
= ((1 << LaneWidth
) - 1) << Lane
* LaneWidth
;
7869 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
,
7870 Op
.getOperand(1), DAG
.getValueType(MVT::i1
));
7871 SDValue BFI
= DAG
.getNode(ARMISD::BFI
, dl
, MVT::i32
, Conv
, Ext
,
7872 DAG
.getConstant(~Mask
, dl
, MVT::i32
));
7873 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), BFI
);
7876 SDValue
ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
7877 SelectionDAG
&DAG
) const {
7878 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7879 SDValue Lane
= Op
.getOperand(2);
7880 if (!isa
<ConstantSDNode
>(Lane
))
7883 SDValue Elt
= Op
.getOperand(1);
7884 EVT EltVT
= Elt
.getValueType();
7886 if (Subtarget
->hasMVEIntegerOps() &&
7887 Op
.getValueType().getScalarSizeInBits() == 1)
7888 return LowerINSERT_VECTOR_ELT_i1(Op
, DAG
, Subtarget
);
7890 if (getTypeAction(*DAG
.getContext(), EltVT
) ==
7891 TargetLowering::TypePromoteFloat
) {
7892 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7893 // but the type system will try to do that if we don't intervene.
7894 // Reinterpret any such vector-element insertion as one with the
7895 // corresponding integer types.
7899 EVT IEltVT
= MVT::getIntegerVT(EltVT
.getScalarSizeInBits());
7900 assert(getTypeAction(*DAG
.getContext(), IEltVT
) !=
7901 TargetLowering::TypePromoteFloat
);
7903 SDValue VecIn
= Op
.getOperand(0);
7904 EVT VecVT
= VecIn
.getValueType();
7905 EVT IVecVT
= EVT::getVectorVT(*DAG
.getContext(), IEltVT
,
7906 VecVT
.getVectorNumElements());
7908 SDValue IElt
= DAG
.getNode(ISD::BITCAST
, dl
, IEltVT
, Elt
);
7909 SDValue IVecIn
= DAG
.getNode(ISD::BITCAST
, dl
, IVecVT
, VecIn
);
7910 SDValue IVecOut
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, IVecVT
,
7911 IVecIn
, IElt
, Lane
);
7912 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, IVecOut
);
7918 static SDValue
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7919 const ARMSubtarget
*ST
) {
7920 EVT VecVT
= Op
.getOperand(0).getValueType();
7923 assert(ST
->hasMVEIntegerOps() &&
7924 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7927 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7928 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
7929 unsigned LaneWidth
=
7930 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7931 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Conv
,
7932 DAG
.getConstant(Lane
* LaneWidth
, dl
, MVT::i32
));
7936 static SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
,
7937 const ARMSubtarget
*ST
) {
7938 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7939 SDValue Lane
= Op
.getOperand(1);
7940 if (!isa
<ConstantSDNode
>(Lane
))
7943 SDValue Vec
= Op
.getOperand(0);
7944 EVT VT
= Vec
.getValueType();
7946 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7947 return LowerEXTRACT_VECTOR_ELT_i1(Op
, DAG
, ST
);
7949 if (Op
.getValueType() == MVT::i32
&& Vec
.getScalarValueSizeInBits() < 32) {
7951 return DAG
.getNode(ARMISD::VGETLANEu
, dl
, MVT::i32
, Vec
, Lane
);
7957 static SDValue
LowerCONCAT_VECTORS_i1(SDValue Op
, SelectionDAG
&DAG
,
7958 const ARMSubtarget
*ST
) {
7959 SDValue V1
= Op
.getOperand(0);
7960 SDValue V2
= Op
.getOperand(1);
7962 EVT VT
= Op
.getValueType();
7963 EVT Op1VT
= V1
.getValueType();
7964 EVT Op2VT
= V2
.getValueType();
7965 unsigned NumElts
= VT
.getVectorNumElements();
7967 assert(Op1VT
== Op2VT
&& "Operand types don't match!");
7968 assert(VT
.getScalarSizeInBits() == 1 &&
7969 "Unexpected custom CONCAT_VECTORS lowering");
7970 assert(ST
->hasMVEIntegerOps() &&
7971 "CONCAT_VECTORS lowering only supported for MVE");
7973 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7974 SDValue NewV2
= PromoteMVEPredVector(dl
, V2
, Op2VT
, DAG
);
7976 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
7977 // promoted to v8i16, etc.
7979 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
7981 // Extract the vector elements from Op1 and Op2 one by one and truncate them
7982 // to be the right size for the destination. For example, if Op1 is v4i1 then
7983 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
7984 // which when promoted is v8i16. That means each i32 element from Op1 needs
7985 // truncating to i16 and inserting in the result.
7986 EVT ConcatVT
= MVT::getVectorVT(ElType
, NumElts
);
7987 SDValue ConVec
= DAG
.getNode(ISD::UNDEF
, dl
, ConcatVT
);
7988 auto ExractInto
= [&DAG
, &dl
](SDValue NewV
, SDValue ConVec
, unsigned &j
) {
7989 EVT NewVT
= NewV
.getValueType();
7990 EVT ConcatVT
= ConVec
.getValueType();
7991 for (unsigned i
= 0, e
= NewVT
.getVectorNumElements(); i
< e
; i
++, j
++) {
7992 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV
,
7993 DAG
.getIntPtrConstant(i
, dl
));
7994 ConVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, ConcatVT
, ConVec
, Elt
,
7995 DAG
.getConstant(j
, dl
, MVT::i32
));
8000 ConVec
= ExractInto(NewV1
, ConVec
, j
);
8001 ConVec
= ExractInto(NewV2
, ConVec
, j
);
8003 // Now return the result of comparing the subvector with zero,
8004 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8005 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, ConVec
,
8006 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8009 static SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
,
8010 const ARMSubtarget
*ST
) {
8011 EVT VT
= Op
->getValueType(0);
8012 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
8013 return LowerCONCAT_VECTORS_i1(Op
, DAG
, ST
);
8015 // The only time a CONCAT_VECTORS operation can have legal types is when
8016 // two 64-bit vectors are concatenated to a 128-bit vector.
8017 assert(Op
.getValueType().is128BitVector() && Op
.getNumOperands() == 2 &&
8018 "unexpected CONCAT_VECTORS");
8020 SDValue Val
= DAG
.getUNDEF(MVT::v2f64
);
8021 SDValue Op0
= Op
.getOperand(0);
8022 SDValue Op1
= Op
.getOperand(1);
8024 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
8025 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op0
),
8026 DAG
.getIntPtrConstant(0, dl
));
8028 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
8029 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op1
),
8030 DAG
.getIntPtrConstant(1, dl
));
8031 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Val
);
8034 static SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
,
8035 const ARMSubtarget
*ST
) {
8036 SDValue V1
= Op
.getOperand(0);
8037 SDValue V2
= Op
.getOperand(1);
8039 EVT VT
= Op
.getValueType();
8040 EVT Op1VT
= V1
.getValueType();
8041 unsigned NumElts
= VT
.getVectorNumElements();
8042 unsigned Index
= cast
<ConstantSDNode
>(V2
)->getZExtValue();
8044 assert(VT
.getScalarSizeInBits() == 1 &&
8045 "Unexpected custom EXTRACT_SUBVECTOR lowering");
8046 assert(ST
->hasMVEIntegerOps() &&
8047 "EXTRACT_SUBVECTOR lowering only supported for MVE");
8049 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
8051 // We now have Op1 promoted to a vector of integers, where v8i1 gets
8052 // promoted to v8i16, etc.
8054 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
8056 EVT SubVT
= MVT::getVectorVT(ElType
, NumElts
);
8057 SDValue SubVec
= DAG
.getNode(ISD::UNDEF
, dl
, SubVT
);
8058 for (unsigned i
= Index
, j
= 0; i
< (Index
+ NumElts
); i
++, j
++) {
8059 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV1
,
8060 DAG
.getIntPtrConstant(i
, dl
));
8061 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
8062 DAG
.getConstant(j
, dl
, MVT::i32
));
8065 // Now return the result of comparing the subvector with zero,
8066 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8067 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, SubVec
,
8068 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8071 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
8072 /// element has been zero/sign-extended, depending on the isSigned parameter,
8073 /// from an integer type half its size.
8074 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
8076 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
8077 EVT VT
= N
->getValueType(0);
8078 if (VT
== MVT::v2i64
&& N
->getOpcode() == ISD::BITCAST
) {
8079 SDNode
*BVN
= N
->getOperand(0).getNode();
8080 if (BVN
->getValueType(0) != MVT::v4i32
||
8081 BVN
->getOpcode() != ISD::BUILD_VECTOR
)
8083 unsigned LoElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8084 unsigned HiElt
= 1 - LoElt
;
8085 ConstantSDNode
*Lo0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
));
8086 ConstantSDNode
*Hi0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
));
8087 ConstantSDNode
*Lo1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
+2));
8088 ConstantSDNode
*Hi1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
+2));
8089 if (!Lo0
|| !Hi0
|| !Lo1
|| !Hi1
)
8092 if (Hi0
->getSExtValue() == Lo0
->getSExtValue() >> 32 &&
8093 Hi1
->getSExtValue() == Lo1
->getSExtValue() >> 32)
8096 if (Hi0
->isNullValue() && Hi1
->isNullValue())
8102 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
8105 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
8106 SDNode
*Elt
= N
->getOperand(i
).getNode();
8107 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
8108 unsigned EltSize
= VT
.getScalarSizeInBits();
8109 unsigned HalfSize
= EltSize
/ 2;
8111 if (!isIntN(HalfSize
, C
->getSExtValue()))
8114 if (!isUIntN(HalfSize
, C
->getZExtValue()))
8125 /// isSignExtended - Check if a node is a vector value that is sign-extended
8126 /// or a constant BUILD_VECTOR with sign-extended elements.
8127 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8128 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| ISD::isSEXTLoad(N
))
8130 if (isExtendedBUILD_VECTOR(N
, DAG
, true))
8135 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8136 /// or a constant BUILD_VECTOR with zero-extended elements.
8137 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8138 if (N
->getOpcode() == ISD::ZERO_EXTEND
|| ISD::isZEXTLoad(N
))
8140 if (isExtendedBUILD_VECTOR(N
, DAG
, false))
8145 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
8146 if (OrigVT
.getSizeInBits() >= 64)
8149 assert(OrigVT
.isSimple() && "Expecting a simple value type");
8151 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
8152 switch (OrigSimpleTy
) {
8153 default: llvm_unreachable("Unexpected Vector Type");
8162 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8163 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8164 /// We insert the required extension here to get the vector to fill a D register.
8165 static SDValue
AddRequiredExtensionForVMULL(SDValue N
, SelectionDAG
&DAG
,
8168 unsigned ExtOpcode
) {
8169 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8170 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8171 // 64-bits we need to insert a new extension so that it will be 64-bits.
8172 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
8173 if (OrigTy
.getSizeInBits() >= 64)
8176 // Must extend size to at least 64 bits to be used as an operand for VMULL.
8177 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
8179 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
8182 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8183 /// does not do any sign/zero extension. If the original vector is less
8184 /// than 64 bits, an appropriate extension will be added after the load to
8185 /// reach a total size of 64 bits. We have to add the extension separately
8186 /// because ARM does not have a sign/zero extending load for vectors.
8187 static SDValue
SkipLoadExtensionForVMULL(LoadSDNode
*LD
, SelectionDAG
& DAG
) {
8188 EVT ExtendedTy
= getExtensionTo64Bits(LD
->getMemoryVT());
8190 // The load already has the right type.
8191 if (ExtendedTy
== LD
->getMemoryVT())
8192 return DAG
.getLoad(LD
->getMemoryVT(), SDLoc(LD
), LD
->getChain(),
8193 LD
->getBasePtr(), LD
->getPointerInfo(),
8194 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
8196 // We need to create a zextload/sextload. We cannot just create a load
8197 // followed by a zext/zext node because LowerMUL is also run during normal
8198 // operation legalization where we can't create illegal types.
8199 return DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
), ExtendedTy
,
8200 LD
->getChain(), LD
->getBasePtr(), LD
->getPointerInfo(),
8201 LD
->getMemoryVT(), LD
->getAlignment(),
8202 LD
->getMemOperand()->getFlags());
8205 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8206 /// extending load, or BUILD_VECTOR with extended elements, return the
8207 /// unextended value. The unextended vector should be 64 bits so that it can
8208 /// be used as an operand to a VMULL instruction. If the original vector size
8209 /// before extension is less than 64 bits we add a an extension to resize
8210 /// the vector to 64 bits.
8211 static SDValue
SkipExtensionForVMULL(SDNode
*N
, SelectionDAG
&DAG
) {
8212 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
8213 return AddRequiredExtensionForVMULL(N
->getOperand(0), DAG
,
8214 N
->getOperand(0)->getValueType(0),
8218 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
8219 assert((ISD::isSEXTLoad(LD
) || ISD::isZEXTLoad(LD
)) &&
8220 "Expected extending load");
8222 SDValue newLoad
= SkipLoadExtensionForVMULL(LD
, DAG
);
8223 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), newLoad
.getValue(1));
8224 unsigned Opcode
= ISD::isSEXTLoad(LD
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8226 DAG
.getNode(Opcode
, SDLoc(newLoad
), LD
->getValueType(0), newLoad
);
8227 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 0), extLoad
);
8232 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8233 // have been legalized as a BITCAST from v4i32.
8234 if (N
->getOpcode() == ISD::BITCAST
) {
8235 SDNode
*BVN
= N
->getOperand(0).getNode();
8236 assert(BVN
->getOpcode() == ISD::BUILD_VECTOR
&&
8237 BVN
->getValueType(0) == MVT::v4i32
&& "expected v4i32 BUILD_VECTOR");
8238 unsigned LowElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8239 return DAG
.getBuildVector(
8240 MVT::v2i32
, SDLoc(N
),
8241 {BVN
->getOperand(LowElt
), BVN
->getOperand(LowElt
+ 2)});
8243 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8244 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
8245 EVT VT
= N
->getValueType(0);
8246 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
8247 unsigned NumElts
= VT
.getVectorNumElements();
8248 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
8249 SmallVector
<SDValue
, 8> Ops
;
8251 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
8252 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
8253 const APInt
&CInt
= C
->getAPIntValue();
8254 // Element types smaller than 32 bits are not legal, so use i32 elements.
8255 // The values are implicitly truncated so sext vs. zext doesn't matter.
8256 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
8258 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
8261 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
8262 unsigned Opcode
= N
->getOpcode();
8263 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8264 SDNode
*N0
= N
->getOperand(0).getNode();
8265 SDNode
*N1
= N
->getOperand(1).getNode();
8266 return N0
->hasOneUse() && N1
->hasOneUse() &&
8267 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
8272 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
8273 unsigned Opcode
= N
->getOpcode();
8274 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8275 SDNode
*N0
= N
->getOperand(0).getNode();
8276 SDNode
*N1
= N
->getOperand(1).getNode();
8277 return N0
->hasOneUse() && N1
->hasOneUse() &&
8278 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
8283 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
8284 // Multiplications are only custom-lowered for 128-bit vectors so that
8285 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8286 EVT VT
= Op
.getValueType();
8287 assert(VT
.is128BitVector() && VT
.isInteger() &&
8288 "unexpected type for custom-lowering ISD::MUL");
8289 SDNode
*N0
= Op
.getOperand(0).getNode();
8290 SDNode
*N1
= Op
.getOperand(1).getNode();
8291 unsigned NewOpc
= 0;
8293 bool isN0SExt
= isSignExtended(N0
, DAG
);
8294 bool isN1SExt
= isSignExtended(N1
, DAG
);
8295 if (isN0SExt
&& isN1SExt
)
8296 NewOpc
= ARMISD::VMULLs
;
8298 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
8299 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
8300 if (isN0ZExt
&& isN1ZExt
)
8301 NewOpc
= ARMISD::VMULLu
;
8302 else if (isN1SExt
|| isN1ZExt
) {
8303 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8304 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8305 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
8306 NewOpc
= ARMISD::VMULLs
;
8308 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
8309 NewOpc
= ARMISD::VMULLu
;
8311 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
8313 NewOpc
= ARMISD::VMULLu
;
8319 if (VT
== MVT::v2i64
)
8320 // Fall through to expand this. It is not legal.
8323 // Other vector multiplications are legal.
8328 // Legalize to a VMULL instruction.
8331 SDValue Op1
= SkipExtensionForVMULL(N1
, DAG
);
8333 Op0
= SkipExtensionForVMULL(N0
, DAG
);
8334 assert(Op0
.getValueType().is64BitVector() &&
8335 Op1
.getValueType().is64BitVector() &&
8336 "unexpected types for extended operands to VMULL");
8337 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
8340 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8341 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8348 SDValue N00
= SkipExtensionForVMULL(N0
->getOperand(0).getNode(), DAG
);
8349 SDValue N01
= SkipExtensionForVMULL(N0
->getOperand(1).getNode(), DAG
);
8350 EVT Op1VT
= Op1
.getValueType();
8351 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
8352 DAG
.getNode(NewOpc
, DL
, VT
,
8353 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
8354 DAG
.getNode(NewOpc
, DL
, VT
,
8355 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
8358 static SDValue
LowerSDIV_v4i8(SDValue X
, SDValue Y
, const SDLoc
&dl
,
8359 SelectionDAG
&DAG
) {
8360 // TODO: Should this propagate fast-math-flags?
8363 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8364 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8365 X
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, X
);
8366 Y
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, Y
);
8367 X
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, X
);
8368 Y
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, Y
);
8369 // Get reciprocal estimate.
8370 // float4 recip = vrecpeq_f32(yf);
8371 Y
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8372 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8374 // Because char has a smaller range than uchar, we can actually get away
8375 // without any newton steps. This requires that we use a weird bias
8376 // of 0xb000, however (again, this has been exhaustively tested).
8377 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8378 X
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, X
, Y
);
8379 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, X
);
8380 Y
= DAG
.getConstant(0xb000, dl
, MVT::v4i32
);
8381 X
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, X
, Y
);
8382 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, X
);
8383 // Convert back to short.
8384 X
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, X
);
8385 X
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, X
);
8389 static SDValue
LowerSDIV_v4i16(SDValue N0
, SDValue N1
, const SDLoc
&dl
,
8390 SelectionDAG
&DAG
) {
8391 // TODO: Should this propagate fast-math-flags?
8394 // Convert to float.
8395 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8396 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8397 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N0
);
8398 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N1
);
8399 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8400 N1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8402 // Use reciprocal estimate and one refinement step.
8403 // float4 recip = vrecpeq_f32(yf);
8404 // recip *= vrecpsq_f32(yf, recip);
8405 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8406 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8408 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8409 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8411 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8412 // Because short has a smaller range than ushort, we can actually get away
8413 // with only a single newton step. This requires that we use a weird bias
8414 // of 89, however (again, this has been exhaustively tested).
8415 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8416 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8417 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8418 N1
= DAG
.getConstant(0x89, dl
, MVT::v4i32
);
8419 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8420 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8421 // Convert back to integer and return.
8422 // return vmovn_s32(vcvt_s32_f32(result));
8423 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8424 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8428 static SDValue
LowerSDIV(SDValue Op
, SelectionDAG
&DAG
,
8429 const ARMSubtarget
*ST
) {
8430 EVT VT
= Op
.getValueType();
8431 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8432 "unexpected type for custom-lowering ISD::SDIV");
8435 SDValue N0
= Op
.getOperand(0);
8436 SDValue N1
= Op
.getOperand(1);
8439 if (VT
== MVT::v8i8
) {
8440 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N0
);
8441 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N1
);
8443 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8444 DAG
.getIntPtrConstant(4, dl
));
8445 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8446 DAG
.getIntPtrConstant(4, dl
));
8447 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8448 DAG
.getIntPtrConstant(0, dl
));
8449 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8450 DAG
.getIntPtrConstant(0, dl
));
8452 N0
= LowerSDIV_v4i8(N0
, N1
, dl
, DAG
); // v4i16
8453 N2
= LowerSDIV_v4i8(N2
, N3
, dl
, DAG
); // v4i16
8455 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8456 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8458 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v8i8
, N0
);
8461 return LowerSDIV_v4i16(N0
, N1
, dl
, DAG
);
8464 static SDValue
LowerUDIV(SDValue Op
, SelectionDAG
&DAG
,
8465 const ARMSubtarget
*ST
) {
8466 // TODO: Should this propagate fast-math-flags?
8467 EVT VT
= Op
.getValueType();
8468 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8469 "unexpected type for custom-lowering ISD::UDIV");
8472 SDValue N0
= Op
.getOperand(0);
8473 SDValue N1
= Op
.getOperand(1);
8476 if (VT
== MVT::v8i8
) {
8477 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N0
);
8478 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N1
);
8480 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8481 DAG
.getIntPtrConstant(4, dl
));
8482 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8483 DAG
.getIntPtrConstant(4, dl
));
8484 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8485 DAG
.getIntPtrConstant(0, dl
));
8486 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8487 DAG
.getIntPtrConstant(0, dl
));
8489 N0
= LowerSDIV_v4i16(N0
, N1
, dl
, DAG
); // v4i16
8490 N2
= LowerSDIV_v4i16(N2
, N3
, dl
, DAG
); // v4i16
8492 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8493 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8495 N0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v8i8
,
8496 DAG
.getConstant(Intrinsic::arm_neon_vqmovnsu
, dl
,
8502 // v4i16 sdiv ... Convert to float.
8503 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8504 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8505 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N0
);
8506 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N1
);
8507 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8508 SDValue BN1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8510 // Use reciprocal estimate and two refinement steps.
8511 // float4 recip = vrecpeq_f32(yf);
8512 // recip *= vrecpsq_f32(yf, recip);
8513 // recip *= vrecpsq_f32(yf, recip);
8514 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8515 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8517 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8518 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8520 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8521 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8522 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8524 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8525 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8526 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8527 // and that it will never cause us to return an answer too large).
8528 // float4 result = as_float4(as_int4(xf*recip) + 2);
8529 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8530 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8531 N1
= DAG
.getConstant(2, dl
, MVT::v4i32
);
8532 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8533 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8534 // Convert back to integer and return.
8535 // return vmovn_u32(vcvt_s32_f32(result));
8536 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8537 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8541 static SDValue
LowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) {
8542 SDNode
*N
= Op
.getNode();
8543 EVT VT
= N
->getValueType(0);
8544 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
8546 SDValue Carry
= Op
.getOperand(2);
8551 if (Op
.getOpcode() == ISD::ADDCARRY
) {
8552 // This converts the boolean value carry into the carry flag.
8553 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8555 // Do the addition proper using the carry flag we wanted.
8556 Result
= DAG
.getNode(ARMISD::ADDE
, DL
, VTs
, Op
.getOperand(0),
8557 Op
.getOperand(1), Carry
);
8559 // Now convert the carry flag into a boolean value.
8560 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8562 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8563 // have to invert the carry first.
8564 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8565 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8566 // This converts the boolean value carry into the carry flag.
8567 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8569 // Do the subtraction proper using the carry flag we wanted.
8570 Result
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, Op
.getOperand(0),
8571 Op
.getOperand(1), Carry
);
8573 // Now convert the carry flag into a boolean value.
8574 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8575 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8576 // by ISD::SUBCARRY, so compute 1 - C.
8577 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8578 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8581 // Return both values.
8582 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Result
, Carry
);
8585 SDValue
ARMTargetLowering::LowerFSINCOS(SDValue Op
, SelectionDAG
&DAG
) const {
8586 assert(Subtarget
->isTargetDarwin());
8588 // For iOS, we want to call an alternative entry point: __sincos_stret,
8589 // return values are passed via sret.
8591 SDValue Arg
= Op
.getOperand(0);
8592 EVT ArgVT
= Arg
.getValueType();
8593 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
8594 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
8596 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
8597 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8599 // Pair of floats / doubles used to pass the result.
8600 Type
*RetTy
= StructType::get(ArgTy
, ArgTy
);
8601 auto &DL
= DAG
.getDataLayout();
8604 bool ShouldUseSRet
= Subtarget
->isAPCS_ABI();
8606 if (ShouldUseSRet
) {
8607 // Create stack object for sret.
8608 const uint64_t ByteSize
= DL
.getTypeAllocSize(RetTy
);
8609 const unsigned StackAlign
= DL
.getPrefTypeAlignment(RetTy
);
8610 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
8611 SRet
= DAG
.getFrameIndex(FrameIdx
, TLI
.getPointerTy(DL
));
8615 Entry
.Ty
= RetTy
->getPointerTo();
8616 Entry
.IsSExt
= false;
8617 Entry
.IsZExt
= false;
8618 Entry
.IsSRet
= true;
8619 Args
.push_back(Entry
);
8620 RetTy
= Type::getVoidTy(*DAG
.getContext());
8626 Entry
.IsSExt
= false;
8627 Entry
.IsZExt
= false;
8628 Args
.push_back(Entry
);
8631 (ArgVT
== MVT::f64
) ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32
;
8632 const char *LibcallName
= getLibcallName(LC
);
8633 CallingConv::ID CC
= getLibcallCallingConv(LC
);
8634 SDValue Callee
= DAG
.getExternalSymbol(LibcallName
, getPointerTy(DL
));
8636 TargetLowering::CallLoweringInfo
CLI(DAG
);
8638 .setChain(DAG
.getEntryNode())
8639 .setCallee(CC
, RetTy
, Callee
, std::move(Args
))
8640 .setDiscardResult(ShouldUseSRet
);
8641 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
8644 return CallResult
.first
;
8647 DAG
.getLoad(ArgVT
, dl
, CallResult
.second
, SRet
, MachinePointerInfo());
8649 // Address of cos field.
8650 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SRet
,
8651 DAG
.getIntPtrConstant(ArgVT
.getStoreSize(), dl
));
8653 DAG
.getLoad(ArgVT
, dl
, LoadSin
.getValue(1), Add
, MachinePointerInfo());
8655 SDVTList Tys
= DAG
.getVTList(ArgVT
, ArgVT
);
8656 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Tys
,
8657 LoadSin
.getValue(0), LoadCos
.getValue(0));
8660 SDValue
ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op
, SelectionDAG
&DAG
,
8662 SDValue
&Chain
) const {
8663 EVT VT
= Op
.getValueType();
8664 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
8665 "unexpected type for custom lowering DIV");
8668 const auto &DL
= DAG
.getDataLayout();
8669 const auto &TLI
= DAG
.getTargetLoweringInfo();
8671 const char *Name
= nullptr;
8673 Name
= (VT
== MVT::i32
) ? "__rt_sdiv" : "__rt_sdiv64";
8675 Name
= (VT
== MVT::i32
) ? "__rt_udiv" : "__rt_udiv64";
8677 SDValue ES
= DAG
.getExternalSymbol(Name
, TLI
.getPointerTy(DL
));
8679 ARMTargetLowering::ArgListTy Args
;
8681 for (auto AI
: {1, 0}) {
8683 Arg
.Node
= Op
.getOperand(AI
);
8684 Arg
.Ty
= Arg
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
8685 Args
.push_back(Arg
);
8688 CallLoweringInfo
CLI(DAG
);
8691 .setCallee(CallingConv::ARM_AAPCS_VFP
, VT
.getTypeForEVT(*DAG
.getContext()),
8692 ES
, std::move(Args
));
8694 return LowerCallTo(CLI
).first
;
8697 // This is a code size optimisation: return the original SDIV node to
8698 // DAGCombiner when we don't want to expand SDIV into a sequence of
8699 // instructions, and an empty node otherwise which will cause the
8700 // SDIV to be expanded in DAGCombine.
8702 ARMTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
8704 SmallVectorImpl
<SDNode
*> &Created
) const {
8705 // TODO: Support SREM
8706 if (N
->getOpcode() != ISD::SDIV
)
8709 const auto &ST
= static_cast<const ARMSubtarget
&>(DAG
.getSubtarget());
8710 const bool MinSize
= ST
.hasMinSize();
8711 const bool HasDivide
= ST
.isThumb() ? ST
.hasDivideInThumbMode()
8712 : ST
.hasDivideInARMMode();
8714 // Don't touch vector types; rewriting this may lead to scalarizing
8716 if (N
->getOperand(0).getValueType().isVector())
8719 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8720 // hwdiv support for this to be really profitable.
8721 if (!(MinSize
&& HasDivide
))
8724 // ARM mode is a bit simpler than Thumb: we can handle large power
8725 // of 2 immediates with 1 mov instruction; no further checks required,
8726 // just return the sdiv node.
8728 return SDValue(N
, 0);
8730 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8731 // and thus lose the code size benefits of a MOVS that requires only 2.
8732 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8733 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8734 if (Divisor
.sgt(128))
8737 return SDValue(N
, 0);
8740 SDValue
ARMTargetLowering::LowerDIV_Windows(SDValue Op
, SelectionDAG
&DAG
,
8741 bool Signed
) const {
8742 assert(Op
.getValueType() == MVT::i32
&&
8743 "unexpected type for custom lowering DIV");
8746 SDValue DBZCHK
= DAG
.getNode(ARMISD::WIN__DBZCHK
, dl
, MVT::Other
,
8747 DAG
.getEntryNode(), Op
.getOperand(1));
8749 return LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8752 static SDValue
WinDBZCheckDenominator(SelectionDAG
&DAG
, SDNode
*N
, SDValue InChain
) {
8754 SDValue Op
= N
->getOperand(1);
8755 if (N
->getValueType(0) == MVT::i32
)
8756 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
, Op
);
8757 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8758 DAG
.getConstant(0, DL
, MVT::i32
));
8759 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8760 DAG
.getConstant(1, DL
, MVT::i32
));
8761 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
,
8762 DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Lo
, Hi
));
8765 void ARMTargetLowering::ExpandDIV_Windows(
8766 SDValue Op
, SelectionDAG
&DAG
, bool Signed
,
8767 SmallVectorImpl
<SDValue
> &Results
) const {
8768 const auto &DL
= DAG
.getDataLayout();
8769 const auto &TLI
= DAG
.getTargetLoweringInfo();
8771 assert(Op
.getValueType() == MVT::i64
&&
8772 "unexpected type for custom lowering DIV");
8775 SDValue DBZCHK
= WinDBZCheckDenominator(DAG
, Op
.getNode(), DAG
.getEntryNode());
8777 SDValue Result
= LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8779 SDValue Lower
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Result
);
8780 SDValue Upper
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Result
,
8781 DAG
.getConstant(32, dl
, TLI
.getPointerTy(DL
)));
8782 Upper
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Upper
);
8784 Results
.push_back(Lower
);
8785 Results
.push_back(Upper
);
8788 static SDValue
LowerPredicateLoad(SDValue Op
, SelectionDAG
&DAG
) {
8789 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
.getNode());
8790 EVT MemVT
= LD
->getMemoryVT();
8791 assert((MemVT
== MVT::v4i1
|| MemVT
== MVT::v8i1
|| MemVT
== MVT::v16i1
) &&
8792 "Expected a predicate type!");
8793 assert(MemVT
== Op
.getValueType());
8794 assert(LD
->getExtensionType() == ISD::NON_EXTLOAD
&&
8795 "Expected a non-extending load");
8796 assert(LD
->isUnindexed() && "Expected a unindexed load");
8798 // The basic MVE VLDR on a v4i1/v8i1 actually loads the entire 16bit
8799 // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
8800 // need to make sure that 8/4 bits are actually loaded into the correct
8801 // place, which means loading the value and then shuffling the values into
8802 // the bottom bits of the predicate.
8803 // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
8807 SDValue Load
= DAG
.getExtLoad(
8808 ISD::EXTLOAD
, dl
, MVT::i32
, LD
->getChain(), LD
->getBasePtr(),
8809 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits()),
8810 LD
->getMemOperand());
8811 SDValue Pred
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Load
);
8812 if (MemVT
!= MVT::v16i1
)
8813 Pred
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MemVT
, Pred
,
8814 DAG
.getConstant(0, dl
, MVT::i32
));
8815 return DAG
.getMergeValues({Pred
, Load
.getValue(1)}, dl
);
8818 static SDValue
LowerPredicateStore(SDValue Op
, SelectionDAG
&DAG
) {
8819 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
.getNode());
8820 EVT MemVT
= ST
->getMemoryVT();
8821 assert((MemVT
== MVT::v4i1
|| MemVT
== MVT::v8i1
|| MemVT
== MVT::v16i1
) &&
8822 "Expected a predicate type!");
8823 assert(MemVT
== ST
->getValue().getValueType());
8824 assert(!ST
->isTruncatingStore() && "Expected a non-extending store");
8825 assert(ST
->isUnindexed() && "Expected a unindexed store");
8827 // Only store the v4i1 or v8i1 worth of bits, via a buildvector with top bits
8828 // unset and a scalar store.
8830 SDValue Build
= ST
->getValue();
8831 if (MemVT
!= MVT::v16i1
) {
8832 SmallVector
<SDValue
, 16> Ops
;
8833 for (unsigned I
= 0; I
< MemVT
.getVectorNumElements(); I
++)
8834 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, Build
,
8835 DAG
.getConstant(I
, dl
, MVT::i32
)));
8836 for (unsigned I
= MemVT
.getVectorNumElements(); I
< 16; I
++)
8837 Ops
.push_back(DAG
.getUNDEF(MVT::i32
));
8838 Build
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v16i1
, Ops
);
8840 SDValue GRP
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Build
);
8841 return DAG
.getTruncStore(
8842 ST
->getChain(), dl
, GRP
, ST
->getBasePtr(),
8843 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits()),
8844 ST
->getMemOperand());
8847 static SDValue
LowerAtomicLoadStore(SDValue Op
, SelectionDAG
&DAG
) {
8848 if (isStrongerThanMonotonic(cast
<AtomicSDNode
>(Op
)->getOrdering()))
8849 // Acquire/Release load/store is not legal for targets without a dmb or
8850 // equivalent available.
8853 // Monotonic load/store is legal for all targets.
8857 static void ReplaceREADCYCLECOUNTER(SDNode
*N
,
8858 SmallVectorImpl
<SDValue
> &Results
,
8860 const ARMSubtarget
*Subtarget
) {
8862 // Under Power Management extensions, the cycle-count is:
8863 // mrc p15, #0, <Rt>, c9, c13, #0
8864 SDValue Ops
[] = { N
->getOperand(0), // Chain
8865 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
8866 DAG
.getConstant(15, DL
, MVT::i32
),
8867 DAG
.getConstant(0, DL
, MVT::i32
),
8868 DAG
.getConstant(9, DL
, MVT::i32
),
8869 DAG
.getConstant(13, DL
, MVT::i32
),
8870 DAG
.getConstant(0, DL
, MVT::i32
)
8873 SDValue Cycles32
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
8874 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
8875 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Cycles32
,
8876 DAG
.getConstant(0, DL
, MVT::i32
)));
8877 Results
.push_back(Cycles32
.getValue(1));
8880 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
8881 SDLoc
dl(V
.getNode());
8882 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i32
);
8883 SDValue VHi
= DAG
.getAnyExtOrTrunc(
8884 DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, V
, DAG
.getConstant(32, dl
, MVT::i32
)),
8886 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8888 std::swap (VLo
, VHi
);
8890 DAG
.getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
8891 SDValue SubReg0
= DAG
.getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
8892 SDValue SubReg1
= DAG
.getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
8893 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
8895 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
8898 static void ReplaceCMP_SWAP_64Results(SDNode
*N
,
8899 SmallVectorImpl
<SDValue
> & Results
,
8900 SelectionDAG
&DAG
) {
8901 assert(N
->getValueType(0) == MVT::i64
&&
8902 "AtomicCmpSwap on types less than 64 should be legal");
8903 SDValue Ops
[] = {N
->getOperand(1),
8904 createGPRPairNode(DAG
, N
->getOperand(2)),
8905 createGPRPairNode(DAG
, N
->getOperand(3)),
8907 SDNode
*CmpSwap
= DAG
.getMachineNode(
8908 ARM::CMP_SWAP_64
, SDLoc(N
),
8909 DAG
.getVTList(MVT::Untyped
, MVT::i32
, MVT::Other
), Ops
);
8911 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
8912 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
8914 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8917 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_1
: ARM::gsub_0
,
8918 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8920 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_0
: ARM::gsub_1
,
8921 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8922 Results
.push_back(SDValue(CmpSwap
, 2));
8925 static SDValue
LowerFPOWI(SDValue Op
, const ARMSubtarget
&Subtarget
,
8926 SelectionDAG
&DAG
) {
8927 const auto &TLI
= DAG
.getTargetLoweringInfo();
8929 assert(Subtarget
.getTargetTriple().isOSMSVCRT() &&
8930 "Custom lowering is MSVCRT specific!");
8933 SDValue Val
= Op
.getOperand(0);
8934 MVT Ty
= Val
->getSimpleValueType(0);
8935 SDValue Exponent
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, Ty
, Op
.getOperand(1));
8936 SDValue Callee
= DAG
.getExternalSymbol(Ty
== MVT::f32
? "powf" : "pow",
8937 TLI
.getPointerTy(DAG
.getDataLayout()));
8939 TargetLowering::ArgListTy Args
;
8940 TargetLowering::ArgListEntry Entry
;
8943 Entry
.Ty
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8944 Entry
.IsZExt
= true;
8945 Args
.push_back(Entry
);
8947 Entry
.Node
= Exponent
;
8948 Entry
.Ty
= Exponent
.getValueType().getTypeForEVT(*DAG
.getContext());
8949 Entry
.IsZExt
= true;
8950 Args
.push_back(Entry
);
8952 Type
*LCRTy
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8954 // In the in-chain to the call is the entry node If we are emitting a
8955 // tailcall, the chain will be mutated if the node has a non-entry input
8957 SDValue InChain
= DAG
.getEntryNode();
8958 SDValue TCChain
= InChain
;
8960 const Function
&F
= DAG
.getMachineFunction().getFunction();
8961 bool IsTC
= TLI
.isInTailCallPosition(DAG
, Op
.getNode(), TCChain
) &&
8962 F
.getReturnType() == LCRTy
;
8966 TargetLowering::CallLoweringInfo
CLI(DAG
);
8969 .setCallee(CallingConv::ARM_AAPCS_VFP
, LCRTy
, Callee
, std::move(Args
))
8971 std::pair
<SDValue
, SDValue
> CI
= TLI
.LowerCallTo(CLI
);
8973 // Return the chain (the DAG root) if it is a tail call
8974 return !CI
.second
.getNode() ? DAG
.getRoot() : CI
.first
;
8977 SDValue
ARMTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
8978 LLVM_DEBUG(dbgs() << "Lowering node: "; Op
.dump());
8979 switch (Op
.getOpcode()) {
8980 default: llvm_unreachable("Don't know how to custom lower this!");
8981 case ISD::WRITE_REGISTER
: return LowerWRITE_REGISTER(Op
, DAG
);
8982 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
8983 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
8984 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
8985 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
8986 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
8987 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
8988 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
8989 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
8990 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
8991 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
8992 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
, Subtarget
);
8993 case ISD::PREFETCH
: return LowerPREFETCH(Op
, DAG
, Subtarget
);
8994 case ISD::SINT_TO_FP
:
8995 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
8996 case ISD::FP_TO_SINT
:
8997 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
8998 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
8999 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
9000 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
9001 case ISD::EH_SJLJ_SETJMP
: return LowerEH_SJLJ_SETJMP(Op
, DAG
);
9002 case ISD::EH_SJLJ_LONGJMP
: return LowerEH_SJLJ_LONGJMP(Op
, DAG
);
9003 case ISD::EH_SJLJ_SETUP_DISPATCH
: return LowerEH_SJLJ_SETUP_DISPATCH(Op
, DAG
);
9004 case ISD::INTRINSIC_VOID
: return LowerINTRINSIC_VOID(Op
, DAG
, Subtarget
);
9005 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
,
9007 case ISD::BITCAST
: return ExpandBITCAST(Op
.getNode(), DAG
, Subtarget
);
9010 case ISD::SRA
: return LowerShift(Op
.getNode(), DAG
, Subtarget
);
9011 case ISD::SREM
: return LowerREM(Op
.getNode(), DAG
);
9012 case ISD::UREM
: return LowerREM(Op
.getNode(), DAG
);
9013 case ISD::SHL_PARTS
: return LowerShiftLeftParts(Op
, DAG
);
9014 case ISD::SRL_PARTS
:
9015 case ISD::SRA_PARTS
: return LowerShiftRightParts(Op
, DAG
);
9017 case ISD::CTTZ_ZERO_UNDEF
: return LowerCTTZ(Op
.getNode(), DAG
, Subtarget
);
9018 case ISD::CTPOP
: return LowerCTPOP(Op
.getNode(), DAG
, Subtarget
);
9019 case ISD::SETCC
: return LowerVSETCC(Op
, DAG
, Subtarget
);
9020 case ISD::SETCCCARRY
: return LowerSETCCCARRY(Op
, DAG
);
9021 case ISD::ConstantFP
: return LowerConstantFP(Op
, DAG
, Subtarget
);
9022 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
9023 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
9024 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
, Subtarget
);
9025 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
9026 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
, Subtarget
);
9027 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
, Subtarget
);
9028 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
9029 case ISD::MUL
: return LowerMUL(Op
, DAG
);
9031 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
9032 return LowerDIV_Windows(Op
, DAG
, /* Signed */ true);
9033 return LowerSDIV(Op
, DAG
, Subtarget
);
9035 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
9036 return LowerDIV_Windows(Op
, DAG
, /* Signed */ false);
9037 return LowerUDIV(Op
, DAG
, Subtarget
);
9039 case ISD::SUBCARRY
: return LowerADDSUBCARRY(Op
, DAG
);
9042 return LowerSignedALUO(Op
, DAG
);
9045 return LowerUnsignedALUO(Op
, DAG
);
9047 return LowerPredicateLoad(Op
, DAG
);
9049 return LowerPredicateStore(Op
, DAG
);
9050 case ISD::ATOMIC_LOAD
:
9051 case ISD::ATOMIC_STORE
: return LowerAtomicLoadStore(Op
, DAG
);
9052 case ISD::FSINCOS
: return LowerFSINCOS(Op
, DAG
);
9054 case ISD::UDIVREM
: return LowerDivRem(Op
, DAG
);
9055 case ISD::DYNAMIC_STACKALLOC
:
9056 if (Subtarget
->isTargetWindows())
9057 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
9058 llvm_unreachable("Don't know how to custom lower this!");
9059 case ISD::FP_ROUND
: return LowerFP_ROUND(Op
, DAG
);
9060 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
9061 case ISD::FPOWI
: return LowerFPOWI(Op
, *Subtarget
, DAG
);
9062 case ARMISD::WIN__DBZCHK
: return SDValue();
9066 static void ReplaceLongIntrinsic(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
9067 SelectionDAG
&DAG
) {
9068 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
9070 if (IntNo
== Intrinsic::arm_smlald
)
9071 Opc
= ARMISD::SMLALD
;
9072 else if (IntNo
== Intrinsic::arm_smlaldx
)
9073 Opc
= ARMISD::SMLALDX
;
9074 else if (IntNo
== Intrinsic::arm_smlsld
)
9075 Opc
= ARMISD::SMLSLD
;
9076 else if (IntNo
== Intrinsic::arm_smlsldx
)
9077 Opc
= ARMISD::SMLSLDX
;
9082 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
9084 DAG
.getConstant(0, dl
, MVT::i32
));
9085 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
9087 DAG
.getConstant(1, dl
, MVT::i32
));
9089 SDValue LongMul
= DAG
.getNode(Opc
, dl
,
9090 DAG
.getVTList(MVT::i32
, MVT::i32
),
9091 N
->getOperand(1), N
->getOperand(2),
9093 Results
.push_back(LongMul
.getValue(0));
9094 Results
.push_back(LongMul
.getValue(1));
9097 /// ReplaceNodeResults - Replace the results of node with an illegal result
9098 /// type with new values built out of custom code.
9099 void ARMTargetLowering::ReplaceNodeResults(SDNode
*N
,
9100 SmallVectorImpl
<SDValue
> &Results
,
9101 SelectionDAG
&DAG
) const {
9103 switch (N
->getOpcode()) {
9105 llvm_unreachable("Don't know how to custom expand this!");
9106 case ISD::READ_REGISTER
:
9107 ExpandREAD_REGISTER(N
, Results
, DAG
);
9110 Res
= ExpandBITCAST(N
, DAG
, Subtarget
);
9115 Res
= Expand64BitShift(N
, DAG
, Subtarget
);
9119 Res
= LowerREM(N
, DAG
);
9123 Res
= LowerDivRem(SDValue(N
, 0), DAG
);
9124 assert(Res
.getNumOperands() == 2 && "DivRem needs two values");
9125 Results
.push_back(Res
.getValue(0));
9126 Results
.push_back(Res
.getValue(1));
9128 case ISD::READCYCLECOUNTER
:
9129 ReplaceREADCYCLECOUNTER(N
, Results
, DAG
, Subtarget
);
9133 assert(Subtarget
->isTargetWindows() && "can only expand DIV on Windows");
9134 return ExpandDIV_Windows(SDValue(N
, 0), DAG
, N
->getOpcode() == ISD::SDIV
,
9136 case ISD::ATOMIC_CMP_SWAP
:
9137 ReplaceCMP_SWAP_64Results(N
, Results
, DAG
);
9139 case ISD::INTRINSIC_WO_CHAIN
:
9140 return ReplaceLongIntrinsic(N
, Results
, DAG
);
9142 lowerABS(N
, Results
, DAG
);
9147 Results
.push_back(Res
);
9150 //===----------------------------------------------------------------------===//
9151 // ARM Scheduler Hooks
9152 //===----------------------------------------------------------------------===//
9154 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
9155 /// registers the function context.
9156 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr
&MI
,
9157 MachineBasicBlock
*MBB
,
9158 MachineBasicBlock
*DispatchBB
,
9160 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
9161 "ROPI/RWPI not currently supported with SjLj");
9162 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9163 DebugLoc dl
= MI
.getDebugLoc();
9164 MachineFunction
*MF
= MBB
->getParent();
9165 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9166 MachineConstantPool
*MCP
= MF
->getConstantPool();
9167 ARMFunctionInfo
*AFI
= MF
->getInfo
<ARMFunctionInfo
>();
9168 const Function
&F
= MF
->getFunction();
9170 bool isThumb
= Subtarget
->isThumb();
9171 bool isThumb2
= Subtarget
->isThumb2();
9173 unsigned PCLabelId
= AFI
->createPICLabelUId();
9174 unsigned PCAdj
= (isThumb
|| isThumb2
) ? 4 : 8;
9175 ARMConstantPoolValue
*CPV
=
9176 ARMConstantPoolMBB::Create(F
.getContext(), DispatchBB
, PCLabelId
, PCAdj
);
9177 unsigned CPI
= MCP
->getConstantPoolIndex(CPV
, 4);
9179 const TargetRegisterClass
*TRC
= isThumb
? &ARM::tGPRRegClass
9180 : &ARM::GPRRegClass
;
9182 // Grab constant pool and fixed stack memory operands.
9183 MachineMemOperand
*CPMMO
=
9184 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9185 MachineMemOperand::MOLoad
, 4, 4);
9187 MachineMemOperand
*FIMMOSt
=
9188 MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
9189 MachineMemOperand::MOStore
, 4, 4);
9191 // Load the address of the dispatch MBB into the jump buffer.
9193 // Incoming value: jbuf
9194 // ldr.n r5, LCPI1_1
9197 // str r5, [$jbuf, #+4] ; &jbuf[1]
9198 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9199 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2LDRpci
), NewVReg1
)
9200 .addConstantPoolIndex(CPI
)
9201 .addMemOperand(CPMMO
)
9202 .add(predOps(ARMCC::AL
));
9203 // Set the low bit because of thumb mode.
9204 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9205 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2ORRri
), NewVReg2
)
9206 .addReg(NewVReg1
, RegState::Kill
)
9208 .add(predOps(ARMCC::AL
))
9210 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9211 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg3
)
9212 .addReg(NewVReg2
, RegState::Kill
)
9214 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2STRi12
))
9215 .addReg(NewVReg3
, RegState::Kill
)
9217 .addImm(36) // &jbuf[1] :: pc
9218 .addMemOperand(FIMMOSt
)
9219 .add(predOps(ARMCC::AL
));
9220 } else if (isThumb
) {
9221 // Incoming value: jbuf
9222 // ldr.n r1, LCPI1_4
9226 // add r2, $jbuf, #+4 ; &jbuf[1]
9228 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9229 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tLDRpci
), NewVReg1
)
9230 .addConstantPoolIndex(CPI
)
9231 .addMemOperand(CPMMO
)
9232 .add(predOps(ARMCC::AL
));
9233 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9234 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg2
)
9235 .addReg(NewVReg1
, RegState::Kill
)
9237 // Set the low bit because of thumb mode.
9238 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9239 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tMOVi8
), NewVReg3
)
9240 .addReg(ARM::CPSR
, RegState::Define
)
9242 .add(predOps(ARMCC::AL
));
9243 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9244 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tORR
), NewVReg4
)
9245 .addReg(ARM::CPSR
, RegState::Define
)
9246 .addReg(NewVReg2
, RegState::Kill
)
9247 .addReg(NewVReg3
, RegState::Kill
)
9248 .add(predOps(ARMCC::AL
));
9249 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9250 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tADDframe
), NewVReg5
)
9252 .addImm(36); // &jbuf[1] :: pc
9253 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tSTRi
))
9254 .addReg(NewVReg4
, RegState::Kill
)
9255 .addReg(NewVReg5
, RegState::Kill
)
9257 .addMemOperand(FIMMOSt
)
9258 .add(predOps(ARMCC::AL
));
9260 // Incoming value: jbuf
9263 // str r1, [$jbuf, #+4] ; &jbuf[1]
9264 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9265 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9266 .addConstantPoolIndex(CPI
)
9268 .addMemOperand(CPMMO
)
9269 .add(predOps(ARMCC::AL
));
9270 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9271 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::PICADD
), NewVReg2
)
9272 .addReg(NewVReg1
, RegState::Kill
)
9274 .add(predOps(ARMCC::AL
));
9275 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::STRi12
))
9276 .addReg(NewVReg2
, RegState::Kill
)
9278 .addImm(36) // &jbuf[1] :: pc
9279 .addMemOperand(FIMMOSt
)
9280 .add(predOps(ARMCC::AL
));
9284 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr
&MI
,
9285 MachineBasicBlock
*MBB
) const {
9286 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9287 DebugLoc dl
= MI
.getDebugLoc();
9288 MachineFunction
*MF
= MBB
->getParent();
9289 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9290 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
9291 int FI
= MFI
.getFunctionContextIndex();
9293 const TargetRegisterClass
*TRC
= Subtarget
->isThumb() ? &ARM::tGPRRegClass
9294 : &ARM::GPRnopcRegClass
;
9296 // Get a mapping of the call site numbers to all of the landing pads they're
9298 DenseMap
<unsigned, SmallVector
<MachineBasicBlock
*, 2>> CallSiteNumToLPad
;
9299 unsigned MaxCSNum
= 0;
9300 for (MachineFunction::iterator BB
= MF
->begin(), E
= MF
->end(); BB
!= E
;
9302 if (!BB
->isEHPad()) continue;
9304 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9306 for (MachineBasicBlock::iterator
9307 II
= BB
->begin(), IE
= BB
->end(); II
!= IE
; ++II
) {
9308 if (!II
->isEHLabel()) continue;
9310 MCSymbol
*Sym
= II
->getOperand(0).getMCSymbol();
9311 if (!MF
->hasCallSiteLandingPad(Sym
)) continue;
9313 SmallVectorImpl
<unsigned> &CallSiteIdxs
= MF
->getCallSiteLandingPad(Sym
);
9314 for (SmallVectorImpl
<unsigned>::iterator
9315 CSI
= CallSiteIdxs
.begin(), CSE
= CallSiteIdxs
.end();
9316 CSI
!= CSE
; ++CSI
) {
9317 CallSiteNumToLPad
[*CSI
].push_back(&*BB
);
9318 MaxCSNum
= std::max(MaxCSNum
, *CSI
);
9324 // Get an ordered list of the machine basic blocks for the jump table.
9325 std::vector
<MachineBasicBlock
*> LPadList
;
9326 SmallPtrSet
<MachineBasicBlock
*, 32> InvokeBBs
;
9327 LPadList
.reserve(CallSiteNumToLPad
.size());
9328 for (unsigned I
= 1; I
<= MaxCSNum
; ++I
) {
9329 SmallVectorImpl
<MachineBasicBlock
*> &MBBList
= CallSiteNumToLPad
[I
];
9330 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9331 II
= MBBList
.begin(), IE
= MBBList
.end(); II
!= IE
; ++II
) {
9332 LPadList
.push_back(*II
);
9333 InvokeBBs
.insert((*II
)->pred_begin(), (*II
)->pred_end());
9337 assert(!LPadList
.empty() &&
9338 "No landing pad destinations for the dispatch jump table!");
9340 // Create the jump table and associated information.
9341 MachineJumpTableInfo
*JTI
=
9342 MF
->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline
);
9343 unsigned MJTI
= JTI
->createJumpTableIndex(LPadList
);
9345 // Create the MBBs for the dispatch code.
9347 // Shove the dispatch's address into the return slot in the function context.
9348 MachineBasicBlock
*DispatchBB
= MF
->CreateMachineBasicBlock();
9349 DispatchBB
->setIsEHPad();
9351 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9352 unsigned trap_opcode
;
9353 if (Subtarget
->isThumb())
9354 trap_opcode
= ARM::tTRAP
;
9356 trap_opcode
= Subtarget
->useNaClTrap() ? ARM::TRAPNaCl
: ARM::TRAP
;
9358 BuildMI(TrapBB
, dl
, TII
->get(trap_opcode
));
9359 DispatchBB
->addSuccessor(TrapBB
);
9361 MachineBasicBlock
*DispContBB
= MF
->CreateMachineBasicBlock();
9362 DispatchBB
->addSuccessor(DispContBB
);
9365 MF
->insert(MF
->end(), DispatchBB
);
9366 MF
->insert(MF
->end(), DispContBB
);
9367 MF
->insert(MF
->end(), TrapBB
);
9369 // Insert code into the entry block that creates and registers the function
9371 SetupEntryBlockForSjLj(MI
, MBB
, DispatchBB
, FI
);
9373 MachineMemOperand
*FIMMOLd
= MF
->getMachineMemOperand(
9374 MachinePointerInfo::getFixedStack(*MF
, FI
),
9375 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 4, 4);
9377 MachineInstrBuilder MIB
;
9378 MIB
= BuildMI(DispatchBB
, dl
, TII
->get(ARM::Int_eh_sjlj_dispatchsetup
));
9380 const ARMBaseInstrInfo
*AII
= static_cast<const ARMBaseInstrInfo
*>(TII
);
9381 const ARMBaseRegisterInfo
&RI
= AII
->getRegisterInfo();
9383 // Add a register mask with no preserved registers. This results in all
9384 // registers being marked as clobbered. This can't work if the dispatch block
9385 // is in a Thumb1 function and is linked with ARM code which uses the FP
9386 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9387 MIB
.addRegMask(RI
.getSjLjDispatchPreservedMask(*MF
));
9389 bool IsPositionIndependent
= isPositionIndependent();
9390 unsigned NumLPads
= LPadList
.size();
9391 if (Subtarget
->isThumb2()) {
9392 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9393 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2LDRi12
), NewVReg1
)
9396 .addMemOperand(FIMMOLd
)
9397 .add(predOps(ARMCC::AL
));
9399 if (NumLPads
< 256) {
9400 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPri
))
9402 .addImm(LPadList
.size())
9403 .add(predOps(ARMCC::AL
));
9405 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9406 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVi16
), VReg1
)
9407 .addImm(NumLPads
& 0xFFFF)
9408 .add(predOps(ARMCC::AL
));
9410 unsigned VReg2
= VReg1
;
9411 if ((NumLPads
& 0xFFFF0000) != 0) {
9412 VReg2
= MRI
->createVirtualRegister(TRC
);
9413 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVTi16
), VReg2
)
9415 .addImm(NumLPads
>> 16)
9416 .add(predOps(ARMCC::AL
));
9419 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPrr
))
9422 .add(predOps(ARMCC::AL
));
9425 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2Bcc
))
9430 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9431 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2LEApcrelJT
), NewVReg3
)
9432 .addJumpTableIndex(MJTI
)
9433 .add(predOps(ARMCC::AL
));
9435 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9436 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2ADDrs
), NewVReg4
)
9437 .addReg(NewVReg3
, RegState::Kill
)
9439 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9440 .add(predOps(ARMCC::AL
))
9443 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2BR_JT
))
9444 .addReg(NewVReg4
, RegState::Kill
)
9446 .addJumpTableIndex(MJTI
);
9447 } else if (Subtarget
->isThumb()) {
9448 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9449 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRspi
), NewVReg1
)
9452 .addMemOperand(FIMMOLd
)
9453 .add(predOps(ARMCC::AL
));
9455 if (NumLPads
< 256) {
9456 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPi8
))
9459 .add(predOps(ARMCC::AL
));
9461 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9462 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9463 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9465 // MachineConstantPool wants an explicit alignment.
9466 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9468 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9469 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9471 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9472 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRpci
))
9473 .addReg(VReg1
, RegState::Define
)
9474 .addConstantPoolIndex(Idx
)
9475 .add(predOps(ARMCC::AL
));
9476 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPr
))
9479 .add(predOps(ARMCC::AL
));
9482 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tBcc
))
9487 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9488 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLSLri
), NewVReg2
)
9489 .addReg(ARM::CPSR
, RegState::Define
)
9492 .add(predOps(ARMCC::AL
));
9494 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9495 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLEApcrelJT
), NewVReg3
)
9496 .addJumpTableIndex(MJTI
)
9497 .add(predOps(ARMCC::AL
));
9499 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9500 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg4
)
9501 .addReg(ARM::CPSR
, RegState::Define
)
9502 .addReg(NewVReg2
, RegState::Kill
)
9504 .add(predOps(ARMCC::AL
));
9506 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9507 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9509 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9510 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLDRi
), NewVReg5
)
9511 .addReg(NewVReg4
, RegState::Kill
)
9513 .addMemOperand(JTMMOLd
)
9514 .add(predOps(ARMCC::AL
));
9516 unsigned NewVReg6
= NewVReg5
;
9517 if (IsPositionIndependent
) {
9518 NewVReg6
= MRI
->createVirtualRegister(TRC
);
9519 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg6
)
9520 .addReg(ARM::CPSR
, RegState::Define
)
9521 .addReg(NewVReg5
, RegState::Kill
)
9523 .add(predOps(ARMCC::AL
));
9526 BuildMI(DispContBB
, dl
, TII
->get(ARM::tBR_JTr
))
9527 .addReg(NewVReg6
, RegState::Kill
)
9528 .addJumpTableIndex(MJTI
);
9530 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9531 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9534 .addMemOperand(FIMMOLd
)
9535 .add(predOps(ARMCC::AL
));
9537 if (NumLPads
< 256) {
9538 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPri
))
9541 .add(predOps(ARMCC::AL
));
9542 } else if (Subtarget
->hasV6T2Ops() && isUInt
<16>(NumLPads
)) {
9543 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9544 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVi16
), VReg1
)
9545 .addImm(NumLPads
& 0xFFFF)
9546 .add(predOps(ARMCC::AL
));
9548 unsigned VReg2
= VReg1
;
9549 if ((NumLPads
& 0xFFFF0000) != 0) {
9550 VReg2
= MRI
->createVirtualRegister(TRC
);
9551 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVTi16
), VReg2
)
9553 .addImm(NumLPads
>> 16)
9554 .add(predOps(ARMCC::AL
));
9557 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9560 .add(predOps(ARMCC::AL
));
9562 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9563 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9564 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9566 // MachineConstantPool wants an explicit alignment.
9567 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9569 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9570 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9572 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9573 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRcp
))
9574 .addReg(VReg1
, RegState::Define
)
9575 .addConstantPoolIndex(Idx
)
9577 .add(predOps(ARMCC::AL
));
9578 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9580 .addReg(VReg1
, RegState::Kill
)
9581 .add(predOps(ARMCC::AL
));
9584 BuildMI(DispatchBB
, dl
, TII
->get(ARM::Bcc
))
9589 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9590 BuildMI(DispContBB
, dl
, TII
->get(ARM::MOVsi
), NewVReg3
)
9592 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9593 .add(predOps(ARMCC::AL
))
9595 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9596 BuildMI(DispContBB
, dl
, TII
->get(ARM::LEApcrelJT
), NewVReg4
)
9597 .addJumpTableIndex(MJTI
)
9598 .add(predOps(ARMCC::AL
));
9600 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9601 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9602 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9603 BuildMI(DispContBB
, dl
, TII
->get(ARM::LDRrs
), NewVReg5
)
9604 .addReg(NewVReg3
, RegState::Kill
)
9607 .addMemOperand(JTMMOLd
)
9608 .add(predOps(ARMCC::AL
));
9610 if (IsPositionIndependent
) {
9611 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTadd
))
9612 .addReg(NewVReg5
, RegState::Kill
)
9614 .addJumpTableIndex(MJTI
);
9616 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTr
))
9617 .addReg(NewVReg5
, RegState::Kill
)
9618 .addJumpTableIndex(MJTI
);
9622 // Add the jump table entries as successors to the MBB.
9623 SmallPtrSet
<MachineBasicBlock
*, 8> SeenMBBs
;
9624 for (std::vector
<MachineBasicBlock
*>::iterator
9625 I
= LPadList
.begin(), E
= LPadList
.end(); I
!= E
; ++I
) {
9626 MachineBasicBlock
*CurMBB
= *I
;
9627 if (SeenMBBs
.insert(CurMBB
).second
)
9628 DispContBB
->addSuccessor(CurMBB
);
9631 // N.B. the order the invoke BBs are processed in doesn't matter here.
9632 const MCPhysReg
*SavedRegs
= RI
.getCalleeSavedRegs(MF
);
9633 SmallVector
<MachineBasicBlock
*, 64> MBBLPads
;
9634 for (MachineBasicBlock
*BB
: InvokeBBs
) {
9636 // Remove the landing pad successor from the invoke block and replace it
9637 // with the new dispatch block.
9638 SmallVector
<MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
9640 while (!Successors
.empty()) {
9641 MachineBasicBlock
*SMBB
= Successors
.pop_back_val();
9642 if (SMBB
->isEHPad()) {
9643 BB
->removeSuccessor(SMBB
);
9644 MBBLPads
.push_back(SMBB
);
9648 BB
->addSuccessor(DispatchBB
, BranchProbability::getZero());
9649 BB
->normalizeSuccProbs();
9651 // Find the invoke call and mark all of the callee-saved registers as
9652 // 'implicit defined' so that they're spilled. This prevents code from
9653 // moving instructions to before the EH block, where they will never be
9655 for (MachineBasicBlock::reverse_iterator
9656 II
= BB
->rbegin(), IE
= BB
->rend(); II
!= IE
; ++II
) {
9657 if (!II
->isCall()) continue;
9659 DenseMap
<unsigned, bool> DefRegs
;
9660 for (MachineInstr::mop_iterator
9661 OI
= II
->operands_begin(), OE
= II
->operands_end();
9663 if (!OI
->isReg()) continue;
9664 DefRegs
[OI
->getReg()] = true;
9667 MachineInstrBuilder
MIB(*MF
, &*II
);
9669 for (unsigned i
= 0; SavedRegs
[i
] != 0; ++i
) {
9670 unsigned Reg
= SavedRegs
[i
];
9671 if (Subtarget
->isThumb2() &&
9672 !ARM::tGPRRegClass
.contains(Reg
) &&
9673 !ARM::hGPRRegClass
.contains(Reg
))
9675 if (Subtarget
->isThumb1Only() && !ARM::tGPRRegClass
.contains(Reg
))
9677 if (!Subtarget
->isThumb() && !ARM::GPRRegClass
.contains(Reg
))
9680 MIB
.addReg(Reg
, RegState::ImplicitDefine
| RegState::Dead
);
9687 // Mark all former landing pads as non-landing pads. The dispatch is the only
9689 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9690 I
= MBBLPads
.begin(), E
= MBBLPads
.end(); I
!= E
; ++I
)
9691 (*I
)->setIsEHPad(false);
9693 // The instruction is gone now.
9694 MI
.eraseFromParent();
9698 MachineBasicBlock
*OtherSucc(MachineBasicBlock
*MBB
, MachineBasicBlock
*Succ
) {
9699 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
9700 E
= MBB
->succ_end(); I
!= E
; ++I
)
9703 llvm_unreachable("Expecting a BB with two successors!");
9706 /// Return the load opcode for a given load size. If load size >= 8,
9707 /// neon opcode will be returned.
9708 static unsigned getLdOpcode(unsigned LdSize
, bool IsThumb1
, bool IsThumb2
) {
9710 return LdSize
== 16 ? ARM::VLD1q32wb_fixed
9711 : LdSize
== 8 ? ARM::VLD1d32wb_fixed
: 0;
9713 return LdSize
== 4 ? ARM::tLDRi
9714 : LdSize
== 2 ? ARM::tLDRHi
9715 : LdSize
== 1 ? ARM::tLDRBi
: 0;
9717 return LdSize
== 4 ? ARM::t2LDR_POST
9718 : LdSize
== 2 ? ARM::t2LDRH_POST
9719 : LdSize
== 1 ? ARM::t2LDRB_POST
: 0;
9720 return LdSize
== 4 ? ARM::LDR_POST_IMM
9721 : LdSize
== 2 ? ARM::LDRH_POST
9722 : LdSize
== 1 ? ARM::LDRB_POST_IMM
: 0;
9725 /// Return the store opcode for a given store size. If store size >= 8,
9726 /// neon opcode will be returned.
9727 static unsigned getStOpcode(unsigned StSize
, bool IsThumb1
, bool IsThumb2
) {
9729 return StSize
== 16 ? ARM::VST1q32wb_fixed
9730 : StSize
== 8 ? ARM::VST1d32wb_fixed
: 0;
9732 return StSize
== 4 ? ARM::tSTRi
9733 : StSize
== 2 ? ARM::tSTRHi
9734 : StSize
== 1 ? ARM::tSTRBi
: 0;
9736 return StSize
== 4 ? ARM::t2STR_POST
9737 : StSize
== 2 ? ARM::t2STRH_POST
9738 : StSize
== 1 ? ARM::t2STRB_POST
: 0;
9739 return StSize
== 4 ? ARM::STR_POST_IMM
9740 : StSize
== 2 ? ARM::STRH_POST
9741 : StSize
== 1 ? ARM::STRB_POST_IMM
: 0;
9744 /// Emit a post-increment load operation with given size. The instructions
9745 /// will be added to BB at Pos.
9746 static void emitPostLd(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9747 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9748 unsigned LdSize
, unsigned Data
, unsigned AddrIn
,
9749 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9750 unsigned LdOpc
= getLdOpcode(LdSize
, IsThumb1
, IsThumb2
);
9751 assert(LdOpc
!= 0 && "Should have a load opcode");
9753 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9754 .addReg(AddrOut
, RegState::Define
)
9757 .add(predOps(ARMCC::AL
));
9758 } else if (IsThumb1
) {
9759 // load + update AddrIn
9760 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9763 .add(predOps(ARMCC::AL
));
9764 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9765 .add(t1CondCodeOp())
9768 .add(predOps(ARMCC::AL
));
9769 } else if (IsThumb2
) {
9770 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9771 .addReg(AddrOut
, RegState::Define
)
9774 .add(predOps(ARMCC::AL
));
9776 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9777 .addReg(AddrOut
, RegState::Define
)
9781 .add(predOps(ARMCC::AL
));
9785 /// Emit a post-increment store operation with given size. The instructions
9786 /// will be added to BB at Pos.
9787 static void emitPostSt(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9788 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9789 unsigned StSize
, unsigned Data
, unsigned AddrIn
,
9790 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9791 unsigned StOpc
= getStOpcode(StSize
, IsThumb1
, IsThumb2
);
9792 assert(StOpc
!= 0 && "Should have a store opcode");
9794 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9798 .add(predOps(ARMCC::AL
));
9799 } else if (IsThumb1
) {
9800 // store + update AddrIn
9801 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
))
9805 .add(predOps(ARMCC::AL
));
9806 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9807 .add(t1CondCodeOp())
9810 .add(predOps(ARMCC::AL
));
9811 } else if (IsThumb2
) {
9812 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9816 .add(predOps(ARMCC::AL
));
9818 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9823 .add(predOps(ARMCC::AL
));
9828 ARMTargetLowering::EmitStructByval(MachineInstr
&MI
,
9829 MachineBasicBlock
*BB
) const {
9830 // This pseudo instruction has 3 operands: dst, src, size
9831 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9832 // Otherwise, we will generate unrolled scalar copies.
9833 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9834 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9835 MachineFunction::iterator It
= ++BB
->getIterator();
9837 Register dest
= MI
.getOperand(0).getReg();
9838 Register src
= MI
.getOperand(1).getReg();
9839 unsigned SizeVal
= MI
.getOperand(2).getImm();
9840 unsigned Align
= MI
.getOperand(3).getImm();
9841 DebugLoc dl
= MI
.getDebugLoc();
9843 MachineFunction
*MF
= BB
->getParent();
9844 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
9845 unsigned UnitSize
= 0;
9846 const TargetRegisterClass
*TRC
= nullptr;
9847 const TargetRegisterClass
*VecTRC
= nullptr;
9849 bool IsThumb1
= Subtarget
->isThumb1Only();
9850 bool IsThumb2
= Subtarget
->isThumb2();
9851 bool IsThumb
= Subtarget
->isThumb();
9855 } else if (Align
& 2) {
9858 // Check whether we can use NEON instructions.
9859 if (!MF
->getFunction().hasFnAttribute(Attribute::NoImplicitFloat
) &&
9860 Subtarget
->hasNEON()) {
9861 if ((Align
% 16 == 0) && SizeVal
>= 16)
9863 else if ((Align
% 8 == 0) && SizeVal
>= 8)
9866 // Can't use NEON instructions.
9871 // Select the correct opcode and register class for unit size load/store
9872 bool IsNeon
= UnitSize
>= 8;
9873 TRC
= IsThumb
? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
9875 VecTRC
= UnitSize
== 16 ? &ARM::DPairRegClass
9876 : UnitSize
== 8 ? &ARM::DPRRegClass
9879 unsigned BytesLeft
= SizeVal
% UnitSize
;
9880 unsigned LoopSize
= SizeVal
- BytesLeft
;
9882 if (SizeVal
<= Subtarget
->getMaxInlineSizeThreshold()) {
9883 // Use LDR and STR to copy.
9884 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
9885 // [destOut] = STR_POST(scratch, destIn, UnitSize)
9886 unsigned srcIn
= src
;
9887 unsigned destIn
= dest
;
9888 for (unsigned i
= 0; i
< LoopSize
; i
+=UnitSize
) {
9889 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9890 Register destOut
= MRI
.createVirtualRegister(TRC
);
9891 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9892 emitPostLd(BB
, MI
, TII
, dl
, UnitSize
, scratch
, srcIn
, srcOut
,
9893 IsThumb1
, IsThumb2
);
9894 emitPostSt(BB
, MI
, TII
, dl
, UnitSize
, scratch
, destIn
, destOut
,
9895 IsThumb1
, IsThumb2
);
9900 // Handle the leftover bytes with LDRB and STRB.
9901 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9902 // [destOut] = STRB_POST(scratch, destIn, 1)
9903 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9904 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9905 Register destOut
= MRI
.createVirtualRegister(TRC
);
9906 Register scratch
= MRI
.createVirtualRegister(TRC
);
9907 emitPostLd(BB
, MI
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9908 IsThumb1
, IsThumb2
);
9909 emitPostSt(BB
, MI
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9910 IsThumb1
, IsThumb2
);
9914 MI
.eraseFromParent(); // The instruction is gone now.
9918 // Expand the pseudo op to a loop.
9921 // movw varEnd, # --> with thumb2
9923 // ldrcp varEnd, idx --> without thumb2
9924 // fallthrough --> loopMBB
9926 // PHI varPhi, varEnd, varLoop
9927 // PHI srcPhi, src, srcLoop
9928 // PHI destPhi, dst, destLoop
9929 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9930 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9931 // subs varLoop, varPhi, #UnitSize
9933 // fallthrough --> exitMBB
9935 // epilogue to handle left-over bytes
9936 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9937 // [destOut] = STRB_POST(scratch, destLoop, 1)
9938 MachineBasicBlock
*loopMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9939 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9940 MF
->insert(It
, loopMBB
);
9941 MF
->insert(It
, exitMBB
);
9943 // Transfer the remainder of BB and its successor edges to exitMBB.
9944 exitMBB
->splice(exitMBB
->begin(), BB
,
9945 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
9946 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
9948 // Load an immediate to varEnd.
9949 Register varEnd
= MRI
.createVirtualRegister(TRC
);
9950 if (Subtarget
->useMovt()) {
9951 unsigned Vtmp
= varEnd
;
9952 if ((LoopSize
& 0xFFFF0000) != 0)
9953 Vtmp
= MRI
.createVirtualRegister(TRC
);
9954 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVi16
: ARM::MOVi16
), Vtmp
)
9955 .addImm(LoopSize
& 0xFFFF)
9956 .add(predOps(ARMCC::AL
));
9958 if ((LoopSize
& 0xFFFF0000) != 0)
9959 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVTi16
: ARM::MOVTi16
), varEnd
)
9961 .addImm(LoopSize
>> 16)
9962 .add(predOps(ARMCC::AL
));
9964 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9965 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9966 const Constant
*C
= ConstantInt::get(Int32Ty
, LoopSize
);
9968 // MachineConstantPool wants an explicit alignment.
9969 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9971 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9972 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9973 MachineMemOperand
*CPMMO
=
9974 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9975 MachineMemOperand::MOLoad
, 4, 4);
9978 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDRpci
))
9979 .addReg(varEnd
, RegState::Define
)
9980 .addConstantPoolIndex(Idx
)
9981 .add(predOps(ARMCC::AL
))
9982 .addMemOperand(CPMMO
);
9984 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::LDRcp
))
9985 .addReg(varEnd
, RegState::Define
)
9986 .addConstantPoolIndex(Idx
)
9988 .add(predOps(ARMCC::AL
))
9989 .addMemOperand(CPMMO
);
9991 BB
->addSuccessor(loopMBB
);
9993 // Generate the loop body:
9994 // varPhi = PHI(varLoop, varEnd)
9995 // srcPhi = PHI(srcLoop, src)
9996 // destPhi = PHI(destLoop, dst)
9997 MachineBasicBlock
*entryBB
= BB
;
9999 Register varLoop
= MRI
.createVirtualRegister(TRC
);
10000 Register varPhi
= MRI
.createVirtualRegister(TRC
);
10001 Register srcLoop
= MRI
.createVirtualRegister(TRC
);
10002 Register srcPhi
= MRI
.createVirtualRegister(TRC
);
10003 Register destLoop
= MRI
.createVirtualRegister(TRC
);
10004 Register destPhi
= MRI
.createVirtualRegister(TRC
);
10006 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), varPhi
)
10007 .addReg(varLoop
).addMBB(loopMBB
)
10008 .addReg(varEnd
).addMBB(entryBB
);
10009 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), srcPhi
)
10010 .addReg(srcLoop
).addMBB(loopMBB
)
10011 .addReg(src
).addMBB(entryBB
);
10012 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), destPhi
)
10013 .addReg(destLoop
).addMBB(loopMBB
)
10014 .addReg(dest
).addMBB(entryBB
);
10016 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10017 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
10018 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
10019 emitPostLd(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, srcPhi
, srcLoop
,
10020 IsThumb1
, IsThumb2
);
10021 emitPostSt(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, destPhi
, destLoop
,
10022 IsThumb1
, IsThumb2
);
10024 // Decrement loop variable by UnitSize.
10026 BuildMI(*BB
, BB
->end(), dl
, TII
->get(ARM::tSUBi8
), varLoop
)
10027 .add(t1CondCodeOp())
10030 .add(predOps(ARMCC::AL
));
10032 MachineInstrBuilder MIB
=
10033 BuildMI(*BB
, BB
->end(), dl
,
10034 TII
->get(IsThumb2
? ARM::t2SUBri
: ARM::SUBri
), varLoop
);
10037 .add(predOps(ARMCC::AL
))
10038 .add(condCodeOp());
10039 MIB
->getOperand(5).setReg(ARM::CPSR
);
10040 MIB
->getOperand(5).setIsDef(true);
10042 BuildMI(*BB
, BB
->end(), dl
,
10043 TII
->get(IsThumb1
? ARM::tBcc
: IsThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10044 .addMBB(loopMBB
).addImm(ARMCC::NE
).addReg(ARM::CPSR
);
10046 // loopMBB can loop back to loopMBB or fall through to exitMBB.
10047 BB
->addSuccessor(loopMBB
);
10048 BB
->addSuccessor(exitMBB
);
10050 // Add epilogue to handle BytesLeft.
10052 auto StartOfExit
= exitMBB
->begin();
10054 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10055 // [destOut] = STRB_POST(scratch, destLoop, 1)
10056 unsigned srcIn
= srcLoop
;
10057 unsigned destIn
= destLoop
;
10058 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
10059 Register srcOut
= MRI
.createVirtualRegister(TRC
);
10060 Register destOut
= MRI
.createVirtualRegister(TRC
);
10061 Register scratch
= MRI
.createVirtualRegister(TRC
);
10062 emitPostLd(BB
, StartOfExit
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
10063 IsThumb1
, IsThumb2
);
10064 emitPostSt(BB
, StartOfExit
, TII
, dl
, 1, scratch
, destIn
, destOut
,
10065 IsThumb1
, IsThumb2
);
10070 MI
.eraseFromParent(); // The instruction is gone now.
10074 MachineBasicBlock
*
10075 ARMTargetLowering::EmitLowered__chkstk(MachineInstr
&MI
,
10076 MachineBasicBlock
*MBB
) const {
10077 const TargetMachine
&TM
= getTargetMachine();
10078 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
10079 DebugLoc DL
= MI
.getDebugLoc();
10081 assert(Subtarget
->isTargetWindows() &&
10082 "__chkstk is only supported on Windows");
10083 assert(Subtarget
->isThumb2() && "Windows on ARM requires Thumb-2 mode");
10085 // __chkstk takes the number of words to allocate on the stack in R4, and
10086 // returns the stack adjustment in number of bytes in R4. This will not
10087 // clober any other registers (other than the obvious lr).
10089 // Although, technically, IP should be considered a register which may be
10090 // clobbered, the call itself will not touch it. Windows on ARM is a pure
10091 // thumb-2 environment, so there is no interworking required. As a result, we
10092 // do not expect a veneer to be emitted by the linker, clobbering IP.
10094 // Each module receives its own copy of __chkstk, so no import thunk is
10095 // required, again, ensuring that IP is not clobbered.
10097 // Finally, although some linkers may theoretically provide a trampoline for
10098 // out of range calls (which is quite common due to a 32M range limitation of
10099 // branches for Thumb), we can generate the long-call version via
10100 // -mcmodel=large, alleviating the need for the trampoline which may clobber
10103 switch (TM
.getCodeModel()) {
10104 case CodeModel::Tiny
:
10105 llvm_unreachable("Tiny code model not available on ARM.");
10106 case CodeModel::Small
:
10107 case CodeModel::Medium
:
10108 case CodeModel::Kernel
:
10109 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBL
))
10110 .add(predOps(ARMCC::AL
))
10111 .addExternalSymbol("__chkstk")
10112 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10113 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10115 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10117 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10119 case CodeModel::Large
: {
10120 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
10121 Register Reg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
10123 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2MOVi32imm
), Reg
)
10124 .addExternalSymbol("__chkstk");
10125 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBLXr
))
10126 .add(predOps(ARMCC::AL
))
10127 .addReg(Reg
, RegState::Kill
)
10128 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10129 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10131 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10133 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10138 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
10139 .addReg(ARM::SP
, RegState::Kill
)
10140 .addReg(ARM::R4
, RegState::Kill
)
10141 .setMIFlags(MachineInstr::FrameSetup
)
10142 .add(predOps(ARMCC::AL
))
10143 .add(condCodeOp());
10145 MI
.eraseFromParent();
10149 MachineBasicBlock
*
10150 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr
&MI
,
10151 MachineBasicBlock
*MBB
) const {
10152 DebugLoc DL
= MI
.getDebugLoc();
10153 MachineFunction
*MF
= MBB
->getParent();
10154 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10156 MachineBasicBlock
*ContBB
= MF
->CreateMachineBasicBlock();
10157 MF
->insert(++MBB
->getIterator(), ContBB
);
10158 ContBB
->splice(ContBB
->begin(), MBB
,
10159 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
10160 ContBB
->transferSuccessorsAndUpdatePHIs(MBB
);
10161 MBB
->addSuccessor(ContBB
);
10163 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
10164 BuildMI(TrapBB
, DL
, TII
->get(ARM::t__brkdiv0
));
10165 MF
->push_back(TrapBB
);
10166 MBB
->addSuccessor(TrapBB
);
10168 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::tCMPi8
))
10169 .addReg(MI
.getOperand(0).getReg())
10171 .add(predOps(ARMCC::AL
));
10172 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::t2Bcc
))
10175 .addReg(ARM::CPSR
);
10177 MI
.eraseFromParent();
10181 // The CPSR operand of SelectItr might be missing a kill marker
10182 // because there were multiple uses of CPSR, and ISel didn't know
10183 // which to mark. Figure out whether SelectItr should have had a
10184 // kill marker, and set it if it should. Returns the correct kill
10186 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr
,
10187 MachineBasicBlock
* BB
,
10188 const TargetRegisterInfo
* TRI
) {
10189 // Scan forward through BB for a use/def of CPSR.
10190 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
10191 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
10192 const MachineInstr
& mi
= *miI
;
10193 if (mi
.readsRegister(ARM::CPSR
))
10195 if (mi
.definesRegister(ARM::CPSR
))
10196 break; // Should have kill-flag - update below.
10199 // If we hit the end of the block, check whether CPSR is live into a
10201 if (miI
== BB
->end()) {
10202 for (MachineBasicBlock::succ_iterator sItr
= BB
->succ_begin(),
10203 sEnd
= BB
->succ_end();
10204 sItr
!= sEnd
; ++sItr
) {
10205 MachineBasicBlock
* succ
= *sItr
;
10206 if (succ
->isLiveIn(ARM::CPSR
))
10211 // We found a def, or hit the end of the basic block and CPSR wasn't live
10212 // out. SelectMI should have a kill flag on CPSR.
10213 SelectItr
->addRegisterKilled(ARM::CPSR
, TRI
);
10217 MachineBasicBlock
*
10218 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
10219 MachineBasicBlock
*BB
) const {
10220 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10221 DebugLoc dl
= MI
.getDebugLoc();
10222 bool isThumb2
= Subtarget
->isThumb2();
10223 switch (MI
.getOpcode()) {
10226 llvm_unreachable("Unexpected instr type to insert");
10229 // Thumb1 post-indexed loads are really just single-register LDMs.
10230 case ARM::tLDR_postidx
: {
10231 MachineOperand
Def(MI
.getOperand(1));
10232 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDMIA_UPD
))
10234 .add(MI
.getOperand(2)) // Rn
10235 .add(MI
.getOperand(3)) // PredImm
10236 .add(MI
.getOperand(4)) // PredReg
10237 .add(MI
.getOperand(0)) // Rt
10239 MI
.eraseFromParent();
10243 // The Thumb2 pre-indexed stores have the same MI operands, they just
10244 // define them differently in the .td files from the isel patterns, so
10245 // they need pseudos.
10246 case ARM::t2STR_preidx
:
10247 MI
.setDesc(TII
->get(ARM::t2STR_PRE
));
10249 case ARM::t2STRB_preidx
:
10250 MI
.setDesc(TII
->get(ARM::t2STRB_PRE
));
10252 case ARM::t2STRH_preidx
:
10253 MI
.setDesc(TII
->get(ARM::t2STRH_PRE
));
10256 case ARM::STRi_preidx
:
10257 case ARM::STRBi_preidx
: {
10258 unsigned NewOpc
= MI
.getOpcode() == ARM::STRi_preidx
? ARM::STR_PRE_IMM
10259 : ARM::STRB_PRE_IMM
;
10260 // Decode the offset.
10261 unsigned Offset
= MI
.getOperand(4).getImm();
10262 bool isSub
= ARM_AM::getAM2Op(Offset
) == ARM_AM::sub
;
10263 Offset
= ARM_AM::getAM2Offset(Offset
);
10267 MachineMemOperand
*MMO
= *MI
.memoperands_begin();
10268 BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
))
10269 .add(MI
.getOperand(0)) // Rn_wb
10270 .add(MI
.getOperand(1)) // Rt
10271 .add(MI
.getOperand(2)) // Rn
10272 .addImm(Offset
) // offset (skip GPR==zero_reg)
10273 .add(MI
.getOperand(5)) // pred
10274 .add(MI
.getOperand(6))
10275 .addMemOperand(MMO
);
10276 MI
.eraseFromParent();
10279 case ARM::STRr_preidx
:
10280 case ARM::STRBr_preidx
:
10281 case ARM::STRH_preidx
: {
10283 switch (MI
.getOpcode()) {
10284 default: llvm_unreachable("unexpected opcode!");
10285 case ARM::STRr_preidx
: NewOpc
= ARM::STR_PRE_REG
; break;
10286 case ARM::STRBr_preidx
: NewOpc
= ARM::STRB_PRE_REG
; break;
10287 case ARM::STRH_preidx
: NewOpc
= ARM::STRH_PRE
; break;
10289 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
));
10290 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
)
10291 MIB
.add(MI
.getOperand(i
));
10292 MI
.eraseFromParent();
10296 case ARM::tMOVCCr_pseudo
: {
10297 // To "insert" a SELECT_CC instruction, we actually have to insert the
10298 // diamond control-flow pattern. The incoming instruction knows the
10299 // destination vreg to set, the condition code register to branch on, the
10300 // true/false values to select between, and a branch opcode to use.
10301 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10302 MachineFunction::iterator It
= ++BB
->getIterator();
10307 // cmpTY ccX, r1, r2
10309 // fallthrough --> copy0MBB
10310 MachineBasicBlock
*thisMBB
= BB
;
10311 MachineFunction
*F
= BB
->getParent();
10312 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10313 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10314 F
->insert(It
, copy0MBB
);
10315 F
->insert(It
, sinkMBB
);
10317 // Check whether CPSR is live past the tMOVCCr_pseudo.
10318 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
10319 if (!MI
.killsRegister(ARM::CPSR
) &&
10320 !checkAndUpdateCPSRKill(MI
, thisMBB
, TRI
)) {
10321 copy0MBB
->addLiveIn(ARM::CPSR
);
10322 sinkMBB
->addLiveIn(ARM::CPSR
);
10325 // Transfer the remainder of BB and its successor edges to sinkMBB.
10326 sinkMBB
->splice(sinkMBB
->begin(), BB
,
10327 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10328 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10330 BB
->addSuccessor(copy0MBB
);
10331 BB
->addSuccessor(sinkMBB
);
10333 BuildMI(BB
, dl
, TII
->get(ARM::tBcc
))
10335 .addImm(MI
.getOperand(3).getImm())
10336 .addReg(MI
.getOperand(4).getReg());
10339 // %FalseValue = ...
10340 // # fallthrough to sinkMBB
10343 // Update machine-CFG edges
10344 BB
->addSuccessor(sinkMBB
);
10347 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10350 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), MI
.getOperand(0).getReg())
10351 .addReg(MI
.getOperand(1).getReg())
10353 .addReg(MI
.getOperand(2).getReg())
10356 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10361 case ARM::BCCZi64
: {
10362 // If there is an unconditional branch to the other successor, remove it.
10363 BB
->erase(std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10365 // Compare both parts that make up the double comparison separately for
10367 bool RHSisZero
= MI
.getOpcode() == ARM::BCCZi64
;
10369 Register LHS1
= MI
.getOperand(1).getReg();
10370 Register LHS2
= MI
.getOperand(2).getReg();
10372 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10375 .add(predOps(ARMCC::AL
));
10376 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10377 .addReg(LHS2
).addImm(0)
10378 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10380 Register RHS1
= MI
.getOperand(3).getReg();
10381 Register RHS2
= MI
.getOperand(4).getReg();
10382 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10385 .add(predOps(ARMCC::AL
));
10386 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10387 .addReg(LHS2
).addReg(RHS2
)
10388 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10391 MachineBasicBlock
*destMBB
= MI
.getOperand(RHSisZero
? 3 : 5).getMBB();
10392 MachineBasicBlock
*exitMBB
= OtherSucc(BB
, destMBB
);
10393 if (MI
.getOperand(0).getImm() == ARMCC::NE
)
10394 std::swap(destMBB
, exitMBB
);
10396 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10397 .addMBB(destMBB
).addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10399 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
10401 .add(predOps(ARMCC::AL
));
10403 BuildMI(BB
, dl
, TII
->get(ARM::B
)) .addMBB(exitMBB
);
10405 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10409 case ARM::Int_eh_sjlj_setjmp
:
10410 case ARM::Int_eh_sjlj_setjmp_nofp
:
10411 case ARM::tInt_eh_sjlj_setjmp
:
10412 case ARM::t2Int_eh_sjlj_setjmp
:
10413 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
10416 case ARM::Int_eh_sjlj_setup_dispatch
:
10417 EmitSjLjDispatchBlock(MI
, BB
);
10422 // To insert an ABS instruction, we have to insert the
10423 // diamond control-flow pattern. The incoming instruction knows the
10424 // source vreg to test against 0, the destination vreg to set,
10425 // the condition code register to branch on, the
10426 // true/false values to select between, and a branch opcode to use.
10431 // BCC (branch to SinkBB if V0 >= 0)
10432 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10433 // SinkBB: V1 = PHI(V2, V3)
10434 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10435 MachineFunction::iterator BBI
= ++BB
->getIterator();
10436 MachineFunction
*Fn
= BB
->getParent();
10437 MachineBasicBlock
*RSBBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10438 MachineBasicBlock
*SinkBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10439 Fn
->insert(BBI
, RSBBB
);
10440 Fn
->insert(BBI
, SinkBB
);
10442 Register ABSSrcReg
= MI
.getOperand(1).getReg();
10443 Register ABSDstReg
= MI
.getOperand(0).getReg();
10444 bool ABSSrcKIll
= MI
.getOperand(1).isKill();
10445 bool isThumb2
= Subtarget
->isThumb2();
10446 MachineRegisterInfo
&MRI
= Fn
->getRegInfo();
10447 // In Thumb mode S must not be specified if source register is the SP or
10448 // PC and if destination register is the SP, so restrict register class
10449 Register NewRsbDstReg
= MRI
.createVirtualRegister(
10450 isThumb2
? &ARM::rGPRRegClass
: &ARM::GPRRegClass
);
10452 // Transfer the remainder of BB and its successor edges to sinkMBB.
10453 SinkBB
->splice(SinkBB
->begin(), BB
,
10454 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10455 SinkBB
->transferSuccessorsAndUpdatePHIs(BB
);
10457 BB
->addSuccessor(RSBBB
);
10458 BB
->addSuccessor(SinkBB
);
10460 // fall through to SinkMBB
10461 RSBBB
->addSuccessor(SinkBB
);
10463 // insert a cmp at the end of BB
10464 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10467 .add(predOps(ARMCC::AL
));
10469 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10471 TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
)).addMBB(SinkBB
)
10472 .addImm(ARMCC::getOppositeCondition(ARMCC::MI
)).addReg(ARM::CPSR
);
10474 // insert rsbri in RSBBB
10475 // Note: BCC and rsbri will be converted into predicated rsbmi
10476 // by if-conversion pass
10477 BuildMI(*RSBBB
, RSBBB
->begin(), dl
,
10478 TII
->get(isThumb2
? ARM::t2RSBri
: ARM::RSBri
), NewRsbDstReg
)
10479 .addReg(ABSSrcReg
, ABSSrcKIll
? RegState::Kill
: 0)
10481 .add(predOps(ARMCC::AL
))
10482 .add(condCodeOp());
10484 // insert PHI in SinkBB,
10485 // reuse ABSDstReg to not change uses of ABS instruction
10486 BuildMI(*SinkBB
, SinkBB
->begin(), dl
,
10487 TII
->get(ARM::PHI
), ABSDstReg
)
10488 .addReg(NewRsbDstReg
).addMBB(RSBBB
)
10489 .addReg(ABSSrcReg
).addMBB(BB
);
10491 // remove ABS instruction
10492 MI
.eraseFromParent();
10494 // return last added BB
10497 case ARM::COPY_STRUCT_BYVAL_I32
:
10499 return EmitStructByval(MI
, BB
);
10500 case ARM::WIN__CHKSTK
:
10501 return EmitLowered__chkstk(MI
, BB
);
10502 case ARM::WIN__DBZCHK
:
10503 return EmitLowered__dbzchk(MI
, BB
);
10507 /// Attaches vregs to MEMCPY that it will use as scratch registers
10508 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10509 /// instead of as a custom inserter because we need the use list from the SDNode.
10510 static void attachMEMCPYScratchRegs(const ARMSubtarget
*Subtarget
,
10511 MachineInstr
&MI
, const SDNode
*Node
) {
10512 bool isThumb1
= Subtarget
->isThumb1Only();
10514 DebugLoc DL
= MI
.getDebugLoc();
10515 MachineFunction
*MF
= MI
.getParent()->getParent();
10516 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
10517 MachineInstrBuilder
MIB(*MF
, MI
);
10519 // If the new dst/src is unused mark it as dead.
10520 if (!Node
->hasAnyUseOfValue(0)) {
10521 MI
.getOperand(0).setIsDead(true);
10523 if (!Node
->hasAnyUseOfValue(1)) {
10524 MI
.getOperand(1).setIsDead(true);
10527 // The MEMCPY both defines and kills the scratch registers.
10528 for (unsigned I
= 0; I
!= MI
.getOperand(4).getImm(); ++I
) {
10529 Register TmpReg
= MRI
.createVirtualRegister(isThumb1
? &ARM::tGPRRegClass
10530 : &ARM::GPRRegClass
);
10531 MIB
.addReg(TmpReg
, RegState::Define
|RegState::Dead
);
10535 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
10536 SDNode
*Node
) const {
10537 if (MI
.getOpcode() == ARM::MEMCPY
) {
10538 attachMEMCPYScratchRegs(Subtarget
, MI
, Node
);
10542 const MCInstrDesc
*MCID
= &MI
.getDesc();
10543 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10544 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10545 // operand is still set to noreg. If needed, set the optional operand's
10546 // register to CPSR, and remove the redundant implicit def.
10548 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10550 // Rename pseudo opcodes.
10551 unsigned NewOpc
= convertAddSubFlagsOpcode(MI
.getOpcode());
10554 const ARMBaseInstrInfo
*TII
= Subtarget
->getInstrInfo();
10555 MCID
= &TII
->get(NewOpc
);
10557 assert(MCID
->getNumOperands() ==
10558 MI
.getDesc().getNumOperands() + 5 - MI
.getDesc().getSize()
10559 && "converted opcode should be the same except for cc_out"
10560 " (and, on Thumb1, pred)");
10564 // Add the optional cc_out operand
10565 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10567 // On Thumb1, move all input operands to the end, then add the predicate
10568 if (Subtarget
->isThumb1Only()) {
10569 for (unsigned c
= MCID
->getNumOperands() - 4; c
--;) {
10570 MI
.addOperand(MI
.getOperand(1));
10571 MI
.RemoveOperand(1);
10574 // Restore the ties
10575 for (unsigned i
= MI
.getNumOperands(); i
--;) {
10576 const MachineOperand
& op
= MI
.getOperand(i
);
10577 if (op
.isReg() && op
.isUse()) {
10578 int DefIdx
= MCID
->getOperandConstraint(i
, MCOI::TIED_TO
);
10580 MI
.tieOperands(DefIdx
, i
);
10584 MI
.addOperand(MachineOperand::CreateImm(ARMCC::AL
));
10585 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10588 ccOutIdx
= MCID
->getNumOperands() - 1;
10590 ccOutIdx
= MCID
->getNumOperands() - 1;
10592 // Any ARM instruction that sets the 's' bit should specify an optional
10593 // "cc_out" operand in the last operand position.
10594 if (!MI
.hasOptionalDef() || !MCID
->OpInfo
[ccOutIdx
].isOptionalDef()) {
10595 assert(!NewOpc
&& "Optional cc_out operand required");
10598 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10599 // since we already have an optional CPSR def.
10600 bool definesCPSR
= false;
10601 bool deadCPSR
= false;
10602 for (unsigned i
= MCID
->getNumOperands(), e
= MI
.getNumOperands(); i
!= e
;
10604 const MachineOperand
&MO
= MI
.getOperand(i
);
10605 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
) {
10606 definesCPSR
= true;
10609 MI
.RemoveOperand(i
);
10613 if (!definesCPSR
) {
10614 assert(!NewOpc
&& "Optional cc_out operand required");
10617 assert(deadCPSR
== !Node
->hasAnyUseOfValue(1) && "inconsistent dead flag");
10619 assert(!MI
.getOperand(ccOutIdx
).getReg() &&
10620 "expect uninitialized optional cc_out operand");
10621 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10622 if (!Subtarget
->isThumb1Only())
10626 // If this instruction was defined with an optional CPSR def and its dag node
10627 // had a live implicit CPSR def, then activate the optional CPSR def.
10628 MachineOperand
&MO
= MI
.getOperand(ccOutIdx
);
10629 MO
.setReg(ARM::CPSR
);
10633 //===----------------------------------------------------------------------===//
10634 // ARM Optimization Hooks
10635 //===----------------------------------------------------------------------===//
10637 // Helper function that checks if N is a null or all ones constant.
10638 static inline bool isZeroOrAllOnes(SDValue N
, bool AllOnes
) {
10639 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
10642 // Return true if N is conditionally 0 or all ones.
10643 // Detects these expressions where cc is an i1 value:
10645 // (select cc 0, y) [AllOnes=0]
10646 // (select cc y, 0) [AllOnes=0]
10647 // (zext cc) [AllOnes=0]
10648 // (sext cc) [AllOnes=0/1]
10649 // (select cc -1, y) [AllOnes=1]
10650 // (select cc y, -1) [AllOnes=1]
10652 // Invert is set when N is the null/all ones constant when CC is false.
10653 // OtherOp is set to the alternative value of N.
10654 static bool isConditionalZeroOrAllOnes(SDNode
*N
, bool AllOnes
,
10655 SDValue
&CC
, bool &Invert
,
10657 SelectionDAG
&DAG
) {
10658 switch (N
->getOpcode()) {
10659 default: return false;
10660 case ISD::SELECT
: {
10661 CC
= N
->getOperand(0);
10662 SDValue N1
= N
->getOperand(1);
10663 SDValue N2
= N
->getOperand(2);
10664 if (isZeroOrAllOnes(N1
, AllOnes
)) {
10669 if (isZeroOrAllOnes(N2
, AllOnes
)) {
10676 case ISD::ZERO_EXTEND
:
10677 // (zext cc) can never be the all ones value.
10681 case ISD::SIGN_EXTEND
: {
10683 EVT VT
= N
->getValueType(0);
10684 CC
= N
->getOperand(0);
10685 if (CC
.getValueType() != MVT::i1
|| CC
.getOpcode() != ISD::SETCC
)
10689 // When looking for an AllOnes constant, N is an sext, and the 'other'
10691 OtherOp
= DAG
.getConstant(0, dl
, VT
);
10692 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
10693 // When looking for a 0 constant, N can be zext or sext.
10694 OtherOp
= DAG
.getConstant(1, dl
, VT
);
10696 OtherOp
= DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
10703 // Combine a constant select operand into its use:
10705 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10706 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10707 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10708 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10709 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10711 // The transform is rejected if the select doesn't have a constant operand that
10712 // is null, or all ones when AllOnes is set.
10714 // Also recognize sext/zext from i1:
10716 // (add (zext cc), x) -> (select cc (add x, 1), x)
10717 // (add (sext cc), x) -> (select cc (add x, -1), x)
10719 // These transformations eventually create predicated instructions.
10721 // @param N The node to transform.
10722 // @param Slct The N operand that is a select.
10723 // @param OtherOp The other N operand (x above).
10724 // @param DCI Context.
10725 // @param AllOnes Require the select constant to be all ones instead of null.
10726 // @returns The new node, or SDValue() on failure.
10728 SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
10729 TargetLowering::DAGCombinerInfo
&DCI
,
10730 bool AllOnes
= false) {
10731 SelectionDAG
&DAG
= DCI
.DAG
;
10732 EVT VT
= N
->getValueType(0);
10733 SDValue NonConstantVal
;
10735 bool SwapSelectOps
;
10736 if (!isConditionalZeroOrAllOnes(Slct
.getNode(), AllOnes
, CCOp
, SwapSelectOps
,
10737 NonConstantVal
, DAG
))
10740 // Slct is now know to be the desired identity constant when CC is true.
10741 SDValue TrueVal
= OtherOp
;
10742 SDValue FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
10743 OtherOp
, NonConstantVal
);
10744 // Unless SwapSelectOps says CC should be false.
10746 std::swap(TrueVal
, FalseVal
);
10748 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
10749 CCOp
, TrueVal
, FalseVal
);
10752 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10754 SDValue
combineSelectAndUseCommutative(SDNode
*N
, bool AllOnes
,
10755 TargetLowering::DAGCombinerInfo
&DCI
) {
10756 SDValue N0
= N
->getOperand(0);
10757 SDValue N1
= N
->getOperand(1);
10758 if (N0
.getNode()->hasOneUse())
10759 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
, AllOnes
))
10761 if (N1
.getNode()->hasOneUse())
10762 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
, AllOnes
))
10767 static bool IsVUZPShuffleNode(SDNode
*N
) {
10768 // VUZP shuffle node.
10769 if (N
->getOpcode() == ARMISD::VUZP
)
10772 // "VUZP" on i32 is an alias for VTRN.
10773 if (N
->getOpcode() == ARMISD::VTRN
&& N
->getValueType(0) == MVT::v2i32
)
10779 static SDValue
AddCombineToVPADD(SDNode
*N
, SDValue N0
, SDValue N1
,
10780 TargetLowering::DAGCombinerInfo
&DCI
,
10781 const ARMSubtarget
*Subtarget
) {
10782 // Look for ADD(VUZP.0, VUZP.1).
10783 if (!IsVUZPShuffleNode(N0
.getNode()) || N0
.getNode() != N1
.getNode() ||
10787 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10788 if (!N
->getValueType(0).is64BitVector())
10792 SelectionDAG
&DAG
= DCI
.DAG
;
10793 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10795 SDNode
*Unzip
= N0
.getNode();
10796 EVT VT
= N
->getValueType(0);
10798 SmallVector
<SDValue
, 8> Ops
;
10799 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpadd
, dl
,
10800 TLI
.getPointerTy(DAG
.getDataLayout())));
10801 Ops
.push_back(Unzip
->getOperand(0));
10802 Ops
.push_back(Unzip
->getOperand(1));
10804 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10807 static SDValue
AddCombineVUZPToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10808 TargetLowering::DAGCombinerInfo
&DCI
,
10809 const ARMSubtarget
*Subtarget
) {
10810 // Check for two extended operands.
10811 if (!(N0
.getOpcode() == ISD::SIGN_EXTEND
&&
10812 N1
.getOpcode() == ISD::SIGN_EXTEND
) &&
10813 !(N0
.getOpcode() == ISD::ZERO_EXTEND
&&
10814 N1
.getOpcode() == ISD::ZERO_EXTEND
))
10817 SDValue N00
= N0
.getOperand(0);
10818 SDValue N10
= N1
.getOperand(0);
10820 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10821 if (!IsVUZPShuffleNode(N00
.getNode()) || N00
.getNode() != N10
.getNode() ||
10825 // We only recognize Q register paddl here; this can't be reached until
10826 // after type legalization.
10827 if (!N00
.getValueType().is64BitVector() ||
10828 !N0
.getValueType().is128BitVector())
10831 // Generate vpaddl.
10832 SelectionDAG
&DAG
= DCI
.DAG
;
10833 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10835 EVT VT
= N
->getValueType(0);
10837 SmallVector
<SDValue
, 8> Ops
;
10838 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10840 if (N0
.getOpcode() == ISD::SIGN_EXTEND
)
10841 Opcode
= Intrinsic::arm_neon_vpaddls
;
10843 Opcode
= Intrinsic::arm_neon_vpaddlu
;
10844 Ops
.push_back(DAG
.getConstant(Opcode
, dl
,
10845 TLI
.getPointerTy(DAG
.getDataLayout())));
10846 EVT ElemTy
= N00
.getValueType().getVectorElementType();
10847 unsigned NumElts
= VT
.getVectorNumElements();
10848 EVT ConcatVT
= EVT::getVectorVT(*DAG
.getContext(), ElemTy
, NumElts
* 2);
10849 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), ConcatVT
,
10850 N00
.getOperand(0), N00
.getOperand(1));
10851 Ops
.push_back(Concat
);
10853 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10856 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10857 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10858 // much easier to match.
10860 AddCombineBUILD_VECTORToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10861 TargetLowering::DAGCombinerInfo
&DCI
,
10862 const ARMSubtarget
*Subtarget
) {
10863 // Only perform optimization if after legalize, and if NEON is available. We
10864 // also expected both operands to be BUILD_VECTORs.
10865 if (DCI
.isBeforeLegalize() || !Subtarget
->hasNEON()
10866 || N0
.getOpcode() != ISD::BUILD_VECTOR
10867 || N1
.getOpcode() != ISD::BUILD_VECTOR
)
10870 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10871 EVT VT
= N
->getValueType(0);
10872 if (!VT
.isInteger() || VT
.getVectorElementType() == MVT::i64
)
10875 // Check that the vector operands are of the right form.
10876 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
10877 // operands, where N is the size of the formed vector.
10878 // Each EXTRACT_VECTOR should have the same input vector and odd or even
10879 // index such that we have a pair wise add pattern.
10881 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
10882 if (N0
->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
10884 SDValue Vec
= N0
->getOperand(0)->getOperand(0);
10885 SDNode
*V
= Vec
.getNode();
10886 unsigned nextIndex
= 0;
10888 // For each operands to the ADD which are BUILD_VECTORs,
10889 // check to see if each of their operands are an EXTRACT_VECTOR with
10890 // the same vector and appropriate index.
10891 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
) {
10892 if (N0
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
10893 && N1
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
10895 SDValue ExtVec0
= N0
->getOperand(i
);
10896 SDValue ExtVec1
= N1
->getOperand(i
);
10898 // First operand is the vector, verify its the same.
10899 if (V
!= ExtVec0
->getOperand(0).getNode() ||
10900 V
!= ExtVec1
->getOperand(0).getNode())
10903 // Second is the constant, verify its correct.
10904 ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(ExtVec0
->getOperand(1));
10905 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(ExtVec1
->getOperand(1));
10907 // For the constant, we want to see all the even or all the odd.
10908 if (!C0
|| !C1
|| C0
->getZExtValue() != nextIndex
10909 || C1
->getZExtValue() != nextIndex
+1)
10912 // Increment index.
10918 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
10919 // we're using the entire input vector, otherwise there's a size/legality
10920 // mismatch somewhere.
10921 if (nextIndex
!= Vec
.getValueType().getVectorNumElements() ||
10922 Vec
.getValueType().getVectorElementType() == VT
.getVectorElementType())
10925 // Create VPADDL node.
10926 SelectionDAG
&DAG
= DCI
.DAG
;
10927 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10931 // Build operand list.
10932 SmallVector
<SDValue
, 8> Ops
;
10933 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddls
, dl
,
10934 TLI
.getPointerTy(DAG
.getDataLayout())));
10936 // Input is the vector.
10937 Ops
.push_back(Vec
);
10939 // Get widened type and narrowed type.
10941 unsigned numElem
= VT
.getVectorNumElements();
10943 EVT inputLaneType
= Vec
.getValueType().getVectorElementType();
10944 switch (inputLaneType
.getSimpleVT().SimpleTy
) {
10945 case MVT::i8
: widenType
= MVT::getVectorVT(MVT::i16
, numElem
); break;
10946 case MVT::i16
: widenType
= MVT::getVectorVT(MVT::i32
, numElem
); break;
10947 case MVT::i32
: widenType
= MVT::getVectorVT(MVT::i64
, numElem
); break;
10949 llvm_unreachable("Invalid vector element type for padd optimization.");
10952 SDValue tmp
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, widenType
, Ops
);
10953 unsigned ExtOp
= VT
.bitsGT(tmp
.getValueType()) ? ISD::ANY_EXTEND
: ISD::TRUNCATE
;
10954 return DAG
.getNode(ExtOp
, dl
, VT
, tmp
);
10957 static SDValue
findMUL_LOHI(SDValue V
) {
10958 if (V
->getOpcode() == ISD::UMUL_LOHI
||
10959 V
->getOpcode() == ISD::SMUL_LOHI
)
10964 static SDValue
AddCombineTo64BitSMLAL16(SDNode
*AddcNode
, SDNode
*AddeNode
,
10965 TargetLowering::DAGCombinerInfo
&DCI
,
10966 const ARMSubtarget
*Subtarget
) {
10967 if (Subtarget
->isThumb()) {
10968 if (!Subtarget
->hasDSP())
10970 } else if (!Subtarget
->hasV5TEOps())
10973 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10974 // accumulates the product into a 64-bit value. The 16-bit values will
10975 // be sign extended somehow or SRA'd into 32-bit values
10976 // (addc (adde (mul 16bit, 16bit), lo), hi)
10977 SDValue Mul
= AddcNode
->getOperand(0);
10978 SDValue Lo
= AddcNode
->getOperand(1);
10979 if (Mul
.getOpcode() != ISD::MUL
) {
10980 Lo
= AddcNode
->getOperand(0);
10981 Mul
= AddcNode
->getOperand(1);
10982 if (Mul
.getOpcode() != ISD::MUL
)
10986 SDValue SRA
= AddeNode
->getOperand(0);
10987 SDValue Hi
= AddeNode
->getOperand(1);
10988 if (SRA
.getOpcode() != ISD::SRA
) {
10989 SRA
= AddeNode
->getOperand(1);
10990 Hi
= AddeNode
->getOperand(0);
10991 if (SRA
.getOpcode() != ISD::SRA
)
10994 if (auto Const
= dyn_cast
<ConstantSDNode
>(SRA
.getOperand(1))) {
10995 if (Const
->getZExtValue() != 31)
11000 if (SRA
.getOperand(0) != Mul
)
11003 SelectionDAG
&DAG
= DCI
.DAG
;
11004 SDLoc
dl(AddcNode
);
11005 unsigned Opcode
= 0;
11009 if (isS16(Mul
.getOperand(0), DAG
) && isS16(Mul
.getOperand(1), DAG
)) {
11010 Opcode
= ARMISD::SMLALBB
;
11011 Op0
= Mul
.getOperand(0);
11012 Op1
= Mul
.getOperand(1);
11013 } else if (isS16(Mul
.getOperand(0), DAG
) && isSRA16(Mul
.getOperand(1))) {
11014 Opcode
= ARMISD::SMLALBT
;
11015 Op0
= Mul
.getOperand(0);
11016 Op1
= Mul
.getOperand(1).getOperand(0);
11017 } else if (isSRA16(Mul
.getOperand(0)) && isS16(Mul
.getOperand(1), DAG
)) {
11018 Opcode
= ARMISD::SMLALTB
;
11019 Op0
= Mul
.getOperand(0).getOperand(0);
11020 Op1
= Mul
.getOperand(1);
11021 } else if (isSRA16(Mul
.getOperand(0)) && isSRA16(Mul
.getOperand(1))) {
11022 Opcode
= ARMISD::SMLALTT
;
11023 Op0
= Mul
->getOperand(0).getOperand(0);
11024 Op1
= Mul
->getOperand(1).getOperand(0);
11030 SDValue SMLAL
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
11032 // Replace the ADDs' nodes uses by the MLA node's values.
11033 SDValue
HiMLALResult(SMLAL
.getNode(), 1);
11034 SDValue
LoMLALResult(SMLAL
.getNode(), 0);
11036 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), LoMLALResult
);
11037 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), HiMLALResult
);
11039 // Return original node to notify the driver to stop replacing.
11040 SDValue
resNode(AddcNode
, 0);
11044 static SDValue
AddCombineTo64bitMLAL(SDNode
*AddeSubeNode
,
11045 TargetLowering::DAGCombinerInfo
&DCI
,
11046 const ARMSubtarget
*Subtarget
) {
11047 // Look for multiply add opportunities.
11048 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
11049 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
11050 // a glue link from the first add to the second add.
11051 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
11052 // a S/UMLAL instruction.
11055 // V \ [no multiline comment]
11061 // In the special case where only the higher part of a signed result is used
11062 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
11063 // a constant with the exact value of 0x80000000, we recognize we are dealing
11064 // with a "rounded multiply and add" (or subtract) and transform it into
11065 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
11067 assert((AddeSubeNode
->getOpcode() == ARMISD::ADDE
||
11068 AddeSubeNode
->getOpcode() == ARMISD::SUBE
) &&
11069 "Expect an ADDE or SUBE");
11071 assert(AddeSubeNode
->getNumOperands() == 3 &&
11072 AddeSubeNode
->getOperand(2).getValueType() == MVT::i32
&&
11073 "ADDE node has the wrong inputs");
11075 // Check that we are chained to the right ADDC or SUBC node.
11076 SDNode
*AddcSubcNode
= AddeSubeNode
->getOperand(2).getNode();
11077 if ((AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
11078 AddcSubcNode
->getOpcode() != ARMISD::ADDC
) ||
11079 (AddeSubeNode
->getOpcode() == ARMISD::SUBE
&&
11080 AddcSubcNode
->getOpcode() != ARMISD::SUBC
))
11083 SDValue AddcSubcOp0
= AddcSubcNode
->getOperand(0);
11084 SDValue AddcSubcOp1
= AddcSubcNode
->getOperand(1);
11086 // Check if the two operands are from the same mul_lohi node.
11087 if (AddcSubcOp0
.getNode() == AddcSubcOp1
.getNode())
11090 assert(AddcSubcNode
->getNumValues() == 2 &&
11091 AddcSubcNode
->getValueType(0) == MVT::i32
&&
11092 "Expect ADDC with two result values. First: i32");
11094 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
11095 // maybe a SMLAL which multiplies two 16-bit values.
11096 if (AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
11097 AddcSubcOp0
->getOpcode() != ISD::UMUL_LOHI
&&
11098 AddcSubcOp0
->getOpcode() != ISD::SMUL_LOHI
&&
11099 AddcSubcOp1
->getOpcode() != ISD::UMUL_LOHI
&&
11100 AddcSubcOp1
->getOpcode() != ISD::SMUL_LOHI
)
11101 return AddCombineTo64BitSMLAL16(AddcSubcNode
, AddeSubeNode
, DCI
, Subtarget
);
11103 // Check for the triangle shape.
11104 SDValue AddeSubeOp0
= AddeSubeNode
->getOperand(0);
11105 SDValue AddeSubeOp1
= AddeSubeNode
->getOperand(1);
11107 // Make sure that the ADDE/SUBE operands are not coming from the same node.
11108 if (AddeSubeOp0
.getNode() == AddeSubeOp1
.getNode())
11111 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
11112 bool IsLeftOperandMUL
= false;
11113 SDValue MULOp
= findMUL_LOHI(AddeSubeOp0
);
11114 if (MULOp
== SDValue())
11115 MULOp
= findMUL_LOHI(AddeSubeOp1
);
11117 IsLeftOperandMUL
= true;
11118 if (MULOp
== SDValue())
11121 // Figure out the right opcode.
11122 unsigned Opc
= MULOp
->getOpcode();
11123 unsigned FinalOpc
= (Opc
== ISD::SMUL_LOHI
) ? ARMISD::SMLAL
: ARMISD::UMLAL
;
11125 // Figure out the high and low input values to the MLAL node.
11126 SDValue
*HiAddSub
= nullptr;
11127 SDValue
*LoMul
= nullptr;
11128 SDValue
*LowAddSub
= nullptr;
11130 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
11131 if ((AddeSubeOp0
!= MULOp
.getValue(1)) && (AddeSubeOp1
!= MULOp
.getValue(1)))
11134 if (IsLeftOperandMUL
)
11135 HiAddSub
= &AddeSubeOp1
;
11137 HiAddSub
= &AddeSubeOp0
;
11139 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
11140 // whose low result is fed to the ADDC/SUBC we are checking.
11142 if (AddcSubcOp0
== MULOp
.getValue(0)) {
11143 LoMul
= &AddcSubcOp0
;
11144 LowAddSub
= &AddcSubcOp1
;
11146 if (AddcSubcOp1
== MULOp
.getValue(0)) {
11147 LoMul
= &AddcSubcOp1
;
11148 LowAddSub
= &AddcSubcOp0
;
11154 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
11155 // the replacement below will create a cycle.
11156 if (AddcSubcNode
== HiAddSub
->getNode() ||
11157 AddcSubcNode
->isPredecessorOf(HiAddSub
->getNode()))
11160 // Create the merged node.
11161 SelectionDAG
&DAG
= DCI
.DAG
;
11163 // Start building operand list.
11164 SmallVector
<SDValue
, 8> Ops
;
11165 Ops
.push_back(LoMul
->getOperand(0));
11166 Ops
.push_back(LoMul
->getOperand(1));
11168 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
11169 // the case, we must be doing signed multiplication and only use the higher
11170 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
11171 // addition or subtraction with the value of 0x800000.
11172 if (Subtarget
->hasV6Ops() && Subtarget
->hasDSP() && Subtarget
->useMulOps() &&
11173 FinalOpc
== ARMISD::SMLAL
&& !AddeSubeNode
->hasAnyUseOfValue(1) &&
11174 LowAddSub
->getNode()->getOpcode() == ISD::Constant
&&
11175 static_cast<ConstantSDNode
*>(LowAddSub
->getNode())->getZExtValue() ==
11177 Ops
.push_back(*HiAddSub
);
11178 if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
) {
11179 FinalOpc
= ARMISD::SMMLSR
;
11181 FinalOpc
= ARMISD::SMMLAR
;
11183 SDValue NewNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
), MVT::i32
, Ops
);
11184 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), NewNode
);
11186 return SDValue(AddeSubeNode
, 0);
11187 } else if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
)
11188 // SMMLS is generated during instruction selection and the rest of this
11189 // function can not handle the case where AddcSubcNode is a SUBC.
11192 // Finish building the operand list for {U/S}MLAL
11193 Ops
.push_back(*LowAddSub
);
11194 Ops
.push_back(*HiAddSub
);
11196 SDValue MLALNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
),
11197 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11199 // Replace the ADDs' nodes uses by the MLA node's values.
11200 SDValue
HiMLALResult(MLALNode
.getNode(), 1);
11201 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), HiMLALResult
);
11203 SDValue
LoMLALResult(MLALNode
.getNode(), 0);
11204 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode
, 0), LoMLALResult
);
11206 // Return original node to notify the driver to stop replacing.
11207 return SDValue(AddeSubeNode
, 0);
11210 static SDValue
AddCombineTo64bitUMAAL(SDNode
*AddeNode
,
11211 TargetLowering::DAGCombinerInfo
&DCI
,
11212 const ARMSubtarget
*Subtarget
) {
11213 // UMAAL is similar to UMLAL except that it adds two unsigned values.
11214 // While trying to combine for the other MLAL nodes, first search for the
11215 // chance to use UMAAL. Check if Addc uses a node which has already
11216 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11217 // as the addend, and it's handled in PerformUMLALCombine.
11219 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11220 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11222 // Check that we have a glued ADDC node.
11223 SDNode
* AddcNode
= AddeNode
->getOperand(2).getNode();
11224 if (AddcNode
->getOpcode() != ARMISD::ADDC
)
11227 // Find the converted UMAAL or quit if it doesn't exist.
11228 SDNode
*UmlalNode
= nullptr;
11230 if (AddcNode
->getOperand(0).getOpcode() == ARMISD::UMLAL
) {
11231 UmlalNode
= AddcNode
->getOperand(0).getNode();
11232 AddHi
= AddcNode
->getOperand(1);
11233 } else if (AddcNode
->getOperand(1).getOpcode() == ARMISD::UMLAL
) {
11234 UmlalNode
= AddcNode
->getOperand(1).getNode();
11235 AddHi
= AddcNode
->getOperand(0);
11237 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11240 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
11241 // the ADDC as well as Zero.
11242 if (!isNullConstant(UmlalNode
->getOperand(3)))
11245 if ((isNullConstant(AddeNode
->getOperand(0)) &&
11246 AddeNode
->getOperand(1).getNode() == UmlalNode
) ||
11247 (AddeNode
->getOperand(0).getNode() == UmlalNode
&&
11248 isNullConstant(AddeNode
->getOperand(1)))) {
11249 SelectionDAG
&DAG
= DCI
.DAG
;
11250 SDValue Ops
[] = { UmlalNode
->getOperand(0), UmlalNode
->getOperand(1),
11251 UmlalNode
->getOperand(2), AddHi
};
11252 SDValue UMAAL
= DAG
.getNode(ARMISD::UMAAL
, SDLoc(AddcNode
),
11253 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11255 // Replace the ADDs' nodes uses by the UMAAL node's values.
11256 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), SDValue(UMAAL
.getNode(), 1));
11257 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), SDValue(UMAAL
.getNode(), 0));
11259 // Return original node to notify the driver to stop replacing.
11260 return SDValue(AddeNode
, 0);
11265 static SDValue
PerformUMLALCombine(SDNode
*N
, SelectionDAG
&DAG
,
11266 const ARMSubtarget
*Subtarget
) {
11267 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11270 // Check that we have a pair of ADDC and ADDE as operands.
11271 // Both addends of the ADDE must be zero.
11272 SDNode
* AddcNode
= N
->getOperand(2).getNode();
11273 SDNode
* AddeNode
= N
->getOperand(3).getNode();
11274 if ((AddcNode
->getOpcode() == ARMISD::ADDC
) &&
11275 (AddeNode
->getOpcode() == ARMISD::ADDE
) &&
11276 isNullConstant(AddeNode
->getOperand(0)) &&
11277 isNullConstant(AddeNode
->getOperand(1)) &&
11278 (AddeNode
->getOperand(2).getNode() == AddcNode
))
11279 return DAG
.getNode(ARMISD::UMAAL
, SDLoc(N
),
11280 DAG
.getVTList(MVT::i32
, MVT::i32
),
11281 {N
->getOperand(0), N
->getOperand(1),
11282 AddcNode
->getOperand(0), AddcNode
->getOperand(1)});
11287 static SDValue
PerformAddcSubcCombine(SDNode
*N
,
11288 TargetLowering::DAGCombinerInfo
&DCI
,
11289 const ARMSubtarget
*Subtarget
) {
11290 SelectionDAG
&DAG(DCI
.DAG
);
11292 if (N
->getOpcode() == ARMISD::SUBC
) {
11293 // (SUBC (ADDE 0, 0, C), 1) -> C
11294 SDValue LHS
= N
->getOperand(0);
11295 SDValue RHS
= N
->getOperand(1);
11296 if (LHS
->getOpcode() == ARMISD::ADDE
&&
11297 isNullConstant(LHS
->getOperand(0)) &&
11298 isNullConstant(LHS
->getOperand(1)) && isOneConstant(RHS
)) {
11299 return DCI
.CombineTo(N
, SDValue(N
, 0), LHS
->getOperand(2));
11303 if (Subtarget
->isThumb1Only()) {
11304 SDValue RHS
= N
->getOperand(1);
11305 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11306 int32_t imm
= C
->getSExtValue();
11307 if (imm
< 0 && imm
> std::numeric_limits
<int>::min()) {
11309 RHS
= DAG
.getConstant(-imm
, DL
, MVT::i32
);
11310 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDC
) ? ARMISD::SUBC
11312 return DAG
.getNode(Opcode
, DL
, N
->getVTList(), N
->getOperand(0), RHS
);
11320 static SDValue
PerformAddeSubeCombine(SDNode
*N
,
11321 TargetLowering::DAGCombinerInfo
&DCI
,
11322 const ARMSubtarget
*Subtarget
) {
11323 if (Subtarget
->isThumb1Only()) {
11324 SelectionDAG
&DAG
= DCI
.DAG
;
11325 SDValue RHS
= N
->getOperand(1);
11326 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11327 int64_t imm
= C
->getSExtValue();
11331 // The with-carry-in form matches bitwise not instead of the negation.
11332 // Effectively, the inverse interpretation of the carry flag already
11333 // accounts for part of the negation.
11334 RHS
= DAG
.getConstant(~imm
, DL
, MVT::i32
);
11336 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDE
) ? ARMISD::SUBE
11338 return DAG
.getNode(Opcode
, DL
, N
->getVTList(),
11339 N
->getOperand(0), RHS
, N
->getOperand(2));
11342 } else if (N
->getOperand(1)->getOpcode() == ISD::SMUL_LOHI
) {
11343 return AddCombineTo64bitMLAL(N
, DCI
, Subtarget
);
11348 static SDValue
PerformABSCombine(SDNode
*N
,
11349 TargetLowering::DAGCombinerInfo
&DCI
,
11350 const ARMSubtarget
*Subtarget
) {
11352 SelectionDAG
&DAG
= DCI
.DAG
;
11353 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11355 if (TLI
.isOperationLegal(N
->getOpcode(), N
->getValueType(0)))
11358 if (!TLI
.expandABS(N
, res
, DAG
))
11364 /// PerformADDECombine - Target-specific dag combine transform from
11365 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11366 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11367 static SDValue
PerformADDECombine(SDNode
*N
,
11368 TargetLowering::DAGCombinerInfo
&DCI
,
11369 const ARMSubtarget
*Subtarget
) {
11370 // Only ARM and Thumb2 support UMLAL/SMLAL.
11371 if (Subtarget
->isThumb1Only())
11372 return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
11374 // Only perform the checks after legalize when the pattern is available.
11375 if (DCI
.isBeforeLegalize()) return SDValue();
11377 return AddCombineTo64bitUMAAL(N
, DCI
, Subtarget
);
11380 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11381 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11382 /// called with the default operands, and if that fails, with commuted
11384 static SDValue
PerformADDCombineWithOperands(SDNode
*N
, SDValue N0
, SDValue N1
,
11385 TargetLowering::DAGCombinerInfo
&DCI
,
11386 const ARMSubtarget
*Subtarget
){
11387 // Attempt to create vpadd for this add.
11388 if (SDValue Result
= AddCombineToVPADD(N
, N0
, N1
, DCI
, Subtarget
))
11391 // Attempt to create vpaddl for this add.
11392 if (SDValue Result
= AddCombineVUZPToVPADDL(N
, N0
, N1
, DCI
, Subtarget
))
11394 if (SDValue Result
= AddCombineBUILD_VECTORToVPADDL(N
, N0
, N1
, DCI
,
11398 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11399 if (N0
.getNode()->hasOneUse())
11400 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
))
11406 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
11407 CombineLevel Level
) const {
11408 if (Level
== BeforeLegalizeTypes
)
11411 if (N
->getOpcode() != ISD::SHL
)
11414 if (Subtarget
->isThumb1Only()) {
11415 // Avoid making expensive immediates by commuting shifts. (This logic
11416 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11418 if (N
->getOpcode() != ISD::SHL
)
11420 SDValue N1
= N
->getOperand(0);
11421 if (N1
->getOpcode() != ISD::ADD
&& N1
->getOpcode() != ISD::AND
&&
11422 N1
->getOpcode() != ISD::OR
&& N1
->getOpcode() != ISD::XOR
)
11424 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1))) {
11425 if (Const
->getAPIntValue().ult(256))
11427 if (N1
->getOpcode() == ISD::ADD
&& Const
->getAPIntValue().slt(0) &&
11428 Const
->getAPIntValue().sgt(-256))
11434 // Turn off commute-with-shift transform after legalization, so it doesn't
11435 // conflict with PerformSHLSimplify. (We could try to detect when
11436 // PerformSHLSimplify would trigger more precisely, but it isn't
11437 // really necessary.)
11441 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11442 const SDNode
*N
, CombineLevel Level
) const {
11443 if (!Subtarget
->isThumb1Only())
11446 if (Level
== BeforeLegalizeTypes
)
11452 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
11453 if (!Subtarget
->hasNEON()) {
11454 if (Subtarget
->isThumb1Only())
11455 return VT
.getScalarSizeInBits() <= 32;
11458 return VT
.isScalarInteger();
11461 static SDValue
PerformSHLSimplify(SDNode
*N
,
11462 TargetLowering::DAGCombinerInfo
&DCI
,
11463 const ARMSubtarget
*ST
) {
11464 // Allow the generic combiner to identify potential bswaps.
11465 if (DCI
.isBeforeLegalize())
11468 // DAG combiner will fold:
11469 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11470 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11471 // Other code patterns that can be also be modified have the following form:
11472 // b + ((a << 1) | 510)
11473 // b + ((a << 1) & 510)
11474 // b + ((a << 1) ^ 510)
11475 // b + ((a << 1) + 510)
11477 // Many instructions can perform the shift for free, but it requires both
11478 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11479 // instruction will needed. So, unfold back to the original pattern if:
11480 // - if c1 and c2 are small enough that they don't require mov imms.
11481 // - the user(s) of the node can perform an shl
11483 // No shifted operands for 16-bit instructions.
11484 if (ST
->isThumb() && ST
->isThumb1Only())
11487 // Check that all the users could perform the shl themselves.
11488 for (auto U
: N
->uses()) {
11489 switch(U
->getOpcode()) {
11499 // Check that the user isn't already using a constant because there
11500 // aren't any instructions that support an immediate operand and a
11501 // shifted operand.
11502 if (isa
<ConstantSDNode
>(U
->getOperand(0)) ||
11503 isa
<ConstantSDNode
>(U
->getOperand(1)))
11506 // Check that it's not already using a shift.
11507 if (U
->getOperand(0).getOpcode() == ISD::SHL
||
11508 U
->getOperand(1).getOpcode() == ISD::SHL
)
11514 if (N
->getOpcode() != ISD::ADD
&& N
->getOpcode() != ISD::OR
&&
11515 N
->getOpcode() != ISD::XOR
&& N
->getOpcode() != ISD::AND
)
11518 if (N
->getOperand(0).getOpcode() != ISD::SHL
)
11521 SDValue SHL
= N
->getOperand(0);
11523 auto *C1ShlC2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11524 auto *C2
= dyn_cast
<ConstantSDNode
>(SHL
.getOperand(1));
11525 if (!C1ShlC2
|| !C2
)
11528 APInt C2Int
= C2
->getAPIntValue();
11529 APInt C1Int
= C1ShlC2
->getAPIntValue();
11531 // Check that performing a lshr will not lose any information.
11532 APInt Mask
= APInt::getHighBitsSet(C2Int
.getBitWidth(),
11533 C2Int
.getBitWidth() - C2
->getZExtValue());
11534 if ((C1Int
& Mask
) != C1Int
)
11537 // Shift the first constant.
11538 C1Int
.lshrInPlace(C2Int
);
11540 // The immediates are encoded as an 8-bit value that can be rotated.
11541 auto LargeImm
= [](const APInt
&Imm
) {
11542 unsigned Zeros
= Imm
.countLeadingZeros() + Imm
.countTrailingZeros();
11543 return Imm
.getBitWidth() - Zeros
> 8;
11546 if (LargeImm(C1Int
) || LargeImm(C2Int
))
11549 SelectionDAG
&DAG
= DCI
.DAG
;
11551 SDValue X
= SHL
.getOperand(0);
11552 SDValue BinOp
= DAG
.getNode(N
->getOpcode(), dl
, MVT::i32
, X
,
11553 DAG
.getConstant(C1Int
, dl
, MVT::i32
));
11554 // Shift left to compensate for the lshr of C1Int.
11555 SDValue Res
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, BinOp
, SHL
.getOperand(1));
11557 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL
.getOperand(0).dump();
11558 SHL
.dump(); N
->dump());
11559 LLVM_DEBUG(dbgs() << "Into:\n"; X
.dump(); BinOp
.dump(); Res
.dump());
11564 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11566 static SDValue
PerformADDCombine(SDNode
*N
,
11567 TargetLowering::DAGCombinerInfo
&DCI
,
11568 const ARMSubtarget
*Subtarget
) {
11569 SDValue N0
= N
->getOperand(0);
11570 SDValue N1
= N
->getOperand(1);
11572 // Only works one way, because it needs an immediate operand.
11573 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11576 // First try with the default operand order.
11577 if (SDValue Result
= PerformADDCombineWithOperands(N
, N0
, N1
, DCI
, Subtarget
))
11580 // If that didn't work, try again with the operands commuted.
11581 return PerformADDCombineWithOperands(N
, N1
, N0
, DCI
, Subtarget
);
11584 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11586 static SDValue
PerformSUBCombine(SDNode
*N
,
11587 TargetLowering::DAGCombinerInfo
&DCI
) {
11588 SDValue N0
= N
->getOperand(0);
11589 SDValue N1
= N
->getOperand(1);
11591 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11592 if (N1
.getNode()->hasOneUse())
11593 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
))
11599 /// PerformVMULCombine
11600 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11601 /// special multiplier accumulator forwarding.
11602 /// vmul d3, d0, d2
11603 /// vmla d3, d1, d2
11605 /// vadd d3, d0, d1
11606 /// vmul d3, d3, d2
11607 // However, for (A + B) * (A + B),
11614 static SDValue
PerformVMULCombine(SDNode
*N
,
11615 TargetLowering::DAGCombinerInfo
&DCI
,
11616 const ARMSubtarget
*Subtarget
) {
11617 if (!Subtarget
->hasVMLxForwarding())
11620 SelectionDAG
&DAG
= DCI
.DAG
;
11621 SDValue N0
= N
->getOperand(0);
11622 SDValue N1
= N
->getOperand(1);
11623 unsigned Opcode
= N0
.getOpcode();
11624 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11625 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
) {
11626 Opcode
= N1
.getOpcode();
11627 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11628 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
)
11636 EVT VT
= N
->getValueType(0);
11638 SDValue N00
= N0
->getOperand(0);
11639 SDValue N01
= N0
->getOperand(1);
11640 return DAG
.getNode(Opcode
, DL
, VT
,
11641 DAG
.getNode(ISD::MUL
, DL
, VT
, N00
, N1
),
11642 DAG
.getNode(ISD::MUL
, DL
, VT
, N01
, N1
));
11645 static SDValue
PerformMULCombine(SDNode
*N
,
11646 TargetLowering::DAGCombinerInfo
&DCI
,
11647 const ARMSubtarget
*Subtarget
) {
11648 SelectionDAG
&DAG
= DCI
.DAG
;
11650 if (Subtarget
->isThumb1Only())
11653 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11656 EVT VT
= N
->getValueType(0);
11657 if (VT
.is64BitVector() || VT
.is128BitVector())
11658 return PerformVMULCombine(N
, DCI
, Subtarget
);
11659 if (VT
!= MVT::i32
)
11662 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11666 int64_t MulAmt
= C
->getSExtValue();
11667 unsigned ShiftAmt
= countTrailingZeros
<uint64_t>(MulAmt
);
11669 ShiftAmt
= ShiftAmt
& (32 - 1);
11670 SDValue V
= N
->getOperand(0);
11674 MulAmt
>>= ShiftAmt
;
11677 if (isPowerOf2_32(MulAmt
- 1)) {
11678 // (mul x, 2^N + 1) => (add (shl x, N), x)
11679 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11681 DAG
.getNode(ISD::SHL
, DL
, VT
,
11683 DAG
.getConstant(Log2_32(MulAmt
- 1), DL
,
11685 } else if (isPowerOf2_32(MulAmt
+ 1)) {
11686 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11687 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11688 DAG
.getNode(ISD::SHL
, DL
, VT
,
11690 DAG
.getConstant(Log2_32(MulAmt
+ 1), DL
,
11696 uint64_t MulAmtAbs
= -MulAmt
;
11697 if (isPowerOf2_32(MulAmtAbs
+ 1)) {
11698 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11699 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11701 DAG
.getNode(ISD::SHL
, DL
, VT
,
11703 DAG
.getConstant(Log2_32(MulAmtAbs
+ 1), DL
,
11705 } else if (isPowerOf2_32(MulAmtAbs
- 1)) {
11706 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11707 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11709 DAG
.getNode(ISD::SHL
, DL
, VT
,
11711 DAG
.getConstant(Log2_32(MulAmtAbs
- 1), DL
,
11713 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11714 DAG
.getConstant(0, DL
, MVT::i32
), Res
);
11720 Res
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11721 Res
, DAG
.getConstant(ShiftAmt
, DL
, MVT::i32
));
11723 // Do not add new nodes to DAG combiner worklist.
11724 DCI
.CombineTo(N
, Res
, false);
11728 static SDValue
CombineANDShift(SDNode
*N
,
11729 TargetLowering::DAGCombinerInfo
&DCI
,
11730 const ARMSubtarget
*Subtarget
) {
11731 // Allow DAGCombine to pattern-match before we touch the canonical form.
11732 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11735 if (N
->getValueType(0) != MVT::i32
)
11738 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11742 uint32_t C1
= (uint32_t)N1C
->getZExtValue();
11743 // Don't transform uxtb/uxth.
11744 if (C1
== 255 || C1
== 65535)
11747 SDNode
*N0
= N
->getOperand(0).getNode();
11748 if (!N0
->hasOneUse())
11751 if (N0
->getOpcode() != ISD::SHL
&& N0
->getOpcode() != ISD::SRL
)
11754 bool LeftShift
= N0
->getOpcode() == ISD::SHL
;
11756 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
11760 uint32_t C2
= (uint32_t)N01C
->getZExtValue();
11761 if (!C2
|| C2
>= 32)
11764 // Clear irrelevant bits in the mask.
11770 SelectionDAG
&DAG
= DCI
.DAG
;
11773 // We have a pattern of the form "(and (shl x, c2) c1)" or
11774 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11775 // transform to a pair of shifts, to save materializing c1.
11777 // First pattern: right shift, then mask off leading bits.
11778 // FIXME: Use demanded bits?
11779 if (!LeftShift
&& isMask_32(C1
)) {
11780 uint32_t C3
= countLeadingZeros(C1
);
11782 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11783 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11784 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11785 DAG
.getConstant(C3
, DL
, MVT::i32
));
11789 // First pattern, reversed: left shift, then mask off trailing bits.
11790 if (LeftShift
&& isMask_32(~C1
)) {
11791 uint32_t C3
= countTrailingZeros(C1
);
11793 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11794 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11795 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11796 DAG
.getConstant(C3
, DL
, MVT::i32
));
11800 // Second pattern: left shift, then mask off leading bits.
11801 // FIXME: Use demanded bits?
11802 if (LeftShift
&& isShiftedMask_32(C1
)) {
11803 uint32_t Trailing
= countTrailingZeros(C1
);
11804 uint32_t C3
= countLeadingZeros(C1
);
11805 if (Trailing
== C2
&& C2
+ C3
< 32) {
11806 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11807 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11808 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11809 DAG
.getConstant(C3
, DL
, MVT::i32
));
11813 // Second pattern, reversed: right shift, then mask off trailing bits.
11814 // FIXME: Handle other patterns of known/demanded bits.
11815 if (!LeftShift
&& isShiftedMask_32(C1
)) {
11816 uint32_t Leading
= countLeadingZeros(C1
);
11817 uint32_t C3
= countTrailingZeros(C1
);
11818 if (Leading
== C2
&& C2
+ C3
< 32) {
11819 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11820 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11821 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11822 DAG
.getConstant(C3
, DL
, MVT::i32
));
11826 // FIXME: Transform "(and (shl x, c2) c1)" ->
11827 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11832 static SDValue
PerformANDCombine(SDNode
*N
,
11833 TargetLowering::DAGCombinerInfo
&DCI
,
11834 const ARMSubtarget
*Subtarget
) {
11835 // Attempt to use immediate-form VBIC
11836 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11838 EVT VT
= N
->getValueType(0);
11839 SelectionDAG
&DAG
= DCI
.DAG
;
11841 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11844 APInt SplatBits
, SplatUndef
;
11845 unsigned SplatBitSize
;
11847 if (BVN
&& Subtarget
->hasNEON() &&
11848 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11849 if (SplatBitSize
<= 64) {
11851 SDValue Val
= isVMOVModifiedImm((~SplatBits
).getZExtValue(),
11852 SplatUndef
.getZExtValue(), SplatBitSize
,
11853 DAG
, dl
, VbicVT
, VT
.is128BitVector(),
11855 if (Val
.getNode()) {
11857 DAG
.getNode(ISD::BITCAST
, dl
, VbicVT
, N
->getOperand(0));
11858 SDValue Vbic
= DAG
.getNode(ARMISD::VBICIMM
, dl
, VbicVT
, Input
, Val
);
11859 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vbic
);
11864 if (!Subtarget
->isThumb1Only()) {
11865 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11866 if (SDValue Result
= combineSelectAndUseCommutative(N
, true, DCI
))
11869 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11873 if (Subtarget
->isThumb1Only())
11874 if (SDValue Result
= CombineANDShift(N
, DCI
, Subtarget
))
11880 // Try combining OR nodes to SMULWB, SMULWT.
11881 static SDValue
PerformORCombineToSMULWBT(SDNode
*OR
,
11882 TargetLowering::DAGCombinerInfo
&DCI
,
11883 const ARMSubtarget
*Subtarget
) {
11884 if (!Subtarget
->hasV6Ops() ||
11885 (Subtarget
->isThumb() &&
11886 (!Subtarget
->hasThumb2() || !Subtarget
->hasDSP())))
11889 SDValue SRL
= OR
->getOperand(0);
11890 SDValue SHL
= OR
->getOperand(1);
11892 if (SRL
.getOpcode() != ISD::SRL
|| SHL
.getOpcode() != ISD::SHL
) {
11893 SRL
= OR
->getOperand(1);
11894 SHL
= OR
->getOperand(0);
11896 if (!isSRL16(SRL
) || !isSHL16(SHL
))
11899 // The first operands to the shifts need to be the two results from the
11900 // same smul_lohi node.
11901 if ((SRL
.getOperand(0).getNode() != SHL
.getOperand(0).getNode()) ||
11902 SRL
.getOperand(0).getOpcode() != ISD::SMUL_LOHI
)
11905 SDNode
*SMULLOHI
= SRL
.getOperand(0).getNode();
11906 if (SRL
.getOperand(0) != SDValue(SMULLOHI
, 0) ||
11907 SHL
.getOperand(0) != SDValue(SMULLOHI
, 1))
11911 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
11912 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
11913 // For SMUWB the 16-bit value will signed extended somehow.
11914 // For SMULWT only the SRA is required.
11915 // Check both sides of SMUL_LOHI
11916 SDValue OpS16
= SMULLOHI
->getOperand(0);
11917 SDValue OpS32
= SMULLOHI
->getOperand(1);
11919 SelectionDAG
&DAG
= DCI
.DAG
;
11920 if (!isS16(OpS16
, DAG
) && !isSRA16(OpS16
)) {
11922 OpS32
= SMULLOHI
->getOperand(0);
11926 unsigned Opcode
= 0;
11927 if (isS16(OpS16
, DAG
))
11928 Opcode
= ARMISD::SMULWB
;
11929 else if (isSRA16(OpS16
)) {
11930 Opcode
= ARMISD::SMULWT
;
11931 OpS16
= OpS16
->getOperand(0);
11936 SDValue Res
= DAG
.getNode(Opcode
, dl
, MVT::i32
, OpS32
, OpS16
);
11937 DAG
.ReplaceAllUsesOfValueWith(SDValue(OR
, 0), Res
);
11938 return SDValue(OR
, 0);
11941 static SDValue
PerformORCombineToBFI(SDNode
*N
,
11942 TargetLowering::DAGCombinerInfo
&DCI
,
11943 const ARMSubtarget
*Subtarget
) {
11944 // BFI is only available on V6T2+
11945 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6T2Ops())
11948 EVT VT
= N
->getValueType(0);
11949 SDValue N0
= N
->getOperand(0);
11950 SDValue N1
= N
->getOperand(1);
11951 SelectionDAG
&DAG
= DCI
.DAG
;
11953 // 1) or (and A, mask), val => ARMbfi A, val, mask
11954 // iff (val & mask) == val
11956 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11957 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
11958 // && mask == ~mask2
11959 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
11960 // && ~mask == mask2
11961 // (i.e., copy a bitfield value into another bitfield of the same width)
11963 if (VT
!= MVT::i32
)
11966 SDValue N00
= N0
.getOperand(0);
11968 // The value and the mask need to be constants so we can verify this is
11969 // actually a bitfield set. If the mask is 0xffff, we can do better
11970 // via a movt instruction, so don't use BFI in that case.
11971 SDValue MaskOp
= N0
.getOperand(1);
11972 ConstantSDNode
*MaskC
= dyn_cast
<ConstantSDNode
>(MaskOp
);
11975 unsigned Mask
= MaskC
->getZExtValue();
11976 if (Mask
== 0xffff)
11979 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
11980 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
11982 unsigned Val
= N1C
->getZExtValue();
11983 if ((Val
& ~Mask
) != Val
)
11986 if (ARM::isBitFieldInvertedMask(Mask
)) {
11987 Val
>>= countTrailingZeros(~Mask
);
11989 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
,
11990 DAG
.getConstant(Val
, DL
, MVT::i32
),
11991 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11993 DCI
.CombineTo(N
, Res
, false);
11994 // Return value from the original node to inform the combiner than N is
11996 return SDValue(N
, 0);
11998 } else if (N1
.getOpcode() == ISD::AND
) {
11999 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
12000 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12003 unsigned Mask2
= N11C
->getZExtValue();
12005 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
12007 if (ARM::isBitFieldInvertedMask(Mask
) &&
12008 (Mask
== ~Mask2
)) {
12009 // The pack halfword instruction works better for masks that fit it,
12010 // so use that when it's available.
12011 if (Subtarget
->hasDSP() &&
12012 (Mask
== 0xffff || Mask
== 0xffff0000))
12015 unsigned amt
= countTrailingZeros(Mask2
);
12016 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N1
.getOperand(0),
12017 DAG
.getConstant(amt
, DL
, MVT::i32
));
12018 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
, Res
,
12019 DAG
.getConstant(Mask
, DL
, MVT::i32
));
12020 DCI
.CombineTo(N
, Res
, false);
12021 // Return value from the original node to inform the combiner than N is
12023 return SDValue(N
, 0);
12024 } else if (ARM::isBitFieldInvertedMask(~Mask
) &&
12025 (~Mask
== Mask2
)) {
12026 // The pack halfword instruction works better for masks that fit it,
12027 // so use that when it's available.
12028 if (Subtarget
->hasDSP() &&
12029 (Mask2
== 0xffff || Mask2
== 0xffff0000))
12032 unsigned lsb
= countTrailingZeros(Mask
);
12033 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N00
,
12034 DAG
.getConstant(lsb
, DL
, MVT::i32
));
12035 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
.getOperand(0), Res
,
12036 DAG
.getConstant(Mask2
, DL
, MVT::i32
));
12037 DCI
.CombineTo(N
, Res
, false);
12038 // Return value from the original node to inform the combiner than N is
12040 return SDValue(N
, 0);
12044 if (DAG
.MaskedValueIsZero(N1
, MaskC
->getAPIntValue()) &&
12045 N00
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N00
.getOperand(1)) &&
12046 ARM::isBitFieldInvertedMask(~Mask
)) {
12047 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
12048 // where lsb(mask) == #shamt and masked bits of B are known zero.
12049 SDValue ShAmt
= N00
.getOperand(1);
12050 unsigned ShAmtC
= cast
<ConstantSDNode
>(ShAmt
)->getZExtValue();
12051 unsigned LSB
= countTrailingZeros(Mask
);
12055 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
, N00
.getOperand(0),
12056 DAG
.getConstant(~Mask
, DL
, MVT::i32
));
12058 DCI
.CombineTo(N
, Res
, false);
12059 // Return value from the original node to inform the combiner than N is
12061 return SDValue(N
, 0);
12067 static bool isValidMVECond(unsigned CC
, bool IsFloat
) {
12084 static SDValue
PerformORCombine_i1(SDNode
*N
,
12085 TargetLowering::DAGCombinerInfo
&DCI
,
12086 const ARMSubtarget
*Subtarget
) {
12087 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
12088 // together with predicates
12089 EVT VT
= N
->getValueType(0);
12090 SDValue N0
= N
->getOperand(0);
12091 SDValue N1
= N
->getOperand(1);
12093 ARMCC::CondCodes CondCode0
= ARMCC::AL
;
12094 ARMCC::CondCodes CondCode1
= ARMCC::AL
;
12095 if (N0
->getOpcode() == ARMISD::VCMP
)
12096 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(2))
12098 else if (N0
->getOpcode() == ARMISD::VCMPZ
)
12099 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(1))
12101 if (N1
->getOpcode() == ARMISD::VCMP
)
12102 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(2))
12104 else if (N1
->getOpcode() == ARMISD::VCMPZ
)
12105 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(1))
12108 if (CondCode0
== ARMCC::AL
|| CondCode1
== ARMCC::AL
)
12111 unsigned Opposite0
= ARMCC::getOppositeCondition(CondCode0
);
12112 unsigned Opposite1
= ARMCC::getOppositeCondition(CondCode1
);
12114 if (!isValidMVECond(Opposite0
,
12115 N0
->getOperand(0)->getValueType(0).isFloatingPoint()) ||
12116 !isValidMVECond(Opposite1
,
12117 N1
->getOperand(0)->getValueType(0).isFloatingPoint()))
12120 SmallVector
<SDValue
, 4> Ops0
;
12121 Ops0
.push_back(N0
->getOperand(0));
12122 if (N0
->getOpcode() == ARMISD::VCMP
)
12123 Ops0
.push_back(N0
->getOperand(1));
12124 Ops0
.push_back(DCI
.DAG
.getConstant(Opposite0
, SDLoc(N0
), MVT::i32
));
12125 SmallVector
<SDValue
, 4> Ops1
;
12126 Ops1
.push_back(N1
->getOperand(0));
12127 if (N1
->getOpcode() == ARMISD::VCMP
)
12128 Ops1
.push_back(N1
->getOperand(1));
12129 Ops1
.push_back(DCI
.DAG
.getConstant(Opposite1
, SDLoc(N1
), MVT::i32
));
12131 SDValue NewN0
= DCI
.DAG
.getNode(N0
->getOpcode(), SDLoc(N0
), VT
, Ops0
);
12132 SDValue NewN1
= DCI
.DAG
.getNode(N1
->getOpcode(), SDLoc(N1
), VT
, Ops1
);
12133 SDValue And
= DCI
.DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NewN0
, NewN1
);
12134 return DCI
.DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, And
,
12135 DCI
.DAG
.getAllOnesConstant(SDLoc(N
), VT
));
12138 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
12139 static SDValue
PerformORCombine(SDNode
*N
,
12140 TargetLowering::DAGCombinerInfo
&DCI
,
12141 const ARMSubtarget
*Subtarget
) {
12142 // Attempt to use immediate-form VORR
12143 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
12145 EVT VT
= N
->getValueType(0);
12146 SelectionDAG
&DAG
= DCI
.DAG
;
12148 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12151 APInt SplatBits
, SplatUndef
;
12152 unsigned SplatBitSize
;
12154 if (BVN
&& Subtarget
->hasNEON() &&
12155 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
12156 if (SplatBitSize
<= 64) {
12158 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
12159 SplatUndef
.getZExtValue(), SplatBitSize
,
12160 DAG
, dl
, VorrVT
, VT
.is128BitVector(),
12162 if (Val
.getNode()) {
12164 DAG
.getNode(ISD::BITCAST
, dl
, VorrVT
, N
->getOperand(0));
12165 SDValue Vorr
= DAG
.getNode(ARMISD::VORRIMM
, dl
, VorrVT
, Input
, Val
);
12166 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vorr
);
12171 if (!Subtarget
->isThumb1Only()) {
12172 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12173 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12175 if (SDValue Result
= PerformORCombineToSMULWBT(N
, DCI
, Subtarget
))
12179 SDValue N0
= N
->getOperand(0);
12180 SDValue N1
= N
->getOperand(1);
12182 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
12183 if (Subtarget
->hasNEON() && N1
.getOpcode() == ISD::AND
&& VT
.isVector() &&
12184 DAG
.getTargetLoweringInfo().isTypeLegal(VT
)) {
12186 // The code below optimizes (or (and X, Y), Z).
12187 // The AND operand needs to have a single user to make these optimizations
12189 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
12193 unsigned SplatBitSize
;
12196 APInt SplatBits0
, SplatBits1
;
12197 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(1));
12198 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(1));
12199 // Ensure that the second operand of both ands are constants
12200 if (BVN0
&& BVN0
->isConstantSplat(SplatBits0
, SplatUndef
, SplatBitSize
,
12201 HasAnyUndefs
) && !HasAnyUndefs
) {
12202 if (BVN1
&& BVN1
->isConstantSplat(SplatBits1
, SplatUndef
, SplatBitSize
,
12203 HasAnyUndefs
) && !HasAnyUndefs
) {
12204 // Ensure that the bit width of the constants are the same and that
12205 // the splat arguments are logical inverses as per the pattern we
12206 // are trying to simplify.
12207 if (SplatBits0
.getBitWidth() == SplatBits1
.getBitWidth() &&
12208 SplatBits0
== ~SplatBits1
) {
12209 // Canonicalize the vector type to make instruction selection
12211 EVT CanonicalVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
12212 SDValue Result
= DAG
.getNode(ARMISD::VBSL
, dl
, CanonicalVT
,
12215 N1
->getOperand(0));
12216 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Result
);
12222 if (Subtarget
->hasMVEIntegerOps() &&
12223 (VT
== MVT::v4i1
|| VT
== MVT::v8i1
|| VT
== MVT::v16i1
))
12224 return PerformORCombine_i1(N
, DCI
, Subtarget
);
12226 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
12228 if (N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
12229 if (SDValue Res
= PerformORCombineToBFI(N
, DCI
, Subtarget
))
12233 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12239 static SDValue
PerformXORCombine(SDNode
*N
,
12240 TargetLowering::DAGCombinerInfo
&DCI
,
12241 const ARMSubtarget
*Subtarget
) {
12242 EVT VT
= N
->getValueType(0);
12243 SelectionDAG
&DAG
= DCI
.DAG
;
12245 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12248 if (!Subtarget
->isThumb1Only()) {
12249 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12250 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12253 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12260 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12261 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12262 // their position in "to" (Rd).
12263 static SDValue
ParseBFI(SDNode
*N
, APInt
&ToMask
, APInt
&FromMask
) {
12264 assert(N
->getOpcode() == ARMISD::BFI
);
12266 SDValue From
= N
->getOperand(1);
12267 ToMask
= ~cast
<ConstantSDNode
>(N
->getOperand(2))->getAPIntValue();
12268 FromMask
= APInt::getLowBitsSet(ToMask
.getBitWidth(), ToMask
.countPopulation());
12270 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12271 // #C in the base of the SHR.
12272 if (From
->getOpcode() == ISD::SRL
&&
12273 isa
<ConstantSDNode
>(From
->getOperand(1))) {
12274 APInt Shift
= cast
<ConstantSDNode
>(From
->getOperand(1))->getAPIntValue();
12275 assert(Shift
.getLimitedValue() < 32 && "Shift too large!");
12276 FromMask
<<= Shift
.getLimitedValue(31);
12277 From
= From
->getOperand(0);
12283 // If A and B contain one contiguous set of bits, does A | B == A . B?
12285 // Neither A nor B must be zero.
12286 static bool BitsProperlyConcatenate(const APInt
&A
, const APInt
&B
) {
12287 unsigned LastActiveBitInA
= A
.countTrailingZeros();
12288 unsigned FirstActiveBitInB
= B
.getBitWidth() - B
.countLeadingZeros() - 1;
12289 return LastActiveBitInA
- 1 == FirstActiveBitInB
;
12292 static SDValue
FindBFIToCombineWith(SDNode
*N
) {
12293 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12295 APInt ToMask
, FromMask
;
12296 SDValue From
= ParseBFI(N
, ToMask
, FromMask
);
12297 SDValue To
= N
->getOperand(0);
12299 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12300 // aren't compatible, but not if they set the same bit in their destination as
12301 // we do (or that of any BFI we're going to combine with).
12303 APInt CombinedToMask
= ToMask
;
12304 while (V
.getOpcode() == ARMISD::BFI
) {
12305 APInt NewToMask
, NewFromMask
;
12306 SDValue NewFrom
= ParseBFI(V
.getNode(), NewToMask
, NewFromMask
);
12307 if (NewFrom
!= From
) {
12308 // This BFI has a different base. Keep going.
12309 CombinedToMask
|= NewToMask
;
12310 V
= V
.getOperand(0);
12314 // Do the written bits conflict with any we've seen so far?
12315 if ((NewToMask
& CombinedToMask
).getBoolValue())
12316 // Conflicting bits - bail out because going further is unsafe.
12319 // Are the new bits contiguous when combined with the old bits?
12320 if (BitsProperlyConcatenate(ToMask
, NewToMask
) &&
12321 BitsProperlyConcatenate(FromMask
, NewFromMask
))
12323 if (BitsProperlyConcatenate(NewToMask
, ToMask
) &&
12324 BitsProperlyConcatenate(NewFromMask
, FromMask
))
12327 // We've seen a write to some bits, so track it.
12328 CombinedToMask
|= NewToMask
;
12330 V
= V
.getOperand(0);
12336 static SDValue
PerformBFICombine(SDNode
*N
,
12337 TargetLowering::DAGCombinerInfo
&DCI
) {
12338 SDValue N1
= N
->getOperand(1);
12339 if (N1
.getOpcode() == ISD::AND
) {
12340 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12341 // the bits being cleared by the AND are not demanded by the BFI.
12342 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12345 unsigned InvMask
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
12346 unsigned LSB
= countTrailingZeros(~InvMask
);
12347 unsigned Width
= (32 - countLeadingZeros(~InvMask
)) - LSB
;
12349 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
12350 "undefined behavior");
12351 unsigned Mask
= (1u << Width
) - 1;
12352 unsigned Mask2
= N11C
->getZExtValue();
12353 if ((Mask
& (~Mask2
)) == 0)
12354 return DCI
.DAG
.getNode(ARMISD::BFI
, SDLoc(N
), N
->getValueType(0),
12355 N
->getOperand(0), N1
.getOperand(0),
12357 } else if (N
->getOperand(0).getOpcode() == ARMISD::BFI
) {
12358 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12359 // Keep track of any consecutive bits set that all come from the same base
12360 // value. We can combine these together into a single BFI.
12361 SDValue CombineBFI
= FindBFIToCombineWith(N
);
12362 if (CombineBFI
== SDValue())
12365 // We've found a BFI.
12366 APInt ToMask1
, FromMask1
;
12367 SDValue From1
= ParseBFI(N
, ToMask1
, FromMask1
);
12369 APInt ToMask2
, FromMask2
;
12370 SDValue From2
= ParseBFI(CombineBFI
.getNode(), ToMask2
, FromMask2
);
12371 assert(From1
== From2
);
12374 // First, unlink CombineBFI.
12375 DCI
.DAG
.ReplaceAllUsesWith(CombineBFI
, CombineBFI
.getOperand(0));
12376 // Then create a new BFI, combining the two together.
12377 APInt NewFromMask
= FromMask1
| FromMask2
;
12378 APInt NewToMask
= ToMask1
| ToMask2
;
12380 EVT VT
= N
->getValueType(0);
12383 if (NewFromMask
[0] == 0)
12384 From1
= DCI
.DAG
.getNode(
12385 ISD::SRL
, dl
, VT
, From1
,
12386 DCI
.DAG
.getConstant(NewFromMask
.countTrailingZeros(), dl
, VT
));
12387 return DCI
.DAG
.getNode(ARMISD::BFI
, dl
, VT
, N
->getOperand(0), From1
,
12388 DCI
.DAG
.getConstant(~NewToMask
, dl
, VT
));
12393 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12394 /// ARMISD::VMOVRRD.
12395 static SDValue
PerformVMOVRRDCombine(SDNode
*N
,
12396 TargetLowering::DAGCombinerInfo
&DCI
,
12397 const ARMSubtarget
*Subtarget
) {
12398 // vmovrrd(vmovdrr x, y) -> x,y
12399 SDValue InDouble
= N
->getOperand(0);
12400 if (InDouble
.getOpcode() == ARMISD::VMOVDRR
&& Subtarget
->hasFP64())
12401 return DCI
.CombineTo(N
, InDouble
.getOperand(0), InDouble
.getOperand(1));
12403 // vmovrrd(load f64) -> (load i32), (load i32)
12404 SDNode
*InNode
= InDouble
.getNode();
12405 if (ISD::isNormalLoad(InNode
) && InNode
->hasOneUse() &&
12406 InNode
->getValueType(0) == MVT::f64
&&
12407 InNode
->getOperand(1).getOpcode() == ISD::FrameIndex
&&
12408 !cast
<LoadSDNode
>(InNode
)->isVolatile()) {
12409 // TODO: Should this be done for non-FrameIndex operands?
12410 LoadSDNode
*LD
= cast
<LoadSDNode
>(InNode
);
12412 SelectionDAG
&DAG
= DCI
.DAG
;
12414 SDValue BasePtr
= LD
->getBasePtr();
12416 DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), BasePtr
, LD
->getPointerInfo(),
12417 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
12419 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12420 DAG
.getConstant(4, DL
, MVT::i32
));
12422 SDValue NewLD2
= DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), OffsetPtr
,
12423 LD
->getPointerInfo().getWithOffset(4),
12424 std::min(4U, LD
->getAlignment()),
12425 LD
->getMemOperand()->getFlags());
12427 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewLD2
.getValue(1));
12428 if (DCI
.DAG
.getDataLayout().isBigEndian())
12429 std::swap (NewLD1
, NewLD2
);
12430 SDValue Result
= DCI
.CombineTo(N
, NewLD1
, NewLD2
);
12437 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12438 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
12439 static SDValue
PerformVMOVDRRCombine(SDNode
*N
, SelectionDAG
&DAG
) {
12440 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12441 SDValue Op0
= N
->getOperand(0);
12442 SDValue Op1
= N
->getOperand(1);
12443 if (Op0
.getOpcode() == ISD::BITCAST
)
12444 Op0
= Op0
.getOperand(0);
12445 if (Op1
.getOpcode() == ISD::BITCAST
)
12446 Op1
= Op1
.getOperand(0);
12447 if (Op0
.getOpcode() == ARMISD::VMOVRRD
&&
12448 Op0
.getNode() == Op1
.getNode() &&
12449 Op0
.getResNo() == 0 && Op1
.getResNo() == 1)
12450 return DAG
.getNode(ISD::BITCAST
, SDLoc(N
),
12451 N
->getValueType(0), Op0
.getOperand(0));
12455 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12456 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12457 /// i64 vector to have f64 elements, since the value can then be loaded
12458 /// directly into a VFP register.
12459 static bool hasNormalLoadOperand(SDNode
*N
) {
12460 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
12461 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12462 SDNode
*Elt
= N
->getOperand(i
).getNode();
12463 if (ISD::isNormalLoad(Elt
) && !cast
<LoadSDNode
>(Elt
)->isVolatile())
12469 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12470 /// ISD::BUILD_VECTOR.
12471 static SDValue
PerformBUILD_VECTORCombine(SDNode
*N
,
12472 TargetLowering::DAGCombinerInfo
&DCI
,
12473 const ARMSubtarget
*Subtarget
) {
12474 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12475 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12476 // into a pair of GPRs, which is fine when the value is used as a scalar,
12477 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12478 SelectionDAG
&DAG
= DCI
.DAG
;
12479 if (N
->getNumOperands() == 2)
12480 if (SDValue RV
= PerformVMOVDRRCombine(N
, DAG
))
12483 // Load i64 elements as f64 values so that type legalization does not split
12484 // them up into i32 values.
12485 EVT VT
= N
->getValueType(0);
12486 if (VT
.getVectorElementType() != MVT::i64
|| !hasNormalLoadOperand(N
))
12489 SmallVector
<SDValue
, 8> Ops
;
12490 unsigned NumElts
= VT
.getVectorNumElements();
12491 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12492 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(i
));
12494 // Make the DAGCombiner fold the bitcast.
12495 DCI
.AddToWorklist(V
.getNode());
12497 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
, NumElts
);
12498 SDValue BV
= DAG
.getBuildVector(FloatVT
, dl
, Ops
);
12499 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, BV
);
12502 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12504 PerformARMBUILD_VECTORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12505 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12506 // At that time, we may have inserted bitcasts from integer to float.
12507 // If these bitcasts have survived DAGCombine, change the lowering of this
12508 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12509 // force to use floating point types.
12511 // Make sure we can change the type of the vector.
12512 // This is possible iff:
12513 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12514 // 1.1. Vector is used only once.
12515 // 1.2. Use is a bit convert to an integer type.
12516 // 2. The size of its operands are 32-bits (64-bits are not legal).
12517 EVT VT
= N
->getValueType(0);
12518 EVT EltVT
= VT
.getVectorElementType();
12520 // Check 1.1. and 2.
12521 if (EltVT
.getSizeInBits() != 32 || !N
->hasOneUse())
12524 // By construction, the input type must be float.
12525 assert(EltVT
== MVT::f32
&& "Unexpected type!");
12528 SDNode
*Use
= *N
->use_begin();
12529 if (Use
->getOpcode() != ISD::BITCAST
||
12530 Use
->getValueType(0).isFloatingPoint())
12533 // Check profitability.
12534 // Model is, if more than half of the relevant operands are bitcast from
12535 // i32, turn the build_vector into a sequence of insert_vector_elt.
12536 // Relevant operands are everything that is not statically
12537 // (i.e., at compile time) bitcasted.
12538 unsigned NumOfBitCastedElts
= 0;
12539 unsigned NumElts
= VT
.getVectorNumElements();
12540 unsigned NumOfRelevantElts
= NumElts
;
12541 for (unsigned Idx
= 0; Idx
< NumElts
; ++Idx
) {
12542 SDValue Elt
= N
->getOperand(Idx
);
12543 if (Elt
->getOpcode() == ISD::BITCAST
) {
12544 // Assume only bit cast to i32 will go away.
12545 if (Elt
->getOperand(0).getValueType() == MVT::i32
)
12546 ++NumOfBitCastedElts
;
12547 } else if (Elt
.isUndef() || isa
<ConstantSDNode
>(Elt
))
12548 // Constants are statically casted, thus do not count them as
12549 // relevant operands.
12550 --NumOfRelevantElts
;
12553 // Check if more than half of the elements require a non-free bitcast.
12554 if (NumOfBitCastedElts
<= NumOfRelevantElts
/ 2)
12557 SelectionDAG
&DAG
= DCI
.DAG
;
12558 // Create the new vector type.
12559 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElts
);
12560 // Check if the type is legal.
12561 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12562 if (!TLI
.isTypeLegal(VecVT
))
12566 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12567 // => BITCAST INSERT_VECTOR_ELT
12568 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12569 // (BITCAST EN), N.
12570 SDValue Vec
= DAG
.getUNDEF(VecVT
);
12572 for (unsigned Idx
= 0 ; Idx
< NumElts
; ++Idx
) {
12573 SDValue V
= N
->getOperand(Idx
);
12576 if (V
.getOpcode() == ISD::BITCAST
&&
12577 V
->getOperand(0).getValueType() == MVT::i32
)
12578 // Fold obvious case.
12579 V
= V
.getOperand(0);
12581 V
= DAG
.getNode(ISD::BITCAST
, SDLoc(V
), MVT::i32
, V
);
12582 // Make the DAGCombiner fold the bitcasts.
12583 DCI
.AddToWorklist(V
.getNode());
12585 SDValue LaneIdx
= DAG
.getConstant(Idx
, dl
, MVT::i32
);
12586 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecVT
, Vec
, V
, LaneIdx
);
12588 Vec
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vec
);
12589 // Make the DAGCombiner fold the bitcasts.
12590 DCI
.AddToWorklist(Vec
.getNode());
12594 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12595 /// ISD::INSERT_VECTOR_ELT.
12596 static SDValue
PerformInsertEltCombine(SDNode
*N
,
12597 TargetLowering::DAGCombinerInfo
&DCI
) {
12598 // Bitcast an i64 load inserted into a vector to f64.
12599 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12600 EVT VT
= N
->getValueType(0);
12601 SDNode
*Elt
= N
->getOperand(1).getNode();
12602 if (VT
.getVectorElementType() != MVT::i64
||
12603 !ISD::isNormalLoad(Elt
) || cast
<LoadSDNode
>(Elt
)->isVolatile())
12606 SelectionDAG
&DAG
= DCI
.DAG
;
12608 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12609 VT
.getVectorNumElements());
12610 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, N
->getOperand(0));
12611 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(1));
12612 // Make the DAGCombiner fold the bitcasts.
12613 DCI
.AddToWorklist(Vec
.getNode());
12614 DCI
.AddToWorklist(V
.getNode());
12615 SDValue InsElt
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, FloatVT
,
12616 Vec
, V
, N
->getOperand(2));
12617 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, InsElt
);
12620 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
12621 /// ISD::VECTOR_SHUFFLE.
12622 static SDValue
PerformVECTOR_SHUFFLECombine(SDNode
*N
, SelectionDAG
&DAG
) {
12623 // The LLVM shufflevector instruction does not require the shuffle mask
12624 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
12625 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
12626 // operands do not match the mask length, they are extended by concatenating
12627 // them with undef vectors. That is probably the right thing for other
12628 // targets, but for NEON it is better to concatenate two double-register
12629 // size vector operands into a single quad-register size vector. Do that
12630 // transformation here:
12631 // shuffle(concat(v1, undef), concat(v2, undef)) ->
12632 // shuffle(concat(v1, v2), undef)
12633 SDValue Op0
= N
->getOperand(0);
12634 SDValue Op1
= N
->getOperand(1);
12635 if (Op0
.getOpcode() != ISD::CONCAT_VECTORS
||
12636 Op1
.getOpcode() != ISD::CONCAT_VECTORS
||
12637 Op0
.getNumOperands() != 2 ||
12638 Op1
.getNumOperands() != 2)
12640 SDValue Concat0Op1
= Op0
.getOperand(1);
12641 SDValue Concat1Op1
= Op1
.getOperand(1);
12642 if (!Concat0Op1
.isUndef() || !Concat1Op1
.isUndef())
12644 // Skip the transformation if any of the types are illegal.
12645 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12646 EVT VT
= N
->getValueType(0);
12647 if (!TLI
.isTypeLegal(VT
) ||
12648 !TLI
.isTypeLegal(Concat0Op1
.getValueType()) ||
12649 !TLI
.isTypeLegal(Concat1Op1
.getValueType()))
12652 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
12653 Op0
.getOperand(0), Op1
.getOperand(0));
12654 // Translate the shuffle mask.
12655 SmallVector
<int, 16> NewMask
;
12656 unsigned NumElts
= VT
.getVectorNumElements();
12657 unsigned HalfElts
= NumElts
/2;
12658 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
12659 for (unsigned n
= 0; n
< NumElts
; ++n
) {
12660 int MaskElt
= SVN
->getMaskElt(n
);
12662 if (MaskElt
< (int)HalfElts
)
12664 else if (MaskElt
>= (int)NumElts
&& MaskElt
< (int)(NumElts
+ HalfElts
))
12665 NewElt
= HalfElts
+ MaskElt
- NumElts
;
12666 NewMask
.push_back(NewElt
);
12668 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewConcat
,
12669 DAG
.getUNDEF(VT
), NewMask
);
12672 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
12673 /// NEON load/store intrinsics, and generic vector load/stores, to merge
12674 /// base address updates.
12675 /// For generic load/stores, the memory type is assumed to be a vector.
12676 /// The caller is assumed to have checked legality.
12677 static SDValue
CombineBaseUpdate(SDNode
*N
,
12678 TargetLowering::DAGCombinerInfo
&DCI
) {
12679 SelectionDAG
&DAG
= DCI
.DAG
;
12680 const bool isIntrinsic
= (N
->getOpcode() == ISD::INTRINSIC_VOID
||
12681 N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
);
12682 const bool isStore
= N
->getOpcode() == ISD::STORE
;
12683 const unsigned AddrOpIdx
= ((isIntrinsic
|| isStore
) ? 2 : 1);
12684 SDValue Addr
= N
->getOperand(AddrOpIdx
);
12685 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
12688 // Search for a use of the address operand that is an increment.
12689 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
12690 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
12691 SDNode
*User
= *UI
;
12692 if (User
->getOpcode() != ISD::ADD
||
12693 UI
.getUse().getResNo() != Addr
.getResNo())
12696 // Check that the add is independent of the load/store. Otherwise, folding
12697 // it would create a cycle. We can avoid searching through Addr as it's a
12698 // predecessor to both.
12699 SmallPtrSet
<const SDNode
*, 32> Visited
;
12700 SmallVector
<const SDNode
*, 16> Worklist
;
12701 Visited
.insert(Addr
.getNode());
12702 Worklist
.push_back(N
);
12703 Worklist
.push_back(User
);
12704 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
12705 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
12708 // Find the new opcode for the updating load/store.
12709 bool isLoadOp
= true;
12710 bool isLaneOp
= false;
12711 unsigned NewOpc
= 0;
12712 unsigned NumVecs
= 0;
12714 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
12716 default: llvm_unreachable("unexpected intrinsic for Neon base update");
12717 case Intrinsic::arm_neon_vld1
: NewOpc
= ARMISD::VLD1_UPD
;
12718 NumVecs
= 1; break;
12719 case Intrinsic::arm_neon_vld2
: NewOpc
= ARMISD::VLD2_UPD
;
12720 NumVecs
= 2; break;
12721 case Intrinsic::arm_neon_vld3
: NewOpc
= ARMISD::VLD3_UPD
;
12722 NumVecs
= 3; break;
12723 case Intrinsic::arm_neon_vld4
: NewOpc
= ARMISD::VLD4_UPD
;
12724 NumVecs
= 4; break;
12725 case Intrinsic::arm_neon_vld2dup
:
12726 case Intrinsic::arm_neon_vld3dup
:
12727 case Intrinsic::arm_neon_vld4dup
:
12728 // TODO: Support updating VLDxDUP nodes. For now, we just skip
12729 // combining base updates for such intrinsics.
12731 case Intrinsic::arm_neon_vld2lane
: NewOpc
= ARMISD::VLD2LN_UPD
;
12732 NumVecs
= 2; isLaneOp
= true; break;
12733 case Intrinsic::arm_neon_vld3lane
: NewOpc
= ARMISD::VLD3LN_UPD
;
12734 NumVecs
= 3; isLaneOp
= true; break;
12735 case Intrinsic::arm_neon_vld4lane
: NewOpc
= ARMISD::VLD4LN_UPD
;
12736 NumVecs
= 4; isLaneOp
= true; break;
12737 case Intrinsic::arm_neon_vst1
: NewOpc
= ARMISD::VST1_UPD
;
12738 NumVecs
= 1; isLoadOp
= false; break;
12739 case Intrinsic::arm_neon_vst2
: NewOpc
= ARMISD::VST2_UPD
;
12740 NumVecs
= 2; isLoadOp
= false; break;
12741 case Intrinsic::arm_neon_vst3
: NewOpc
= ARMISD::VST3_UPD
;
12742 NumVecs
= 3; isLoadOp
= false; break;
12743 case Intrinsic::arm_neon_vst4
: NewOpc
= ARMISD::VST4_UPD
;
12744 NumVecs
= 4; isLoadOp
= false; break;
12745 case Intrinsic::arm_neon_vst2lane
: NewOpc
= ARMISD::VST2LN_UPD
;
12746 NumVecs
= 2; isLoadOp
= false; isLaneOp
= true; break;
12747 case Intrinsic::arm_neon_vst3lane
: NewOpc
= ARMISD::VST3LN_UPD
;
12748 NumVecs
= 3; isLoadOp
= false; isLaneOp
= true; break;
12749 case Intrinsic::arm_neon_vst4lane
: NewOpc
= ARMISD::VST4LN_UPD
;
12750 NumVecs
= 4; isLoadOp
= false; isLaneOp
= true; break;
12754 switch (N
->getOpcode()) {
12755 default: llvm_unreachable("unexpected opcode for Neon base update");
12756 case ARMISD::VLD1DUP
: NewOpc
= ARMISD::VLD1DUP_UPD
; NumVecs
= 1; break;
12757 case ARMISD::VLD2DUP
: NewOpc
= ARMISD::VLD2DUP_UPD
; NumVecs
= 2; break;
12758 case ARMISD::VLD3DUP
: NewOpc
= ARMISD::VLD3DUP_UPD
; NumVecs
= 3; break;
12759 case ARMISD::VLD4DUP
: NewOpc
= ARMISD::VLD4DUP_UPD
; NumVecs
= 4; break;
12760 case ISD::LOAD
: NewOpc
= ARMISD::VLD1_UPD
;
12761 NumVecs
= 1; isLaneOp
= false; break;
12762 case ISD::STORE
: NewOpc
= ARMISD::VST1_UPD
;
12763 NumVecs
= 1; isLaneOp
= false; isLoadOp
= false; break;
12767 // Find the size of memory referenced by the load/store.
12770 VecTy
= N
->getValueType(0);
12771 } else if (isIntrinsic
) {
12772 VecTy
= N
->getOperand(AddrOpIdx
+1).getValueType();
12774 assert(isStore
&& "Node has to be a load, a store, or an intrinsic!");
12775 VecTy
= N
->getOperand(1).getValueType();
12778 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
12780 NumBytes
/= VecTy
.getVectorNumElements();
12782 // If the increment is a constant, it must match the memory ref size.
12783 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
12784 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
12785 if (NumBytes
>= 3 * 16 && (!CInc
|| CInc
->getZExtValue() != NumBytes
)) {
12786 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12787 // separate instructions that make it harder to use a non-constant update.
12791 // OK, we found an ADD we can fold into the base update.
12792 // Now, create a _UPD node, taking care of not breaking alignment.
12794 EVT AlignedVecTy
= VecTy
;
12795 unsigned Alignment
= MemN
->getAlignment();
12797 // If this is a less-than-standard-aligned load/store, change the type to
12798 // match the standard alignment.
12799 // The alignment is overlooked when selecting _UPD variants; and it's
12800 // easier to introduce bitcasts here than fix that.
12801 // There are 3 ways to get to this base-update combine:
12802 // - intrinsics: they are assumed to be properly aligned (to the standard
12803 // alignment of the memory type), so we don't need to do anything.
12804 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12805 // intrinsics, so, likewise, there's nothing to do.
12806 // - generic load/store instructions: the alignment is specified as an
12807 // explicit operand, rather than implicitly as the standard alignment
12808 // of the memory type (like the intrisics). We need to change the
12809 // memory type to match the explicit alignment. That way, we don't
12810 // generate non-standard-aligned ARMISD::VLDx nodes.
12811 if (isa
<LSBaseSDNode
>(N
)) {
12812 if (Alignment
== 0)
12814 if (Alignment
< VecTy
.getScalarSizeInBits() / 8) {
12815 MVT EltTy
= MVT::getIntegerVT(Alignment
* 8);
12816 assert(NumVecs
== 1 && "Unexpected multi-element generic load/store.");
12817 assert(!isLaneOp
&& "Unexpected generic load/store lane.");
12818 unsigned NumElts
= NumBytes
/ (EltTy
.getSizeInBits() / 8);
12819 AlignedVecTy
= MVT::getVectorVT(EltTy
, NumElts
);
12821 // Don't set an explicit alignment on regular load/stores that we want
12822 // to transform to VLD/VST 1_UPD nodes.
12823 // This matches the behavior of regular load/stores, which only get an
12824 // explicit alignment if the MMO alignment is larger than the standard
12825 // alignment of the memory type.
12826 // Intrinsics, however, always get an explicit alignment, set to the
12827 // alignment of the MMO.
12831 // Create the new updating load/store node.
12832 // First, create an SDVTList for the new updating node's results.
12834 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
12836 for (n
= 0; n
< NumResultVecs
; ++n
)
12837 Tys
[n
] = AlignedVecTy
;
12838 Tys
[n
++] = MVT::i32
;
12839 Tys
[n
] = MVT::Other
;
12840 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+2));
12842 // Then, gather the new node's operands.
12843 SmallVector
<SDValue
, 8> Ops
;
12844 Ops
.push_back(N
->getOperand(0)); // incoming chain
12845 Ops
.push_back(N
->getOperand(AddrOpIdx
));
12846 Ops
.push_back(Inc
);
12848 if (StoreSDNode
*StN
= dyn_cast
<StoreSDNode
>(N
)) {
12849 // Try to match the intrinsic's signature
12850 Ops
.push_back(StN
->getValue());
12852 // Loads (and of course intrinsics) match the intrinsics' signature,
12853 // so just add all but the alignment operand.
12854 for (unsigned i
= AddrOpIdx
+ 1; i
< N
->getNumOperands() - 1; ++i
)
12855 Ops
.push_back(N
->getOperand(i
));
12858 // For all node types, the alignment operand is always the last one.
12859 Ops
.push_back(DAG
.getConstant(Alignment
, dl
, MVT::i32
));
12861 // If this is a non-standard-aligned STORE, the penultimate operand is the
12862 // stored value. Bitcast it to the aligned type.
12863 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::STORE
) {
12864 SDValue
&StVal
= Ops
[Ops
.size()-2];
12865 StVal
= DAG
.getNode(ISD::BITCAST
, dl
, AlignedVecTy
, StVal
);
12868 EVT LoadVT
= isLaneOp
? VecTy
.getVectorElementType() : AlignedVecTy
;
12869 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, LoadVT
,
12870 MemN
->getMemOperand());
12872 // Update the uses.
12873 SmallVector
<SDValue
, 5> NewResults
;
12874 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
12875 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
12877 // If this is an non-standard-aligned LOAD, the first result is the loaded
12878 // value. Bitcast it to the expected result type.
12879 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::LOAD
) {
12880 SDValue
&LdVal
= NewResults
[0];
12881 LdVal
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, LdVal
);
12884 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+1)); // chain
12885 DCI
.CombineTo(N
, NewResults
);
12886 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
12893 static SDValue
PerformVLDCombine(SDNode
*N
,
12894 TargetLowering::DAGCombinerInfo
&DCI
) {
12895 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
12898 return CombineBaseUpdate(N
, DCI
);
12901 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
12902 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
12903 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
12905 static bool CombineVLDDUP(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12906 SelectionDAG
&DAG
= DCI
.DAG
;
12907 EVT VT
= N
->getValueType(0);
12908 // vldN-dup instructions only support 64-bit vectors for N > 1.
12909 if (!VT
.is64BitVector())
12912 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
12913 SDNode
*VLD
= N
->getOperand(0).getNode();
12914 if (VLD
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
12916 unsigned NumVecs
= 0;
12917 unsigned NewOpc
= 0;
12918 unsigned IntNo
= cast
<ConstantSDNode
>(VLD
->getOperand(1))->getZExtValue();
12919 if (IntNo
== Intrinsic::arm_neon_vld2lane
) {
12921 NewOpc
= ARMISD::VLD2DUP
;
12922 } else if (IntNo
== Intrinsic::arm_neon_vld3lane
) {
12924 NewOpc
= ARMISD::VLD3DUP
;
12925 } else if (IntNo
== Intrinsic::arm_neon_vld4lane
) {
12927 NewOpc
= ARMISD::VLD4DUP
;
12932 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
12933 // numbers match the load.
12934 unsigned VLDLaneNo
=
12935 cast
<ConstantSDNode
>(VLD
->getOperand(NumVecs
+3))->getZExtValue();
12936 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12938 // Ignore uses of the chain result.
12939 if (UI
.getUse().getResNo() == NumVecs
)
12941 SDNode
*User
= *UI
;
12942 if (User
->getOpcode() != ARMISD::VDUPLANE
||
12943 VLDLaneNo
!= cast
<ConstantSDNode
>(User
->getOperand(1))->getZExtValue())
12947 // Create the vldN-dup node.
12950 for (n
= 0; n
< NumVecs
; ++n
)
12952 Tys
[n
] = MVT::Other
;
12953 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumVecs
+1));
12954 SDValue Ops
[] = { VLD
->getOperand(0), VLD
->getOperand(2) };
12955 MemIntrinsicSDNode
*VLDMemInt
= cast
<MemIntrinsicSDNode
>(VLD
);
12956 SDValue VLDDup
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(VLD
), SDTys
,
12957 Ops
, VLDMemInt
->getMemoryVT(),
12958 VLDMemInt
->getMemOperand());
12960 // Update the uses.
12961 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12963 unsigned ResNo
= UI
.getUse().getResNo();
12964 // Ignore uses of the chain result.
12965 if (ResNo
== NumVecs
)
12967 SDNode
*User
= *UI
;
12968 DCI
.CombineTo(User
, SDValue(VLDDup
.getNode(), ResNo
));
12971 // Now the vldN-lane intrinsic is dead except for its chain result.
12972 // Update uses of the chain.
12973 std::vector
<SDValue
> VLDDupResults
;
12974 for (unsigned n
= 0; n
< NumVecs
; ++n
)
12975 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), n
));
12976 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), NumVecs
));
12977 DCI
.CombineTo(VLD
, VLDDupResults
);
12982 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
12983 /// ARMISD::VDUPLANE.
12984 static SDValue
PerformVDUPLANECombine(SDNode
*N
,
12985 TargetLowering::DAGCombinerInfo
&DCI
) {
12986 SDValue Op
= N
->getOperand(0);
12988 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
12989 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
12990 if (CombineVLDDUP(N
, DCI
))
12991 return SDValue(N
, 0);
12993 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
12994 // redundant. Ignore bit_converts for now; element sizes are checked below.
12995 while (Op
.getOpcode() == ISD::BITCAST
)
12996 Op
= Op
.getOperand(0);
12997 if (Op
.getOpcode() != ARMISD::VMOVIMM
&& Op
.getOpcode() != ARMISD::VMVNIMM
)
13000 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
13001 unsigned EltSize
= Op
.getScalarValueSizeInBits();
13002 // The canonical VMOV for a zero vector uses a 32-bit element size.
13003 unsigned Imm
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
13005 if (ARM_AM::decodeVMOVModImm(Imm
, EltBits
) == 0)
13007 EVT VT
= N
->getValueType(0);
13008 if (EltSize
> VT
.getScalarSizeInBits())
13011 return DCI
.DAG
.getNode(ISD::BITCAST
, SDLoc(N
), VT
, Op
);
13014 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
13015 static SDValue
PerformVDUPCombine(SDNode
*N
,
13016 TargetLowering::DAGCombinerInfo
&DCI
,
13017 const ARMSubtarget
*Subtarget
) {
13018 SelectionDAG
&DAG
= DCI
.DAG
;
13019 SDValue Op
= N
->getOperand(0);
13021 if (!Subtarget
->hasNEON())
13024 // Match VDUP(LOAD) -> VLD1DUP.
13025 // We match this pattern here rather than waiting for isel because the
13026 // transform is only legal for unindexed loads.
13027 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode());
13028 if (LD
&& Op
.hasOneUse() && LD
->isUnindexed() &&
13029 LD
->getMemoryVT() == N
->getValueType(0).getVectorElementType()) {
13030 SDValue Ops
[] = { LD
->getOperand(0), LD
->getOperand(1),
13031 DAG
.getConstant(LD
->getAlignment(), SDLoc(N
), MVT::i32
) };
13032 SDVTList SDTys
= DAG
.getVTList(N
->getValueType(0), MVT::Other
);
13033 SDValue VLDDup
= DAG
.getMemIntrinsicNode(ARMISD::VLD1DUP
, SDLoc(N
), SDTys
,
13034 Ops
, LD
->getMemoryVT(),
13035 LD
->getMemOperand());
13036 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), VLDDup
.getValue(1));
13043 static SDValue
PerformLOADCombine(SDNode
*N
,
13044 TargetLowering::DAGCombinerInfo
&DCI
) {
13045 EVT VT
= N
->getValueType(0);
13047 // If this is a legal vector load, try to combine it into a VLD1_UPD.
13048 if (ISD::isNormalLoad(N
) && VT
.isVector() &&
13049 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13050 return CombineBaseUpdate(N
, DCI
);
13055 /// PerformSTORECombine - Target-specific dag combine xforms for
13057 static SDValue
PerformSTORECombine(SDNode
*N
,
13058 TargetLowering::DAGCombinerInfo
&DCI
) {
13059 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
13060 if (St
->isVolatile())
13063 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
13064 // pack all of the elements in one place. Next, store to memory in fewer
13066 SDValue StVal
= St
->getValue();
13067 EVT VT
= StVal
.getValueType();
13068 if (St
->isTruncatingStore() && VT
.isVector()) {
13069 SelectionDAG
&DAG
= DCI
.DAG
;
13070 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13071 EVT StVT
= St
->getMemoryVT();
13072 unsigned NumElems
= VT
.getVectorNumElements();
13073 assert(StVT
!= VT
&& "Cannot truncate to the same type");
13074 unsigned FromEltSz
= VT
.getScalarSizeInBits();
13075 unsigned ToEltSz
= StVT
.getScalarSizeInBits();
13077 // From, To sizes and ElemCount must be pow of two
13078 if (!isPowerOf2_32(NumElems
* FromEltSz
* ToEltSz
)) return SDValue();
13080 // We are going to use the original vector elt for storing.
13081 // Accumulated smaller vector elements must be a multiple of the store size.
13082 if (0 != (NumElems
* FromEltSz
) % ToEltSz
) return SDValue();
13084 unsigned SizeRatio
= FromEltSz
/ ToEltSz
;
13085 assert(SizeRatio
* NumElems
* ToEltSz
== VT
.getSizeInBits());
13087 // Create a type on which we perform the shuffle.
13088 EVT WideVecVT
= EVT::getVectorVT(*DAG
.getContext(), StVT
.getScalarType(),
13089 NumElems
*SizeRatio
);
13090 assert(WideVecVT
.getSizeInBits() == VT
.getSizeInBits());
13093 SDValue WideVec
= DAG
.getNode(ISD::BITCAST
, DL
, WideVecVT
, StVal
);
13094 SmallVector
<int, 8> ShuffleVec(NumElems
* SizeRatio
, -1);
13095 for (unsigned i
= 0; i
< NumElems
; ++i
)
13096 ShuffleVec
[i
] = DAG
.getDataLayout().isBigEndian()
13097 ? (i
+ 1) * SizeRatio
- 1
13100 // Can't shuffle using an illegal type.
13101 if (!TLI
.isTypeLegal(WideVecVT
)) return SDValue();
13103 SDValue Shuff
= DAG
.getVectorShuffle(WideVecVT
, DL
, WideVec
,
13104 DAG
.getUNDEF(WideVec
.getValueType()),
13106 // At this point all of the data is stored at the bottom of the
13107 // register. We now need to save it to mem.
13109 // Find the largest store unit
13110 MVT StoreType
= MVT::i8
;
13111 for (MVT Tp
: MVT::integer_valuetypes()) {
13112 if (TLI
.isTypeLegal(Tp
) && Tp
.getSizeInBits() <= NumElems
* ToEltSz
)
13115 // Didn't find a legal store type.
13116 if (!TLI
.isTypeLegal(StoreType
))
13119 // Bitcast the original vector into a vector of store-size units
13120 EVT StoreVecVT
= EVT::getVectorVT(*DAG
.getContext(),
13121 StoreType
, VT
.getSizeInBits()/EVT(StoreType
).getSizeInBits());
13122 assert(StoreVecVT
.getSizeInBits() == VT
.getSizeInBits());
13123 SDValue ShuffWide
= DAG
.getNode(ISD::BITCAST
, DL
, StoreVecVT
, Shuff
);
13124 SmallVector
<SDValue
, 8> Chains
;
13125 SDValue Increment
= DAG
.getConstant(StoreType
.getSizeInBits() / 8, DL
,
13126 TLI
.getPointerTy(DAG
.getDataLayout()));
13127 SDValue BasePtr
= St
->getBasePtr();
13129 // Perform one or more big stores into memory.
13130 unsigned E
= (ToEltSz
*NumElems
)/StoreType
.getSizeInBits();
13131 for (unsigned I
= 0; I
< E
; I
++) {
13132 SDValue SubVec
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
13133 StoreType
, ShuffWide
,
13134 DAG
.getIntPtrConstant(I
, DL
));
13135 SDValue Ch
= DAG
.getStore(St
->getChain(), DL
, SubVec
, BasePtr
,
13136 St
->getPointerInfo(), St
->getAlignment(),
13137 St
->getMemOperand()->getFlags());
13138 BasePtr
= DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
,
13140 Chains
.push_back(Ch
);
13142 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
13145 if (!ISD::isNormalStore(St
))
13148 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
13149 // ARM stores of arguments in the same cache line.
13150 if (StVal
.getNode()->getOpcode() == ARMISD::VMOVDRR
&&
13151 StVal
.getNode()->hasOneUse()) {
13152 SelectionDAG
&DAG
= DCI
.DAG
;
13153 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
13155 SDValue BasePtr
= St
->getBasePtr();
13156 SDValue NewST1
= DAG
.getStore(
13157 St
->getChain(), DL
, StVal
.getNode()->getOperand(isBigEndian
? 1 : 0),
13158 BasePtr
, St
->getPointerInfo(), St
->getAlignment(),
13159 St
->getMemOperand()->getFlags());
13161 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
13162 DAG
.getConstant(4, DL
, MVT::i32
));
13163 return DAG
.getStore(NewST1
.getValue(0), DL
,
13164 StVal
.getNode()->getOperand(isBigEndian
? 0 : 1),
13165 OffsetPtr
, St
->getPointerInfo(),
13166 std::min(4U, St
->getAlignment() / 2),
13167 St
->getMemOperand()->getFlags());
13170 if (StVal
.getValueType() == MVT::i64
&&
13171 StVal
.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13173 // Bitcast an i64 store extracted from a vector to f64.
13174 // Otherwise, the i64 value will be legalized to a pair of i32 values.
13175 SelectionDAG
&DAG
= DCI
.DAG
;
13177 SDValue IntVec
= StVal
.getOperand(0);
13178 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
13179 IntVec
.getValueType().getVectorNumElements());
13180 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, IntVec
);
13181 SDValue ExtElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
13182 Vec
, StVal
.getOperand(1));
13184 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, ExtElt
);
13185 // Make the DAGCombiner fold the bitcasts.
13186 DCI
.AddToWorklist(Vec
.getNode());
13187 DCI
.AddToWorklist(ExtElt
.getNode());
13188 DCI
.AddToWorklist(V
.getNode());
13189 return DAG
.getStore(St
->getChain(), dl
, V
, St
->getBasePtr(),
13190 St
->getPointerInfo(), St
->getAlignment(),
13191 St
->getMemOperand()->getFlags(), St
->getAAInfo());
13194 // If this is a legal vector store, try to combine it into a VST1_UPD.
13195 if (ISD::isNormalStore(N
) && VT
.isVector() &&
13196 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13197 return CombineBaseUpdate(N
, DCI
);
13202 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
13203 /// can replace combinations of VMUL and VCVT (floating-point to integer)
13204 /// when the VMUL has a constant operand that is a power of 2.
13206 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13207 /// vmul.f32 d16, d17, d16
13208 /// vcvt.s32.f32 d16, d16
13210 /// vcvt.s32.f32 d16, d16, #3
13211 static SDValue
PerformVCVTCombine(SDNode
*N
, SelectionDAG
&DAG
,
13212 const ARMSubtarget
*Subtarget
) {
13213 if (!Subtarget
->hasNEON())
13216 SDValue Op
= N
->getOperand(0);
13217 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
13218 Op
.getOpcode() != ISD::FMUL
)
13221 SDValue ConstVec
= Op
->getOperand(1);
13222 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13225 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
13226 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13227 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
13228 uint32_t IntBits
= IntTy
.getSizeInBits();
13229 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13230 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13231 // These instructions only exist converting from f32 to i32. We can handle
13232 // smaller integers by generating an extra truncate, but larger ones would
13233 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13234 // these intructions only support v2i32/v4i32 types.
13238 BitVector UndefElements
;
13239 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13240 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13241 if (C
== -1 || C
== 0 || C
> 32)
13245 bool isSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
13246 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfp2fxs
:
13247 Intrinsic::arm_neon_vcvtfp2fxu
;
13248 SDValue FixConv
= DAG
.getNode(
13249 ISD::INTRINSIC_WO_CHAIN
, dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13250 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
), Op
->getOperand(0),
13251 DAG
.getConstant(C
, dl
, MVT::i32
));
13253 if (IntBits
< FloatBits
)
13254 FixConv
= DAG
.getNode(ISD::TRUNCATE
, dl
, N
->getValueType(0), FixConv
);
13259 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13260 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13261 /// when the VDIV has a constant operand that is a power of 2.
13263 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13264 /// vcvt.f32.s32 d16, d16
13265 /// vdiv.f32 d16, d17, d16
13267 /// vcvt.f32.s32 d16, d16, #3
13268 static SDValue
PerformVDIVCombine(SDNode
*N
, SelectionDAG
&DAG
,
13269 const ARMSubtarget
*Subtarget
) {
13270 if (!Subtarget
->hasNEON())
13273 SDValue Op
= N
->getOperand(0);
13274 unsigned OpOpcode
= Op
.getNode()->getOpcode();
13275 if (!N
->getValueType(0).isVector() || !N
->getValueType(0).isSimple() ||
13276 (OpOpcode
!= ISD::SINT_TO_FP
&& OpOpcode
!= ISD::UINT_TO_FP
))
13279 SDValue ConstVec
= N
->getOperand(1);
13280 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13283 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
13284 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13285 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
13286 uint32_t IntBits
= IntTy
.getSizeInBits();
13287 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13288 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13289 // These instructions only exist converting from i32 to f32. We can handle
13290 // smaller integers by generating an extra extend, but larger ones would
13291 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13292 // these intructions only support v2i32/v4i32 types.
13296 BitVector UndefElements
;
13297 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13298 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13299 if (C
== -1 || C
== 0 || C
> 32)
13303 bool isSigned
= OpOpcode
== ISD::SINT_TO_FP
;
13304 SDValue ConvInput
= Op
.getOperand(0);
13305 if (IntBits
< FloatBits
)
13306 ConvInput
= DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
13307 dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13310 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfxs2fp
:
13311 Intrinsic::arm_neon_vcvtfxu2fp
;
13312 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
,
13314 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
),
13315 ConvInput
, DAG
.getConstant(C
, dl
, MVT::i32
));
13318 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13319 static SDValue
PerformIntrinsicCombine(SDNode
*N
, SelectionDAG
&DAG
) {
13320 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
13323 // Don't do anything for most intrinsics.
13326 // Vector shifts: check for immediate versions and lower them.
13327 // Note: This is done during DAG combining instead of DAG legalizing because
13328 // the build_vectors for 64-bit vector element shift counts are generally
13329 // not legal, and it is hard to see their values after they get legalized to
13330 // loads from a constant pool.
13331 case Intrinsic::arm_neon_vshifts
:
13332 case Intrinsic::arm_neon_vshiftu
:
13333 case Intrinsic::arm_neon_vrshifts
:
13334 case Intrinsic::arm_neon_vrshiftu
:
13335 case Intrinsic::arm_neon_vrshiftn
:
13336 case Intrinsic::arm_neon_vqshifts
:
13337 case Intrinsic::arm_neon_vqshiftu
:
13338 case Intrinsic::arm_neon_vqshiftsu
:
13339 case Intrinsic::arm_neon_vqshiftns
:
13340 case Intrinsic::arm_neon_vqshiftnu
:
13341 case Intrinsic::arm_neon_vqshiftnsu
:
13342 case Intrinsic::arm_neon_vqrshiftns
:
13343 case Intrinsic::arm_neon_vqrshiftnu
:
13344 case Intrinsic::arm_neon_vqrshiftnsu
: {
13345 EVT VT
= N
->getOperand(1).getValueType();
13347 unsigned VShiftOpc
= 0;
13350 case Intrinsic::arm_neon_vshifts
:
13351 case Intrinsic::arm_neon_vshiftu
:
13352 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
)) {
13353 VShiftOpc
= ARMISD::VSHLIMM
;
13356 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
)) {
13357 VShiftOpc
= (IntNo
== Intrinsic::arm_neon_vshifts
? ARMISD::VSHRsIMM
13358 : ARMISD::VSHRuIMM
);
13363 case Intrinsic::arm_neon_vrshifts
:
13364 case Intrinsic::arm_neon_vrshiftu
:
13365 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
))
13369 case Intrinsic::arm_neon_vqshifts
:
13370 case Intrinsic::arm_neon_vqshiftu
:
13371 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13375 case Intrinsic::arm_neon_vqshiftsu
:
13376 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13378 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13380 case Intrinsic::arm_neon_vrshiftn
:
13381 case Intrinsic::arm_neon_vqshiftns
:
13382 case Intrinsic::arm_neon_vqshiftnu
:
13383 case Intrinsic::arm_neon_vqshiftnsu
:
13384 case Intrinsic::arm_neon_vqrshiftns
:
13385 case Intrinsic::arm_neon_vqrshiftnu
:
13386 case Intrinsic::arm_neon_vqrshiftnsu
:
13387 // Narrowing shifts require an immediate right shift.
13388 if (isVShiftRImm(N
->getOperand(2), VT
, true, true, Cnt
))
13390 llvm_unreachable("invalid shift count for narrowing vector shift "
13394 llvm_unreachable("unhandled vector shift");
13398 case Intrinsic::arm_neon_vshifts
:
13399 case Intrinsic::arm_neon_vshiftu
:
13400 // Opcode already set above.
13402 case Intrinsic::arm_neon_vrshifts
:
13403 VShiftOpc
= ARMISD::VRSHRsIMM
;
13405 case Intrinsic::arm_neon_vrshiftu
:
13406 VShiftOpc
= ARMISD::VRSHRuIMM
;
13408 case Intrinsic::arm_neon_vrshiftn
:
13409 VShiftOpc
= ARMISD::VRSHRNIMM
;
13411 case Intrinsic::arm_neon_vqshifts
:
13412 VShiftOpc
= ARMISD::VQSHLsIMM
;
13414 case Intrinsic::arm_neon_vqshiftu
:
13415 VShiftOpc
= ARMISD::VQSHLuIMM
;
13417 case Intrinsic::arm_neon_vqshiftsu
:
13418 VShiftOpc
= ARMISD::VQSHLsuIMM
;
13420 case Intrinsic::arm_neon_vqshiftns
:
13421 VShiftOpc
= ARMISD::VQSHRNsIMM
;
13423 case Intrinsic::arm_neon_vqshiftnu
:
13424 VShiftOpc
= ARMISD::VQSHRNuIMM
;
13426 case Intrinsic::arm_neon_vqshiftnsu
:
13427 VShiftOpc
= ARMISD::VQSHRNsuIMM
;
13429 case Intrinsic::arm_neon_vqrshiftns
:
13430 VShiftOpc
= ARMISD::VQRSHRNsIMM
;
13432 case Intrinsic::arm_neon_vqrshiftnu
:
13433 VShiftOpc
= ARMISD::VQRSHRNuIMM
;
13435 case Intrinsic::arm_neon_vqrshiftnsu
:
13436 VShiftOpc
= ARMISD::VQRSHRNsuIMM
;
13441 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13442 N
->getOperand(1), DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13445 case Intrinsic::arm_neon_vshiftins
: {
13446 EVT VT
= N
->getOperand(1).getValueType();
13448 unsigned VShiftOpc
= 0;
13450 if (isVShiftLImm(N
->getOperand(3), VT
, false, Cnt
))
13451 VShiftOpc
= ARMISD::VSLIIMM
;
13452 else if (isVShiftRImm(N
->getOperand(3), VT
, false, true, Cnt
))
13453 VShiftOpc
= ARMISD::VSRIIMM
;
13455 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13459 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13460 N
->getOperand(1), N
->getOperand(2),
13461 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13464 case Intrinsic::arm_neon_vqrshifts
:
13465 case Intrinsic::arm_neon_vqrshiftu
:
13466 // No immediate versions of these to check for.
13473 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13474 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13475 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13476 /// vector element shift counts are generally not legal, and it is hard to see
13477 /// their values after they get legalized to loads from a constant pool.
13478 static SDValue
PerformShiftCombine(SDNode
*N
,
13479 TargetLowering::DAGCombinerInfo
&DCI
,
13480 const ARMSubtarget
*ST
) {
13481 SelectionDAG
&DAG
= DCI
.DAG
;
13482 EVT VT
= N
->getValueType(0);
13483 if (N
->getOpcode() == ISD::SRL
&& VT
== MVT::i32
&& ST
->hasV6Ops()) {
13484 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13485 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13486 SDValue N1
= N
->getOperand(1);
13487 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
13488 SDValue N0
= N
->getOperand(0);
13489 if (C
->getZExtValue() == 16 && N0
.getOpcode() == ISD::BSWAP
&&
13490 DAG
.MaskedValueIsZero(N0
.getOperand(0),
13491 APInt::getHighBitsSet(32, 16)))
13492 return DAG
.getNode(ISD::ROTR
, SDLoc(N
), VT
, N0
, N1
);
13496 if (ST
->isThumb1Only() && N
->getOpcode() == ISD::SHL
&& VT
== MVT::i32
&&
13497 N
->getOperand(0)->getOpcode() == ISD::AND
&&
13498 N
->getOperand(0)->hasOneUse()) {
13499 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
13501 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13502 // usually show up because instcombine prefers to canonicalize it to
13503 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13504 // out of GEP lowering in some cases.
13505 SDValue N0
= N
->getOperand(0);
13506 ConstantSDNode
*ShiftAmtNode
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13509 uint32_t ShiftAmt
= static_cast<uint32_t>(ShiftAmtNode
->getZExtValue());
13510 ConstantSDNode
*AndMaskNode
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
13513 uint32_t AndMask
= static_cast<uint32_t>(AndMaskNode
->getZExtValue());
13514 // Don't transform uxtb/uxth.
13515 if (AndMask
== 255 || AndMask
== 65535)
13517 if (isMask_32(AndMask
)) {
13518 uint32_t MaskedBits
= countLeadingZeros(AndMask
);
13519 if (MaskedBits
> ShiftAmt
) {
13521 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
13522 DAG
.getConstant(MaskedBits
, DL
, MVT::i32
));
13523 return DAG
.getNode(
13524 ISD::SRL
, DL
, MVT::i32
, SHL
,
13525 DAG
.getConstant(MaskedBits
- ShiftAmt
, DL
, MVT::i32
));
13530 // Nothing to be done for scalar shifts.
13531 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13532 if (!VT
.isVector() || !TLI
.isTypeLegal(VT
))
13534 if (ST
->hasMVEIntegerOps() && VT
== MVT::v2i64
)
13539 switch (N
->getOpcode()) {
13540 default: llvm_unreachable("unexpected shift opcode");
13543 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
)) {
13545 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
13546 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13552 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
13553 unsigned VShiftOpc
=
13554 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
13556 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
13557 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13563 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
13564 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
13565 static SDValue
PerformExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
13566 const ARMSubtarget
*ST
) {
13567 SDValue N0
= N
->getOperand(0);
13569 // Check for sign- and zero-extensions of vector extract operations of 8-
13570 // and 16-bit vector elements. NEON supports these directly. They are
13571 // handled during DAG combining because type legalization will promote them
13572 // to 32-bit types and it is messy to recognize the operations after that.
13573 if (ST
->hasNEON() && N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13574 SDValue Vec
= N0
.getOperand(0);
13575 SDValue Lane
= N0
.getOperand(1);
13576 EVT VT
= N
->getValueType(0);
13577 EVT EltVT
= N0
.getValueType();
13578 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13580 if (VT
== MVT::i32
&&
13581 (EltVT
== MVT::i8
|| EltVT
== MVT::i16
) &&
13582 TLI
.isTypeLegal(Vec
.getValueType()) &&
13583 isa
<ConstantSDNode
>(Lane
)) {
13586 switch (N
->getOpcode()) {
13587 default: llvm_unreachable("unexpected opcode");
13588 case ISD::SIGN_EXTEND
:
13589 Opc
= ARMISD::VGETLANEs
;
13591 case ISD::ZERO_EXTEND
:
13592 case ISD::ANY_EXTEND
:
13593 Opc
= ARMISD::VGETLANEu
;
13596 return DAG
.getNode(Opc
, SDLoc(N
), VT
, Vec
, Lane
);
13603 static const APInt
*isPowerOf2Constant(SDValue V
) {
13604 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(V
);
13607 const APInt
*CV
= &C
->getAPIntValue();
13608 return CV
->isPowerOf2() ? CV
: nullptr;
13611 SDValue
ARMTargetLowering::PerformCMOVToBFICombine(SDNode
*CMOV
, SelectionDAG
&DAG
) const {
13612 // If we have a CMOV, OR and AND combination such as:
13617 // * CN is a single bit;
13618 // * All bits covered by CM are known zero in y
13620 // Then we can convert this into a sequence of BFI instructions. This will
13621 // always be a win if CM is a single bit, will always be no worse than the
13622 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
13623 // three bits (due to the extra IT instruction).
13625 SDValue Op0
= CMOV
->getOperand(0);
13626 SDValue Op1
= CMOV
->getOperand(1);
13627 auto CCNode
= cast
<ConstantSDNode
>(CMOV
->getOperand(2));
13628 auto CC
= CCNode
->getAPIntValue().getLimitedValue();
13629 SDValue CmpZ
= CMOV
->getOperand(4);
13631 // The compare must be against zero.
13632 if (!isNullConstant(CmpZ
->getOperand(1)))
13635 assert(CmpZ
->getOpcode() == ARMISD::CMPZ
);
13636 SDValue And
= CmpZ
->getOperand(0);
13637 if (And
->getOpcode() != ISD::AND
)
13639 const APInt
*AndC
= isPowerOf2Constant(And
->getOperand(1));
13642 SDValue X
= And
->getOperand(0);
13644 if (CC
== ARMCC::EQ
) {
13645 // We're performing an "equal to zero" compare. Swap the operands so we
13646 // canonicalize on a "not equal to zero" compare.
13647 std::swap(Op0
, Op1
);
13649 assert(CC
== ARMCC::NE
&& "How can a CMPZ node not be EQ or NE?");
13652 if (Op1
->getOpcode() != ISD::OR
)
13655 ConstantSDNode
*OrC
= dyn_cast
<ConstantSDNode
>(Op1
->getOperand(1));
13658 SDValue Y
= Op1
->getOperand(0);
13663 // Now, is it profitable to continue?
13664 APInt OrCI
= OrC
->getAPIntValue();
13665 unsigned Heuristic
= Subtarget
->isThumb() ? 3 : 2;
13666 if (OrCI
.countPopulation() > Heuristic
)
13669 // Lastly, can we determine that the bits defined by OrCI
13671 KnownBits Known
= DAG
.computeKnownBits(Y
);
13672 if ((OrCI
& Known
.Zero
) != OrCI
)
13675 // OK, we can do the combine.
13678 EVT VT
= X
.getValueType();
13679 unsigned BitInX
= AndC
->logBase2();
13682 // We must shift X first.
13683 X
= DAG
.getNode(ISD::SRL
, dl
, VT
, X
,
13684 DAG
.getConstant(BitInX
, dl
, VT
));
13687 for (unsigned BitInY
= 0, NumActiveBits
= OrCI
.getActiveBits();
13688 BitInY
< NumActiveBits
; ++BitInY
) {
13689 if (OrCI
[BitInY
] == 0)
13691 APInt
Mask(VT
.getSizeInBits(), 0);
13692 Mask
.setBit(BitInY
);
13693 V
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, V
, X
,
13694 // Confusingly, the operand is an *inverted* mask.
13695 DAG
.getConstant(~Mask
, dl
, VT
));
13701 // Given N, the value controlling the conditional branch, search for the loop
13702 // intrinsic, returning it, along with how the value is used. We need to handle
13703 // patterns such as the following:
13704 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
13705 // (brcond (setcc (loop.decrement), 0, eq), exit)
13706 // (brcond (setcc (loop.decrement), 0, ne), header)
13707 static SDValue
SearchLoopIntrinsic(SDValue N
, ISD::CondCode
&CC
, int &Imm
,
13709 switch (N
->getOpcode()) {
13713 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
13715 if (!cast
<ConstantSDNode
>(N
.getOperand(1))->isOne())
13718 return SearchLoopIntrinsic(N
.getOperand(0), CC
, Imm
, Negate
);
13721 auto *Const
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
13724 if (Const
->isNullValue())
13726 else if (Const
->isOne())
13730 CC
= cast
<CondCodeSDNode
>(N
.getOperand(2))->get();
13731 return SearchLoopIntrinsic(N
->getOperand(0), CC
, Imm
, Negate
);
13733 case ISD::INTRINSIC_W_CHAIN
: {
13734 unsigned IntOp
= cast
<ConstantSDNode
>(N
.getOperand(1))->getZExtValue();
13735 if (IntOp
!= Intrinsic::test_set_loop_iterations
&&
13736 IntOp
!= Intrinsic::loop_decrement_reg
)
13744 static SDValue
PerformHWLoopCombine(SDNode
*N
,
13745 TargetLowering::DAGCombinerInfo
&DCI
,
13746 const ARMSubtarget
*ST
) {
13748 // The hwloop intrinsics that we're interested are used for control-flow,
13749 // either for entering or exiting the loop:
13750 // - test.set.loop.iterations will test whether its operand is zero. If it
13751 // is zero, the proceeding branch should not enter the loop.
13752 // - loop.decrement.reg also tests whether its operand is zero. If it is
13753 // zero, the proceeding branch should not branch back to the beginning of
13755 // So here, we need to check that how the brcond is using the result of each
13756 // of the intrinsics to ensure that we're branching to the right place at the
13762 bool Negate
= false;
13763 SDValue Chain
= N
->getOperand(0);
13766 if (N
->getOpcode() == ISD::BRCOND
) {
13768 Cond
= N
->getOperand(1);
13769 Dest
= N
->getOperand(2);
13771 assert(N
->getOpcode() == ISD::BR_CC
&& "Expected BRCOND or BR_CC!");
13772 CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
13773 Cond
= N
->getOperand(2);
13774 Dest
= N
->getOperand(4);
13775 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(3))) {
13776 if (!Const
->isOne() && !Const
->isNullValue())
13778 Imm
= Const
->getZExtValue();
13783 SDValue Int
= SearchLoopIntrinsic(Cond
, CC
, Imm
, Negate
);
13788 CC
= ISD::getSetCCInverse(CC
, true);
13790 auto IsTrueIfZero
= [](ISD::CondCode CC
, int Imm
) {
13791 return (CC
== ISD::SETEQ
&& Imm
== 0) ||
13792 (CC
== ISD::SETNE
&& Imm
== 1) ||
13793 (CC
== ISD::SETLT
&& Imm
== 1) ||
13794 (CC
== ISD::SETULT
&& Imm
== 1);
13797 auto IsFalseIfZero
= [](ISD::CondCode CC
, int Imm
) {
13798 return (CC
== ISD::SETEQ
&& Imm
== 1) ||
13799 (CC
== ISD::SETNE
&& Imm
== 0) ||
13800 (CC
== ISD::SETGT
&& Imm
== 0) ||
13801 (CC
== ISD::SETUGT
&& Imm
== 0) ||
13802 (CC
== ISD::SETGE
&& Imm
== 1) ||
13803 (CC
== ISD::SETUGE
&& Imm
== 1);
13806 assert((IsTrueIfZero(CC
, Imm
) || IsFalseIfZero(CC
, Imm
)) &&
13807 "unsupported condition");
13810 SelectionDAG
&DAG
= DCI
.DAG
;
13811 SDValue Elements
= Int
.getOperand(2);
13812 unsigned IntOp
= cast
<ConstantSDNode
>(Int
->getOperand(1))->getZExtValue();
13813 assert((N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BR
)
13814 && "expected single br user");
13815 SDNode
*Br
= *N
->use_begin();
13816 SDValue OtherTarget
= Br
->getOperand(1);
13818 // Update the unconditional branch to branch to the given Dest.
13819 auto UpdateUncondBr
= [](SDNode
*Br
, SDValue Dest
, SelectionDAG
&DAG
) {
13820 SDValue NewBrOps
[] = { Br
->getOperand(0), Dest
};
13821 SDValue NewBr
= DAG
.getNode(ISD::BR
, SDLoc(Br
), MVT::Other
, NewBrOps
);
13822 DAG
.ReplaceAllUsesOfValueWith(SDValue(Br
, 0), NewBr
);
13825 if (IntOp
== Intrinsic::test_set_loop_iterations
) {
13827 // We expect this 'instruction' to branch when the counter is zero.
13828 if (IsTrueIfZero(CC
, Imm
)) {
13829 SDValue Ops
[] = { Chain
, Elements
, Dest
};
13830 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13832 // The logic is the reverse of what we need for WLS, so find the other
13833 // basic block target: the target of the proceeding br.
13834 UpdateUncondBr(Br
, Dest
, DAG
);
13836 SDValue Ops
[] = { Chain
, Elements
, OtherTarget
};
13837 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13839 DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(1), Int
.getOperand(0));
13842 SDValue Size
= DAG
.getTargetConstant(
13843 cast
<ConstantSDNode
>(Int
.getOperand(3))->getZExtValue(), dl
, MVT::i32
);
13844 SDValue Args
[] = { Int
.getOperand(0), Elements
, Size
, };
13845 SDValue LoopDec
= DAG
.getNode(ARMISD::LOOP_DEC
, dl
,
13846 DAG
.getVTList(MVT::i32
, MVT::Other
), Args
);
13847 DAG
.ReplaceAllUsesWith(Int
.getNode(), LoopDec
.getNode());
13849 // We expect this instruction to branch when the count is not zero.
13850 SDValue Target
= IsFalseIfZero(CC
, Imm
) ? Dest
: OtherTarget
;
13852 // Update the unconditional branch to target the loop preheader if we've
13853 // found the condition has been reversed.
13854 if (Target
== OtherTarget
)
13855 UpdateUncondBr(Br
, Dest
, DAG
);
13857 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
13858 SDValue(LoopDec
.getNode(), 1), Chain
);
13860 SDValue EndArgs
[] = { Chain
, SDValue(LoopDec
.getNode(), 0), Target
};
13861 return DAG
.getNode(ARMISD::LE
, dl
, MVT::Other
, EndArgs
);
13866 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
13868 ARMTargetLowering::PerformBRCONDCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13869 SDValue Cmp
= N
->getOperand(4);
13870 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13871 // Only looking at NE cases.
13874 EVT VT
= N
->getValueType(0);
13876 SDValue LHS
= Cmp
.getOperand(0);
13877 SDValue RHS
= Cmp
.getOperand(1);
13878 SDValue Chain
= N
->getOperand(0);
13879 SDValue BB
= N
->getOperand(1);
13880 SDValue ARMcc
= N
->getOperand(2);
13881 ARMCC::CondCodes CC
=
13882 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13884 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
13885 // -> (brcond Chain BB CC CPSR Cmp)
13886 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ISD::AND
&& LHS
->hasOneUse() &&
13887 LHS
->getOperand(0)->getOpcode() == ARMISD::CMOV
&&
13888 LHS
->getOperand(0)->hasOneUse()) {
13889 auto *LHS00C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(0));
13890 auto *LHS01C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(1));
13891 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13892 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13893 if ((LHS00C
&& LHS00C
->getZExtValue() == 0) &&
13894 (LHS01C
&& LHS01C
->getZExtValue() == 1) &&
13895 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13896 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13897 return DAG
.getNode(
13898 ARMISD::BRCOND
, dl
, VT
, Chain
, BB
, LHS
->getOperand(0)->getOperand(2),
13899 LHS
->getOperand(0)->getOperand(3), LHS
->getOperand(0)->getOperand(4));
13906 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
13908 ARMTargetLowering::PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13909 SDValue Cmp
= N
->getOperand(4);
13910 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13911 // Only looking at EQ and NE cases.
13914 EVT VT
= N
->getValueType(0);
13916 SDValue LHS
= Cmp
.getOperand(0);
13917 SDValue RHS
= Cmp
.getOperand(1);
13918 SDValue FalseVal
= N
->getOperand(0);
13919 SDValue TrueVal
= N
->getOperand(1);
13920 SDValue ARMcc
= N
->getOperand(2);
13921 ARMCC::CondCodes CC
=
13922 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13924 // BFI is only available on V6T2+.
13925 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops()) {
13926 SDValue R
= PerformCMOVToBFICombine(N
, DAG
);
13947 /// FIXME: Turn this into a target neutral optimization?
13949 if (CC
== ARMCC::NE
&& FalseVal
== RHS
&& FalseVal
!= LHS
) {
13950 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, TrueVal
, ARMcc
,
13951 N
->getOperand(3), Cmp
);
13952 } else if (CC
== ARMCC::EQ
&& TrueVal
== RHS
) {
13954 SDValue NewCmp
= getARMCmp(LHS
, RHS
, ISD::SETNE
, ARMcc
, DAG
, dl
);
13955 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, FalseVal
, ARMcc
,
13956 N
->getOperand(3), NewCmp
);
13959 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
13960 // -> (cmov F T CC CPSR Cmp)
13961 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ARMISD::CMOV
&& LHS
->hasOneUse()) {
13962 auto *LHS0C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0));
13963 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13964 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13965 if ((LHS0C
&& LHS0C
->getZExtValue() == 0) &&
13966 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13967 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13968 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
,
13969 LHS
->getOperand(2), LHS
->getOperand(3),
13970 LHS
->getOperand(4));
13974 if (!VT
.isInteger())
13977 // Materialize a boolean comparison for integers so we can avoid branching.
13978 if (isNullConstant(FalseVal
)) {
13979 if (CC
== ARMCC::EQ
&& isOneConstant(TrueVal
)) {
13980 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TOps()) {
13981 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
13982 // right 5 bits will make that 32 be 1, otherwise it will be 0.
13983 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
13984 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13985 Res
= DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::CTLZ
, dl
, VT
, Sub
),
13986 DAG
.getConstant(5, dl
, MVT::i32
));
13988 // CMOV 0, 1, ==, (CMPZ x, y) ->
13989 // (ADDCARRY (SUB x, y), t:0, t:1)
13990 // where t = (SUBCARRY 0, (SUB x, y), 0)
13992 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
13993 // x != y. In other words, a carry C == 1 when x == y, C == 0
13995 // The final ADDCARRY computes
13996 // x - y + (0 - (x - y)) + C == C
13997 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13998 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13999 SDValue Neg
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, Sub
);
14000 // ISD::SUBCARRY returns a borrow but we want the carry here
14003 DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
14004 DAG
.getConstant(1, dl
, MVT::i32
), Neg
.getValue(1));
14005 Res
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTs
, Sub
, Neg
, Carry
);
14007 } else if (CC
== ARMCC::NE
&& !isNullConstant(RHS
) &&
14008 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(TrueVal
))) {
14009 // This seems pointless but will allow us to combine it further below.
14010 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
14012 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
14013 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
14014 Sub
.getValue(1), SDValue());
14015 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, TrueVal
, ARMcc
,
14016 N
->getOperand(3), CPSRGlue
.getValue(1));
14019 } else if (isNullConstant(TrueVal
)) {
14020 if (CC
== ARMCC::EQ
&& !isNullConstant(RHS
) &&
14021 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(FalseVal
))) {
14022 // This seems pointless but will allow us to combine it further below
14023 // Note that we change == for != as this is the dual for the case above.
14024 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
14026 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
14027 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
14028 Sub
.getValue(1), SDValue());
14029 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, FalseVal
,
14030 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
),
14031 N
->getOperand(3), CPSRGlue
.getValue(1));
14036 // On Thumb1, the DAG above may be further combined if z is a power of 2
14038 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
14039 // t1 = (USUBO (SUB x, y), 1)
14040 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
14041 // Result = if K != 0 then (SHL t2:0, K) else t2:0
14043 // This also handles the special case of comparing against zero; it's
14044 // essentially, the same pattern, except there's no SUBS:
14045 // CMOV x, z, !=, (CMPZ x, 0) ->
14046 // t1 = (USUBO x, 1)
14047 // t2 = (SUBCARRY x, t1:0, t1:1)
14048 // Result = if K != 0 then (SHL t2:0, K) else t2:0
14049 const APInt
*TrueConst
;
14050 if (Subtarget
->isThumb1Only() && CC
== ARMCC::NE
&&
14051 ((FalseVal
.getOpcode() == ARMISD::SUBS
&&
14052 FalseVal
.getOperand(0) == LHS
&& FalseVal
.getOperand(1) == RHS
) ||
14053 (FalseVal
== LHS
&& isNullConstant(RHS
))) &&
14054 (TrueConst
= isPowerOf2Constant(TrueVal
))) {
14055 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
14056 unsigned ShiftAmount
= TrueConst
->logBase2();
14058 TrueVal
= DAG
.getConstant(1, dl
, VT
);
14059 SDValue Subc
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, TrueVal
);
14060 Res
= DAG
.getNode(ISD::SUBCARRY
, dl
, VTs
, FalseVal
, Subc
, Subc
.getValue(1));
14063 Res
= DAG
.getNode(ISD::SHL
, dl
, VT
, Res
,
14064 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
14067 if (Res
.getNode()) {
14068 KnownBits Known
= DAG
.computeKnownBits(SDValue(N
,0));
14069 // Capture demanded bits information that would be otherwise lost.
14070 if (Known
.Zero
== 0xfffffffe)
14071 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14072 DAG
.getValueType(MVT::i1
));
14073 else if (Known
.Zero
== 0xffffff00)
14074 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14075 DAG
.getValueType(MVT::i8
));
14076 else if (Known
.Zero
== 0xffff0000)
14077 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14078 DAG
.getValueType(MVT::i16
));
14084 SDValue
ARMTargetLowering::PerformDAGCombine(SDNode
*N
,
14085 DAGCombinerInfo
&DCI
) const {
14086 switch (N
->getOpcode()) {
14088 case ISD::ABS
: return PerformABSCombine(N
, DCI
, Subtarget
);
14089 case ARMISD::ADDE
: return PerformADDECombine(N
, DCI
, Subtarget
);
14090 case ARMISD::UMLAL
: return PerformUMLALCombine(N
, DCI
.DAG
, Subtarget
);
14091 case ISD::ADD
: return PerformADDCombine(N
, DCI
, Subtarget
);
14092 case ISD::SUB
: return PerformSUBCombine(N
, DCI
);
14093 case ISD::MUL
: return PerformMULCombine(N
, DCI
, Subtarget
);
14094 case ISD::OR
: return PerformORCombine(N
, DCI
, Subtarget
);
14095 case ISD::XOR
: return PerformXORCombine(N
, DCI
, Subtarget
);
14096 case ISD::AND
: return PerformANDCombine(N
, DCI
, Subtarget
);
14098 case ISD::BR_CC
: return PerformHWLoopCombine(N
, DCI
, Subtarget
);
14100 case ARMISD::SUBC
: return PerformAddcSubcCombine(N
, DCI
, Subtarget
);
14101 case ARMISD::SUBE
: return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
14102 case ARMISD::BFI
: return PerformBFICombine(N
, DCI
);
14103 case ARMISD::VMOVRRD
: return PerformVMOVRRDCombine(N
, DCI
, Subtarget
);
14104 case ARMISD::VMOVDRR
: return PerformVMOVDRRCombine(N
, DCI
.DAG
);
14105 case ISD::STORE
: return PerformSTORECombine(N
, DCI
);
14106 case ISD::BUILD_VECTOR
: return PerformBUILD_VECTORCombine(N
, DCI
, Subtarget
);
14107 case ISD::INSERT_VECTOR_ELT
: return PerformInsertEltCombine(N
, DCI
);
14108 case ISD::VECTOR_SHUFFLE
: return PerformVECTOR_SHUFFLECombine(N
, DCI
.DAG
);
14109 case ARMISD::VDUPLANE
: return PerformVDUPLANECombine(N
, DCI
);
14110 case ARMISD::VDUP
: return PerformVDUPCombine(N
, DCI
, Subtarget
);
14111 case ISD::FP_TO_SINT
:
14112 case ISD::FP_TO_UINT
:
14113 return PerformVCVTCombine(N
, DCI
.DAG
, Subtarget
);
14115 return PerformVDIVCombine(N
, DCI
.DAG
, Subtarget
);
14116 case ISD::INTRINSIC_WO_CHAIN
: return PerformIntrinsicCombine(N
, DCI
.DAG
);
14120 return PerformShiftCombine(N
, DCI
, Subtarget
);
14121 case ISD::SIGN_EXTEND
:
14122 case ISD::ZERO_EXTEND
:
14123 case ISD::ANY_EXTEND
: return PerformExtendCombine(N
, DCI
.DAG
, Subtarget
);
14124 case ARMISD::CMOV
: return PerformCMOVCombine(N
, DCI
.DAG
);
14125 case ARMISD::BRCOND
: return PerformBRCONDCombine(N
, DCI
.DAG
);
14126 case ISD::LOAD
: return PerformLOADCombine(N
, DCI
);
14127 case ARMISD::VLD1DUP
:
14128 case ARMISD::VLD2DUP
:
14129 case ARMISD::VLD3DUP
:
14130 case ARMISD::VLD4DUP
:
14131 return PerformVLDCombine(N
, DCI
);
14132 case ARMISD::BUILD_VECTOR
:
14133 return PerformARMBUILD_VECTORCombine(N
, DCI
);
14134 case ARMISD::SMULWB
: {
14135 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14136 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14137 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14141 case ARMISD::SMULWT
: {
14142 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14143 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14144 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14148 case ARMISD::SMLALBB
: {
14149 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14150 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14151 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14152 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14156 case ARMISD::SMLALBT
: {
14157 unsigned LowWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14158 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14159 unsigned HighWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14160 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14161 if ((SimplifyDemandedBits(N
->getOperand(0), LowMask
, DCI
)) ||
14162 (SimplifyDemandedBits(N
->getOperand(1), HighMask
, DCI
)))
14166 case ARMISD::SMLALTB
: {
14167 unsigned HighWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14168 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14169 unsigned LowWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14170 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14171 if ((SimplifyDemandedBits(N
->getOperand(0), HighMask
, DCI
)) ||
14172 (SimplifyDemandedBits(N
->getOperand(1), LowMask
, DCI
)))
14176 case ARMISD::SMLALTT
: {
14177 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14178 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14179 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14180 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14184 case ISD::INTRINSIC_VOID
:
14185 case ISD::INTRINSIC_W_CHAIN
:
14186 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
14187 case Intrinsic::arm_neon_vld1
:
14188 case Intrinsic::arm_neon_vld1x2
:
14189 case Intrinsic::arm_neon_vld1x3
:
14190 case Intrinsic::arm_neon_vld1x4
:
14191 case Intrinsic::arm_neon_vld2
:
14192 case Intrinsic::arm_neon_vld3
:
14193 case Intrinsic::arm_neon_vld4
:
14194 case Intrinsic::arm_neon_vld2lane
:
14195 case Intrinsic::arm_neon_vld3lane
:
14196 case Intrinsic::arm_neon_vld4lane
:
14197 case Intrinsic::arm_neon_vld2dup
:
14198 case Intrinsic::arm_neon_vld3dup
:
14199 case Intrinsic::arm_neon_vld4dup
:
14200 case Intrinsic::arm_neon_vst1
:
14201 case Intrinsic::arm_neon_vst1x2
:
14202 case Intrinsic::arm_neon_vst1x3
:
14203 case Intrinsic::arm_neon_vst1x4
:
14204 case Intrinsic::arm_neon_vst2
:
14205 case Intrinsic::arm_neon_vst3
:
14206 case Intrinsic::arm_neon_vst4
:
14207 case Intrinsic::arm_neon_vst2lane
:
14208 case Intrinsic::arm_neon_vst3lane
:
14209 case Intrinsic::arm_neon_vst4lane
:
14210 return PerformVLDCombine(N
, DCI
);
14218 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc
,
14220 return (VT
== MVT::f32
) && (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
);
14223 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned,
14224 unsigned Alignment
,
14225 MachineMemOperand::Flags
,
14226 bool *Fast
) const {
14227 // Depends what it gets converted into if the type is weird.
14228 if (!VT
.isSimple())
14231 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
14232 bool AllowsUnaligned
= Subtarget
->allowsUnalignedMem();
14233 auto Ty
= VT
.getSimpleVT().SimpleTy
;
14235 if (Ty
== MVT::i8
|| Ty
== MVT::i16
|| Ty
== MVT::i32
) {
14236 // Unaligned access can use (for example) LRDB, LRDH, LDR
14237 if (AllowsUnaligned
) {
14239 *Fast
= Subtarget
->hasV7Ops();
14244 if (Ty
== MVT::f64
|| Ty
== MVT::v2f64
) {
14245 // For any little-endian targets with neon, we can support unaligned ld/st
14246 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
14247 // A big-endian target may also explicitly support unaligned accesses
14248 if (Subtarget
->hasNEON() && (AllowsUnaligned
|| Subtarget
->isLittle())) {
14255 if (!Subtarget
->hasMVEIntegerOps())
14258 // These are for predicates
14259 if ((Ty
== MVT::v16i1
|| Ty
== MVT::v8i1
|| Ty
== MVT::v4i1
)) {
14265 // These are for truncated stores/narrowing loads. They are fine so long as
14266 // the alignment is at least the size of the item being loaded
14267 if ((Ty
== MVT::v4i8
|| Ty
== MVT::v8i8
|| Ty
== MVT::v4i16
) &&
14268 Alignment
>= VT
.getScalarSizeInBits() / 8) {
14274 // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
14275 // VSTRW.U32 all store the vector register in exactly the same format, and
14276 // differ only in the range of their immediate offset field and the required
14277 // alignment. So there is always a store that can be used, regardless of
14280 // For big endian, that is not the case. But can still emit a (VSTRB.U8;
14281 // VREV64.8) pair and get the same effect. This will likely be better than
14282 // aligning the vector through the stack.
14283 if (Ty
== MVT::v16i8
|| Ty
== MVT::v8i16
|| Ty
== MVT::v8f16
||
14284 Ty
== MVT::v4i32
|| Ty
== MVT::v4f32
|| Ty
== MVT::v2i64
||
14285 Ty
== MVT::v2f64
) {
14294 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
14295 unsigned AlignCheck
) {
14296 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
14297 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
14300 EVT
ARMTargetLowering::getOptimalMemOpType(
14301 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
14302 bool ZeroMemset
, bool MemcpyStrSrc
,
14303 const AttributeList
&FuncAttributes
) const {
14304 // See if we can use NEON instructions for this...
14305 if ((!IsMemset
|| ZeroMemset
) && Subtarget
->hasNEON() &&
14306 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
)) {
14309 (memOpAlign(SrcAlign
, DstAlign
, 16) ||
14310 (allowsMisalignedMemoryAccesses(MVT::v2f64
, 0, 1,
14311 MachineMemOperand::MONone
, &Fast
) &&
14314 } else if (Size
>= 8 &&
14315 (memOpAlign(SrcAlign
, DstAlign
, 8) ||
14316 (allowsMisalignedMemoryAccesses(
14317 MVT::f64
, 0, 1, MachineMemOperand::MONone
, &Fast
) &&
14323 // Let the target-independent logic figure it out.
14327 // 64-bit integers are split into their high and low parts and held in two
14328 // different registers, so the trunc is free since the low register can just
14330 bool ARMTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
14331 if (!SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
14333 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
14334 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
14335 return (SrcBits
== 64 && DestBits
== 32);
14338 bool ARMTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
14339 if (SrcVT
.isVector() || DstVT
.isVector() || !SrcVT
.isInteger() ||
14340 !DstVT
.isInteger())
14342 unsigned SrcBits
= SrcVT
.getSizeInBits();
14343 unsigned DestBits
= DstVT
.getSizeInBits();
14344 return (SrcBits
== 64 && DestBits
== 32);
14347 bool ARMTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
14348 if (Val
.getOpcode() != ISD::LOAD
)
14351 EVT VT1
= Val
.getValueType();
14352 if (!VT1
.isSimple() || !VT1
.isInteger() ||
14353 !VT2
.isSimple() || !VT2
.isInteger())
14356 switch (VT1
.getSimpleVT().SimpleTy
) {
14361 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14368 bool ARMTargetLowering::isFNegFree(EVT VT
) const {
14369 if (!VT
.isSimple())
14372 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14373 // negate values directly (fneg is free). So, we don't want to let the DAG
14374 // combiner rewrite fneg into xors and some other instructions. For f16 and
14375 // FullFP16 argument passing, some bitcast nodes may be introduced,
14376 // triggering this DAG combine rewrite, so we are avoiding that with this.
14377 switch (VT
.getSimpleVT().SimpleTy
) {
14380 return Subtarget
->hasFullFP16();
14386 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14387 /// of the vector elements.
14388 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
14389 auto areExtDoubled
= [](Instruction
*Ext
) {
14390 return Ext
->getType()->getScalarSizeInBits() ==
14391 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
14394 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
14395 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
14396 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
14397 !areExtDoubled(cast
<Instruction
>(Ext2
)))
14403 /// Check if sinking \p I's operands to I's basic block is profitable, because
14404 /// the operands can be folded into a target instruction, e.g.
14405 /// sext/zext can be folded into vsubl.
14406 bool ARMTargetLowering::shouldSinkOperands(Instruction
*I
,
14407 SmallVectorImpl
<Use
*> &Ops
) const {
14408 if (!I
->getType()->isVectorTy())
14411 if (Subtarget
->hasNEON()) {
14412 switch (I
->getOpcode()) {
14413 case Instruction::Sub
:
14414 case Instruction::Add
: {
14415 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
14417 Ops
.push_back(&I
->getOperandUse(0));
14418 Ops
.push_back(&I
->getOperandUse(1));
14426 if (!Subtarget
->hasMVEIntegerOps())
14429 auto IsSinker
= [](Instruction
*I
, int Operand
) {
14430 switch (I
->getOpcode()) {
14431 case Instruction::Add
:
14432 case Instruction::Mul
:
14434 case Instruction::Sub
:
14435 return Operand
== 1;
14442 if (!isa
<ShuffleVectorInst
>(I
->getOperand(Op
)))
14444 if (!IsSinker(I
, Op
))
14446 if (!match(I
->getOperand(Op
),
14447 m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_ZeroInt()),
14448 m_Undef(), m_Zero()))) {
14451 Instruction
*Shuffle
= cast
<Instruction
>(I
->getOperand(Op
));
14452 // All uses of the shuffle should be sunk to avoid duplicating it across gpr
14453 // and vector registers
14454 for (Use
&U
: Shuffle
->uses()) {
14455 Instruction
*Insn
= cast
<Instruction
>(U
.getUser());
14456 if (!IsSinker(Insn
, U
.getOperandNo()))
14459 Ops
.push_back(&Shuffle
->getOperandUse(0));
14460 Ops
.push_back(&I
->getOperandUse(Op
));
14464 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
14465 EVT VT
= ExtVal
.getValueType();
14467 if (!isTypeLegal(VT
))
14470 // Don't create a loadext if we can fold the extension into a wide/long
14472 // If there's more than one user instruction, the loadext is desirable no
14473 // matter what. There can be two uses by the same instruction.
14474 if (ExtVal
->use_empty() ||
14475 !ExtVal
->use_begin()->isOnlyUserOf(ExtVal
.getNode()))
14478 SDNode
*U
= *ExtVal
->use_begin();
14479 if ((U
->getOpcode() == ISD::ADD
|| U
->getOpcode() == ISD::SUB
||
14480 U
->getOpcode() == ISD::SHL
|| U
->getOpcode() == ARMISD::VSHLIMM
))
14486 bool ARMTargetLowering::allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const {
14487 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
14490 if (!isTypeLegal(EVT::getEVT(Ty1
)))
14493 assert(Ty1
->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
14495 // Assuming the caller doesn't have a zeroext or signext return parameter,
14496 // truncation all the way down to i1 is valid.
14500 int ARMTargetLowering::getScalingFactorCost(const DataLayout
&DL
,
14501 const AddrMode
&AM
, Type
*Ty
,
14502 unsigned AS
) const {
14503 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
)) {
14504 if (Subtarget
->hasFPAO())
14505 return AM
.Scale
< 0 ? 1 : 0; // positive offsets execute faster
14511 static bool isLegalT1AddressImmediate(int64_t V
, EVT VT
) {
14515 unsigned Scale
= 1;
14516 switch (VT
.getSimpleVT().SimpleTy
) {
14526 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
14532 if ((V
& (Scale
- 1)) != 0)
14534 return isUInt
<5>(V
/ Scale
);
14537 static bool isLegalT2AddressImmediate(int64_t V
, EVT VT
,
14538 const ARMSubtarget
*Subtarget
) {
14539 if (!VT
.isInteger() && !VT
.isFloatingPoint())
14541 if (VT
.isVector() && Subtarget
->hasNEON())
14543 if (VT
.isVector() && VT
.isFloatingPoint() && Subtarget
->hasMVEIntegerOps() &&
14544 !Subtarget
->hasMVEFloatOps())
14547 bool IsNeg
= false;
14553 unsigned NumBytes
= std::max(VT
.getSizeInBits() / 8, 1U);
14555 // MVE: size * imm7
14556 if (VT
.isVector() && Subtarget
->hasMVEIntegerOps()) {
14557 switch (VT
.getSimpleVT().getVectorElementType().SimpleTy
) {
14560 return isShiftedUInt
<7,2>(V
);
14563 return isShiftedUInt
<7,1>(V
);
14565 return isUInt
<7>(V
);
14571 // half VLDR: 2 * imm8
14572 if (VT
.isFloatingPoint() && NumBytes
== 2 && Subtarget
->hasFPRegs16())
14573 return isShiftedUInt
<8, 1>(V
);
14574 // VLDR and LDRD: 4 * imm8
14575 if ((VT
.isFloatingPoint() && Subtarget
->hasVFP2Base()) || NumBytes
== 8)
14576 return isShiftedUInt
<8, 2>(V
);
14578 if (NumBytes
== 1 || NumBytes
== 2 || NumBytes
== 4) {
14579 // + imm12 or - imm8
14581 return isUInt
<8>(V
);
14582 return isUInt
<12>(V
);
14588 /// isLegalAddressImmediate - Return true if the integer value can be used
14589 /// as the offset of the target addressing mode for load / store of the
14591 static bool isLegalAddressImmediate(int64_t V
, EVT VT
,
14592 const ARMSubtarget
*Subtarget
) {
14596 if (!VT
.isSimple())
14599 if (Subtarget
->isThumb1Only())
14600 return isLegalT1AddressImmediate(V
, VT
);
14601 else if (Subtarget
->isThumb2())
14602 return isLegalT2AddressImmediate(V
, VT
, Subtarget
);
14607 switch (VT
.getSimpleVT().SimpleTy
) {
14608 default: return false;
14613 return isUInt
<12>(V
);
14616 return isUInt
<8>(V
);
14619 if (!Subtarget
->hasVFP2Base()) // FIXME: NEON?
14621 return isShiftedUInt
<8, 2>(V
);
14625 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode
&AM
,
14627 int Scale
= AM
.Scale
;
14631 switch (VT
.getSimpleVT().SimpleTy
) {
14632 default: return false;
14640 Scale
= Scale
& ~1;
14641 return Scale
== 2 || Scale
== 4 || Scale
== 8;
14643 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
14644 // version in Thumb mode.
14648 // r * 2 (this can be lowered to r + r).
14649 if (!AM
.HasBaseReg
&& Scale
== 2)
14653 // Note, we allow "void" uses (basically, uses that aren't loads or
14654 // stores), because arm allows folding a scale into many arithmetic
14655 // operations. This should be made more precise and revisited later.
14657 // Allow r << imm, but the imm has to be a multiple of two.
14658 if (Scale
& 1) return false;
14659 return isPowerOf2_32(Scale
);
14663 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode
&AM
,
14665 const int Scale
= AM
.Scale
;
14667 // Negative scales are not supported in Thumb1.
14671 // Thumb1 addressing modes do not support register scaling excepting the
14672 // following cases:
14673 // 1. Scale == 1 means no scaling.
14674 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
14675 return (Scale
== 1) || (!AM
.HasBaseReg
&& Scale
== 2);
14678 /// isLegalAddressingMode - Return true if the addressing mode represented
14679 /// by AM is legal for this target, for a load/store of the specified type.
14680 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
14681 const AddrMode
&AM
, Type
*Ty
,
14682 unsigned AS
, Instruction
*I
) const {
14683 EVT VT
= getValueType(DL
, Ty
, true);
14684 if (!isLegalAddressImmediate(AM
.BaseOffs
, VT
, Subtarget
))
14687 // Can never fold addr of global into load/store.
14691 switch (AM
.Scale
) {
14692 case 0: // no scale reg, must be "r+i" or "r", or "i".
14695 // ARM doesn't support any R+R*scale+imm addr modes.
14699 if (!VT
.isSimple())
14702 if (Subtarget
->isThumb1Only())
14703 return isLegalT1ScaledAddressingMode(AM
, VT
);
14705 if (Subtarget
->isThumb2())
14706 return isLegalT2ScaledAddressingMode(AM
, VT
);
14708 int Scale
= AM
.Scale
;
14709 switch (VT
.getSimpleVT().SimpleTy
) {
14710 default: return false;
14714 if (Scale
< 0) Scale
= -Scale
;
14718 return isPowerOf2_32(Scale
& ~1);
14722 if (Scale
== 1 || (AM
.HasBaseReg
&& Scale
== -1))
14724 // r * 2 (this can be lowered to r + r).
14725 if (!AM
.HasBaseReg
&& Scale
== 2)
14730 // Note, we allow "void" uses (basically, uses that aren't loads or
14731 // stores), because arm allows folding a scale into many arithmetic
14732 // operations. This should be made more precise and revisited later.
14734 // Allow r << imm, but the imm has to be a multiple of two.
14735 if (Scale
& 1) return false;
14736 return isPowerOf2_32(Scale
);
14742 /// isLegalICmpImmediate - Return true if the specified immediate is legal
14743 /// icmp immediate, that is the target has icmp instructions which can compare
14744 /// a register against the immediate without having to materialize the
14745 /// immediate into a register.
14746 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
14747 // Thumb2 and ARM modes can use cmn for negative immediates.
14748 if (!Subtarget
->isThumb())
14749 return ARM_AM::getSOImmVal((uint32_t)Imm
) != -1 ||
14750 ARM_AM::getSOImmVal(-(uint32_t)Imm
) != -1;
14751 if (Subtarget
->isThumb2())
14752 return ARM_AM::getT2SOImmVal((uint32_t)Imm
) != -1 ||
14753 ARM_AM::getT2SOImmVal(-(uint32_t)Imm
) != -1;
14754 // Thumb1 doesn't have cmn, and only 8-bit immediates.
14755 return Imm
>= 0 && Imm
<= 255;
14758 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
14759 /// *or sub* immediate, that is the target has add or sub instructions which can
14760 /// add a register with the immediate without having to materialize the
14761 /// immediate into a register.
14762 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
14763 // Same encoding for add/sub, just flip the sign.
14764 int64_t AbsImm
= std::abs(Imm
);
14765 if (!Subtarget
->isThumb())
14766 return ARM_AM::getSOImmVal(AbsImm
) != -1;
14767 if (Subtarget
->isThumb2())
14768 return ARM_AM::getT2SOImmVal(AbsImm
) != -1;
14769 // Thumb1 only has 8-bit unsigned immediate.
14770 return AbsImm
>= 0 && AbsImm
<= 255;
14773 static bool getARMIndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14774 bool isSEXTLoad
, SDValue
&Base
,
14775 SDValue
&Offset
, bool &isInc
,
14776 SelectionDAG
&DAG
) {
14777 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14780 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
14781 // AddressingMode 3
14782 Base
= Ptr
->getOperand(0);
14783 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14784 int RHSC
= (int)RHS
->getZExtValue();
14785 if (RHSC
< 0 && RHSC
> -256) {
14786 assert(Ptr
->getOpcode() == ISD::ADD
);
14788 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14792 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14793 Offset
= Ptr
->getOperand(1);
14795 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
14796 // AddressingMode 2
14797 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14798 int RHSC
= (int)RHS
->getZExtValue();
14799 if (RHSC
< 0 && RHSC
> -0x1000) {
14800 assert(Ptr
->getOpcode() == ISD::ADD
);
14802 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14803 Base
= Ptr
->getOperand(0);
14808 if (Ptr
->getOpcode() == ISD::ADD
) {
14810 ARM_AM::ShiftOpc ShOpcVal
=
14811 ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0).getOpcode());
14812 if (ShOpcVal
!= ARM_AM::no_shift
) {
14813 Base
= Ptr
->getOperand(1);
14814 Offset
= Ptr
->getOperand(0);
14816 Base
= Ptr
->getOperand(0);
14817 Offset
= Ptr
->getOperand(1);
14822 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14823 Base
= Ptr
->getOperand(0);
14824 Offset
= Ptr
->getOperand(1);
14828 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
14832 static bool getT2IndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14833 bool isSEXTLoad
, SDValue
&Base
,
14834 SDValue
&Offset
, bool &isInc
,
14835 SelectionDAG
&DAG
) {
14836 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14839 Base
= Ptr
->getOperand(0);
14840 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14841 int RHSC
= (int)RHS
->getZExtValue();
14842 if (RHSC
< 0 && RHSC
> -0x100) { // 8 bits.
14843 assert(Ptr
->getOpcode() == ISD::ADD
);
14845 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14847 } else if (RHSC
> 0 && RHSC
< 0x100) { // 8 bit, no zero.
14848 isInc
= Ptr
->getOpcode() == ISD::ADD
;
14849 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14857 static bool getMVEIndexedAddressParts(SDNode
*Ptr
, EVT VT
, unsigned Align
,
14858 bool isSEXTLoad
, bool isLE
, SDValue
&Base
,
14859 SDValue
&Offset
, bool &isInc
,
14860 SelectionDAG
&DAG
) {
14861 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14863 if (!isa
<ConstantSDNode
>(Ptr
->getOperand(1)))
14866 ConstantSDNode
*RHS
= cast
<ConstantSDNode
>(Ptr
->getOperand(1));
14867 int RHSC
= (int)RHS
->getZExtValue();
14869 auto IsInRange
= [&](int RHSC
, int Limit
, int Scale
) {
14870 if (RHSC
< 0 && RHSC
> -Limit
* Scale
&& RHSC
% Scale
== 0) {
14871 assert(Ptr
->getOpcode() == ISD::ADD
);
14873 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14875 } else if (RHSC
> 0 && RHSC
< Limit
* Scale
&& RHSC
% Scale
== 0) {
14876 isInc
= Ptr
->getOpcode() == ISD::ADD
;
14877 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14883 // Try to find a matching instruction based on s/zext, Alignment, Offset and
14885 Base
= Ptr
->getOperand(0);
14886 if (VT
== MVT::v4i16
) {
14887 if (Align
>= 2 && IsInRange(RHSC
, 0x80, 2))
14889 } else if (VT
== MVT::v4i8
|| VT
== MVT::v8i8
) {
14890 if (IsInRange(RHSC
, 0x80, 1))
14892 } else if (Align
>= 4 && (isLE
|| VT
== MVT::v4i32
|| VT
== MVT::v4f32
) &&
14893 IsInRange(RHSC
, 0x80, 4))
14895 else if (Align
>= 2 && (isLE
|| VT
== MVT::v8i16
|| VT
== MVT::v8f16
) &&
14896 IsInRange(RHSC
, 0x80, 2))
14898 else if ((isLE
|| VT
== MVT::v16i8
) && IsInRange(RHSC
, 0x80, 1))
14903 /// getPreIndexedAddressParts - returns true by value, base pointer and
14904 /// offset pointer and addressing mode by reference if the node's address
14905 /// can be legally represented as pre-indexed load / store address.
14907 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
14909 ISD::MemIndexedMode
&AM
,
14910 SelectionDAG
&DAG
) const {
14911 if (Subtarget
->isThumb1Only())
14917 bool isSEXTLoad
= false;
14918 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14919 Ptr
= LD
->getBasePtr();
14920 VT
= LD
->getMemoryVT();
14921 Align
= LD
->getAlignment();
14922 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14923 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14924 Ptr
= ST
->getBasePtr();
14925 VT
= ST
->getMemoryVT();
14926 Align
= ST
->getAlignment();
14931 bool isLegal
= false;
14933 isLegal
= Subtarget
->hasMVEIntegerOps() &&
14934 getMVEIndexedAddressParts(Ptr
.getNode(), VT
, Align
, isSEXTLoad
,
14935 Subtarget
->isLittle(), Base
, Offset
,
14938 if (Subtarget
->isThumb2())
14939 isLegal
= getT2IndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14940 Offset
, isInc
, DAG
);
14942 isLegal
= getARMIndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14943 Offset
, isInc
, DAG
);
14948 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
14952 /// getPostIndexedAddressParts - returns true by value, base pointer and
14953 /// offset pointer and addressing mode by reference if this node can be
14954 /// combined with a load / store to form a post-indexed load / store.
14955 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
14958 ISD::MemIndexedMode
&AM
,
14959 SelectionDAG
&DAG
) const {
14963 bool isSEXTLoad
= false, isNonExt
;
14964 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14965 VT
= LD
->getMemoryVT();
14966 Ptr
= LD
->getBasePtr();
14967 Align
= LD
->getAlignment();
14968 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14969 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
14970 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14971 VT
= ST
->getMemoryVT();
14972 Ptr
= ST
->getBasePtr();
14973 Align
= ST
->getAlignment();
14974 isNonExt
= !ST
->isTruncatingStore();
14978 if (Subtarget
->isThumb1Only()) {
14979 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
14980 // must be non-extending/truncating, i32, with an offset of 4.
14981 assert(Op
->getValueType(0) == MVT::i32
&& "Non-i32 post-inc op?!");
14982 if (Op
->getOpcode() != ISD::ADD
|| !isNonExt
)
14984 auto *RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
14985 if (!RHS
|| RHS
->getZExtValue() != 4)
14988 Offset
= Op
->getOperand(1);
14989 Base
= Op
->getOperand(0);
14990 AM
= ISD::POST_INC
;
14995 bool isLegal
= false;
14997 isLegal
= Subtarget
->hasMVEIntegerOps() &&
14998 getMVEIndexedAddressParts(Op
, VT
, Align
, isSEXTLoad
,
14999 Subtarget
->isLittle(), Base
, Offset
,
15002 if (Subtarget
->isThumb2())
15003 isLegal
= getT2IndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
15006 isLegal
= getARMIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
15013 // Swap base ptr and offset to catch more post-index load / store when
15014 // it's legal. In Thumb2 mode, offset must be an immediate.
15015 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
&&
15016 !Subtarget
->isThumb2())
15017 std::swap(Base
, Offset
);
15019 // Post-indexed load / store update the base pointer.
15024 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
15028 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
15030 const APInt
&DemandedElts
,
15031 const SelectionDAG
&DAG
,
15032 unsigned Depth
) const {
15033 unsigned BitWidth
= Known
.getBitWidth();
15035 switch (Op
.getOpcode()) {
15041 // Special cases when we convert a carry to a boolean.
15042 if (Op
.getResNo() == 0) {
15043 SDValue LHS
= Op
.getOperand(0);
15044 SDValue RHS
= Op
.getOperand(1);
15045 // (ADDE 0, 0, C) will give us a single bit.
15046 if (Op
->getOpcode() == ARMISD::ADDE
&& isNullConstant(LHS
) &&
15047 isNullConstant(RHS
)) {
15048 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
15053 case ARMISD::CMOV
: {
15054 // Bits are known zero/one if known on the LHS and RHS.
15055 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+1);
15056 if (Known
.isUnknown())
15059 KnownBits KnownRHS
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+1);
15060 Known
.Zero
&= KnownRHS
.Zero
;
15061 Known
.One
&= KnownRHS
.One
;
15064 case ISD::INTRINSIC_W_CHAIN
: {
15065 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
15066 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
15069 case Intrinsic::arm_ldaex
:
15070 case Intrinsic::arm_ldrex
: {
15071 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
15072 unsigned MemBits
= VT
.getScalarSizeInBits();
15073 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
15078 case ARMISD::BFI
: {
15079 // Conservatively, we can recurse down the first operand
15080 // and just mask out all affected bits.
15081 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
15083 // The operand to BFI is already a mask suitable for removing the bits it
15085 ConstantSDNode
*CI
= cast
<ConstantSDNode
>(Op
.getOperand(2));
15086 const APInt
&Mask
= CI
->getAPIntValue();
15087 Known
.Zero
&= Mask
;
15091 case ARMISD::VGETLANEs
:
15092 case ARMISD::VGETLANEu
: {
15093 const SDValue
&SrcSV
= Op
.getOperand(0);
15094 EVT VecVT
= SrcSV
.getValueType();
15095 assert(VecVT
.isVector() && "VGETLANE expected a vector type");
15096 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
15097 ConstantSDNode
*Pos
= cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
15098 assert(Pos
->getAPIntValue().ult(NumSrcElts
) &&
15099 "VGETLANE index out of bounds");
15100 unsigned Idx
= Pos
->getZExtValue();
15101 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
15102 Known
= DAG
.computeKnownBits(SrcSV
, DemandedElt
, Depth
+ 1);
15104 EVT VT
= Op
.getValueType();
15105 const unsigned DstSz
= VT
.getScalarSizeInBits();
15106 const unsigned SrcSz
= VecVT
.getVectorElementType().getSizeInBits();
15108 assert(SrcSz
== Known
.getBitWidth());
15109 assert(DstSz
> SrcSz
);
15110 if (Op
.getOpcode() == ARMISD::VGETLANEs
)
15111 Known
= Known
.sext(DstSz
);
15113 Known
= Known
.zext(DstSz
, true /* extended bits are known zero */);
15115 assert(DstSz
== Known
.getBitWidth());
15122 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op
,
15123 const APInt
&DemandedAPInt
,
15124 TargetLoweringOpt
&TLO
) const {
15125 // Delay optimization, so we don't have to deal with illegal types, or block
15130 // Only optimize AND for now.
15131 if (Op
.getOpcode() != ISD::AND
)
15134 EVT VT
= Op
.getValueType();
15140 assert(VT
== MVT::i32
&& "Unexpected integer type");
15142 // Make sure the RHS really is a constant.
15143 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
15147 unsigned Mask
= C
->getZExtValue();
15149 unsigned Demanded
= DemandedAPInt
.getZExtValue();
15150 unsigned ShrunkMask
= Mask
& Demanded
;
15151 unsigned ExpandedMask
= Mask
| ~Demanded
;
15153 // If the mask is all zeros, let the target-independent code replace the
15154 // result with zero.
15155 if (ShrunkMask
== 0)
15158 // If the mask is all ones, erase the AND. (Currently, the target-independent
15159 // code won't do this, so we have to do it explicitly to avoid an infinite
15160 // loop in obscure cases.)
15161 if (ExpandedMask
== ~0U)
15162 return TLO
.CombineTo(Op
, Op
.getOperand(0));
15164 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](unsigned Mask
) -> bool {
15165 return (ShrunkMask
& Mask
) == ShrunkMask
&& (~ExpandedMask
& Mask
) == 0;
15167 auto UseMask
= [Mask
, Op
, VT
, &TLO
](unsigned NewMask
) -> bool {
15168 if (NewMask
== Mask
)
15171 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
15172 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
15173 return TLO
.CombineTo(Op
, NewOp
);
15176 // Prefer uxtb mask.
15177 if (IsLegalMask(0xFF))
15178 return UseMask(0xFF);
15180 // Prefer uxth mask.
15181 if (IsLegalMask(0xFFFF))
15182 return UseMask(0xFFFF);
15184 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
15185 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15186 if (ShrunkMask
< 256)
15187 return UseMask(ShrunkMask
);
15189 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
15190 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15191 if ((int)ExpandedMask
<= -2 && (int)ExpandedMask
>= -256)
15192 return UseMask(ExpandedMask
);
15194 // Potential improvements:
15196 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
15197 // We could try to prefer Thumb1 immediates which can be lowered to a
15198 // two-instruction sequence.
15199 // We could try to recognize more legal ARM/Thumb2 immediates here.
15205 //===----------------------------------------------------------------------===//
15206 // ARM Inline Assembly Support
15207 //===----------------------------------------------------------------------===//
15209 bool ARMTargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
15210 // Looking for "rev" which is V6+.
15211 if (!Subtarget
->hasV6Ops())
15214 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
15215 std::string AsmStr
= IA
->getAsmString();
15216 SmallVector
<StringRef
, 4> AsmPieces
;
15217 SplitString(AsmStr
, AsmPieces
, ";\n");
15219 switch (AsmPieces
.size()) {
15220 default: return false;
15222 AsmStr
= AsmPieces
[0];
15224 SplitString(AsmStr
, AsmPieces
, " \t,");
15227 if (AsmPieces
.size() == 3 &&
15228 AsmPieces
[0] == "rev" && AsmPieces
[1] == "$0" && AsmPieces
[2] == "$1" &&
15229 IA
->getConstraintString().compare(0, 4, "=l,l") == 0) {
15230 IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
15231 if (Ty
&& Ty
->getBitWidth() == 32)
15232 return IntrinsicLowering::LowerToByteSwap(CI
);
15240 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
15241 // At this point, we have to lower this constraint to something else, so we
15242 // lower it to an "r" or "w". However, by doing this we will force the result
15243 // to be in register, while the X constraint is much more permissive.
15245 // Although we are correct (we are free to emit anything, without
15246 // constraints), we might break use cases that would expect us to be more
15247 // efficient and emit something else.
15248 if (!Subtarget
->hasVFP2Base())
15250 if (ConstraintVT
.isFloatingPoint())
15252 if (ConstraintVT
.isVector() && Subtarget
->hasNEON() &&
15253 (ConstraintVT
.getSizeInBits() == 64 ||
15254 ConstraintVT
.getSizeInBits() == 128))
15260 /// getConstraintType - Given a constraint letter, return the type of
15261 /// constraint it is for this target.
15262 ARMTargetLowering::ConstraintType
15263 ARMTargetLowering::getConstraintType(StringRef Constraint
) const {
15264 unsigned S
= Constraint
.size();
15266 switch (Constraint
[0]) {
15268 case 'l': return C_RegisterClass
;
15269 case 'w': return C_RegisterClass
;
15270 case 'h': return C_RegisterClass
;
15271 case 'x': return C_RegisterClass
;
15272 case 't': return C_RegisterClass
;
15273 case 'j': return C_Immediate
; // Constant for movw.
15274 // An address with a single base register. Due to the way we
15275 // currently handle addresses it is the same as an 'r' memory constraint.
15276 case 'Q': return C_Memory
;
15278 } else if (S
== 2) {
15279 switch (Constraint
[0]) {
15281 case 'T': return C_RegisterClass
;
15282 // All 'U+' constraints are addresses.
15283 case 'U': return C_Memory
;
15286 return TargetLowering::getConstraintType(Constraint
);
15289 /// Examine constraint type and operand type and determine a weight value.
15290 /// This object must already have been set up with the operand type
15291 /// and the current alternative constraint selected.
15292 TargetLowering::ConstraintWeight
15293 ARMTargetLowering::getSingleConstraintMatchWeight(
15294 AsmOperandInfo
&info
, const char *constraint
) const {
15295 ConstraintWeight weight
= CW_Invalid
;
15296 Value
*CallOperandVal
= info
.CallOperandVal
;
15297 // If we don't have a value, we can't do a match,
15298 // but allow it at the lowest weight.
15299 if (!CallOperandVal
)
15301 Type
*type
= CallOperandVal
->getType();
15302 // Look at the constraint type.
15303 switch (*constraint
) {
15305 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
15308 if (type
->isIntegerTy()) {
15309 if (Subtarget
->isThumb())
15310 weight
= CW_SpecificReg
;
15312 weight
= CW_Register
;
15316 if (type
->isFloatingPointTy())
15317 weight
= CW_Register
;
15323 using RCPair
= std::pair
<unsigned, const TargetRegisterClass
*>;
15325 RCPair
ARMTargetLowering::getRegForInlineAsmConstraint(
15326 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
15327 switch (Constraint
.size()) {
15329 // GCC ARM Constraint Letters
15330 switch (Constraint
[0]) {
15331 case 'l': // Low regs or general regs.
15332 if (Subtarget
->isThumb())
15333 return RCPair(0U, &ARM::tGPRRegClass
);
15334 return RCPair(0U, &ARM::GPRRegClass
);
15335 case 'h': // High regs or no regs.
15336 if (Subtarget
->isThumb())
15337 return RCPair(0U, &ARM::hGPRRegClass
);
15340 if (Subtarget
->isThumb1Only())
15341 return RCPair(0U, &ARM::tGPRRegClass
);
15342 return RCPair(0U, &ARM::GPRRegClass
);
15344 if (VT
== MVT::Other
)
15346 if (VT
== MVT::f32
)
15347 return RCPair(0U, &ARM::SPRRegClass
);
15348 if (VT
.getSizeInBits() == 64)
15349 return RCPair(0U, &ARM::DPRRegClass
);
15350 if (VT
.getSizeInBits() == 128)
15351 return RCPair(0U, &ARM::QPRRegClass
);
15354 if (VT
== MVT::Other
)
15356 if (VT
== MVT::f32
)
15357 return RCPair(0U, &ARM::SPR_8RegClass
);
15358 if (VT
.getSizeInBits() == 64)
15359 return RCPair(0U, &ARM::DPR_8RegClass
);
15360 if (VT
.getSizeInBits() == 128)
15361 return RCPair(0U, &ARM::QPR_8RegClass
);
15364 if (VT
== MVT::Other
)
15366 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15367 return RCPair(0U, &ARM::SPRRegClass
);
15368 if (VT
.getSizeInBits() == 64)
15369 return RCPair(0U, &ARM::DPR_VFP2RegClass
);
15370 if (VT
.getSizeInBits() == 128)
15371 return RCPair(0U, &ARM::QPR_VFP2RegClass
);
15377 if (Constraint
[0] == 'T') {
15378 switch (Constraint
[1]) {
15382 return RCPair(0U, &ARM::tGPREvenRegClass
);
15384 return RCPair(0U, &ARM::tGPROddRegClass
);
15393 if (StringRef("{cc}").equals_lower(Constraint
))
15394 return std::make_pair(unsigned(ARM::CPSR
), &ARM::CCRRegClass
);
15396 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
15399 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15400 /// vector. If it is invalid, don't add anything to Ops.
15401 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
15402 std::string
&Constraint
,
15403 std::vector
<SDValue
>&Ops
,
15404 SelectionDAG
&DAG
) const {
15407 // Currently only support length 1 constraints.
15408 if (Constraint
.length() != 1) return;
15410 char ConstraintLetter
= Constraint
[0];
15411 switch (ConstraintLetter
) {
15414 case 'I': case 'J': case 'K': case 'L':
15415 case 'M': case 'N': case 'O':
15416 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
15420 int64_t CVal64
= C
->getSExtValue();
15421 int CVal
= (int) CVal64
;
15422 // None of these constraints allow values larger than 32 bits. Check
15423 // that the value fits in an int.
15424 if (CVal
!= CVal64
)
15427 switch (ConstraintLetter
) {
15429 // Constant suitable for movw, must be between 0 and
15431 if (Subtarget
->hasV6T2Ops() || (Subtarget
->hasV8MBaselineOps()))
15432 if (CVal
>= 0 && CVal
<= 65535)
15436 if (Subtarget
->isThumb1Only()) {
15437 // This must be a constant between 0 and 255, for ADD
15439 if (CVal
>= 0 && CVal
<= 255)
15441 } else if (Subtarget
->isThumb2()) {
15442 // A constant that can be used as an immediate value in a
15443 // data-processing instruction.
15444 if (ARM_AM::getT2SOImmVal(CVal
) != -1)
15447 // A constant that can be used as an immediate value in a
15448 // data-processing instruction.
15449 if (ARM_AM::getSOImmVal(CVal
) != -1)
15455 if (Subtarget
->isThumb1Only()) {
15456 // This must be a constant between -255 and -1, for negated ADD
15457 // immediates. This can be used in GCC with an "n" modifier that
15458 // prints the negated value, for use with SUB instructions. It is
15459 // not useful otherwise but is implemented for compatibility.
15460 if (CVal
>= -255 && CVal
<= -1)
15463 // This must be a constant between -4095 and 4095. It is not clear
15464 // what this constraint is intended for. Implemented for
15465 // compatibility with GCC.
15466 if (CVal
>= -4095 && CVal
<= 4095)
15472 if (Subtarget
->isThumb1Only()) {
15473 // A 32-bit value where only one byte has a nonzero value. Exclude
15474 // zero to match GCC. This constraint is used by GCC internally for
15475 // constants that can be loaded with a move/shift combination.
15476 // It is not useful otherwise but is implemented for compatibility.
15477 if (CVal
!= 0 && ARM_AM::isThumbImmShiftedVal(CVal
))
15479 } else if (Subtarget
->isThumb2()) {
15480 // A constant whose bitwise inverse can be used as an immediate
15481 // value in a data-processing instruction. This can be used in GCC
15482 // with a "B" modifier that prints the inverted value, for use with
15483 // BIC and MVN instructions. It is not useful otherwise but is
15484 // implemented for compatibility.
15485 if (ARM_AM::getT2SOImmVal(~CVal
) != -1)
15488 // A constant whose bitwise inverse can be used as an immediate
15489 // value in a data-processing instruction. This can be used in GCC
15490 // with a "B" modifier that prints the inverted value, for use with
15491 // BIC and MVN instructions. It is not useful otherwise but is
15492 // implemented for compatibility.
15493 if (ARM_AM::getSOImmVal(~CVal
) != -1)
15499 if (Subtarget
->isThumb1Only()) {
15500 // This must be a constant between -7 and 7,
15501 // for 3-operand ADD/SUB immediate instructions.
15502 if (CVal
>= -7 && CVal
< 7)
15504 } else if (Subtarget
->isThumb2()) {
15505 // A constant whose negation can be used as an immediate value in a
15506 // data-processing instruction. This can be used in GCC with an "n"
15507 // modifier that prints the negated value, for use with SUB
15508 // instructions. It is not useful otherwise but is implemented for
15510 if (ARM_AM::getT2SOImmVal(-CVal
) != -1)
15513 // A constant whose negation can be used as an immediate value in a
15514 // data-processing instruction. This can be used in GCC with an "n"
15515 // modifier that prints the negated value, for use with SUB
15516 // instructions. It is not useful otherwise but is implemented for
15518 if (ARM_AM::getSOImmVal(-CVal
) != -1)
15524 if (Subtarget
->isThumb1Only()) {
15525 // This must be a multiple of 4 between 0 and 1020, for
15526 // ADD sp + immediate.
15527 if ((CVal
>= 0 && CVal
<= 1020) && ((CVal
& 3) == 0))
15530 // A power of two or a constant between 0 and 32. This is used in
15531 // GCC for the shift amount on shifted register operands, but it is
15532 // useful in general for any shift amounts.
15533 if ((CVal
>= 0 && CVal
<= 32) || ((CVal
& (CVal
- 1)) == 0))
15539 if (Subtarget
->isThumb1Only()) {
15540 // This must be a constant between 0 and 31, for shift amounts.
15541 if (CVal
>= 0 && CVal
<= 31)
15547 if (Subtarget
->isThumb1Only()) {
15548 // This must be a multiple of 4 between -508 and 508, for
15549 // ADD/SUB sp = sp + immediate.
15550 if ((CVal
>= -508 && CVal
<= 508) && ((CVal
& 3) == 0))
15555 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), Op
.getValueType());
15559 if (Result
.getNode()) {
15560 Ops
.push_back(Result
);
15563 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
15566 static RTLIB::Libcall
getDivRemLibcall(
15567 const SDNode
*N
, MVT::SimpleValueType SVT
) {
15568 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15569 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15570 "Unhandled Opcode in getDivRemLibcall");
15571 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15572 N
->getOpcode() == ISD::SREM
;
15575 default: llvm_unreachable("Unexpected request for libcall!");
15576 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
15577 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
15578 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
15579 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
15584 static TargetLowering::ArgListTy
getDivRemArgList(
15585 const SDNode
*N
, LLVMContext
*Context
, const ARMSubtarget
*Subtarget
) {
15586 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15587 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15588 "Unhandled Opcode in getDivRemArgList");
15589 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15590 N
->getOpcode() == ISD::SREM
;
15591 TargetLowering::ArgListTy Args
;
15592 TargetLowering::ArgListEntry Entry
;
15593 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
15594 EVT ArgVT
= N
->getOperand(i
).getValueType();
15595 Type
*ArgTy
= ArgVT
.getTypeForEVT(*Context
);
15596 Entry
.Node
= N
->getOperand(i
);
15598 Entry
.IsSExt
= isSigned
;
15599 Entry
.IsZExt
= !isSigned
;
15600 Args
.push_back(Entry
);
15602 if (Subtarget
->isTargetWindows() && Args
.size() >= 2)
15603 std::swap(Args
[0], Args
[1]);
15607 SDValue
ARMTargetLowering::LowerDivRem(SDValue Op
, SelectionDAG
&DAG
) const {
15608 assert((Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
15609 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
15610 Subtarget
->isTargetWindows()) &&
15611 "Register-based DivRem lowering only");
15612 unsigned Opcode
= Op
->getOpcode();
15613 assert((Opcode
== ISD::SDIVREM
|| Opcode
== ISD::UDIVREM
) &&
15614 "Invalid opcode for Div/Rem lowering");
15615 bool isSigned
= (Opcode
== ISD::SDIVREM
);
15616 EVT VT
= Op
->getValueType(0);
15617 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
15620 // If the target has hardware divide, use divide + multiply + subtract:
15622 // rem = a - b * div
15623 // return {div, rem}
15624 // This should be lowered into UDIV/SDIV + MLS later on.
15625 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
15626 : Subtarget
->hasDivideInARMMode();
15627 if (hasDivide
&& Op
->getValueType(0).isSimple() &&
15628 Op
->getSimpleValueType(0) == MVT::i32
) {
15629 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
15630 const SDValue Dividend
= Op
->getOperand(0);
15631 const SDValue Divisor
= Op
->getOperand(1);
15632 SDValue Div
= DAG
.getNode(DivOpcode
, dl
, VT
, Dividend
, Divisor
);
15633 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, VT
, Div
, Divisor
);
15634 SDValue Rem
= DAG
.getNode(ISD::SUB
, dl
, VT
, Dividend
, Mul
);
15636 SDValue Values
[2] = {Div
, Rem
};
15637 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VT
, VT
), Values
);
15640 RTLIB::Libcall LC
= getDivRemLibcall(Op
.getNode(),
15641 VT
.getSimpleVT().SimpleTy
);
15642 SDValue InChain
= DAG
.getEntryNode();
15644 TargetLowering::ArgListTy Args
= getDivRemArgList(Op
.getNode(),
15648 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15649 getPointerTy(DAG
.getDataLayout()));
15651 Type
*RetTy
= StructType::get(Ty
, Ty
);
15653 if (Subtarget
->isTargetWindows())
15654 InChain
= WinDBZCheckDenominator(DAG
, Op
.getNode(), InChain
);
15656 TargetLowering::CallLoweringInfo
CLI(DAG
);
15657 CLI
.setDebugLoc(dl
).setChain(InChain
)
15658 .setCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
15659 .setInRegister().setSExtResult(isSigned
).setZExtResult(!isSigned
);
15661 std::pair
<SDValue
, SDValue
> CallInfo
= LowerCallTo(CLI
);
15662 return CallInfo
.first
;
15665 // Lowers REM using divmod helpers
15666 // see RTABI section 4.2/4.3
15667 SDValue
ARMTargetLowering::LowerREM(SDNode
*N
, SelectionDAG
&DAG
) const {
15668 // Build return types (div and rem)
15669 std::vector
<Type
*> RetTyParams
;
15670 Type
*RetTyElement
;
15672 switch (N
->getValueType(0).getSimpleVT().SimpleTy
) {
15673 default: llvm_unreachable("Unexpected request for libcall!");
15674 case MVT::i8
: RetTyElement
= Type::getInt8Ty(*DAG
.getContext()); break;
15675 case MVT::i16
: RetTyElement
= Type::getInt16Ty(*DAG
.getContext()); break;
15676 case MVT::i32
: RetTyElement
= Type::getInt32Ty(*DAG
.getContext()); break;
15677 case MVT::i64
: RetTyElement
= Type::getInt64Ty(*DAG
.getContext()); break;
15680 RetTyParams
.push_back(RetTyElement
);
15681 RetTyParams
.push_back(RetTyElement
);
15682 ArrayRef
<Type
*> ret
= ArrayRef
<Type
*>(RetTyParams
);
15683 Type
*RetTy
= StructType::get(*DAG
.getContext(), ret
);
15685 RTLIB::Libcall LC
= getDivRemLibcall(N
, N
->getValueType(0).getSimpleVT().
15687 SDValue InChain
= DAG
.getEntryNode();
15688 TargetLowering::ArgListTy Args
= getDivRemArgList(N
, DAG
.getContext(),
15690 bool isSigned
= N
->getOpcode() == ISD::SREM
;
15691 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15692 getPointerTy(DAG
.getDataLayout()));
15694 if (Subtarget
->isTargetWindows())
15695 InChain
= WinDBZCheckDenominator(DAG
, N
, InChain
);
15698 CallLoweringInfo
CLI(DAG
);
15699 CLI
.setChain(InChain
)
15700 .setCallee(CallingConv::ARM_AAPCS
, RetTy
, Callee
, std::move(Args
))
15701 .setSExtResult(isSigned
).setZExtResult(!isSigned
).setDebugLoc(SDLoc(N
));
15702 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
15704 // Return second (rem) result operand (first contains div)
15705 SDNode
*ResNode
= CallResult
.first
.getNode();
15706 assert(ResNode
->getNumOperands() == 2 && "divmod should return two operands");
15707 return ResNode
->getOperand(1);
15711 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const {
15712 assert(Subtarget
->isTargetWindows() && "unsupported target platform");
15716 SDValue Chain
= Op
.getOperand(0);
15717 SDValue Size
= Op
.getOperand(1);
15719 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
15720 "no-stack-arg-probe")) {
15721 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
15722 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15723 Chain
= SP
.getValue(1);
15724 SP
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, SP
, Size
);
15726 SP
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, SP
.getValue(0),
15727 DAG
.getConstant(-(uint64_t)Align
, DL
, MVT::i32
));
15728 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::SP
, SP
);
15729 SDValue Ops
[2] = { SP
, Chain
};
15730 return DAG
.getMergeValues(Ops
, DL
);
15733 SDValue Words
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Size
,
15734 DAG
.getConstant(2, DL
, MVT::i32
));
15737 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R4
, Words
, Flag
);
15738 Flag
= Chain
.getValue(1);
15740 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
15741 Chain
= DAG
.getNode(ARMISD::WIN__CHKSTK
, DL
, NodeTys
, Chain
, Flag
);
15743 SDValue NewSP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15744 Chain
= NewSP
.getValue(1);
15746 SDValue Ops
[2] = { NewSP
, Chain
};
15747 return DAG
.getMergeValues(Ops
, DL
);
15750 SDValue
ARMTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
15751 SDValue SrcVal
= Op
.getOperand(0);
15752 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15753 const unsigned SrcSz
= SrcVal
.getValueType().getSizeInBits();
15754 assert(DstSz
> SrcSz
&& DstSz
<= 64 && SrcSz
>= 16 &&
15755 "Unexpected type for custom-lowering FP_EXTEND");
15757 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15758 "With both FP DP and 16, any FP conversion is legal!");
15760 assert(!(DstSz
== 32 && Subtarget
->hasFP16()) &&
15761 "With FP16, 16 to 32 conversion is legal!");
15763 // Either we are converting from 16 -> 64, without FP16 and/or
15764 // FP.double-precision or without Armv8-fp. So we must do it in two
15766 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
15767 // without FP16. So we must do a function call.
15770 MakeLibCallOptions CallOptions
;
15772 // Instruction from 16 -> 32
15773 if (Subtarget
->hasFP16())
15774 SrcVal
= DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f32
, SrcVal
);
15775 // Lib call from 16 -> 32
15777 LC
= RTLIB::getFPEXT(MVT::f16
, MVT::f32
);
15778 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15779 "Unexpected type for custom-lowering FP_EXTEND");
15781 makeLibCall(DAG
, LC
, MVT::f32
, SrcVal
, CallOptions
, Loc
).first
;
15787 // For sure now SrcVal is 32 bits
15788 if (Subtarget
->hasFP64()) // Instruction from 32 -> 64
15789 return DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f64
, SrcVal
);
15791 LC
= RTLIB::getFPEXT(MVT::f32
, MVT::f64
);
15792 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15793 "Unexpected type for custom-lowering FP_EXTEND");
15794 return makeLibCall(DAG
, LC
, MVT::f64
, SrcVal
, CallOptions
, Loc
).first
;
15797 SDValue
ARMTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
15798 SDValue SrcVal
= Op
.getOperand(0);
15799 EVT SrcVT
= SrcVal
.getValueType();
15800 EVT DstVT
= Op
.getValueType();
15801 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15802 const unsigned SrcSz
= SrcVT
.getSizeInBits();
15804 assert(DstSz
< SrcSz
&& SrcSz
<= 64 && DstSz
>= 16 &&
15805 "Unexpected type for custom-lowering FP_ROUND");
15807 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15808 "With both FP DP and 16, any FP conversion is legal!");
15812 // Instruction from 32 -> 16 if hasFP16 is valid
15813 if (SrcSz
== 32 && Subtarget
->hasFP16())
15816 // Lib call from 32 -> 16 / 64 -> [32, 16]
15817 RTLIB::Libcall LC
= RTLIB::getFPROUND(SrcVT
, DstVT
);
15818 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15819 "Unexpected type for custom-lowering FP_ROUND");
15820 MakeLibCallOptions CallOptions
;
15821 return makeLibCall(DAG
, LC
, DstVT
, SrcVal
, CallOptions
, Loc
).first
;
15824 void ARMTargetLowering::lowerABS(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
15825 SelectionDAG
&DAG
) const {
15826 assert(N
->getValueType(0) == MVT::i64
&& "Unexpected type (!= i64) on ABS.");
15827 MVT HalfT
= MVT::i32
;
15829 SDValue Hi
, Lo
, Tmp
;
15831 if (!isOperationLegalOrCustom(ISD::ADDCARRY
, HalfT
) ||
15832 !isOperationLegalOrCustom(ISD::UADDO
, HalfT
))
15835 unsigned OpTypeBits
= HalfT
.getScalarSizeInBits();
15836 SDVTList VTList
= DAG
.getVTList(HalfT
, MVT::i1
);
15838 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15839 DAG
.getConstant(0, dl
, HalfT
));
15840 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15841 DAG
.getConstant(1, dl
, HalfT
));
15843 Tmp
= DAG
.getNode(ISD::SRA
, dl
, HalfT
, Hi
,
15844 DAG
.getConstant(OpTypeBits
- 1, dl
,
15845 getShiftAmountTy(HalfT
, DAG
.getDataLayout())));
15846 Lo
= DAG
.getNode(ISD::UADDO
, dl
, VTList
, Tmp
, Lo
);
15847 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTList
, Tmp
, Hi
,
15848 SDValue(Lo
.getNode(), 1));
15849 Hi
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Hi
);
15850 Lo
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Lo
);
15852 Results
.push_back(Lo
);
15853 Results
.push_back(Hi
);
15857 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
15858 // The ARM target isn't yet aware of offsets.
15862 bool ARM::isBitFieldInvertedMask(unsigned v
) {
15863 if (v
== 0xffffffff)
15866 // there can be 1's on either or both "outsides", all the "inside"
15867 // bits must be 0's
15868 return isShiftedMask_32(~v
);
15871 /// isFPImmLegal - Returns true if the target can instruction select the
15872 /// specified FP immediate natively. If false, the legalizer will
15873 /// materialize the FP immediate as a load from a constant pool.
15874 bool ARMTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
15875 bool ForCodeSize
) const {
15876 if (!Subtarget
->hasVFP3Base())
15878 if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
15879 return ARM_AM::getFP16Imm(Imm
) != -1;
15880 if (VT
== MVT::f32
)
15881 return ARM_AM::getFP32Imm(Imm
) != -1;
15882 if (VT
== MVT::f64
&& Subtarget
->hasFP64())
15883 return ARM_AM::getFP64Imm(Imm
) != -1;
15887 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
15888 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
15889 /// specified in the intrinsic calls.
15890 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
15892 MachineFunction
&MF
,
15893 unsigned Intrinsic
) const {
15894 switch (Intrinsic
) {
15895 case Intrinsic::arm_neon_vld1
:
15896 case Intrinsic::arm_neon_vld2
:
15897 case Intrinsic::arm_neon_vld3
:
15898 case Intrinsic::arm_neon_vld4
:
15899 case Intrinsic::arm_neon_vld2lane
:
15900 case Intrinsic::arm_neon_vld3lane
:
15901 case Intrinsic::arm_neon_vld4lane
:
15902 case Intrinsic::arm_neon_vld2dup
:
15903 case Intrinsic::arm_neon_vld3dup
:
15904 case Intrinsic::arm_neon_vld4dup
: {
15905 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15906 // Conservatively set memVT to the entire set of vectors loaded.
15907 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15908 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15909 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15910 Info
.ptrVal
= I
.getArgOperand(0);
15912 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15913 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
15914 // volatile loads with NEON intrinsics not supported
15915 Info
.flags
= MachineMemOperand::MOLoad
;
15918 case Intrinsic::arm_neon_vld1x2
:
15919 case Intrinsic::arm_neon_vld1x3
:
15920 case Intrinsic::arm_neon_vld1x4
: {
15921 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15922 // Conservatively set memVT to the entire set of vectors loaded.
15923 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15924 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15925 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15926 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15928 Info
.align
.reset();
15929 // volatile loads with NEON intrinsics not supported
15930 Info
.flags
= MachineMemOperand::MOLoad
;
15933 case Intrinsic::arm_neon_vst1
:
15934 case Intrinsic::arm_neon_vst2
:
15935 case Intrinsic::arm_neon_vst3
:
15936 case Intrinsic::arm_neon_vst4
:
15937 case Intrinsic::arm_neon_vst2lane
:
15938 case Intrinsic::arm_neon_vst3lane
:
15939 case Intrinsic::arm_neon_vst4lane
: {
15940 Info
.opc
= ISD::INTRINSIC_VOID
;
15941 // Conservatively set memVT to the entire set of vectors stored.
15942 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15943 unsigned NumElts
= 0;
15944 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15945 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15946 if (!ArgTy
->isVectorTy())
15948 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15950 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15951 Info
.ptrVal
= I
.getArgOperand(0);
15953 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15954 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
15955 // volatile stores with NEON intrinsics not supported
15956 Info
.flags
= MachineMemOperand::MOStore
;
15959 case Intrinsic::arm_neon_vst1x2
:
15960 case Intrinsic::arm_neon_vst1x3
:
15961 case Intrinsic::arm_neon_vst1x4
: {
15962 Info
.opc
= ISD::INTRINSIC_VOID
;
15963 // Conservatively set memVT to the entire set of vectors stored.
15964 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15965 unsigned NumElts
= 0;
15966 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15967 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15968 if (!ArgTy
->isVectorTy())
15970 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15972 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15973 Info
.ptrVal
= I
.getArgOperand(0);
15975 Info
.align
.reset();
15976 // volatile stores with NEON intrinsics not supported
15977 Info
.flags
= MachineMemOperand::MOStore
;
15980 case Intrinsic::arm_ldaex
:
15981 case Intrinsic::arm_ldrex
: {
15982 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15983 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
15984 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15985 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15986 Info
.ptrVal
= I
.getArgOperand(0);
15988 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
15989 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15992 case Intrinsic::arm_stlex
:
15993 case Intrinsic::arm_strex
: {
15994 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15995 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
15996 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15997 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15998 Info
.ptrVal
= I
.getArgOperand(1);
16000 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
16001 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
16004 case Intrinsic::arm_stlexd
:
16005 case Intrinsic::arm_strexd
:
16006 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16007 Info
.memVT
= MVT::i64
;
16008 Info
.ptrVal
= I
.getArgOperand(2);
16010 Info
.align
= Align(8);
16011 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
16014 case Intrinsic::arm_ldaexd
:
16015 case Intrinsic::arm_ldrexd
:
16016 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16017 Info
.memVT
= MVT::i64
;
16018 Info
.ptrVal
= I
.getArgOperand(0);
16020 Info
.align
= Align(8);
16021 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
16031 /// Returns true if it is beneficial to convert a load of a constant
16032 /// to just the constant itself.
16033 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
16035 assert(Ty
->isIntegerTy());
16037 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
16038 if (Bits
== 0 || Bits
> 32)
16043 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
16044 unsigned Index
) const {
16045 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
16048 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
16051 Instruction
* ARMTargetLowering::makeDMB(IRBuilder
<> &Builder
,
16052 ARM_MB::MemBOpt Domain
) const {
16053 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16055 // First, if the target has no DMB, see what fallback we can use.
16056 if (!Subtarget
->hasDataBarrier()) {
16057 // Some ARMv6 cpus can support data barriers with an mcr instruction.
16058 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
16060 if (Subtarget
->hasV6Ops() && !Subtarget
->isThumb()) {
16061 Function
*MCR
= Intrinsic::getDeclaration(M
, Intrinsic::arm_mcr
);
16062 Value
* args
[6] = {Builder
.getInt32(15), Builder
.getInt32(0),
16063 Builder
.getInt32(0), Builder
.getInt32(7),
16064 Builder
.getInt32(10), Builder
.getInt32(5)};
16065 return Builder
.CreateCall(MCR
, args
);
16067 // Instead of using barriers, atomic accesses on these subtargets use
16069 llvm_unreachable("makeDMB on a target so old that it has no barriers");
16072 Function
*DMB
= Intrinsic::getDeclaration(M
, Intrinsic::arm_dmb
);
16073 // Only a full system barrier exists in the M-class architectures.
16074 Domain
= Subtarget
->isMClass() ? ARM_MB::SY
: Domain
;
16075 Constant
*CDomain
= Builder
.getInt32(Domain
);
16076 return Builder
.CreateCall(DMB
, CDomain
);
16080 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
16081 Instruction
*ARMTargetLowering::emitLeadingFence(IRBuilder
<> &Builder
,
16083 AtomicOrdering Ord
) const {
16085 case AtomicOrdering::NotAtomic
:
16086 case AtomicOrdering::Unordered
:
16087 llvm_unreachable("Invalid fence: unordered/non-atomic");
16088 case AtomicOrdering::Monotonic
:
16089 case AtomicOrdering::Acquire
:
16090 return nullptr; // Nothing to do
16091 case AtomicOrdering::SequentiallyConsistent
:
16092 if (!Inst
->hasAtomicStore())
16093 return nullptr; // Nothing to do
16095 case AtomicOrdering::Release
:
16096 case AtomicOrdering::AcquireRelease
:
16097 if (Subtarget
->preferISHSTBarriers())
16098 return makeDMB(Builder
, ARM_MB::ISHST
);
16099 // FIXME: add a comment with a link to documentation justifying this.
16101 return makeDMB(Builder
, ARM_MB::ISH
);
16103 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
16106 Instruction
*ARMTargetLowering::emitTrailingFence(IRBuilder
<> &Builder
,
16108 AtomicOrdering Ord
) const {
16110 case AtomicOrdering::NotAtomic
:
16111 case AtomicOrdering::Unordered
:
16112 llvm_unreachable("Invalid fence: unordered/not-atomic");
16113 case AtomicOrdering::Monotonic
:
16114 case AtomicOrdering::Release
:
16115 return nullptr; // Nothing to do
16116 case AtomicOrdering::Acquire
:
16117 case AtomicOrdering::AcquireRelease
:
16118 case AtomicOrdering::SequentiallyConsistent
:
16119 return makeDMB(Builder
, ARM_MB::ISH
);
16121 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
16124 // Loads and stores less than 64-bits are already atomic; ones above that
16125 // are doomed anyway, so defer to the default libcall and blame the OS when
16126 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16127 // anything for those.
16128 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
16129 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
16130 return (Size
== 64) && !Subtarget
->isMClass();
16133 // Loads and stores less than 64-bits are already atomic; ones above that
16134 // are doomed anyway, so defer to the default libcall and blame the OS when
16135 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16136 // anything for those.
16137 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
16138 // guarantee, see DDI0406C ARM architecture reference manual,
16139 // sections A8.8.72-74 LDRD)
16140 TargetLowering::AtomicExpansionKind
16141 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
16142 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
16143 return ((Size
== 64) && !Subtarget
->isMClass()) ? AtomicExpansionKind::LLOnly
16144 : AtomicExpansionKind::None
;
16147 // For the real atomic operations, we have ldrex/strex up to 32 bits,
16148 // and up to 64 bits on the non-M profiles
16149 TargetLowering::AtomicExpansionKind
16150 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
16151 if (AI
->isFloatingPointOperation())
16152 return AtomicExpansionKind::CmpXChg
;
16154 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
16155 bool hasAtomicRMW
= !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16156 return (Size
<= (Subtarget
->isMClass() ? 32U : 64U) && hasAtomicRMW
)
16157 ? AtomicExpansionKind::LLSC
16158 : AtomicExpansionKind::None
;
16161 TargetLowering::AtomicExpansionKind
16162 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
16163 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
16164 // implement cmpxchg without spilling. If the address being exchanged is also
16165 // on the stack and close enough to the spill slot, this can lead to a
16166 // situation where the monitor always gets cleared and the atomic operation
16167 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
16168 bool HasAtomicCmpXchg
=
16169 !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16170 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg
)
16171 return AtomicExpansionKind::LLSC
;
16172 return AtomicExpansionKind::None
;
16175 bool ARMTargetLowering::shouldInsertFencesForAtomic(
16176 const Instruction
*I
) const {
16177 return InsertFencesForAtomic
;
16180 // This has so far only been implemented for MachO.
16181 bool ARMTargetLowering::useLoadStackGuardNode() const {
16182 return Subtarget
->isTargetMachO();
16185 void ARMTargetLowering::insertSSPDeclarations(Module
&M
) const {
16186 if (!Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16187 return TargetLowering::insertSSPDeclarations(M
);
16189 // MSVC CRT has a global variable holding security cookie.
16190 M
.getOrInsertGlobal("__security_cookie",
16191 Type::getInt8PtrTy(M
.getContext()));
16193 // MSVC CRT has a function to validate security cookie.
16194 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
16195 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
16196 Type::getInt8PtrTy(M
.getContext()));
16197 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee()))
16198 F
->addAttribute(1, Attribute::AttrKind::InReg
);
16201 Value
*ARMTargetLowering::getSDagStackGuard(const Module
&M
) const {
16202 // MSVC CRT has a global variable holding security cookie.
16203 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16204 return M
.getGlobalVariable("__security_cookie");
16205 return TargetLowering::getSDagStackGuard(M
);
16208 Function
*ARMTargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
16209 // MSVC CRT has a function to validate security cookie.
16210 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16211 return M
.getFunction("__security_check_cookie");
16212 return TargetLowering::getSSPStackGuardCheck(M
);
16215 bool ARMTargetLowering::canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
16216 unsigned &Cost
) const {
16217 // If we do not have NEON, vector types are not natively supported.
16218 if (!Subtarget
->hasNEON())
16221 // Floating point values and vector values map to the same register file.
16222 // Therefore, although we could do a store extract of a vector type, this is
16223 // better to leave at float as we have more freedom in the addressing mode for
16225 if (VectorTy
->isFPOrFPVectorTy())
16228 // If the index is unknown at compile time, this is very expensive to lower
16229 // and it is not possible to combine the store with the extract.
16230 if (!isa
<ConstantInt
>(Idx
))
16233 assert(VectorTy
->isVectorTy() && "VectorTy is not a vector type");
16234 unsigned BitWidth
= cast
<VectorType
>(VectorTy
)->getBitWidth();
16235 // We can do a store + vector extract on any vector that fits perfectly in a D
16237 if (BitWidth
== 64 || BitWidth
== 128) {
16244 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
16245 return Subtarget
->hasV6T2Ops();
16248 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
16249 return Subtarget
->hasV6T2Ops();
16252 bool ARMTargetLowering::shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const {
16253 return !Subtarget
->hasMinSize();
16256 Value
*ARMTargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
16257 AtomicOrdering Ord
) const {
16258 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16259 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
16260 bool IsAcquire
= isAcquireOrStronger(Ord
);
16262 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
16263 // intrinsic must return {i32, i32} and we have to recombine them into a
16264 // single i64 here.
16265 if (ValTy
->getPrimitiveSizeInBits() == 64) {
16266 Intrinsic::ID Int
=
16267 IsAcquire
? Intrinsic::arm_ldaexd
: Intrinsic::arm_ldrexd
;
16268 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
);
16270 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16271 Value
*LoHi
= Builder
.CreateCall(Ldrex
, Addr
, "lohi");
16273 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
16274 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
16275 if (!Subtarget
->isLittle())
16276 std::swap (Lo
, Hi
);
16277 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
16278 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
16279 return Builder
.CreateOr(
16280 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 32)), "val64");
16283 Type
*Tys
[] = { Addr
->getType() };
16284 Intrinsic::ID Int
= IsAcquire
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex
;
16285 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16287 return Builder
.CreateTruncOrBitCast(
16288 Builder
.CreateCall(Ldrex
, Addr
),
16289 cast
<PointerType
>(Addr
->getType())->getElementType());
16292 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16293 IRBuilder
<> &Builder
) const {
16294 if (!Subtarget
->hasV7Ops())
16296 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16297 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::arm_clrex
));
16300 Value
*ARMTargetLowering::emitStoreConditional(IRBuilder
<> &Builder
, Value
*Val
,
16302 AtomicOrdering Ord
) const {
16303 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16304 bool IsRelease
= isReleaseOrStronger(Ord
);
16306 // Since the intrinsics must have legal type, the i64 intrinsics take two
16307 // parameters: "i32, i32". We must marshal Val into the appropriate form
16308 // before the call.
16309 if (Val
->getType()->getPrimitiveSizeInBits() == 64) {
16310 Intrinsic::ID Int
=
16311 IsRelease
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd
;
16312 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
);
16313 Type
*Int32Ty
= Type::getInt32Ty(M
->getContext());
16315 Value
*Lo
= Builder
.CreateTrunc(Val
, Int32Ty
, "lo");
16316 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 32), Int32Ty
, "hi");
16317 if (!Subtarget
->isLittle())
16319 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16320 return Builder
.CreateCall(Strex
, {Lo
, Hi
, Addr
});
16323 Intrinsic::ID Int
= IsRelease
? Intrinsic::arm_stlex
: Intrinsic::arm_strex
;
16324 Type
*Tys
[] = { Addr
->getType() };
16325 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16327 return Builder
.CreateCall(
16328 Strex
, {Builder
.CreateZExtOrBitCast(
16329 Val
, Strex
->getFunctionType()->getParamType(0)),
16334 bool ARMTargetLowering::alignLoopsWithOptSize() const {
16335 return Subtarget
->isMClass();
16338 /// A helper function for determining the number of interleaved accesses we
16339 /// will generate when lowering accesses of the given type.
16341 ARMTargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
16342 const DataLayout
&DL
) const {
16343 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
16346 bool ARMTargetLowering::isLegalInterleavedAccessType(
16347 VectorType
*VecTy
, const DataLayout
&DL
) const {
16349 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
16350 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
16352 // Ensure the vector doesn't have f16 elements. Even though we could do an
16353 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16355 if (VecTy
->getElementType()->isHalfTy())
16358 // Ensure the number of vector elements is greater than 1.
16359 if (VecTy
->getNumElements() < 2)
16362 // Ensure the element type is legal.
16363 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32)
16366 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16367 // 128 will be split into multiple interleaved accesses.
16368 return VecSize
== 64 || VecSize
% 128 == 0;
16371 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
16372 if (Subtarget
->hasNEON())
16374 return TargetLoweringBase::getMaxSupportedInterleaveFactor();
16377 /// Lower an interleaved load into a vldN intrinsic.
16379 /// E.g. Lower an interleaved load (Factor = 2):
16380 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
16381 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
16382 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
16385 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
16386 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
16387 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
16388 bool ARMTargetLowering::lowerInterleavedLoad(
16389 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
16390 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
16391 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16392 "Invalid interleave factor");
16393 assert(!Shuffles
.empty() && "Empty shufflevector input");
16394 assert(Shuffles
.size() == Indices
.size() &&
16395 "Unmatched number of shufflevectors and indices");
16397 VectorType
*VecTy
= Shuffles
[0]->getType();
16398 Type
*EltTy
= VecTy
->getVectorElementType();
16400 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
16402 // Skip if we do not have NEON and skip illegal vector types. We can
16403 // "legalize" wide vector types into multiple interleaved accesses as long as
16404 // the vector types are divisible by 128.
16405 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
16408 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
16410 // A pointer vector can not be the return type of the ldN intrinsics. Need to
16411 // load integer vectors first and then convert to pointer vectors.
16412 if (EltTy
->isPointerTy())
16414 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
16416 IRBuilder
<> Builder(LI
);
16418 // The base address of the load.
16419 Value
*BaseAddr
= LI
->getPointerOperand();
16421 if (NumLoads
> 1) {
16422 // If we're going to generate more than one load, reset the sub-vector type
16423 // to something legal.
16424 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
16425 VecTy
->getVectorNumElements() / NumLoads
);
16427 // We will compute the pointer operand of each load from the original base
16428 // address using GEPs. Cast the base address to a pointer to the scalar
16430 BaseAddr
= Builder
.CreateBitCast(
16431 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
16432 LI
->getPointerAddressSpace()));
16435 assert(isTypeLegal(EVT::getEVT(VecTy
)) && "Illegal vldN vector type!");
16437 Type
*Int8Ptr
= Builder
.getInt8PtrTy(LI
->getPointerAddressSpace());
16438 Type
*Tys
[] = {VecTy
, Int8Ptr
};
16439 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::arm_neon_vld2
,
16440 Intrinsic::arm_neon_vld3
,
16441 Intrinsic::arm_neon_vld4
};
16442 Function
*VldnFunc
=
16443 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
16445 // Holds sub-vectors extracted from the load intrinsic return values. The
16446 // sub-vectors are associated with the shufflevector instructions they will
16448 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
16450 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
16451 // If we're generating more than one load, compute the base address of
16452 // subsequent loads as an offset from the previous.
16455 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
16456 VecTy
->getVectorNumElements() * Factor
);
16458 SmallVector
<Value
*, 2> Ops
;
16459 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16460 Ops
.push_back(Builder
.getInt32(LI
->getAlignment()));
16462 CallInst
*VldN
= Builder
.CreateCall(VldnFunc
, Ops
, "vldN");
16464 // Replace uses of each shufflevector with the corresponding vector loaded
16466 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
16467 ShuffleVectorInst
*SV
= Shuffles
[i
];
16468 unsigned Index
= Indices
[i
];
16470 Value
*SubVec
= Builder
.CreateExtractValue(VldN
, Index
);
16472 // Convert the integer vector to pointer vector if the element is pointer.
16473 if (EltTy
->isPointerTy())
16474 SubVec
= Builder
.CreateIntToPtr(
16475 SubVec
, VectorType::get(SV
->getType()->getVectorElementType(),
16476 VecTy
->getVectorNumElements()));
16478 SubVecs
[SV
].push_back(SubVec
);
16482 // Replace uses of the shufflevector instructions with the sub-vectors
16483 // returned by the load intrinsic. If a shufflevector instruction is
16484 // associated with more than one sub-vector, those sub-vectors will be
16485 // concatenated into a single wide vector.
16486 for (ShuffleVectorInst
*SVI
: Shuffles
) {
16487 auto &SubVec
= SubVecs
[SVI
];
16489 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
16490 SVI
->replaceAllUsesWith(WideVec
);
16496 /// Lower an interleaved store into a vstN intrinsic.
16498 /// E.g. Lower an interleaved store (Factor = 3):
16499 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
16500 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
16501 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
16504 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
16505 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
16506 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
16507 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16509 /// Note that the new shufflevectors will be removed and we'll only generate one
16510 /// vst3 instruction in CodeGen.
16512 /// Example for a more general valid mask (Factor 3). Lower:
16513 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
16514 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
16515 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
16518 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
16519 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
16520 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
16521 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16522 bool ARMTargetLowering::lowerInterleavedStore(StoreInst
*SI
,
16523 ShuffleVectorInst
*SVI
,
16524 unsigned Factor
) const {
16525 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16526 "Invalid interleave factor");
16528 VectorType
*VecTy
= SVI
->getType();
16529 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
16530 "Invalid interleaved store");
16532 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
16533 Type
*EltTy
= VecTy
->getVectorElementType();
16534 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
16536 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
16538 // Skip if we do not have NEON and skip illegal vector types. We can
16539 // "legalize" wide vector types into multiple interleaved accesses as long as
16540 // the vector types are divisible by 128.
16541 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
16544 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
16546 Value
*Op0
= SVI
->getOperand(0);
16547 Value
*Op1
= SVI
->getOperand(1);
16548 IRBuilder
<> Builder(SI
);
16550 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
16551 // vectors to integer vectors.
16552 if (EltTy
->isPointerTy()) {
16553 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
16555 // Convert to the corresponding integer vector.
16557 VectorType::get(IntTy
, Op0
->getType()->getVectorNumElements());
16558 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
16559 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
16561 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
16564 // The base address of the store.
16565 Value
*BaseAddr
= SI
->getPointerOperand();
16567 if (NumStores
> 1) {
16568 // If we're going to generate more than one store, reset the lane length
16569 // and sub-vector type to something legal.
16570 LaneLen
/= NumStores
;
16571 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
16573 // We will compute the pointer operand of each store from the original base
16574 // address using GEPs. Cast the base address to a pointer to the scalar
16576 BaseAddr
= Builder
.CreateBitCast(
16577 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
16578 SI
->getPointerAddressSpace()));
16581 assert(isTypeLegal(EVT::getEVT(SubVecTy
)) && "Illegal vstN vector type!");
16583 auto Mask
= SVI
->getShuffleMask();
16585 Type
*Int8Ptr
= Builder
.getInt8PtrTy(SI
->getPointerAddressSpace());
16586 Type
*Tys
[] = {Int8Ptr
, SubVecTy
};
16587 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::arm_neon_vst2
,
16588 Intrinsic::arm_neon_vst3
,
16589 Intrinsic::arm_neon_vst4
};
16591 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
16592 // If we generating more than one store, we compute the base address of
16593 // subsequent stores as an offset from the previous.
16594 if (StoreCount
> 0)
16595 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
16596 BaseAddr
, LaneLen
* Factor
);
16598 SmallVector
<Value
*, 6> Ops
;
16599 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16601 Function
*VstNFunc
=
16602 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
16604 // Split the shufflevector operands into sub vectors for the new vstN call.
16605 for (unsigned i
= 0; i
< Factor
; i
++) {
16606 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
16607 if (Mask
[IdxI
] >= 0) {
16608 Ops
.push_back(Builder
.CreateShuffleVector(
16609 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
16611 unsigned StartMask
= 0;
16612 for (unsigned j
= 1; j
< LaneLen
; j
++) {
16613 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
16614 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
16615 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
16619 // Note: If all elements in a chunk are undefs, StartMask=0!
16620 // Note: Filling undef gaps with random elements is ok, since
16621 // those elements were being written anyway (with undefs).
16622 // In the case of all undefs we're defaulting to using elems from 0
16623 // Note: StartMask cannot be negative, it's checked in
16624 // isReInterleaveMask
16625 Ops
.push_back(Builder
.CreateShuffleVector(
16626 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
16630 Ops
.push_back(Builder
.getInt32(SI
->getAlignment()));
16631 Builder
.CreateCall(VstNFunc
, Ops
);
16644 static bool isHomogeneousAggregate(Type
*Ty
, HABaseType
&Base
,
16645 uint64_t &Members
) {
16646 if (auto *ST
= dyn_cast
<StructType
>(Ty
)) {
16647 for (unsigned i
= 0; i
< ST
->getNumElements(); ++i
) {
16648 uint64_t SubMembers
= 0;
16649 if (!isHomogeneousAggregate(ST
->getElementType(i
), Base
, SubMembers
))
16651 Members
+= SubMembers
;
16653 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
16654 uint64_t SubMembers
= 0;
16655 if (!isHomogeneousAggregate(AT
->getElementType(), Base
, SubMembers
))
16657 Members
+= SubMembers
* AT
->getNumElements();
16658 } else if (Ty
->isFloatTy()) {
16659 if (Base
!= HA_UNKNOWN
&& Base
!= HA_FLOAT
)
16663 } else if (Ty
->isDoubleTy()) {
16664 if (Base
!= HA_UNKNOWN
&& Base
!= HA_DOUBLE
)
16668 } else if (auto *VT
= dyn_cast
<VectorType
>(Ty
)) {
16675 return VT
->getBitWidth() == 64;
16677 return VT
->getBitWidth() == 128;
16679 switch (VT
->getBitWidth()) {
16692 return (Members
> 0 && Members
<= 4);
16695 /// Return the correct alignment for the current calling convention.
16697 ARMTargetLowering::getABIAlignmentForCallingConv(Type
*ArgTy
,
16698 DataLayout DL
) const {
16699 if (!ArgTy
->isVectorTy())
16700 return DL
.getABITypeAlignment(ArgTy
);
16702 // Avoid over-aligning vector parameters. It would require realigning the
16703 // stack and waste space for no real benefit.
16704 return std::min(DL
.getABITypeAlignment(ArgTy
), DL
.getStackAlignment());
16707 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
16708 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
16709 /// passing according to AAPCS rules.
16710 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
16711 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
16712 if (getEffectiveCallingConv(CallConv
, isVarArg
) !=
16713 CallingConv::ARM_AAPCS_VFP
)
16716 HABaseType Base
= HA_UNKNOWN
;
16717 uint64_t Members
= 0;
16718 bool IsHA
= isHomogeneousAggregate(Ty
, Base
, Members
);
16719 LLVM_DEBUG(dbgs() << "isHA: " << IsHA
<< " "; Ty
->dump());
16721 bool IsIntArray
= Ty
->isArrayTy() && Ty
->getArrayElementType()->isIntegerTy();
16722 return IsHA
|| IsIntArray
;
16725 unsigned ARMTargetLowering::getExceptionPointerRegister(
16726 const Constant
*PersonalityFn
) const {
16727 // Platforms which do not use SjLj EH may return values in these registers
16728 // via the personality function.
16729 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R0
;
16732 unsigned ARMTargetLowering::getExceptionSelectorRegister(
16733 const Constant
*PersonalityFn
) const {
16734 // Platforms which do not use SjLj EH may return values in these registers
16735 // via the personality function.
16736 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R1
;
16739 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
16740 // Update IsSplitCSR in ARMFunctionInfo.
16741 ARMFunctionInfo
*AFI
= Entry
->getParent()->getInfo
<ARMFunctionInfo
>();
16742 AFI
->setIsSplitCSR(true);
16745 void ARMTargetLowering::insertCopiesSplitCSR(
16746 MachineBasicBlock
*Entry
,
16747 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
16748 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
16749 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
16753 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
16754 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
16755 MachineBasicBlock::iterator MBBI
= Entry
->begin();
16756 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
16757 const TargetRegisterClass
*RC
= nullptr;
16758 if (ARM::GPRRegClass
.contains(*I
))
16759 RC
= &ARM::GPRRegClass
;
16760 else if (ARM::DPRRegClass
.contains(*I
))
16761 RC
= &ARM::DPRRegClass
;
16763 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
16765 Register NewVR
= MRI
->createVirtualRegister(RC
);
16766 // Create copy from CSR to a virtual register.
16767 // FIXME: this currently does not emit CFI pseudo-instructions, it works
16768 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
16769 // nounwind. If we want to generalize this later, we may need to emit
16770 // CFI pseudo-instructions.
16771 assert(Entry
->getParent()->getFunction().hasFnAttribute(
16772 Attribute::NoUnwind
) &&
16773 "Function should be nounwind in insertCopiesSplitCSR!");
16774 Entry
->addLiveIn(*I
);
16775 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
16778 // Insert the copy-back instructions right before the terminator.
16779 for (auto *Exit
: Exits
)
16780 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
16781 TII
->get(TargetOpcode::COPY
), *I
)
16786 void ARMTargetLowering::finalizeLowering(MachineFunction
&MF
) const {
16787 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
16788 TargetLoweringBase::finalizeLowering(MF
);