[MIPS GlobalISel] Select float constants
[llvm-complete.git] / lib / Analysis / LazyCallGraph.cpp
blob726f52a95855d9b8a5bcfca2519ed669ff8e0011
1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/LazyCallGraph.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/ScopeExit.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Config/llvm-config.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <iterator>
34 #include <string>
35 #include <tuple>
36 #include <utility>
38 using namespace llvm;
40 #define DEBUG_TYPE "lcg"
42 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
43 Edge::Kind EK) {
44 EdgeIndexMap.insert({&TargetN, Edges.size()});
45 Edges.emplace_back(TargetN, EK);
48 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
49 Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
52 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
53 auto IndexMapI = EdgeIndexMap.find(&TargetN);
54 if (IndexMapI == EdgeIndexMap.end())
55 return false;
57 Edges[IndexMapI->second] = Edge();
58 EdgeIndexMap.erase(IndexMapI);
59 return true;
62 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
63 DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
64 LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
65 if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
66 return;
68 LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n");
69 Edges.emplace_back(LazyCallGraph::Edge(N, EK));
72 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
73 assert(!Edges && "Must not have already populated the edges for this node!");
75 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
76 << "' to the graph.\n");
78 Edges = EdgeSequence();
80 SmallVector<Constant *, 16> Worklist;
81 SmallPtrSet<Function *, 4> Callees;
82 SmallPtrSet<Constant *, 16> Visited;
84 // Find all the potential call graph edges in this function. We track both
85 // actual call edges and indirect references to functions. The direct calls
86 // are trivially added, but to accumulate the latter we walk the instructions
87 // and add every operand which is a constant to the worklist to process
88 // afterward.
90 // Note that we consider *any* function with a definition to be a viable
91 // edge. Even if the function's definition is subject to replacement by
92 // some other module (say, a weak definition) there may still be
93 // optimizations which essentially speculate based on the definition and
94 // a way to check that the specific definition is in fact the one being
95 // used. For example, this could be done by moving the weak definition to
96 // a strong (internal) definition and making the weak definition be an
97 // alias. Then a test of the address of the weak function against the new
98 // strong definition's address would be an effective way to determine the
99 // safety of optimizing a direct call edge.
100 for (BasicBlock &BB : *F)
101 for (Instruction &I : BB) {
102 if (auto CS = CallSite(&I))
103 if (Function *Callee = CS.getCalledFunction())
104 if (!Callee->isDeclaration())
105 if (Callees.insert(Callee).second) {
106 Visited.insert(Callee);
107 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
108 LazyCallGraph::Edge::Call);
111 for (Value *Op : I.operand_values())
112 if (Constant *C = dyn_cast<Constant>(Op))
113 if (Visited.insert(C).second)
114 Worklist.push_back(C);
117 // We've collected all the constant (and thus potentially function or
118 // function containing) operands to all of the instructions in the function.
119 // Process them (recursively) collecting every function found.
120 visitReferences(Worklist, Visited, [&](Function &F) {
121 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
122 LazyCallGraph::Edge::Ref);
125 // Add implicit reference edges to any defined libcall functions (if we
126 // haven't found an explicit edge).
127 for (auto *F : G->LibFunctions)
128 if (!Visited.count(F))
129 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
130 LazyCallGraph::Edge::Ref);
132 return *Edges;
135 void LazyCallGraph::Node::replaceFunction(Function &NewF) {
136 assert(F != &NewF && "Must not replace a function with itself!");
137 F = &NewF;
140 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
141 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
142 dbgs() << *this << '\n';
144 #endif
146 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
147 LibFunc LF;
149 // Either this is a normal library function or a "vectorizable" function.
150 return TLI.getLibFunc(F, LF) || TLI.isFunctionVectorizable(F.getName());
153 LazyCallGraph::LazyCallGraph(Module &M, TargetLibraryInfo &TLI) {
154 LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
155 << "\n");
156 for (Function &F : M) {
157 if (F.isDeclaration())
158 continue;
159 // If this function is a known lib function to LLVM then we want to
160 // synthesize reference edges to it to model the fact that LLVM can turn
161 // arbitrary code into a library function call.
162 if (isKnownLibFunction(F, TLI))
163 LibFunctions.insert(&F);
165 if (F.hasLocalLinkage())
166 continue;
168 // External linkage defined functions have edges to them from other
169 // modules.
170 LLVM_DEBUG(dbgs() << " Adding '" << F.getName()
171 << "' to entry set of the graph.\n");
172 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
175 // Now add entry nodes for functions reachable via initializers to globals.
176 SmallVector<Constant *, 16> Worklist;
177 SmallPtrSet<Constant *, 16> Visited;
178 for (GlobalVariable &GV : M.globals())
179 if (GV.hasInitializer())
180 if (Visited.insert(GV.getInitializer()).second)
181 Worklist.push_back(GV.getInitializer());
183 LLVM_DEBUG(
184 dbgs() << " Adding functions referenced by global initializers to the "
185 "entry set.\n");
186 visitReferences(Worklist, Visited, [&](Function &F) {
187 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
188 LazyCallGraph::Edge::Ref);
192 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
193 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
194 EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
195 SCCMap(std::move(G.SCCMap)),
196 LibFunctions(std::move(G.LibFunctions)) {
197 updateGraphPtrs();
200 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
201 BPA = std::move(G.BPA);
202 NodeMap = std::move(G.NodeMap);
203 EntryEdges = std::move(G.EntryEdges);
204 SCCBPA = std::move(G.SCCBPA);
205 SCCMap = std::move(G.SCCMap);
206 LibFunctions = std::move(G.LibFunctions);
207 updateGraphPtrs();
208 return *this;
211 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
212 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
213 dbgs() << *this << '\n';
215 #endif
217 #ifndef NDEBUG
218 void LazyCallGraph::SCC::verify() {
219 assert(OuterRefSCC && "Can't have a null RefSCC!");
220 assert(!Nodes.empty() && "Can't have an empty SCC!");
222 for (Node *N : Nodes) {
223 assert(N && "Can't have a null node!");
224 assert(OuterRefSCC->G->lookupSCC(*N) == this &&
225 "Node does not map to this SCC!");
226 assert(N->DFSNumber == -1 &&
227 "Must set DFS numbers to -1 when adding a node to an SCC!");
228 assert(N->LowLink == -1 &&
229 "Must set low link to -1 when adding a node to an SCC!");
230 for (Edge &E : **N)
231 assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
234 #endif
236 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
237 if (this == &C)
238 return false;
240 for (Node &N : *this)
241 for (Edge &E : N->calls())
242 if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
243 return true;
245 // No edges found.
246 return false;
249 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
250 if (this == &TargetC)
251 return false;
253 LazyCallGraph &G = *OuterRefSCC->G;
255 // Start with this SCC.
256 SmallPtrSet<const SCC *, 16> Visited = {this};
257 SmallVector<const SCC *, 16> Worklist = {this};
259 // Walk down the graph until we run out of edges or find a path to TargetC.
260 do {
261 const SCC &C = *Worklist.pop_back_val();
262 for (Node &N : C)
263 for (Edge &E : N->calls()) {
264 SCC *CalleeC = G.lookupSCC(E.getNode());
265 if (!CalleeC)
266 continue;
268 // If the callee's SCC is the TargetC, we're done.
269 if (CalleeC == &TargetC)
270 return true;
272 // If this is the first time we've reached this SCC, put it on the
273 // worklist to recurse through.
274 if (Visited.insert(CalleeC).second)
275 Worklist.push_back(CalleeC);
277 } while (!Worklist.empty());
279 // No paths found.
280 return false;
283 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
285 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
286 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
287 dbgs() << *this << '\n';
289 #endif
291 #ifndef NDEBUG
292 void LazyCallGraph::RefSCC::verify() {
293 assert(G && "Can't have a null graph!");
294 assert(!SCCs.empty() && "Can't have an empty SCC!");
296 // Verify basic properties of the SCCs.
297 SmallPtrSet<SCC *, 4> SCCSet;
298 for (SCC *C : SCCs) {
299 assert(C && "Can't have a null SCC!");
300 C->verify();
301 assert(&C->getOuterRefSCC() == this &&
302 "SCC doesn't think it is inside this RefSCC!");
303 bool Inserted = SCCSet.insert(C).second;
304 assert(Inserted && "Found a duplicate SCC!");
305 auto IndexIt = SCCIndices.find(C);
306 assert(IndexIt != SCCIndices.end() &&
307 "Found an SCC that doesn't have an index!");
310 // Check that our indices map correctly.
311 for (auto &SCCIndexPair : SCCIndices) {
312 SCC *C = SCCIndexPair.first;
313 int i = SCCIndexPair.second;
314 assert(C && "Can't have a null SCC in the indices!");
315 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
316 assert(SCCs[i] == C && "Index doesn't point to SCC!");
319 // Check that the SCCs are in fact in post-order.
320 for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
321 SCC &SourceSCC = *SCCs[i];
322 for (Node &N : SourceSCC)
323 for (Edge &E : *N) {
324 if (!E.isCall())
325 continue;
326 SCC &TargetSCC = *G->lookupSCC(E.getNode());
327 if (&TargetSCC.getOuterRefSCC() == this) {
328 assert(SCCIndices.find(&TargetSCC)->second <= i &&
329 "Edge between SCCs violates post-order relationship.");
330 continue;
335 #endif
337 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
338 if (&RC == this)
339 return false;
341 // Search all edges to see if this is a parent.
342 for (SCC &C : *this)
343 for (Node &N : C)
344 for (Edge &E : *N)
345 if (G->lookupRefSCC(E.getNode()) == &RC)
346 return true;
348 return false;
351 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
352 if (&RC == this)
353 return false;
355 // For each descendant of this RefSCC, see if one of its children is the
356 // argument. If not, add that descendant to the worklist and continue
357 // searching.
358 SmallVector<const RefSCC *, 4> Worklist;
359 SmallPtrSet<const RefSCC *, 4> Visited;
360 Worklist.push_back(this);
361 Visited.insert(this);
362 do {
363 const RefSCC &DescendantRC = *Worklist.pop_back_val();
364 for (SCC &C : DescendantRC)
365 for (Node &N : C)
366 for (Edge &E : *N) {
367 auto *ChildRC = G->lookupRefSCC(E.getNode());
368 if (ChildRC == &RC)
369 return true;
370 if (!ChildRC || !Visited.insert(ChildRC).second)
371 continue;
372 Worklist.push_back(ChildRC);
374 } while (!Worklist.empty());
376 return false;
379 /// Generic helper that updates a postorder sequence of SCCs for a potentially
380 /// cycle-introducing edge insertion.
382 /// A postorder sequence of SCCs of a directed graph has one fundamental
383 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
384 /// all edges in the SCC DAG point to prior SCCs in the sequence.
386 /// This routine both updates a postorder sequence and uses that sequence to
387 /// compute the set of SCCs connected into a cycle. It should only be called to
388 /// insert a "downward" edge which will require changing the sequence to
389 /// restore it to a postorder.
391 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
392 /// sequence, all of the SCCs which may be impacted are in the closed range of
393 /// those two within the postorder sequence. The algorithm used here to restore
394 /// the state is as follows:
396 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
397 /// source SCC consisting of just the source SCC. Then scan toward the
398 /// target SCC in postorder and for each SCC, if it has an edge to an SCC
399 /// in the set, add it to the set. Otherwise, the source SCC is not
400 /// a successor, move it in the postorder sequence to immediately before
401 /// the source SCC, shifting the source SCC and all SCCs in the set one
402 /// position toward the target SCC. Stop scanning after processing the
403 /// target SCC.
404 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
405 /// and thus the new edge will flow toward the start, we are done.
406 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
407 /// SCC between the source and the target, and add them to the set of
408 /// connected SCCs, then recurse through them. Once a complete set of the
409 /// SCCs the target connects to is known, hoist the remaining SCCs between
410 /// the source and the target to be above the target. Note that there is no
411 /// need to process the source SCC, it is already known to connect.
412 /// 4) At this point, all of the SCCs in the closed range between the source
413 /// SCC and the target SCC in the postorder sequence are connected,
414 /// including the target SCC and the source SCC. Inserting the edge from
415 /// the source SCC to the target SCC will form a cycle out of precisely
416 /// these SCCs. Thus we can merge all of the SCCs in this closed range into
417 /// a single SCC.
419 /// This process has various important properties:
420 /// - Only mutates the SCCs when adding the edge actually changes the SCC
421 /// structure.
422 /// - Never mutates SCCs which are unaffected by the change.
423 /// - Updates the postorder sequence to correctly satisfy the postorder
424 /// constraint after the edge is inserted.
425 /// - Only reorders SCCs in the closed postorder sequence from the source to
426 /// the target, so easy to bound how much has changed even in the ordering.
427 /// - Big-O is the number of edges in the closed postorder range of SCCs from
428 /// source to target.
430 /// This helper routine, in addition to updating the postorder sequence itself
431 /// will also update a map from SCCs to indices within that sequence.
433 /// The sequence and the map must operate on pointers to the SCC type.
435 /// Two callbacks must be provided. The first computes the subset of SCCs in
436 /// the postorder closed range from the source to the target which connect to
437 /// the source SCC via some (transitive) set of edges. The second computes the
438 /// subset of the same range which the target SCC connects to via some
439 /// (transitive) set of edges. Both callbacks should populate the set argument
440 /// provided.
441 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
442 typename ComputeSourceConnectedSetCallableT,
443 typename ComputeTargetConnectedSetCallableT>
444 static iterator_range<typename PostorderSequenceT::iterator>
445 updatePostorderSequenceForEdgeInsertion(
446 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
447 SCCIndexMapT &SCCIndices,
448 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
449 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
450 int SourceIdx = SCCIndices[&SourceSCC];
451 int TargetIdx = SCCIndices[&TargetSCC];
452 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
454 SmallPtrSet<SCCT *, 4> ConnectedSet;
456 // Compute the SCCs which (transitively) reach the source.
457 ComputeSourceConnectedSet(ConnectedSet);
459 // Partition the SCCs in this part of the port-order sequence so only SCCs
460 // connecting to the source remain between it and the target. This is
461 // a benign partition as it preserves postorder.
462 auto SourceI = std::stable_partition(
463 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
464 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
465 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
466 SCCIndices.find(SCCs[i])->second = i;
468 // If the target doesn't connect to the source, then we've corrected the
469 // post-order and there are no cycles formed.
470 if (!ConnectedSet.count(&TargetSCC)) {
471 assert(SourceI > (SCCs.begin() + SourceIdx) &&
472 "Must have moved the source to fix the post-order.");
473 assert(*std::prev(SourceI) == &TargetSCC &&
474 "Last SCC to move should have bene the target.");
476 // Return an empty range at the target SCC indicating there is nothing to
477 // merge.
478 return make_range(std::prev(SourceI), std::prev(SourceI));
481 assert(SCCs[TargetIdx] == &TargetSCC &&
482 "Should not have moved target if connected!");
483 SourceIdx = SourceI - SCCs.begin();
484 assert(SCCs[SourceIdx] == &SourceSCC &&
485 "Bad updated index computation for the source SCC!");
488 // See whether there are any remaining intervening SCCs between the source
489 // and target. If so we need to make sure they all are reachable form the
490 // target.
491 if (SourceIdx + 1 < TargetIdx) {
492 ConnectedSet.clear();
493 ComputeTargetConnectedSet(ConnectedSet);
495 // Partition SCCs so that only SCCs reached from the target remain between
496 // the source and the target. This preserves postorder.
497 auto TargetI = std::stable_partition(
498 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
499 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
500 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
501 SCCIndices.find(SCCs[i])->second = i;
502 TargetIdx = std::prev(TargetI) - SCCs.begin();
503 assert(SCCs[TargetIdx] == &TargetSCC &&
504 "Should always end with the target!");
507 // At this point, we know that connecting source to target forms a cycle
508 // because target connects back to source, and we know that all of the SCCs
509 // between the source and target in the postorder sequence participate in that
510 // cycle.
511 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
514 bool
515 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
516 Node &SourceN, Node &TargetN,
517 function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
518 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
519 SmallVector<SCC *, 1> DeletedSCCs;
521 #ifndef NDEBUG
522 // In a debug build, verify the RefSCC is valid to start with and when this
523 // routine finishes.
524 verify();
525 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
526 #endif
528 SCC &SourceSCC = *G->lookupSCC(SourceN);
529 SCC &TargetSCC = *G->lookupSCC(TargetN);
531 // If the two nodes are already part of the same SCC, we're also done as
532 // we've just added more connectivity.
533 if (&SourceSCC == &TargetSCC) {
534 SourceN->setEdgeKind(TargetN, Edge::Call);
535 return false; // No new cycle.
538 // At this point we leverage the postorder list of SCCs to detect when the
539 // insertion of an edge changes the SCC structure in any way.
541 // First and foremost, we can eliminate the need for any changes when the
542 // edge is toward the beginning of the postorder sequence because all edges
543 // flow in that direction already. Thus adding a new one cannot form a cycle.
544 int SourceIdx = SCCIndices[&SourceSCC];
545 int TargetIdx = SCCIndices[&TargetSCC];
546 if (TargetIdx < SourceIdx) {
547 SourceN->setEdgeKind(TargetN, Edge::Call);
548 return false; // No new cycle.
551 // Compute the SCCs which (transitively) reach the source.
552 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
553 #ifndef NDEBUG
554 // Check that the RefSCC is still valid before computing this as the
555 // results will be nonsensical of we've broken its invariants.
556 verify();
557 #endif
558 ConnectedSet.insert(&SourceSCC);
559 auto IsConnected = [&](SCC &C) {
560 for (Node &N : C)
561 for (Edge &E : N->calls())
562 if (ConnectedSet.count(G->lookupSCC(E.getNode())))
563 return true;
565 return false;
568 for (SCC *C :
569 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
570 if (IsConnected(*C))
571 ConnectedSet.insert(C);
574 // Use a normal worklist to find which SCCs the target connects to. We still
575 // bound the search based on the range in the postorder list we care about,
576 // but because this is forward connectivity we just "recurse" through the
577 // edges.
578 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
579 #ifndef NDEBUG
580 // Check that the RefSCC is still valid before computing this as the
581 // results will be nonsensical of we've broken its invariants.
582 verify();
583 #endif
584 ConnectedSet.insert(&TargetSCC);
585 SmallVector<SCC *, 4> Worklist;
586 Worklist.push_back(&TargetSCC);
587 do {
588 SCC &C = *Worklist.pop_back_val();
589 for (Node &N : C)
590 for (Edge &E : *N) {
591 if (!E.isCall())
592 continue;
593 SCC &EdgeC = *G->lookupSCC(E.getNode());
594 if (&EdgeC.getOuterRefSCC() != this)
595 // Not in this RefSCC...
596 continue;
597 if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
598 // Not in the postorder sequence between source and target.
599 continue;
601 if (ConnectedSet.insert(&EdgeC).second)
602 Worklist.push_back(&EdgeC);
604 } while (!Worklist.empty());
607 // Use a generic helper to update the postorder sequence of SCCs and return
608 // a range of any SCCs connected into a cycle by inserting this edge. This
609 // routine will also take care of updating the indices into the postorder
610 // sequence.
611 auto MergeRange = updatePostorderSequenceForEdgeInsertion(
612 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
613 ComputeTargetConnectedSet);
615 // Run the user's callback on the merged SCCs before we actually merge them.
616 if (MergeCB)
617 MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));
619 // If the merge range is empty, then adding the edge didn't actually form any
620 // new cycles. We're done.
621 if (empty(MergeRange)) {
622 // Now that the SCC structure is finalized, flip the kind to call.
623 SourceN->setEdgeKind(TargetN, Edge::Call);
624 return false; // No new cycle.
627 #ifndef NDEBUG
628 // Before merging, check that the RefSCC remains valid after all the
629 // postorder updates.
630 verify();
631 #endif
633 // Otherwise we need to merge all of the SCCs in the cycle into a single
634 // result SCC.
636 // NB: We merge into the target because all of these functions were already
637 // reachable from the target, meaning any SCC-wide properties deduced about it
638 // other than the set of functions within it will not have changed.
639 for (SCC *C : MergeRange) {
640 assert(C != &TargetSCC &&
641 "We merge *into* the target and shouldn't process it here!");
642 SCCIndices.erase(C);
643 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
644 for (Node *N : C->Nodes)
645 G->SCCMap[N] = &TargetSCC;
646 C->clear();
647 DeletedSCCs.push_back(C);
650 // Erase the merged SCCs from the list and update the indices of the
651 // remaining SCCs.
652 int IndexOffset = MergeRange.end() - MergeRange.begin();
653 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
654 for (SCC *C : make_range(EraseEnd, SCCs.end()))
655 SCCIndices[C] -= IndexOffset;
657 // Now that the SCC structure is finalized, flip the kind to call.
658 SourceN->setEdgeKind(TargetN, Edge::Call);
660 // And we're done, but we did form a new cycle.
661 return true;
664 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
665 Node &TargetN) {
666 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
668 #ifndef NDEBUG
669 // In a debug build, verify the RefSCC is valid to start with and when this
670 // routine finishes.
671 verify();
672 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
673 #endif
675 assert(G->lookupRefSCC(SourceN) == this &&
676 "Source must be in this RefSCC.");
677 assert(G->lookupRefSCC(TargetN) == this &&
678 "Target must be in this RefSCC.");
679 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
680 "Source and Target must be in separate SCCs for this to be trivial!");
682 // Set the edge kind.
683 SourceN->setEdgeKind(TargetN, Edge::Ref);
686 iterator_range<LazyCallGraph::RefSCC::iterator>
687 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
688 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
690 #ifndef NDEBUG
691 // In a debug build, verify the RefSCC is valid to start with and when this
692 // routine finishes.
693 verify();
694 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
695 #endif
697 assert(G->lookupRefSCC(SourceN) == this &&
698 "Source must be in this RefSCC.");
699 assert(G->lookupRefSCC(TargetN) == this &&
700 "Target must be in this RefSCC.");
702 SCC &TargetSCC = *G->lookupSCC(TargetN);
703 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
704 "the same SCC to require the "
705 "full CG update.");
707 // Set the edge kind.
708 SourceN->setEdgeKind(TargetN, Edge::Ref);
710 // Otherwise we are removing a call edge from a single SCC. This may break
711 // the cycle. In order to compute the new set of SCCs, we need to do a small
712 // DFS over the nodes within the SCC to form any sub-cycles that remain as
713 // distinct SCCs and compute a postorder over the resulting SCCs.
715 // However, we specially handle the target node. The target node is known to
716 // reach all other nodes in the original SCC by definition. This means that
717 // we want the old SCC to be replaced with an SCC containing that node as it
718 // will be the root of whatever SCC DAG results from the DFS. Assumptions
719 // about an SCC such as the set of functions called will continue to hold,
720 // etc.
722 SCC &OldSCC = TargetSCC;
723 SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
724 SmallVector<Node *, 16> PendingSCCStack;
725 SmallVector<SCC *, 4> NewSCCs;
727 // Prepare the nodes for a fresh DFS.
728 SmallVector<Node *, 16> Worklist;
729 Worklist.swap(OldSCC.Nodes);
730 for (Node *N : Worklist) {
731 N->DFSNumber = N->LowLink = 0;
732 G->SCCMap.erase(N);
735 // Force the target node to be in the old SCC. This also enables us to take
736 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
737 // below: whenever we build an edge that reaches the target node, we know
738 // that the target node eventually connects back to all other nodes in our
739 // walk. As a consequence, we can detect and handle participants in that
740 // cycle without walking all the edges that form this connection, and instead
741 // by relying on the fundamental guarantee coming into this operation (all
742 // nodes are reachable from the target due to previously forming an SCC).
743 TargetN.DFSNumber = TargetN.LowLink = -1;
744 OldSCC.Nodes.push_back(&TargetN);
745 G->SCCMap[&TargetN] = &OldSCC;
747 // Scan down the stack and DFS across the call edges.
748 for (Node *RootN : Worklist) {
749 assert(DFSStack.empty() &&
750 "Cannot begin a new root with a non-empty DFS stack!");
751 assert(PendingSCCStack.empty() &&
752 "Cannot begin a new root with pending nodes for an SCC!");
754 // Skip any nodes we've already reached in the DFS.
755 if (RootN->DFSNumber != 0) {
756 assert(RootN->DFSNumber == -1 &&
757 "Shouldn't have any mid-DFS root nodes!");
758 continue;
761 RootN->DFSNumber = RootN->LowLink = 1;
762 int NextDFSNumber = 2;
764 DFSStack.push_back({RootN, (*RootN)->call_begin()});
765 do {
766 Node *N;
767 EdgeSequence::call_iterator I;
768 std::tie(N, I) = DFSStack.pop_back_val();
769 auto E = (*N)->call_end();
770 while (I != E) {
771 Node &ChildN = I->getNode();
772 if (ChildN.DFSNumber == 0) {
773 // We haven't yet visited this child, so descend, pushing the current
774 // node onto the stack.
775 DFSStack.push_back({N, I});
777 assert(!G->SCCMap.count(&ChildN) &&
778 "Found a node with 0 DFS number but already in an SCC!");
779 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
780 N = &ChildN;
781 I = (*N)->call_begin();
782 E = (*N)->call_end();
783 continue;
786 // Check for the child already being part of some component.
787 if (ChildN.DFSNumber == -1) {
788 if (G->lookupSCC(ChildN) == &OldSCC) {
789 // If the child is part of the old SCC, we know that it can reach
790 // every other node, so we have formed a cycle. Pull the entire DFS
791 // and pending stacks into it. See the comment above about setting
792 // up the old SCC for why we do this.
793 int OldSize = OldSCC.size();
794 OldSCC.Nodes.push_back(N);
795 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
796 PendingSCCStack.clear();
797 while (!DFSStack.empty())
798 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
799 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
800 N.DFSNumber = N.LowLink = -1;
801 G->SCCMap[&N] = &OldSCC;
803 N = nullptr;
804 break;
807 // If the child has already been added to some child component, it
808 // couldn't impact the low-link of this parent because it isn't
809 // connected, and thus its low-link isn't relevant so skip it.
810 ++I;
811 continue;
814 // Track the lowest linked child as the lowest link for this node.
815 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
816 if (ChildN.LowLink < N->LowLink)
817 N->LowLink = ChildN.LowLink;
819 // Move to the next edge.
820 ++I;
822 if (!N)
823 // Cleared the DFS early, start another round.
824 break;
826 // We've finished processing N and its descendants, put it on our pending
827 // SCC stack to eventually get merged into an SCC of nodes.
828 PendingSCCStack.push_back(N);
830 // If this node is linked to some lower entry, continue walking up the
831 // stack.
832 if (N->LowLink != N->DFSNumber)
833 continue;
835 // Otherwise, we've completed an SCC. Append it to our post order list of
836 // SCCs.
837 int RootDFSNumber = N->DFSNumber;
838 // Find the range of the node stack by walking down until we pass the
839 // root DFS number.
840 auto SCCNodes = make_range(
841 PendingSCCStack.rbegin(),
842 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
843 return N->DFSNumber < RootDFSNumber;
844 }));
846 // Form a new SCC out of these nodes and then clear them off our pending
847 // stack.
848 NewSCCs.push_back(G->createSCC(*this, SCCNodes));
849 for (Node &N : *NewSCCs.back()) {
850 N.DFSNumber = N.LowLink = -1;
851 G->SCCMap[&N] = NewSCCs.back();
853 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
854 } while (!DFSStack.empty());
857 // Insert the remaining SCCs before the old one. The old SCC can reach all
858 // other SCCs we form because it contains the target node of the removed edge
859 // of the old SCC. This means that we will have edges into all of the new
860 // SCCs, which means the old one must come last for postorder.
861 int OldIdx = SCCIndices[&OldSCC];
862 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
864 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
865 // old SCC from the mapping.
866 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
867 SCCIndices[SCCs[Idx]] = Idx;
869 return make_range(SCCs.begin() + OldIdx,
870 SCCs.begin() + OldIdx + NewSCCs.size());
873 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
874 Node &TargetN) {
875 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
877 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
878 assert(G->lookupRefSCC(TargetN) != this &&
879 "Target must not be in this RefSCC.");
880 #ifdef EXPENSIVE_CHECKS
881 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
882 "Target must be a descendant of the Source.");
883 #endif
885 // Edges between RefSCCs are the same regardless of call or ref, so we can
886 // just flip the edge here.
887 SourceN->setEdgeKind(TargetN, Edge::Call);
889 #ifndef NDEBUG
890 // Check that the RefSCC is still valid.
891 verify();
892 #endif
895 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
896 Node &TargetN) {
897 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
899 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
900 assert(G->lookupRefSCC(TargetN) != this &&
901 "Target must not be in this RefSCC.");
902 #ifdef EXPENSIVE_CHECKS
903 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
904 "Target must be a descendant of the Source.");
905 #endif
907 // Edges between RefSCCs are the same regardless of call or ref, so we can
908 // just flip the edge here.
909 SourceN->setEdgeKind(TargetN, Edge::Ref);
911 #ifndef NDEBUG
912 // Check that the RefSCC is still valid.
913 verify();
914 #endif
917 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
918 Node &TargetN) {
919 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
920 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
922 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
924 #ifndef NDEBUG
925 // Check that the RefSCC is still valid.
926 verify();
927 #endif
930 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
931 Edge::Kind EK) {
932 // First insert it into the caller.
933 SourceN->insertEdgeInternal(TargetN, EK);
935 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
937 assert(G->lookupRefSCC(TargetN) != this &&
938 "Target must not be in this RefSCC.");
939 #ifdef EXPENSIVE_CHECKS
940 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
941 "Target must be a descendant of the Source.");
942 #endif
944 #ifndef NDEBUG
945 // Check that the RefSCC is still valid.
946 verify();
947 #endif
950 SmallVector<LazyCallGraph::RefSCC *, 1>
951 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
952 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
953 RefSCC &SourceC = *G->lookupRefSCC(SourceN);
954 assert(&SourceC != this && "Source must not be in this RefSCC.");
955 #ifdef EXPENSIVE_CHECKS
956 assert(SourceC.isDescendantOf(*this) &&
957 "Source must be a descendant of the Target.");
958 #endif
960 SmallVector<RefSCC *, 1> DeletedRefSCCs;
962 #ifndef NDEBUG
963 // In a debug build, verify the RefSCC is valid to start with and when this
964 // routine finishes.
965 verify();
966 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
967 #endif
969 int SourceIdx = G->RefSCCIndices[&SourceC];
970 int TargetIdx = G->RefSCCIndices[this];
971 assert(SourceIdx < TargetIdx &&
972 "Postorder list doesn't see edge as incoming!");
974 // Compute the RefSCCs which (transitively) reach the source. We do this by
975 // working backwards from the source using the parent set in each RefSCC,
976 // skipping any RefSCCs that don't fall in the postorder range. This has the
977 // advantage of walking the sparser parent edge (in high fan-out graphs) but
978 // more importantly this removes examining all forward edges in all RefSCCs
979 // within the postorder range which aren't in fact connected. Only connected
980 // RefSCCs (and their edges) are visited here.
981 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
982 Set.insert(&SourceC);
983 auto IsConnected = [&](RefSCC &RC) {
984 for (SCC &C : RC)
985 for (Node &N : C)
986 for (Edge &E : *N)
987 if (Set.count(G->lookupRefSCC(E.getNode())))
988 return true;
990 return false;
993 for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
994 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
995 if (IsConnected(*C))
996 Set.insert(C);
999 // Use a normal worklist to find which SCCs the target connects to. We still
1000 // bound the search based on the range in the postorder list we care about,
1001 // but because this is forward connectivity we just "recurse" through the
1002 // edges.
1003 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1004 Set.insert(this);
1005 SmallVector<RefSCC *, 4> Worklist;
1006 Worklist.push_back(this);
1007 do {
1008 RefSCC &RC = *Worklist.pop_back_val();
1009 for (SCC &C : RC)
1010 for (Node &N : C)
1011 for (Edge &E : *N) {
1012 RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1013 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1014 // Not in the postorder sequence between source and target.
1015 continue;
1017 if (Set.insert(&EdgeRC).second)
1018 Worklist.push_back(&EdgeRC);
1020 } while (!Worklist.empty());
1023 // Use a generic helper to update the postorder sequence of RefSCCs and return
1024 // a range of any RefSCCs connected into a cycle by inserting this edge. This
1025 // routine will also take care of updating the indices into the postorder
1026 // sequence.
1027 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1028 updatePostorderSequenceForEdgeInsertion(
1029 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1030 ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1032 // Build a set so we can do fast tests for whether a RefSCC will end up as
1033 // part of the merged RefSCC.
1034 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1036 // This RefSCC will always be part of that set, so just insert it here.
1037 MergeSet.insert(this);
1039 // Now that we have identified all of the SCCs which need to be merged into
1040 // a connected set with the inserted edge, merge all of them into this SCC.
1041 SmallVector<SCC *, 16> MergedSCCs;
1042 int SCCIndex = 0;
1043 for (RefSCC *RC : MergeRange) {
1044 assert(RC != this && "We're merging into the target RefSCC, so it "
1045 "shouldn't be in the range.");
1047 // Walk the inner SCCs to update their up-pointer and walk all the edges to
1048 // update any parent sets.
1049 // FIXME: We should try to find a way to avoid this (rather expensive) edge
1050 // walk by updating the parent sets in some other manner.
1051 for (SCC &InnerC : *RC) {
1052 InnerC.OuterRefSCC = this;
1053 SCCIndices[&InnerC] = SCCIndex++;
1054 for (Node &N : InnerC)
1055 G->SCCMap[&N] = &InnerC;
1058 // Now merge in the SCCs. We can actually move here so try to reuse storage
1059 // the first time through.
1060 if (MergedSCCs.empty())
1061 MergedSCCs = std::move(RC->SCCs);
1062 else
1063 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1064 RC->SCCs.clear();
1065 DeletedRefSCCs.push_back(RC);
1068 // Append our original SCCs to the merged list and move it into place.
1069 for (SCC &InnerC : *this)
1070 SCCIndices[&InnerC] = SCCIndex++;
1071 MergedSCCs.append(SCCs.begin(), SCCs.end());
1072 SCCs = std::move(MergedSCCs);
1074 // Remove the merged away RefSCCs from the post order sequence.
1075 for (RefSCC *RC : MergeRange)
1076 G->RefSCCIndices.erase(RC);
1077 int IndexOffset = MergeRange.end() - MergeRange.begin();
1078 auto EraseEnd =
1079 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1080 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1081 G->RefSCCIndices[RC] -= IndexOffset;
1083 // At this point we have a merged RefSCC with a post-order SCCs list, just
1084 // connect the nodes to form the new edge.
1085 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1087 // We return the list of SCCs which were merged so that callers can
1088 // invalidate any data they have associated with those SCCs. Note that these
1089 // SCCs are no longer in an interesting state (they are totally empty) but
1090 // the pointers will remain stable for the life of the graph itself.
1091 return DeletedRefSCCs;
1094 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1095 assert(G->lookupRefSCC(SourceN) == this &&
1096 "The source must be a member of this RefSCC.");
1097 assert(G->lookupRefSCC(TargetN) != this &&
1098 "The target must not be a member of this RefSCC");
1100 #ifndef NDEBUG
1101 // In a debug build, verify the RefSCC is valid to start with and when this
1102 // routine finishes.
1103 verify();
1104 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1105 #endif
1107 // First remove it from the node.
1108 bool Removed = SourceN->removeEdgeInternal(TargetN);
1109 (void)Removed;
1110 assert(Removed && "Target not in the edge set for this caller?");
1113 SmallVector<LazyCallGraph::RefSCC *, 1>
1114 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
1115 ArrayRef<Node *> TargetNs) {
1116 // We return a list of the resulting *new* RefSCCs in post-order.
1117 SmallVector<RefSCC *, 1> Result;
1119 #ifndef NDEBUG
1120 // In a debug build, verify the RefSCC is valid to start with and that either
1121 // we return an empty list of result RefSCCs and this RefSCC remains valid,
1122 // or we return new RefSCCs and this RefSCC is dead.
1123 verify();
1124 auto VerifyOnExit = make_scope_exit([&]() {
1125 // If we didn't replace our RefSCC with new ones, check that this one
1126 // remains valid.
1127 if (G)
1128 verify();
1130 #endif
1132 // First remove the actual edges.
1133 for (Node *TargetN : TargetNs) {
1134 assert(!(*SourceN)[*TargetN].isCall() &&
1135 "Cannot remove a call edge, it must first be made a ref edge");
1137 bool Removed = SourceN->removeEdgeInternal(*TargetN);
1138 (void)Removed;
1139 assert(Removed && "Target not in the edge set for this caller?");
1142 // Direct self references don't impact the ref graph at all.
1143 if (llvm::all_of(TargetNs,
1144 [&](Node *TargetN) { return &SourceN == TargetN; }))
1145 return Result;
1147 // If all targets are in the same SCC as the source, because no call edges
1148 // were removed there is no RefSCC structure change.
1149 SCC &SourceC = *G->lookupSCC(SourceN);
1150 if (llvm::all_of(TargetNs, [&](Node *TargetN) {
1151 return G->lookupSCC(*TargetN) == &SourceC;
1153 return Result;
1155 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1156 // for each inner SCC. We store these inside the low-link field of the nodes
1157 // rather than associated with SCCs because this saves a round-trip through
1158 // the node->SCC map and in the common case, SCCs are small. We will verify
1159 // that we always give the same number to every node in the SCC such that
1160 // these are equivalent.
1161 int PostOrderNumber = 0;
1163 // Reset all the other nodes to prepare for a DFS over them, and add them to
1164 // our worklist.
1165 SmallVector<Node *, 8> Worklist;
1166 for (SCC *C : SCCs) {
1167 for (Node &N : *C)
1168 N.DFSNumber = N.LowLink = 0;
1170 Worklist.append(C->Nodes.begin(), C->Nodes.end());
1173 // Track the number of nodes in this RefSCC so that we can quickly recognize
1174 // an important special case of the edge removal not breaking the cycle of
1175 // this RefSCC.
1176 const int NumRefSCCNodes = Worklist.size();
1178 SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1179 SmallVector<Node *, 4> PendingRefSCCStack;
1180 do {
1181 assert(DFSStack.empty() &&
1182 "Cannot begin a new root with a non-empty DFS stack!");
1183 assert(PendingRefSCCStack.empty() &&
1184 "Cannot begin a new root with pending nodes for an SCC!");
1186 Node *RootN = Worklist.pop_back_val();
1187 // Skip any nodes we've already reached in the DFS.
1188 if (RootN->DFSNumber != 0) {
1189 assert(RootN->DFSNumber == -1 &&
1190 "Shouldn't have any mid-DFS root nodes!");
1191 continue;
1194 RootN->DFSNumber = RootN->LowLink = 1;
1195 int NextDFSNumber = 2;
1197 DFSStack.push_back({RootN, (*RootN)->begin()});
1198 do {
1199 Node *N;
1200 EdgeSequence::iterator I;
1201 std::tie(N, I) = DFSStack.pop_back_val();
1202 auto E = (*N)->end();
1204 assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1205 "before processing a node.");
1207 while (I != E) {
1208 Node &ChildN = I->getNode();
1209 if (ChildN.DFSNumber == 0) {
1210 // Mark that we should start at this child when next this node is the
1211 // top of the stack. We don't start at the next child to ensure this
1212 // child's lowlink is reflected.
1213 DFSStack.push_back({N, I});
1215 // Continue, resetting to the child node.
1216 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1217 N = &ChildN;
1218 I = ChildN->begin();
1219 E = ChildN->end();
1220 continue;
1222 if (ChildN.DFSNumber == -1) {
1223 // If this child isn't currently in this RefSCC, no need to process
1224 // it.
1225 ++I;
1226 continue;
1229 // Track the lowest link of the children, if any are still in the stack.
1230 // Any child not on the stack will have a LowLink of -1.
1231 assert(ChildN.LowLink != 0 &&
1232 "Low-link must not be zero with a non-zero DFS number.");
1233 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1234 N->LowLink = ChildN.LowLink;
1235 ++I;
1238 // We've finished processing N and its descendants, put it on our pending
1239 // stack to eventually get merged into a RefSCC.
1240 PendingRefSCCStack.push_back(N);
1242 // If this node is linked to some lower entry, continue walking up the
1243 // stack.
1244 if (N->LowLink != N->DFSNumber) {
1245 assert(!DFSStack.empty() &&
1246 "We never found a viable root for a RefSCC to pop off!");
1247 continue;
1250 // Otherwise, form a new RefSCC from the top of the pending node stack.
1251 int RefSCCNumber = PostOrderNumber++;
1252 int RootDFSNumber = N->DFSNumber;
1254 // Find the range of the node stack by walking down until we pass the
1255 // root DFS number. Update the DFS numbers and low link numbers in the
1256 // process to avoid re-walking this list where possible.
1257 auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1258 if (N->DFSNumber < RootDFSNumber)
1259 // We've found the bottom.
1260 return true;
1262 // Update this node and keep scanning.
1263 N->DFSNumber = -1;
1264 // Save the post-order number in the lowlink field so that we can use
1265 // it to map SCCs into new RefSCCs after we finish the DFS.
1266 N->LowLink = RefSCCNumber;
1267 return false;
1269 auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1271 // If we find a cycle containing all nodes originally in this RefSCC then
1272 // the removal hasn't changed the structure at all. This is an important
1273 // special case and we can directly exit the entire routine more
1274 // efficiently as soon as we discover it.
1275 if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1276 // Clear out the low link field as we won't need it.
1277 for (Node *N : RefSCCNodes)
1278 N->LowLink = -1;
1279 // Return the empty result immediately.
1280 return Result;
1283 // We've already marked the nodes internally with the RefSCC number so
1284 // just clear them off the stack and continue.
1285 PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1286 } while (!DFSStack.empty());
1288 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1289 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1290 } while (!Worklist.empty());
1292 assert(PostOrderNumber > 1 &&
1293 "Should never finish the DFS when the existing RefSCC remains valid!");
1295 // Otherwise we create a collection of new RefSCC nodes and build
1296 // a radix-sort style map from postorder number to these new RefSCCs. We then
1297 // append SCCs to each of these RefSCCs in the order they occurred in the
1298 // original SCCs container.
1299 for (int i = 0; i < PostOrderNumber; ++i)
1300 Result.push_back(G->createRefSCC(*G));
1302 // Insert the resulting postorder sequence into the global graph postorder
1303 // sequence before the current RefSCC in that sequence, and then remove the
1304 // current one.
1306 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1307 // range over the global postorder sequence and generally use that sequence
1308 // rather than building a separate result vector here.
1309 int Idx = G->getRefSCCIndex(*this);
1310 G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1311 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1312 Result.end());
1313 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1314 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1316 for (SCC *C : SCCs) {
1317 // We store the SCC number in the node's low-link field above.
1318 int SCCNumber = C->begin()->LowLink;
1319 // Clear out all of the SCC's node's low-link fields now that we're done
1320 // using them as side-storage.
1321 for (Node &N : *C) {
1322 assert(N.LowLink == SCCNumber &&
1323 "Cannot have different numbers for nodes in the same SCC!");
1324 N.LowLink = -1;
1327 RefSCC &RC = *Result[SCCNumber];
1328 int SCCIndex = RC.SCCs.size();
1329 RC.SCCs.push_back(C);
1330 RC.SCCIndices[C] = SCCIndex;
1331 C->OuterRefSCC = &RC;
1334 // Now that we've moved things into the new RefSCCs, clear out our current
1335 // one.
1336 G = nullptr;
1337 SCCs.clear();
1338 SCCIndices.clear();
1340 #ifndef NDEBUG
1341 // Verify the new RefSCCs we've built.
1342 for (RefSCC *RC : Result)
1343 RC->verify();
1344 #endif
1346 // Return the new list of SCCs.
1347 return Result;
1350 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
1351 Node &TargetN) {
1352 // The only trivial case that requires any graph updates is when we add new
1353 // ref edge and may connect different RefSCCs along that path. This is only
1354 // because of the parents set. Every other part of the graph remains constant
1355 // after this edge insertion.
1356 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
1357 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1358 if (&TargetRC == this)
1359 return;
1361 #ifdef EXPENSIVE_CHECKS
1362 assert(TargetRC.isDescendantOf(*this) &&
1363 "Target must be a descendant of the Source.");
1364 #endif
1367 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1368 Node &TargetN) {
1369 #ifndef NDEBUG
1370 // Check that the RefSCC is still valid when we finish.
1371 auto ExitVerifier = make_scope_exit([this] { verify(); });
1373 #ifdef EXPENSIVE_CHECKS
1374 // Check that we aren't breaking some invariants of the SCC graph. Note that
1375 // this is quadratic in the number of edges in the call graph!
1376 SCC &SourceC = *G->lookupSCC(SourceN);
1377 SCC &TargetC = *G->lookupSCC(TargetN);
1378 if (&SourceC != &TargetC)
1379 assert(SourceC.isAncestorOf(TargetC) &&
1380 "Call edge is not trivial in the SCC graph!");
1381 #endif // EXPENSIVE_CHECKS
1382 #endif // NDEBUG
1384 // First insert it into the source or find the existing edge.
1385 auto InsertResult =
1386 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1387 if (!InsertResult.second) {
1388 // Already an edge, just update it.
1389 Edge &E = SourceN->Edges[InsertResult.first->second];
1390 if (E.isCall())
1391 return; // Nothing to do!
1392 E.setKind(Edge::Call);
1393 } else {
1394 // Create the new edge.
1395 SourceN->Edges.emplace_back(TargetN, Edge::Call);
1398 // Now that we have the edge, handle the graph fallout.
1399 handleTrivialEdgeInsertion(SourceN, TargetN);
1402 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1403 #ifndef NDEBUG
1404 // Check that the RefSCC is still valid when we finish.
1405 auto ExitVerifier = make_scope_exit([this] { verify(); });
1407 #ifdef EXPENSIVE_CHECKS
1408 // Check that we aren't breaking some invariants of the RefSCC graph.
1409 RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1410 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1411 if (&SourceRC != &TargetRC)
1412 assert(SourceRC.isAncestorOf(TargetRC) &&
1413 "Ref edge is not trivial in the RefSCC graph!");
1414 #endif // EXPENSIVE_CHECKS
1415 #endif // NDEBUG
1417 // First insert it into the source or find the existing edge.
1418 auto InsertResult =
1419 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1420 if (!InsertResult.second)
1421 // Already an edge, we're done.
1422 return;
1424 // Create the new edge.
1425 SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1427 // Now that we have the edge, handle the graph fallout.
1428 handleTrivialEdgeInsertion(SourceN, TargetN);
1431 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1432 Function &OldF = N.getFunction();
1434 #ifndef NDEBUG
1435 // Check that the RefSCC is still valid when we finish.
1436 auto ExitVerifier = make_scope_exit([this] { verify(); });
1438 assert(G->lookupRefSCC(N) == this &&
1439 "Cannot replace the function of a node outside this RefSCC.");
1441 assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1442 "Must not have already walked the new function!'");
1444 // It is important that this replacement not introduce graph changes so we
1445 // insist that the caller has already removed every use of the original
1446 // function and that all uses of the new function correspond to existing
1447 // edges in the graph. The common and expected way to use this is when
1448 // replacing the function itself in the IR without changing the call graph
1449 // shape and just updating the analysis based on that.
1450 assert(&OldF != &NewF && "Cannot replace a function with itself!");
1451 assert(OldF.use_empty() &&
1452 "Must have moved all uses from the old function to the new!");
1453 #endif
1455 N.replaceFunction(NewF);
1457 // Update various call graph maps.
1458 G->NodeMap.erase(&OldF);
1459 G->NodeMap[&NewF] = &N;
1462 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1463 assert(SCCMap.empty() &&
1464 "This method cannot be called after SCCs have been formed!");
1466 return SourceN->insertEdgeInternal(TargetN, EK);
1469 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1470 assert(SCCMap.empty() &&
1471 "This method cannot be called after SCCs have been formed!");
1473 bool Removed = SourceN->removeEdgeInternal(TargetN);
1474 (void)Removed;
1475 assert(Removed && "Target not in the edge set for this caller?");
1478 void LazyCallGraph::removeDeadFunction(Function &F) {
1479 // FIXME: This is unnecessarily restrictive. We should be able to remove
1480 // functions which recursively call themselves.
1481 assert(F.use_empty() &&
1482 "This routine should only be called on trivially dead functions!");
1484 // We shouldn't remove library functions as they are never really dead while
1485 // the call graph is in use -- every function definition refers to them.
1486 assert(!isLibFunction(F) &&
1487 "Must not remove lib functions from the call graph!");
1489 auto NI = NodeMap.find(&F);
1490 if (NI == NodeMap.end())
1491 // Not in the graph at all!
1492 return;
1494 Node &N = *NI->second;
1495 NodeMap.erase(NI);
1497 // Remove this from the entry edges if present.
1498 EntryEdges.removeEdgeInternal(N);
1500 if (SCCMap.empty()) {
1501 // No SCCs have been formed, so removing this is fine and there is nothing
1502 // else necessary at this point but clearing out the node.
1503 N.clear();
1504 return;
1507 // Cannot remove a function which has yet to be visited in the DFS walk, so
1508 // if we have a node at all then we must have an SCC and RefSCC.
1509 auto CI = SCCMap.find(&N);
1510 assert(CI != SCCMap.end() &&
1511 "Tried to remove a node without an SCC after DFS walk started!");
1512 SCC &C = *CI->second;
1513 SCCMap.erase(CI);
1514 RefSCC &RC = C.getOuterRefSCC();
1516 // This node must be the only member of its SCC as it has no callers, and
1517 // that SCC must be the only member of a RefSCC as it has no references.
1518 // Validate these properties first.
1519 assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1520 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1522 auto RCIndexI = RefSCCIndices.find(&RC);
1523 int RCIndex = RCIndexI->second;
1524 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
1525 RefSCCIndices.erase(RCIndexI);
1526 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
1527 RefSCCIndices[PostOrderRefSCCs[i]] = i;
1529 // Finally clear out all the data structures from the node down through the
1530 // components.
1531 N.clear();
1532 N.G = nullptr;
1533 N.F = nullptr;
1534 C.clear();
1535 RC.clear();
1536 RC.G = nullptr;
1538 // Nothing to delete as all the objects are allocated in stable bump pointer
1539 // allocators.
1542 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1543 return *new (MappedN = BPA.Allocate()) Node(*this, F);
1546 void LazyCallGraph::updateGraphPtrs() {
1547 // Walk the node map to update their graph pointers. While this iterates in
1548 // an unstable order, the order has no effect so it remains correct.
1549 for (auto &FunctionNodePair : NodeMap)
1550 FunctionNodePair.second->G = this;
1552 for (auto *RC : PostOrderRefSCCs)
1553 RC->G = this;
1556 template <typename RootsT, typename GetBeginT, typename GetEndT,
1557 typename GetNodeT, typename FormSCCCallbackT>
1558 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1559 GetEndT &&GetEnd, GetNodeT &&GetNode,
1560 FormSCCCallbackT &&FormSCC) {
1561 using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1563 SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1564 SmallVector<Node *, 16> PendingSCCStack;
1566 // Scan down the stack and DFS across the call edges.
1567 for (Node *RootN : Roots) {
1568 assert(DFSStack.empty() &&
1569 "Cannot begin a new root with a non-empty DFS stack!");
1570 assert(PendingSCCStack.empty() &&
1571 "Cannot begin a new root with pending nodes for an SCC!");
1573 // Skip any nodes we've already reached in the DFS.
1574 if (RootN->DFSNumber != 0) {
1575 assert(RootN->DFSNumber == -1 &&
1576 "Shouldn't have any mid-DFS root nodes!");
1577 continue;
1580 RootN->DFSNumber = RootN->LowLink = 1;
1581 int NextDFSNumber = 2;
1583 DFSStack.push_back({RootN, GetBegin(*RootN)});
1584 do {
1585 Node *N;
1586 EdgeItT I;
1587 std::tie(N, I) = DFSStack.pop_back_val();
1588 auto E = GetEnd(*N);
1589 while (I != E) {
1590 Node &ChildN = GetNode(I);
1591 if (ChildN.DFSNumber == 0) {
1592 // We haven't yet visited this child, so descend, pushing the current
1593 // node onto the stack.
1594 DFSStack.push_back({N, I});
1596 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1597 N = &ChildN;
1598 I = GetBegin(*N);
1599 E = GetEnd(*N);
1600 continue;
1603 // If the child has already been added to some child component, it
1604 // couldn't impact the low-link of this parent because it isn't
1605 // connected, and thus its low-link isn't relevant so skip it.
1606 if (ChildN.DFSNumber == -1) {
1607 ++I;
1608 continue;
1611 // Track the lowest linked child as the lowest link for this node.
1612 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1613 if (ChildN.LowLink < N->LowLink)
1614 N->LowLink = ChildN.LowLink;
1616 // Move to the next edge.
1617 ++I;
1620 // We've finished processing N and its descendants, put it on our pending
1621 // SCC stack to eventually get merged into an SCC of nodes.
1622 PendingSCCStack.push_back(N);
1624 // If this node is linked to some lower entry, continue walking up the
1625 // stack.
1626 if (N->LowLink != N->DFSNumber)
1627 continue;
1629 // Otherwise, we've completed an SCC. Append it to our post order list of
1630 // SCCs.
1631 int RootDFSNumber = N->DFSNumber;
1632 // Find the range of the node stack by walking down until we pass the
1633 // root DFS number.
1634 auto SCCNodes = make_range(
1635 PendingSCCStack.rbegin(),
1636 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1637 return N->DFSNumber < RootDFSNumber;
1638 }));
1639 // Form a new SCC out of these nodes and then clear them off our pending
1640 // stack.
1641 FormSCC(SCCNodes);
1642 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1643 } while (!DFSStack.empty());
1647 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1649 /// Appends the SCCs to the provided vector and updates the map with their
1650 /// indices. Both the vector and map must be empty when passed into this
1651 /// routine.
1652 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1653 assert(RC.SCCs.empty() && "Already built SCCs!");
1654 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1656 for (Node *N : Nodes) {
1657 assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1658 "We cannot have a low link in an SCC lower than its root on the "
1659 "stack!");
1661 // This node will go into the next RefSCC, clear out its DFS and low link
1662 // as we scan.
1663 N->DFSNumber = N->LowLink = 0;
1666 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1667 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1668 // internal storage as we won't need it for the outer graph's DFS any longer.
1669 buildGenericSCCs(
1670 Nodes, [](Node &N) { return N->call_begin(); },
1671 [](Node &N) { return N->call_end(); },
1672 [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1673 [this, &RC](node_stack_range Nodes) {
1674 RC.SCCs.push_back(createSCC(RC, Nodes));
1675 for (Node &N : *RC.SCCs.back()) {
1676 N.DFSNumber = N.LowLink = -1;
1677 SCCMap[&N] = RC.SCCs.back();
1681 // Wire up the SCC indices.
1682 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1683 RC.SCCIndices[RC.SCCs[i]] = i;
1686 void LazyCallGraph::buildRefSCCs() {
1687 if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1688 // RefSCCs are either non-existent or already built!
1689 return;
1691 assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1693 SmallVector<Node *, 16> Roots;
1694 for (Edge &E : *this)
1695 Roots.push_back(&E.getNode());
1697 // The roots will be popped of a stack, so use reverse to get a less
1698 // surprising order. This doesn't change any of the semantics anywhere.
1699 std::reverse(Roots.begin(), Roots.end());
1701 buildGenericSCCs(
1702 Roots,
1703 [](Node &N) {
1704 // We need to populate each node as we begin to walk its edges.
1705 N.populate();
1706 return N->begin();
1708 [](Node &N) { return N->end(); },
1709 [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1710 [this](node_stack_range Nodes) {
1711 RefSCC *NewRC = createRefSCC(*this);
1712 buildSCCs(*NewRC, Nodes);
1714 // Push the new node into the postorder list and remember its position
1715 // in the index map.
1716 bool Inserted =
1717 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1718 (void)Inserted;
1719 assert(Inserted && "Cannot already have this RefSCC in the index map!");
1720 PostOrderRefSCCs.push_back(NewRC);
1721 #ifndef NDEBUG
1722 NewRC->verify();
1723 #endif
1727 AnalysisKey LazyCallGraphAnalysis::Key;
1729 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1731 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1732 OS << " Edges in function: " << N.getFunction().getName() << "\n";
1733 for (LazyCallGraph::Edge &E : N.populate())
1734 OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
1735 << E.getFunction().getName() << "\n";
1737 OS << "\n";
1740 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1741 ptrdiff_t Size = size(C);
1742 OS << " SCC with " << Size << " functions:\n";
1744 for (LazyCallGraph::Node &N : C)
1745 OS << " " << N.getFunction().getName() << "\n";
1748 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1749 ptrdiff_t Size = size(C);
1750 OS << " RefSCC with " << Size << " call SCCs:\n";
1752 for (LazyCallGraph::SCC &InnerC : C)
1753 printSCC(OS, InnerC);
1755 OS << "\n";
1758 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
1759 ModuleAnalysisManager &AM) {
1760 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1762 OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1763 << "\n\n";
1765 for (Function &F : M)
1766 printNode(OS, G.get(F));
1768 G.buildRefSCCs();
1769 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1770 printRefSCC(OS, C);
1772 return PreservedAnalyses::all();
1775 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
1776 : OS(OS) {}
1778 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
1779 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
1781 for (LazyCallGraph::Edge &E : N.populate()) {
1782 OS << " " << Name << " -> \""
1783 << DOT::EscapeString(E.getFunction().getName()) << "\"";
1784 if (!E.isCall()) // It is a ref edge.
1785 OS << " [style=dashed,label=\"ref\"]";
1786 OS << ";\n";
1789 OS << "\n";
1792 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
1793 ModuleAnalysisManager &AM) {
1794 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1796 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
1798 for (Function &F : M)
1799 printNodeDOT(OS, G.get(F));
1801 OS << "}\n";
1803 return PreservedAnalyses::all();