[MIPS GlobalISel] Select float constants
[llvm-complete.git] / lib / Analysis / AliasAnalysis.cpp
blob06a33f659c19301936cd7888b2208227237f5671
1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic AliasAnalysis interface which is used as the
10 // common interface used by all clients and implementations of alias analysis.
12 // This file also implements the default version of the AliasAnalysis interface
13 // that is to be used when no other implementation is specified. This does some
14 // simple tests that detect obvious cases: two different global pointers cannot
15 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
16 // etc.
18 // This alias analysis implementation really isn't very good for anything, but
19 // it is very fast, and makes a nice clean default implementation. Because it
20 // handles lots of little corner cases, other, more complex, alias analysis
21 // implementations may choose to rely on this pass to resolve these simple and
22 // easy cases.
24 //===----------------------------------------------------------------------===//
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
29 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
30 #include "llvm/Analysis/CaptureTracking.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
35 #include "llvm/Analysis/ScopedNoAliasAA.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/AtomicOrdering.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <functional>
54 #include <iterator>
56 using namespace llvm;
58 /// Allow disabling BasicAA from the AA results. This is particularly useful
59 /// when testing to isolate a single AA implementation.
60 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
61 cl::init(false));
63 AAResults::AAResults(AAResults &&Arg)
64 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
65 for (auto &AA : AAs)
66 AA->setAAResults(this);
69 AAResults::~AAResults() {
70 // FIXME; It would be nice to at least clear out the pointers back to this
71 // aggregation here, but we end up with non-nesting lifetimes in the legacy
72 // pass manager that prevent this from working. In the legacy pass manager
73 // we'll end up with dangling references here in some cases.
74 #if 0
75 for (auto &AA : AAs)
76 AA->setAAResults(nullptr);
77 #endif
80 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
81 FunctionAnalysisManager::Invalidator &Inv) {
82 // Check if the AA manager itself has been invalidated.
83 auto PAC = PA.getChecker<AAManager>();
84 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
85 return true; // The manager needs to be blown away, clear everything.
87 // Check all of the dependencies registered.
88 for (AnalysisKey *ID : AADeps)
89 if (Inv.invalidate(ID, F, PA))
90 return true;
92 // Everything we depend on is still fine, so are we. Nothing to invalidate.
93 return false;
96 //===----------------------------------------------------------------------===//
97 // Default chaining methods
98 //===----------------------------------------------------------------------===//
100 AliasResult AAResults::alias(const MemoryLocation &LocA,
101 const MemoryLocation &LocB) {
102 AAQueryInfo AAQIP;
103 return alias(LocA, LocB, AAQIP);
106 AliasResult AAResults::alias(const MemoryLocation &LocA,
107 const MemoryLocation &LocB, AAQueryInfo &AAQI) {
108 for (const auto &AA : AAs) {
109 auto Result = AA->alias(LocA, LocB, AAQI);
110 if (Result != MayAlias)
111 return Result;
113 return MayAlias;
116 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
117 bool OrLocal) {
118 AAQueryInfo AAQIP;
119 return pointsToConstantMemory(Loc, AAQIP, OrLocal);
122 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
123 AAQueryInfo &AAQI, bool OrLocal) {
124 for (const auto &AA : AAs)
125 if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal))
126 return true;
128 return false;
131 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
132 ModRefInfo Result = ModRefInfo::ModRef;
134 for (const auto &AA : AAs) {
135 Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));
137 // Early-exit the moment we reach the bottom of the lattice.
138 if (isNoModRef(Result))
139 return ModRefInfo::NoModRef;
142 return Result;
145 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
146 AAQueryInfo AAQIP;
147 return getModRefInfo(I, Call2, AAQIP);
150 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2,
151 AAQueryInfo &AAQI) {
152 // We may have two calls.
153 if (const auto *Call1 = dyn_cast<CallBase>(I)) {
154 // Check if the two calls modify the same memory.
155 return getModRefInfo(Call1, Call2, AAQI);
156 } else if (I->isFenceLike()) {
157 // If this is a fence, just return ModRef.
158 return ModRefInfo::ModRef;
159 } else {
160 // Otherwise, check if the call modifies or references the
161 // location this memory access defines. The best we can say
162 // is that if the call references what this instruction
163 // defines, it must be clobbered by this location.
164 const MemoryLocation DefLoc = MemoryLocation::get(I);
165 ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
166 if (isModOrRefSet(MR))
167 return setModAndRef(MR);
169 return ModRefInfo::NoModRef;
172 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
173 const MemoryLocation &Loc) {
174 AAQueryInfo AAQIP;
175 return getModRefInfo(Call, Loc, AAQIP);
178 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
179 const MemoryLocation &Loc,
180 AAQueryInfo &AAQI) {
181 ModRefInfo Result = ModRefInfo::ModRef;
183 for (const auto &AA : AAs) {
184 Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI));
186 // Early-exit the moment we reach the bottom of the lattice.
187 if (isNoModRef(Result))
188 return ModRefInfo::NoModRef;
191 // Try to refine the mod-ref info further using other API entry points to the
192 // aggregate set of AA results.
193 auto MRB = getModRefBehavior(Call);
194 if (MRB == FMRB_DoesNotAccessMemory ||
195 MRB == FMRB_OnlyAccessesInaccessibleMem)
196 return ModRefInfo::NoModRef;
198 if (onlyReadsMemory(MRB))
199 Result = clearMod(Result);
200 else if (doesNotReadMemory(MRB))
201 Result = clearRef(Result);
203 if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
204 bool IsMustAlias = true;
205 ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
206 if (doesAccessArgPointees(MRB)) {
207 for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) {
208 const Value *Arg = *AI;
209 if (!Arg->getType()->isPointerTy())
210 continue;
211 unsigned ArgIdx = std::distance(Call->arg_begin(), AI);
212 MemoryLocation ArgLoc =
213 MemoryLocation::getForArgument(Call, ArgIdx, TLI);
214 AliasResult ArgAlias = alias(ArgLoc, Loc);
215 if (ArgAlias != NoAlias) {
216 ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
217 AllArgsMask = unionModRef(AllArgsMask, ArgMask);
219 // Conservatively clear IsMustAlias unless only MustAlias is found.
220 IsMustAlias &= (ArgAlias == MustAlias);
223 // Return NoModRef if no alias found with any argument.
224 if (isNoModRef(AllArgsMask))
225 return ModRefInfo::NoModRef;
226 // Logical & between other AA analyses and argument analysis.
227 Result = intersectModRef(Result, AllArgsMask);
228 // If only MustAlias found above, set Must bit.
229 Result = IsMustAlias ? setMust(Result) : clearMust(Result);
232 // If Loc is a constant memory location, the call definitely could not
233 // modify the memory location.
234 if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
235 Result = clearMod(Result);
237 return Result;
240 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
241 const CallBase *Call2) {
242 AAQueryInfo AAQIP;
243 return getModRefInfo(Call1, Call2, AAQIP);
246 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
247 const CallBase *Call2, AAQueryInfo &AAQI) {
248 ModRefInfo Result = ModRefInfo::ModRef;
250 for (const auto &AA : AAs) {
251 Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI));
253 // Early-exit the moment we reach the bottom of the lattice.
254 if (isNoModRef(Result))
255 return ModRefInfo::NoModRef;
258 // Try to refine the mod-ref info further using other API entry points to the
259 // aggregate set of AA results.
261 // If Call1 or Call2 are readnone, they don't interact.
262 auto Call1B = getModRefBehavior(Call1);
263 if (Call1B == FMRB_DoesNotAccessMemory)
264 return ModRefInfo::NoModRef;
266 auto Call2B = getModRefBehavior(Call2);
267 if (Call2B == FMRB_DoesNotAccessMemory)
268 return ModRefInfo::NoModRef;
270 // If they both only read from memory, there is no dependence.
271 if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
272 return ModRefInfo::NoModRef;
274 // If Call1 only reads memory, the only dependence on Call2 can be
275 // from Call1 reading memory written by Call2.
276 if (onlyReadsMemory(Call1B))
277 Result = clearMod(Result);
278 else if (doesNotReadMemory(Call1B))
279 Result = clearRef(Result);
281 // If Call2 only access memory through arguments, accumulate the mod/ref
282 // information from Call1's references to the memory referenced by
283 // Call2's arguments.
284 if (onlyAccessesArgPointees(Call2B)) {
285 if (!doesAccessArgPointees(Call2B))
286 return ModRefInfo::NoModRef;
287 ModRefInfo R = ModRefInfo::NoModRef;
288 bool IsMustAlias = true;
289 for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
290 const Value *Arg = *I;
291 if (!Arg->getType()->isPointerTy())
292 continue;
293 unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
294 auto Call2ArgLoc =
295 MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
297 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
298 // dependence of Call1 on that location is the inverse:
299 // - If Call2 modifies location, dependence exists if Call1 reads or
300 // writes.
301 // - If Call2 only reads location, dependence exists if Call1 writes.
302 ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
303 ModRefInfo ArgMask = ModRefInfo::NoModRef;
304 if (isModSet(ArgModRefC2))
305 ArgMask = ModRefInfo::ModRef;
306 else if (isRefSet(ArgModRefC2))
307 ArgMask = ModRefInfo::Mod;
309 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
310 // above ArgMask to update dependence info.
311 ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc);
312 ArgMask = intersectModRef(ArgMask, ModRefC1);
314 // Conservatively clear IsMustAlias unless only MustAlias is found.
315 IsMustAlias &= isMustSet(ModRefC1);
317 R = intersectModRef(unionModRef(R, ArgMask), Result);
318 if (R == Result) {
319 // On early exit, not all args were checked, cannot set Must.
320 if (I + 1 != E)
321 IsMustAlias = false;
322 break;
326 if (isNoModRef(R))
327 return ModRefInfo::NoModRef;
329 // If MustAlias found above, set Must bit.
330 return IsMustAlias ? setMust(R) : clearMust(R);
333 // If Call1 only accesses memory through arguments, check if Call2 references
334 // any of the memory referenced by Call1's arguments. If not, return NoModRef.
335 if (onlyAccessesArgPointees(Call1B)) {
336 if (!doesAccessArgPointees(Call1B))
337 return ModRefInfo::NoModRef;
338 ModRefInfo R = ModRefInfo::NoModRef;
339 bool IsMustAlias = true;
340 for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
341 const Value *Arg = *I;
342 if (!Arg->getType()->isPointerTy())
343 continue;
344 unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
345 auto Call1ArgLoc =
346 MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
348 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
349 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
350 // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
351 ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
352 ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc);
353 if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
354 (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
355 R = intersectModRef(unionModRef(R, ArgModRefC1), Result);
357 // Conservatively clear IsMustAlias unless only MustAlias is found.
358 IsMustAlias &= isMustSet(ModRefC2);
360 if (R == Result) {
361 // On early exit, not all args were checked, cannot set Must.
362 if (I + 1 != E)
363 IsMustAlias = false;
364 break;
368 if (isNoModRef(R))
369 return ModRefInfo::NoModRef;
371 // If MustAlias found above, set Must bit.
372 return IsMustAlias ? setMust(R) : clearMust(R);
375 return Result;
378 FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
379 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
381 for (const auto &AA : AAs) {
382 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));
384 // Early-exit the moment we reach the bottom of the lattice.
385 if (Result == FMRB_DoesNotAccessMemory)
386 return Result;
389 return Result;
392 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
393 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
395 for (const auto &AA : AAs) {
396 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
398 // Early-exit the moment we reach the bottom of the lattice.
399 if (Result == FMRB_DoesNotAccessMemory)
400 return Result;
403 return Result;
406 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
407 switch (AR) {
408 case NoAlias:
409 OS << "NoAlias";
410 break;
411 case MustAlias:
412 OS << "MustAlias";
413 break;
414 case MayAlias:
415 OS << "MayAlias";
416 break;
417 case PartialAlias:
418 OS << "PartialAlias";
419 break;
421 return OS;
424 //===----------------------------------------------------------------------===//
425 // Helper method implementation
426 //===----------------------------------------------------------------------===//
428 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
429 const MemoryLocation &Loc) {
430 AAQueryInfo AAQIP;
431 return getModRefInfo(L, Loc, AAQIP);
433 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
434 const MemoryLocation &Loc,
435 AAQueryInfo &AAQI) {
436 // Be conservative in the face of atomic.
437 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
438 return ModRefInfo::ModRef;
440 // If the load address doesn't alias the given address, it doesn't read
441 // or write the specified memory.
442 if (Loc.Ptr) {
443 AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI);
444 if (AR == NoAlias)
445 return ModRefInfo::NoModRef;
446 if (AR == MustAlias)
447 return ModRefInfo::MustRef;
449 // Otherwise, a load just reads.
450 return ModRefInfo::Ref;
453 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
454 const MemoryLocation &Loc) {
455 AAQueryInfo AAQIP;
456 return getModRefInfo(S, Loc, AAQIP);
458 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
459 const MemoryLocation &Loc,
460 AAQueryInfo &AAQI) {
461 // Be conservative in the face of atomic.
462 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
463 return ModRefInfo::ModRef;
465 if (Loc.Ptr) {
466 AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI);
467 // If the store address cannot alias the pointer in question, then the
468 // specified memory cannot be modified by the store.
469 if (AR == NoAlias)
470 return ModRefInfo::NoModRef;
472 // If the pointer is a pointer to constant memory, then it could not have
473 // been modified by this store.
474 if (pointsToConstantMemory(Loc, AAQI))
475 return ModRefInfo::NoModRef;
477 // If the store address aliases the pointer as must alias, set Must.
478 if (AR == MustAlias)
479 return ModRefInfo::MustMod;
482 // Otherwise, a store just writes.
483 return ModRefInfo::Mod;
486 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
487 AAQueryInfo AAQIP;
488 return getModRefInfo(S, Loc, AAQIP);
491 ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
492 const MemoryLocation &Loc,
493 AAQueryInfo &AAQI) {
494 // If we know that the location is a constant memory location, the fence
495 // cannot modify this location.
496 if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI))
497 return ModRefInfo::Ref;
498 return ModRefInfo::ModRef;
501 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
502 const MemoryLocation &Loc) {
503 AAQueryInfo AAQIP;
504 return getModRefInfo(V, Loc, AAQIP);
507 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
508 const MemoryLocation &Loc,
509 AAQueryInfo &AAQI) {
510 if (Loc.Ptr) {
511 AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI);
512 // If the va_arg address cannot alias the pointer in question, then the
513 // specified memory cannot be accessed by the va_arg.
514 if (AR == NoAlias)
515 return ModRefInfo::NoModRef;
517 // If the pointer is a pointer to constant memory, then it could not have
518 // been modified by this va_arg.
519 if (pointsToConstantMemory(Loc, AAQI))
520 return ModRefInfo::NoModRef;
522 // If the va_arg aliases the pointer as must alias, set Must.
523 if (AR == MustAlias)
524 return ModRefInfo::MustModRef;
527 // Otherwise, a va_arg reads and writes.
528 return ModRefInfo::ModRef;
531 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
532 const MemoryLocation &Loc) {
533 AAQueryInfo AAQIP;
534 return getModRefInfo(CatchPad, Loc, AAQIP);
537 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
538 const MemoryLocation &Loc,
539 AAQueryInfo &AAQI) {
540 if (Loc.Ptr) {
541 // If the pointer is a pointer to constant memory,
542 // then it could not have been modified by this catchpad.
543 if (pointsToConstantMemory(Loc, AAQI))
544 return ModRefInfo::NoModRef;
547 // Otherwise, a catchpad reads and writes.
548 return ModRefInfo::ModRef;
551 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
552 const MemoryLocation &Loc) {
553 AAQueryInfo AAQIP;
554 return getModRefInfo(CatchRet, Loc, AAQIP);
557 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
558 const MemoryLocation &Loc,
559 AAQueryInfo &AAQI) {
560 if (Loc.Ptr) {
561 // If the pointer is a pointer to constant memory,
562 // then it could not have been modified by this catchpad.
563 if (pointsToConstantMemory(Loc, AAQI))
564 return ModRefInfo::NoModRef;
567 // Otherwise, a catchret reads and writes.
568 return ModRefInfo::ModRef;
571 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
572 const MemoryLocation &Loc) {
573 AAQueryInfo AAQIP;
574 return getModRefInfo(CX, Loc, AAQIP);
577 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
578 const MemoryLocation &Loc,
579 AAQueryInfo &AAQI) {
580 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
581 if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
582 return ModRefInfo::ModRef;
584 if (Loc.Ptr) {
585 AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI);
586 // If the cmpxchg address does not alias the location, it does not access
587 // it.
588 if (AR == NoAlias)
589 return ModRefInfo::NoModRef;
591 // If the cmpxchg address aliases the pointer as must alias, set Must.
592 if (AR == MustAlias)
593 return ModRefInfo::MustModRef;
596 return ModRefInfo::ModRef;
599 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
600 const MemoryLocation &Loc) {
601 AAQueryInfo AAQIP;
602 return getModRefInfo(RMW, Loc, AAQIP);
605 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
606 const MemoryLocation &Loc,
607 AAQueryInfo &AAQI) {
608 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
609 if (isStrongerThanMonotonic(RMW->getOrdering()))
610 return ModRefInfo::ModRef;
612 if (Loc.Ptr) {
613 AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI);
614 // If the atomicrmw address does not alias the location, it does not access
615 // it.
616 if (AR == NoAlias)
617 return ModRefInfo::NoModRef;
619 // If the atomicrmw address aliases the pointer as must alias, set Must.
620 if (AR == MustAlias)
621 return ModRefInfo::MustModRef;
624 return ModRefInfo::ModRef;
627 /// Return information about whether a particular call site modifies
628 /// or reads the specified memory location \p MemLoc before instruction \p I
629 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
630 /// instruction-ordering queries inside the BasicBlock containing \p I.
631 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
632 /// BasicAA isn't willing to spend linear time determining whether an alloca
633 /// was captured before or after this particular call, while we are. However,
634 /// with a smarter AA in place, this test is just wasting compile time.
635 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
636 const MemoryLocation &MemLoc,
637 DominatorTree *DT,
638 OrderedBasicBlock *OBB) {
639 if (!DT)
640 return ModRefInfo::ModRef;
642 const Value *Object =
643 GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
644 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
645 isa<Constant>(Object))
646 return ModRefInfo::ModRef;
648 const auto *Call = dyn_cast<CallBase>(I);
649 if (!Call || Call == Object)
650 return ModRefInfo::ModRef;
652 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
653 /* StoreCaptures */ true, I, DT,
654 /* include Object */ true,
655 /* OrderedBasicBlock */ OBB))
656 return ModRefInfo::ModRef;
658 unsigned ArgNo = 0;
659 ModRefInfo R = ModRefInfo::NoModRef;
660 bool IsMustAlias = true;
661 // Set flag only if no May found and all operands processed.
662 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
663 CI != CE; ++CI, ++ArgNo) {
664 // Only look at the no-capture or byval pointer arguments. If this
665 // pointer were passed to arguments that were neither of these, then it
666 // couldn't be no-capture.
667 if (!(*CI)->getType()->isPointerTy() ||
668 (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() &&
669 !Call->isByValArgument(ArgNo)))
670 continue;
672 AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
673 // If this is a no-capture pointer argument, see if we can tell that it
674 // is impossible to alias the pointer we're checking. If not, we have to
675 // assume that the call could touch the pointer, even though it doesn't
676 // escape.
677 if (AR != MustAlias)
678 IsMustAlias = false;
679 if (AR == NoAlias)
680 continue;
681 if (Call->doesNotAccessMemory(ArgNo))
682 continue;
683 if (Call->onlyReadsMemory(ArgNo)) {
684 R = ModRefInfo::Ref;
685 continue;
687 // Not returning MustModRef since we have not seen all the arguments.
688 return ModRefInfo::ModRef;
690 return IsMustAlias ? setMust(R) : clearMust(R);
693 /// canBasicBlockModify - Return true if it is possible for execution of the
694 /// specified basic block to modify the location Loc.
696 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
697 const MemoryLocation &Loc) {
698 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
701 /// canInstructionRangeModRef - Return true if it is possible for the
702 /// execution of the specified instructions to mod\ref (according to the
703 /// mode) the location Loc. The instructions to consider are all
704 /// of the instructions in the range of [I1,I2] INCLUSIVE.
705 /// I1 and I2 must be in the same basic block.
706 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
707 const Instruction &I2,
708 const MemoryLocation &Loc,
709 const ModRefInfo Mode) {
710 assert(I1.getParent() == I2.getParent() &&
711 "Instructions not in same basic block!");
712 BasicBlock::const_iterator I = I1.getIterator();
713 BasicBlock::const_iterator E = I2.getIterator();
714 ++E; // Convert from inclusive to exclusive range.
716 for (; I != E; ++I) // Check every instruction in range
717 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
718 return true;
719 return false;
722 // Provide a definition for the root virtual destructor.
723 AAResults::Concept::~Concept() = default;
725 // Provide a definition for the static object used to identify passes.
726 AnalysisKey AAManager::Key;
728 namespace {
731 } // end anonymous namespace
733 char ExternalAAWrapperPass::ID = 0;
735 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
736 false, true)
738 ImmutablePass *
739 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
740 return new ExternalAAWrapperPass(std::move(Callback));
743 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
744 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
747 char AAResultsWrapperPass::ID = 0;
749 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
750 "Function Alias Analysis Results", false, true)
751 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
752 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
753 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
754 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
755 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
756 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
757 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
758 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
759 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
760 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
761 "Function Alias Analysis Results", false, true)
763 FunctionPass *llvm::createAAResultsWrapperPass() {
764 return new AAResultsWrapperPass();
767 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
769 /// This is the legacy pass manager's interface to the new-style AA results
770 /// aggregation object. Because this is somewhat shoe-horned into the legacy
771 /// pass manager, we hard code all the specific alias analyses available into
772 /// it. While the particular set enabled is configured via commandline flags,
773 /// adding a new alias analysis to LLVM will require adding support for it to
774 /// this list.
775 bool AAResultsWrapperPass::runOnFunction(Function &F) {
776 // NB! This *must* be reset before adding new AA results to the new
777 // AAResults object because in the legacy pass manager, each instance
778 // of these will refer to the *same* immutable analyses, registering and
779 // unregistering themselves with them. We need to carefully tear down the
780 // previous object first, in this case replacing it with an empty one, before
781 // registering new results.
782 AAR.reset(
783 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
785 // BasicAA is always available for function analyses. Also, we add it first
786 // so that it can trump TBAA results when it proves MustAlias.
787 // FIXME: TBAA should have an explicit mode to support this and then we
788 // should reconsider the ordering here.
789 if (!DisableBasicAA)
790 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
792 // Populate the results with the currently available AAs.
793 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
794 AAR->addAAResult(WrapperPass->getResult());
795 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
796 AAR->addAAResult(WrapperPass->getResult());
797 if (auto *WrapperPass =
798 getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
799 AAR->addAAResult(WrapperPass->getResult());
800 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
801 AAR->addAAResult(WrapperPass->getResult());
802 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
803 AAR->addAAResult(WrapperPass->getResult());
804 if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
805 AAR->addAAResult(WrapperPass->getResult());
806 if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
807 AAR->addAAResult(WrapperPass->getResult());
809 // If available, run an external AA providing callback over the results as
810 // well.
811 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
812 if (WrapperPass->CB)
813 WrapperPass->CB(*this, F, *AAR);
815 // Analyses don't mutate the IR, so return false.
816 return false;
819 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
820 AU.setPreservesAll();
821 AU.addRequired<BasicAAWrapperPass>();
822 AU.addRequired<TargetLibraryInfoWrapperPass>();
824 // We also need to mark all the alias analysis passes we will potentially
825 // probe in runOnFunction as used here to ensure the legacy pass manager
826 // preserves them. This hard coding of lists of alias analyses is specific to
827 // the legacy pass manager.
828 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
829 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
830 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
831 AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
832 AU.addUsedIfAvailable<SCEVAAWrapperPass>();
833 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
834 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
837 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
838 BasicAAResult &BAR) {
839 AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
841 // Add in our explicitly constructed BasicAA results.
842 if (!DisableBasicAA)
843 AAR.addAAResult(BAR);
845 // Populate the results with the other currently available AAs.
846 if (auto *WrapperPass =
847 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
848 AAR.addAAResult(WrapperPass->getResult());
849 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
850 AAR.addAAResult(WrapperPass->getResult());
851 if (auto *WrapperPass =
852 P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
853 AAR.addAAResult(WrapperPass->getResult());
854 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
855 AAR.addAAResult(WrapperPass->getResult());
856 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
857 AAR.addAAResult(WrapperPass->getResult());
858 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
859 AAR.addAAResult(WrapperPass->getResult());
861 return AAR;
864 bool llvm::isNoAliasCall(const Value *V) {
865 if (const auto *Call = dyn_cast<CallBase>(V))
866 return Call->hasRetAttr(Attribute::NoAlias);
867 return false;
870 bool llvm::isNoAliasArgument(const Value *V) {
871 if (const Argument *A = dyn_cast<Argument>(V))
872 return A->hasNoAliasAttr();
873 return false;
876 bool llvm::isIdentifiedObject(const Value *V) {
877 if (isa<AllocaInst>(V))
878 return true;
879 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
880 return true;
881 if (isNoAliasCall(V))
882 return true;
883 if (const Argument *A = dyn_cast<Argument>(V))
884 return A->hasNoAliasAttr() || A->hasByValAttr();
885 return false;
888 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
889 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
892 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
893 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
894 // more alias analyses are added to llvm::createLegacyPMAAResults, they need
895 // to be added here also.
896 AU.addRequired<TargetLibraryInfoWrapperPass>();
897 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
898 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
899 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
900 AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
901 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
902 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();