1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the generic AliasAnalysis interface which is used as the
10 // common interface used by all clients and implementations of alias analysis.
12 // This file also implements the default version of the AliasAnalysis interface
13 // that is to be used when no other implementation is specified. This does some
14 // simple tests that detect obvious cases: two different global pointers cannot
15 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
18 // This alias analysis implementation really isn't very good for anything, but
19 // it is very fast, and makes a nice clean default implementation. Because it
20 // handles lots of little corner cases, other, more complex, alias analysis
21 // implementations may choose to rely on this pass to resolve these simple and
24 //===----------------------------------------------------------------------===//
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
29 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
30 #include "llvm/Analysis/CaptureTracking.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
35 #include "llvm/Analysis/ScopedNoAliasAA.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/AtomicOrdering.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
58 /// Allow disabling BasicAA from the AA results. This is particularly useful
59 /// when testing to isolate a single AA implementation.
60 static cl::opt
<bool> DisableBasicAA("disable-basicaa", cl::Hidden
,
63 AAResults::AAResults(AAResults
&&Arg
)
64 : TLI(Arg
.TLI
), AAs(std::move(Arg
.AAs
)), AADeps(std::move(Arg
.AADeps
)) {
66 AA
->setAAResults(this);
69 AAResults::~AAResults() {
70 // FIXME; It would be nice to at least clear out the pointers back to this
71 // aggregation here, but we end up with non-nesting lifetimes in the legacy
72 // pass manager that prevent this from working. In the legacy pass manager
73 // we'll end up with dangling references here in some cases.
76 AA
->setAAResults(nullptr);
80 bool AAResults::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
81 FunctionAnalysisManager::Invalidator
&Inv
) {
82 // Check if the AA manager itself has been invalidated.
83 auto PAC
= PA
.getChecker
<AAManager
>();
84 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<Function
>>())
85 return true; // The manager needs to be blown away, clear everything.
87 // Check all of the dependencies registered.
88 for (AnalysisKey
*ID
: AADeps
)
89 if (Inv
.invalidate(ID
, F
, PA
))
92 // Everything we depend on is still fine, so are we. Nothing to invalidate.
96 //===----------------------------------------------------------------------===//
97 // Default chaining methods
98 //===----------------------------------------------------------------------===//
100 AliasResult
AAResults::alias(const MemoryLocation
&LocA
,
101 const MemoryLocation
&LocB
) {
103 return alias(LocA
, LocB
, AAQIP
);
106 AliasResult
AAResults::alias(const MemoryLocation
&LocA
,
107 const MemoryLocation
&LocB
, AAQueryInfo
&AAQI
) {
108 for (const auto &AA
: AAs
) {
109 auto Result
= AA
->alias(LocA
, LocB
, AAQI
);
110 if (Result
!= MayAlias
)
116 bool AAResults::pointsToConstantMemory(const MemoryLocation
&Loc
,
119 return pointsToConstantMemory(Loc
, AAQIP
, OrLocal
);
122 bool AAResults::pointsToConstantMemory(const MemoryLocation
&Loc
,
123 AAQueryInfo
&AAQI
, bool OrLocal
) {
124 for (const auto &AA
: AAs
)
125 if (AA
->pointsToConstantMemory(Loc
, AAQI
, OrLocal
))
131 ModRefInfo
AAResults::getArgModRefInfo(const CallBase
*Call
, unsigned ArgIdx
) {
132 ModRefInfo Result
= ModRefInfo::ModRef
;
134 for (const auto &AA
: AAs
) {
135 Result
= intersectModRef(Result
, AA
->getArgModRefInfo(Call
, ArgIdx
));
137 // Early-exit the moment we reach the bottom of the lattice.
138 if (isNoModRef(Result
))
139 return ModRefInfo::NoModRef
;
145 ModRefInfo
AAResults::getModRefInfo(Instruction
*I
, const CallBase
*Call2
) {
147 return getModRefInfo(I
, Call2
, AAQIP
);
150 ModRefInfo
AAResults::getModRefInfo(Instruction
*I
, const CallBase
*Call2
,
152 // We may have two calls.
153 if (const auto *Call1
= dyn_cast
<CallBase
>(I
)) {
154 // Check if the two calls modify the same memory.
155 return getModRefInfo(Call1
, Call2
, AAQI
);
156 } else if (I
->isFenceLike()) {
157 // If this is a fence, just return ModRef.
158 return ModRefInfo::ModRef
;
160 // Otherwise, check if the call modifies or references the
161 // location this memory access defines. The best we can say
162 // is that if the call references what this instruction
163 // defines, it must be clobbered by this location.
164 const MemoryLocation DefLoc
= MemoryLocation::get(I
);
165 ModRefInfo MR
= getModRefInfo(Call2
, DefLoc
, AAQI
);
166 if (isModOrRefSet(MR
))
167 return setModAndRef(MR
);
169 return ModRefInfo::NoModRef
;
172 ModRefInfo
AAResults::getModRefInfo(const CallBase
*Call
,
173 const MemoryLocation
&Loc
) {
175 return getModRefInfo(Call
, Loc
, AAQIP
);
178 ModRefInfo
AAResults::getModRefInfo(const CallBase
*Call
,
179 const MemoryLocation
&Loc
,
181 ModRefInfo Result
= ModRefInfo::ModRef
;
183 for (const auto &AA
: AAs
) {
184 Result
= intersectModRef(Result
, AA
->getModRefInfo(Call
, Loc
, AAQI
));
186 // Early-exit the moment we reach the bottom of the lattice.
187 if (isNoModRef(Result
))
188 return ModRefInfo::NoModRef
;
191 // Try to refine the mod-ref info further using other API entry points to the
192 // aggregate set of AA results.
193 auto MRB
= getModRefBehavior(Call
);
194 if (MRB
== FMRB_DoesNotAccessMemory
||
195 MRB
== FMRB_OnlyAccessesInaccessibleMem
)
196 return ModRefInfo::NoModRef
;
198 if (onlyReadsMemory(MRB
))
199 Result
= clearMod(Result
);
200 else if (doesNotReadMemory(MRB
))
201 Result
= clearRef(Result
);
203 if (onlyAccessesArgPointees(MRB
) || onlyAccessesInaccessibleOrArgMem(MRB
)) {
204 bool IsMustAlias
= true;
205 ModRefInfo AllArgsMask
= ModRefInfo::NoModRef
;
206 if (doesAccessArgPointees(MRB
)) {
207 for (auto AI
= Call
->arg_begin(), AE
= Call
->arg_end(); AI
!= AE
; ++AI
) {
208 const Value
*Arg
= *AI
;
209 if (!Arg
->getType()->isPointerTy())
211 unsigned ArgIdx
= std::distance(Call
->arg_begin(), AI
);
212 MemoryLocation ArgLoc
=
213 MemoryLocation::getForArgument(Call
, ArgIdx
, TLI
);
214 AliasResult ArgAlias
= alias(ArgLoc
, Loc
);
215 if (ArgAlias
!= NoAlias
) {
216 ModRefInfo ArgMask
= getArgModRefInfo(Call
, ArgIdx
);
217 AllArgsMask
= unionModRef(AllArgsMask
, ArgMask
);
219 // Conservatively clear IsMustAlias unless only MustAlias is found.
220 IsMustAlias
&= (ArgAlias
== MustAlias
);
223 // Return NoModRef if no alias found with any argument.
224 if (isNoModRef(AllArgsMask
))
225 return ModRefInfo::NoModRef
;
226 // Logical & between other AA analyses and argument analysis.
227 Result
= intersectModRef(Result
, AllArgsMask
);
228 // If only MustAlias found above, set Must bit.
229 Result
= IsMustAlias
? setMust(Result
) : clearMust(Result
);
232 // If Loc is a constant memory location, the call definitely could not
233 // modify the memory location.
234 if (isModSet(Result
) && pointsToConstantMemory(Loc
, /*OrLocal*/ false))
235 Result
= clearMod(Result
);
240 ModRefInfo
AAResults::getModRefInfo(const CallBase
*Call1
,
241 const CallBase
*Call2
) {
243 return getModRefInfo(Call1
, Call2
, AAQIP
);
246 ModRefInfo
AAResults::getModRefInfo(const CallBase
*Call1
,
247 const CallBase
*Call2
, AAQueryInfo
&AAQI
) {
248 ModRefInfo Result
= ModRefInfo::ModRef
;
250 for (const auto &AA
: AAs
) {
251 Result
= intersectModRef(Result
, AA
->getModRefInfo(Call1
, Call2
, AAQI
));
253 // Early-exit the moment we reach the bottom of the lattice.
254 if (isNoModRef(Result
))
255 return ModRefInfo::NoModRef
;
258 // Try to refine the mod-ref info further using other API entry points to the
259 // aggregate set of AA results.
261 // If Call1 or Call2 are readnone, they don't interact.
262 auto Call1B
= getModRefBehavior(Call1
);
263 if (Call1B
== FMRB_DoesNotAccessMemory
)
264 return ModRefInfo::NoModRef
;
266 auto Call2B
= getModRefBehavior(Call2
);
267 if (Call2B
== FMRB_DoesNotAccessMemory
)
268 return ModRefInfo::NoModRef
;
270 // If they both only read from memory, there is no dependence.
271 if (onlyReadsMemory(Call1B
) && onlyReadsMemory(Call2B
))
272 return ModRefInfo::NoModRef
;
274 // If Call1 only reads memory, the only dependence on Call2 can be
275 // from Call1 reading memory written by Call2.
276 if (onlyReadsMemory(Call1B
))
277 Result
= clearMod(Result
);
278 else if (doesNotReadMemory(Call1B
))
279 Result
= clearRef(Result
);
281 // If Call2 only access memory through arguments, accumulate the mod/ref
282 // information from Call1's references to the memory referenced by
283 // Call2's arguments.
284 if (onlyAccessesArgPointees(Call2B
)) {
285 if (!doesAccessArgPointees(Call2B
))
286 return ModRefInfo::NoModRef
;
287 ModRefInfo R
= ModRefInfo::NoModRef
;
288 bool IsMustAlias
= true;
289 for (auto I
= Call2
->arg_begin(), E
= Call2
->arg_end(); I
!= E
; ++I
) {
290 const Value
*Arg
= *I
;
291 if (!Arg
->getType()->isPointerTy())
293 unsigned Call2ArgIdx
= std::distance(Call2
->arg_begin(), I
);
295 MemoryLocation::getForArgument(Call2
, Call2ArgIdx
, TLI
);
297 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
298 // dependence of Call1 on that location is the inverse:
299 // - If Call2 modifies location, dependence exists if Call1 reads or
301 // - If Call2 only reads location, dependence exists if Call1 writes.
302 ModRefInfo ArgModRefC2
= getArgModRefInfo(Call2
, Call2ArgIdx
);
303 ModRefInfo ArgMask
= ModRefInfo::NoModRef
;
304 if (isModSet(ArgModRefC2
))
305 ArgMask
= ModRefInfo::ModRef
;
306 else if (isRefSet(ArgModRefC2
))
307 ArgMask
= ModRefInfo::Mod
;
309 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
310 // above ArgMask to update dependence info.
311 ModRefInfo ModRefC1
= getModRefInfo(Call1
, Call2ArgLoc
);
312 ArgMask
= intersectModRef(ArgMask
, ModRefC1
);
314 // Conservatively clear IsMustAlias unless only MustAlias is found.
315 IsMustAlias
&= isMustSet(ModRefC1
);
317 R
= intersectModRef(unionModRef(R
, ArgMask
), Result
);
319 // On early exit, not all args were checked, cannot set Must.
327 return ModRefInfo::NoModRef
;
329 // If MustAlias found above, set Must bit.
330 return IsMustAlias
? setMust(R
) : clearMust(R
);
333 // If Call1 only accesses memory through arguments, check if Call2 references
334 // any of the memory referenced by Call1's arguments. If not, return NoModRef.
335 if (onlyAccessesArgPointees(Call1B
)) {
336 if (!doesAccessArgPointees(Call1B
))
337 return ModRefInfo::NoModRef
;
338 ModRefInfo R
= ModRefInfo::NoModRef
;
339 bool IsMustAlias
= true;
340 for (auto I
= Call1
->arg_begin(), E
= Call1
->arg_end(); I
!= E
; ++I
) {
341 const Value
*Arg
= *I
;
342 if (!Arg
->getType()->isPointerTy())
344 unsigned Call1ArgIdx
= std::distance(Call1
->arg_begin(), I
);
346 MemoryLocation::getForArgument(Call1
, Call1ArgIdx
, TLI
);
348 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
349 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
350 // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
351 ModRefInfo ArgModRefC1
= getArgModRefInfo(Call1
, Call1ArgIdx
);
352 ModRefInfo ModRefC2
= getModRefInfo(Call2
, Call1ArgLoc
);
353 if ((isModSet(ArgModRefC1
) && isModOrRefSet(ModRefC2
)) ||
354 (isRefSet(ArgModRefC1
) && isModSet(ModRefC2
)))
355 R
= intersectModRef(unionModRef(R
, ArgModRefC1
), Result
);
357 // Conservatively clear IsMustAlias unless only MustAlias is found.
358 IsMustAlias
&= isMustSet(ModRefC2
);
361 // On early exit, not all args were checked, cannot set Must.
369 return ModRefInfo::NoModRef
;
371 // If MustAlias found above, set Must bit.
372 return IsMustAlias
? setMust(R
) : clearMust(R
);
378 FunctionModRefBehavior
AAResults::getModRefBehavior(const CallBase
*Call
) {
379 FunctionModRefBehavior Result
= FMRB_UnknownModRefBehavior
;
381 for (const auto &AA
: AAs
) {
382 Result
= FunctionModRefBehavior(Result
& AA
->getModRefBehavior(Call
));
384 // Early-exit the moment we reach the bottom of the lattice.
385 if (Result
== FMRB_DoesNotAccessMemory
)
392 FunctionModRefBehavior
AAResults::getModRefBehavior(const Function
*F
) {
393 FunctionModRefBehavior Result
= FMRB_UnknownModRefBehavior
;
395 for (const auto &AA
: AAs
) {
396 Result
= FunctionModRefBehavior(Result
& AA
->getModRefBehavior(F
));
398 // Early-exit the moment we reach the bottom of the lattice.
399 if (Result
== FMRB_DoesNotAccessMemory
)
406 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, AliasResult AR
) {
418 OS
<< "PartialAlias";
424 //===----------------------------------------------------------------------===//
425 // Helper method implementation
426 //===----------------------------------------------------------------------===//
428 ModRefInfo
AAResults::getModRefInfo(const LoadInst
*L
,
429 const MemoryLocation
&Loc
) {
431 return getModRefInfo(L
, Loc
, AAQIP
);
433 ModRefInfo
AAResults::getModRefInfo(const LoadInst
*L
,
434 const MemoryLocation
&Loc
,
436 // Be conservative in the face of atomic.
437 if (isStrongerThan(L
->getOrdering(), AtomicOrdering::Unordered
))
438 return ModRefInfo::ModRef
;
440 // If the load address doesn't alias the given address, it doesn't read
441 // or write the specified memory.
443 AliasResult AR
= alias(MemoryLocation::get(L
), Loc
, AAQI
);
445 return ModRefInfo::NoModRef
;
447 return ModRefInfo::MustRef
;
449 // Otherwise, a load just reads.
450 return ModRefInfo::Ref
;
453 ModRefInfo
AAResults::getModRefInfo(const StoreInst
*S
,
454 const MemoryLocation
&Loc
) {
456 return getModRefInfo(S
, Loc
, AAQIP
);
458 ModRefInfo
AAResults::getModRefInfo(const StoreInst
*S
,
459 const MemoryLocation
&Loc
,
461 // Be conservative in the face of atomic.
462 if (isStrongerThan(S
->getOrdering(), AtomicOrdering::Unordered
))
463 return ModRefInfo::ModRef
;
466 AliasResult AR
= alias(MemoryLocation::get(S
), Loc
, AAQI
);
467 // If the store address cannot alias the pointer in question, then the
468 // specified memory cannot be modified by the store.
470 return ModRefInfo::NoModRef
;
472 // If the pointer is a pointer to constant memory, then it could not have
473 // been modified by this store.
474 if (pointsToConstantMemory(Loc
, AAQI
))
475 return ModRefInfo::NoModRef
;
477 // If the store address aliases the pointer as must alias, set Must.
479 return ModRefInfo::MustMod
;
482 // Otherwise, a store just writes.
483 return ModRefInfo::Mod
;
486 ModRefInfo
AAResults::getModRefInfo(const FenceInst
*S
, const MemoryLocation
&Loc
) {
488 return getModRefInfo(S
, Loc
, AAQIP
);
491 ModRefInfo
AAResults::getModRefInfo(const FenceInst
*S
,
492 const MemoryLocation
&Loc
,
494 // If we know that the location is a constant memory location, the fence
495 // cannot modify this location.
496 if (Loc
.Ptr
&& pointsToConstantMemory(Loc
, AAQI
))
497 return ModRefInfo::Ref
;
498 return ModRefInfo::ModRef
;
501 ModRefInfo
AAResults::getModRefInfo(const VAArgInst
*V
,
502 const MemoryLocation
&Loc
) {
504 return getModRefInfo(V
, Loc
, AAQIP
);
507 ModRefInfo
AAResults::getModRefInfo(const VAArgInst
*V
,
508 const MemoryLocation
&Loc
,
511 AliasResult AR
= alias(MemoryLocation::get(V
), Loc
, AAQI
);
512 // If the va_arg address cannot alias the pointer in question, then the
513 // specified memory cannot be accessed by the va_arg.
515 return ModRefInfo::NoModRef
;
517 // If the pointer is a pointer to constant memory, then it could not have
518 // been modified by this va_arg.
519 if (pointsToConstantMemory(Loc
, AAQI
))
520 return ModRefInfo::NoModRef
;
522 // If the va_arg aliases the pointer as must alias, set Must.
524 return ModRefInfo::MustModRef
;
527 // Otherwise, a va_arg reads and writes.
528 return ModRefInfo::ModRef
;
531 ModRefInfo
AAResults::getModRefInfo(const CatchPadInst
*CatchPad
,
532 const MemoryLocation
&Loc
) {
534 return getModRefInfo(CatchPad
, Loc
, AAQIP
);
537 ModRefInfo
AAResults::getModRefInfo(const CatchPadInst
*CatchPad
,
538 const MemoryLocation
&Loc
,
541 // If the pointer is a pointer to constant memory,
542 // then it could not have been modified by this catchpad.
543 if (pointsToConstantMemory(Loc
, AAQI
))
544 return ModRefInfo::NoModRef
;
547 // Otherwise, a catchpad reads and writes.
548 return ModRefInfo::ModRef
;
551 ModRefInfo
AAResults::getModRefInfo(const CatchReturnInst
*CatchRet
,
552 const MemoryLocation
&Loc
) {
554 return getModRefInfo(CatchRet
, Loc
, AAQIP
);
557 ModRefInfo
AAResults::getModRefInfo(const CatchReturnInst
*CatchRet
,
558 const MemoryLocation
&Loc
,
561 // If the pointer is a pointer to constant memory,
562 // then it could not have been modified by this catchpad.
563 if (pointsToConstantMemory(Loc
, AAQI
))
564 return ModRefInfo::NoModRef
;
567 // Otherwise, a catchret reads and writes.
568 return ModRefInfo::ModRef
;
571 ModRefInfo
AAResults::getModRefInfo(const AtomicCmpXchgInst
*CX
,
572 const MemoryLocation
&Loc
) {
574 return getModRefInfo(CX
, Loc
, AAQIP
);
577 ModRefInfo
AAResults::getModRefInfo(const AtomicCmpXchgInst
*CX
,
578 const MemoryLocation
&Loc
,
580 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
581 if (isStrongerThanMonotonic(CX
->getSuccessOrdering()))
582 return ModRefInfo::ModRef
;
585 AliasResult AR
= alias(MemoryLocation::get(CX
), Loc
, AAQI
);
586 // If the cmpxchg address does not alias the location, it does not access
589 return ModRefInfo::NoModRef
;
591 // If the cmpxchg address aliases the pointer as must alias, set Must.
593 return ModRefInfo::MustModRef
;
596 return ModRefInfo::ModRef
;
599 ModRefInfo
AAResults::getModRefInfo(const AtomicRMWInst
*RMW
,
600 const MemoryLocation
&Loc
) {
602 return getModRefInfo(RMW
, Loc
, AAQIP
);
605 ModRefInfo
AAResults::getModRefInfo(const AtomicRMWInst
*RMW
,
606 const MemoryLocation
&Loc
,
608 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
609 if (isStrongerThanMonotonic(RMW
->getOrdering()))
610 return ModRefInfo::ModRef
;
613 AliasResult AR
= alias(MemoryLocation::get(RMW
), Loc
, AAQI
);
614 // If the atomicrmw address does not alias the location, it does not access
617 return ModRefInfo::NoModRef
;
619 // If the atomicrmw address aliases the pointer as must alias, set Must.
621 return ModRefInfo::MustModRef
;
624 return ModRefInfo::ModRef
;
627 /// Return information about whether a particular call site modifies
628 /// or reads the specified memory location \p MemLoc before instruction \p I
629 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
630 /// instruction-ordering queries inside the BasicBlock containing \p I.
631 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
632 /// BasicAA isn't willing to spend linear time determining whether an alloca
633 /// was captured before or after this particular call, while we are. However,
634 /// with a smarter AA in place, this test is just wasting compile time.
635 ModRefInfo
AAResults::callCapturesBefore(const Instruction
*I
,
636 const MemoryLocation
&MemLoc
,
638 OrderedBasicBlock
*OBB
) {
640 return ModRefInfo::ModRef
;
642 const Value
*Object
=
643 GetUnderlyingObject(MemLoc
.Ptr
, I
->getModule()->getDataLayout());
644 if (!isIdentifiedObject(Object
) || isa
<GlobalValue
>(Object
) ||
645 isa
<Constant
>(Object
))
646 return ModRefInfo::ModRef
;
648 const auto *Call
= dyn_cast
<CallBase
>(I
);
649 if (!Call
|| Call
== Object
)
650 return ModRefInfo::ModRef
;
652 if (PointerMayBeCapturedBefore(Object
, /* ReturnCaptures */ true,
653 /* StoreCaptures */ true, I
, DT
,
654 /* include Object */ true,
655 /* OrderedBasicBlock */ OBB
))
656 return ModRefInfo::ModRef
;
659 ModRefInfo R
= ModRefInfo::NoModRef
;
660 bool IsMustAlias
= true;
661 // Set flag only if no May found and all operands processed.
662 for (auto CI
= Call
->data_operands_begin(), CE
= Call
->data_operands_end();
663 CI
!= CE
; ++CI
, ++ArgNo
) {
664 // Only look at the no-capture or byval pointer arguments. If this
665 // pointer were passed to arguments that were neither of these, then it
666 // couldn't be no-capture.
667 if (!(*CI
)->getType()->isPointerTy() ||
668 (!Call
->doesNotCapture(ArgNo
) && ArgNo
< Call
->getNumArgOperands() &&
669 !Call
->isByValArgument(ArgNo
)))
672 AliasResult AR
= alias(MemoryLocation(*CI
), MemoryLocation(Object
));
673 // If this is a no-capture pointer argument, see if we can tell that it
674 // is impossible to alias the pointer we're checking. If not, we have to
675 // assume that the call could touch the pointer, even though it doesn't
681 if (Call
->doesNotAccessMemory(ArgNo
))
683 if (Call
->onlyReadsMemory(ArgNo
)) {
687 // Not returning MustModRef since we have not seen all the arguments.
688 return ModRefInfo::ModRef
;
690 return IsMustAlias
? setMust(R
) : clearMust(R
);
693 /// canBasicBlockModify - Return true if it is possible for execution of the
694 /// specified basic block to modify the location Loc.
696 bool AAResults::canBasicBlockModify(const BasicBlock
&BB
,
697 const MemoryLocation
&Loc
) {
698 return canInstructionRangeModRef(BB
.front(), BB
.back(), Loc
, ModRefInfo::Mod
);
701 /// canInstructionRangeModRef - Return true if it is possible for the
702 /// execution of the specified instructions to mod\ref (according to the
703 /// mode) the location Loc. The instructions to consider are all
704 /// of the instructions in the range of [I1,I2] INCLUSIVE.
705 /// I1 and I2 must be in the same basic block.
706 bool AAResults::canInstructionRangeModRef(const Instruction
&I1
,
707 const Instruction
&I2
,
708 const MemoryLocation
&Loc
,
709 const ModRefInfo Mode
) {
710 assert(I1
.getParent() == I2
.getParent() &&
711 "Instructions not in same basic block!");
712 BasicBlock::const_iterator I
= I1
.getIterator();
713 BasicBlock::const_iterator E
= I2
.getIterator();
714 ++E
; // Convert from inclusive to exclusive range.
716 for (; I
!= E
; ++I
) // Check every instruction in range
717 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I
, Loc
), Mode
)))
722 // Provide a definition for the root virtual destructor.
723 AAResults::Concept::~Concept() = default;
725 // Provide a definition for the static object used to identify passes.
726 AnalysisKey
AAManager::Key
;
731 } // end anonymous namespace
733 char ExternalAAWrapperPass::ID
= 0;
735 INITIALIZE_PASS(ExternalAAWrapperPass
, "external-aa", "External Alias Analysis",
739 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback
) {
740 return new ExternalAAWrapperPass(std::move(Callback
));
743 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID
) {
744 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
747 char AAResultsWrapperPass::ID
= 0;
749 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass
, "aa",
750 "Function Alias Analysis Results", false, true)
751 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass
)
752 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass
)
753 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass
)
754 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass
)
755 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
756 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass
)
757 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass
)
758 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass
)
759 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass
)
760 INITIALIZE_PASS_END(AAResultsWrapperPass
, "aa",
761 "Function Alias Analysis Results", false, true)
763 FunctionPass
*llvm::createAAResultsWrapperPass() {
764 return new AAResultsWrapperPass();
767 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
769 /// This is the legacy pass manager's interface to the new-style AA results
770 /// aggregation object. Because this is somewhat shoe-horned into the legacy
771 /// pass manager, we hard code all the specific alias analyses available into
772 /// it. While the particular set enabled is configured via commandline flags,
773 /// adding a new alias analysis to LLVM will require adding support for it to
775 bool AAResultsWrapperPass::runOnFunction(Function
&F
) {
776 // NB! This *must* be reset before adding new AA results to the new
777 // AAResults object because in the legacy pass manager, each instance
778 // of these will refer to the *same* immutable analyses, registering and
779 // unregistering themselves with them. We need to carefully tear down the
780 // previous object first, in this case replacing it with an empty one, before
781 // registering new results.
783 new AAResults(getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI()));
785 // BasicAA is always available for function analyses. Also, we add it first
786 // so that it can trump TBAA results when it proves MustAlias.
787 // FIXME: TBAA should have an explicit mode to support this and then we
788 // should reconsider the ordering here.
790 AAR
->addAAResult(getAnalysis
<BasicAAWrapperPass
>().getResult());
792 // Populate the results with the currently available AAs.
793 if (auto *WrapperPass
= getAnalysisIfAvailable
<ScopedNoAliasAAWrapperPass
>())
794 AAR
->addAAResult(WrapperPass
->getResult());
795 if (auto *WrapperPass
= getAnalysisIfAvailable
<TypeBasedAAWrapperPass
>())
796 AAR
->addAAResult(WrapperPass
->getResult());
797 if (auto *WrapperPass
=
798 getAnalysisIfAvailable
<objcarc::ObjCARCAAWrapperPass
>())
799 AAR
->addAAResult(WrapperPass
->getResult());
800 if (auto *WrapperPass
= getAnalysisIfAvailable
<GlobalsAAWrapperPass
>())
801 AAR
->addAAResult(WrapperPass
->getResult());
802 if (auto *WrapperPass
= getAnalysisIfAvailable
<SCEVAAWrapperPass
>())
803 AAR
->addAAResult(WrapperPass
->getResult());
804 if (auto *WrapperPass
= getAnalysisIfAvailable
<CFLAndersAAWrapperPass
>())
805 AAR
->addAAResult(WrapperPass
->getResult());
806 if (auto *WrapperPass
= getAnalysisIfAvailable
<CFLSteensAAWrapperPass
>())
807 AAR
->addAAResult(WrapperPass
->getResult());
809 // If available, run an external AA providing callback over the results as
811 if (auto *WrapperPass
= getAnalysisIfAvailable
<ExternalAAWrapperPass
>())
813 WrapperPass
->CB(*this, F
, *AAR
);
815 // Analyses don't mutate the IR, so return false.
819 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
820 AU
.setPreservesAll();
821 AU
.addRequired
<BasicAAWrapperPass
>();
822 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
824 // We also need to mark all the alias analysis passes we will potentially
825 // probe in runOnFunction as used here to ensure the legacy pass manager
826 // preserves them. This hard coding of lists of alias analyses is specific to
827 // the legacy pass manager.
828 AU
.addUsedIfAvailable
<ScopedNoAliasAAWrapperPass
>();
829 AU
.addUsedIfAvailable
<TypeBasedAAWrapperPass
>();
830 AU
.addUsedIfAvailable
<objcarc::ObjCARCAAWrapperPass
>();
831 AU
.addUsedIfAvailable
<GlobalsAAWrapperPass
>();
832 AU
.addUsedIfAvailable
<SCEVAAWrapperPass
>();
833 AU
.addUsedIfAvailable
<CFLAndersAAWrapperPass
>();
834 AU
.addUsedIfAvailable
<CFLSteensAAWrapperPass
>();
837 AAResults
llvm::createLegacyPMAAResults(Pass
&P
, Function
&F
,
838 BasicAAResult
&BAR
) {
839 AAResults
AAR(P
.getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI());
841 // Add in our explicitly constructed BasicAA results.
843 AAR
.addAAResult(BAR
);
845 // Populate the results with the other currently available AAs.
846 if (auto *WrapperPass
=
847 P
.getAnalysisIfAvailable
<ScopedNoAliasAAWrapperPass
>())
848 AAR
.addAAResult(WrapperPass
->getResult());
849 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<TypeBasedAAWrapperPass
>())
850 AAR
.addAAResult(WrapperPass
->getResult());
851 if (auto *WrapperPass
=
852 P
.getAnalysisIfAvailable
<objcarc::ObjCARCAAWrapperPass
>())
853 AAR
.addAAResult(WrapperPass
->getResult());
854 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<GlobalsAAWrapperPass
>())
855 AAR
.addAAResult(WrapperPass
->getResult());
856 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<CFLAndersAAWrapperPass
>())
857 AAR
.addAAResult(WrapperPass
->getResult());
858 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<CFLSteensAAWrapperPass
>())
859 AAR
.addAAResult(WrapperPass
->getResult());
864 bool llvm::isNoAliasCall(const Value
*V
) {
865 if (const auto *Call
= dyn_cast
<CallBase
>(V
))
866 return Call
->hasRetAttr(Attribute::NoAlias
);
870 bool llvm::isNoAliasArgument(const Value
*V
) {
871 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
872 return A
->hasNoAliasAttr();
876 bool llvm::isIdentifiedObject(const Value
*V
) {
877 if (isa
<AllocaInst
>(V
))
879 if (isa
<GlobalValue
>(V
) && !isa
<GlobalAlias
>(V
))
881 if (isNoAliasCall(V
))
883 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
884 return A
->hasNoAliasAttr() || A
->hasByValAttr();
888 bool llvm::isIdentifiedFunctionLocal(const Value
*V
) {
889 return isa
<AllocaInst
>(V
) || isNoAliasCall(V
) || isNoAliasArgument(V
);
892 void llvm::getAAResultsAnalysisUsage(AnalysisUsage
&AU
) {
893 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
894 // more alias analyses are added to llvm::createLegacyPMAAResults, they need
895 // to be added here also.
896 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
897 AU
.addUsedIfAvailable
<ScopedNoAliasAAWrapperPass
>();
898 AU
.addUsedIfAvailable
<TypeBasedAAWrapperPass
>();
899 AU
.addUsedIfAvailable
<objcarc::ObjCARCAAWrapperPass
>();
900 AU
.addUsedIfAvailable
<GlobalsAAWrapperPass
>();
901 AU
.addUsedIfAvailable
<CFLAndersAAWrapperPass
>();
902 AU
.addUsedIfAvailable
<CFLSteensAAWrapperPass
>();