1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------===//
9 // This file implements the MemorySSAUpdater class.
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/IteratedDominanceFrontier.h"
17 #include "llvm/Analysis/MemorySSA.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/FormattedStream.h"
29 #define DEBUG_TYPE "memoryssa"
32 // This is the marker algorithm from "Simple and Efficient Construction of
33 // Static Single Assignment Form"
34 // The simple, non-marker algorithm places phi nodes at any join
35 // Here, we place markers, and only place phi nodes if they end up necessary.
36 // They are only necessary if they break a cycle (IE we recursively visit
37 // ourselves again), or we discover, while getting the value of the operands,
38 // that there are two or more definitions needing to be merged.
39 // This still will leave non-minimal form in the case of irreducible control
40 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
41 MemoryAccess
*MemorySSAUpdater::getPreviousDefRecursive(
43 DenseMap
<BasicBlock
*, TrackingVH
<MemoryAccess
>> &CachedPreviousDef
) {
44 // First, do a cache lookup. Without this cache, certain CFG structures
45 // (like a series of if statements) take exponential time to visit.
46 auto Cached
= CachedPreviousDef
.find(BB
);
47 if (Cached
!= CachedPreviousDef
.end()) {
48 return Cached
->second
;
51 if (BasicBlock
*Pred
= BB
->getSinglePredecessor()) {
52 // Single predecessor case, just recurse, we can only have one definition.
53 MemoryAccess
*Result
= getPreviousDefFromEnd(Pred
, CachedPreviousDef
);
54 CachedPreviousDef
.insert({BB
, Result
});
58 if (VisitedBlocks
.count(BB
)) {
59 // We hit our node again, meaning we had a cycle, we must insert a phi
60 // node to break it so we have an operand. The only case this will
61 // insert useless phis is if we have irreducible control flow.
62 MemoryAccess
*Result
= MSSA
->createMemoryPhi(BB
);
63 CachedPreviousDef
.insert({BB
, Result
});
67 if (VisitedBlocks
.insert(BB
).second
) {
68 // Mark us visited so we can detect a cycle
69 SmallVector
<TrackingVH
<MemoryAccess
>, 8> PhiOps
;
71 // Recurse to get the values in our predecessors for placement of a
72 // potential phi node. This will insert phi nodes if we cycle in order to
73 // break the cycle and have an operand.
74 for (auto *Pred
: predecessors(BB
))
75 PhiOps
.push_back(getPreviousDefFromEnd(Pred
, CachedPreviousDef
));
77 // Now try to simplify the ops to avoid placing a phi.
78 // This may return null if we never created a phi yet, that's okay
79 MemoryPhi
*Phi
= dyn_cast_or_null
<MemoryPhi
>(MSSA
->getMemoryAccess(BB
));
81 // See if we can avoid the phi by simplifying it.
82 auto *Result
= tryRemoveTrivialPhi(Phi
, PhiOps
);
83 // If we couldn't simplify, we may have to create a phi
86 Phi
= MSSA
->createMemoryPhi(BB
);
88 // See if the existing phi operands match what we need.
89 // Unlike normal SSA, we only allow one phi node per block, so we can't just
91 if (Phi
->getNumOperands() != 0) {
92 // FIXME: Figure out whether this is dead code and if so remove it.
93 if (!std::equal(Phi
->op_begin(), Phi
->op_end(), PhiOps
.begin())) {
94 // These will have been filled in by the recursive read we did above.
95 llvm::copy(PhiOps
, Phi
->op_begin());
96 std::copy(pred_begin(BB
), pred_end(BB
), Phi
->block_begin());
100 for (auto *Pred
: predecessors(BB
))
101 Phi
->addIncoming(&*PhiOps
[i
++], Pred
);
102 InsertedPHIs
.push_back(Phi
);
107 // Set ourselves up for the next variable by resetting visited state.
108 VisitedBlocks
.erase(BB
);
109 CachedPreviousDef
.insert({BB
, Result
});
112 llvm_unreachable("Should have hit one of the three cases above");
115 // This starts at the memory access, and goes backwards in the block to find the
116 // previous definition. If a definition is not found the block of the access,
117 // it continues globally, creating phi nodes to ensure we have a single
119 MemoryAccess
*MemorySSAUpdater::getPreviousDef(MemoryAccess
*MA
) {
120 if (auto *LocalResult
= getPreviousDefInBlock(MA
))
122 DenseMap
<BasicBlock
*, TrackingVH
<MemoryAccess
>> CachedPreviousDef
;
123 return getPreviousDefRecursive(MA
->getBlock(), CachedPreviousDef
);
126 // This starts at the memory access, and goes backwards in the block to the find
127 // the previous definition. If the definition is not found in the block of the
128 // access, it returns nullptr.
129 MemoryAccess
*MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess
*MA
) {
130 auto *Defs
= MSSA
->getWritableBlockDefs(MA
->getBlock());
132 // It's possible there are no defs, or we got handed the first def to start.
134 // If this is a def, we can just use the def iterators.
135 if (!isa
<MemoryUse
>(MA
)) {
136 auto Iter
= MA
->getReverseDefsIterator();
138 if (Iter
!= Defs
->rend())
141 // Otherwise, have to walk the all access iterator.
142 auto End
= MSSA
->getWritableBlockAccesses(MA
->getBlock())->rend();
143 for (auto &U
: make_range(++MA
->getReverseIterator(), End
))
144 if (!isa
<MemoryUse
>(U
))
145 return cast
<MemoryAccess
>(&U
);
146 // Note that if MA comes before Defs->begin(), we won't hit a def.
153 // This starts at the end of block
154 MemoryAccess
*MemorySSAUpdater::getPreviousDefFromEnd(
156 DenseMap
<BasicBlock
*, TrackingVH
<MemoryAccess
>> &CachedPreviousDef
) {
157 auto *Defs
= MSSA
->getWritableBlockDefs(BB
);
160 return &*Defs
->rbegin();
162 return getPreviousDefRecursive(BB
, CachedPreviousDef
);
164 // Recurse over a set of phi uses to eliminate the trivial ones
165 MemoryAccess
*MemorySSAUpdater::recursePhi(MemoryAccess
*Phi
) {
168 TrackingVH
<MemoryAccess
> Res(Phi
);
169 SmallVector
<TrackingVH
<Value
>, 8> Uses
;
170 std::copy(Phi
->user_begin(), Phi
->user_end(), std::back_inserter(Uses
));
171 for (auto &U
: Uses
) {
172 if (MemoryPhi
*UsePhi
= dyn_cast
<MemoryPhi
>(&*U
)) {
173 auto OperRange
= UsePhi
->operands();
174 tryRemoveTrivialPhi(UsePhi
, OperRange
);
180 // Eliminate trivial phis
181 // Phis are trivial if they are defined either by themselves, or all the same
183 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
184 // We recursively try to remove them.
185 template <class RangeType
>
186 MemoryAccess
*MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi
*Phi
,
187 RangeType
&Operands
) {
188 // Bail out on non-opt Phis.
189 if (NonOptPhis
.count(Phi
))
192 // Detect equal or self arguments
193 MemoryAccess
*Same
= nullptr;
194 for (auto &Op
: Operands
) {
195 // If the same or self, good so far
196 if (Op
== Phi
|| Op
== Same
)
198 // not the same, return the phi since it's not eliminatable by us
201 Same
= cast
<MemoryAccess
>(&*Op
);
203 // Never found a non-self reference, the phi is undef
205 return MSSA
->getLiveOnEntryDef();
207 Phi
->replaceAllUsesWith(Same
);
208 removeMemoryAccess(Phi
);
211 // We should only end up recursing in case we replaced something, in which
212 // case, we may have made other Phis trivial.
213 return recursePhi(Same
);
216 void MemorySSAUpdater::insertUse(MemoryUse
*MU
) {
217 InsertedPHIs
.clear();
218 MU
->setDefiningAccess(getPreviousDef(MU
));
219 // Unlike for defs, there is no extra work to do. Because uses do not create
220 // new may-defs, there are only two cases:
222 // 1. There was a def already below us, and therefore, we should not have
223 // created a phi node because it was already needed for the def.
225 // 2. There is no def below us, and therefore, there is no extra renaming work
229 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
230 static void setMemoryPhiValueForBlock(MemoryPhi
*MP
, const BasicBlock
*BB
,
231 MemoryAccess
*NewDef
) {
232 // Replace any operand with us an incoming block with the new defining
234 int i
= MP
->getBasicBlockIndex(BB
);
235 assert(i
!= -1 && "Should have found the basic block in the phi");
236 // We can't just compare i against getNumOperands since one is signed and the
237 // other not. So use it to index into the block iterator.
238 for (auto BBIter
= MP
->block_begin() + i
; BBIter
!= MP
->block_end();
242 MP
->setIncomingValue(i
, NewDef
);
247 // A brief description of the algorithm:
248 // First, we compute what should define the new def, using the SSA
249 // construction algorithm.
250 // Then, we update the defs below us (and any new phi nodes) in the graph to
251 // point to the correct new defs, to ensure we only have one variable, and no
252 // disconnected stores.
253 void MemorySSAUpdater::insertDef(MemoryDef
*MD
, bool RenameUses
) {
254 InsertedPHIs
.clear();
256 // See if we had a local def, and if not, go hunting.
257 MemoryAccess
*DefBefore
= getPreviousDef(MD
);
258 bool DefBeforeSameBlock
= DefBefore
->getBlock() == MD
->getBlock();
260 // There is a def before us, which means we can replace any store/phi uses
261 // of that thing with us, since we are in the way of whatever was there
263 // We now define that def's memorydefs and memoryphis
264 if (DefBeforeSameBlock
) {
265 for (auto UI
= DefBefore
->use_begin(), UE
= DefBefore
->use_end();
268 // Leave the MemoryUses alone.
269 // Also make sure we skip ourselves to avoid self references.
270 if (isa
<MemoryUse
>(U
.getUser()) || U
.getUser() == MD
)
272 // Defs are automatically unoptimized when the user is set to MD below,
273 // because the isOptimized() call will fail to find the same ID.
278 // and that def is now our defining access.
279 MD
->setDefiningAccess(DefBefore
);
281 // Remember the index where we may insert new phis below.
282 unsigned NewPhiIndex
= InsertedPHIs
.size();
284 SmallVector
<WeakVH
, 8> FixupList(InsertedPHIs
.begin(), InsertedPHIs
.end());
285 if (!DefBeforeSameBlock
) {
286 // If there was a local def before us, we must have the same effect it
287 // did. Because every may-def is the same, any phis/etc we would create, it
288 // would also have created. If there was no local def before us, we
289 // performed a global update, and have to search all successors and make
290 // sure we update the first def in each of them (following all paths until
291 // we hit the first def along each path). This may also insert phi nodes.
292 // TODO: There are other cases we can skip this work, such as when we have a
293 // single successor, and only used a straight line of single pred blocks
294 // backwards to find the def. To make that work, we'd have to track whether
295 // getDefRecursive only ever used the single predecessor case. These types
296 // of paths also only exist in between CFG simplifications.
298 // If this is the first def in the block and this insert is in an arbitrary
299 // place, compute IDF and place phis.
300 auto Iter
= MD
->getDefsIterator();
302 auto IterEnd
= MSSA
->getBlockDefs(MD
->getBlock())->end();
303 if (Iter
== IterEnd
) {
304 ForwardIDFCalculator
IDFs(*MSSA
->DT
);
305 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
306 SmallPtrSet
<BasicBlock
*, 2> DefiningBlocks
;
307 DefiningBlocks
.insert(MD
->getBlock());
308 IDFs
.setDefiningBlocks(DefiningBlocks
);
309 IDFs
.calculate(IDFBlocks
);
310 SmallVector
<AssertingVH
<MemoryPhi
>, 4> NewInsertedPHIs
;
311 for (auto *BBIDF
: IDFBlocks
)
312 if (!MSSA
->getMemoryAccess(BBIDF
))
313 NewInsertedPHIs
.push_back(MSSA
->createMemoryPhi(BBIDF
));
315 for (auto &MPhi
: NewInsertedPHIs
) {
316 auto *BBIDF
= MPhi
->getBlock();
317 for (auto *Pred
: predecessors(BBIDF
)) {
318 DenseMap
<BasicBlock
*, TrackingVH
<MemoryAccess
>> CachedPreviousDef
;
319 MPhi
->addIncoming(getPreviousDefFromEnd(Pred
, CachedPreviousDef
),
324 // Re-take the index where we're adding the new phis, because the above
325 // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
326 NewPhiIndex
= InsertedPHIs
.size();
327 for (auto &MPhi
: NewInsertedPHIs
) {
328 InsertedPHIs
.push_back(&*MPhi
);
329 FixupList
.push_back(&*MPhi
);
333 FixupList
.push_back(MD
);
336 // Remember the index where we stopped inserting new phis above, since the
337 // fixupDefs call in the loop below may insert more, that are already minimal.
338 unsigned NewPhiIndexEnd
= InsertedPHIs
.size();
340 while (!FixupList
.empty()) {
341 unsigned StartingPHISize
= InsertedPHIs
.size();
342 fixupDefs(FixupList
);
344 // Put any new phis on the fixup list, and process them
345 FixupList
.append(InsertedPHIs
.begin() + StartingPHISize
, InsertedPHIs
.end());
348 // Optimize potentially non-minimal phis added in this method.
349 for (unsigned Idx
= NewPhiIndex
; Idx
< NewPhiIndexEnd
; ++Idx
) {
350 if (auto *MPhi
= cast_or_null
<MemoryPhi
>(InsertedPHIs
[Idx
])) {
351 auto OperRange
= MPhi
->operands();
352 tryRemoveTrivialPhi(MPhi
, OperRange
);
356 // Now that all fixups are done, rename all uses if we are asked.
358 SmallPtrSet
<BasicBlock
*, 16> Visited
;
359 BasicBlock
*StartBlock
= MD
->getBlock();
360 // We are guaranteed there is a def in the block, because we just got it
361 // handed to us in this function.
362 MemoryAccess
*FirstDef
= &*MSSA
->getWritableBlockDefs(StartBlock
)->begin();
363 // Convert to incoming value if it's a memorydef. A phi *is* already an
365 if (auto *MD
= dyn_cast
<MemoryDef
>(FirstDef
))
366 FirstDef
= MD
->getDefiningAccess();
368 MSSA
->renamePass(MD
->getBlock(), FirstDef
, Visited
);
369 // We just inserted a phi into this block, so the incoming value will become
370 // the phi anyway, so it does not matter what we pass.
371 for (auto &MP
: InsertedPHIs
) {
372 MemoryPhi
*Phi
= dyn_cast_or_null
<MemoryPhi
>(MP
);
374 MSSA
->renamePass(Phi
->getBlock(), nullptr, Visited
);
379 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl
<WeakVH
> &Vars
) {
380 SmallPtrSet
<const BasicBlock
*, 8> Seen
;
381 SmallVector
<const BasicBlock
*, 16> Worklist
;
382 for (auto &Var
: Vars
) {
383 MemoryAccess
*NewDef
= dyn_cast_or_null
<MemoryAccess
>(Var
);
386 // First, see if there is a local def after the operand.
387 auto *Defs
= MSSA
->getWritableBlockDefs(NewDef
->getBlock());
388 auto DefIter
= NewDef
->getDefsIterator();
390 // The temporary Phi is being fixed, unmark it for not to optimize.
391 if (MemoryPhi
*Phi
= dyn_cast
<MemoryPhi
>(NewDef
))
392 NonOptPhis
.erase(Phi
);
394 // If there is a local def after us, we only have to rename that.
395 if (++DefIter
!= Defs
->end()) {
396 cast
<MemoryDef
>(DefIter
)->setDefiningAccess(NewDef
);
400 // Otherwise, we need to search down through the CFG.
401 // For each of our successors, handle it directly if their is a phi, or
402 // place on the fixup worklist.
403 for (const auto *S
: successors(NewDef
->getBlock())) {
404 if (auto *MP
= MSSA
->getMemoryAccess(S
))
405 setMemoryPhiValueForBlock(MP
, NewDef
->getBlock(), NewDef
);
407 Worklist
.push_back(S
);
410 while (!Worklist
.empty()) {
411 const BasicBlock
*FixupBlock
= Worklist
.back();
414 // Get the first def in the block that isn't a phi node.
415 if (auto *Defs
= MSSA
->getWritableBlockDefs(FixupBlock
)) {
416 auto *FirstDef
= &*Defs
->begin();
417 // The loop above and below should have taken care of phi nodes
418 assert(!isa
<MemoryPhi
>(FirstDef
) &&
419 "Should have already handled phi nodes!");
420 // We are now this def's defining access, make sure we actually dominate
422 assert(MSSA
->dominates(NewDef
, FirstDef
) &&
423 "Should have dominated the new access");
425 // This may insert new phi nodes, because we are not guaranteed the
426 // block we are processing has a single pred, and depending where the
427 // store was inserted, it may require phi nodes below it.
428 cast
<MemoryDef
>(FirstDef
)->setDefiningAccess(getPreviousDef(FirstDef
));
431 // We didn't find a def, so we must continue.
432 for (const auto *S
: successors(FixupBlock
)) {
433 // If there is a phi node, handle it.
434 // Otherwise, put the block on the worklist
435 if (auto *MP
= MSSA
->getMemoryAccess(S
))
436 setMemoryPhiValueForBlock(MP
, FixupBlock
, NewDef
);
438 // If we cycle, we should have ended up at a phi node that we already
439 // processed. FIXME: Double check this
440 if (!Seen
.insert(S
).second
)
442 Worklist
.push_back(S
);
449 void MemorySSAUpdater::removeEdge(BasicBlock
*From
, BasicBlock
*To
) {
450 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(To
)) {
451 MPhi
->unorderedDeleteIncomingBlock(From
);
452 if (MPhi
->getNumIncomingValues() == 1)
453 removeMemoryAccess(MPhi
);
457 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(BasicBlock
*From
,
459 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(To
)) {
461 MPhi
->unorderedDeleteIncomingIf([&](const MemoryAccess
*, BasicBlock
*B
) {
469 if (MPhi
->getNumIncomingValues() == 1)
470 removeMemoryAccess(MPhi
);
474 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock
*BB
, BasicBlock
*NewBB
,
475 const ValueToValueMapTy
&VMap
,
476 PhiToDefMap
&MPhiMap
) {
477 auto GetNewDefiningAccess
= [&](MemoryAccess
*MA
) -> MemoryAccess
* {
478 MemoryAccess
*InsnDefining
= MA
;
479 if (MemoryUseOrDef
*DefMUD
= dyn_cast
<MemoryUseOrDef
>(InsnDefining
)) {
480 if (!MSSA
->isLiveOnEntryDef(DefMUD
)) {
481 Instruction
*DefMUDI
= DefMUD
->getMemoryInst();
482 assert(DefMUDI
&& "Found MemoryUseOrDef with no Instruction.");
483 if (Instruction
*NewDefMUDI
=
484 cast_or_null
<Instruction
>(VMap
.lookup(DefMUDI
)))
485 InsnDefining
= MSSA
->getMemoryAccess(NewDefMUDI
);
488 MemoryPhi
*DefPhi
= cast
<MemoryPhi
>(InsnDefining
);
489 if (MemoryAccess
*NewDefPhi
= MPhiMap
.lookup(DefPhi
))
490 InsnDefining
= NewDefPhi
;
492 assert(InsnDefining
&& "Defining instruction cannot be nullptr.");
496 const MemorySSA::AccessList
*Acc
= MSSA
->getBlockAccesses(BB
);
499 for (const MemoryAccess
&MA
: *Acc
) {
500 if (const MemoryUseOrDef
*MUD
= dyn_cast
<MemoryUseOrDef
>(&MA
)) {
501 Instruction
*Insn
= MUD
->getMemoryInst();
502 // Entry does not exist if the clone of the block did not clone all
503 // instructions. This occurs in LoopRotate when cloning instructions
504 // from the old header to the old preheader. The cloned instruction may
505 // also be a simplified Value, not an Instruction (see LoopRotate).
506 if (Instruction
*NewInsn
=
507 dyn_cast_or_null
<Instruction
>(VMap
.lookup(Insn
))) {
508 MemoryAccess
*NewUseOrDef
= MSSA
->createDefinedAccess(
509 NewInsn
, GetNewDefiningAccess(MUD
->getDefiningAccess()), MUD
);
510 MSSA
->insertIntoListsForBlock(NewUseOrDef
, NewBB
, MemorySSA::End
);
516 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO
&LoopBlocks
,
517 ArrayRef
<BasicBlock
*> ExitBlocks
,
518 const ValueToValueMapTy
&VMap
,
519 bool IgnoreIncomingWithNoClones
) {
522 auto FixPhiIncomingValues
= [&](MemoryPhi
*Phi
, MemoryPhi
*NewPhi
) {
523 assert(Phi
&& NewPhi
&& "Invalid Phi nodes.");
524 BasicBlock
*NewPhiBB
= NewPhi
->getBlock();
525 SmallPtrSet
<BasicBlock
*, 4> NewPhiBBPreds(pred_begin(NewPhiBB
),
527 for (unsigned It
= 0, E
= Phi
->getNumIncomingValues(); It
< E
; ++It
) {
528 MemoryAccess
*IncomingAccess
= Phi
->getIncomingValue(It
);
529 BasicBlock
*IncBB
= Phi
->getIncomingBlock(It
);
531 if (BasicBlock
*NewIncBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(IncBB
)))
533 else if (IgnoreIncomingWithNoClones
)
536 // Now we have IncBB, and will need to add incoming from it to NewPhi.
538 // If IncBB is not a predecessor of NewPhiBB, then do not add it.
539 // NewPhiBB was cloned without that edge.
540 if (!NewPhiBBPreds
.count(IncBB
))
543 // Determine incoming value and add it as incoming from IncBB.
544 if (MemoryUseOrDef
*IncMUD
= dyn_cast
<MemoryUseOrDef
>(IncomingAccess
)) {
545 if (!MSSA
->isLiveOnEntryDef(IncMUD
)) {
546 Instruction
*IncI
= IncMUD
->getMemoryInst();
547 assert(IncI
&& "Found MemoryUseOrDef with no Instruction.");
548 if (Instruction
*NewIncI
=
549 cast_or_null
<Instruction
>(VMap
.lookup(IncI
))) {
550 IncMUD
= MSSA
->getMemoryAccess(NewIncI
);
552 "MemoryUseOrDef cannot be null, all preds processed.");
555 NewPhi
->addIncoming(IncMUD
, IncBB
);
557 MemoryPhi
*IncPhi
= cast
<MemoryPhi
>(IncomingAccess
);
558 if (MemoryAccess
*NewDefPhi
= MPhiMap
.lookup(IncPhi
))
559 NewPhi
->addIncoming(NewDefPhi
, IncBB
);
561 NewPhi
->addIncoming(IncPhi
, IncBB
);
566 auto ProcessBlock
= [&](BasicBlock
*BB
) {
567 BasicBlock
*NewBlock
= cast_or_null
<BasicBlock
>(VMap
.lookup(BB
));
571 assert(!MSSA
->getWritableBlockAccesses(NewBlock
) &&
572 "Cloned block should have no accesses");
575 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(BB
)) {
576 MemoryPhi
*NewPhi
= MSSA
->createMemoryPhi(NewBlock
);
577 MPhiMap
[MPhi
] = NewPhi
;
579 // Update Uses and Defs.
580 cloneUsesAndDefs(BB
, NewBlock
, VMap
, MPhiMap
);
583 for (auto BB
: llvm::concat
<BasicBlock
*const>(LoopBlocks
, ExitBlocks
))
586 for (auto BB
: llvm::concat
<BasicBlock
*const>(LoopBlocks
, ExitBlocks
))
587 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(BB
))
588 if (MemoryAccess
*NewPhi
= MPhiMap
.lookup(MPhi
))
589 FixPhiIncomingValues(MPhi
, cast
<MemoryPhi
>(NewPhi
));
592 void MemorySSAUpdater::updateForClonedBlockIntoPred(
593 BasicBlock
*BB
, BasicBlock
*P1
, const ValueToValueMapTy
&VM
) {
594 // All defs/phis from outside BB that are used in BB, are valid uses in P1.
595 // Since those defs/phis must have dominated BB, and also dominate P1.
596 // Defs from BB being used in BB will be replaced with the cloned defs from
597 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
598 // incoming def into the Phi from P1.
600 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(BB
))
601 MPhiMap
[MPhi
] = MPhi
->getIncomingValueForBlock(P1
);
602 cloneUsesAndDefs(BB
, P1
, VM
, MPhiMap
);
605 template <typename Iter
>
606 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
607 ArrayRef
<BasicBlock
*> ExitBlocks
, Iter ValuesBegin
, Iter ValuesEnd
,
609 SmallVector
<CFGUpdate
, 4> Updates
;
610 // Update/insert phis in all successors of exit blocks.
611 for (auto *Exit
: ExitBlocks
)
612 for (const ValueToValueMapTy
*VMap
: make_range(ValuesBegin
, ValuesEnd
))
613 if (BasicBlock
*NewExit
= cast_or_null
<BasicBlock
>(VMap
->lookup(Exit
))) {
614 BasicBlock
*ExitSucc
= NewExit
->getTerminator()->getSuccessor(0);
615 Updates
.push_back({DT
.Insert
, NewExit
, ExitSucc
});
617 applyInsertUpdates(Updates
, DT
);
620 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
621 ArrayRef
<BasicBlock
*> ExitBlocks
, const ValueToValueMapTy
&VMap
,
623 const ValueToValueMapTy
*const Arr
[] = {&VMap
};
624 privateUpdateExitBlocksForClonedLoop(ExitBlocks
, std::begin(Arr
),
628 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
629 ArrayRef
<BasicBlock
*> ExitBlocks
,
630 ArrayRef
<std::unique_ptr
<ValueToValueMapTy
>> VMaps
, DominatorTree
&DT
) {
631 auto GetPtr
= [&](const std::unique_ptr
<ValueToValueMapTy
> &I
) {
634 using MappedIteratorType
=
635 mapped_iterator
<const std::unique_ptr
<ValueToValueMapTy
> *,
637 auto MapBegin
= MappedIteratorType(VMaps
.begin(), GetPtr
);
638 auto MapEnd
= MappedIteratorType(VMaps
.end(), GetPtr
);
639 privateUpdateExitBlocksForClonedLoop(ExitBlocks
, MapBegin
, MapEnd
, DT
);
642 void MemorySSAUpdater::applyUpdates(ArrayRef
<CFGUpdate
> Updates
,
644 SmallVector
<CFGUpdate
, 4> RevDeleteUpdates
;
645 SmallVector
<CFGUpdate
, 4> InsertUpdates
;
646 for (auto &Update
: Updates
) {
647 if (Update
.getKind() == DT
.Insert
)
648 InsertUpdates
.push_back({DT
.Insert
, Update
.getFrom(), Update
.getTo()});
650 RevDeleteUpdates
.push_back({DT
.Insert
, Update
.getFrom(), Update
.getTo()});
653 if (!RevDeleteUpdates
.empty()) {
654 // Update for inserted edges: use newDT and snapshot CFG as if deletes had
656 // FIXME: This creates a new DT, so it's more expensive to do mix
657 // delete/inserts vs just inserts. We can do an incremental update on the DT
658 // to revert deletes, than re-delete the edges. Teaching DT to do this, is
659 // part of a pending cleanup.
660 DominatorTree
NewDT(DT
, RevDeleteUpdates
);
661 GraphDiff
<BasicBlock
*> GD(RevDeleteUpdates
);
662 applyInsertUpdates(InsertUpdates
, NewDT
, &GD
);
664 GraphDiff
<BasicBlock
*> GD
;
665 applyInsertUpdates(InsertUpdates
, DT
, &GD
);
668 // Update for deleted edges
669 for (auto &Update
: RevDeleteUpdates
)
670 removeEdge(Update
.getFrom(), Update
.getTo());
673 void MemorySSAUpdater::applyInsertUpdates(ArrayRef
<CFGUpdate
> Updates
,
675 GraphDiff
<BasicBlock
*> GD
;
676 applyInsertUpdates(Updates
, DT
, &GD
);
679 void MemorySSAUpdater::applyInsertUpdates(ArrayRef
<CFGUpdate
> Updates
,
681 const GraphDiff
<BasicBlock
*> *GD
) {
682 // Get recursive last Def, assuming well formed MSSA and updated DT.
683 auto GetLastDef
= [&](BasicBlock
*BB
) -> MemoryAccess
* {
685 MemorySSA::DefsList
*Defs
= MSSA
->getWritableBlockDefs(BB
);
686 // Return last Def or Phi in BB, if it exists.
688 return &*(--Defs
->end());
690 // Check number of predecessors, we only care if there's more than one.
692 BasicBlock
*Pred
= nullptr;
693 for (auto &Pair
: children
<GraphDiffInvBBPair
>({GD
, BB
})) {
700 // If BB has multiple predecessors, get last definition from IDom.
702 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
703 // DT is invalidated. Return LoE as its last def. This will be added to
704 // MemoryPhi node, and later deleted when the block is deleted.
706 return MSSA
->getLiveOnEntryDef();
707 if (auto *IDom
= DT
.getNode(BB
)->getIDom())
708 if (IDom
->getBlock() != BB
) {
709 BB
= IDom
->getBlock();
712 return MSSA
->getLiveOnEntryDef();
714 // Single predecessor, BB cannot be dead. GetLastDef of Pred.
715 assert(Count
== 1 && Pred
&& "Single predecessor expected.");
719 llvm_unreachable("Unable to get last definition.");
722 // Get nearest IDom given a set of blocks.
723 // TODO: this can be optimized by starting the search at the node with the
724 // lowest level (highest in the tree).
725 auto FindNearestCommonDominator
=
726 [&](const SmallSetVector
<BasicBlock
*, 2> &BBSet
) -> BasicBlock
* {
727 BasicBlock
*PrevIDom
= *BBSet
.begin();
728 for (auto *BB
: BBSet
)
729 PrevIDom
= DT
.findNearestCommonDominator(PrevIDom
, BB
);
733 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
735 auto GetNoLongerDomBlocks
=
736 [&](BasicBlock
*PrevIDom
, BasicBlock
*CurrIDom
,
737 SmallVectorImpl
<BasicBlock
*> &BlocksPrevDom
) {
738 if (PrevIDom
== CurrIDom
)
740 BlocksPrevDom
.push_back(PrevIDom
);
741 BasicBlock
*NextIDom
= PrevIDom
;
742 while (BasicBlock
*UpIDom
=
743 DT
.getNode(NextIDom
)->getIDom()->getBlock()) {
744 if (UpIDom
== CurrIDom
)
746 BlocksPrevDom
.push_back(UpIDom
);
751 // Map a BB to its predecessors: added + previously existing. To get a
752 // deterministic order, store predecessors as SetVectors. The order in each
753 // will be defined by the order in Updates (fixed) and the order given by
754 // children<> (also fixed). Since we further iterate over these ordered sets,
755 // we lose the information of multiple edges possibly existing between two
756 // blocks, so we'll keep and EdgeCount map for that.
757 // An alternate implementation could keep unordered set for the predecessors,
758 // traverse either Updates or children<> each time to get the deterministic
759 // order, and drop the usage of EdgeCount. This alternate approach would still
760 // require querying the maps for each predecessor, and children<> call has
761 // additional computation inside for creating the snapshot-graph predecessors.
762 // As such, we favor using a little additional storage and less compute time.
763 // This decision can be revisited if we find the alternative more favorable.
766 SmallSetVector
<BasicBlock
*, 2> Added
;
767 SmallSetVector
<BasicBlock
*, 2> Prev
;
769 SmallDenseMap
<BasicBlock
*, PredInfo
> PredMap
;
771 for (auto &Edge
: Updates
) {
772 BasicBlock
*BB
= Edge
.getTo();
773 auto &AddedBlockSet
= PredMap
[BB
].Added
;
774 AddedBlockSet
.insert(Edge
.getFrom());
777 // Store all existing predecessor for each BB, at least one must exist.
778 SmallDenseMap
<std::pair
<BasicBlock
*, BasicBlock
*>, int> EdgeCountMap
;
779 SmallPtrSet
<BasicBlock
*, 2> NewBlocks
;
780 for (auto &BBPredPair
: PredMap
) {
781 auto *BB
= BBPredPair
.first
;
782 const auto &AddedBlockSet
= BBPredPair
.second
.Added
;
783 auto &PrevBlockSet
= BBPredPair
.second
.Prev
;
784 for (auto &Pair
: children
<GraphDiffInvBBPair
>({GD
, BB
})) {
785 BasicBlock
*Pi
= Pair
.second
;
786 if (!AddedBlockSet
.count(Pi
))
787 PrevBlockSet
.insert(Pi
);
788 EdgeCountMap
[{Pi
, BB
}]++;
791 if (PrevBlockSet
.empty()) {
792 assert(pred_size(BB
) == AddedBlockSet
.size() && "Duplicate edges added.");
795 << "Adding a predecessor to a block with no predecessors. "
796 "This must be an edge added to a new, likely cloned, block. "
797 "Its memory accesses must be already correct, assuming completed "
798 "via the updateExitBlocksForClonedLoop API. "
799 "Assert a single such edge is added so no phi addition or "
800 "additional processing is required.\n");
801 assert(AddedBlockSet
.size() == 1 &&
802 "Can only handle adding one predecessor to a new block.");
803 // Need to remove new blocks from PredMap. Remove below to not invalidate
805 NewBlocks
.insert(BB
);
808 // Nothing to process for new/cloned blocks.
809 for (auto *BB
: NewBlocks
)
812 SmallVector
<BasicBlock
*, 8> BlocksToProcess
;
813 SmallVector
<BasicBlock
*, 16> BlocksWithDefsToReplace
;
815 // First create MemoryPhis in all blocks that don't have one. Create in the
816 // order found in Updates, not in PredMap, to get deterministic numbering.
817 for (auto &Edge
: Updates
) {
818 BasicBlock
*BB
= Edge
.getTo();
819 if (PredMap
.count(BB
) && !MSSA
->getMemoryAccess(BB
))
820 MSSA
->createMemoryPhi(BB
);
823 // Now we'll fill in the MemoryPhis with the right incoming values.
824 for (auto &BBPredPair
: PredMap
) {
825 auto *BB
= BBPredPair
.first
;
826 const auto &PrevBlockSet
= BBPredPair
.second
.Prev
;
827 const auto &AddedBlockSet
= BBPredPair
.second
.Added
;
828 assert(!PrevBlockSet
.empty() &&
829 "At least one previous predecessor must exist.");
831 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
832 // keeping this map before the loop. We can reuse already populated entries
833 // if an edge is added from the same predecessor to two different blocks,
834 // and this does happen in rotate. Note that the map needs to be updated
835 // when deleting non-necessary phis below, if the phi is in the map by
836 // replacing the value with DefP1.
837 SmallDenseMap
<BasicBlock
*, MemoryAccess
*> LastDefAddedPred
;
838 for (auto *AddedPred
: AddedBlockSet
) {
839 auto *DefPn
= GetLastDef(AddedPred
);
840 assert(DefPn
!= nullptr && "Unable to find last definition.");
841 LastDefAddedPred
[AddedPred
] = DefPn
;
844 MemoryPhi
*NewPhi
= MSSA
->getMemoryAccess(BB
);
845 // If Phi is not empty, add an incoming edge from each added pred. Must
846 // still compute blocks with defs to replace for this block below.
847 if (NewPhi
->getNumOperands()) {
848 for (auto *Pred
: AddedBlockSet
) {
849 auto *LastDefForPred
= LastDefAddedPred
[Pred
];
850 for (int I
= 0, E
= EdgeCountMap
[{Pred
, BB
}]; I
< E
; ++I
)
851 NewPhi
->addIncoming(LastDefForPred
, Pred
);
854 // Pick any existing predecessor and get its definition. All other
855 // existing predecessors should have the same one, since no phi existed.
856 auto *P1
= *PrevBlockSet
.begin();
857 MemoryAccess
*DefP1
= GetLastDef(P1
);
859 // Check DefP1 against all Defs in LastDefPredPair. If all the same,
861 bool InsertPhi
= false;
862 for (auto LastDefPredPair
: LastDefAddedPred
)
863 if (DefP1
!= LastDefPredPair
.second
) {
868 // Since NewPhi may be used in other newly added Phis, replace all uses
869 // of NewPhi with the definition coming from all predecessors (DefP1),
870 // before deleting it.
871 NewPhi
->replaceAllUsesWith(DefP1
);
872 removeMemoryAccess(NewPhi
);
876 // Update Phi with new values for new predecessors and old value for all
877 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
878 // sets, the order of entries in NewPhi is deterministic.
879 for (auto *Pred
: AddedBlockSet
) {
880 auto *LastDefForPred
= LastDefAddedPred
[Pred
];
881 for (int I
= 0, E
= EdgeCountMap
[{Pred
, BB
}]; I
< E
; ++I
)
882 NewPhi
->addIncoming(LastDefForPred
, Pred
);
884 for (auto *Pred
: PrevBlockSet
)
885 for (int I
= 0, E
= EdgeCountMap
[{Pred
, BB
}]; I
< E
; ++I
)
886 NewPhi
->addIncoming(DefP1
, Pred
);
888 // Insert BB in the set of blocks that now have definition. We'll use this
889 // to compute IDF and add Phis there next.
890 BlocksToProcess
.push_back(BB
);
893 // Get all blocks that used to dominate BB and no longer do after adding
894 // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
895 assert(DT
.getNode(BB
)->getIDom() && "BB does not have valid idom");
896 BasicBlock
*PrevIDom
= FindNearestCommonDominator(PrevBlockSet
);
897 assert(PrevIDom
&& "Previous IDom should exists");
898 BasicBlock
*NewIDom
= DT
.getNode(BB
)->getIDom()->getBlock();
899 assert(NewIDom
&& "BB should have a new valid idom");
900 assert(DT
.dominates(NewIDom
, PrevIDom
) &&
901 "New idom should dominate old idom");
902 GetNoLongerDomBlocks(PrevIDom
, NewIDom
, BlocksWithDefsToReplace
);
905 // Compute IDF and add Phis in all IDF blocks that do not have one.
906 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
907 if (!BlocksToProcess
.empty()) {
908 ForwardIDFCalculator
IDFs(DT
);
909 SmallPtrSet
<BasicBlock
*, 16> DefiningBlocks(BlocksToProcess
.begin(),
910 BlocksToProcess
.end());
911 IDFs
.setDefiningBlocks(DefiningBlocks
);
912 IDFs
.calculate(IDFBlocks
);
913 for (auto *BBIDF
: IDFBlocks
) {
914 if (auto *IDFPhi
= MSSA
->getMemoryAccess(BBIDF
)) {
915 // Update existing Phi.
916 // FIXME: some updates may be redundant, try to optimize and skip some.
917 for (unsigned I
= 0, E
= IDFPhi
->getNumIncomingValues(); I
< E
; ++I
)
918 IDFPhi
->setIncomingValue(I
, GetLastDef(IDFPhi
->getIncomingBlock(I
)));
920 IDFPhi
= MSSA
->createMemoryPhi(BBIDF
);
921 for (auto &Pair
: children
<GraphDiffInvBBPair
>({GD
, BBIDF
})) {
922 BasicBlock
*Pi
= Pair
.second
;
923 IDFPhi
->addIncoming(GetLastDef(Pi
), Pi
);
929 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
930 // longer dominate, replace those with the closest dominating def.
931 // This will also update optimized accesses, as they're also uses.
932 for (auto *BlockWithDefsToReplace
: BlocksWithDefsToReplace
) {
933 if (auto DefsList
= MSSA
->getWritableBlockDefs(BlockWithDefsToReplace
)) {
934 for (auto &DefToReplaceUses
: *DefsList
) {
935 BasicBlock
*DominatingBlock
= DefToReplaceUses
.getBlock();
936 Value::use_iterator UI
= DefToReplaceUses
.use_begin(),
937 E
= DefToReplaceUses
.use_end();
941 MemoryAccess
*Usr
= dyn_cast
<MemoryAccess
>(U
.getUser());
942 if (MemoryPhi
*UsrPhi
= dyn_cast
<MemoryPhi
>(Usr
)) {
943 BasicBlock
*DominatedBlock
= UsrPhi
->getIncomingBlock(U
);
944 if (!DT
.dominates(DominatingBlock
, DominatedBlock
))
945 U
.set(GetLastDef(DominatedBlock
));
947 BasicBlock
*DominatedBlock
= Usr
->getBlock();
948 if (!DT
.dominates(DominatingBlock
, DominatedBlock
)) {
949 if (auto *DomBlPhi
= MSSA
->getMemoryAccess(DominatedBlock
))
952 auto *IDom
= DT
.getNode(DominatedBlock
)->getIDom();
953 assert(IDom
&& "Block must have a valid IDom.");
954 U
.set(GetLastDef(IDom
->getBlock()));
956 cast
<MemoryUseOrDef
>(Usr
)->resetOptimized();
965 // Move What before Where in the MemorySSA IR.
966 template <class WhereType
>
967 void MemorySSAUpdater::moveTo(MemoryUseOrDef
*What
, BasicBlock
*BB
,
969 // Mark MemoryPhi users of What not to be optimized.
970 for (auto *U
: What
->users())
971 if (MemoryPhi
*PhiUser
= dyn_cast
<MemoryPhi
>(U
))
972 NonOptPhis
.insert(PhiUser
);
974 // Replace all our users with our defining access.
975 What
->replaceAllUsesWith(What
->getDefiningAccess());
977 // Let MemorySSA take care of moving it around in the lists.
978 MSSA
->moveTo(What
, BB
, Where
);
980 // Now reinsert it into the IR and do whatever fixups needed.
981 if (auto *MD
= dyn_cast
<MemoryDef
>(What
))
984 insertUse(cast
<MemoryUse
>(What
));
986 // Clear dangling pointers. We added all MemoryPhi users, but not all
987 // of them are removed by fixupDefs().
991 // Move What before Where in the MemorySSA IR.
992 void MemorySSAUpdater::moveBefore(MemoryUseOrDef
*What
, MemoryUseOrDef
*Where
) {
993 moveTo(What
, Where
->getBlock(), Where
->getIterator());
996 // Move What after Where in the MemorySSA IR.
997 void MemorySSAUpdater::moveAfter(MemoryUseOrDef
*What
, MemoryUseOrDef
*Where
) {
998 moveTo(What
, Where
->getBlock(), ++Where
->getIterator());
1001 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef
*What
, BasicBlock
*BB
,
1002 MemorySSA::InsertionPlace Where
) {
1003 return moveTo(What
, BB
, Where
);
1006 // All accesses in To used to be in From. Move to end and update access lists.
1007 void MemorySSAUpdater::moveAllAccesses(BasicBlock
*From
, BasicBlock
*To
,
1008 Instruction
*Start
) {
1010 MemorySSA::AccessList
*Accs
= MSSA
->getWritableBlockAccesses(From
);
1014 MemoryAccess
*FirstInNew
= nullptr;
1015 for (Instruction
&I
: make_range(Start
->getIterator(), To
->end()))
1016 if ((FirstInNew
= MSSA
->getMemoryAccess(&I
)))
1021 auto *MUD
= cast
<MemoryUseOrDef
>(FirstInNew
);
1023 auto NextIt
= ++MUD
->getIterator();
1024 MemoryUseOrDef
*NextMUD
= (!Accs
|| NextIt
== Accs
->end())
1026 : cast
<MemoryUseOrDef
>(&*NextIt
);
1027 MSSA
->moveTo(MUD
, To
, MemorySSA::End
);
1028 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to
1029 // retrieve it again.
1030 Accs
= MSSA
->getWritableBlockAccesses(From
);
1035 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock
*From
,
1037 Instruction
*Start
) {
1038 assert(MSSA
->getBlockAccesses(To
) == nullptr &&
1039 "To block is expected to be free of MemoryAccesses.");
1040 moveAllAccesses(From
, To
, Start
);
1041 for (BasicBlock
*Succ
: successors(To
))
1042 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(Succ
))
1043 MPhi
->setIncomingBlock(MPhi
->getBasicBlockIndex(From
), To
);
1046 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock
*From
, BasicBlock
*To
,
1047 Instruction
*Start
) {
1048 assert(From
->getSinglePredecessor() == To
&&
1049 "From block is expected to have a single predecessor (To).");
1050 moveAllAccesses(From
, To
, Start
);
1051 for (BasicBlock
*Succ
: successors(From
))
1052 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(Succ
))
1053 MPhi
->setIncomingBlock(MPhi
->getBasicBlockIndex(From
), To
);
1056 /// If all arguments of a MemoryPHI are defined by the same incoming
1057 /// argument, return that argument.
1058 static MemoryAccess
*onlySingleValue(MemoryPhi
*MP
) {
1059 MemoryAccess
*MA
= nullptr;
1061 for (auto &Arg
: MP
->operands()) {
1063 MA
= cast
<MemoryAccess
>(Arg
);
1070 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1071 BasicBlock
*Old
, BasicBlock
*New
, ArrayRef
<BasicBlock
*> Preds
,
1072 bool IdenticalEdgesWereMerged
) {
1073 assert(!MSSA
->getWritableBlockAccesses(New
) &&
1074 "Access list should be null for a new block.");
1075 MemoryPhi
*Phi
= MSSA
->getMemoryAccess(Old
);
1078 if (Old
->hasNPredecessors(1)) {
1079 assert(pred_size(New
) == Preds
.size() &&
1080 "Should have moved all predecessors.");
1081 MSSA
->moveTo(Phi
, New
, MemorySSA::Beginning
);
1083 assert(!Preds
.empty() && "Must be moving at least one predecessor to the "
1084 "new immediate predecessor.");
1085 MemoryPhi
*NewPhi
= MSSA
->createMemoryPhi(New
);
1086 SmallPtrSet
<BasicBlock
*, 16> PredsSet(Preds
.begin(), Preds
.end());
1087 // Currently only support the case of removing a single incoming edge when
1088 // identical edges were not merged.
1089 if (!IdenticalEdgesWereMerged
)
1090 assert(PredsSet
.size() == Preds
.size() &&
1091 "If identical edges were not merged, we cannot have duplicate "
1092 "blocks in the predecessors");
1093 Phi
->unorderedDeleteIncomingIf([&](MemoryAccess
*MA
, BasicBlock
*B
) {
1094 if (PredsSet
.count(B
)) {
1095 NewPhi
->addIncoming(MA
, B
);
1096 if (!IdenticalEdgesWereMerged
)
1102 Phi
->addIncoming(NewPhi
, New
);
1103 if (onlySingleValue(NewPhi
))
1104 removeMemoryAccess(NewPhi
);
1108 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess
*MA
, bool OptimizePhis
) {
1109 assert(!MSSA
->isLiveOnEntryDef(MA
) &&
1110 "Trying to remove the live on entry def");
1111 // We can only delete phi nodes if they have no uses, or we can replace all
1112 // uses with a single definition.
1113 MemoryAccess
*NewDefTarget
= nullptr;
1114 if (MemoryPhi
*MP
= dyn_cast
<MemoryPhi
>(MA
)) {
1115 // Note that it is sufficient to know that all edges of the phi node have
1116 // the same argument. If they do, by the definition of dominance frontiers
1117 // (which we used to place this phi), that argument must dominate this phi,
1118 // and thus, must dominate the phi's uses, and so we will not hit the assert
1120 NewDefTarget
= onlySingleValue(MP
);
1121 assert((NewDefTarget
|| MP
->use_empty()) &&
1122 "We can't delete this memory phi");
1124 NewDefTarget
= cast
<MemoryUseOrDef
>(MA
)->getDefiningAccess();
1127 SmallSetVector
<MemoryPhi
*, 4> PhisToCheck
;
1129 // Re-point the uses at our defining access
1130 if (!isa
<MemoryUse
>(MA
) && !MA
->use_empty()) {
1131 // Reset optimized on users of this store, and reset the uses.
1133 // 1. This is a slightly modified version of RAUW to avoid walking the
1135 // 2. If we wanted to be complete, we would have to reset the optimized
1136 // flags on users of phi nodes if doing the below makes a phi node have all
1137 // the same arguments. Instead, we prefer users to removeMemoryAccess those
1138 // phi nodes, because doing it here would be N^3.
1139 if (MA
->hasValueHandle())
1140 ValueHandleBase::ValueIsRAUWd(MA
, NewDefTarget
);
1141 // Note: We assume MemorySSA is not used in metadata since it's not really
1144 while (!MA
->use_empty()) {
1145 Use
&U
= *MA
->use_begin();
1146 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(U
.getUser()))
1147 MUD
->resetOptimized();
1149 if (MemoryPhi
*MP
= dyn_cast
<MemoryPhi
>(U
.getUser()))
1150 PhisToCheck
.insert(MP
);
1151 U
.set(NewDefTarget
);
1155 // The call below to erase will destroy MA, so we can't change the order we
1156 // are doing things here
1157 MSSA
->removeFromLookups(MA
);
1158 MSSA
->removeFromLists(MA
);
1160 // Optionally optimize Phi uses. This will recursively remove trivial phis.
1161 if (!PhisToCheck
.empty()) {
1162 SmallVector
<WeakVH
, 16> PhisToOptimize
{PhisToCheck
.begin(),
1164 PhisToCheck
.clear();
1166 unsigned PhisSize
= PhisToOptimize
.size();
1167 while (PhisSize
-- > 0)
1169 cast_or_null
<MemoryPhi
>(PhisToOptimize
.pop_back_val())) {
1170 auto OperRange
= MP
->operands();
1171 tryRemoveTrivialPhi(MP
, OperRange
);
1176 void MemorySSAUpdater::removeBlocks(
1177 const SmallPtrSetImpl
<BasicBlock
*> &DeadBlocks
) {
1178 // First delete all uses of BB in MemoryPhis.
1179 for (BasicBlock
*BB
: DeadBlocks
) {
1180 Instruction
*TI
= BB
->getTerminator();
1181 assert(TI
&& "Basic block expected to have a terminator instruction");
1182 for (BasicBlock
*Succ
: successors(TI
))
1183 if (!DeadBlocks
.count(Succ
))
1184 if (MemoryPhi
*MP
= MSSA
->getMemoryAccess(Succ
)) {
1185 MP
->unorderedDeleteIncomingBlock(BB
);
1186 if (MP
->getNumIncomingValues() == 1)
1187 removeMemoryAccess(MP
);
1189 // Drop all references of all accesses in BB
1190 if (MemorySSA::AccessList
*Acc
= MSSA
->getWritableBlockAccesses(BB
))
1191 for (MemoryAccess
&MA
: *Acc
)
1192 MA
.dropAllReferences();
1195 // Next, delete all memory accesses in each block
1196 for (BasicBlock
*BB
: DeadBlocks
) {
1197 MemorySSA::AccessList
*Acc
= MSSA
->getWritableBlockAccesses(BB
);
1200 for (auto AB
= Acc
->begin(), AE
= Acc
->end(); AB
!= AE
;) {
1201 MemoryAccess
*MA
= &*AB
;
1203 MSSA
->removeFromLookups(MA
);
1204 MSSA
->removeFromLists(MA
);
1209 MemoryAccess
*MemorySSAUpdater::createMemoryAccessInBB(
1210 Instruction
*I
, MemoryAccess
*Definition
, const BasicBlock
*BB
,
1211 MemorySSA::InsertionPlace Point
) {
1212 MemoryUseOrDef
*NewAccess
= MSSA
->createDefinedAccess(I
, Definition
);
1213 MSSA
->insertIntoListsForBlock(NewAccess
, BB
, Point
);
1217 MemoryUseOrDef
*MemorySSAUpdater::createMemoryAccessBefore(
1218 Instruction
*I
, MemoryAccess
*Definition
, MemoryUseOrDef
*InsertPt
) {
1219 assert(I
->getParent() == InsertPt
->getBlock() &&
1220 "New and old access must be in the same block");
1221 MemoryUseOrDef
*NewAccess
= MSSA
->createDefinedAccess(I
, Definition
);
1222 MSSA
->insertIntoListsBefore(NewAccess
, InsertPt
->getBlock(),
1223 InsertPt
->getIterator());
1227 MemoryUseOrDef
*MemorySSAUpdater::createMemoryAccessAfter(
1228 Instruction
*I
, MemoryAccess
*Definition
, MemoryAccess
*InsertPt
) {
1229 assert(I
->getParent() == InsertPt
->getBlock() &&
1230 "New and old access must be in the same block");
1231 MemoryUseOrDef
*NewAccess
= MSSA
->createDefinedAccess(I
, Definition
);
1232 MSSA
->insertIntoListsBefore(NewAccess
, InsertPt
->getBlock(),
1233 ++InsertPt
->getIterator());