1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/LazyCallGraph.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/ScopeExit.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Config/llvm-config.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/raw_ostream.h"
40 #define DEBUG_TYPE "lcg"
42 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node
&TargetN
,
44 EdgeIndexMap
.insert({&TargetN
, Edges
.size()});
45 Edges
.emplace_back(TargetN
, EK
);
48 void LazyCallGraph::EdgeSequence::setEdgeKind(Node
&TargetN
, Edge::Kind EK
) {
49 Edges
[EdgeIndexMap
.find(&TargetN
)->second
].setKind(EK
);
52 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node
&TargetN
) {
53 auto IndexMapI
= EdgeIndexMap
.find(&TargetN
);
54 if (IndexMapI
== EdgeIndexMap
.end())
57 Edges
[IndexMapI
->second
] = Edge();
58 EdgeIndexMap
.erase(IndexMapI
);
62 static void addEdge(SmallVectorImpl
<LazyCallGraph::Edge
> &Edges
,
63 DenseMap
<LazyCallGraph::Node
*, int> &EdgeIndexMap
,
64 LazyCallGraph::Node
&N
, LazyCallGraph::Edge::Kind EK
) {
65 if (!EdgeIndexMap
.insert({&N
, Edges
.size()}).second
)
68 LLVM_DEBUG(dbgs() << " Added callable function: " << N
.getName() << "\n");
69 Edges
.emplace_back(LazyCallGraph::Edge(N
, EK
));
72 LazyCallGraph::EdgeSequence
&LazyCallGraph::Node::populateSlow() {
73 assert(!Edges
&& "Must not have already populated the edges for this node!");
75 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
76 << "' to the graph.\n");
78 Edges
= EdgeSequence();
80 SmallVector
<Constant
*, 16> Worklist
;
81 SmallPtrSet
<Function
*, 4> Callees
;
82 SmallPtrSet
<Constant
*, 16> Visited
;
84 // Find all the potential call graph edges in this function. We track both
85 // actual call edges and indirect references to functions. The direct calls
86 // are trivially added, but to accumulate the latter we walk the instructions
87 // and add every operand which is a constant to the worklist to process
90 // Note that we consider *any* function with a definition to be a viable
91 // edge. Even if the function's definition is subject to replacement by
92 // some other module (say, a weak definition) there may still be
93 // optimizations which essentially speculate based on the definition and
94 // a way to check that the specific definition is in fact the one being
95 // used. For example, this could be done by moving the weak definition to
96 // a strong (internal) definition and making the weak definition be an
97 // alias. Then a test of the address of the weak function against the new
98 // strong definition's address would be an effective way to determine the
99 // safety of optimizing a direct call edge.
100 for (BasicBlock
&BB
: *F
)
101 for (Instruction
&I
: BB
) {
102 if (auto CS
= CallSite(&I
))
103 if (Function
*Callee
= CS
.getCalledFunction())
104 if (!Callee
->isDeclaration())
105 if (Callees
.insert(Callee
).second
) {
106 Visited
.insert(Callee
);
107 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(*Callee
),
108 LazyCallGraph::Edge::Call
);
111 for (Value
*Op
: I
.operand_values())
112 if (Constant
*C
= dyn_cast
<Constant
>(Op
))
113 if (Visited
.insert(C
).second
)
114 Worklist
.push_back(C
);
117 // We've collected all the constant (and thus potentially function or
118 // function containing) operands to all of the instructions in the function.
119 // Process them (recursively) collecting every function found.
120 visitReferences(Worklist
, Visited
, [&](Function
&F
) {
121 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(F
),
122 LazyCallGraph::Edge::Ref
);
125 // Add implicit reference edges to any defined libcall functions (if we
126 // haven't found an explicit edge).
127 for (auto *F
: G
->LibFunctions
)
128 if (!Visited
.count(F
))
129 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(*F
),
130 LazyCallGraph::Edge::Ref
);
135 void LazyCallGraph::Node::replaceFunction(Function
&NewF
) {
136 assert(F
!= &NewF
&& "Must not replace a function with itself!");
140 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
141 LLVM_DUMP_METHOD
void LazyCallGraph::Node::dump() const {
142 dbgs() << *this << '\n';
146 static bool isKnownLibFunction(Function
&F
, TargetLibraryInfo
&TLI
) {
149 // Either this is a normal library function or a "vectorizable" function.
150 return TLI
.getLibFunc(F
, LF
) || TLI
.isFunctionVectorizable(F
.getName());
153 LazyCallGraph::LazyCallGraph(Module
&M
, TargetLibraryInfo
&TLI
) {
154 LLVM_DEBUG(dbgs() << "Building CG for module: " << M
.getModuleIdentifier()
156 for (Function
&F
: M
) {
157 if (F
.isDeclaration())
159 // If this function is a known lib function to LLVM then we want to
160 // synthesize reference edges to it to model the fact that LLVM can turn
161 // arbitrary code into a library function call.
162 if (isKnownLibFunction(F
, TLI
))
163 LibFunctions
.insert(&F
);
165 if (F
.hasLocalLinkage())
168 // External linkage defined functions have edges to them from other
170 LLVM_DEBUG(dbgs() << " Adding '" << F
.getName()
171 << "' to entry set of the graph.\n");
172 addEdge(EntryEdges
.Edges
, EntryEdges
.EdgeIndexMap
, get(F
), Edge::Ref
);
175 // Now add entry nodes for functions reachable via initializers to globals.
176 SmallVector
<Constant
*, 16> Worklist
;
177 SmallPtrSet
<Constant
*, 16> Visited
;
178 for (GlobalVariable
&GV
: M
.globals())
179 if (GV
.hasInitializer())
180 if (Visited
.insert(GV
.getInitializer()).second
)
181 Worklist
.push_back(GV
.getInitializer());
184 dbgs() << " Adding functions referenced by global initializers to the "
186 visitReferences(Worklist
, Visited
, [&](Function
&F
) {
187 addEdge(EntryEdges
.Edges
, EntryEdges
.EdgeIndexMap
, get(F
),
188 LazyCallGraph::Edge::Ref
);
192 LazyCallGraph::LazyCallGraph(LazyCallGraph
&&G
)
193 : BPA(std::move(G
.BPA
)), NodeMap(std::move(G
.NodeMap
)),
194 EntryEdges(std::move(G
.EntryEdges
)), SCCBPA(std::move(G
.SCCBPA
)),
195 SCCMap(std::move(G
.SCCMap
)),
196 LibFunctions(std::move(G
.LibFunctions
)) {
200 LazyCallGraph
&LazyCallGraph::operator=(LazyCallGraph
&&G
) {
201 BPA
= std::move(G
.BPA
);
202 NodeMap
= std::move(G
.NodeMap
);
203 EntryEdges
= std::move(G
.EntryEdges
);
204 SCCBPA
= std::move(G
.SCCBPA
);
205 SCCMap
= std::move(G
.SCCMap
);
206 LibFunctions
= std::move(G
.LibFunctions
);
211 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
212 LLVM_DUMP_METHOD
void LazyCallGraph::SCC::dump() const {
213 dbgs() << *this << '\n';
218 void LazyCallGraph::SCC::verify() {
219 assert(OuterRefSCC
&& "Can't have a null RefSCC!");
220 assert(!Nodes
.empty() && "Can't have an empty SCC!");
222 for (Node
*N
: Nodes
) {
223 assert(N
&& "Can't have a null node!");
224 assert(OuterRefSCC
->G
->lookupSCC(*N
) == this &&
225 "Node does not map to this SCC!");
226 assert(N
->DFSNumber
== -1 &&
227 "Must set DFS numbers to -1 when adding a node to an SCC!");
228 assert(N
->LowLink
== -1 &&
229 "Must set low link to -1 when adding a node to an SCC!");
231 assert(E
.getNode().isPopulated() && "Can't have an unpopulated node!");
236 bool LazyCallGraph::SCC::isParentOf(const SCC
&C
) const {
240 for (Node
&N
: *this)
241 for (Edge
&E
: N
->calls())
242 if (OuterRefSCC
->G
->lookupSCC(E
.getNode()) == &C
)
249 bool LazyCallGraph::SCC::isAncestorOf(const SCC
&TargetC
) const {
250 if (this == &TargetC
)
253 LazyCallGraph
&G
= *OuterRefSCC
->G
;
255 // Start with this SCC.
256 SmallPtrSet
<const SCC
*, 16> Visited
= {this};
257 SmallVector
<const SCC
*, 16> Worklist
= {this};
259 // Walk down the graph until we run out of edges or find a path to TargetC.
261 const SCC
&C
= *Worklist
.pop_back_val();
263 for (Edge
&E
: N
->calls()) {
264 SCC
*CalleeC
= G
.lookupSCC(E
.getNode());
268 // If the callee's SCC is the TargetC, we're done.
269 if (CalleeC
== &TargetC
)
272 // If this is the first time we've reached this SCC, put it on the
273 // worklist to recurse through.
274 if (Visited
.insert(CalleeC
).second
)
275 Worklist
.push_back(CalleeC
);
277 } while (!Worklist
.empty());
283 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph
&G
) : G(&G
) {}
285 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
286 LLVM_DUMP_METHOD
void LazyCallGraph::RefSCC::dump() const {
287 dbgs() << *this << '\n';
292 void LazyCallGraph::RefSCC::verify() {
293 assert(G
&& "Can't have a null graph!");
294 assert(!SCCs
.empty() && "Can't have an empty SCC!");
296 // Verify basic properties of the SCCs.
297 SmallPtrSet
<SCC
*, 4> SCCSet
;
298 for (SCC
*C
: SCCs
) {
299 assert(C
&& "Can't have a null SCC!");
301 assert(&C
->getOuterRefSCC() == this &&
302 "SCC doesn't think it is inside this RefSCC!");
303 bool Inserted
= SCCSet
.insert(C
).second
;
304 assert(Inserted
&& "Found a duplicate SCC!");
305 auto IndexIt
= SCCIndices
.find(C
);
306 assert(IndexIt
!= SCCIndices
.end() &&
307 "Found an SCC that doesn't have an index!");
310 // Check that our indices map correctly.
311 for (auto &SCCIndexPair
: SCCIndices
) {
312 SCC
*C
= SCCIndexPair
.first
;
313 int i
= SCCIndexPair
.second
;
314 assert(C
&& "Can't have a null SCC in the indices!");
315 assert(SCCSet
.count(C
) && "Found an index for an SCC not in the RefSCC!");
316 assert(SCCs
[i
] == C
&& "Index doesn't point to SCC!");
319 // Check that the SCCs are in fact in post-order.
320 for (int i
= 0, Size
= SCCs
.size(); i
< Size
; ++i
) {
321 SCC
&SourceSCC
= *SCCs
[i
];
322 for (Node
&N
: SourceSCC
)
326 SCC
&TargetSCC
= *G
->lookupSCC(E
.getNode());
327 if (&TargetSCC
.getOuterRefSCC() == this) {
328 assert(SCCIndices
.find(&TargetSCC
)->second
<= i
&&
329 "Edge between SCCs violates post-order relationship.");
337 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC
&RC
) const {
341 // Search all edges to see if this is a parent.
345 if (G
->lookupRefSCC(E
.getNode()) == &RC
)
351 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC
&RC
) const {
355 // For each descendant of this RefSCC, see if one of its children is the
356 // argument. If not, add that descendant to the worklist and continue
358 SmallVector
<const RefSCC
*, 4> Worklist
;
359 SmallPtrSet
<const RefSCC
*, 4> Visited
;
360 Worklist
.push_back(this);
361 Visited
.insert(this);
363 const RefSCC
&DescendantRC
= *Worklist
.pop_back_val();
364 for (SCC
&C
: DescendantRC
)
367 auto *ChildRC
= G
->lookupRefSCC(E
.getNode());
370 if (!ChildRC
|| !Visited
.insert(ChildRC
).second
)
372 Worklist
.push_back(ChildRC
);
374 } while (!Worklist
.empty());
379 /// Generic helper that updates a postorder sequence of SCCs for a potentially
380 /// cycle-introducing edge insertion.
382 /// A postorder sequence of SCCs of a directed graph has one fundamental
383 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
384 /// all edges in the SCC DAG point to prior SCCs in the sequence.
386 /// This routine both updates a postorder sequence and uses that sequence to
387 /// compute the set of SCCs connected into a cycle. It should only be called to
388 /// insert a "downward" edge which will require changing the sequence to
389 /// restore it to a postorder.
391 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
392 /// sequence, all of the SCCs which may be impacted are in the closed range of
393 /// those two within the postorder sequence. The algorithm used here to restore
394 /// the state is as follows:
396 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
397 /// source SCC consisting of just the source SCC. Then scan toward the
398 /// target SCC in postorder and for each SCC, if it has an edge to an SCC
399 /// in the set, add it to the set. Otherwise, the source SCC is not
400 /// a successor, move it in the postorder sequence to immediately before
401 /// the source SCC, shifting the source SCC and all SCCs in the set one
402 /// position toward the target SCC. Stop scanning after processing the
404 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
405 /// and thus the new edge will flow toward the start, we are done.
406 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
407 /// SCC between the source and the target, and add them to the set of
408 /// connected SCCs, then recurse through them. Once a complete set of the
409 /// SCCs the target connects to is known, hoist the remaining SCCs between
410 /// the source and the target to be above the target. Note that there is no
411 /// need to process the source SCC, it is already known to connect.
412 /// 4) At this point, all of the SCCs in the closed range between the source
413 /// SCC and the target SCC in the postorder sequence are connected,
414 /// including the target SCC and the source SCC. Inserting the edge from
415 /// the source SCC to the target SCC will form a cycle out of precisely
416 /// these SCCs. Thus we can merge all of the SCCs in this closed range into
419 /// This process has various important properties:
420 /// - Only mutates the SCCs when adding the edge actually changes the SCC
422 /// - Never mutates SCCs which are unaffected by the change.
423 /// - Updates the postorder sequence to correctly satisfy the postorder
424 /// constraint after the edge is inserted.
425 /// - Only reorders SCCs in the closed postorder sequence from the source to
426 /// the target, so easy to bound how much has changed even in the ordering.
427 /// - Big-O is the number of edges in the closed postorder range of SCCs from
428 /// source to target.
430 /// This helper routine, in addition to updating the postorder sequence itself
431 /// will also update a map from SCCs to indices within that sequence.
433 /// The sequence and the map must operate on pointers to the SCC type.
435 /// Two callbacks must be provided. The first computes the subset of SCCs in
436 /// the postorder closed range from the source to the target which connect to
437 /// the source SCC via some (transitive) set of edges. The second computes the
438 /// subset of the same range which the target SCC connects to via some
439 /// (transitive) set of edges. Both callbacks should populate the set argument
441 template <typename SCCT
, typename PostorderSequenceT
, typename SCCIndexMapT
,
442 typename ComputeSourceConnectedSetCallableT
,
443 typename ComputeTargetConnectedSetCallableT
>
444 static iterator_range
<typename
PostorderSequenceT::iterator
>
445 updatePostorderSequenceForEdgeInsertion(
446 SCCT
&SourceSCC
, SCCT
&TargetSCC
, PostorderSequenceT
&SCCs
,
447 SCCIndexMapT
&SCCIndices
,
448 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet
,
449 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet
) {
450 int SourceIdx
= SCCIndices
[&SourceSCC
];
451 int TargetIdx
= SCCIndices
[&TargetSCC
];
452 assert(SourceIdx
< TargetIdx
&& "Cannot have equal indices here!");
454 SmallPtrSet
<SCCT
*, 4> ConnectedSet
;
456 // Compute the SCCs which (transitively) reach the source.
457 ComputeSourceConnectedSet(ConnectedSet
);
459 // Partition the SCCs in this part of the port-order sequence so only SCCs
460 // connecting to the source remain between it and the target. This is
461 // a benign partition as it preserves postorder.
462 auto SourceI
= std::stable_partition(
463 SCCs
.begin() + SourceIdx
, SCCs
.begin() + TargetIdx
+ 1,
464 [&ConnectedSet
](SCCT
*C
) { return !ConnectedSet
.count(C
); });
465 for (int i
= SourceIdx
, e
= TargetIdx
+ 1; i
< e
; ++i
)
466 SCCIndices
.find(SCCs
[i
])->second
= i
;
468 // If the target doesn't connect to the source, then we've corrected the
469 // post-order and there are no cycles formed.
470 if (!ConnectedSet
.count(&TargetSCC
)) {
471 assert(SourceI
> (SCCs
.begin() + SourceIdx
) &&
472 "Must have moved the source to fix the post-order.");
473 assert(*std::prev(SourceI
) == &TargetSCC
&&
474 "Last SCC to move should have bene the target.");
476 // Return an empty range at the target SCC indicating there is nothing to
478 return make_range(std::prev(SourceI
), std::prev(SourceI
));
481 assert(SCCs
[TargetIdx
] == &TargetSCC
&&
482 "Should not have moved target if connected!");
483 SourceIdx
= SourceI
- SCCs
.begin();
484 assert(SCCs
[SourceIdx
] == &SourceSCC
&&
485 "Bad updated index computation for the source SCC!");
488 // See whether there are any remaining intervening SCCs between the source
489 // and target. If so we need to make sure they all are reachable form the
491 if (SourceIdx
+ 1 < TargetIdx
) {
492 ConnectedSet
.clear();
493 ComputeTargetConnectedSet(ConnectedSet
);
495 // Partition SCCs so that only SCCs reached from the target remain between
496 // the source and the target. This preserves postorder.
497 auto TargetI
= std::stable_partition(
498 SCCs
.begin() + SourceIdx
+ 1, SCCs
.begin() + TargetIdx
+ 1,
499 [&ConnectedSet
](SCCT
*C
) { return ConnectedSet
.count(C
); });
500 for (int i
= SourceIdx
+ 1, e
= TargetIdx
+ 1; i
< e
; ++i
)
501 SCCIndices
.find(SCCs
[i
])->second
= i
;
502 TargetIdx
= std::prev(TargetI
) - SCCs
.begin();
503 assert(SCCs
[TargetIdx
] == &TargetSCC
&&
504 "Should always end with the target!");
507 // At this point, we know that connecting source to target forms a cycle
508 // because target connects back to source, and we know that all of the SCCs
509 // between the source and target in the postorder sequence participate in that
511 return make_range(SCCs
.begin() + SourceIdx
, SCCs
.begin() + TargetIdx
);
515 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
516 Node
&SourceN
, Node
&TargetN
,
517 function_ref
<void(ArrayRef
<SCC
*> MergeSCCs
)> MergeCB
) {
518 assert(!(*SourceN
)[TargetN
].isCall() && "Must start with a ref edge!");
519 SmallVector
<SCC
*, 1> DeletedSCCs
;
522 // In a debug build, verify the RefSCC is valid to start with and when this
525 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
528 SCC
&SourceSCC
= *G
->lookupSCC(SourceN
);
529 SCC
&TargetSCC
= *G
->lookupSCC(TargetN
);
531 // If the two nodes are already part of the same SCC, we're also done as
532 // we've just added more connectivity.
533 if (&SourceSCC
== &TargetSCC
) {
534 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
535 return false; // No new cycle.
538 // At this point we leverage the postorder list of SCCs to detect when the
539 // insertion of an edge changes the SCC structure in any way.
541 // First and foremost, we can eliminate the need for any changes when the
542 // edge is toward the beginning of the postorder sequence because all edges
543 // flow in that direction already. Thus adding a new one cannot form a cycle.
544 int SourceIdx
= SCCIndices
[&SourceSCC
];
545 int TargetIdx
= SCCIndices
[&TargetSCC
];
546 if (TargetIdx
< SourceIdx
) {
547 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
548 return false; // No new cycle.
551 // Compute the SCCs which (transitively) reach the source.
552 auto ComputeSourceConnectedSet
= [&](SmallPtrSetImpl
<SCC
*> &ConnectedSet
) {
554 // Check that the RefSCC is still valid before computing this as the
555 // results will be nonsensical of we've broken its invariants.
558 ConnectedSet
.insert(&SourceSCC
);
559 auto IsConnected
= [&](SCC
&C
) {
561 for (Edge
&E
: N
->calls())
562 if (ConnectedSet
.count(G
->lookupSCC(E
.getNode())))
569 make_range(SCCs
.begin() + SourceIdx
+ 1, SCCs
.begin() + TargetIdx
+ 1))
571 ConnectedSet
.insert(C
);
574 // Use a normal worklist to find which SCCs the target connects to. We still
575 // bound the search based on the range in the postorder list we care about,
576 // but because this is forward connectivity we just "recurse" through the
578 auto ComputeTargetConnectedSet
= [&](SmallPtrSetImpl
<SCC
*> &ConnectedSet
) {
580 // Check that the RefSCC is still valid before computing this as the
581 // results will be nonsensical of we've broken its invariants.
584 ConnectedSet
.insert(&TargetSCC
);
585 SmallVector
<SCC
*, 4> Worklist
;
586 Worklist
.push_back(&TargetSCC
);
588 SCC
&C
= *Worklist
.pop_back_val();
593 SCC
&EdgeC
= *G
->lookupSCC(E
.getNode());
594 if (&EdgeC
.getOuterRefSCC() != this)
595 // Not in this RefSCC...
597 if (SCCIndices
.find(&EdgeC
)->second
<= SourceIdx
)
598 // Not in the postorder sequence between source and target.
601 if (ConnectedSet
.insert(&EdgeC
).second
)
602 Worklist
.push_back(&EdgeC
);
604 } while (!Worklist
.empty());
607 // Use a generic helper to update the postorder sequence of SCCs and return
608 // a range of any SCCs connected into a cycle by inserting this edge. This
609 // routine will also take care of updating the indices into the postorder
611 auto MergeRange
= updatePostorderSequenceForEdgeInsertion(
612 SourceSCC
, TargetSCC
, SCCs
, SCCIndices
, ComputeSourceConnectedSet
,
613 ComputeTargetConnectedSet
);
615 // Run the user's callback on the merged SCCs before we actually merge them.
617 MergeCB(makeArrayRef(MergeRange
.begin(), MergeRange
.end()));
619 // If the merge range is empty, then adding the edge didn't actually form any
620 // new cycles. We're done.
621 if (empty(MergeRange
)) {
622 // Now that the SCC structure is finalized, flip the kind to call.
623 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
624 return false; // No new cycle.
628 // Before merging, check that the RefSCC remains valid after all the
629 // postorder updates.
633 // Otherwise we need to merge all of the SCCs in the cycle into a single
636 // NB: We merge into the target because all of these functions were already
637 // reachable from the target, meaning any SCC-wide properties deduced about it
638 // other than the set of functions within it will not have changed.
639 for (SCC
*C
: MergeRange
) {
640 assert(C
!= &TargetSCC
&&
641 "We merge *into* the target and shouldn't process it here!");
643 TargetSCC
.Nodes
.append(C
->Nodes
.begin(), C
->Nodes
.end());
644 for (Node
*N
: C
->Nodes
)
645 G
->SCCMap
[N
] = &TargetSCC
;
647 DeletedSCCs
.push_back(C
);
650 // Erase the merged SCCs from the list and update the indices of the
652 int IndexOffset
= MergeRange
.end() - MergeRange
.begin();
653 auto EraseEnd
= SCCs
.erase(MergeRange
.begin(), MergeRange
.end());
654 for (SCC
*C
: make_range(EraseEnd
, SCCs
.end()))
655 SCCIndices
[C
] -= IndexOffset
;
657 // Now that the SCC structure is finalized, flip the kind to call.
658 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
660 // And we're done, but we did form a new cycle.
664 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node
&SourceN
,
666 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
669 // In a debug build, verify the RefSCC is valid to start with and when this
672 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
675 assert(G
->lookupRefSCC(SourceN
) == this &&
676 "Source must be in this RefSCC.");
677 assert(G
->lookupRefSCC(TargetN
) == this &&
678 "Target must be in this RefSCC.");
679 assert(G
->lookupSCC(SourceN
) != G
->lookupSCC(TargetN
) &&
680 "Source and Target must be in separate SCCs for this to be trivial!");
682 // Set the edge kind.
683 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
686 iterator_range
<LazyCallGraph::RefSCC::iterator
>
687 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node
&SourceN
, Node
&TargetN
) {
688 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
691 // In a debug build, verify the RefSCC is valid to start with and when this
694 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
697 assert(G
->lookupRefSCC(SourceN
) == this &&
698 "Source must be in this RefSCC.");
699 assert(G
->lookupRefSCC(TargetN
) == this &&
700 "Target must be in this RefSCC.");
702 SCC
&TargetSCC
= *G
->lookupSCC(TargetN
);
703 assert(G
->lookupSCC(SourceN
) == &TargetSCC
&& "Source and Target must be in "
704 "the same SCC to require the "
707 // Set the edge kind.
708 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
710 // Otherwise we are removing a call edge from a single SCC. This may break
711 // the cycle. In order to compute the new set of SCCs, we need to do a small
712 // DFS over the nodes within the SCC to form any sub-cycles that remain as
713 // distinct SCCs and compute a postorder over the resulting SCCs.
715 // However, we specially handle the target node. The target node is known to
716 // reach all other nodes in the original SCC by definition. This means that
717 // we want the old SCC to be replaced with an SCC containing that node as it
718 // will be the root of whatever SCC DAG results from the DFS. Assumptions
719 // about an SCC such as the set of functions called will continue to hold,
722 SCC
&OldSCC
= TargetSCC
;
723 SmallVector
<std::pair
<Node
*, EdgeSequence::call_iterator
>, 16> DFSStack
;
724 SmallVector
<Node
*, 16> PendingSCCStack
;
725 SmallVector
<SCC
*, 4> NewSCCs
;
727 // Prepare the nodes for a fresh DFS.
728 SmallVector
<Node
*, 16> Worklist
;
729 Worklist
.swap(OldSCC
.Nodes
);
730 for (Node
*N
: Worklist
) {
731 N
->DFSNumber
= N
->LowLink
= 0;
735 // Force the target node to be in the old SCC. This also enables us to take
736 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
737 // below: whenever we build an edge that reaches the target node, we know
738 // that the target node eventually connects back to all other nodes in our
739 // walk. As a consequence, we can detect and handle participants in that
740 // cycle without walking all the edges that form this connection, and instead
741 // by relying on the fundamental guarantee coming into this operation (all
742 // nodes are reachable from the target due to previously forming an SCC).
743 TargetN
.DFSNumber
= TargetN
.LowLink
= -1;
744 OldSCC
.Nodes
.push_back(&TargetN
);
745 G
->SCCMap
[&TargetN
] = &OldSCC
;
747 // Scan down the stack and DFS across the call edges.
748 for (Node
*RootN
: Worklist
) {
749 assert(DFSStack
.empty() &&
750 "Cannot begin a new root with a non-empty DFS stack!");
751 assert(PendingSCCStack
.empty() &&
752 "Cannot begin a new root with pending nodes for an SCC!");
754 // Skip any nodes we've already reached in the DFS.
755 if (RootN
->DFSNumber
!= 0) {
756 assert(RootN
->DFSNumber
== -1 &&
757 "Shouldn't have any mid-DFS root nodes!");
761 RootN
->DFSNumber
= RootN
->LowLink
= 1;
762 int NextDFSNumber
= 2;
764 DFSStack
.push_back({RootN
, (*RootN
)->call_begin()});
767 EdgeSequence::call_iterator I
;
768 std::tie(N
, I
) = DFSStack
.pop_back_val();
769 auto E
= (*N
)->call_end();
771 Node
&ChildN
= I
->getNode();
772 if (ChildN
.DFSNumber
== 0) {
773 // We haven't yet visited this child, so descend, pushing the current
774 // node onto the stack.
775 DFSStack
.push_back({N
, I
});
777 assert(!G
->SCCMap
.count(&ChildN
) &&
778 "Found a node with 0 DFS number but already in an SCC!");
779 ChildN
.DFSNumber
= ChildN
.LowLink
= NextDFSNumber
++;
781 I
= (*N
)->call_begin();
782 E
= (*N
)->call_end();
786 // Check for the child already being part of some component.
787 if (ChildN
.DFSNumber
== -1) {
788 if (G
->lookupSCC(ChildN
) == &OldSCC
) {
789 // If the child is part of the old SCC, we know that it can reach
790 // every other node, so we have formed a cycle. Pull the entire DFS
791 // and pending stacks into it. See the comment above about setting
792 // up the old SCC for why we do this.
793 int OldSize
= OldSCC
.size();
794 OldSCC
.Nodes
.push_back(N
);
795 OldSCC
.Nodes
.append(PendingSCCStack
.begin(), PendingSCCStack
.end());
796 PendingSCCStack
.clear();
797 while (!DFSStack
.empty())
798 OldSCC
.Nodes
.push_back(DFSStack
.pop_back_val().first
);
799 for (Node
&N
: make_range(OldSCC
.begin() + OldSize
, OldSCC
.end())) {
800 N
.DFSNumber
= N
.LowLink
= -1;
801 G
->SCCMap
[&N
] = &OldSCC
;
807 // If the child has already been added to some child component, it
808 // couldn't impact the low-link of this parent because it isn't
809 // connected, and thus its low-link isn't relevant so skip it.
814 // Track the lowest linked child as the lowest link for this node.
815 assert(ChildN
.LowLink
> 0 && "Must have a positive low-link number!");
816 if (ChildN
.LowLink
< N
->LowLink
)
817 N
->LowLink
= ChildN
.LowLink
;
819 // Move to the next edge.
823 // Cleared the DFS early, start another round.
826 // We've finished processing N and its descendants, put it on our pending
827 // SCC stack to eventually get merged into an SCC of nodes.
828 PendingSCCStack
.push_back(N
);
830 // If this node is linked to some lower entry, continue walking up the
832 if (N
->LowLink
!= N
->DFSNumber
)
835 // Otherwise, we've completed an SCC. Append it to our post order list of
837 int RootDFSNumber
= N
->DFSNumber
;
838 // Find the range of the node stack by walking down until we pass the
840 auto SCCNodes
= make_range(
841 PendingSCCStack
.rbegin(),
842 find_if(reverse(PendingSCCStack
), [RootDFSNumber
](const Node
*N
) {
843 return N
->DFSNumber
< RootDFSNumber
;
846 // Form a new SCC out of these nodes and then clear them off our pending
848 NewSCCs
.push_back(G
->createSCC(*this, SCCNodes
));
849 for (Node
&N
: *NewSCCs
.back()) {
850 N
.DFSNumber
= N
.LowLink
= -1;
851 G
->SCCMap
[&N
] = NewSCCs
.back();
853 PendingSCCStack
.erase(SCCNodes
.end().base(), PendingSCCStack
.end());
854 } while (!DFSStack
.empty());
857 // Insert the remaining SCCs before the old one. The old SCC can reach all
858 // other SCCs we form because it contains the target node of the removed edge
859 // of the old SCC. This means that we will have edges into all of the new
860 // SCCs, which means the old one must come last for postorder.
861 int OldIdx
= SCCIndices
[&OldSCC
];
862 SCCs
.insert(SCCs
.begin() + OldIdx
, NewSCCs
.begin(), NewSCCs
.end());
864 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
865 // old SCC from the mapping.
866 for (int Idx
= OldIdx
, Size
= SCCs
.size(); Idx
< Size
; ++Idx
)
867 SCCIndices
[SCCs
[Idx
]] = Idx
;
869 return make_range(SCCs
.begin() + OldIdx
,
870 SCCs
.begin() + OldIdx
+ NewSCCs
.size());
873 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node
&SourceN
,
875 assert(!(*SourceN
)[TargetN
].isCall() && "Must start with a ref edge!");
877 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
878 assert(G
->lookupRefSCC(TargetN
) != this &&
879 "Target must not be in this RefSCC.");
880 #ifdef EXPENSIVE_CHECKS
881 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
882 "Target must be a descendant of the Source.");
885 // Edges between RefSCCs are the same regardless of call or ref, so we can
886 // just flip the edge here.
887 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
890 // Check that the RefSCC is still valid.
895 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node
&SourceN
,
897 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
899 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
900 assert(G
->lookupRefSCC(TargetN
) != this &&
901 "Target must not be in this RefSCC.");
902 #ifdef EXPENSIVE_CHECKS
903 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
904 "Target must be a descendant of the Source.");
907 // Edges between RefSCCs are the same regardless of call or ref, so we can
908 // just flip the edge here.
909 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
912 // Check that the RefSCC is still valid.
917 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node
&SourceN
,
919 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
920 assert(G
->lookupRefSCC(TargetN
) == this && "Target must be in this RefSCC.");
922 SourceN
->insertEdgeInternal(TargetN
, Edge::Ref
);
925 // Check that the RefSCC is still valid.
930 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node
&SourceN
, Node
&TargetN
,
932 // First insert it into the caller.
933 SourceN
->insertEdgeInternal(TargetN
, EK
);
935 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
937 assert(G
->lookupRefSCC(TargetN
) != this &&
938 "Target must not be in this RefSCC.");
939 #ifdef EXPENSIVE_CHECKS
940 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
941 "Target must be a descendant of the Source.");
945 // Check that the RefSCC is still valid.
950 SmallVector
<LazyCallGraph::RefSCC
*, 1>
951 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node
&SourceN
, Node
&TargetN
) {
952 assert(G
->lookupRefSCC(TargetN
) == this && "Target must be in this RefSCC.");
953 RefSCC
&SourceC
= *G
->lookupRefSCC(SourceN
);
954 assert(&SourceC
!= this && "Source must not be in this RefSCC.");
955 #ifdef EXPENSIVE_CHECKS
956 assert(SourceC
.isDescendantOf(*this) &&
957 "Source must be a descendant of the Target.");
960 SmallVector
<RefSCC
*, 1> DeletedRefSCCs
;
963 // In a debug build, verify the RefSCC is valid to start with and when this
966 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
969 int SourceIdx
= G
->RefSCCIndices
[&SourceC
];
970 int TargetIdx
= G
->RefSCCIndices
[this];
971 assert(SourceIdx
< TargetIdx
&&
972 "Postorder list doesn't see edge as incoming!");
974 // Compute the RefSCCs which (transitively) reach the source. We do this by
975 // working backwards from the source using the parent set in each RefSCC,
976 // skipping any RefSCCs that don't fall in the postorder range. This has the
977 // advantage of walking the sparser parent edge (in high fan-out graphs) but
978 // more importantly this removes examining all forward edges in all RefSCCs
979 // within the postorder range which aren't in fact connected. Only connected
980 // RefSCCs (and their edges) are visited here.
981 auto ComputeSourceConnectedSet
= [&](SmallPtrSetImpl
<RefSCC
*> &Set
) {
982 Set
.insert(&SourceC
);
983 auto IsConnected
= [&](RefSCC
&RC
) {
987 if (Set
.count(G
->lookupRefSCC(E
.getNode())))
993 for (RefSCC
*C
: make_range(G
->PostOrderRefSCCs
.begin() + SourceIdx
+ 1,
994 G
->PostOrderRefSCCs
.begin() + TargetIdx
+ 1))
999 // Use a normal worklist to find which SCCs the target connects to. We still
1000 // bound the search based on the range in the postorder list we care about,
1001 // but because this is forward connectivity we just "recurse" through the
1003 auto ComputeTargetConnectedSet
= [&](SmallPtrSetImpl
<RefSCC
*> &Set
) {
1005 SmallVector
<RefSCC
*, 4> Worklist
;
1006 Worklist
.push_back(this);
1008 RefSCC
&RC
= *Worklist
.pop_back_val();
1011 for (Edge
&E
: *N
) {
1012 RefSCC
&EdgeRC
= *G
->lookupRefSCC(E
.getNode());
1013 if (G
->getRefSCCIndex(EdgeRC
) <= SourceIdx
)
1014 // Not in the postorder sequence between source and target.
1017 if (Set
.insert(&EdgeRC
).second
)
1018 Worklist
.push_back(&EdgeRC
);
1020 } while (!Worklist
.empty());
1023 // Use a generic helper to update the postorder sequence of RefSCCs and return
1024 // a range of any RefSCCs connected into a cycle by inserting this edge. This
1025 // routine will also take care of updating the indices into the postorder
1027 iterator_range
<SmallVectorImpl
<RefSCC
*>::iterator
> MergeRange
=
1028 updatePostorderSequenceForEdgeInsertion(
1029 SourceC
, *this, G
->PostOrderRefSCCs
, G
->RefSCCIndices
,
1030 ComputeSourceConnectedSet
, ComputeTargetConnectedSet
);
1032 // Build a set so we can do fast tests for whether a RefSCC will end up as
1033 // part of the merged RefSCC.
1034 SmallPtrSet
<RefSCC
*, 16> MergeSet(MergeRange
.begin(), MergeRange
.end());
1036 // This RefSCC will always be part of that set, so just insert it here.
1037 MergeSet
.insert(this);
1039 // Now that we have identified all of the SCCs which need to be merged into
1040 // a connected set with the inserted edge, merge all of them into this SCC.
1041 SmallVector
<SCC
*, 16> MergedSCCs
;
1043 for (RefSCC
*RC
: MergeRange
) {
1044 assert(RC
!= this && "We're merging into the target RefSCC, so it "
1045 "shouldn't be in the range.");
1047 // Walk the inner SCCs to update their up-pointer and walk all the edges to
1048 // update any parent sets.
1049 // FIXME: We should try to find a way to avoid this (rather expensive) edge
1050 // walk by updating the parent sets in some other manner.
1051 for (SCC
&InnerC
: *RC
) {
1052 InnerC
.OuterRefSCC
= this;
1053 SCCIndices
[&InnerC
] = SCCIndex
++;
1054 for (Node
&N
: InnerC
)
1055 G
->SCCMap
[&N
] = &InnerC
;
1058 // Now merge in the SCCs. We can actually move here so try to reuse storage
1059 // the first time through.
1060 if (MergedSCCs
.empty())
1061 MergedSCCs
= std::move(RC
->SCCs
);
1063 MergedSCCs
.append(RC
->SCCs
.begin(), RC
->SCCs
.end());
1065 DeletedRefSCCs
.push_back(RC
);
1068 // Append our original SCCs to the merged list and move it into place.
1069 for (SCC
&InnerC
: *this)
1070 SCCIndices
[&InnerC
] = SCCIndex
++;
1071 MergedSCCs
.append(SCCs
.begin(), SCCs
.end());
1072 SCCs
= std::move(MergedSCCs
);
1074 // Remove the merged away RefSCCs from the post order sequence.
1075 for (RefSCC
*RC
: MergeRange
)
1076 G
->RefSCCIndices
.erase(RC
);
1077 int IndexOffset
= MergeRange
.end() - MergeRange
.begin();
1079 G
->PostOrderRefSCCs
.erase(MergeRange
.begin(), MergeRange
.end());
1080 for (RefSCC
*RC
: make_range(EraseEnd
, G
->PostOrderRefSCCs
.end()))
1081 G
->RefSCCIndices
[RC
] -= IndexOffset
;
1083 // At this point we have a merged RefSCC with a post-order SCCs list, just
1084 // connect the nodes to form the new edge.
1085 SourceN
->insertEdgeInternal(TargetN
, Edge::Ref
);
1087 // We return the list of SCCs which were merged so that callers can
1088 // invalidate any data they have associated with those SCCs. Note that these
1089 // SCCs are no longer in an interesting state (they are totally empty) but
1090 // the pointers will remain stable for the life of the graph itself.
1091 return DeletedRefSCCs
;
1094 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node
&SourceN
, Node
&TargetN
) {
1095 assert(G
->lookupRefSCC(SourceN
) == this &&
1096 "The source must be a member of this RefSCC.");
1097 assert(G
->lookupRefSCC(TargetN
) != this &&
1098 "The target must not be a member of this RefSCC");
1101 // In a debug build, verify the RefSCC is valid to start with and when this
1102 // routine finishes.
1104 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
1107 // First remove it from the node.
1108 bool Removed
= SourceN
->removeEdgeInternal(TargetN
);
1110 assert(Removed
&& "Target not in the edge set for this caller?");
1113 SmallVector
<LazyCallGraph::RefSCC
*, 1>
1114 LazyCallGraph::RefSCC::removeInternalRefEdge(Node
&SourceN
,
1115 ArrayRef
<Node
*> TargetNs
) {
1116 // We return a list of the resulting *new* RefSCCs in post-order.
1117 SmallVector
<RefSCC
*, 1> Result
;
1120 // In a debug build, verify the RefSCC is valid to start with and that either
1121 // we return an empty list of result RefSCCs and this RefSCC remains valid,
1122 // or we return new RefSCCs and this RefSCC is dead.
1124 auto VerifyOnExit
= make_scope_exit([&]() {
1125 // If we didn't replace our RefSCC with new ones, check that this one
1132 // First remove the actual edges.
1133 for (Node
*TargetN
: TargetNs
) {
1134 assert(!(*SourceN
)[*TargetN
].isCall() &&
1135 "Cannot remove a call edge, it must first be made a ref edge");
1137 bool Removed
= SourceN
->removeEdgeInternal(*TargetN
);
1139 assert(Removed
&& "Target not in the edge set for this caller?");
1142 // Direct self references don't impact the ref graph at all.
1143 if (llvm::all_of(TargetNs
,
1144 [&](Node
*TargetN
) { return &SourceN
== TargetN
; }))
1147 // If all targets are in the same SCC as the source, because no call edges
1148 // were removed there is no RefSCC structure change.
1149 SCC
&SourceC
= *G
->lookupSCC(SourceN
);
1150 if (llvm::all_of(TargetNs
, [&](Node
*TargetN
) {
1151 return G
->lookupSCC(*TargetN
) == &SourceC
;
1155 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1156 // for each inner SCC. We store these inside the low-link field of the nodes
1157 // rather than associated with SCCs because this saves a round-trip through
1158 // the node->SCC map and in the common case, SCCs are small. We will verify
1159 // that we always give the same number to every node in the SCC such that
1160 // these are equivalent.
1161 int PostOrderNumber
= 0;
1163 // Reset all the other nodes to prepare for a DFS over them, and add them to
1165 SmallVector
<Node
*, 8> Worklist
;
1166 for (SCC
*C
: SCCs
) {
1168 N
.DFSNumber
= N
.LowLink
= 0;
1170 Worklist
.append(C
->Nodes
.begin(), C
->Nodes
.end());
1173 // Track the number of nodes in this RefSCC so that we can quickly recognize
1174 // an important special case of the edge removal not breaking the cycle of
1176 const int NumRefSCCNodes
= Worklist
.size();
1178 SmallVector
<std::pair
<Node
*, EdgeSequence::iterator
>, 4> DFSStack
;
1179 SmallVector
<Node
*, 4> PendingRefSCCStack
;
1181 assert(DFSStack
.empty() &&
1182 "Cannot begin a new root with a non-empty DFS stack!");
1183 assert(PendingRefSCCStack
.empty() &&
1184 "Cannot begin a new root with pending nodes for an SCC!");
1186 Node
*RootN
= Worklist
.pop_back_val();
1187 // Skip any nodes we've already reached in the DFS.
1188 if (RootN
->DFSNumber
!= 0) {
1189 assert(RootN
->DFSNumber
== -1 &&
1190 "Shouldn't have any mid-DFS root nodes!");
1194 RootN
->DFSNumber
= RootN
->LowLink
= 1;
1195 int NextDFSNumber
= 2;
1197 DFSStack
.push_back({RootN
, (*RootN
)->begin()});
1200 EdgeSequence::iterator I
;
1201 std::tie(N
, I
) = DFSStack
.pop_back_val();
1202 auto E
= (*N
)->end();
1204 assert(N
->DFSNumber
!= 0 && "We should always assign a DFS number "
1205 "before processing a node.");
1208 Node
&ChildN
= I
->getNode();
1209 if (ChildN
.DFSNumber
== 0) {
1210 // Mark that we should start at this child when next this node is the
1211 // top of the stack. We don't start at the next child to ensure this
1212 // child's lowlink is reflected.
1213 DFSStack
.push_back({N
, I
});
1215 // Continue, resetting to the child node.
1216 ChildN
.LowLink
= ChildN
.DFSNumber
= NextDFSNumber
++;
1218 I
= ChildN
->begin();
1222 if (ChildN
.DFSNumber
== -1) {
1223 // If this child isn't currently in this RefSCC, no need to process
1229 // Track the lowest link of the children, if any are still in the stack.
1230 // Any child not on the stack will have a LowLink of -1.
1231 assert(ChildN
.LowLink
!= 0 &&
1232 "Low-link must not be zero with a non-zero DFS number.");
1233 if (ChildN
.LowLink
>= 0 && ChildN
.LowLink
< N
->LowLink
)
1234 N
->LowLink
= ChildN
.LowLink
;
1238 // We've finished processing N and its descendants, put it on our pending
1239 // stack to eventually get merged into a RefSCC.
1240 PendingRefSCCStack
.push_back(N
);
1242 // If this node is linked to some lower entry, continue walking up the
1244 if (N
->LowLink
!= N
->DFSNumber
) {
1245 assert(!DFSStack
.empty() &&
1246 "We never found a viable root for a RefSCC to pop off!");
1250 // Otherwise, form a new RefSCC from the top of the pending node stack.
1251 int RefSCCNumber
= PostOrderNumber
++;
1252 int RootDFSNumber
= N
->DFSNumber
;
1254 // Find the range of the node stack by walking down until we pass the
1255 // root DFS number. Update the DFS numbers and low link numbers in the
1256 // process to avoid re-walking this list where possible.
1257 auto StackRI
= find_if(reverse(PendingRefSCCStack
), [&](Node
*N
) {
1258 if (N
->DFSNumber
< RootDFSNumber
)
1259 // We've found the bottom.
1262 // Update this node and keep scanning.
1264 // Save the post-order number in the lowlink field so that we can use
1265 // it to map SCCs into new RefSCCs after we finish the DFS.
1266 N
->LowLink
= RefSCCNumber
;
1269 auto RefSCCNodes
= make_range(StackRI
.base(), PendingRefSCCStack
.end());
1271 // If we find a cycle containing all nodes originally in this RefSCC then
1272 // the removal hasn't changed the structure at all. This is an important
1273 // special case and we can directly exit the entire routine more
1274 // efficiently as soon as we discover it.
1275 if (llvm::size(RefSCCNodes
) == NumRefSCCNodes
) {
1276 // Clear out the low link field as we won't need it.
1277 for (Node
*N
: RefSCCNodes
)
1279 // Return the empty result immediately.
1283 // We've already marked the nodes internally with the RefSCC number so
1284 // just clear them off the stack and continue.
1285 PendingRefSCCStack
.erase(RefSCCNodes
.begin(), PendingRefSCCStack
.end());
1286 } while (!DFSStack
.empty());
1288 assert(DFSStack
.empty() && "Didn't flush the entire DFS stack!");
1289 assert(PendingRefSCCStack
.empty() && "Didn't flush all pending nodes!");
1290 } while (!Worklist
.empty());
1292 assert(PostOrderNumber
> 1 &&
1293 "Should never finish the DFS when the existing RefSCC remains valid!");
1295 // Otherwise we create a collection of new RefSCC nodes and build
1296 // a radix-sort style map from postorder number to these new RefSCCs. We then
1297 // append SCCs to each of these RefSCCs in the order they occurred in the
1298 // original SCCs container.
1299 for (int i
= 0; i
< PostOrderNumber
; ++i
)
1300 Result
.push_back(G
->createRefSCC(*G
));
1302 // Insert the resulting postorder sequence into the global graph postorder
1303 // sequence before the current RefSCC in that sequence, and then remove the
1306 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1307 // range over the global postorder sequence and generally use that sequence
1308 // rather than building a separate result vector here.
1309 int Idx
= G
->getRefSCCIndex(*this);
1310 G
->PostOrderRefSCCs
.erase(G
->PostOrderRefSCCs
.begin() + Idx
);
1311 G
->PostOrderRefSCCs
.insert(G
->PostOrderRefSCCs
.begin() + Idx
, Result
.begin(),
1313 for (int i
: seq
<int>(Idx
, G
->PostOrderRefSCCs
.size()))
1314 G
->RefSCCIndices
[G
->PostOrderRefSCCs
[i
]] = i
;
1316 for (SCC
*C
: SCCs
) {
1317 // We store the SCC number in the node's low-link field above.
1318 int SCCNumber
= C
->begin()->LowLink
;
1319 // Clear out all of the SCC's node's low-link fields now that we're done
1320 // using them as side-storage.
1321 for (Node
&N
: *C
) {
1322 assert(N
.LowLink
== SCCNumber
&&
1323 "Cannot have different numbers for nodes in the same SCC!");
1327 RefSCC
&RC
= *Result
[SCCNumber
];
1328 int SCCIndex
= RC
.SCCs
.size();
1329 RC
.SCCs
.push_back(C
);
1330 RC
.SCCIndices
[C
] = SCCIndex
;
1331 C
->OuterRefSCC
= &RC
;
1334 // Now that we've moved things into the new RefSCCs, clear out our current
1341 // Verify the new RefSCCs we've built.
1342 for (RefSCC
*RC
: Result
)
1346 // Return the new list of SCCs.
1350 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node
&SourceN
,
1352 // The only trivial case that requires any graph updates is when we add new
1353 // ref edge and may connect different RefSCCs along that path. This is only
1354 // because of the parents set. Every other part of the graph remains constant
1355 // after this edge insertion.
1356 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
1357 RefSCC
&TargetRC
= *G
->lookupRefSCC(TargetN
);
1358 if (&TargetRC
== this)
1361 #ifdef EXPENSIVE_CHECKS
1362 assert(TargetRC
.isDescendantOf(*this) &&
1363 "Target must be a descendant of the Source.");
1367 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node
&SourceN
,
1370 // Check that the RefSCC is still valid when we finish.
1371 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1373 #ifdef EXPENSIVE_CHECKS
1374 // Check that we aren't breaking some invariants of the SCC graph. Note that
1375 // this is quadratic in the number of edges in the call graph!
1376 SCC
&SourceC
= *G
->lookupSCC(SourceN
);
1377 SCC
&TargetC
= *G
->lookupSCC(TargetN
);
1378 if (&SourceC
!= &TargetC
)
1379 assert(SourceC
.isAncestorOf(TargetC
) &&
1380 "Call edge is not trivial in the SCC graph!");
1381 #endif // EXPENSIVE_CHECKS
1384 // First insert it into the source or find the existing edge.
1386 SourceN
->EdgeIndexMap
.insert({&TargetN
, SourceN
->Edges
.size()});
1387 if (!InsertResult
.second
) {
1388 // Already an edge, just update it.
1389 Edge
&E
= SourceN
->Edges
[InsertResult
.first
->second
];
1391 return; // Nothing to do!
1392 E
.setKind(Edge::Call
);
1394 // Create the new edge.
1395 SourceN
->Edges
.emplace_back(TargetN
, Edge::Call
);
1398 // Now that we have the edge, handle the graph fallout.
1399 handleTrivialEdgeInsertion(SourceN
, TargetN
);
1402 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node
&SourceN
, Node
&TargetN
) {
1404 // Check that the RefSCC is still valid when we finish.
1405 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1407 #ifdef EXPENSIVE_CHECKS
1408 // Check that we aren't breaking some invariants of the RefSCC graph.
1409 RefSCC
&SourceRC
= *G
->lookupRefSCC(SourceN
);
1410 RefSCC
&TargetRC
= *G
->lookupRefSCC(TargetN
);
1411 if (&SourceRC
!= &TargetRC
)
1412 assert(SourceRC
.isAncestorOf(TargetRC
) &&
1413 "Ref edge is not trivial in the RefSCC graph!");
1414 #endif // EXPENSIVE_CHECKS
1417 // First insert it into the source or find the existing edge.
1419 SourceN
->EdgeIndexMap
.insert({&TargetN
, SourceN
->Edges
.size()});
1420 if (!InsertResult
.second
)
1421 // Already an edge, we're done.
1424 // Create the new edge.
1425 SourceN
->Edges
.emplace_back(TargetN
, Edge::Ref
);
1427 // Now that we have the edge, handle the graph fallout.
1428 handleTrivialEdgeInsertion(SourceN
, TargetN
);
1431 void LazyCallGraph::RefSCC::replaceNodeFunction(Node
&N
, Function
&NewF
) {
1432 Function
&OldF
= N
.getFunction();
1435 // Check that the RefSCC is still valid when we finish.
1436 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1438 assert(G
->lookupRefSCC(N
) == this &&
1439 "Cannot replace the function of a node outside this RefSCC.");
1441 assert(G
->NodeMap
.find(&NewF
) == G
->NodeMap
.end() &&
1442 "Must not have already walked the new function!'");
1444 // It is important that this replacement not introduce graph changes so we
1445 // insist that the caller has already removed every use of the original
1446 // function and that all uses of the new function correspond to existing
1447 // edges in the graph. The common and expected way to use this is when
1448 // replacing the function itself in the IR without changing the call graph
1449 // shape and just updating the analysis based on that.
1450 assert(&OldF
!= &NewF
&& "Cannot replace a function with itself!");
1451 assert(OldF
.use_empty() &&
1452 "Must have moved all uses from the old function to the new!");
1455 N
.replaceFunction(NewF
);
1457 // Update various call graph maps.
1458 G
->NodeMap
.erase(&OldF
);
1459 G
->NodeMap
[&NewF
] = &N
;
1462 void LazyCallGraph::insertEdge(Node
&SourceN
, Node
&TargetN
, Edge::Kind EK
) {
1463 assert(SCCMap
.empty() &&
1464 "This method cannot be called after SCCs have been formed!");
1466 return SourceN
->insertEdgeInternal(TargetN
, EK
);
1469 void LazyCallGraph::removeEdge(Node
&SourceN
, Node
&TargetN
) {
1470 assert(SCCMap
.empty() &&
1471 "This method cannot be called after SCCs have been formed!");
1473 bool Removed
= SourceN
->removeEdgeInternal(TargetN
);
1475 assert(Removed
&& "Target not in the edge set for this caller?");
1478 void LazyCallGraph::removeDeadFunction(Function
&F
) {
1479 // FIXME: This is unnecessarily restrictive. We should be able to remove
1480 // functions which recursively call themselves.
1481 assert(F
.use_empty() &&
1482 "This routine should only be called on trivially dead functions!");
1484 // We shouldn't remove library functions as they are never really dead while
1485 // the call graph is in use -- every function definition refers to them.
1486 assert(!isLibFunction(F
) &&
1487 "Must not remove lib functions from the call graph!");
1489 auto NI
= NodeMap
.find(&F
);
1490 if (NI
== NodeMap
.end())
1491 // Not in the graph at all!
1494 Node
&N
= *NI
->second
;
1497 // Remove this from the entry edges if present.
1498 EntryEdges
.removeEdgeInternal(N
);
1500 if (SCCMap
.empty()) {
1501 // No SCCs have been formed, so removing this is fine and there is nothing
1502 // else necessary at this point but clearing out the node.
1507 // Cannot remove a function which has yet to be visited in the DFS walk, so
1508 // if we have a node at all then we must have an SCC and RefSCC.
1509 auto CI
= SCCMap
.find(&N
);
1510 assert(CI
!= SCCMap
.end() &&
1511 "Tried to remove a node without an SCC after DFS walk started!");
1512 SCC
&C
= *CI
->second
;
1514 RefSCC
&RC
= C
.getOuterRefSCC();
1516 // This node must be the only member of its SCC as it has no callers, and
1517 // that SCC must be the only member of a RefSCC as it has no references.
1518 // Validate these properties first.
1519 assert(C
.size() == 1 && "Dead functions must be in a singular SCC");
1520 assert(RC
.size() == 1 && "Dead functions must be in a singular RefSCC");
1522 auto RCIndexI
= RefSCCIndices
.find(&RC
);
1523 int RCIndex
= RCIndexI
->second
;
1524 PostOrderRefSCCs
.erase(PostOrderRefSCCs
.begin() + RCIndex
);
1525 RefSCCIndices
.erase(RCIndexI
);
1526 for (int i
= RCIndex
, Size
= PostOrderRefSCCs
.size(); i
< Size
; ++i
)
1527 RefSCCIndices
[PostOrderRefSCCs
[i
]] = i
;
1529 // Finally clear out all the data structures from the node down through the
1538 // Nothing to delete as all the objects are allocated in stable bump pointer
1542 LazyCallGraph::Node
&LazyCallGraph::insertInto(Function
&F
, Node
*&MappedN
) {
1543 return *new (MappedN
= BPA
.Allocate()) Node(*this, F
);
1546 void LazyCallGraph::updateGraphPtrs() {
1547 // Walk the node map to update their graph pointers. While this iterates in
1548 // an unstable order, the order has no effect so it remains correct.
1549 for (auto &FunctionNodePair
: NodeMap
)
1550 FunctionNodePair
.second
->G
= this;
1552 for (auto *RC
: PostOrderRefSCCs
)
1556 template <typename RootsT
, typename GetBeginT
, typename GetEndT
,
1557 typename GetNodeT
, typename FormSCCCallbackT
>
1558 void LazyCallGraph::buildGenericSCCs(RootsT
&&Roots
, GetBeginT
&&GetBegin
,
1559 GetEndT
&&GetEnd
, GetNodeT
&&GetNode
,
1560 FormSCCCallbackT
&&FormSCC
) {
1561 using EdgeItT
= decltype(GetBegin(std::declval
<Node
&>()));
1563 SmallVector
<std::pair
<Node
*, EdgeItT
>, 16> DFSStack
;
1564 SmallVector
<Node
*, 16> PendingSCCStack
;
1566 // Scan down the stack and DFS across the call edges.
1567 for (Node
*RootN
: Roots
) {
1568 assert(DFSStack
.empty() &&
1569 "Cannot begin a new root with a non-empty DFS stack!");
1570 assert(PendingSCCStack
.empty() &&
1571 "Cannot begin a new root with pending nodes for an SCC!");
1573 // Skip any nodes we've already reached in the DFS.
1574 if (RootN
->DFSNumber
!= 0) {
1575 assert(RootN
->DFSNumber
== -1 &&
1576 "Shouldn't have any mid-DFS root nodes!");
1580 RootN
->DFSNumber
= RootN
->LowLink
= 1;
1581 int NextDFSNumber
= 2;
1583 DFSStack
.push_back({RootN
, GetBegin(*RootN
)});
1587 std::tie(N
, I
) = DFSStack
.pop_back_val();
1588 auto E
= GetEnd(*N
);
1590 Node
&ChildN
= GetNode(I
);
1591 if (ChildN
.DFSNumber
== 0) {
1592 // We haven't yet visited this child, so descend, pushing the current
1593 // node onto the stack.
1594 DFSStack
.push_back({N
, I
});
1596 ChildN
.DFSNumber
= ChildN
.LowLink
= NextDFSNumber
++;
1603 // If the child has already been added to some child component, it
1604 // couldn't impact the low-link of this parent because it isn't
1605 // connected, and thus its low-link isn't relevant so skip it.
1606 if (ChildN
.DFSNumber
== -1) {
1611 // Track the lowest linked child as the lowest link for this node.
1612 assert(ChildN
.LowLink
> 0 && "Must have a positive low-link number!");
1613 if (ChildN
.LowLink
< N
->LowLink
)
1614 N
->LowLink
= ChildN
.LowLink
;
1616 // Move to the next edge.
1620 // We've finished processing N and its descendants, put it on our pending
1621 // SCC stack to eventually get merged into an SCC of nodes.
1622 PendingSCCStack
.push_back(N
);
1624 // If this node is linked to some lower entry, continue walking up the
1626 if (N
->LowLink
!= N
->DFSNumber
)
1629 // Otherwise, we've completed an SCC. Append it to our post order list of
1631 int RootDFSNumber
= N
->DFSNumber
;
1632 // Find the range of the node stack by walking down until we pass the
1634 auto SCCNodes
= make_range(
1635 PendingSCCStack
.rbegin(),
1636 find_if(reverse(PendingSCCStack
), [RootDFSNumber
](const Node
*N
) {
1637 return N
->DFSNumber
< RootDFSNumber
;
1639 // Form a new SCC out of these nodes and then clear them off our pending
1642 PendingSCCStack
.erase(SCCNodes
.end().base(), PendingSCCStack
.end());
1643 } while (!DFSStack
.empty());
1647 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1649 /// Appends the SCCs to the provided vector and updates the map with their
1650 /// indices. Both the vector and map must be empty when passed into this
1652 void LazyCallGraph::buildSCCs(RefSCC
&RC
, node_stack_range Nodes
) {
1653 assert(RC
.SCCs
.empty() && "Already built SCCs!");
1654 assert(RC
.SCCIndices
.empty() && "Already mapped SCC indices!");
1656 for (Node
*N
: Nodes
) {
1657 assert(N
->LowLink
>= (*Nodes
.begin())->LowLink
&&
1658 "We cannot have a low link in an SCC lower than its root on the "
1661 // This node will go into the next RefSCC, clear out its DFS and low link
1663 N
->DFSNumber
= N
->LowLink
= 0;
1666 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1667 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1668 // internal storage as we won't need it for the outer graph's DFS any longer.
1670 Nodes
, [](Node
&N
) { return N
->call_begin(); },
1671 [](Node
&N
) { return N
->call_end(); },
1672 [](EdgeSequence::call_iterator I
) -> Node
& { return I
->getNode(); },
1673 [this, &RC
](node_stack_range Nodes
) {
1674 RC
.SCCs
.push_back(createSCC(RC
, Nodes
));
1675 for (Node
&N
: *RC
.SCCs
.back()) {
1676 N
.DFSNumber
= N
.LowLink
= -1;
1677 SCCMap
[&N
] = RC
.SCCs
.back();
1681 // Wire up the SCC indices.
1682 for (int i
= 0, Size
= RC
.SCCs
.size(); i
< Size
; ++i
)
1683 RC
.SCCIndices
[RC
.SCCs
[i
]] = i
;
1686 void LazyCallGraph::buildRefSCCs() {
1687 if (EntryEdges
.empty() || !PostOrderRefSCCs
.empty())
1688 // RefSCCs are either non-existent or already built!
1691 assert(RefSCCIndices
.empty() && "Already mapped RefSCC indices!");
1693 SmallVector
<Node
*, 16> Roots
;
1694 for (Edge
&E
: *this)
1695 Roots
.push_back(&E
.getNode());
1697 // The roots will be popped of a stack, so use reverse to get a less
1698 // surprising order. This doesn't change any of the semantics anywhere.
1699 std::reverse(Roots
.begin(), Roots
.end());
1704 // We need to populate each node as we begin to walk its edges.
1708 [](Node
&N
) { return N
->end(); },
1709 [](EdgeSequence::iterator I
) -> Node
& { return I
->getNode(); },
1710 [this](node_stack_range Nodes
) {
1711 RefSCC
*NewRC
= createRefSCC(*this);
1712 buildSCCs(*NewRC
, Nodes
);
1714 // Push the new node into the postorder list and remember its position
1715 // in the index map.
1717 RefSCCIndices
.insert({NewRC
, PostOrderRefSCCs
.size()}).second
;
1719 assert(Inserted
&& "Cannot already have this RefSCC in the index map!");
1720 PostOrderRefSCCs
.push_back(NewRC
);
1727 AnalysisKey
LazyCallGraphAnalysis::Key
;
1729 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream
&OS
) : OS(OS
) {}
1731 static void printNode(raw_ostream
&OS
, LazyCallGraph::Node
&N
) {
1732 OS
<< " Edges in function: " << N
.getFunction().getName() << "\n";
1733 for (LazyCallGraph::Edge
&E
: N
.populate())
1734 OS
<< " " << (E
.isCall() ? "call" : "ref ") << " -> "
1735 << E
.getFunction().getName() << "\n";
1740 static void printSCC(raw_ostream
&OS
, LazyCallGraph::SCC
&C
) {
1741 ptrdiff_t Size
= size(C
);
1742 OS
<< " SCC with " << Size
<< " functions:\n";
1744 for (LazyCallGraph::Node
&N
: C
)
1745 OS
<< " " << N
.getFunction().getName() << "\n";
1748 static void printRefSCC(raw_ostream
&OS
, LazyCallGraph::RefSCC
&C
) {
1749 ptrdiff_t Size
= size(C
);
1750 OS
<< " RefSCC with " << Size
<< " call SCCs:\n";
1752 for (LazyCallGraph::SCC
&InnerC
: C
)
1753 printSCC(OS
, InnerC
);
1758 PreservedAnalyses
LazyCallGraphPrinterPass::run(Module
&M
,
1759 ModuleAnalysisManager
&AM
) {
1760 LazyCallGraph
&G
= AM
.getResult
<LazyCallGraphAnalysis
>(M
);
1762 OS
<< "Printing the call graph for module: " << M
.getModuleIdentifier()
1765 for (Function
&F
: M
)
1766 printNode(OS
, G
.get(F
));
1769 for (LazyCallGraph::RefSCC
&C
: G
.postorder_ref_sccs())
1772 return PreservedAnalyses::all();
1775 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream
&OS
)
1778 static void printNodeDOT(raw_ostream
&OS
, LazyCallGraph::Node
&N
) {
1779 std::string Name
= "\"" + DOT::EscapeString(N
.getFunction().getName()) + "\"";
1781 for (LazyCallGraph::Edge
&E
: N
.populate()) {
1782 OS
<< " " << Name
<< " -> \""
1783 << DOT::EscapeString(E
.getFunction().getName()) << "\"";
1784 if (!E
.isCall()) // It is a ref edge.
1785 OS
<< " [style=dashed,label=\"ref\"]";
1792 PreservedAnalyses
LazyCallGraphDOTPrinterPass::run(Module
&M
,
1793 ModuleAnalysisManager
&AM
) {
1794 LazyCallGraph
&G
= AM
.getResult
<LazyCallGraphAnalysis
>(M
);
1796 OS
<< "digraph \"" << DOT::EscapeString(M
.getModuleIdentifier()) << "\" {\n";
1798 for (Function
&F
: M
)
1799 printNodeDOT(OS
, G
.get(F
));
1803 return PreservedAnalyses::all();