[MIPS GlobalISel] Select float constants
[llvm-complete.git] / lib / Analysis / ScalarEvolution.cpp
blob920e0dd2782371da7afe2a161445253c3366ec8a
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
13 // There are several aspects to this library. First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression. These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
37 //===----------------------------------------------------------------------===//
39 // There are several good references for the techniques used in this analysis.
41 // Chains of recurrences -- a method to expedite the evaluation
42 // of closed-form functions
43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 // On computational properties of chains of recurrences
46 // Eugene V. Zima
48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 // Robert A. van Engelen
51 // Efficient Symbolic Analysis for Optimizing Compilers
52 // Robert A. van Engelen
54 // Using the chains of recurrences algebra for data dependence testing and
55 // induction variable substitution
56 // MS Thesis, Johnie Birch
58 //===----------------------------------------------------------------------===//
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/CallSite.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/Pass.h"
116 #include "llvm/Support/Casting.h"
117 #include "llvm/Support/CommandLine.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/ErrorHandling.h"
121 #include "llvm/Support/KnownBits.h"
122 #include "llvm/Support/SaveAndRestore.h"
123 #include "llvm/Support/raw_ostream.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <climits>
127 #include <cstddef>
128 #include <cstdint>
129 #include <cstdlib>
130 #include <map>
131 #include <memory>
132 #include <tuple>
133 #include <utility>
134 #include <vector>
136 using namespace llvm;
138 #define DEBUG_TYPE "scalar-evolution"
140 STATISTIC(NumArrayLenItCounts,
141 "Number of trip counts computed with array length");
142 STATISTIC(NumTripCountsComputed,
143 "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145 "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147 "Number of loops with trip counts computed by force");
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151 cl::desc("Maximum number of iterations SCEV will "
152 "symbolically execute a constant "
153 "derived loop"),
154 cl::init(100));
156 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
157 static cl::opt<bool> VerifySCEV(
158 "verify-scev", cl::Hidden,
159 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
160 static cl::opt<bool>
161 VerifySCEVMap("verify-scev-maps", cl::Hidden,
162 cl::desc("Verify no dangling value in ScalarEvolution's "
163 "ExprValueMap (slow)"));
165 static cl::opt<bool> VerifyIR(
166 "scev-verify-ir", cl::Hidden,
167 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
168 cl::init(false));
170 static cl::opt<unsigned> MulOpsInlineThreshold(
171 "scev-mulops-inline-threshold", cl::Hidden,
172 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
173 cl::init(32));
175 static cl::opt<unsigned> AddOpsInlineThreshold(
176 "scev-addops-inline-threshold", cl::Hidden,
177 cl::desc("Threshold for inlining addition operands into a SCEV"),
178 cl::init(500));
180 static cl::opt<unsigned> MaxSCEVCompareDepth(
181 "scalar-evolution-max-scev-compare-depth", cl::Hidden,
182 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
183 cl::init(32));
185 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
186 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
187 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
188 cl::init(2));
190 static cl::opt<unsigned> MaxValueCompareDepth(
191 "scalar-evolution-max-value-compare-depth", cl::Hidden,
192 cl::desc("Maximum depth of recursive value complexity comparisons"),
193 cl::init(2));
195 static cl::opt<unsigned>
196 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
197 cl::desc("Maximum depth of recursive arithmetics"),
198 cl::init(32));
200 static cl::opt<unsigned> MaxConstantEvolvingDepth(
201 "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
202 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
204 static cl::opt<unsigned>
205 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
206 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
207 cl::init(8));
209 static cl::opt<unsigned>
210 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
211 cl::desc("Max coefficients in AddRec during evolving"),
212 cl::init(8));
214 static cl::opt<unsigned>
215 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
216 cl::desc("Size of the expression which is considered huge"),
217 cl::init(4096));
219 //===----------------------------------------------------------------------===//
220 // SCEV class definitions
221 //===----------------------------------------------------------------------===//
223 //===----------------------------------------------------------------------===//
224 // Implementation of the SCEV class.
227 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
228 LLVM_DUMP_METHOD void SCEV::dump() const {
229 print(dbgs());
230 dbgs() << '\n';
232 #endif
234 void SCEV::print(raw_ostream &OS) const {
235 switch (static_cast<SCEVTypes>(getSCEVType())) {
236 case scConstant:
237 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
238 return;
239 case scTruncate: {
240 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
241 const SCEV *Op = Trunc->getOperand();
242 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
243 << *Trunc->getType() << ")";
244 return;
246 case scZeroExtend: {
247 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
248 const SCEV *Op = ZExt->getOperand();
249 OS << "(zext " << *Op->getType() << " " << *Op << " to "
250 << *ZExt->getType() << ")";
251 return;
253 case scSignExtend: {
254 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
255 const SCEV *Op = SExt->getOperand();
256 OS << "(sext " << *Op->getType() << " " << *Op << " to "
257 << *SExt->getType() << ")";
258 return;
260 case scAddRecExpr: {
261 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
262 OS << "{" << *AR->getOperand(0);
263 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
264 OS << ",+," << *AR->getOperand(i);
265 OS << "}<";
266 if (AR->hasNoUnsignedWrap())
267 OS << "nuw><";
268 if (AR->hasNoSignedWrap())
269 OS << "nsw><";
270 if (AR->hasNoSelfWrap() &&
271 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
272 OS << "nw><";
273 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
274 OS << ">";
275 return;
277 case scAddExpr:
278 case scMulExpr:
279 case scUMaxExpr:
280 case scSMaxExpr: {
281 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
282 const char *OpStr = nullptr;
283 switch (NAry->getSCEVType()) {
284 case scAddExpr: OpStr = " + "; break;
285 case scMulExpr: OpStr = " * "; break;
286 case scUMaxExpr: OpStr = " umax "; break;
287 case scSMaxExpr: OpStr = " smax "; break;
289 OS << "(";
290 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
291 I != E; ++I) {
292 OS << **I;
293 if (std::next(I) != E)
294 OS << OpStr;
296 OS << ")";
297 switch (NAry->getSCEVType()) {
298 case scAddExpr:
299 case scMulExpr:
300 if (NAry->hasNoUnsignedWrap())
301 OS << "<nuw>";
302 if (NAry->hasNoSignedWrap())
303 OS << "<nsw>";
305 return;
307 case scUDivExpr: {
308 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
309 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
310 return;
312 case scUnknown: {
313 const SCEVUnknown *U = cast<SCEVUnknown>(this);
314 Type *AllocTy;
315 if (U->isSizeOf(AllocTy)) {
316 OS << "sizeof(" << *AllocTy << ")";
317 return;
319 if (U->isAlignOf(AllocTy)) {
320 OS << "alignof(" << *AllocTy << ")";
321 return;
324 Type *CTy;
325 Constant *FieldNo;
326 if (U->isOffsetOf(CTy, FieldNo)) {
327 OS << "offsetof(" << *CTy << ", ";
328 FieldNo->printAsOperand(OS, false);
329 OS << ")";
330 return;
333 // Otherwise just print it normally.
334 U->getValue()->printAsOperand(OS, false);
335 return;
337 case scCouldNotCompute:
338 OS << "***COULDNOTCOMPUTE***";
339 return;
341 llvm_unreachable("Unknown SCEV kind!");
344 Type *SCEV::getType() const {
345 switch (static_cast<SCEVTypes>(getSCEVType())) {
346 case scConstant:
347 return cast<SCEVConstant>(this)->getType();
348 case scTruncate:
349 case scZeroExtend:
350 case scSignExtend:
351 return cast<SCEVCastExpr>(this)->getType();
352 case scAddRecExpr:
353 case scMulExpr:
354 case scUMaxExpr:
355 case scSMaxExpr:
356 return cast<SCEVNAryExpr>(this)->getType();
357 case scAddExpr:
358 return cast<SCEVAddExpr>(this)->getType();
359 case scUDivExpr:
360 return cast<SCEVUDivExpr>(this)->getType();
361 case scUnknown:
362 return cast<SCEVUnknown>(this)->getType();
363 case scCouldNotCompute:
364 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
366 llvm_unreachable("Unknown SCEV kind!");
369 bool SCEV::isZero() const {
370 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
371 return SC->getValue()->isZero();
372 return false;
375 bool SCEV::isOne() const {
376 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
377 return SC->getValue()->isOne();
378 return false;
381 bool SCEV::isAllOnesValue() const {
382 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
383 return SC->getValue()->isMinusOne();
384 return false;
387 bool SCEV::isNonConstantNegative() const {
388 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
389 if (!Mul) return false;
391 // If there is a constant factor, it will be first.
392 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
393 if (!SC) return false;
395 // Return true if the value is negative, this matches things like (-42 * V).
396 return SC->getAPInt().isNegative();
399 SCEVCouldNotCompute::SCEVCouldNotCompute() :
400 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
402 bool SCEVCouldNotCompute::classof(const SCEV *S) {
403 return S->getSCEVType() == scCouldNotCompute;
406 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
407 FoldingSetNodeID ID;
408 ID.AddInteger(scConstant);
409 ID.AddPointer(V);
410 void *IP = nullptr;
411 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
412 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
413 UniqueSCEVs.InsertNode(S, IP);
414 return S;
417 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
418 return getConstant(ConstantInt::get(getContext(), Val));
421 const SCEV *
422 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
423 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
424 return getConstant(ConstantInt::get(ITy, V, isSigned));
427 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
428 unsigned SCEVTy, const SCEV *op, Type *ty)
429 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
431 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
432 const SCEV *op, Type *ty)
433 : SCEVCastExpr(ID, scTruncate, op, ty) {
434 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
435 "Cannot truncate non-integer value!");
438 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
439 const SCEV *op, Type *ty)
440 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
441 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
442 "Cannot zero extend non-integer value!");
445 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
446 const SCEV *op, Type *ty)
447 : SCEVCastExpr(ID, scSignExtend, op, ty) {
448 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
449 "Cannot sign extend non-integer value!");
452 void SCEVUnknown::deleted() {
453 // Clear this SCEVUnknown from various maps.
454 SE->forgetMemoizedResults(this);
456 // Remove this SCEVUnknown from the uniquing map.
457 SE->UniqueSCEVs.RemoveNode(this);
459 // Release the value.
460 setValPtr(nullptr);
463 void SCEVUnknown::allUsesReplacedWith(Value *New) {
464 // Remove this SCEVUnknown from the uniquing map.
465 SE->UniqueSCEVs.RemoveNode(this);
467 // Update this SCEVUnknown to point to the new value. This is needed
468 // because there may still be outstanding SCEVs which still point to
469 // this SCEVUnknown.
470 setValPtr(New);
473 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
474 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
475 if (VCE->getOpcode() == Instruction::PtrToInt)
476 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
477 if (CE->getOpcode() == Instruction::GetElementPtr &&
478 CE->getOperand(0)->isNullValue() &&
479 CE->getNumOperands() == 2)
480 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
481 if (CI->isOne()) {
482 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
483 ->getElementType();
484 return true;
487 return false;
490 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
491 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
492 if (VCE->getOpcode() == Instruction::PtrToInt)
493 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
494 if (CE->getOpcode() == Instruction::GetElementPtr &&
495 CE->getOperand(0)->isNullValue()) {
496 Type *Ty =
497 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
498 if (StructType *STy = dyn_cast<StructType>(Ty))
499 if (!STy->isPacked() &&
500 CE->getNumOperands() == 3 &&
501 CE->getOperand(1)->isNullValue()) {
502 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
503 if (CI->isOne() &&
504 STy->getNumElements() == 2 &&
505 STy->getElementType(0)->isIntegerTy(1)) {
506 AllocTy = STy->getElementType(1);
507 return true;
512 return false;
515 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
516 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
517 if (VCE->getOpcode() == Instruction::PtrToInt)
518 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
519 if (CE->getOpcode() == Instruction::GetElementPtr &&
520 CE->getNumOperands() == 3 &&
521 CE->getOperand(0)->isNullValue() &&
522 CE->getOperand(1)->isNullValue()) {
523 Type *Ty =
524 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
525 // Ignore vector types here so that ScalarEvolutionExpander doesn't
526 // emit getelementptrs that index into vectors.
527 if (Ty->isStructTy() || Ty->isArrayTy()) {
528 CTy = Ty;
529 FieldNo = CE->getOperand(2);
530 return true;
534 return false;
537 //===----------------------------------------------------------------------===//
538 // SCEV Utilities
539 //===----------------------------------------------------------------------===//
541 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
542 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
543 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that
544 /// have been previously deemed to be "equally complex" by this routine. It is
545 /// intended to avoid exponential time complexity in cases like:
547 /// %a = f(%x, %y)
548 /// %b = f(%a, %a)
549 /// %c = f(%b, %b)
551 /// %d = f(%x, %y)
552 /// %e = f(%d, %d)
553 /// %f = f(%e, %e)
555 /// CompareValueComplexity(%f, %c)
557 /// Since we do not continue running this routine on expression trees once we
558 /// have seen unequal values, there is no need to track them in the cache.
559 static int
560 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
561 const LoopInfo *const LI, Value *LV, Value *RV,
562 unsigned Depth) {
563 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
564 return 0;
566 // Order pointer values after integer values. This helps SCEVExpander form
567 // GEPs.
568 bool LIsPointer = LV->getType()->isPointerTy(),
569 RIsPointer = RV->getType()->isPointerTy();
570 if (LIsPointer != RIsPointer)
571 return (int)LIsPointer - (int)RIsPointer;
573 // Compare getValueID values.
574 unsigned LID = LV->getValueID(), RID = RV->getValueID();
575 if (LID != RID)
576 return (int)LID - (int)RID;
578 // Sort arguments by their position.
579 if (const auto *LA = dyn_cast<Argument>(LV)) {
580 const auto *RA = cast<Argument>(RV);
581 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
582 return (int)LArgNo - (int)RArgNo;
585 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
586 const auto *RGV = cast<GlobalValue>(RV);
588 const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
589 auto LT = GV->getLinkage();
590 return !(GlobalValue::isPrivateLinkage(LT) ||
591 GlobalValue::isInternalLinkage(LT));
594 // Use the names to distinguish the two values, but only if the
595 // names are semantically important.
596 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
597 return LGV->getName().compare(RGV->getName());
600 // For instructions, compare their loop depth, and their operand count. This
601 // is pretty loose.
602 if (const auto *LInst = dyn_cast<Instruction>(LV)) {
603 const auto *RInst = cast<Instruction>(RV);
605 // Compare loop depths.
606 const BasicBlock *LParent = LInst->getParent(),
607 *RParent = RInst->getParent();
608 if (LParent != RParent) {
609 unsigned LDepth = LI->getLoopDepth(LParent),
610 RDepth = LI->getLoopDepth(RParent);
611 if (LDepth != RDepth)
612 return (int)LDepth - (int)RDepth;
615 // Compare the number of operands.
616 unsigned LNumOps = LInst->getNumOperands(),
617 RNumOps = RInst->getNumOperands();
618 if (LNumOps != RNumOps)
619 return (int)LNumOps - (int)RNumOps;
621 for (unsigned Idx : seq(0u, LNumOps)) {
622 int Result =
623 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
624 RInst->getOperand(Idx), Depth + 1);
625 if (Result != 0)
626 return Result;
630 EqCacheValue.unionSets(LV, RV);
631 return 0;
634 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
635 // than RHS, respectively. A three-way result allows recursive comparisons to be
636 // more efficient.
637 static int CompareSCEVComplexity(
638 EquivalenceClasses<const SCEV *> &EqCacheSCEV,
639 EquivalenceClasses<const Value *> &EqCacheValue,
640 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
641 DominatorTree &DT, unsigned Depth = 0) {
642 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
643 if (LHS == RHS)
644 return 0;
646 // Primarily, sort the SCEVs by their getSCEVType().
647 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
648 if (LType != RType)
649 return (int)LType - (int)RType;
651 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
652 return 0;
653 // Aside from the getSCEVType() ordering, the particular ordering
654 // isn't very important except that it's beneficial to be consistent,
655 // so that (a + b) and (b + a) don't end up as different expressions.
656 switch (static_cast<SCEVTypes>(LType)) {
657 case scUnknown: {
658 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
659 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
661 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
662 RU->getValue(), Depth + 1);
663 if (X == 0)
664 EqCacheSCEV.unionSets(LHS, RHS);
665 return X;
668 case scConstant: {
669 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
670 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
672 // Compare constant values.
673 const APInt &LA = LC->getAPInt();
674 const APInt &RA = RC->getAPInt();
675 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
676 if (LBitWidth != RBitWidth)
677 return (int)LBitWidth - (int)RBitWidth;
678 return LA.ult(RA) ? -1 : 1;
681 case scAddRecExpr: {
682 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
683 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
685 // There is always a dominance between two recs that are used by one SCEV,
686 // so we can safely sort recs by loop header dominance. We require such
687 // order in getAddExpr.
688 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
689 if (LLoop != RLoop) {
690 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
691 assert(LHead != RHead && "Two loops share the same header?");
692 if (DT.dominates(LHead, RHead))
693 return 1;
694 else
695 assert(DT.dominates(RHead, LHead) &&
696 "No dominance between recurrences used by one SCEV?");
697 return -1;
700 // Addrec complexity grows with operand count.
701 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
702 if (LNumOps != RNumOps)
703 return (int)LNumOps - (int)RNumOps;
705 // Lexicographically compare.
706 for (unsigned i = 0; i != LNumOps; ++i) {
707 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
708 LA->getOperand(i), RA->getOperand(i), DT,
709 Depth + 1);
710 if (X != 0)
711 return X;
713 EqCacheSCEV.unionSets(LHS, RHS);
714 return 0;
717 case scAddExpr:
718 case scMulExpr:
719 case scSMaxExpr:
720 case scUMaxExpr: {
721 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
722 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
724 // Lexicographically compare n-ary expressions.
725 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
726 if (LNumOps != RNumOps)
727 return (int)LNumOps - (int)RNumOps;
729 for (unsigned i = 0; i != LNumOps; ++i) {
730 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
731 LC->getOperand(i), RC->getOperand(i), DT,
732 Depth + 1);
733 if (X != 0)
734 return X;
736 EqCacheSCEV.unionSets(LHS, RHS);
737 return 0;
740 case scUDivExpr: {
741 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
742 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
744 // Lexicographically compare udiv expressions.
745 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
746 RC->getLHS(), DT, Depth + 1);
747 if (X != 0)
748 return X;
749 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
750 RC->getRHS(), DT, Depth + 1);
751 if (X == 0)
752 EqCacheSCEV.unionSets(LHS, RHS);
753 return X;
756 case scTruncate:
757 case scZeroExtend:
758 case scSignExtend: {
759 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
760 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
762 // Compare cast expressions by operand.
763 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
764 LC->getOperand(), RC->getOperand(), DT,
765 Depth + 1);
766 if (X == 0)
767 EqCacheSCEV.unionSets(LHS, RHS);
768 return X;
771 case scCouldNotCompute:
772 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
774 llvm_unreachable("Unknown SCEV kind!");
777 /// Given a list of SCEV objects, order them by their complexity, and group
778 /// objects of the same complexity together by value. When this routine is
779 /// finished, we know that any duplicates in the vector are consecutive and that
780 /// complexity is monotonically increasing.
782 /// Note that we go take special precautions to ensure that we get deterministic
783 /// results from this routine. In other words, we don't want the results of
784 /// this to depend on where the addresses of various SCEV objects happened to
785 /// land in memory.
786 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
787 LoopInfo *LI, DominatorTree &DT) {
788 if (Ops.size() < 2) return; // Noop
790 EquivalenceClasses<const SCEV *> EqCacheSCEV;
791 EquivalenceClasses<const Value *> EqCacheValue;
792 if (Ops.size() == 2) {
793 // This is the common case, which also happens to be trivially simple.
794 // Special case it.
795 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
796 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
797 std::swap(LHS, RHS);
798 return;
801 // Do the rough sort by complexity.
802 std::stable_sort(Ops.begin(), Ops.end(),
803 [&](const SCEV *LHS, const SCEV *RHS) {
804 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
805 LHS, RHS, DT) < 0;
808 // Now that we are sorted by complexity, group elements of the same
809 // complexity. Note that this is, at worst, N^2, but the vector is likely to
810 // be extremely short in practice. Note that we take this approach because we
811 // do not want to depend on the addresses of the objects we are grouping.
812 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
813 const SCEV *S = Ops[i];
814 unsigned Complexity = S->getSCEVType();
816 // If there are any objects of the same complexity and same value as this
817 // one, group them.
818 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
819 if (Ops[j] == S) { // Found a duplicate.
820 // Move it to immediately after i'th element.
821 std::swap(Ops[i+1], Ops[j]);
822 ++i; // no need to rescan it.
823 if (i == e-2) return; // Done!
829 // Returns the size of the SCEV S.
830 static inline int sizeOfSCEV(const SCEV *S) {
831 struct FindSCEVSize {
832 int Size = 0;
834 FindSCEVSize() = default;
836 bool follow(const SCEV *S) {
837 ++Size;
838 // Keep looking at all operands of S.
839 return true;
842 bool isDone() const {
843 return false;
847 FindSCEVSize F;
848 SCEVTraversal<FindSCEVSize> ST(F);
849 ST.visitAll(S);
850 return F.Size;
853 /// Returns true if the subtree of \p S contains at least HugeExprThreshold
854 /// nodes.
855 static bool isHugeExpression(const SCEV *S) {
856 return S->getExpressionSize() >= HugeExprThreshold;
859 /// Returns true of \p Ops contains a huge SCEV (see definition above).
860 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
861 return any_of(Ops, isHugeExpression);
864 namespace {
866 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
867 public:
868 // Computes the Quotient and Remainder of the division of Numerator by
869 // Denominator.
870 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
871 const SCEV *Denominator, const SCEV **Quotient,
872 const SCEV **Remainder) {
873 assert(Numerator && Denominator && "Uninitialized SCEV");
875 SCEVDivision D(SE, Numerator, Denominator);
877 // Check for the trivial case here to avoid having to check for it in the
878 // rest of the code.
879 if (Numerator == Denominator) {
880 *Quotient = D.One;
881 *Remainder = D.Zero;
882 return;
885 if (Numerator->isZero()) {
886 *Quotient = D.Zero;
887 *Remainder = D.Zero;
888 return;
891 // A simple case when N/1. The quotient is N.
892 if (Denominator->isOne()) {
893 *Quotient = Numerator;
894 *Remainder = D.Zero;
895 return;
898 // Split the Denominator when it is a product.
899 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
900 const SCEV *Q, *R;
901 *Quotient = Numerator;
902 for (const SCEV *Op : T->operands()) {
903 divide(SE, *Quotient, Op, &Q, &R);
904 *Quotient = Q;
906 // Bail out when the Numerator is not divisible by one of the terms of
907 // the Denominator.
908 if (!R->isZero()) {
909 *Quotient = D.Zero;
910 *Remainder = Numerator;
911 return;
914 *Remainder = D.Zero;
915 return;
918 D.visit(Numerator);
919 *Quotient = D.Quotient;
920 *Remainder = D.Remainder;
923 // Except in the trivial case described above, we do not know how to divide
924 // Expr by Denominator for the following functions with empty implementation.
925 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
926 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
927 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
928 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
929 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
930 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
931 void visitUnknown(const SCEVUnknown *Numerator) {}
932 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
934 void visitConstant(const SCEVConstant *Numerator) {
935 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
936 APInt NumeratorVal = Numerator->getAPInt();
937 APInt DenominatorVal = D->getAPInt();
938 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
939 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
941 if (NumeratorBW > DenominatorBW)
942 DenominatorVal = DenominatorVal.sext(NumeratorBW);
943 else if (NumeratorBW < DenominatorBW)
944 NumeratorVal = NumeratorVal.sext(DenominatorBW);
946 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
947 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
948 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
949 Quotient = SE.getConstant(QuotientVal);
950 Remainder = SE.getConstant(RemainderVal);
951 return;
955 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
956 const SCEV *StartQ, *StartR, *StepQ, *StepR;
957 if (!Numerator->isAffine())
958 return cannotDivide(Numerator);
959 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
960 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
961 // Bail out if the types do not match.
962 Type *Ty = Denominator->getType();
963 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
964 Ty != StepQ->getType() || Ty != StepR->getType())
965 return cannotDivide(Numerator);
966 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
967 Numerator->getNoWrapFlags());
968 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
969 Numerator->getNoWrapFlags());
972 void visitAddExpr(const SCEVAddExpr *Numerator) {
973 SmallVector<const SCEV *, 2> Qs, Rs;
974 Type *Ty = Denominator->getType();
976 for (const SCEV *Op : Numerator->operands()) {
977 const SCEV *Q, *R;
978 divide(SE, Op, Denominator, &Q, &R);
980 // Bail out if types do not match.
981 if (Ty != Q->getType() || Ty != R->getType())
982 return cannotDivide(Numerator);
984 Qs.push_back(Q);
985 Rs.push_back(R);
988 if (Qs.size() == 1) {
989 Quotient = Qs[0];
990 Remainder = Rs[0];
991 return;
994 Quotient = SE.getAddExpr(Qs);
995 Remainder = SE.getAddExpr(Rs);
998 void visitMulExpr(const SCEVMulExpr *Numerator) {
999 SmallVector<const SCEV *, 2> Qs;
1000 Type *Ty = Denominator->getType();
1002 bool FoundDenominatorTerm = false;
1003 for (const SCEV *Op : Numerator->operands()) {
1004 // Bail out if types do not match.
1005 if (Ty != Op->getType())
1006 return cannotDivide(Numerator);
1008 if (FoundDenominatorTerm) {
1009 Qs.push_back(Op);
1010 continue;
1013 // Check whether Denominator divides one of the product operands.
1014 const SCEV *Q, *R;
1015 divide(SE, Op, Denominator, &Q, &R);
1016 if (!R->isZero()) {
1017 Qs.push_back(Op);
1018 continue;
1021 // Bail out if types do not match.
1022 if (Ty != Q->getType())
1023 return cannotDivide(Numerator);
1025 FoundDenominatorTerm = true;
1026 Qs.push_back(Q);
1029 if (FoundDenominatorTerm) {
1030 Remainder = Zero;
1031 if (Qs.size() == 1)
1032 Quotient = Qs[0];
1033 else
1034 Quotient = SE.getMulExpr(Qs);
1035 return;
1038 if (!isa<SCEVUnknown>(Denominator))
1039 return cannotDivide(Numerator);
1041 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1042 ValueToValueMap RewriteMap;
1043 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1044 cast<SCEVConstant>(Zero)->getValue();
1045 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1047 if (Remainder->isZero()) {
1048 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1049 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1050 cast<SCEVConstant>(One)->getValue();
1051 Quotient =
1052 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1053 return;
1056 // Quotient is (Numerator - Remainder) divided by Denominator.
1057 const SCEV *Q, *R;
1058 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1059 // This SCEV does not seem to simplify: fail the division here.
1060 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1061 return cannotDivide(Numerator);
1062 divide(SE, Diff, Denominator, &Q, &R);
1063 if (R != Zero)
1064 return cannotDivide(Numerator);
1065 Quotient = Q;
1068 private:
1069 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1070 const SCEV *Denominator)
1071 : SE(S), Denominator(Denominator) {
1072 Zero = SE.getZero(Denominator->getType());
1073 One = SE.getOne(Denominator->getType());
1075 // We generally do not know how to divide Expr by Denominator. We
1076 // initialize the division to a "cannot divide" state to simplify the rest
1077 // of the code.
1078 cannotDivide(Numerator);
1081 // Convenience function for giving up on the division. We set the quotient to
1082 // be equal to zero and the remainder to be equal to the numerator.
1083 void cannotDivide(const SCEV *Numerator) {
1084 Quotient = Zero;
1085 Remainder = Numerator;
1088 ScalarEvolution &SE;
1089 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1092 } // end anonymous namespace
1094 //===----------------------------------------------------------------------===//
1095 // Simple SCEV method implementations
1096 //===----------------------------------------------------------------------===//
1098 /// Compute BC(It, K). The result has width W. Assume, K > 0.
1099 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1100 ScalarEvolution &SE,
1101 Type *ResultTy) {
1102 // Handle the simplest case efficiently.
1103 if (K == 1)
1104 return SE.getTruncateOrZeroExtend(It, ResultTy);
1106 // We are using the following formula for BC(It, K):
1108 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1110 // Suppose, W is the bitwidth of the return value. We must be prepared for
1111 // overflow. Hence, we must assure that the result of our computation is
1112 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
1113 // safe in modular arithmetic.
1115 // However, this code doesn't use exactly that formula; the formula it uses
1116 // is something like the following, where T is the number of factors of 2 in
1117 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1118 // exponentiation:
1120 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1122 // This formula is trivially equivalent to the previous formula. However,
1123 // this formula can be implemented much more efficiently. The trick is that
1124 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1125 // arithmetic. To do exact division in modular arithmetic, all we have
1126 // to do is multiply by the inverse. Therefore, this step can be done at
1127 // width W.
1129 // The next issue is how to safely do the division by 2^T. The way this
1130 // is done is by doing the multiplication step at a width of at least W + T
1131 // bits. This way, the bottom W+T bits of the product are accurate. Then,
1132 // when we perform the division by 2^T (which is equivalent to a right shift
1133 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
1134 // truncated out after the division by 2^T.
1136 // In comparison to just directly using the first formula, this technique
1137 // is much more efficient; using the first formula requires W * K bits,
1138 // but this formula less than W + K bits. Also, the first formula requires
1139 // a division step, whereas this formula only requires multiplies and shifts.
1141 // It doesn't matter whether the subtraction step is done in the calculation
1142 // width or the input iteration count's width; if the subtraction overflows,
1143 // the result must be zero anyway. We prefer here to do it in the width of
1144 // the induction variable because it helps a lot for certain cases; CodeGen
1145 // isn't smart enough to ignore the overflow, which leads to much less
1146 // efficient code if the width of the subtraction is wider than the native
1147 // register width.
1149 // (It's possible to not widen at all by pulling out factors of 2 before
1150 // the multiplication; for example, K=2 can be calculated as
1151 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1152 // extra arithmetic, so it's not an obvious win, and it gets
1153 // much more complicated for K > 3.)
1155 // Protection from insane SCEVs; this bound is conservative,
1156 // but it probably doesn't matter.
1157 if (K > 1000)
1158 return SE.getCouldNotCompute();
1160 unsigned W = SE.getTypeSizeInBits(ResultTy);
1162 // Calculate K! / 2^T and T; we divide out the factors of two before
1163 // multiplying for calculating K! / 2^T to avoid overflow.
1164 // Other overflow doesn't matter because we only care about the bottom
1165 // W bits of the result.
1166 APInt OddFactorial(W, 1);
1167 unsigned T = 1;
1168 for (unsigned i = 3; i <= K; ++i) {
1169 APInt Mult(W, i);
1170 unsigned TwoFactors = Mult.countTrailingZeros();
1171 T += TwoFactors;
1172 Mult.lshrInPlace(TwoFactors);
1173 OddFactorial *= Mult;
1176 // We need at least W + T bits for the multiplication step
1177 unsigned CalculationBits = W + T;
1179 // Calculate 2^T, at width T+W.
1180 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1182 // Calculate the multiplicative inverse of K! / 2^T;
1183 // this multiplication factor will perform the exact division by
1184 // K! / 2^T.
1185 APInt Mod = APInt::getSignedMinValue(W+1);
1186 APInt MultiplyFactor = OddFactorial.zext(W+1);
1187 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1188 MultiplyFactor = MultiplyFactor.trunc(W);
1190 // Calculate the product, at width T+W
1191 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1192 CalculationBits);
1193 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1194 for (unsigned i = 1; i != K; ++i) {
1195 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1196 Dividend = SE.getMulExpr(Dividend,
1197 SE.getTruncateOrZeroExtend(S, CalculationTy));
1200 // Divide by 2^T
1201 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1203 // Truncate the result, and divide by K! / 2^T.
1205 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1206 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1209 /// Return the value of this chain of recurrences at the specified iteration
1210 /// number. We can evaluate this recurrence by multiplying each element in the
1211 /// chain by the binomial coefficient corresponding to it. In other words, we
1212 /// can evaluate {A,+,B,+,C,+,D} as:
1214 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1216 /// where BC(It, k) stands for binomial coefficient.
1217 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1218 ScalarEvolution &SE) const {
1219 const SCEV *Result = getStart();
1220 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1221 // The computation is correct in the face of overflow provided that the
1222 // multiplication is performed _after_ the evaluation of the binomial
1223 // coefficient.
1224 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1225 if (isa<SCEVCouldNotCompute>(Coeff))
1226 return Coeff;
1228 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1230 return Result;
1233 //===----------------------------------------------------------------------===//
1234 // SCEV Expression folder implementations
1235 //===----------------------------------------------------------------------===//
1237 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1238 unsigned Depth) {
1239 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1240 "This is not a truncating conversion!");
1241 assert(isSCEVable(Ty) &&
1242 "This is not a conversion to a SCEVable type!");
1243 Ty = getEffectiveSCEVType(Ty);
1245 FoldingSetNodeID ID;
1246 ID.AddInteger(scTruncate);
1247 ID.AddPointer(Op);
1248 ID.AddPointer(Ty);
1249 void *IP = nullptr;
1250 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1252 // Fold if the operand is constant.
1253 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1254 return getConstant(
1255 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1257 // trunc(trunc(x)) --> trunc(x)
1258 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1259 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1261 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1262 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1263 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1265 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1266 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1267 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1269 if (Depth > MaxCastDepth) {
1270 SCEV *S =
1271 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1272 UniqueSCEVs.InsertNode(S, IP);
1273 addToLoopUseLists(S);
1274 return S;
1277 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1278 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1279 // if after transforming we have at most one truncate, not counting truncates
1280 // that replace other casts.
1281 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1282 auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1283 SmallVector<const SCEV *, 4> Operands;
1284 unsigned numTruncs = 0;
1285 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1286 ++i) {
1287 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1288 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1289 numTruncs++;
1290 Operands.push_back(S);
1292 if (numTruncs < 2) {
1293 if (isa<SCEVAddExpr>(Op))
1294 return getAddExpr(Operands);
1295 else if (isa<SCEVMulExpr>(Op))
1296 return getMulExpr(Operands);
1297 else
1298 llvm_unreachable("Unexpected SCEV type for Op.");
1300 // Although we checked in the beginning that ID is not in the cache, it is
1301 // possible that during recursion and different modification ID was inserted
1302 // into the cache. So if we find it, just return it.
1303 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1304 return S;
1307 // If the input value is a chrec scev, truncate the chrec's operands.
1308 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1309 SmallVector<const SCEV *, 4> Operands;
1310 for (const SCEV *Op : AddRec->operands())
1311 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1312 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1315 // The cast wasn't folded; create an explicit cast node. We can reuse
1316 // the existing insert position since if we get here, we won't have
1317 // made any changes which would invalidate it.
1318 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1319 Op, Ty);
1320 UniqueSCEVs.InsertNode(S, IP);
1321 addToLoopUseLists(S);
1322 return S;
1325 // Get the limit of a recurrence such that incrementing by Step cannot cause
1326 // signed overflow as long as the value of the recurrence within the
1327 // loop does not exceed this limit before incrementing.
1328 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1329 ICmpInst::Predicate *Pred,
1330 ScalarEvolution *SE) {
1331 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1332 if (SE->isKnownPositive(Step)) {
1333 *Pred = ICmpInst::ICMP_SLT;
1334 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1335 SE->getSignedRangeMax(Step));
1337 if (SE->isKnownNegative(Step)) {
1338 *Pred = ICmpInst::ICMP_SGT;
1339 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1340 SE->getSignedRangeMin(Step));
1342 return nullptr;
1345 // Get the limit of a recurrence such that incrementing by Step cannot cause
1346 // unsigned overflow as long as the value of the recurrence within the loop does
1347 // not exceed this limit before incrementing.
1348 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1349 ICmpInst::Predicate *Pred,
1350 ScalarEvolution *SE) {
1351 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1352 *Pred = ICmpInst::ICMP_ULT;
1354 return SE->getConstant(APInt::getMinValue(BitWidth) -
1355 SE->getUnsignedRangeMax(Step));
1358 namespace {
1360 struct ExtendOpTraitsBase {
1361 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1362 unsigned);
1365 // Used to make code generic over signed and unsigned overflow.
1366 template <typename ExtendOp> struct ExtendOpTraits {
1367 // Members present:
1369 // static const SCEV::NoWrapFlags WrapType;
1371 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1373 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1374 // ICmpInst::Predicate *Pred,
1375 // ScalarEvolution *SE);
1378 template <>
1379 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1380 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1382 static const GetExtendExprTy GetExtendExpr;
1384 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1385 ICmpInst::Predicate *Pred,
1386 ScalarEvolution *SE) {
1387 return getSignedOverflowLimitForStep(Step, Pred, SE);
1391 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1392 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1394 template <>
1395 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1396 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1398 static const GetExtendExprTy GetExtendExpr;
1400 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1401 ICmpInst::Predicate *Pred,
1402 ScalarEvolution *SE) {
1403 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1407 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1408 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1410 } // end anonymous namespace
1412 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1413 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1414 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1415 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1416 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1417 // expression "Step + sext/zext(PreIncAR)" is congruent with
1418 // "sext/zext(PostIncAR)"
1419 template <typename ExtendOpTy>
1420 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1421 ScalarEvolution *SE, unsigned Depth) {
1422 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1423 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1425 const Loop *L = AR->getLoop();
1426 const SCEV *Start = AR->getStart();
1427 const SCEV *Step = AR->getStepRecurrence(*SE);
1429 // Check for a simple looking step prior to loop entry.
1430 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1431 if (!SA)
1432 return nullptr;
1434 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1435 // subtraction is expensive. For this purpose, perform a quick and dirty
1436 // difference, by checking for Step in the operand list.
1437 SmallVector<const SCEV *, 4> DiffOps;
1438 for (const SCEV *Op : SA->operands())
1439 if (Op != Step)
1440 DiffOps.push_back(Op);
1442 if (DiffOps.size() == SA->getNumOperands())
1443 return nullptr;
1445 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1446 // `Step`:
1448 // 1. NSW/NUW flags on the step increment.
1449 auto PreStartFlags =
1450 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1451 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1452 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1453 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1455 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1456 // "S+X does not sign/unsign-overflow".
1459 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1460 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1461 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1462 return PreStart;
1464 // 2. Direct overflow check on the step operation's expression.
1465 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1466 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1467 const SCEV *OperandExtendedStart =
1468 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1469 (SE->*GetExtendExpr)(Step, WideTy, Depth));
1470 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1471 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1472 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1473 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1474 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1475 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1477 return PreStart;
1480 // 3. Loop precondition.
1481 ICmpInst::Predicate Pred;
1482 const SCEV *OverflowLimit =
1483 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1485 if (OverflowLimit &&
1486 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1487 return PreStart;
1489 return nullptr;
1492 // Get the normalized zero or sign extended expression for this AddRec's Start.
1493 template <typename ExtendOpTy>
1494 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1495 ScalarEvolution *SE,
1496 unsigned Depth) {
1497 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1499 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1500 if (!PreStart)
1501 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1503 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1504 Depth),
1505 (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1508 // Try to prove away overflow by looking at "nearby" add recurrences. A
1509 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1510 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1512 // Formally:
1514 // {S,+,X} == {S-T,+,X} + T
1515 // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1517 // If ({S-T,+,X} + T) does not overflow ... (1)
1519 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1521 // If {S-T,+,X} does not overflow ... (2)
1523 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1524 // == {Ext(S-T)+Ext(T),+,Ext(X)}
1526 // If (S-T)+T does not overflow ... (3)
1528 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1529 // == {Ext(S),+,Ext(X)} == LHS
1531 // Thus, if (1), (2) and (3) are true for some T, then
1532 // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1534 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1535 // does not overflow" restricted to the 0th iteration. Therefore we only need
1536 // to check for (1) and (2).
1538 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1539 // is `Delta` (defined below).
1540 template <typename ExtendOpTy>
1541 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1542 const SCEV *Step,
1543 const Loop *L) {
1544 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1546 // We restrict `Start` to a constant to prevent SCEV from spending too much
1547 // time here. It is correct (but more expensive) to continue with a
1548 // non-constant `Start` and do a general SCEV subtraction to compute
1549 // `PreStart` below.
1550 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1551 if (!StartC)
1552 return false;
1554 APInt StartAI = StartC->getAPInt();
1556 for (unsigned Delta : {-2, -1, 1, 2}) {
1557 const SCEV *PreStart = getConstant(StartAI - Delta);
1559 FoldingSetNodeID ID;
1560 ID.AddInteger(scAddRecExpr);
1561 ID.AddPointer(PreStart);
1562 ID.AddPointer(Step);
1563 ID.AddPointer(L);
1564 void *IP = nullptr;
1565 const auto *PreAR =
1566 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1568 // Give up if we don't already have the add recurrence we need because
1569 // actually constructing an add recurrence is relatively expensive.
1570 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1571 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1572 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1573 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1574 DeltaS, &Pred, this);
1575 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1576 return true;
1580 return false;
1583 // Finds an integer D for an expression (C + x + y + ...) such that the top
1584 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1585 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1586 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1587 // the (C + x + y + ...) expression is \p WholeAddExpr.
1588 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1589 const SCEVConstant *ConstantTerm,
1590 const SCEVAddExpr *WholeAddExpr) {
1591 const APInt C = ConstantTerm->getAPInt();
1592 const unsigned BitWidth = C.getBitWidth();
1593 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1594 uint32_t TZ = BitWidth;
1595 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1596 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1597 if (TZ) {
1598 // Set D to be as many least significant bits of C as possible while still
1599 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1600 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1602 return APInt(BitWidth, 0);
1605 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1606 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1607 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1608 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1609 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1610 const APInt &ConstantStart,
1611 const SCEV *Step) {
1612 const unsigned BitWidth = ConstantStart.getBitWidth();
1613 const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1614 if (TZ)
1615 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1616 : ConstantStart;
1617 return APInt(BitWidth, 0);
1620 const SCEV *
1621 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1622 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1623 "This is not an extending conversion!");
1624 assert(isSCEVable(Ty) &&
1625 "This is not a conversion to a SCEVable type!");
1626 Ty = getEffectiveSCEVType(Ty);
1628 // Fold if the operand is constant.
1629 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1630 return getConstant(
1631 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1633 // zext(zext(x)) --> zext(x)
1634 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1635 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1637 // Before doing any expensive analysis, check to see if we've already
1638 // computed a SCEV for this Op and Ty.
1639 FoldingSetNodeID ID;
1640 ID.AddInteger(scZeroExtend);
1641 ID.AddPointer(Op);
1642 ID.AddPointer(Ty);
1643 void *IP = nullptr;
1644 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1645 if (Depth > MaxCastDepth) {
1646 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1647 Op, Ty);
1648 UniqueSCEVs.InsertNode(S, IP);
1649 addToLoopUseLists(S);
1650 return S;
1653 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1654 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1655 // It's possible the bits taken off by the truncate were all zero bits. If
1656 // so, we should be able to simplify this further.
1657 const SCEV *X = ST->getOperand();
1658 ConstantRange CR = getUnsignedRange(X);
1659 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1660 unsigned NewBits = getTypeSizeInBits(Ty);
1661 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1662 CR.zextOrTrunc(NewBits)))
1663 return getTruncateOrZeroExtend(X, Ty, Depth);
1666 // If the input value is a chrec scev, and we can prove that the value
1667 // did not overflow the old, smaller, value, we can zero extend all of the
1668 // operands (often constants). This allows analysis of something like
1669 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1670 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1671 if (AR->isAffine()) {
1672 const SCEV *Start = AR->getStart();
1673 const SCEV *Step = AR->getStepRecurrence(*this);
1674 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1675 const Loop *L = AR->getLoop();
1677 if (!AR->hasNoUnsignedWrap()) {
1678 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1679 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1682 // If we have special knowledge that this addrec won't overflow,
1683 // we don't need to do any further analysis.
1684 if (AR->hasNoUnsignedWrap())
1685 return getAddRecExpr(
1686 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1687 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1689 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1690 // Note that this serves two purposes: It filters out loops that are
1691 // simply not analyzable, and it covers the case where this code is
1692 // being called from within backedge-taken count analysis, such that
1693 // attempting to ask for the backedge-taken count would likely result
1694 // in infinite recursion. In the later case, the analysis code will
1695 // cope with a conservative value, and it will take care to purge
1696 // that value once it has finished.
1697 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1698 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1699 // Manually compute the final value for AR, checking for
1700 // overflow.
1702 // Check whether the backedge-taken count can be losslessly casted to
1703 // the addrec's type. The count is always unsigned.
1704 const SCEV *CastedMaxBECount =
1705 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1706 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1707 CastedMaxBECount, MaxBECount->getType(), Depth);
1708 if (MaxBECount == RecastedMaxBECount) {
1709 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1710 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1711 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1712 SCEV::FlagAnyWrap, Depth + 1);
1713 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1714 SCEV::FlagAnyWrap,
1715 Depth + 1),
1716 WideTy, Depth + 1);
1717 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1718 const SCEV *WideMaxBECount =
1719 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1720 const SCEV *OperandExtendedAdd =
1721 getAddExpr(WideStart,
1722 getMulExpr(WideMaxBECount,
1723 getZeroExtendExpr(Step, WideTy, Depth + 1),
1724 SCEV::FlagAnyWrap, Depth + 1),
1725 SCEV::FlagAnyWrap, Depth + 1);
1726 if (ZAdd == OperandExtendedAdd) {
1727 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1728 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1729 // Return the expression with the addrec on the outside.
1730 return getAddRecExpr(
1731 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1732 Depth + 1),
1733 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1734 AR->getNoWrapFlags());
1736 // Similar to above, only this time treat the step value as signed.
1737 // This covers loops that count down.
1738 OperandExtendedAdd =
1739 getAddExpr(WideStart,
1740 getMulExpr(WideMaxBECount,
1741 getSignExtendExpr(Step, WideTy, Depth + 1),
1742 SCEV::FlagAnyWrap, Depth + 1),
1743 SCEV::FlagAnyWrap, Depth + 1);
1744 if (ZAdd == OperandExtendedAdd) {
1745 // Cache knowledge of AR NW, which is propagated to this AddRec.
1746 // Negative step causes unsigned wrap, but it still can't self-wrap.
1747 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1748 // Return the expression with the addrec on the outside.
1749 return getAddRecExpr(
1750 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1751 Depth + 1),
1752 getSignExtendExpr(Step, Ty, Depth + 1), L,
1753 AR->getNoWrapFlags());
1758 // Normally, in the cases we can prove no-overflow via a
1759 // backedge guarding condition, we can also compute a backedge
1760 // taken count for the loop. The exceptions are assumptions and
1761 // guards present in the loop -- SCEV is not great at exploiting
1762 // these to compute max backedge taken counts, but can still use
1763 // these to prove lack of overflow. Use this fact to avoid
1764 // doing extra work that may not pay off.
1765 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1766 !AC.assumptions().empty()) {
1767 // If the backedge is guarded by a comparison with the pre-inc
1768 // value the addrec is safe. Also, if the entry is guarded by
1769 // a comparison with the start value and the backedge is
1770 // guarded by a comparison with the post-inc value, the addrec
1771 // is safe.
1772 if (isKnownPositive(Step)) {
1773 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1774 getUnsignedRangeMax(Step));
1775 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1776 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1777 // Cache knowledge of AR NUW, which is propagated to this
1778 // AddRec.
1779 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1780 // Return the expression with the addrec on the outside.
1781 return getAddRecExpr(
1782 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1783 Depth + 1),
1784 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1785 AR->getNoWrapFlags());
1787 } else if (isKnownNegative(Step)) {
1788 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1789 getSignedRangeMin(Step));
1790 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1791 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1792 // Cache knowledge of AR NW, which is propagated to this
1793 // AddRec. Negative step causes unsigned wrap, but it
1794 // still can't self-wrap.
1795 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1796 // Return the expression with the addrec on the outside.
1797 return getAddRecExpr(
1798 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1799 Depth + 1),
1800 getSignExtendExpr(Step, Ty, Depth + 1), L,
1801 AR->getNoWrapFlags());
1806 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1807 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1808 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1809 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1810 const APInt &C = SC->getAPInt();
1811 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1812 if (D != 0) {
1813 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1814 const SCEV *SResidual =
1815 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1816 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1817 return getAddExpr(SZExtD, SZExtR,
1818 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1819 Depth + 1);
1823 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1824 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1825 return getAddRecExpr(
1826 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1827 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1831 // zext(A % B) --> zext(A) % zext(B)
1833 const SCEV *LHS;
1834 const SCEV *RHS;
1835 if (matchURem(Op, LHS, RHS))
1836 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1837 getZeroExtendExpr(RHS, Ty, Depth + 1));
1840 // zext(A / B) --> zext(A) / zext(B).
1841 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1842 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1843 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1845 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1846 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1847 if (SA->hasNoUnsignedWrap()) {
1848 // If the addition does not unsign overflow then we can, by definition,
1849 // commute the zero extension with the addition operation.
1850 SmallVector<const SCEV *, 4> Ops;
1851 for (const auto *Op : SA->operands())
1852 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1853 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1856 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1857 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1858 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1860 // Often address arithmetics contain expressions like
1861 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1862 // This transformation is useful while proving that such expressions are
1863 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1864 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1865 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1866 if (D != 0) {
1867 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1868 const SCEV *SResidual =
1869 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1870 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1871 return getAddExpr(SZExtD, SZExtR,
1872 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1873 Depth + 1);
1878 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1879 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1880 if (SM->hasNoUnsignedWrap()) {
1881 // If the multiply does not unsign overflow then we can, by definition,
1882 // commute the zero extension with the multiply operation.
1883 SmallVector<const SCEV *, 4> Ops;
1884 for (const auto *Op : SM->operands())
1885 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1886 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1889 // zext(2^K * (trunc X to iN)) to iM ->
1890 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1892 // Proof:
1894 // zext(2^K * (trunc X to iN)) to iM
1895 // = zext((trunc X to iN) << K) to iM
1896 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1897 // (because shl removes the top K bits)
1898 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1899 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1901 if (SM->getNumOperands() == 2)
1902 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1903 if (MulLHS->getAPInt().isPowerOf2())
1904 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1905 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1906 MulLHS->getAPInt().logBase2();
1907 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1908 return getMulExpr(
1909 getZeroExtendExpr(MulLHS, Ty),
1910 getZeroExtendExpr(
1911 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1912 SCEV::FlagNUW, Depth + 1);
1916 // The cast wasn't folded; create an explicit cast node.
1917 // Recompute the insert position, as it may have been invalidated.
1918 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1919 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1920 Op, Ty);
1921 UniqueSCEVs.InsertNode(S, IP);
1922 addToLoopUseLists(S);
1923 return S;
1926 const SCEV *
1927 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1928 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1929 "This is not an extending conversion!");
1930 assert(isSCEVable(Ty) &&
1931 "This is not a conversion to a SCEVable type!");
1932 Ty = getEffectiveSCEVType(Ty);
1934 // Fold if the operand is constant.
1935 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1936 return getConstant(
1937 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1939 // sext(sext(x)) --> sext(x)
1940 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1941 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1943 // sext(zext(x)) --> zext(x)
1944 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1945 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1947 // Before doing any expensive analysis, check to see if we've already
1948 // computed a SCEV for this Op and Ty.
1949 FoldingSetNodeID ID;
1950 ID.AddInteger(scSignExtend);
1951 ID.AddPointer(Op);
1952 ID.AddPointer(Ty);
1953 void *IP = nullptr;
1954 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1955 // Limit recursion depth.
1956 if (Depth > MaxCastDepth) {
1957 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1958 Op, Ty);
1959 UniqueSCEVs.InsertNode(S, IP);
1960 addToLoopUseLists(S);
1961 return S;
1964 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1965 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1966 // It's possible the bits taken off by the truncate were all sign bits. If
1967 // so, we should be able to simplify this further.
1968 const SCEV *X = ST->getOperand();
1969 ConstantRange CR = getSignedRange(X);
1970 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1971 unsigned NewBits = getTypeSizeInBits(Ty);
1972 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1973 CR.sextOrTrunc(NewBits)))
1974 return getTruncateOrSignExtend(X, Ty, Depth);
1977 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1978 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1979 if (SA->hasNoSignedWrap()) {
1980 // If the addition does not sign overflow then we can, by definition,
1981 // commute the sign extension with the addition operation.
1982 SmallVector<const SCEV *, 4> Ops;
1983 for (const auto *Op : SA->operands())
1984 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1985 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1988 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1989 // if D + (C - D + x + y + ...) could be proven to not signed wrap
1990 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1992 // For instance, this will bring two seemingly different expressions:
1993 // 1 + sext(5 + 20 * %x + 24 * %y) and
1994 // sext(6 + 20 * %x + 24 * %y)
1995 // to the same form:
1996 // 2 + sext(4 + 20 * %x + 24 * %y)
1997 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1998 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1999 if (D != 0) {
2000 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2001 const SCEV *SResidual =
2002 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
2003 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2004 return getAddExpr(SSExtD, SSExtR,
2005 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2006 Depth + 1);
2010 // If the input value is a chrec scev, and we can prove that the value
2011 // did not overflow the old, smaller, value, we can sign extend all of the
2012 // operands (often constants). This allows analysis of something like
2013 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
2014 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
2015 if (AR->isAffine()) {
2016 const SCEV *Start = AR->getStart();
2017 const SCEV *Step = AR->getStepRecurrence(*this);
2018 unsigned BitWidth = getTypeSizeInBits(AR->getType());
2019 const Loop *L = AR->getLoop();
2021 if (!AR->hasNoSignedWrap()) {
2022 auto NewFlags = proveNoWrapViaConstantRanges(AR);
2023 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
2026 // If we have special knowledge that this addrec won't overflow,
2027 // we don't need to do any further analysis.
2028 if (AR->hasNoSignedWrap())
2029 return getAddRecExpr(
2030 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2031 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2033 // Check whether the backedge-taken count is SCEVCouldNotCompute.
2034 // Note that this serves two purposes: It filters out loops that are
2035 // simply not analyzable, and it covers the case where this code is
2036 // being called from within backedge-taken count analysis, such that
2037 // attempting to ask for the backedge-taken count would likely result
2038 // in infinite recursion. In the later case, the analysis code will
2039 // cope with a conservative value, and it will take care to purge
2040 // that value once it has finished.
2041 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
2042 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2043 // Manually compute the final value for AR, checking for
2044 // overflow.
2046 // Check whether the backedge-taken count can be losslessly casted to
2047 // the addrec's type. The count is always unsigned.
2048 const SCEV *CastedMaxBECount =
2049 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2050 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2051 CastedMaxBECount, MaxBECount->getType(), Depth);
2052 if (MaxBECount == RecastedMaxBECount) {
2053 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2054 // Check whether Start+Step*MaxBECount has no signed overflow.
2055 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2056 SCEV::FlagAnyWrap, Depth + 1);
2057 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2058 SCEV::FlagAnyWrap,
2059 Depth + 1),
2060 WideTy, Depth + 1);
2061 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2062 const SCEV *WideMaxBECount =
2063 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2064 const SCEV *OperandExtendedAdd =
2065 getAddExpr(WideStart,
2066 getMulExpr(WideMaxBECount,
2067 getSignExtendExpr(Step, WideTy, Depth + 1),
2068 SCEV::FlagAnyWrap, Depth + 1),
2069 SCEV::FlagAnyWrap, Depth + 1);
2070 if (SAdd == OperandExtendedAdd) {
2071 // Cache knowledge of AR NSW, which is propagated to this AddRec.
2072 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2073 // Return the expression with the addrec on the outside.
2074 return getAddRecExpr(
2075 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2076 Depth + 1),
2077 getSignExtendExpr(Step, Ty, Depth + 1), L,
2078 AR->getNoWrapFlags());
2080 // Similar to above, only this time treat the step value as unsigned.
2081 // This covers loops that count up with an unsigned step.
2082 OperandExtendedAdd =
2083 getAddExpr(WideStart,
2084 getMulExpr(WideMaxBECount,
2085 getZeroExtendExpr(Step, WideTy, Depth + 1),
2086 SCEV::FlagAnyWrap, Depth + 1),
2087 SCEV::FlagAnyWrap, Depth + 1);
2088 if (SAdd == OperandExtendedAdd) {
2089 // If AR wraps around then
2091 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
2092 // => SAdd != OperandExtendedAdd
2094 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2095 // (SAdd == OperandExtendedAdd => AR is NW)
2097 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
2099 // Return the expression with the addrec on the outside.
2100 return getAddRecExpr(
2101 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2102 Depth + 1),
2103 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2104 AR->getNoWrapFlags());
2109 // Normally, in the cases we can prove no-overflow via a
2110 // backedge guarding condition, we can also compute a backedge
2111 // taken count for the loop. The exceptions are assumptions and
2112 // guards present in the loop -- SCEV is not great at exploiting
2113 // these to compute max backedge taken counts, but can still use
2114 // these to prove lack of overflow. Use this fact to avoid
2115 // doing extra work that may not pay off.
2117 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2118 !AC.assumptions().empty()) {
2119 // If the backedge is guarded by a comparison with the pre-inc
2120 // value the addrec is safe. Also, if the entry is guarded by
2121 // a comparison with the start value and the backedge is
2122 // guarded by a comparison with the post-inc value, the addrec
2123 // is safe.
2124 ICmpInst::Predicate Pred;
2125 const SCEV *OverflowLimit =
2126 getSignedOverflowLimitForStep(Step, &Pred, this);
2127 if (OverflowLimit &&
2128 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2129 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2130 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2131 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2132 return getAddRecExpr(
2133 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2134 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2138 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2139 // if D + (C - D + Step * n) could be proven to not signed wrap
2140 // where D maximizes the number of trailing zeros of (C - D + Step * n)
2141 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2142 const APInt &C = SC->getAPInt();
2143 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2144 if (D != 0) {
2145 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2146 const SCEV *SResidual =
2147 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2148 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2149 return getAddExpr(SSExtD, SSExtR,
2150 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2151 Depth + 1);
2155 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2156 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2157 return getAddRecExpr(
2158 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2159 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2163 // If the input value is provably positive and we could not simplify
2164 // away the sext build a zext instead.
2165 if (isKnownNonNegative(Op))
2166 return getZeroExtendExpr(Op, Ty, Depth + 1);
2168 // The cast wasn't folded; create an explicit cast node.
2169 // Recompute the insert position, as it may have been invalidated.
2170 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2171 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2172 Op, Ty);
2173 UniqueSCEVs.InsertNode(S, IP);
2174 addToLoopUseLists(S);
2175 return S;
2178 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2179 /// unspecified bits out to the given type.
2180 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2181 Type *Ty) {
2182 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2183 "This is not an extending conversion!");
2184 assert(isSCEVable(Ty) &&
2185 "This is not a conversion to a SCEVable type!");
2186 Ty = getEffectiveSCEVType(Ty);
2188 // Sign-extend negative constants.
2189 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2190 if (SC->getAPInt().isNegative())
2191 return getSignExtendExpr(Op, Ty);
2193 // Peel off a truncate cast.
2194 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2195 const SCEV *NewOp = T->getOperand();
2196 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2197 return getAnyExtendExpr(NewOp, Ty);
2198 return getTruncateOrNoop(NewOp, Ty);
2201 // Next try a zext cast. If the cast is folded, use it.
2202 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2203 if (!isa<SCEVZeroExtendExpr>(ZExt))
2204 return ZExt;
2206 // Next try a sext cast. If the cast is folded, use it.
2207 const SCEV *SExt = getSignExtendExpr(Op, Ty);
2208 if (!isa<SCEVSignExtendExpr>(SExt))
2209 return SExt;
2211 // Force the cast to be folded into the operands of an addrec.
2212 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2213 SmallVector<const SCEV *, 4> Ops;
2214 for (const SCEV *Op : AR->operands())
2215 Ops.push_back(getAnyExtendExpr(Op, Ty));
2216 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2219 // If the expression is obviously signed, use the sext cast value.
2220 if (isa<SCEVSMaxExpr>(Op))
2221 return SExt;
2223 // Absent any other information, use the zext cast value.
2224 return ZExt;
2227 /// Process the given Ops list, which is a list of operands to be added under
2228 /// the given scale, update the given map. This is a helper function for
2229 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2230 /// that would form an add expression like this:
2232 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2234 /// where A and B are constants, update the map with these values:
2236 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2238 /// and add 13 + A*B*29 to AccumulatedConstant.
2239 /// This will allow getAddRecExpr to produce this:
2241 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2243 /// This form often exposes folding opportunities that are hidden in
2244 /// the original operand list.
2246 /// Return true iff it appears that any interesting folding opportunities
2247 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2248 /// the common case where no interesting opportunities are present, and
2249 /// is also used as a check to avoid infinite recursion.
2250 static bool
2251 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2252 SmallVectorImpl<const SCEV *> &NewOps,
2253 APInt &AccumulatedConstant,
2254 const SCEV *const *Ops, size_t NumOperands,
2255 const APInt &Scale,
2256 ScalarEvolution &SE) {
2257 bool Interesting = false;
2259 // Iterate over the add operands. They are sorted, with constants first.
2260 unsigned i = 0;
2261 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2262 ++i;
2263 // Pull a buried constant out to the outside.
2264 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2265 Interesting = true;
2266 AccumulatedConstant += Scale * C->getAPInt();
2269 // Next comes everything else. We're especially interested in multiplies
2270 // here, but they're in the middle, so just visit the rest with one loop.
2271 for (; i != NumOperands; ++i) {
2272 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2273 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2274 APInt NewScale =
2275 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2276 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2277 // A multiplication of a constant with another add; recurse.
2278 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2279 Interesting |=
2280 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2281 Add->op_begin(), Add->getNumOperands(),
2282 NewScale, SE);
2283 } else {
2284 // A multiplication of a constant with some other value. Update
2285 // the map.
2286 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2287 const SCEV *Key = SE.getMulExpr(MulOps);
2288 auto Pair = M.insert({Key, NewScale});
2289 if (Pair.second) {
2290 NewOps.push_back(Pair.first->first);
2291 } else {
2292 Pair.first->second += NewScale;
2293 // The map already had an entry for this value, which may indicate
2294 // a folding opportunity.
2295 Interesting = true;
2298 } else {
2299 // An ordinary operand. Update the map.
2300 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2301 M.insert({Ops[i], Scale});
2302 if (Pair.second) {
2303 NewOps.push_back(Pair.first->first);
2304 } else {
2305 Pair.first->second += Scale;
2306 // The map already had an entry for this value, which may indicate
2307 // a folding opportunity.
2308 Interesting = true;
2313 return Interesting;
2316 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2317 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2318 // can't-overflow flags for the operation if possible.
2319 static SCEV::NoWrapFlags
2320 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2321 const ArrayRef<const SCEV *> Ops,
2322 SCEV::NoWrapFlags Flags) {
2323 using namespace std::placeholders;
2325 using OBO = OverflowingBinaryOperator;
2327 bool CanAnalyze =
2328 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2329 (void)CanAnalyze;
2330 assert(CanAnalyze && "don't call from other places!");
2332 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2333 SCEV::NoWrapFlags SignOrUnsignWrap =
2334 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2336 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2337 auto IsKnownNonNegative = [&](const SCEV *S) {
2338 return SE->isKnownNonNegative(S);
2341 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2342 Flags =
2343 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2345 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2347 if (SignOrUnsignWrap != SignOrUnsignMask &&
2348 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2349 isa<SCEVConstant>(Ops[0])) {
2351 auto Opcode = [&] {
2352 switch (Type) {
2353 case scAddExpr:
2354 return Instruction::Add;
2355 case scMulExpr:
2356 return Instruction::Mul;
2357 default:
2358 llvm_unreachable("Unexpected SCEV op.");
2360 }();
2362 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2364 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2365 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2366 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2367 Opcode, C, OBO::NoSignedWrap);
2368 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2369 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2372 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2373 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2374 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2375 Opcode, C, OBO::NoUnsignedWrap);
2376 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2377 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2381 return Flags;
2384 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2385 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2388 /// Get a canonical add expression, or something simpler if possible.
2389 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2390 SCEV::NoWrapFlags Flags,
2391 unsigned Depth) {
2392 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2393 "only nuw or nsw allowed");
2394 assert(!Ops.empty() && "Cannot get empty add!");
2395 if (Ops.size() == 1) return Ops[0];
2396 #ifndef NDEBUG
2397 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2398 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2399 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2400 "SCEVAddExpr operand types don't match!");
2401 #endif
2403 // Sort by complexity, this groups all similar expression types together.
2404 GroupByComplexity(Ops, &LI, DT);
2406 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2408 // If there are any constants, fold them together.
2409 unsigned Idx = 0;
2410 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2411 ++Idx;
2412 assert(Idx < Ops.size());
2413 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2414 // We found two constants, fold them together!
2415 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2416 if (Ops.size() == 2) return Ops[0];
2417 Ops.erase(Ops.begin()+1); // Erase the folded element
2418 LHSC = cast<SCEVConstant>(Ops[0]);
2421 // If we are left with a constant zero being added, strip it off.
2422 if (LHSC->getValue()->isZero()) {
2423 Ops.erase(Ops.begin());
2424 --Idx;
2427 if (Ops.size() == 1) return Ops[0];
2430 // Limit recursion calls depth.
2431 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2432 return getOrCreateAddExpr(Ops, Flags);
2434 // Okay, check to see if the same value occurs in the operand list more than
2435 // once. If so, merge them together into an multiply expression. Since we
2436 // sorted the list, these values are required to be adjacent.
2437 Type *Ty = Ops[0]->getType();
2438 bool FoundMatch = false;
2439 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2440 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
2441 // Scan ahead to count how many equal operands there are.
2442 unsigned Count = 2;
2443 while (i+Count != e && Ops[i+Count] == Ops[i])
2444 ++Count;
2445 // Merge the values into a multiply.
2446 const SCEV *Scale = getConstant(Ty, Count);
2447 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2448 if (Ops.size() == Count)
2449 return Mul;
2450 Ops[i] = Mul;
2451 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2452 --i; e -= Count - 1;
2453 FoundMatch = true;
2455 if (FoundMatch)
2456 return getAddExpr(Ops, Flags, Depth + 1);
2458 // Check for truncates. If all the operands are truncated from the same
2459 // type, see if factoring out the truncate would permit the result to be
2460 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2461 // if the contents of the resulting outer trunc fold to something simple.
2462 auto FindTruncSrcType = [&]() -> Type * {
2463 // We're ultimately looking to fold an addrec of truncs and muls of only
2464 // constants and truncs, so if we find any other types of SCEV
2465 // as operands of the addrec then we bail and return nullptr here.
2466 // Otherwise, we return the type of the operand of a trunc that we find.
2467 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2468 return T->getOperand()->getType();
2469 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2470 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2471 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2472 return T->getOperand()->getType();
2474 return nullptr;
2476 if (auto *SrcType = FindTruncSrcType()) {
2477 SmallVector<const SCEV *, 8> LargeOps;
2478 bool Ok = true;
2479 // Check all the operands to see if they can be represented in the
2480 // source type of the truncate.
2481 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2482 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2483 if (T->getOperand()->getType() != SrcType) {
2484 Ok = false;
2485 break;
2487 LargeOps.push_back(T->getOperand());
2488 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2489 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2490 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2491 SmallVector<const SCEV *, 8> LargeMulOps;
2492 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2493 if (const SCEVTruncateExpr *T =
2494 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2495 if (T->getOperand()->getType() != SrcType) {
2496 Ok = false;
2497 break;
2499 LargeMulOps.push_back(T->getOperand());
2500 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2501 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2502 } else {
2503 Ok = false;
2504 break;
2507 if (Ok)
2508 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2509 } else {
2510 Ok = false;
2511 break;
2514 if (Ok) {
2515 // Evaluate the expression in the larger type.
2516 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2517 // If it folds to something simple, use it. Otherwise, don't.
2518 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2519 return getTruncateExpr(Fold, Ty);
2523 // Skip past any other cast SCEVs.
2524 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2525 ++Idx;
2527 // If there are add operands they would be next.
2528 if (Idx < Ops.size()) {
2529 bool DeletedAdd = false;
2530 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2531 if (Ops.size() > AddOpsInlineThreshold ||
2532 Add->getNumOperands() > AddOpsInlineThreshold)
2533 break;
2534 // If we have an add, expand the add operands onto the end of the operands
2535 // list.
2536 Ops.erase(Ops.begin()+Idx);
2537 Ops.append(Add->op_begin(), Add->op_end());
2538 DeletedAdd = true;
2541 // If we deleted at least one add, we added operands to the end of the list,
2542 // and they are not necessarily sorted. Recurse to resort and resimplify
2543 // any operands we just acquired.
2544 if (DeletedAdd)
2545 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2548 // Skip over the add expression until we get to a multiply.
2549 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2550 ++Idx;
2552 // Check to see if there are any folding opportunities present with
2553 // operands multiplied by constant values.
2554 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2555 uint64_t BitWidth = getTypeSizeInBits(Ty);
2556 DenseMap<const SCEV *, APInt> M;
2557 SmallVector<const SCEV *, 8> NewOps;
2558 APInt AccumulatedConstant(BitWidth, 0);
2559 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2560 Ops.data(), Ops.size(),
2561 APInt(BitWidth, 1), *this)) {
2562 struct APIntCompare {
2563 bool operator()(const APInt &LHS, const APInt &RHS) const {
2564 return LHS.ult(RHS);
2568 // Some interesting folding opportunity is present, so its worthwhile to
2569 // re-generate the operands list. Group the operands by constant scale,
2570 // to avoid multiplying by the same constant scale multiple times.
2571 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2572 for (const SCEV *NewOp : NewOps)
2573 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2574 // Re-generate the operands list.
2575 Ops.clear();
2576 if (AccumulatedConstant != 0)
2577 Ops.push_back(getConstant(AccumulatedConstant));
2578 for (auto &MulOp : MulOpLists)
2579 if (MulOp.first != 0)
2580 Ops.push_back(getMulExpr(
2581 getConstant(MulOp.first),
2582 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2583 SCEV::FlagAnyWrap, Depth + 1));
2584 if (Ops.empty())
2585 return getZero(Ty);
2586 if (Ops.size() == 1)
2587 return Ops[0];
2588 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2592 // If we are adding something to a multiply expression, make sure the
2593 // something is not already an operand of the multiply. If so, merge it into
2594 // the multiply.
2595 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2596 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2597 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2598 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2599 if (isa<SCEVConstant>(MulOpSCEV))
2600 continue;
2601 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2602 if (MulOpSCEV == Ops[AddOp]) {
2603 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2604 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2605 if (Mul->getNumOperands() != 2) {
2606 // If the multiply has more than two operands, we must get the
2607 // Y*Z term.
2608 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2609 Mul->op_begin()+MulOp);
2610 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2611 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2613 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2614 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2615 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2616 SCEV::FlagAnyWrap, Depth + 1);
2617 if (Ops.size() == 2) return OuterMul;
2618 if (AddOp < Idx) {
2619 Ops.erase(Ops.begin()+AddOp);
2620 Ops.erase(Ops.begin()+Idx-1);
2621 } else {
2622 Ops.erase(Ops.begin()+Idx);
2623 Ops.erase(Ops.begin()+AddOp-1);
2625 Ops.push_back(OuterMul);
2626 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2629 // Check this multiply against other multiplies being added together.
2630 for (unsigned OtherMulIdx = Idx+1;
2631 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2632 ++OtherMulIdx) {
2633 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2634 // If MulOp occurs in OtherMul, we can fold the two multiplies
2635 // together.
2636 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2637 OMulOp != e; ++OMulOp)
2638 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2639 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2640 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2641 if (Mul->getNumOperands() != 2) {
2642 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2643 Mul->op_begin()+MulOp);
2644 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2645 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2647 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2648 if (OtherMul->getNumOperands() != 2) {
2649 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2650 OtherMul->op_begin()+OMulOp);
2651 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2652 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2654 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2655 const SCEV *InnerMulSum =
2656 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2657 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2658 SCEV::FlagAnyWrap, Depth + 1);
2659 if (Ops.size() == 2) return OuterMul;
2660 Ops.erase(Ops.begin()+Idx);
2661 Ops.erase(Ops.begin()+OtherMulIdx-1);
2662 Ops.push_back(OuterMul);
2663 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2669 // If there are any add recurrences in the operands list, see if any other
2670 // added values are loop invariant. If so, we can fold them into the
2671 // recurrence.
2672 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2673 ++Idx;
2675 // Scan over all recurrences, trying to fold loop invariants into them.
2676 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2677 // Scan all of the other operands to this add and add them to the vector if
2678 // they are loop invariant w.r.t. the recurrence.
2679 SmallVector<const SCEV *, 8> LIOps;
2680 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2681 const Loop *AddRecLoop = AddRec->getLoop();
2682 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2683 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2684 LIOps.push_back(Ops[i]);
2685 Ops.erase(Ops.begin()+i);
2686 --i; --e;
2689 // If we found some loop invariants, fold them into the recurrence.
2690 if (!LIOps.empty()) {
2691 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2692 LIOps.push_back(AddRec->getStart());
2694 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2695 AddRec->op_end());
2696 // This follows from the fact that the no-wrap flags on the outer add
2697 // expression are applicable on the 0th iteration, when the add recurrence
2698 // will be equal to its start value.
2699 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2701 // Build the new addrec. Propagate the NUW and NSW flags if both the
2702 // outer add and the inner addrec are guaranteed to have no overflow.
2703 // Always propagate NW.
2704 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2705 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2707 // If all of the other operands were loop invariant, we are done.
2708 if (Ops.size() == 1) return NewRec;
2710 // Otherwise, add the folded AddRec by the non-invariant parts.
2711 for (unsigned i = 0;; ++i)
2712 if (Ops[i] == AddRec) {
2713 Ops[i] = NewRec;
2714 break;
2716 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2719 // Okay, if there weren't any loop invariants to be folded, check to see if
2720 // there are multiple AddRec's with the same loop induction variable being
2721 // added together. If so, we can fold them.
2722 for (unsigned OtherIdx = Idx+1;
2723 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2724 ++OtherIdx) {
2725 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2726 // so that the 1st found AddRecExpr is dominated by all others.
2727 assert(DT.dominates(
2728 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2729 AddRec->getLoop()->getHeader()) &&
2730 "AddRecExprs are not sorted in reverse dominance order?");
2731 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2732 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2733 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2734 AddRec->op_end());
2735 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2736 ++OtherIdx) {
2737 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2738 if (OtherAddRec->getLoop() == AddRecLoop) {
2739 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2740 i != e; ++i) {
2741 if (i >= AddRecOps.size()) {
2742 AddRecOps.append(OtherAddRec->op_begin()+i,
2743 OtherAddRec->op_end());
2744 break;
2746 SmallVector<const SCEV *, 2> TwoOps = {
2747 AddRecOps[i], OtherAddRec->getOperand(i)};
2748 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2750 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2753 // Step size has changed, so we cannot guarantee no self-wraparound.
2754 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2755 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2759 // Otherwise couldn't fold anything into this recurrence. Move onto the
2760 // next one.
2763 // Okay, it looks like we really DO need an add expr. Check to see if we
2764 // already have one, otherwise create a new one.
2765 return getOrCreateAddExpr(Ops, Flags);
2768 const SCEV *
2769 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2770 SCEV::NoWrapFlags Flags) {
2771 FoldingSetNodeID ID;
2772 ID.AddInteger(scAddExpr);
2773 for (const SCEV *Op : Ops)
2774 ID.AddPointer(Op);
2775 void *IP = nullptr;
2776 SCEVAddExpr *S =
2777 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2778 if (!S) {
2779 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2780 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2781 S = new (SCEVAllocator)
2782 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2783 UniqueSCEVs.InsertNode(S, IP);
2784 addToLoopUseLists(S);
2786 S->setNoWrapFlags(Flags);
2787 return S;
2790 const SCEV *
2791 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2792 const Loop *L, SCEV::NoWrapFlags Flags) {
2793 FoldingSetNodeID ID;
2794 ID.AddInteger(scAddRecExpr);
2795 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2796 ID.AddPointer(Ops[i]);
2797 ID.AddPointer(L);
2798 void *IP = nullptr;
2799 SCEVAddRecExpr *S =
2800 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2801 if (!S) {
2802 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2803 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2804 S = new (SCEVAllocator)
2805 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2806 UniqueSCEVs.InsertNode(S, IP);
2807 addToLoopUseLists(S);
2809 S->setNoWrapFlags(Flags);
2810 return S;
2813 const SCEV *
2814 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2815 SCEV::NoWrapFlags Flags) {
2816 FoldingSetNodeID ID;
2817 ID.AddInteger(scMulExpr);
2818 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2819 ID.AddPointer(Ops[i]);
2820 void *IP = nullptr;
2821 SCEVMulExpr *S =
2822 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2823 if (!S) {
2824 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2825 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2826 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2827 O, Ops.size());
2828 UniqueSCEVs.InsertNode(S, IP);
2829 addToLoopUseLists(S);
2831 S->setNoWrapFlags(Flags);
2832 return S;
2835 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2836 uint64_t k = i*j;
2837 if (j > 1 && k / j != i) Overflow = true;
2838 return k;
2841 /// Compute the result of "n choose k", the binomial coefficient. If an
2842 /// intermediate computation overflows, Overflow will be set and the return will
2843 /// be garbage. Overflow is not cleared on absence of overflow.
2844 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2845 // We use the multiplicative formula:
2846 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2847 // At each iteration, we take the n-th term of the numeral and divide by the
2848 // (k-n)th term of the denominator. This division will always produce an
2849 // integral result, and helps reduce the chance of overflow in the
2850 // intermediate computations. However, we can still overflow even when the
2851 // final result would fit.
2853 if (n == 0 || n == k) return 1;
2854 if (k > n) return 0;
2856 if (k > n/2)
2857 k = n-k;
2859 uint64_t r = 1;
2860 for (uint64_t i = 1; i <= k; ++i) {
2861 r = umul_ov(r, n-(i-1), Overflow);
2862 r /= i;
2864 return r;
2867 /// Determine if any of the operands in this SCEV are a constant or if
2868 /// any of the add or multiply expressions in this SCEV contain a constant.
2869 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2870 struct FindConstantInAddMulChain {
2871 bool FoundConstant = false;
2873 bool follow(const SCEV *S) {
2874 FoundConstant |= isa<SCEVConstant>(S);
2875 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2878 bool isDone() const {
2879 return FoundConstant;
2883 FindConstantInAddMulChain F;
2884 SCEVTraversal<FindConstantInAddMulChain> ST(F);
2885 ST.visitAll(StartExpr);
2886 return F.FoundConstant;
2889 /// Get a canonical multiply expression, or something simpler if possible.
2890 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2891 SCEV::NoWrapFlags Flags,
2892 unsigned Depth) {
2893 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2894 "only nuw or nsw allowed");
2895 assert(!Ops.empty() && "Cannot get empty mul!");
2896 if (Ops.size() == 1) return Ops[0];
2897 #ifndef NDEBUG
2898 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2899 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2900 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2901 "SCEVMulExpr operand types don't match!");
2902 #endif
2904 // Sort by complexity, this groups all similar expression types together.
2905 GroupByComplexity(Ops, &LI, DT);
2907 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2909 // Limit recursion calls depth.
2910 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2911 return getOrCreateMulExpr(Ops, Flags);
2913 // If there are any constants, fold them together.
2914 unsigned Idx = 0;
2915 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2917 if (Ops.size() == 2)
2918 // C1*(C2+V) -> C1*C2 + C1*V
2919 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2920 // If any of Add's ops are Adds or Muls with a constant, apply this
2921 // transformation as well.
2923 // TODO: There are some cases where this transformation is not
2924 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
2925 // this transformation should be narrowed down.
2926 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2927 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2928 SCEV::FlagAnyWrap, Depth + 1),
2929 getMulExpr(LHSC, Add->getOperand(1),
2930 SCEV::FlagAnyWrap, Depth + 1),
2931 SCEV::FlagAnyWrap, Depth + 1);
2933 ++Idx;
2934 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2935 // We found two constants, fold them together!
2936 ConstantInt *Fold =
2937 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2938 Ops[0] = getConstant(Fold);
2939 Ops.erase(Ops.begin()+1); // Erase the folded element
2940 if (Ops.size() == 1) return Ops[0];
2941 LHSC = cast<SCEVConstant>(Ops[0]);
2944 // If we are left with a constant one being multiplied, strip it off.
2945 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2946 Ops.erase(Ops.begin());
2947 --Idx;
2948 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2949 // If we have a multiply of zero, it will always be zero.
2950 return Ops[0];
2951 } else if (Ops[0]->isAllOnesValue()) {
2952 // If we have a mul by -1 of an add, try distributing the -1 among the
2953 // add operands.
2954 if (Ops.size() == 2) {
2955 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2956 SmallVector<const SCEV *, 4> NewOps;
2957 bool AnyFolded = false;
2958 for (const SCEV *AddOp : Add->operands()) {
2959 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2960 Depth + 1);
2961 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2962 NewOps.push_back(Mul);
2964 if (AnyFolded)
2965 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2966 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2967 // Negation preserves a recurrence's no self-wrap property.
2968 SmallVector<const SCEV *, 4> Operands;
2969 for (const SCEV *AddRecOp : AddRec->operands())
2970 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2971 Depth + 1));
2973 return getAddRecExpr(Operands, AddRec->getLoop(),
2974 AddRec->getNoWrapFlags(SCEV::FlagNW));
2979 if (Ops.size() == 1)
2980 return Ops[0];
2983 // Skip over the add expression until we get to a multiply.
2984 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2985 ++Idx;
2987 // If there are mul operands inline them all into this expression.
2988 if (Idx < Ops.size()) {
2989 bool DeletedMul = false;
2990 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2991 if (Ops.size() > MulOpsInlineThreshold)
2992 break;
2993 // If we have an mul, expand the mul operands onto the end of the
2994 // operands list.
2995 Ops.erase(Ops.begin()+Idx);
2996 Ops.append(Mul->op_begin(), Mul->op_end());
2997 DeletedMul = true;
3000 // If we deleted at least one mul, we added operands to the end of the
3001 // list, and they are not necessarily sorted. Recurse to resort and
3002 // resimplify any operands we just acquired.
3003 if (DeletedMul)
3004 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3007 // If there are any add recurrences in the operands list, see if any other
3008 // added values are loop invariant. If so, we can fold them into the
3009 // recurrence.
3010 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3011 ++Idx;
3013 // Scan over all recurrences, trying to fold loop invariants into them.
3014 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3015 // Scan all of the other operands to this mul and add them to the vector
3016 // if they are loop invariant w.r.t. the recurrence.
3017 SmallVector<const SCEV *, 8> LIOps;
3018 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3019 const Loop *AddRecLoop = AddRec->getLoop();
3020 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3021 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3022 LIOps.push_back(Ops[i]);
3023 Ops.erase(Ops.begin()+i);
3024 --i; --e;
3027 // If we found some loop invariants, fold them into the recurrence.
3028 if (!LIOps.empty()) {
3029 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
3030 SmallVector<const SCEV *, 4> NewOps;
3031 NewOps.reserve(AddRec->getNumOperands());
3032 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3033 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3034 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3035 SCEV::FlagAnyWrap, Depth + 1));
3037 // Build the new addrec. Propagate the NUW and NSW flags if both the
3038 // outer mul and the inner addrec are guaranteed to have no overflow.
3040 // No self-wrap cannot be guaranteed after changing the step size, but
3041 // will be inferred if either NUW or NSW is true.
3042 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
3043 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
3045 // If all of the other operands were loop invariant, we are done.
3046 if (Ops.size() == 1) return NewRec;
3048 // Otherwise, multiply the folded AddRec by the non-invariant parts.
3049 for (unsigned i = 0;; ++i)
3050 if (Ops[i] == AddRec) {
3051 Ops[i] = NewRec;
3052 break;
3054 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3057 // Okay, if there weren't any loop invariants to be folded, check to see
3058 // if there are multiple AddRec's with the same loop induction variable
3059 // being multiplied together. If so, we can fold them.
3061 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3062 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3063 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3064 // ]]],+,...up to x=2n}.
3065 // Note that the arguments to choose() are always integers with values
3066 // known at compile time, never SCEV objects.
3068 // The implementation avoids pointless extra computations when the two
3069 // addrec's are of different length (mathematically, it's equivalent to
3070 // an infinite stream of zeros on the right).
3071 bool OpsModified = false;
3072 for (unsigned OtherIdx = Idx+1;
3073 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3074 ++OtherIdx) {
3075 const SCEVAddRecExpr *OtherAddRec =
3076 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3077 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3078 continue;
3080 // Limit max number of arguments to avoid creation of unreasonably big
3081 // SCEVAddRecs with very complex operands.
3082 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3083 MaxAddRecSize || isHugeExpression(AddRec) ||
3084 isHugeExpression(OtherAddRec))
3085 continue;
3087 bool Overflow = false;
3088 Type *Ty = AddRec->getType();
3089 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3090 SmallVector<const SCEV*, 7> AddRecOps;
3091 for (int x = 0, xe = AddRec->getNumOperands() +
3092 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3093 SmallVector <const SCEV *, 7> SumOps;
3094 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3095 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3096 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3097 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3098 z < ze && !Overflow; ++z) {
3099 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3100 uint64_t Coeff;
3101 if (LargerThan64Bits)
3102 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3103 else
3104 Coeff = Coeff1*Coeff2;
3105 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3106 const SCEV *Term1 = AddRec->getOperand(y-z);
3107 const SCEV *Term2 = OtherAddRec->getOperand(z);
3108 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3109 SCEV::FlagAnyWrap, Depth + 1));
3112 if (SumOps.empty())
3113 SumOps.push_back(getZero(Ty));
3114 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3116 if (!Overflow) {
3117 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3118 SCEV::FlagAnyWrap);
3119 if (Ops.size() == 2) return NewAddRec;
3120 Ops[Idx] = NewAddRec;
3121 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3122 OpsModified = true;
3123 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3124 if (!AddRec)
3125 break;
3128 if (OpsModified)
3129 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3131 // Otherwise couldn't fold anything into this recurrence. Move onto the
3132 // next one.
3135 // Okay, it looks like we really DO need an mul expr. Check to see if we
3136 // already have one, otherwise create a new one.
3137 return getOrCreateMulExpr(Ops, Flags);
3140 /// Represents an unsigned remainder expression based on unsigned division.
3141 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3142 const SCEV *RHS) {
3143 assert(getEffectiveSCEVType(LHS->getType()) ==
3144 getEffectiveSCEVType(RHS->getType()) &&
3145 "SCEVURemExpr operand types don't match!");
3147 // Short-circuit easy cases
3148 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3149 // If constant is one, the result is trivial
3150 if (RHSC->getValue()->isOne())
3151 return getZero(LHS->getType()); // X urem 1 --> 0
3153 // If constant is a power of two, fold into a zext(trunc(LHS)).
3154 if (RHSC->getAPInt().isPowerOf2()) {
3155 Type *FullTy = LHS->getType();
3156 Type *TruncTy =
3157 IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3158 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3162 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3163 const SCEV *UDiv = getUDivExpr(LHS, RHS);
3164 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3165 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3168 /// Get a canonical unsigned division expression, or something simpler if
3169 /// possible.
3170 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3171 const SCEV *RHS) {
3172 assert(getEffectiveSCEVType(LHS->getType()) ==
3173 getEffectiveSCEVType(RHS->getType()) &&
3174 "SCEVUDivExpr operand types don't match!");
3176 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3177 if (RHSC->getValue()->isOne())
3178 return LHS; // X udiv 1 --> x
3179 // If the denominator is zero, the result of the udiv is undefined. Don't
3180 // try to analyze it, because the resolution chosen here may differ from
3181 // the resolution chosen in other parts of the compiler.
3182 if (!RHSC->getValue()->isZero()) {
3183 // Determine if the division can be folded into the operands of
3184 // its operands.
3185 // TODO: Generalize this to non-constants by using known-bits information.
3186 Type *Ty = LHS->getType();
3187 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3188 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3189 // For non-power-of-two values, effectively round the value up to the
3190 // nearest power of two.
3191 if (!RHSC->getAPInt().isPowerOf2())
3192 ++MaxShiftAmt;
3193 IntegerType *ExtTy =
3194 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3195 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3196 if (const SCEVConstant *Step =
3197 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3198 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3199 const APInt &StepInt = Step->getAPInt();
3200 const APInt &DivInt = RHSC->getAPInt();
3201 if (!StepInt.urem(DivInt) &&
3202 getZeroExtendExpr(AR, ExtTy) ==
3203 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3204 getZeroExtendExpr(Step, ExtTy),
3205 AR->getLoop(), SCEV::FlagAnyWrap)) {
3206 SmallVector<const SCEV *, 4> Operands;
3207 for (const SCEV *Op : AR->operands())
3208 Operands.push_back(getUDivExpr(Op, RHS));
3209 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3211 /// Get a canonical UDivExpr for a recurrence.
3212 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3213 // We can currently only fold X%N if X is constant.
3214 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3215 if (StartC && !DivInt.urem(StepInt) &&
3216 getZeroExtendExpr(AR, ExtTy) ==
3217 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3218 getZeroExtendExpr(Step, ExtTy),
3219 AR->getLoop(), SCEV::FlagAnyWrap)) {
3220 const APInt &StartInt = StartC->getAPInt();
3221 const APInt &StartRem = StartInt.urem(StepInt);
3222 if (StartRem != 0)
3223 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3224 AR->getLoop(), SCEV::FlagNW);
3227 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3228 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3229 SmallVector<const SCEV *, 4> Operands;
3230 for (const SCEV *Op : M->operands())
3231 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3232 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3233 // Find an operand that's safely divisible.
3234 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3235 const SCEV *Op = M->getOperand(i);
3236 const SCEV *Div = getUDivExpr(Op, RHSC);
3237 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3238 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3239 M->op_end());
3240 Operands[i] = Div;
3241 return getMulExpr(Operands);
3246 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3247 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3248 if (auto *DivisorConstant =
3249 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3250 bool Overflow = false;
3251 APInt NewRHS =
3252 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3253 if (Overflow) {
3254 return getConstant(RHSC->getType(), 0, false);
3256 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3260 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3261 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3262 SmallVector<const SCEV *, 4> Operands;
3263 for (const SCEV *Op : A->operands())
3264 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3265 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3266 Operands.clear();
3267 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3268 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3269 if (isa<SCEVUDivExpr>(Op) ||
3270 getMulExpr(Op, RHS) != A->getOperand(i))
3271 break;
3272 Operands.push_back(Op);
3274 if (Operands.size() == A->getNumOperands())
3275 return getAddExpr(Operands);
3279 // Fold if both operands are constant.
3280 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3281 Constant *LHSCV = LHSC->getValue();
3282 Constant *RHSCV = RHSC->getValue();
3283 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3284 RHSCV)));
3289 FoldingSetNodeID ID;
3290 ID.AddInteger(scUDivExpr);
3291 ID.AddPointer(LHS);
3292 ID.AddPointer(RHS);
3293 void *IP = nullptr;
3294 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3295 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3296 LHS, RHS);
3297 UniqueSCEVs.InsertNode(S, IP);
3298 addToLoopUseLists(S);
3299 return S;
3302 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3303 APInt A = C1->getAPInt().abs();
3304 APInt B = C2->getAPInt().abs();
3305 uint32_t ABW = A.getBitWidth();
3306 uint32_t BBW = B.getBitWidth();
3308 if (ABW > BBW)
3309 B = B.zext(ABW);
3310 else if (ABW < BBW)
3311 A = A.zext(BBW);
3313 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3316 /// Get a canonical unsigned division expression, or something simpler if
3317 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3318 /// can attempt to remove factors from the LHS and RHS. We can't do this when
3319 /// it's not exact because the udiv may be clearing bits.
3320 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3321 const SCEV *RHS) {
3322 // TODO: we could try to find factors in all sorts of things, but for now we
3323 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3324 // end of this file for inspiration.
3326 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3327 if (!Mul || !Mul->hasNoUnsignedWrap())
3328 return getUDivExpr(LHS, RHS);
3330 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3331 // If the mulexpr multiplies by a constant, then that constant must be the
3332 // first element of the mulexpr.
3333 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3334 if (LHSCst == RHSCst) {
3335 SmallVector<const SCEV *, 2> Operands;
3336 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3337 return getMulExpr(Operands);
3340 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3341 // that there's a factor provided by one of the other terms. We need to
3342 // check.
3343 APInt Factor = gcd(LHSCst, RHSCst);
3344 if (!Factor.isIntN(1)) {
3345 LHSCst =
3346 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3347 RHSCst =
3348 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3349 SmallVector<const SCEV *, 2> Operands;
3350 Operands.push_back(LHSCst);
3351 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3352 LHS = getMulExpr(Operands);
3353 RHS = RHSCst;
3354 Mul = dyn_cast<SCEVMulExpr>(LHS);
3355 if (!Mul)
3356 return getUDivExactExpr(LHS, RHS);
3361 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3362 if (Mul->getOperand(i) == RHS) {
3363 SmallVector<const SCEV *, 2> Operands;
3364 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3365 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3366 return getMulExpr(Operands);
3370 return getUDivExpr(LHS, RHS);
3373 /// Get an add recurrence expression for the specified loop. Simplify the
3374 /// expression as much as possible.
3375 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3376 const Loop *L,
3377 SCEV::NoWrapFlags Flags) {
3378 SmallVector<const SCEV *, 4> Operands;
3379 Operands.push_back(Start);
3380 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3381 if (StepChrec->getLoop() == L) {
3382 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3383 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3386 Operands.push_back(Step);
3387 return getAddRecExpr(Operands, L, Flags);
3390 /// Get an add recurrence expression for the specified loop. Simplify the
3391 /// expression as much as possible.
3392 const SCEV *
3393 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3394 const Loop *L, SCEV::NoWrapFlags Flags) {
3395 if (Operands.size() == 1) return Operands[0];
3396 #ifndef NDEBUG
3397 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3398 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3399 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3400 "SCEVAddRecExpr operand types don't match!");
3401 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3402 assert(isLoopInvariant(Operands[i], L) &&
3403 "SCEVAddRecExpr operand is not loop-invariant!");
3404 #endif
3406 if (Operands.back()->isZero()) {
3407 Operands.pop_back();
3408 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
3411 // It's tempting to want to call getMaxBackedgeTakenCount count here and
3412 // use that information to infer NUW and NSW flags. However, computing a
3413 // BE count requires calling getAddRecExpr, so we may not yet have a
3414 // meaningful BE count at this point (and if we don't, we'd be stuck
3415 // with a SCEVCouldNotCompute as the cached BE count).
3417 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3419 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3420 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3421 const Loop *NestedLoop = NestedAR->getLoop();
3422 if (L->contains(NestedLoop)
3423 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3424 : (!NestedLoop->contains(L) &&
3425 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3426 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3427 NestedAR->op_end());
3428 Operands[0] = NestedAR->getStart();
3429 // AddRecs require their operands be loop-invariant with respect to their
3430 // loops. Don't perform this transformation if it would break this
3431 // requirement.
3432 bool AllInvariant = all_of(
3433 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3435 if (AllInvariant) {
3436 // Create a recurrence for the outer loop with the same step size.
3438 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3439 // inner recurrence has the same property.
3440 SCEV::NoWrapFlags OuterFlags =
3441 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3443 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3444 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3445 return isLoopInvariant(Op, NestedLoop);
3448 if (AllInvariant) {
3449 // Ok, both add recurrences are valid after the transformation.
3451 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3452 // the outer recurrence has the same property.
3453 SCEV::NoWrapFlags InnerFlags =
3454 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3455 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3458 // Reset Operands to its original state.
3459 Operands[0] = NestedAR;
3463 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3464 // already have one, otherwise create a new one.
3465 return getOrCreateAddRecExpr(Operands, L, Flags);
3468 const SCEV *
3469 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3470 const SmallVectorImpl<const SCEV *> &IndexExprs) {
3471 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3472 // getSCEV(Base)->getType() has the same address space as Base->getType()
3473 // because SCEV::getType() preserves the address space.
3474 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3475 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3476 // instruction to its SCEV, because the Instruction may be guarded by control
3477 // flow and the no-overflow bits may not be valid for the expression in any
3478 // context. This can be fixed similarly to how these flags are handled for
3479 // adds.
3480 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3481 : SCEV::FlagAnyWrap;
3483 const SCEV *TotalOffset = getZero(IntPtrTy);
3484 // The array size is unimportant. The first thing we do on CurTy is getting
3485 // its element type.
3486 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3487 for (const SCEV *IndexExpr : IndexExprs) {
3488 // Compute the (potentially symbolic) offset in bytes for this index.
3489 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3490 // For a struct, add the member offset.
3491 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3492 unsigned FieldNo = Index->getZExtValue();
3493 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3495 // Add the field offset to the running total offset.
3496 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3498 // Update CurTy to the type of the field at Index.
3499 CurTy = STy->getTypeAtIndex(Index);
3500 } else {
3501 // Update CurTy to its element type.
3502 CurTy = cast<SequentialType>(CurTy)->getElementType();
3503 // For an array, add the element offset, explicitly scaled.
3504 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3505 // Getelementptr indices are signed.
3506 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3508 // Multiply the index by the element size to compute the element offset.
3509 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3511 // Add the element offset to the running total offset.
3512 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3516 // Add the total offset from all the GEP indices to the base.
3517 return getAddExpr(BaseExpr, TotalOffset, Wrap);
3520 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3521 const SCEV *RHS) {
3522 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3523 return getSMaxExpr(Ops);
3526 const SCEV *
3527 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3528 assert(!Ops.empty() && "Cannot get empty smax!");
3529 if (Ops.size() == 1) return Ops[0];
3530 #ifndef NDEBUG
3531 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3532 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3533 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3534 "SCEVSMaxExpr operand types don't match!");
3535 #endif
3537 // Sort by complexity, this groups all similar expression types together.
3538 GroupByComplexity(Ops, &LI, DT);
3540 // If there are any constants, fold them together.
3541 unsigned Idx = 0;
3542 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3543 ++Idx;
3544 assert(Idx < Ops.size());
3545 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3546 // We found two constants, fold them together!
3547 ConstantInt *Fold = ConstantInt::get(
3548 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3549 Ops[0] = getConstant(Fold);
3550 Ops.erase(Ops.begin()+1); // Erase the folded element
3551 if (Ops.size() == 1) return Ops[0];
3552 LHSC = cast<SCEVConstant>(Ops[0]);
3555 // If we are left with a constant minimum-int, strip it off.
3556 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3557 Ops.erase(Ops.begin());
3558 --Idx;
3559 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3560 // If we have an smax with a constant maximum-int, it will always be
3561 // maximum-int.
3562 return Ops[0];
3565 if (Ops.size() == 1) return Ops[0];
3568 // Find the first SMax
3569 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3570 ++Idx;
3572 // Check to see if one of the operands is an SMax. If so, expand its operands
3573 // onto our operand list, and recurse to simplify.
3574 if (Idx < Ops.size()) {
3575 bool DeletedSMax = false;
3576 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3577 Ops.erase(Ops.begin()+Idx);
3578 Ops.append(SMax->op_begin(), SMax->op_end());
3579 DeletedSMax = true;
3582 if (DeletedSMax)
3583 return getSMaxExpr(Ops);
3586 // Okay, check to see if the same value occurs in the operand list twice. If
3587 // so, delete one. Since we sorted the list, these values are required to
3588 // be adjacent.
3589 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3590 // X smax Y smax Y --> X smax Y
3591 // X smax Y --> X, if X is always greater than Y
3592 if (Ops[i] == Ops[i+1] ||
3593 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3594 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3595 --i; --e;
3596 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3597 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3598 --i; --e;
3601 if (Ops.size() == 1) return Ops[0];
3603 assert(!Ops.empty() && "Reduced smax down to nothing!");
3605 // Okay, it looks like we really DO need an smax expr. Check to see if we
3606 // already have one, otherwise create a new one.
3607 FoldingSetNodeID ID;
3608 ID.AddInteger(scSMaxExpr);
3609 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3610 ID.AddPointer(Ops[i]);
3611 void *IP = nullptr;
3612 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3613 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3614 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3615 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3616 O, Ops.size());
3617 UniqueSCEVs.InsertNode(S, IP);
3618 addToLoopUseLists(S);
3619 return S;
3622 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3623 const SCEV *RHS) {
3624 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3625 return getUMaxExpr(Ops);
3628 const SCEV *
3629 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3630 assert(!Ops.empty() && "Cannot get empty umax!");
3631 if (Ops.size() == 1) return Ops[0];
3632 #ifndef NDEBUG
3633 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3634 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3635 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3636 "SCEVUMaxExpr operand types don't match!");
3637 #endif
3639 // Sort by complexity, this groups all similar expression types together.
3640 GroupByComplexity(Ops, &LI, DT);
3642 // If there are any constants, fold them together.
3643 unsigned Idx = 0;
3644 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3645 ++Idx;
3646 assert(Idx < Ops.size());
3647 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3648 // We found two constants, fold them together!
3649 ConstantInt *Fold = ConstantInt::get(
3650 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3651 Ops[0] = getConstant(Fold);
3652 Ops.erase(Ops.begin()+1); // Erase the folded element
3653 if (Ops.size() == 1) return Ops[0];
3654 LHSC = cast<SCEVConstant>(Ops[0]);
3657 // If we are left with a constant minimum-int, strip it off.
3658 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3659 Ops.erase(Ops.begin());
3660 --Idx;
3661 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3662 // If we have an umax with a constant maximum-int, it will always be
3663 // maximum-int.
3664 return Ops[0];
3667 if (Ops.size() == 1) return Ops[0];
3670 // Find the first UMax
3671 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3672 ++Idx;
3674 // Check to see if one of the operands is a UMax. If so, expand its operands
3675 // onto our operand list, and recurse to simplify.
3676 if (Idx < Ops.size()) {
3677 bool DeletedUMax = false;
3678 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3679 Ops.erase(Ops.begin()+Idx);
3680 Ops.append(UMax->op_begin(), UMax->op_end());
3681 DeletedUMax = true;
3684 if (DeletedUMax)
3685 return getUMaxExpr(Ops);
3688 // Okay, check to see if the same value occurs in the operand list twice. If
3689 // so, delete one. Since we sorted the list, these values are required to
3690 // be adjacent.
3691 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3692 // X umax Y umax Y --> X umax Y
3693 // X umax Y --> X, if X is always greater than Y
3694 if (Ops[i] == Ops[i + 1] || isKnownViaNonRecursiveReasoning(
3695 ICmpInst::ICMP_UGE, Ops[i], Ops[i + 1])) {
3696 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3697 --i; --e;
3698 } else if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, Ops[i],
3699 Ops[i + 1])) {
3700 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3701 --i; --e;
3704 if (Ops.size() == 1) return Ops[0];
3706 assert(!Ops.empty() && "Reduced umax down to nothing!");
3708 // Okay, it looks like we really DO need a umax expr. Check to see if we
3709 // already have one, otherwise create a new one.
3710 FoldingSetNodeID ID;
3711 ID.AddInteger(scUMaxExpr);
3712 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3713 ID.AddPointer(Ops[i]);
3714 void *IP = nullptr;
3715 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3716 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3717 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3718 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3719 O, Ops.size());
3720 UniqueSCEVs.InsertNode(S, IP);
3721 addToLoopUseLists(S);
3722 return S;
3725 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3726 const SCEV *RHS) {
3727 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3728 return getSMinExpr(Ops);
3731 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3732 // ~smax(~x, ~y, ~z) == smin(x, y, z).
3733 SmallVector<const SCEV *, 2> NotOps;
3734 for (auto *S : Ops)
3735 NotOps.push_back(getNotSCEV(S));
3736 return getNotSCEV(getSMaxExpr(NotOps));
3739 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3740 const SCEV *RHS) {
3741 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3742 return getUMinExpr(Ops);
3745 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3746 assert(!Ops.empty() && "At least one operand must be!");
3747 // Trivial case.
3748 if (Ops.size() == 1)
3749 return Ops[0];
3751 // ~umax(~x, ~y, ~z) == umin(x, y, z).
3752 SmallVector<const SCEV *, 2> NotOps;
3753 for (auto *S : Ops)
3754 NotOps.push_back(getNotSCEV(S));
3755 return getNotSCEV(getUMaxExpr(NotOps));
3758 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3759 // We can bypass creating a target-independent
3760 // constant expression and then folding it back into a ConstantInt.
3761 // This is just a compile-time optimization.
3762 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3765 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3766 StructType *STy,
3767 unsigned FieldNo) {
3768 // We can bypass creating a target-independent
3769 // constant expression and then folding it back into a ConstantInt.
3770 // This is just a compile-time optimization.
3771 return getConstant(
3772 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3775 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3776 // Don't attempt to do anything other than create a SCEVUnknown object
3777 // here. createSCEV only calls getUnknown after checking for all other
3778 // interesting possibilities, and any other code that calls getUnknown
3779 // is doing so in order to hide a value from SCEV canonicalization.
3781 FoldingSetNodeID ID;
3782 ID.AddInteger(scUnknown);
3783 ID.AddPointer(V);
3784 void *IP = nullptr;
3785 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3786 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3787 "Stale SCEVUnknown in uniquing map!");
3788 return S;
3790 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3791 FirstUnknown);
3792 FirstUnknown = cast<SCEVUnknown>(S);
3793 UniqueSCEVs.InsertNode(S, IP);
3794 return S;
3797 //===----------------------------------------------------------------------===//
3798 // Basic SCEV Analysis and PHI Idiom Recognition Code
3801 /// Test if values of the given type are analyzable within the SCEV
3802 /// framework. This primarily includes integer types, and it can optionally
3803 /// include pointer types if the ScalarEvolution class has access to
3804 /// target-specific information.
3805 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3806 // Integers and pointers are always SCEVable.
3807 return Ty->isIntOrPtrTy();
3810 /// Return the size in bits of the specified type, for which isSCEVable must
3811 /// return true.
3812 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3813 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3814 if (Ty->isPointerTy())
3815 return getDataLayout().getIndexTypeSizeInBits(Ty);
3816 return getDataLayout().getTypeSizeInBits(Ty);
3819 /// Return a type with the same bitwidth as the given type and which represents
3820 /// how SCEV will treat the given type, for which isSCEVable must return
3821 /// true. For pointer types, this is the pointer-sized integer type.
3822 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3823 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3825 if (Ty->isIntegerTy())
3826 return Ty;
3828 // The only other support type is pointer.
3829 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3830 return getDataLayout().getIntPtrType(Ty);
3833 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3834 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3837 const SCEV *ScalarEvolution::getCouldNotCompute() {
3838 return CouldNotCompute.get();
3841 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3842 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3843 auto *SU = dyn_cast<SCEVUnknown>(S);
3844 return SU && SU->getValue() == nullptr;
3847 return !ContainsNulls;
3850 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3851 HasRecMapType::iterator I = HasRecMap.find(S);
3852 if (I != HasRecMap.end())
3853 return I->second;
3855 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3856 HasRecMap.insert({S, FoundAddRec});
3857 return FoundAddRec;
3860 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3861 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3862 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3863 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3864 const auto *Add = dyn_cast<SCEVAddExpr>(S);
3865 if (!Add)
3866 return {S, nullptr};
3868 if (Add->getNumOperands() != 2)
3869 return {S, nullptr};
3871 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3872 if (!ConstOp)
3873 return {S, nullptr};
3875 return {Add->getOperand(1), ConstOp->getValue()};
3878 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3879 /// by the value and offset from any ValueOffsetPair in the set.
3880 SetVector<ScalarEvolution::ValueOffsetPair> *
3881 ScalarEvolution::getSCEVValues(const SCEV *S) {
3882 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3883 if (SI == ExprValueMap.end())
3884 return nullptr;
3885 #ifndef NDEBUG
3886 if (VerifySCEVMap) {
3887 // Check there is no dangling Value in the set returned.
3888 for (const auto &VE : SI->second)
3889 assert(ValueExprMap.count(VE.first));
3891 #endif
3892 return &SI->second;
3895 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3896 /// cannot be used separately. eraseValueFromMap should be used to remove
3897 /// V from ValueExprMap and ExprValueMap at the same time.
3898 void ScalarEvolution::eraseValueFromMap(Value *V) {
3899 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3900 if (I != ValueExprMap.end()) {
3901 const SCEV *S = I->second;
3902 // Remove {V, 0} from the set of ExprValueMap[S]
3903 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3904 SV->remove({V, nullptr});
3906 // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3907 const SCEV *Stripped;
3908 ConstantInt *Offset;
3909 std::tie(Stripped, Offset) = splitAddExpr(S);
3910 if (Offset != nullptr) {
3911 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3912 SV->remove({V, Offset});
3914 ValueExprMap.erase(V);
3918 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3919 /// TODO: In reality it is better to check the poison recursively
3920 /// but this is better than nothing.
3921 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3922 if (auto *I = dyn_cast<Instruction>(V)) {
3923 if (isa<OverflowingBinaryOperator>(I)) {
3924 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3925 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3926 return true;
3927 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3928 return true;
3930 } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3931 return true;
3933 return false;
3936 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3937 /// create a new one.
3938 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3939 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3941 const SCEV *S = getExistingSCEV(V);
3942 if (S == nullptr) {
3943 S = createSCEV(V);
3944 // During PHI resolution, it is possible to create two SCEVs for the same
3945 // V, so it is needed to double check whether V->S is inserted into
3946 // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3947 std::pair<ValueExprMapType::iterator, bool> Pair =
3948 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3949 if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3950 ExprValueMap[S].insert({V, nullptr});
3952 // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3953 // ExprValueMap.
3954 const SCEV *Stripped = S;
3955 ConstantInt *Offset = nullptr;
3956 std::tie(Stripped, Offset) = splitAddExpr(S);
3957 // If stripped is SCEVUnknown, don't bother to save
3958 // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3959 // increase the complexity of the expansion code.
3960 // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3961 // because it may generate add/sub instead of GEP in SCEV expansion.
3962 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3963 !isa<GetElementPtrInst>(V))
3964 ExprValueMap[Stripped].insert({V, Offset});
3967 return S;
3970 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3971 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3973 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3974 if (I != ValueExprMap.end()) {
3975 const SCEV *S = I->second;
3976 if (checkValidity(S))
3977 return S;
3978 eraseValueFromMap(V);
3979 forgetMemoizedResults(S);
3981 return nullptr;
3984 /// Return a SCEV corresponding to -V = -1*V
3985 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3986 SCEV::NoWrapFlags Flags) {
3987 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3988 return getConstant(
3989 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3991 Type *Ty = V->getType();
3992 Ty = getEffectiveSCEVType(Ty);
3993 return getMulExpr(
3994 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3997 /// Return a SCEV corresponding to ~V = -1-V
3998 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3999 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4000 return getConstant(
4001 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4003 Type *Ty = V->getType();
4004 Ty = getEffectiveSCEVType(Ty);
4005 const SCEV *AllOnes =
4006 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
4007 return getMinusSCEV(AllOnes, V);
4010 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4011 SCEV::NoWrapFlags Flags,
4012 unsigned Depth) {
4013 // Fast path: X - X --> 0.
4014 if (LHS == RHS)
4015 return getZero(LHS->getType());
4017 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4018 // makes it so that we cannot make much use of NUW.
4019 auto AddFlags = SCEV::FlagAnyWrap;
4020 const bool RHSIsNotMinSigned =
4021 !getSignedRangeMin(RHS).isMinSignedValue();
4022 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4023 // Let M be the minimum representable signed value. Then (-1)*RHS
4024 // signed-wraps if and only if RHS is M. That can happen even for
4025 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4026 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4027 // (-1)*RHS, we need to prove that RHS != M.
4029 // If LHS is non-negative and we know that LHS - RHS does not
4030 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4031 // either by proving that RHS > M or that LHS >= 0.
4032 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4033 AddFlags = SCEV::FlagNSW;
4037 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4038 // RHS is NSW and LHS >= 0.
4040 // The difficulty here is that the NSW flag may have been proven
4041 // relative to a loop that is to be found in a recurrence in LHS and
4042 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4043 // larger scope than intended.
4044 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4046 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4049 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4050 unsigned Depth) {
4051 Type *SrcTy = V->getType();
4052 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4053 "Cannot truncate or zero extend with non-integer arguments!");
4054 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4055 return V; // No conversion
4056 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4057 return getTruncateExpr(V, Ty, Depth);
4058 return getZeroExtendExpr(V, Ty, Depth);
4061 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4062 unsigned Depth) {
4063 Type *SrcTy = V->getType();
4064 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4065 "Cannot truncate or zero extend with non-integer arguments!");
4066 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4067 return V; // No conversion
4068 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4069 return getTruncateExpr(V, Ty, Depth);
4070 return getSignExtendExpr(V, Ty, Depth);
4073 const SCEV *
4074 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4075 Type *SrcTy = V->getType();
4076 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4077 "Cannot noop or zero extend with non-integer arguments!");
4078 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4079 "getNoopOrZeroExtend cannot truncate!");
4080 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4081 return V; // No conversion
4082 return getZeroExtendExpr(V, Ty);
4085 const SCEV *
4086 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4087 Type *SrcTy = V->getType();
4088 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4089 "Cannot noop or sign extend with non-integer arguments!");
4090 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4091 "getNoopOrSignExtend cannot truncate!");
4092 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4093 return V; // No conversion
4094 return getSignExtendExpr(V, Ty);
4097 const SCEV *
4098 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4099 Type *SrcTy = V->getType();
4100 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4101 "Cannot noop or any extend with non-integer arguments!");
4102 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4103 "getNoopOrAnyExtend cannot truncate!");
4104 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4105 return V; // No conversion
4106 return getAnyExtendExpr(V, Ty);
4109 const SCEV *
4110 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4111 Type *SrcTy = V->getType();
4112 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4113 "Cannot truncate or noop with non-integer arguments!");
4114 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4115 "getTruncateOrNoop cannot extend!");
4116 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4117 return V; // No conversion
4118 return getTruncateExpr(V, Ty);
4121 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4122 const SCEV *RHS) {
4123 const SCEV *PromotedLHS = LHS;
4124 const SCEV *PromotedRHS = RHS;
4126 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4127 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4128 else
4129 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4131 return getUMaxExpr(PromotedLHS, PromotedRHS);
4134 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4135 const SCEV *RHS) {
4136 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4137 return getUMinFromMismatchedTypes(Ops);
4140 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4141 SmallVectorImpl<const SCEV *> &Ops) {
4142 assert(!Ops.empty() && "At least one operand must be!");
4143 // Trivial case.
4144 if (Ops.size() == 1)
4145 return Ops[0];
4147 // Find the max type first.
4148 Type *MaxType = nullptr;
4149 for (auto *S : Ops)
4150 if (MaxType)
4151 MaxType = getWiderType(MaxType, S->getType());
4152 else
4153 MaxType = S->getType();
4155 // Extend all ops to max type.
4156 SmallVector<const SCEV *, 2> PromotedOps;
4157 for (auto *S : Ops)
4158 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4160 // Generate umin.
4161 return getUMinExpr(PromotedOps);
4164 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4165 // A pointer operand may evaluate to a nonpointer expression, such as null.
4166 if (!V->getType()->isPointerTy())
4167 return V;
4169 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4170 return getPointerBase(Cast->getOperand());
4171 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4172 const SCEV *PtrOp = nullptr;
4173 for (const SCEV *NAryOp : NAry->operands()) {
4174 if (NAryOp->getType()->isPointerTy()) {
4175 // Cannot find the base of an expression with multiple pointer operands.
4176 if (PtrOp)
4177 return V;
4178 PtrOp = NAryOp;
4181 if (!PtrOp)
4182 return V;
4183 return getPointerBase(PtrOp);
4185 return V;
4188 /// Push users of the given Instruction onto the given Worklist.
4189 static void
4190 PushDefUseChildren(Instruction *I,
4191 SmallVectorImpl<Instruction *> &Worklist) {
4192 // Push the def-use children onto the Worklist stack.
4193 for (User *U : I->users())
4194 Worklist.push_back(cast<Instruction>(U));
4197 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4198 SmallVector<Instruction *, 16> Worklist;
4199 PushDefUseChildren(PN, Worklist);
4201 SmallPtrSet<Instruction *, 8> Visited;
4202 Visited.insert(PN);
4203 while (!Worklist.empty()) {
4204 Instruction *I = Worklist.pop_back_val();
4205 if (!Visited.insert(I).second)
4206 continue;
4208 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4209 if (It != ValueExprMap.end()) {
4210 const SCEV *Old = It->second;
4212 // Short-circuit the def-use traversal if the symbolic name
4213 // ceases to appear in expressions.
4214 if (Old != SymName && !hasOperand(Old, SymName))
4215 continue;
4217 // SCEVUnknown for a PHI either means that it has an unrecognized
4218 // structure, it's a PHI that's in the progress of being computed
4219 // by createNodeForPHI, or it's a single-value PHI. In the first case,
4220 // additional loop trip count information isn't going to change anything.
4221 // In the second case, createNodeForPHI will perform the necessary
4222 // updates on its own when it gets to that point. In the third, we do
4223 // want to forget the SCEVUnknown.
4224 if (!isa<PHINode>(I) ||
4225 !isa<SCEVUnknown>(Old) ||
4226 (I != PN && Old == SymName)) {
4227 eraseValueFromMap(It->first);
4228 forgetMemoizedResults(Old);
4232 PushDefUseChildren(I, Worklist);
4236 namespace {
4238 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4239 /// expression in case its Loop is L. If it is not L then
4240 /// if IgnoreOtherLoops is true then use AddRec itself
4241 /// otherwise rewrite cannot be done.
4242 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4243 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4244 public:
4245 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4246 bool IgnoreOtherLoops = true) {
4247 SCEVInitRewriter Rewriter(L, SE);
4248 const SCEV *Result = Rewriter.visit(S);
4249 if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4250 return SE.getCouldNotCompute();
4251 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4252 ? SE.getCouldNotCompute()
4253 : Result;
4256 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4257 if (!SE.isLoopInvariant(Expr, L))
4258 SeenLoopVariantSCEVUnknown = true;
4259 return Expr;
4262 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4263 // Only re-write AddRecExprs for this loop.
4264 if (Expr->getLoop() == L)
4265 return Expr->getStart();
4266 SeenOtherLoops = true;
4267 return Expr;
4270 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4272 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4274 private:
4275 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4276 : SCEVRewriteVisitor(SE), L(L) {}
4278 const Loop *L;
4279 bool SeenLoopVariantSCEVUnknown = false;
4280 bool SeenOtherLoops = false;
4283 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4284 /// increment expression in case its Loop is L. If it is not L then
4285 /// use AddRec itself.
4286 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4287 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4288 public:
4289 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4290 SCEVPostIncRewriter Rewriter(L, SE);
4291 const SCEV *Result = Rewriter.visit(S);
4292 return Rewriter.hasSeenLoopVariantSCEVUnknown()
4293 ? SE.getCouldNotCompute()
4294 : Result;
4297 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4298 if (!SE.isLoopInvariant(Expr, L))
4299 SeenLoopVariantSCEVUnknown = true;
4300 return Expr;
4303 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4304 // Only re-write AddRecExprs for this loop.
4305 if (Expr->getLoop() == L)
4306 return Expr->getPostIncExpr(SE);
4307 SeenOtherLoops = true;
4308 return Expr;
4311 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4313 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4315 private:
4316 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4317 : SCEVRewriteVisitor(SE), L(L) {}
4319 const Loop *L;
4320 bool SeenLoopVariantSCEVUnknown = false;
4321 bool SeenOtherLoops = false;
4324 /// This class evaluates the compare condition by matching it against the
4325 /// condition of loop latch. If there is a match we assume a true value
4326 /// for the condition while building SCEV nodes.
4327 class SCEVBackedgeConditionFolder
4328 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4329 public:
4330 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4331 ScalarEvolution &SE) {
4332 bool IsPosBECond = false;
4333 Value *BECond = nullptr;
4334 if (BasicBlock *Latch = L->getLoopLatch()) {
4335 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4336 if (BI && BI->isConditional()) {
4337 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4338 "Both outgoing branches should not target same header!");
4339 BECond = BI->getCondition();
4340 IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4341 } else {
4342 return S;
4345 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4346 return Rewriter.visit(S);
4349 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4350 const SCEV *Result = Expr;
4351 bool InvariantF = SE.isLoopInvariant(Expr, L);
4353 if (!InvariantF) {
4354 Instruction *I = cast<Instruction>(Expr->getValue());
4355 switch (I->getOpcode()) {
4356 case Instruction::Select: {
4357 SelectInst *SI = cast<SelectInst>(I);
4358 Optional<const SCEV *> Res =
4359 compareWithBackedgeCondition(SI->getCondition());
4360 if (Res.hasValue()) {
4361 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4362 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4364 break;
4366 default: {
4367 Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4368 if (Res.hasValue())
4369 Result = Res.getValue();
4370 break;
4374 return Result;
4377 private:
4378 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4379 bool IsPosBECond, ScalarEvolution &SE)
4380 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4381 IsPositiveBECond(IsPosBECond) {}
4383 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4385 const Loop *L;
4386 /// Loop back condition.
4387 Value *BackedgeCond = nullptr;
4388 /// Set to true if loop back is on positive branch condition.
4389 bool IsPositiveBECond;
4392 Optional<const SCEV *>
4393 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4395 // If value matches the backedge condition for loop latch,
4396 // then return a constant evolution node based on loopback
4397 // branch taken.
4398 if (BackedgeCond == IC)
4399 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4400 : SE.getZero(Type::getInt1Ty(SE.getContext()));
4401 return None;
4404 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4405 public:
4406 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4407 ScalarEvolution &SE) {
4408 SCEVShiftRewriter Rewriter(L, SE);
4409 const SCEV *Result = Rewriter.visit(S);
4410 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4413 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4414 // Only allow AddRecExprs for this loop.
4415 if (!SE.isLoopInvariant(Expr, L))
4416 Valid = false;
4417 return Expr;
4420 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4421 if (Expr->getLoop() == L && Expr->isAffine())
4422 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4423 Valid = false;
4424 return Expr;
4427 bool isValid() { return Valid; }
4429 private:
4430 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4431 : SCEVRewriteVisitor(SE), L(L) {}
4433 const Loop *L;
4434 bool Valid = true;
4437 } // end anonymous namespace
4439 SCEV::NoWrapFlags
4440 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4441 if (!AR->isAffine())
4442 return SCEV::FlagAnyWrap;
4444 using OBO = OverflowingBinaryOperator;
4446 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4448 if (!AR->hasNoSignedWrap()) {
4449 ConstantRange AddRecRange = getSignedRange(AR);
4450 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4452 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4453 Instruction::Add, IncRange, OBO::NoSignedWrap);
4454 if (NSWRegion.contains(AddRecRange))
4455 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4458 if (!AR->hasNoUnsignedWrap()) {
4459 ConstantRange AddRecRange = getUnsignedRange(AR);
4460 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4462 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4463 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4464 if (NUWRegion.contains(AddRecRange))
4465 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4468 return Result;
4471 namespace {
4473 /// Represents an abstract binary operation. This may exist as a
4474 /// normal instruction or constant expression, or may have been
4475 /// derived from an expression tree.
4476 struct BinaryOp {
4477 unsigned Opcode;
4478 Value *LHS;
4479 Value *RHS;
4480 bool IsNSW = false;
4481 bool IsNUW = false;
4483 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4484 /// constant expression.
4485 Operator *Op = nullptr;
4487 explicit BinaryOp(Operator *Op)
4488 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4489 Op(Op) {
4490 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4491 IsNSW = OBO->hasNoSignedWrap();
4492 IsNUW = OBO->hasNoUnsignedWrap();
4496 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4497 bool IsNUW = false)
4498 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4501 } // end anonymous namespace
4503 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4504 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4505 auto *Op = dyn_cast<Operator>(V);
4506 if (!Op)
4507 return None;
4509 // Implementation detail: all the cleverness here should happen without
4510 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4511 // SCEV expressions when possible, and we should not break that.
4513 switch (Op->getOpcode()) {
4514 case Instruction::Add:
4515 case Instruction::Sub:
4516 case Instruction::Mul:
4517 case Instruction::UDiv:
4518 case Instruction::URem:
4519 case Instruction::And:
4520 case Instruction::Or:
4521 case Instruction::AShr:
4522 case Instruction::Shl:
4523 return BinaryOp(Op);
4525 case Instruction::Xor:
4526 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4527 // If the RHS of the xor is a signmask, then this is just an add.
4528 // Instcombine turns add of signmask into xor as a strength reduction step.
4529 if (RHSC->getValue().isSignMask())
4530 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4531 return BinaryOp(Op);
4533 case Instruction::LShr:
4534 // Turn logical shift right of a constant into a unsigned divide.
4535 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4536 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4538 // If the shift count is not less than the bitwidth, the result of
4539 // the shift is undefined. Don't try to analyze it, because the
4540 // resolution chosen here may differ from the resolution chosen in
4541 // other parts of the compiler.
4542 if (SA->getValue().ult(BitWidth)) {
4543 Constant *X =
4544 ConstantInt::get(SA->getContext(),
4545 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4546 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4549 return BinaryOp(Op);
4551 case Instruction::ExtractValue: {
4552 auto *EVI = cast<ExtractValueInst>(Op);
4553 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4554 break;
4556 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
4557 if (!CI)
4558 break;
4560 if (auto *F = CI->getCalledFunction())
4561 switch (F->getIntrinsicID()) {
4562 case Intrinsic::sadd_with_overflow:
4563 case Intrinsic::uadd_with_overflow:
4564 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4565 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4566 CI->getArgOperand(1));
4568 // Now that we know that all uses of the arithmetic-result component of
4569 // CI are guarded by the overflow check, we can go ahead and pretend
4570 // that the arithmetic is non-overflowing.
4571 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
4572 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4573 CI->getArgOperand(1), /* IsNSW = */ true,
4574 /* IsNUW = */ false);
4575 else
4576 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4577 CI->getArgOperand(1), /* IsNSW = */ false,
4578 /* IsNUW*/ true);
4579 case Intrinsic::ssub_with_overflow:
4580 case Intrinsic::usub_with_overflow:
4581 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4582 return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4583 CI->getArgOperand(1));
4585 // The same reasoning as sadd/uadd above.
4586 if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow)
4587 return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4588 CI->getArgOperand(1), /* IsNSW = */ true,
4589 /* IsNUW = */ false);
4590 else
4591 return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4592 CI->getArgOperand(1), /* IsNSW = */ false,
4593 /* IsNUW = */ true);
4594 case Intrinsic::smul_with_overflow:
4595 case Intrinsic::umul_with_overflow:
4596 return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
4597 CI->getArgOperand(1));
4598 default:
4599 break;
4601 break;
4604 default:
4605 break;
4608 return None;
4611 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4612 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4613 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4614 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4615 /// follows one of the following patterns:
4616 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4617 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4618 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4619 /// we return the type of the truncation operation, and indicate whether the
4620 /// truncated type should be treated as signed/unsigned by setting
4621 /// \p Signed to true/false, respectively.
4622 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4623 bool &Signed, ScalarEvolution &SE) {
4624 // The case where Op == SymbolicPHI (that is, with no type conversions on
4625 // the way) is handled by the regular add recurrence creating logic and
4626 // would have already been triggered in createAddRecForPHI. Reaching it here
4627 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4628 // because one of the other operands of the SCEVAddExpr updating this PHI is
4629 // not invariant).
4631 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4632 // this case predicates that allow us to prove that Op == SymbolicPHI will
4633 // be added.
4634 if (Op == SymbolicPHI)
4635 return nullptr;
4637 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4638 unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4639 if (SourceBits != NewBits)
4640 return nullptr;
4642 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4643 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4644 if (!SExt && !ZExt)
4645 return nullptr;
4646 const SCEVTruncateExpr *Trunc =
4647 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4648 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4649 if (!Trunc)
4650 return nullptr;
4651 const SCEV *X = Trunc->getOperand();
4652 if (X != SymbolicPHI)
4653 return nullptr;
4654 Signed = SExt != nullptr;
4655 return Trunc->getType();
4658 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4659 if (!PN->getType()->isIntegerTy())
4660 return nullptr;
4661 const Loop *L = LI.getLoopFor(PN->getParent());
4662 if (!L || L->getHeader() != PN->getParent())
4663 return nullptr;
4664 return L;
4667 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4668 // computation that updates the phi follows the following pattern:
4669 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4670 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4671 // If so, try to see if it can be rewritten as an AddRecExpr under some
4672 // Predicates. If successful, return them as a pair. Also cache the results
4673 // of the analysis.
4675 // Example usage scenario:
4676 // Say the Rewriter is called for the following SCEV:
4677 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4678 // where:
4679 // %X = phi i64 (%Start, %BEValue)
4680 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4681 // and call this function with %SymbolicPHI = %X.
4683 // The analysis will find that the value coming around the backedge has
4684 // the following SCEV:
4685 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4686 // Upon concluding that this matches the desired pattern, the function
4687 // will return the pair {NewAddRec, SmallPredsVec} where:
4688 // NewAddRec = {%Start,+,%Step}
4689 // SmallPredsVec = {P1, P2, P3} as follows:
4690 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4691 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4692 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4693 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4694 // under the predicates {P1,P2,P3}.
4695 // This predicated rewrite will be cached in PredicatedSCEVRewrites:
4696 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4698 // TODO's:
4700 // 1) Extend the Induction descriptor to also support inductions that involve
4701 // casts: When needed (namely, when we are called in the context of the
4702 // vectorizer induction analysis), a Set of cast instructions will be
4703 // populated by this method, and provided back to isInductionPHI. This is
4704 // needed to allow the vectorizer to properly record them to be ignored by
4705 // the cost model and to avoid vectorizing them (otherwise these casts,
4706 // which are redundant under the runtime overflow checks, will be
4707 // vectorized, which can be costly).
4709 // 2) Support additional induction/PHISCEV patterns: We also want to support
4710 // inductions where the sext-trunc / zext-trunc operations (partly) occur
4711 // after the induction update operation (the induction increment):
4713 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4714 // which correspond to a phi->add->trunc->sext/zext->phi update chain.
4716 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4717 // which correspond to a phi->trunc->add->sext/zext->phi update chain.
4719 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4720 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4721 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4722 SmallVector<const SCEVPredicate *, 3> Predicates;
4724 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4725 // return an AddRec expression under some predicate.
4727 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4728 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4729 assert(L && "Expecting an integer loop header phi");
4731 // The loop may have multiple entrances or multiple exits; we can analyze
4732 // this phi as an addrec if it has a unique entry value and a unique
4733 // backedge value.
4734 Value *BEValueV = nullptr, *StartValueV = nullptr;
4735 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4736 Value *V = PN->getIncomingValue(i);
4737 if (L->contains(PN->getIncomingBlock(i))) {
4738 if (!BEValueV) {
4739 BEValueV = V;
4740 } else if (BEValueV != V) {
4741 BEValueV = nullptr;
4742 break;
4744 } else if (!StartValueV) {
4745 StartValueV = V;
4746 } else if (StartValueV != V) {
4747 StartValueV = nullptr;
4748 break;
4751 if (!BEValueV || !StartValueV)
4752 return None;
4754 const SCEV *BEValue = getSCEV(BEValueV);
4756 // If the value coming around the backedge is an add with the symbolic
4757 // value we just inserted, possibly with casts that we can ignore under
4758 // an appropriate runtime guard, then we found a simple induction variable!
4759 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4760 if (!Add)
4761 return None;
4763 // If there is a single occurrence of the symbolic value, possibly
4764 // casted, replace it with a recurrence.
4765 unsigned FoundIndex = Add->getNumOperands();
4766 Type *TruncTy = nullptr;
4767 bool Signed;
4768 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4769 if ((TruncTy =
4770 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4771 if (FoundIndex == e) {
4772 FoundIndex = i;
4773 break;
4776 if (FoundIndex == Add->getNumOperands())
4777 return None;
4779 // Create an add with everything but the specified operand.
4780 SmallVector<const SCEV *, 8> Ops;
4781 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4782 if (i != FoundIndex)
4783 Ops.push_back(Add->getOperand(i));
4784 const SCEV *Accum = getAddExpr(Ops);
4786 // The runtime checks will not be valid if the step amount is
4787 // varying inside the loop.
4788 if (!isLoopInvariant(Accum, L))
4789 return None;
4791 // *** Part2: Create the predicates
4793 // Analysis was successful: we have a phi-with-cast pattern for which we
4794 // can return an AddRec expression under the following predicates:
4796 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4797 // fits within the truncated type (does not overflow) for i = 0 to n-1.
4798 // P2: An Equal predicate that guarantees that
4799 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4800 // P3: An Equal predicate that guarantees that
4801 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4803 // As we next prove, the above predicates guarantee that:
4804 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4807 // More formally, we want to prove that:
4808 // Expr(i+1) = Start + (i+1) * Accum
4809 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4811 // Given that:
4812 // 1) Expr(0) = Start
4813 // 2) Expr(1) = Start + Accum
4814 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4815 // 3) Induction hypothesis (step i):
4816 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4818 // Proof:
4819 // Expr(i+1) =
4820 // = Start + (i+1)*Accum
4821 // = (Start + i*Accum) + Accum
4822 // = Expr(i) + Accum
4823 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4824 // :: from step i
4826 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4828 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4829 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
4830 // + Accum :: from P3
4832 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4833 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4835 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4836 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4838 // By induction, the same applies to all iterations 1<=i<n:
4841 // Create a truncated addrec for which we will add a no overflow check (P1).
4842 const SCEV *StartVal = getSCEV(StartValueV);
4843 const SCEV *PHISCEV =
4844 getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4845 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4847 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4848 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4849 // will be constant.
4851 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4852 // add P1.
4853 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4854 SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4855 Signed ? SCEVWrapPredicate::IncrementNSSW
4856 : SCEVWrapPredicate::IncrementNUSW;
4857 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4858 Predicates.push_back(AddRecPred);
4861 // Create the Equal Predicates P2,P3:
4863 // It is possible that the predicates P2 and/or P3 are computable at
4864 // compile time due to StartVal and/or Accum being constants.
4865 // If either one is, then we can check that now and escape if either P2
4866 // or P3 is false.
4868 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4869 // for each of StartVal and Accum
4870 auto getExtendedExpr = [&](const SCEV *Expr,
4871 bool CreateSignExtend) -> const SCEV * {
4872 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4873 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4874 const SCEV *ExtendedExpr =
4875 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4876 : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4877 return ExtendedExpr;
4880 // Given:
4881 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4882 // = getExtendedExpr(Expr)
4883 // Determine whether the predicate P: Expr == ExtendedExpr
4884 // is known to be false at compile time
4885 auto PredIsKnownFalse = [&](const SCEV *Expr,
4886 const SCEV *ExtendedExpr) -> bool {
4887 return Expr != ExtendedExpr &&
4888 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4891 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4892 if (PredIsKnownFalse(StartVal, StartExtended)) {
4893 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4894 return None;
4897 // The Step is always Signed (because the overflow checks are either
4898 // NSSW or NUSW)
4899 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4900 if (PredIsKnownFalse(Accum, AccumExtended)) {
4901 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4902 return None;
4905 auto AppendPredicate = [&](const SCEV *Expr,
4906 const SCEV *ExtendedExpr) -> void {
4907 if (Expr != ExtendedExpr &&
4908 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4909 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4910 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4911 Predicates.push_back(Pred);
4915 AppendPredicate(StartVal, StartExtended);
4916 AppendPredicate(Accum, AccumExtended);
4918 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4919 // which the casts had been folded away. The caller can rewrite SymbolicPHI
4920 // into NewAR if it will also add the runtime overflow checks specified in
4921 // Predicates.
4922 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4924 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4925 std::make_pair(NewAR, Predicates);
4926 // Remember the result of the analysis for this SCEV at this locayyytion.
4927 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4928 return PredRewrite;
4931 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4932 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4933 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4934 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4935 if (!L)
4936 return None;
4938 // Check to see if we already analyzed this PHI.
4939 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4940 if (I != PredicatedSCEVRewrites.end()) {
4941 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4942 I->second;
4943 // Analysis was done before and failed to create an AddRec:
4944 if (Rewrite.first == SymbolicPHI)
4945 return None;
4946 // Analysis was done before and succeeded to create an AddRec under
4947 // a predicate:
4948 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4949 assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4950 return Rewrite;
4953 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4954 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4956 // Record in the cache that the analysis failed
4957 if (!Rewrite) {
4958 SmallVector<const SCEVPredicate *, 3> Predicates;
4959 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4960 return None;
4963 return Rewrite;
4966 // FIXME: This utility is currently required because the Rewriter currently
4967 // does not rewrite this expression:
4968 // {0, +, (sext ix (trunc iy to ix) to iy)}
4969 // into {0, +, %step},
4970 // even when the following Equal predicate exists:
4971 // "%step == (sext ix (trunc iy to ix) to iy)".
4972 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4973 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4974 if (AR1 == AR2)
4975 return true;
4977 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4978 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4979 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4980 return false;
4981 return true;
4984 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4985 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4986 return false;
4987 return true;
4990 /// A helper function for createAddRecFromPHI to handle simple cases.
4992 /// This function tries to find an AddRec expression for the simplest (yet most
4993 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4994 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4995 /// technique for finding the AddRec expression.
4996 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4997 Value *BEValueV,
4998 Value *StartValueV) {
4999 const Loop *L = LI.getLoopFor(PN->getParent());
5000 assert(L && L->getHeader() == PN->getParent());
5001 assert(BEValueV && StartValueV);
5003 auto BO = MatchBinaryOp(BEValueV, DT);
5004 if (!BO)
5005 return nullptr;
5007 if (BO->Opcode != Instruction::Add)
5008 return nullptr;
5010 const SCEV *Accum = nullptr;
5011 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5012 Accum = getSCEV(BO->RHS);
5013 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5014 Accum = getSCEV(BO->LHS);
5016 if (!Accum)
5017 return nullptr;
5019 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5020 if (BO->IsNUW)
5021 Flags = setFlags(Flags, SCEV::FlagNUW);
5022 if (BO->IsNSW)
5023 Flags = setFlags(Flags, SCEV::FlagNSW);
5025 const SCEV *StartVal = getSCEV(StartValueV);
5026 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5028 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5030 // We can add Flags to the post-inc expression only if we
5031 // know that it is *undefined behavior* for BEValueV to
5032 // overflow.
5033 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5034 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5035 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5037 return PHISCEV;
5040 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5041 const Loop *L = LI.getLoopFor(PN->getParent());
5042 if (!L || L->getHeader() != PN->getParent())
5043 return nullptr;
5045 // The loop may have multiple entrances or multiple exits; we can analyze
5046 // this phi as an addrec if it has a unique entry value and a unique
5047 // backedge value.
5048 Value *BEValueV = nullptr, *StartValueV = nullptr;
5049 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5050 Value *V = PN->getIncomingValue(i);
5051 if (L->contains(PN->getIncomingBlock(i))) {
5052 if (!BEValueV) {
5053 BEValueV = V;
5054 } else if (BEValueV != V) {
5055 BEValueV = nullptr;
5056 break;
5058 } else if (!StartValueV) {
5059 StartValueV = V;
5060 } else if (StartValueV != V) {
5061 StartValueV = nullptr;
5062 break;
5065 if (!BEValueV || !StartValueV)
5066 return nullptr;
5068 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5069 "PHI node already processed?");
5071 // First, try to find AddRec expression without creating a fictituos symbolic
5072 // value for PN.
5073 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5074 return S;
5076 // Handle PHI node value symbolically.
5077 const SCEV *SymbolicName = getUnknown(PN);
5078 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5080 // Using this symbolic name for the PHI, analyze the value coming around
5081 // the back-edge.
5082 const SCEV *BEValue = getSCEV(BEValueV);
5084 // NOTE: If BEValue is loop invariant, we know that the PHI node just
5085 // has a special value for the first iteration of the loop.
5087 // If the value coming around the backedge is an add with the symbolic
5088 // value we just inserted, then we found a simple induction variable!
5089 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5090 // If there is a single occurrence of the symbolic value, replace it
5091 // with a recurrence.
5092 unsigned FoundIndex = Add->getNumOperands();
5093 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5094 if (Add->getOperand(i) == SymbolicName)
5095 if (FoundIndex == e) {
5096 FoundIndex = i;
5097 break;
5100 if (FoundIndex != Add->getNumOperands()) {
5101 // Create an add with everything but the specified operand.
5102 SmallVector<const SCEV *, 8> Ops;
5103 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5104 if (i != FoundIndex)
5105 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5106 L, *this));
5107 const SCEV *Accum = getAddExpr(Ops);
5109 // This is not a valid addrec if the step amount is varying each
5110 // loop iteration, but is not itself an addrec in this loop.
5111 if (isLoopInvariant(Accum, L) ||
5112 (isa<SCEVAddRecExpr>(Accum) &&
5113 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5114 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5116 if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5117 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5118 if (BO->IsNUW)
5119 Flags = setFlags(Flags, SCEV::FlagNUW);
5120 if (BO->IsNSW)
5121 Flags = setFlags(Flags, SCEV::FlagNSW);
5123 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5124 // If the increment is an inbounds GEP, then we know the address
5125 // space cannot be wrapped around. We cannot make any guarantee
5126 // about signed or unsigned overflow because pointers are
5127 // unsigned but we may have a negative index from the base
5128 // pointer. We can guarantee that no unsigned wrap occurs if the
5129 // indices form a positive value.
5130 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5131 Flags = setFlags(Flags, SCEV::FlagNW);
5133 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5134 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5135 Flags = setFlags(Flags, SCEV::FlagNUW);
5138 // We cannot transfer nuw and nsw flags from subtraction
5139 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5140 // for instance.
5143 const SCEV *StartVal = getSCEV(StartValueV);
5144 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5146 // Okay, for the entire analysis of this edge we assumed the PHI
5147 // to be symbolic. We now need to go back and purge all of the
5148 // entries for the scalars that use the symbolic expression.
5149 forgetSymbolicName(PN, SymbolicName);
5150 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5152 // We can add Flags to the post-inc expression only if we
5153 // know that it is *undefined behavior* for BEValueV to
5154 // overflow.
5155 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5156 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5157 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5159 return PHISCEV;
5162 } else {
5163 // Otherwise, this could be a loop like this:
5164 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
5165 // In this case, j = {1,+,1} and BEValue is j.
5166 // Because the other in-value of i (0) fits the evolution of BEValue
5167 // i really is an addrec evolution.
5169 // We can generalize this saying that i is the shifted value of BEValue
5170 // by one iteration:
5171 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
5172 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5173 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5174 if (Shifted != getCouldNotCompute() &&
5175 Start != getCouldNotCompute()) {
5176 const SCEV *StartVal = getSCEV(StartValueV);
5177 if (Start == StartVal) {
5178 // Okay, for the entire analysis of this edge we assumed the PHI
5179 // to be symbolic. We now need to go back and purge all of the
5180 // entries for the scalars that use the symbolic expression.
5181 forgetSymbolicName(PN, SymbolicName);
5182 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5183 return Shifted;
5188 // Remove the temporary PHI node SCEV that has been inserted while intending
5189 // to create an AddRecExpr for this PHI node. We can not keep this temporary
5190 // as it will prevent later (possibly simpler) SCEV expressions to be added
5191 // to the ValueExprMap.
5192 eraseValueFromMap(PN);
5194 return nullptr;
5197 // Checks if the SCEV S is available at BB. S is considered available at BB
5198 // if S can be materialized at BB without introducing a fault.
5199 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5200 BasicBlock *BB) {
5201 struct CheckAvailable {
5202 bool TraversalDone = false;
5203 bool Available = true;
5205 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
5206 BasicBlock *BB = nullptr;
5207 DominatorTree &DT;
5209 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5210 : L(L), BB(BB), DT(DT) {}
5212 bool setUnavailable() {
5213 TraversalDone = true;
5214 Available = false;
5215 return false;
5218 bool follow(const SCEV *S) {
5219 switch (S->getSCEVType()) {
5220 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5221 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5222 // These expressions are available if their operand(s) is/are.
5223 return true;
5225 case scAddRecExpr: {
5226 // We allow add recurrences that are on the loop BB is in, or some
5227 // outer loop. This guarantees availability because the value of the
5228 // add recurrence at BB is simply the "current" value of the induction
5229 // variable. We can relax this in the future; for instance an add
5230 // recurrence on a sibling dominating loop is also available at BB.
5231 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5232 if (L && (ARLoop == L || ARLoop->contains(L)))
5233 return true;
5235 return setUnavailable();
5238 case scUnknown: {
5239 // For SCEVUnknown, we check for simple dominance.
5240 const auto *SU = cast<SCEVUnknown>(S);
5241 Value *V = SU->getValue();
5243 if (isa<Argument>(V))
5244 return false;
5246 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5247 return false;
5249 return setUnavailable();
5252 case scUDivExpr:
5253 case scCouldNotCompute:
5254 // We do not try to smart about these at all.
5255 return setUnavailable();
5257 llvm_unreachable("switch should be fully covered!");
5260 bool isDone() { return TraversalDone; }
5263 CheckAvailable CA(L, BB, DT);
5264 SCEVTraversal<CheckAvailable> ST(CA);
5266 ST.visitAll(S);
5267 return CA.Available;
5270 // Try to match a control flow sequence that branches out at BI and merges back
5271 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5272 // match.
5273 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5274 Value *&C, Value *&LHS, Value *&RHS) {
5275 C = BI->getCondition();
5277 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5278 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5280 if (!LeftEdge.isSingleEdge())
5281 return false;
5283 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5285 Use &LeftUse = Merge->getOperandUse(0);
5286 Use &RightUse = Merge->getOperandUse(1);
5288 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5289 LHS = LeftUse;
5290 RHS = RightUse;
5291 return true;
5294 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5295 LHS = RightUse;
5296 RHS = LeftUse;
5297 return true;
5300 return false;
5303 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5304 auto IsReachable =
5305 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5306 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5307 const Loop *L = LI.getLoopFor(PN->getParent());
5309 // We don't want to break LCSSA, even in a SCEV expression tree.
5310 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5311 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5312 return nullptr;
5314 // Try to match
5316 // br %cond, label %left, label %right
5317 // left:
5318 // br label %merge
5319 // right:
5320 // br label %merge
5321 // merge:
5322 // V = phi [ %x, %left ], [ %y, %right ]
5324 // as "select %cond, %x, %y"
5326 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5327 assert(IDom && "At least the entry block should dominate PN");
5329 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5330 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5332 if (BI && BI->isConditional() &&
5333 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5334 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5335 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5336 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5339 return nullptr;
5342 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5343 if (const SCEV *S = createAddRecFromPHI(PN))
5344 return S;
5346 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5347 return S;
5349 // If the PHI has a single incoming value, follow that value, unless the
5350 // PHI's incoming blocks are in a different loop, in which case doing so
5351 // risks breaking LCSSA form. Instcombine would normally zap these, but
5352 // it doesn't have DominatorTree information, so it may miss cases.
5353 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5354 if (LI.replacementPreservesLCSSAForm(PN, V))
5355 return getSCEV(V);
5357 // If it's not a loop phi, we can't handle it yet.
5358 return getUnknown(PN);
5361 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5362 Value *Cond,
5363 Value *TrueVal,
5364 Value *FalseVal) {
5365 // Handle "constant" branch or select. This can occur for instance when a
5366 // loop pass transforms an inner loop and moves on to process the outer loop.
5367 if (auto *CI = dyn_cast<ConstantInt>(Cond))
5368 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5370 // Try to match some simple smax or umax patterns.
5371 auto *ICI = dyn_cast<ICmpInst>(Cond);
5372 if (!ICI)
5373 return getUnknown(I);
5375 Value *LHS = ICI->getOperand(0);
5376 Value *RHS = ICI->getOperand(1);
5378 switch (ICI->getPredicate()) {
5379 case ICmpInst::ICMP_SLT:
5380 case ICmpInst::ICMP_SLE:
5381 std::swap(LHS, RHS);
5382 LLVM_FALLTHROUGH;
5383 case ICmpInst::ICMP_SGT:
5384 case ICmpInst::ICMP_SGE:
5385 // a >s b ? a+x : b+x -> smax(a, b)+x
5386 // a >s b ? b+x : a+x -> smin(a, b)+x
5387 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5388 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5389 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5390 const SCEV *LA = getSCEV(TrueVal);
5391 const SCEV *RA = getSCEV(FalseVal);
5392 const SCEV *LDiff = getMinusSCEV(LA, LS);
5393 const SCEV *RDiff = getMinusSCEV(RA, RS);
5394 if (LDiff == RDiff)
5395 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5396 LDiff = getMinusSCEV(LA, RS);
5397 RDiff = getMinusSCEV(RA, LS);
5398 if (LDiff == RDiff)
5399 return getAddExpr(getSMinExpr(LS, RS), LDiff);
5401 break;
5402 case ICmpInst::ICMP_ULT:
5403 case ICmpInst::ICMP_ULE:
5404 std::swap(LHS, RHS);
5405 LLVM_FALLTHROUGH;
5406 case ICmpInst::ICMP_UGT:
5407 case ICmpInst::ICMP_UGE:
5408 // a >u b ? a+x : b+x -> umax(a, b)+x
5409 // a >u b ? b+x : a+x -> umin(a, b)+x
5410 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5411 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5412 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5413 const SCEV *LA = getSCEV(TrueVal);
5414 const SCEV *RA = getSCEV(FalseVal);
5415 const SCEV *LDiff = getMinusSCEV(LA, LS);
5416 const SCEV *RDiff = getMinusSCEV(RA, RS);
5417 if (LDiff == RDiff)
5418 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5419 LDiff = getMinusSCEV(LA, RS);
5420 RDiff = getMinusSCEV(RA, LS);
5421 if (LDiff == RDiff)
5422 return getAddExpr(getUMinExpr(LS, RS), LDiff);
5424 break;
5425 case ICmpInst::ICMP_NE:
5426 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
5427 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5428 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5429 const SCEV *One = getOne(I->getType());
5430 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5431 const SCEV *LA = getSCEV(TrueVal);
5432 const SCEV *RA = getSCEV(FalseVal);
5433 const SCEV *LDiff = getMinusSCEV(LA, LS);
5434 const SCEV *RDiff = getMinusSCEV(RA, One);
5435 if (LDiff == RDiff)
5436 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5438 break;
5439 case ICmpInst::ICMP_EQ:
5440 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
5441 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5442 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5443 const SCEV *One = getOne(I->getType());
5444 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5445 const SCEV *LA = getSCEV(TrueVal);
5446 const SCEV *RA = getSCEV(FalseVal);
5447 const SCEV *LDiff = getMinusSCEV(LA, One);
5448 const SCEV *RDiff = getMinusSCEV(RA, LS);
5449 if (LDiff == RDiff)
5450 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5452 break;
5453 default:
5454 break;
5457 return getUnknown(I);
5460 /// Expand GEP instructions into add and multiply operations. This allows them
5461 /// to be analyzed by regular SCEV code.
5462 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5463 // Don't attempt to analyze GEPs over unsized objects.
5464 if (!GEP->getSourceElementType()->isSized())
5465 return getUnknown(GEP);
5467 SmallVector<const SCEV *, 4> IndexExprs;
5468 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5469 IndexExprs.push_back(getSCEV(*Index));
5470 return getGEPExpr(GEP, IndexExprs);
5473 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5474 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5475 return C->getAPInt().countTrailingZeros();
5477 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5478 return std::min(GetMinTrailingZeros(T->getOperand()),
5479 (uint32_t)getTypeSizeInBits(T->getType()));
5481 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5482 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5483 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5484 ? getTypeSizeInBits(E->getType())
5485 : OpRes;
5488 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5489 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5490 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5491 ? getTypeSizeInBits(E->getType())
5492 : OpRes;
5495 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5496 // The result is the min of all operands results.
5497 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5498 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5499 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5500 return MinOpRes;
5503 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5504 // The result is the sum of all operands results.
5505 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5506 uint32_t BitWidth = getTypeSizeInBits(M->getType());
5507 for (unsigned i = 1, e = M->getNumOperands();
5508 SumOpRes != BitWidth && i != e; ++i)
5509 SumOpRes =
5510 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5511 return SumOpRes;
5514 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5515 // The result is the min of all operands results.
5516 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5517 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5518 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5519 return MinOpRes;
5522 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5523 // The result is the min of all operands results.
5524 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5525 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5526 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5527 return MinOpRes;
5530 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5531 // The result is the min of all operands results.
5532 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5533 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5534 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5535 return MinOpRes;
5538 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5539 // For a SCEVUnknown, ask ValueTracking.
5540 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5541 return Known.countMinTrailingZeros();
5544 // SCEVUDivExpr
5545 return 0;
5548 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5549 auto I = MinTrailingZerosCache.find(S);
5550 if (I != MinTrailingZerosCache.end())
5551 return I->second;
5553 uint32_t Result = GetMinTrailingZerosImpl(S);
5554 auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5555 assert(InsertPair.second && "Should insert a new key");
5556 return InsertPair.first->second;
5559 /// Helper method to assign a range to V from metadata present in the IR.
5560 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5561 if (Instruction *I = dyn_cast<Instruction>(V))
5562 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5563 return getConstantRangeFromMetadata(*MD);
5565 return None;
5568 /// Determine the range for a particular SCEV. If SignHint is
5569 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5570 /// with a "cleaner" unsigned (resp. signed) representation.
5571 const ConstantRange &
5572 ScalarEvolution::getRangeRef(const SCEV *S,
5573 ScalarEvolution::RangeSignHint SignHint) {
5574 DenseMap<const SCEV *, ConstantRange> &Cache =
5575 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5576 : SignedRanges;
5578 // See if we've computed this range already.
5579 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5580 if (I != Cache.end())
5581 return I->second;
5583 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5584 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5586 unsigned BitWidth = getTypeSizeInBits(S->getType());
5587 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5589 // If the value has known zeros, the maximum value will have those known zeros
5590 // as well.
5591 uint32_t TZ = GetMinTrailingZeros(S);
5592 if (TZ != 0) {
5593 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5594 ConservativeResult =
5595 ConstantRange(APInt::getMinValue(BitWidth),
5596 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5597 else
5598 ConservativeResult = ConstantRange(
5599 APInt::getSignedMinValue(BitWidth),
5600 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5603 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5604 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5605 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5606 X = X.add(getRangeRef(Add->getOperand(i), SignHint));
5607 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
5610 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5611 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5612 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5613 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5614 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
5617 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5618 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5619 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5620 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5621 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
5624 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5625 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5626 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5627 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5628 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
5631 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5632 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5633 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5634 return setRange(UDiv, SignHint,
5635 ConservativeResult.intersectWith(X.udiv(Y)));
5638 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5639 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5640 return setRange(ZExt, SignHint,
5641 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
5644 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5645 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5646 return setRange(SExt, SignHint,
5647 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
5650 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5651 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5652 return setRange(Trunc, SignHint,
5653 ConservativeResult.intersectWith(X.truncate(BitWidth)));
5656 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5657 // If there's no unsigned wrap, the value will never be less than its
5658 // initial value.
5659 if (AddRec->hasNoUnsignedWrap())
5660 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
5661 if (!C->getValue()->isZero())
5662 ConservativeResult = ConservativeResult.intersectWith(
5663 ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
5665 // If there's no signed wrap, and all the operands have the same sign or
5666 // zero, the value won't ever change sign.
5667 if (AddRec->hasNoSignedWrap()) {
5668 bool AllNonNeg = true;
5669 bool AllNonPos = true;
5670 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5671 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
5672 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
5674 if (AllNonNeg)
5675 ConservativeResult = ConservativeResult.intersectWith(
5676 ConstantRange(APInt(BitWidth, 0),
5677 APInt::getSignedMinValue(BitWidth)));
5678 else if (AllNonPos)
5679 ConservativeResult = ConservativeResult.intersectWith(
5680 ConstantRange(APInt::getSignedMinValue(BitWidth),
5681 APInt(BitWidth, 1)));
5684 // TODO: non-affine addrec
5685 if (AddRec->isAffine()) {
5686 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
5687 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5688 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5689 auto RangeFromAffine = getRangeForAffineAR(
5690 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5691 BitWidth);
5692 if (!RangeFromAffine.isFullSet())
5693 ConservativeResult =
5694 ConservativeResult.intersectWith(RangeFromAffine);
5696 auto RangeFromFactoring = getRangeViaFactoring(
5697 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5698 BitWidth);
5699 if (!RangeFromFactoring.isFullSet())
5700 ConservativeResult =
5701 ConservativeResult.intersectWith(RangeFromFactoring);
5705 return setRange(AddRec, SignHint, std::move(ConservativeResult));
5708 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5709 // Check if the IR explicitly contains !range metadata.
5710 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5711 if (MDRange.hasValue())
5712 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
5714 // Split here to avoid paying the compile-time cost of calling both
5715 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
5716 // if needed.
5717 const DataLayout &DL = getDataLayout();
5718 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5719 // For a SCEVUnknown, ask ValueTracking.
5720 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5721 if (Known.One != ~Known.Zero + 1)
5722 ConservativeResult =
5723 ConservativeResult.intersectWith(ConstantRange(Known.One,
5724 ~Known.Zero + 1));
5725 } else {
5726 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5727 "generalize as needed!");
5728 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5729 if (NS > 1)
5730 ConservativeResult = ConservativeResult.intersectWith(
5731 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5732 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
5735 // A range of Phi is a subset of union of all ranges of its input.
5736 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5737 // Make sure that we do not run over cycled Phis.
5738 if (PendingPhiRanges.insert(Phi).second) {
5739 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5740 for (auto &Op : Phi->operands()) {
5741 auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5742 RangeFromOps = RangeFromOps.unionWith(OpRange);
5743 // No point to continue if we already have a full set.
5744 if (RangeFromOps.isFullSet())
5745 break;
5747 ConservativeResult = ConservativeResult.intersectWith(RangeFromOps);
5748 bool Erased = PendingPhiRanges.erase(Phi);
5749 assert(Erased && "Failed to erase Phi properly?");
5750 (void) Erased;
5754 return setRange(U, SignHint, std::move(ConservativeResult));
5757 return setRange(S, SignHint, std::move(ConservativeResult));
5760 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5761 // values that the expression can take. Initially, the expression has a value
5762 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5763 // argument defines if we treat Step as signed or unsigned.
5764 static ConstantRange getRangeForAffineARHelper(APInt Step,
5765 const ConstantRange &StartRange,
5766 const APInt &MaxBECount,
5767 unsigned BitWidth, bool Signed) {
5768 // If either Step or MaxBECount is 0, then the expression won't change, and we
5769 // just need to return the initial range.
5770 if (Step == 0 || MaxBECount == 0)
5771 return StartRange;
5773 // If we don't know anything about the initial value (i.e. StartRange is
5774 // FullRange), then we don't know anything about the final range either.
5775 // Return FullRange.
5776 if (StartRange.isFullSet())
5777 return ConstantRange::getFull(BitWidth);
5779 // If Step is signed and negative, then we use its absolute value, but we also
5780 // note that we're moving in the opposite direction.
5781 bool Descending = Signed && Step.isNegative();
5783 if (Signed)
5784 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5785 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5786 // This equations hold true due to the well-defined wrap-around behavior of
5787 // APInt.
5788 Step = Step.abs();
5790 // Check if Offset is more than full span of BitWidth. If it is, the
5791 // expression is guaranteed to overflow.
5792 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5793 return ConstantRange::getFull(BitWidth);
5795 // Offset is by how much the expression can change. Checks above guarantee no
5796 // overflow here.
5797 APInt Offset = Step * MaxBECount;
5799 // Minimum value of the final range will match the minimal value of StartRange
5800 // if the expression is increasing and will be decreased by Offset otherwise.
5801 // Maximum value of the final range will match the maximal value of StartRange
5802 // if the expression is decreasing and will be increased by Offset otherwise.
5803 APInt StartLower = StartRange.getLower();
5804 APInt StartUpper = StartRange.getUpper() - 1;
5805 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5806 : (StartUpper + std::move(Offset));
5808 // It's possible that the new minimum/maximum value will fall into the initial
5809 // range (due to wrap around). This means that the expression can take any
5810 // value in this bitwidth, and we have to return full range.
5811 if (StartRange.contains(MovedBoundary))
5812 return ConstantRange::getFull(BitWidth);
5814 APInt NewLower =
5815 Descending ? std::move(MovedBoundary) : std::move(StartLower);
5816 APInt NewUpper =
5817 Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5818 NewUpper += 1;
5820 // If we end up with full range, return a proper full range.
5821 if (NewLower == NewUpper)
5822 return ConstantRange::getFull(BitWidth);
5824 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5825 return ConstantRange(std::move(NewLower), std::move(NewUpper));
5828 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5829 const SCEV *Step,
5830 const SCEV *MaxBECount,
5831 unsigned BitWidth) {
5832 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5833 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5834 "Precondition!");
5836 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5837 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5839 // First, consider step signed.
5840 ConstantRange StartSRange = getSignedRange(Start);
5841 ConstantRange StepSRange = getSignedRange(Step);
5843 // If Step can be both positive and negative, we need to find ranges for the
5844 // maximum absolute step values in both directions and union them.
5845 ConstantRange SR =
5846 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5847 MaxBECountValue, BitWidth, /* Signed = */ true);
5848 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5849 StartSRange, MaxBECountValue,
5850 BitWidth, /* Signed = */ true));
5852 // Next, consider step unsigned.
5853 ConstantRange UR = getRangeForAffineARHelper(
5854 getUnsignedRangeMax(Step), getUnsignedRange(Start),
5855 MaxBECountValue, BitWidth, /* Signed = */ false);
5857 // Finally, intersect signed and unsigned ranges.
5858 return SR.intersectWith(UR);
5861 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5862 const SCEV *Step,
5863 const SCEV *MaxBECount,
5864 unsigned BitWidth) {
5865 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5866 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5868 struct SelectPattern {
5869 Value *Condition = nullptr;
5870 APInt TrueValue;
5871 APInt FalseValue;
5873 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5874 const SCEV *S) {
5875 Optional<unsigned> CastOp;
5876 APInt Offset(BitWidth, 0);
5878 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5879 "Should be!");
5881 // Peel off a constant offset:
5882 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5883 // In the future we could consider being smarter here and handle
5884 // {Start+Step,+,Step} too.
5885 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5886 return;
5888 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5889 S = SA->getOperand(1);
5892 // Peel off a cast operation
5893 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5894 CastOp = SCast->getSCEVType();
5895 S = SCast->getOperand();
5898 using namespace llvm::PatternMatch;
5900 auto *SU = dyn_cast<SCEVUnknown>(S);
5901 const APInt *TrueVal, *FalseVal;
5902 if (!SU ||
5903 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5904 m_APInt(FalseVal)))) {
5905 Condition = nullptr;
5906 return;
5909 TrueValue = *TrueVal;
5910 FalseValue = *FalseVal;
5912 // Re-apply the cast we peeled off earlier
5913 if (CastOp.hasValue())
5914 switch (*CastOp) {
5915 default:
5916 llvm_unreachable("Unknown SCEV cast type!");
5918 case scTruncate:
5919 TrueValue = TrueValue.trunc(BitWidth);
5920 FalseValue = FalseValue.trunc(BitWidth);
5921 break;
5922 case scZeroExtend:
5923 TrueValue = TrueValue.zext(BitWidth);
5924 FalseValue = FalseValue.zext(BitWidth);
5925 break;
5926 case scSignExtend:
5927 TrueValue = TrueValue.sext(BitWidth);
5928 FalseValue = FalseValue.sext(BitWidth);
5929 break;
5932 // Re-apply the constant offset we peeled off earlier
5933 TrueValue += Offset;
5934 FalseValue += Offset;
5937 bool isRecognized() { return Condition != nullptr; }
5940 SelectPattern StartPattern(*this, BitWidth, Start);
5941 if (!StartPattern.isRecognized())
5942 return ConstantRange::getFull(BitWidth);
5944 SelectPattern StepPattern(*this, BitWidth, Step);
5945 if (!StepPattern.isRecognized())
5946 return ConstantRange::getFull(BitWidth);
5948 if (StartPattern.Condition != StepPattern.Condition) {
5949 // We don't handle this case today; but we could, by considering four
5950 // possibilities below instead of two. I'm not sure if there are cases where
5951 // that will help over what getRange already does, though.
5952 return ConstantRange::getFull(BitWidth);
5955 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5956 // construct arbitrary general SCEV expressions here. This function is called
5957 // from deep in the call stack, and calling getSCEV (on a sext instruction,
5958 // say) can end up caching a suboptimal value.
5960 // FIXME: without the explicit `this` receiver below, MSVC errors out with
5961 // C2352 and C2512 (otherwise it isn't needed).
5963 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5964 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5965 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5966 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5968 ConstantRange TrueRange =
5969 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5970 ConstantRange FalseRange =
5971 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5973 return TrueRange.unionWith(FalseRange);
5976 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5977 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5978 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5980 // Return early if there are no flags to propagate to the SCEV.
5981 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5982 if (BinOp->hasNoUnsignedWrap())
5983 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5984 if (BinOp->hasNoSignedWrap())
5985 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5986 if (Flags == SCEV::FlagAnyWrap)
5987 return SCEV::FlagAnyWrap;
5989 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5992 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5993 // Here we check that I is in the header of the innermost loop containing I,
5994 // since we only deal with instructions in the loop header. The actual loop we
5995 // need to check later will come from an add recurrence, but getting that
5996 // requires computing the SCEV of the operands, which can be expensive. This
5997 // check we can do cheaply to rule out some cases early.
5998 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5999 if (InnermostContainingLoop == nullptr ||
6000 InnermostContainingLoop->getHeader() != I->getParent())
6001 return false;
6003 // Only proceed if we can prove that I does not yield poison.
6004 if (!programUndefinedIfFullPoison(I))
6005 return false;
6007 // At this point we know that if I is executed, then it does not wrap
6008 // according to at least one of NSW or NUW. If I is not executed, then we do
6009 // not know if the calculation that I represents would wrap. Multiple
6010 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6011 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6012 // derived from other instructions that map to the same SCEV. We cannot make
6013 // that guarantee for cases where I is not executed. So we need to find the
6014 // loop that I is considered in relation to and prove that I is executed for
6015 // every iteration of that loop. That implies that the value that I
6016 // calculates does not wrap anywhere in the loop, so then we can apply the
6017 // flags to the SCEV.
6019 // We check isLoopInvariant to disambiguate in case we are adding recurrences
6020 // from different loops, so that we know which loop to prove that I is
6021 // executed in.
6022 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6023 // I could be an extractvalue from a call to an overflow intrinsic.
6024 // TODO: We can do better here in some cases.
6025 if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6026 return false;
6027 const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6028 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6029 bool AllOtherOpsLoopInvariant = true;
6030 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6031 ++OtherOpIndex) {
6032 if (OtherOpIndex != OpIndex) {
6033 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6034 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6035 AllOtherOpsLoopInvariant = false;
6036 break;
6040 if (AllOtherOpsLoopInvariant &&
6041 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6042 return true;
6045 return false;
6048 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6049 // If we know that \c I can never be poison period, then that's enough.
6050 if (isSCEVExprNeverPoison(I))
6051 return true;
6053 // For an add recurrence specifically, we assume that infinite loops without
6054 // side effects are undefined behavior, and then reason as follows:
6056 // If the add recurrence is poison in any iteration, it is poison on all
6057 // future iterations (since incrementing poison yields poison). If the result
6058 // of the add recurrence is fed into the loop latch condition and the loop
6059 // does not contain any throws or exiting blocks other than the latch, we now
6060 // have the ability to "choose" whether the backedge is taken or not (by
6061 // choosing a sufficiently evil value for the poison feeding into the branch)
6062 // for every iteration including and after the one in which \p I first became
6063 // poison. There are two possibilities (let's call the iteration in which \p
6064 // I first became poison as K):
6066 // 1. In the set of iterations including and after K, the loop body executes
6067 // no side effects. In this case executing the backege an infinte number
6068 // of times will yield undefined behavior.
6070 // 2. In the set of iterations including and after K, the loop body executes
6071 // at least one side effect. In this case, that specific instance of side
6072 // effect is control dependent on poison, which also yields undefined
6073 // behavior.
6075 auto *ExitingBB = L->getExitingBlock();
6076 auto *LatchBB = L->getLoopLatch();
6077 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6078 return false;
6080 SmallPtrSet<const Instruction *, 16> Pushed;
6081 SmallVector<const Instruction *, 8> PoisonStack;
6083 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
6084 // things that are known to be fully poison under that assumption go on the
6085 // PoisonStack.
6086 Pushed.insert(I);
6087 PoisonStack.push_back(I);
6089 bool LatchControlDependentOnPoison = false;
6090 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6091 const Instruction *Poison = PoisonStack.pop_back_val();
6093 for (auto *PoisonUser : Poison->users()) {
6094 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
6095 if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6096 PoisonStack.push_back(cast<Instruction>(PoisonUser));
6097 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6098 assert(BI->isConditional() && "Only possibility!");
6099 if (BI->getParent() == LatchBB) {
6100 LatchControlDependentOnPoison = true;
6101 break;
6107 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6110 ScalarEvolution::LoopProperties
6111 ScalarEvolution::getLoopProperties(const Loop *L) {
6112 using LoopProperties = ScalarEvolution::LoopProperties;
6114 auto Itr = LoopPropertiesCache.find(L);
6115 if (Itr == LoopPropertiesCache.end()) {
6116 auto HasSideEffects = [](Instruction *I) {
6117 if (auto *SI = dyn_cast<StoreInst>(I))
6118 return !SI->isSimple();
6120 return I->mayHaveSideEffects();
6123 LoopProperties LP = {/* HasNoAbnormalExits */ true,
6124 /*HasNoSideEffects*/ true};
6126 for (auto *BB : L->getBlocks())
6127 for (auto &I : *BB) {
6128 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6129 LP.HasNoAbnormalExits = false;
6130 if (HasSideEffects(&I))
6131 LP.HasNoSideEffects = false;
6132 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6133 break; // We're already as pessimistic as we can get.
6136 auto InsertPair = LoopPropertiesCache.insert({L, LP});
6137 assert(InsertPair.second && "We just checked!");
6138 Itr = InsertPair.first;
6141 return Itr->second;
6144 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6145 if (!isSCEVable(V->getType()))
6146 return getUnknown(V);
6148 if (Instruction *I = dyn_cast<Instruction>(V)) {
6149 // Don't attempt to analyze instructions in blocks that aren't
6150 // reachable. Such instructions don't matter, and they aren't required
6151 // to obey basic rules for definitions dominating uses which this
6152 // analysis depends on.
6153 if (!DT.isReachableFromEntry(I->getParent()))
6154 return getUnknown(UndefValue::get(V->getType()));
6155 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6156 return getConstant(CI);
6157 else if (isa<ConstantPointerNull>(V))
6158 return getZero(V->getType());
6159 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6160 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6161 else if (!isa<ConstantExpr>(V))
6162 return getUnknown(V);
6164 Operator *U = cast<Operator>(V);
6165 if (auto BO = MatchBinaryOp(U, DT)) {
6166 switch (BO->Opcode) {
6167 case Instruction::Add: {
6168 // The simple thing to do would be to just call getSCEV on both operands
6169 // and call getAddExpr with the result. However if we're looking at a
6170 // bunch of things all added together, this can be quite inefficient,
6171 // because it leads to N-1 getAddExpr calls for N ultimate operands.
6172 // Instead, gather up all the operands and make a single getAddExpr call.
6173 // LLVM IR canonical form means we need only traverse the left operands.
6174 SmallVector<const SCEV *, 4> AddOps;
6175 do {
6176 if (BO->Op) {
6177 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6178 AddOps.push_back(OpSCEV);
6179 break;
6182 // If a NUW or NSW flag can be applied to the SCEV for this
6183 // addition, then compute the SCEV for this addition by itself
6184 // with a separate call to getAddExpr. We need to do that
6185 // instead of pushing the operands of the addition onto AddOps,
6186 // since the flags are only known to apply to this particular
6187 // addition - they may not apply to other additions that can be
6188 // formed with operands from AddOps.
6189 const SCEV *RHS = getSCEV(BO->RHS);
6190 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6191 if (Flags != SCEV::FlagAnyWrap) {
6192 const SCEV *LHS = getSCEV(BO->LHS);
6193 if (BO->Opcode == Instruction::Sub)
6194 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6195 else
6196 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6197 break;
6201 if (BO->Opcode == Instruction::Sub)
6202 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6203 else
6204 AddOps.push_back(getSCEV(BO->RHS));
6206 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6207 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6208 NewBO->Opcode != Instruction::Sub)) {
6209 AddOps.push_back(getSCEV(BO->LHS));
6210 break;
6212 BO = NewBO;
6213 } while (true);
6215 return getAddExpr(AddOps);
6218 case Instruction::Mul: {
6219 SmallVector<const SCEV *, 4> MulOps;
6220 do {
6221 if (BO->Op) {
6222 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6223 MulOps.push_back(OpSCEV);
6224 break;
6227 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6228 if (Flags != SCEV::FlagAnyWrap) {
6229 MulOps.push_back(
6230 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6231 break;
6235 MulOps.push_back(getSCEV(BO->RHS));
6236 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6237 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6238 MulOps.push_back(getSCEV(BO->LHS));
6239 break;
6241 BO = NewBO;
6242 } while (true);
6244 return getMulExpr(MulOps);
6246 case Instruction::UDiv:
6247 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6248 case Instruction::URem:
6249 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6250 case Instruction::Sub: {
6251 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6252 if (BO->Op)
6253 Flags = getNoWrapFlagsFromUB(BO->Op);
6254 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6256 case Instruction::And:
6257 // For an expression like x&255 that merely masks off the high bits,
6258 // use zext(trunc(x)) as the SCEV expression.
6259 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6260 if (CI->isZero())
6261 return getSCEV(BO->RHS);
6262 if (CI->isMinusOne())
6263 return getSCEV(BO->LHS);
6264 const APInt &A = CI->getValue();
6266 // Instcombine's ShrinkDemandedConstant may strip bits out of
6267 // constants, obscuring what would otherwise be a low-bits mask.
6268 // Use computeKnownBits to compute what ShrinkDemandedConstant
6269 // knew about to reconstruct a low-bits mask value.
6270 unsigned LZ = A.countLeadingZeros();
6271 unsigned TZ = A.countTrailingZeros();
6272 unsigned BitWidth = A.getBitWidth();
6273 KnownBits Known(BitWidth);
6274 computeKnownBits(BO->LHS, Known, getDataLayout(),
6275 0, &AC, nullptr, &DT);
6277 APInt EffectiveMask =
6278 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6279 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6280 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6281 const SCEV *LHS = getSCEV(BO->LHS);
6282 const SCEV *ShiftedLHS = nullptr;
6283 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6284 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6285 // For an expression like (x * 8) & 8, simplify the multiply.
6286 unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6287 unsigned GCD = std::min(MulZeros, TZ);
6288 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6289 SmallVector<const SCEV*, 4> MulOps;
6290 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6291 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6292 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6293 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6296 if (!ShiftedLHS)
6297 ShiftedLHS = getUDivExpr(LHS, MulCount);
6298 return getMulExpr(
6299 getZeroExtendExpr(
6300 getTruncateExpr(ShiftedLHS,
6301 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6302 BO->LHS->getType()),
6303 MulCount);
6306 break;
6308 case Instruction::Or:
6309 // If the RHS of the Or is a constant, we may have something like:
6310 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
6311 // optimizations will transparently handle this case.
6313 // In order for this transformation to be safe, the LHS must be of the
6314 // form X*(2^n) and the Or constant must be less than 2^n.
6315 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6316 const SCEV *LHS = getSCEV(BO->LHS);
6317 const APInt &CIVal = CI->getValue();
6318 if (GetMinTrailingZeros(LHS) >=
6319 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6320 // Build a plain add SCEV.
6321 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
6322 // If the LHS of the add was an addrec and it has no-wrap flags,
6323 // transfer the no-wrap flags, since an or won't introduce a wrap.
6324 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
6325 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
6326 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
6327 OldAR->getNoWrapFlags());
6329 return S;
6332 break;
6334 case Instruction::Xor:
6335 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6336 // If the RHS of xor is -1, then this is a not operation.
6337 if (CI->isMinusOne())
6338 return getNotSCEV(getSCEV(BO->LHS));
6340 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6341 // This is a variant of the check for xor with -1, and it handles
6342 // the case where instcombine has trimmed non-demanded bits out
6343 // of an xor with -1.
6344 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6345 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6346 if (LBO->getOpcode() == Instruction::And &&
6347 LCI->getValue() == CI->getValue())
6348 if (const SCEVZeroExtendExpr *Z =
6349 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6350 Type *UTy = BO->LHS->getType();
6351 const SCEV *Z0 = Z->getOperand();
6352 Type *Z0Ty = Z0->getType();
6353 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6355 // If C is a low-bits mask, the zero extend is serving to
6356 // mask off the high bits. Complement the operand and
6357 // re-apply the zext.
6358 if (CI->getValue().isMask(Z0TySize))
6359 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6361 // If C is a single bit, it may be in the sign-bit position
6362 // before the zero-extend. In this case, represent the xor
6363 // using an add, which is equivalent, and re-apply the zext.
6364 APInt Trunc = CI->getValue().trunc(Z0TySize);
6365 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6366 Trunc.isSignMask())
6367 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6368 UTy);
6371 break;
6373 case Instruction::Shl:
6374 // Turn shift left of a constant amount into a multiply.
6375 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6376 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6378 // If the shift count is not less than the bitwidth, the result of
6379 // the shift is undefined. Don't try to analyze it, because the
6380 // resolution chosen here may differ from the resolution chosen in
6381 // other parts of the compiler.
6382 if (SA->getValue().uge(BitWidth))
6383 break;
6385 // It is currently not resolved how to interpret NSW for left
6386 // shift by BitWidth - 1, so we avoid applying flags in that
6387 // case. Remove this check (or this comment) once the situation
6388 // is resolved. See
6389 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6390 // and http://reviews.llvm.org/D8890 .
6391 auto Flags = SCEV::FlagAnyWrap;
6392 if (BO->Op && SA->getValue().ult(BitWidth - 1))
6393 Flags = getNoWrapFlagsFromUB(BO->Op);
6395 Constant *X = ConstantInt::get(
6396 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6397 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6399 break;
6401 case Instruction::AShr: {
6402 // AShr X, C, where C is a constant.
6403 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6404 if (!CI)
6405 break;
6407 Type *OuterTy = BO->LHS->getType();
6408 uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6409 // If the shift count is not less than the bitwidth, the result of
6410 // the shift is undefined. Don't try to analyze it, because the
6411 // resolution chosen here may differ from the resolution chosen in
6412 // other parts of the compiler.
6413 if (CI->getValue().uge(BitWidth))
6414 break;
6416 if (CI->isZero())
6417 return getSCEV(BO->LHS); // shift by zero --> noop
6419 uint64_t AShrAmt = CI->getZExtValue();
6420 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6422 Operator *L = dyn_cast<Operator>(BO->LHS);
6423 if (L && L->getOpcode() == Instruction::Shl) {
6424 // X = Shl A, n
6425 // Y = AShr X, m
6426 // Both n and m are constant.
6428 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6429 if (L->getOperand(1) == BO->RHS)
6430 // For a two-shift sext-inreg, i.e. n = m,
6431 // use sext(trunc(x)) as the SCEV expression.
6432 return getSignExtendExpr(
6433 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6435 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6436 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6437 uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6438 if (ShlAmt > AShrAmt) {
6439 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6440 // expression. We already checked that ShlAmt < BitWidth, so
6441 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6442 // ShlAmt - AShrAmt < Amt.
6443 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6444 ShlAmt - AShrAmt);
6445 return getSignExtendExpr(
6446 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6447 getConstant(Mul)), OuterTy);
6451 break;
6456 switch (U->getOpcode()) {
6457 case Instruction::Trunc:
6458 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6460 case Instruction::ZExt:
6461 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6463 case Instruction::SExt:
6464 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6465 // The NSW flag of a subtract does not always survive the conversion to
6466 // A + (-1)*B. By pushing sign extension onto its operands we are much
6467 // more likely to preserve NSW and allow later AddRec optimisations.
6469 // NOTE: This is effectively duplicating this logic from getSignExtend:
6470 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6471 // but by that point the NSW information has potentially been lost.
6472 if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6473 Type *Ty = U->getType();
6474 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6475 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6476 return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6479 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6481 case Instruction::BitCast:
6482 // BitCasts are no-op casts so we just eliminate the cast.
6483 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6484 return getSCEV(U->getOperand(0));
6485 break;
6487 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6488 // lead to pointer expressions which cannot safely be expanded to GEPs,
6489 // because ScalarEvolution doesn't respect the GEP aliasing rules when
6490 // simplifying integer expressions.
6492 case Instruction::GetElementPtr:
6493 return createNodeForGEP(cast<GEPOperator>(U));
6495 case Instruction::PHI:
6496 return createNodeForPHI(cast<PHINode>(U));
6498 case Instruction::Select:
6499 // U can also be a select constant expr, which let fall through. Since
6500 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6501 // constant expressions cannot have instructions as operands, we'd have
6502 // returned getUnknown for a select constant expressions anyway.
6503 if (isa<Instruction>(U))
6504 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6505 U->getOperand(1), U->getOperand(2));
6506 break;
6508 case Instruction::Call:
6509 case Instruction::Invoke:
6510 if (Value *RV = CallSite(U).getReturnedArgOperand())
6511 return getSCEV(RV);
6512 break;
6515 return getUnknown(V);
6518 //===----------------------------------------------------------------------===//
6519 // Iteration Count Computation Code
6522 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6523 if (!ExitCount)
6524 return 0;
6526 ConstantInt *ExitConst = ExitCount->getValue();
6528 // Guard against huge trip counts.
6529 if (ExitConst->getValue().getActiveBits() > 32)
6530 return 0;
6532 // In case of integer overflow, this returns 0, which is correct.
6533 return ((unsigned)ExitConst->getZExtValue()) + 1;
6536 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6537 if (BasicBlock *ExitingBB = L->getExitingBlock())
6538 return getSmallConstantTripCount(L, ExitingBB);
6540 // No trip count information for multiple exits.
6541 return 0;
6544 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6545 BasicBlock *ExitingBlock) {
6546 assert(ExitingBlock && "Must pass a non-null exiting block!");
6547 assert(L->isLoopExiting(ExitingBlock) &&
6548 "Exiting block must actually branch out of the loop!");
6549 const SCEVConstant *ExitCount =
6550 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6551 return getConstantTripCount(ExitCount);
6554 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6555 const auto *MaxExitCount =
6556 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
6557 return getConstantTripCount(MaxExitCount);
6560 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6561 if (BasicBlock *ExitingBB = L->getExitingBlock())
6562 return getSmallConstantTripMultiple(L, ExitingBB);
6564 // No trip multiple information for multiple exits.
6565 return 0;
6568 /// Returns the largest constant divisor of the trip count of this loop as a
6569 /// normal unsigned value, if possible. This means that the actual trip count is
6570 /// always a multiple of the returned value (don't forget the trip count could
6571 /// very well be zero as well!).
6573 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6574 /// multiple of a constant (which is also the case if the trip count is simply
6575 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6576 /// if the trip count is very large (>= 2^32).
6578 /// As explained in the comments for getSmallConstantTripCount, this assumes
6579 /// that control exits the loop via ExitingBlock.
6580 unsigned
6581 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6582 BasicBlock *ExitingBlock) {
6583 assert(ExitingBlock && "Must pass a non-null exiting block!");
6584 assert(L->isLoopExiting(ExitingBlock) &&
6585 "Exiting block must actually branch out of the loop!");
6586 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6587 if (ExitCount == getCouldNotCompute())
6588 return 1;
6590 // Get the trip count from the BE count by adding 1.
6591 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6593 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6594 if (!TC)
6595 // Attempt to factor more general cases. Returns the greatest power of
6596 // two divisor. If overflow happens, the trip count expression is still
6597 // divisible by the greatest power of 2 divisor returned.
6598 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6600 ConstantInt *Result = TC->getValue();
6602 // Guard against huge trip counts (this requires checking
6603 // for zero to handle the case where the trip count == -1 and the
6604 // addition wraps).
6605 if (!Result || Result->getValue().getActiveBits() > 32 ||
6606 Result->getValue().getActiveBits() == 0)
6607 return 1;
6609 return (unsigned)Result->getZExtValue();
6612 /// Get the expression for the number of loop iterations for which this loop is
6613 /// guaranteed not to exit via ExitingBlock. Otherwise return
6614 /// SCEVCouldNotCompute.
6615 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6616 BasicBlock *ExitingBlock) {
6617 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6620 const SCEV *
6621 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6622 SCEVUnionPredicate &Preds) {
6623 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6626 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
6627 return getBackedgeTakenInfo(L).getExact(L, this);
6630 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
6631 /// known never to be less than the actual backedge taken count.
6632 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
6633 return getBackedgeTakenInfo(L).getMax(this);
6636 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6637 return getBackedgeTakenInfo(L).isMaxOrZero(this);
6640 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6641 static void
6642 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6643 BasicBlock *Header = L->getHeader();
6645 // Push all Loop-header PHIs onto the Worklist stack.
6646 for (PHINode &PN : Header->phis())
6647 Worklist.push_back(&PN);
6650 const ScalarEvolution::BackedgeTakenInfo &
6651 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6652 auto &BTI = getBackedgeTakenInfo(L);
6653 if (BTI.hasFullInfo())
6654 return BTI;
6656 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6658 if (!Pair.second)
6659 return Pair.first->second;
6661 BackedgeTakenInfo Result =
6662 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6664 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6667 const ScalarEvolution::BackedgeTakenInfo &
6668 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6669 // Initially insert an invalid entry for this loop. If the insertion
6670 // succeeds, proceed to actually compute a backedge-taken count and
6671 // update the value. The temporary CouldNotCompute value tells SCEV
6672 // code elsewhere that it shouldn't attempt to request a new
6673 // backedge-taken count, which could result in infinite recursion.
6674 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6675 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6676 if (!Pair.second)
6677 return Pair.first->second;
6679 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6680 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6681 // must be cleared in this scope.
6682 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6684 // In product build, there are no usage of statistic.
6685 (void)NumTripCountsComputed;
6686 (void)NumTripCountsNotComputed;
6687 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6688 const SCEV *BEExact = Result.getExact(L, this);
6689 if (BEExact != getCouldNotCompute()) {
6690 assert(isLoopInvariant(BEExact, L) &&
6691 isLoopInvariant(Result.getMax(this), L) &&
6692 "Computed backedge-taken count isn't loop invariant for loop!");
6693 ++NumTripCountsComputed;
6695 else if (Result.getMax(this) == getCouldNotCompute() &&
6696 isa<PHINode>(L->getHeader()->begin())) {
6697 // Only count loops that have phi nodes as not being computable.
6698 ++NumTripCountsNotComputed;
6700 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6702 // Now that we know more about the trip count for this loop, forget any
6703 // existing SCEV values for PHI nodes in this loop since they are only
6704 // conservative estimates made without the benefit of trip count
6705 // information. This is similar to the code in forgetLoop, except that
6706 // it handles SCEVUnknown PHI nodes specially.
6707 if (Result.hasAnyInfo()) {
6708 SmallVector<Instruction *, 16> Worklist;
6709 PushLoopPHIs(L, Worklist);
6711 SmallPtrSet<Instruction *, 8> Discovered;
6712 while (!Worklist.empty()) {
6713 Instruction *I = Worklist.pop_back_val();
6715 ValueExprMapType::iterator It =
6716 ValueExprMap.find_as(static_cast<Value *>(I));
6717 if (It != ValueExprMap.end()) {
6718 const SCEV *Old = It->second;
6720 // SCEVUnknown for a PHI either means that it has an unrecognized
6721 // structure, or it's a PHI that's in the progress of being computed
6722 // by createNodeForPHI. In the former case, additional loop trip
6723 // count information isn't going to change anything. In the later
6724 // case, createNodeForPHI will perform the necessary updates on its
6725 // own when it gets to that point.
6726 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6727 eraseValueFromMap(It->first);
6728 forgetMemoizedResults(Old);
6730 if (PHINode *PN = dyn_cast<PHINode>(I))
6731 ConstantEvolutionLoopExitValue.erase(PN);
6734 // Since we don't need to invalidate anything for correctness and we're
6735 // only invalidating to make SCEV's results more precise, we get to stop
6736 // early to avoid invalidating too much. This is especially important in
6737 // cases like:
6739 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6740 // loop0:
6741 // %pn0 = phi
6742 // ...
6743 // loop1:
6744 // %pn1 = phi
6745 // ...
6747 // where both loop0 and loop1's backedge taken count uses the SCEV
6748 // expression for %v. If we don't have the early stop below then in cases
6749 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6750 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6751 // count for loop1, effectively nullifying SCEV's trip count cache.
6752 for (auto *U : I->users())
6753 if (auto *I = dyn_cast<Instruction>(U)) {
6754 auto *LoopForUser = LI.getLoopFor(I->getParent());
6755 if (LoopForUser && L->contains(LoopForUser) &&
6756 Discovered.insert(I).second)
6757 Worklist.push_back(I);
6762 // Re-lookup the insert position, since the call to
6763 // computeBackedgeTakenCount above could result in a
6764 // recusive call to getBackedgeTakenInfo (on a different
6765 // loop), which would invalidate the iterator computed
6766 // earlier.
6767 return BackedgeTakenCounts.find(L)->second = std::move(Result);
6770 void ScalarEvolution::forgetLoop(const Loop *L) {
6771 // Drop any stored trip count value.
6772 auto RemoveLoopFromBackedgeMap =
6773 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6774 auto BTCPos = Map.find(L);
6775 if (BTCPos != Map.end()) {
6776 BTCPos->second.clear();
6777 Map.erase(BTCPos);
6781 SmallVector<const Loop *, 16> LoopWorklist(1, L);
6782 SmallVector<Instruction *, 32> Worklist;
6783 SmallPtrSet<Instruction *, 16> Visited;
6785 // Iterate over all the loops and sub-loops to drop SCEV information.
6786 while (!LoopWorklist.empty()) {
6787 auto *CurrL = LoopWorklist.pop_back_val();
6789 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6790 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6792 // Drop information about predicated SCEV rewrites for this loop.
6793 for (auto I = PredicatedSCEVRewrites.begin();
6794 I != PredicatedSCEVRewrites.end();) {
6795 std::pair<const SCEV *, const Loop *> Entry = I->first;
6796 if (Entry.second == CurrL)
6797 PredicatedSCEVRewrites.erase(I++);
6798 else
6799 ++I;
6802 auto LoopUsersItr = LoopUsers.find(CurrL);
6803 if (LoopUsersItr != LoopUsers.end()) {
6804 for (auto *S : LoopUsersItr->second)
6805 forgetMemoizedResults(S);
6806 LoopUsers.erase(LoopUsersItr);
6809 // Drop information about expressions based on loop-header PHIs.
6810 PushLoopPHIs(CurrL, Worklist);
6812 while (!Worklist.empty()) {
6813 Instruction *I = Worklist.pop_back_val();
6814 if (!Visited.insert(I).second)
6815 continue;
6817 ValueExprMapType::iterator It =
6818 ValueExprMap.find_as(static_cast<Value *>(I));
6819 if (It != ValueExprMap.end()) {
6820 eraseValueFromMap(It->first);
6821 forgetMemoizedResults(It->second);
6822 if (PHINode *PN = dyn_cast<PHINode>(I))
6823 ConstantEvolutionLoopExitValue.erase(PN);
6826 PushDefUseChildren(I, Worklist);
6829 LoopPropertiesCache.erase(CurrL);
6830 // Forget all contained loops too, to avoid dangling entries in the
6831 // ValuesAtScopes map.
6832 LoopWorklist.append(CurrL->begin(), CurrL->end());
6836 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6837 while (Loop *Parent = L->getParentLoop())
6838 L = Parent;
6839 forgetLoop(L);
6842 void ScalarEvolution::forgetValue(Value *V) {
6843 Instruction *I = dyn_cast<Instruction>(V);
6844 if (!I) return;
6846 // Drop information about expressions based on loop-header PHIs.
6847 SmallVector<Instruction *, 16> Worklist;
6848 Worklist.push_back(I);
6850 SmallPtrSet<Instruction *, 8> Visited;
6851 while (!Worklist.empty()) {
6852 I = Worklist.pop_back_val();
6853 if (!Visited.insert(I).second)
6854 continue;
6856 ValueExprMapType::iterator It =
6857 ValueExprMap.find_as(static_cast<Value *>(I));
6858 if (It != ValueExprMap.end()) {
6859 eraseValueFromMap(It->first);
6860 forgetMemoizedResults(It->second);
6861 if (PHINode *PN = dyn_cast<PHINode>(I))
6862 ConstantEvolutionLoopExitValue.erase(PN);
6865 PushDefUseChildren(I, Worklist);
6869 /// Get the exact loop backedge taken count considering all loop exits. A
6870 /// computable result can only be returned for loops with all exiting blocks
6871 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6872 /// is never skipped. This is a valid assumption as long as the loop exits via
6873 /// that test. For precise results, it is the caller's responsibility to specify
6874 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6875 const SCEV *
6876 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6877 SCEVUnionPredicate *Preds) const {
6878 // If any exits were not computable, the loop is not computable.
6879 if (!isComplete() || ExitNotTaken.empty())
6880 return SE->getCouldNotCompute();
6882 const BasicBlock *Latch = L->getLoopLatch();
6883 // All exiting blocks we have collected must dominate the only backedge.
6884 if (!Latch)
6885 return SE->getCouldNotCompute();
6887 // All exiting blocks we have gathered dominate loop's latch, so exact trip
6888 // count is simply a minimum out of all these calculated exit counts.
6889 SmallVector<const SCEV *, 2> Ops;
6890 for (auto &ENT : ExitNotTaken) {
6891 const SCEV *BECount = ENT.ExactNotTaken;
6892 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6893 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6894 "We should only have known counts for exiting blocks that dominate "
6895 "latch!");
6897 Ops.push_back(BECount);
6899 if (Preds && !ENT.hasAlwaysTruePredicate())
6900 Preds->add(ENT.Predicate.get());
6902 assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6903 "Predicate should be always true!");
6906 return SE->getUMinFromMismatchedTypes(Ops);
6909 /// Get the exact not taken count for this loop exit.
6910 const SCEV *
6911 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6912 ScalarEvolution *SE) const {
6913 for (auto &ENT : ExitNotTaken)
6914 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6915 return ENT.ExactNotTaken;
6917 return SE->getCouldNotCompute();
6920 /// getMax - Get the max backedge taken count for the loop.
6921 const SCEV *
6922 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6923 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6924 return !ENT.hasAlwaysTruePredicate();
6927 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6928 return SE->getCouldNotCompute();
6930 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6931 "No point in having a non-constant max backedge taken count!");
6932 return getMax();
6935 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6936 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6937 return !ENT.hasAlwaysTruePredicate();
6939 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6942 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6943 ScalarEvolution *SE) const {
6944 if (getMax() && getMax() != SE->getCouldNotCompute() &&
6945 SE->hasOperand(getMax(), S))
6946 return true;
6948 for (auto &ENT : ExitNotTaken)
6949 if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6950 SE->hasOperand(ENT.ExactNotTaken, S))
6951 return true;
6953 return false;
6956 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6957 : ExactNotTaken(E), MaxNotTaken(E) {
6958 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6959 isa<SCEVConstant>(MaxNotTaken)) &&
6960 "No point in having a non-constant max backedge taken count!");
6963 ScalarEvolution::ExitLimit::ExitLimit(
6964 const SCEV *E, const SCEV *M, bool MaxOrZero,
6965 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6966 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6967 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6968 !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6969 "Exact is not allowed to be less precise than Max");
6970 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6971 isa<SCEVConstant>(MaxNotTaken)) &&
6972 "No point in having a non-constant max backedge taken count!");
6973 for (auto *PredSet : PredSetList)
6974 for (auto *P : *PredSet)
6975 addPredicate(P);
6978 ScalarEvolution::ExitLimit::ExitLimit(
6979 const SCEV *E, const SCEV *M, bool MaxOrZero,
6980 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6981 : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6982 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6983 isa<SCEVConstant>(MaxNotTaken)) &&
6984 "No point in having a non-constant max backedge taken count!");
6987 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6988 bool MaxOrZero)
6989 : ExitLimit(E, M, MaxOrZero, None) {
6990 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6991 isa<SCEVConstant>(MaxNotTaken)) &&
6992 "No point in having a non-constant max backedge taken count!");
6995 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6996 /// computable exit into a persistent ExitNotTakenInfo array.
6997 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6998 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6999 ExitCounts,
7000 bool Complete, const SCEV *MaxCount, bool MaxOrZero)
7001 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
7002 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7004 ExitNotTaken.reserve(ExitCounts.size());
7005 std::transform(
7006 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7007 [&](const EdgeExitInfo &EEI) {
7008 BasicBlock *ExitBB = EEI.first;
7009 const ExitLimit &EL = EEI.second;
7010 if (EL.Predicates.empty())
7011 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
7013 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7014 for (auto *Pred : EL.Predicates)
7015 Predicate->add(Pred);
7017 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
7019 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
7020 "No point in having a non-constant max backedge taken count!");
7023 /// Invalidate this result and free the ExitNotTakenInfo array.
7024 void ScalarEvolution::BackedgeTakenInfo::clear() {
7025 ExitNotTaken.clear();
7028 /// Compute the number of times the backedge of the specified loop will execute.
7029 ScalarEvolution::BackedgeTakenInfo
7030 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7031 bool AllowPredicates) {
7032 SmallVector<BasicBlock *, 8> ExitingBlocks;
7033 L->getExitingBlocks(ExitingBlocks);
7035 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7037 SmallVector<EdgeExitInfo, 4> ExitCounts;
7038 bool CouldComputeBECount = true;
7039 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7040 const SCEV *MustExitMaxBECount = nullptr;
7041 const SCEV *MayExitMaxBECount = nullptr;
7042 bool MustExitMaxOrZero = false;
7044 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7045 // and compute maxBECount.
7046 // Do a union of all the predicates here.
7047 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7048 BasicBlock *ExitBB = ExitingBlocks[i];
7049 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7051 assert((AllowPredicates || EL.Predicates.empty()) &&
7052 "Predicated exit limit when predicates are not allowed!");
7054 // 1. For each exit that can be computed, add an entry to ExitCounts.
7055 // CouldComputeBECount is true only if all exits can be computed.
7056 if (EL.ExactNotTaken == getCouldNotCompute())
7057 // We couldn't compute an exact value for this exit, so
7058 // we won't be able to compute an exact value for the loop.
7059 CouldComputeBECount = false;
7060 else
7061 ExitCounts.emplace_back(ExitBB, EL);
7063 // 2. Derive the loop's MaxBECount from each exit's max number of
7064 // non-exiting iterations. Partition the loop exits into two kinds:
7065 // LoopMustExits and LoopMayExits.
7067 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7068 // is a LoopMayExit. If any computable LoopMustExit is found, then
7069 // MaxBECount is the minimum EL.MaxNotTaken of computable
7070 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7071 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7072 // computable EL.MaxNotTaken.
7073 if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7074 DT.dominates(ExitBB, Latch)) {
7075 if (!MustExitMaxBECount) {
7076 MustExitMaxBECount = EL.MaxNotTaken;
7077 MustExitMaxOrZero = EL.MaxOrZero;
7078 } else {
7079 MustExitMaxBECount =
7080 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7082 } else if (MayExitMaxBECount != getCouldNotCompute()) {
7083 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7084 MayExitMaxBECount = EL.MaxNotTaken;
7085 else {
7086 MayExitMaxBECount =
7087 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7091 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7092 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7093 // The loop backedge will be taken the maximum or zero times if there's
7094 // a single exit that must be taken the maximum or zero times.
7095 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7096 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7097 MaxBECount, MaxOrZero);
7100 ScalarEvolution::ExitLimit
7101 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7102 bool AllowPredicates) {
7103 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7104 // If our exiting block does not dominate the latch, then its connection with
7105 // loop's exit limit may be far from trivial.
7106 const BasicBlock *Latch = L->getLoopLatch();
7107 if (!Latch || !DT.dominates(ExitingBlock, Latch))
7108 return getCouldNotCompute();
7110 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7111 Instruction *Term = ExitingBlock->getTerminator();
7112 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7113 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7114 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7115 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7116 "It should have one successor in loop and one exit block!");
7117 // Proceed to the next level to examine the exit condition expression.
7118 return computeExitLimitFromCond(
7119 L, BI->getCondition(), ExitIfTrue,
7120 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7123 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7124 // For switch, make sure that there is a single exit from the loop.
7125 BasicBlock *Exit = nullptr;
7126 for (auto *SBB : successors(ExitingBlock))
7127 if (!L->contains(SBB)) {
7128 if (Exit) // Multiple exit successors.
7129 return getCouldNotCompute();
7130 Exit = SBB;
7132 assert(Exit && "Exiting block must have at least one exit");
7133 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7134 /*ControlsExit=*/IsOnlyExit);
7137 return getCouldNotCompute();
7140 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7141 const Loop *L, Value *ExitCond, bool ExitIfTrue,
7142 bool ControlsExit, bool AllowPredicates) {
7143 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7144 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7145 ControlsExit, AllowPredicates);
7148 Optional<ScalarEvolution::ExitLimit>
7149 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7150 bool ExitIfTrue, bool ControlsExit,
7151 bool AllowPredicates) {
7152 (void)this->L;
7153 (void)this->ExitIfTrue;
7154 (void)this->AllowPredicates;
7156 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7157 this->AllowPredicates == AllowPredicates &&
7158 "Variance in assumed invariant key components!");
7159 auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7160 if (Itr == TripCountMap.end())
7161 return None;
7162 return Itr->second;
7165 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7166 bool ExitIfTrue,
7167 bool ControlsExit,
7168 bool AllowPredicates,
7169 const ExitLimit &EL) {
7170 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7171 this->AllowPredicates == AllowPredicates &&
7172 "Variance in assumed invariant key components!");
7174 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7175 assert(InsertResult.second && "Expected successful insertion!");
7176 (void)InsertResult;
7177 (void)ExitIfTrue;
7180 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7181 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7182 bool ControlsExit, bool AllowPredicates) {
7184 if (auto MaybeEL =
7185 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7186 return *MaybeEL;
7188 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7189 ControlsExit, AllowPredicates);
7190 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7191 return EL;
7194 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7195 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7196 bool ControlsExit, bool AllowPredicates) {
7197 // Check if the controlling expression for this loop is an And or Or.
7198 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7199 if (BO->getOpcode() == Instruction::And) {
7200 // Recurse on the operands of the and.
7201 bool EitherMayExit = !ExitIfTrue;
7202 ExitLimit EL0 = computeExitLimitFromCondCached(
7203 Cache, L, BO->getOperand(0), ExitIfTrue,
7204 ControlsExit && !EitherMayExit, AllowPredicates);
7205 ExitLimit EL1 = computeExitLimitFromCondCached(
7206 Cache, L, BO->getOperand(1), ExitIfTrue,
7207 ControlsExit && !EitherMayExit, AllowPredicates);
7208 const SCEV *BECount = getCouldNotCompute();
7209 const SCEV *MaxBECount = getCouldNotCompute();
7210 if (EitherMayExit) {
7211 // Both conditions must be true for the loop to continue executing.
7212 // Choose the less conservative count.
7213 if (EL0.ExactNotTaken == getCouldNotCompute() ||
7214 EL1.ExactNotTaken == getCouldNotCompute())
7215 BECount = getCouldNotCompute();
7216 else
7217 BECount =
7218 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7219 if (EL0.MaxNotTaken == getCouldNotCompute())
7220 MaxBECount = EL1.MaxNotTaken;
7221 else if (EL1.MaxNotTaken == getCouldNotCompute())
7222 MaxBECount = EL0.MaxNotTaken;
7223 else
7224 MaxBECount =
7225 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7226 } else {
7227 // Both conditions must be true at the same time for the loop to exit.
7228 // For now, be conservative.
7229 if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7230 MaxBECount = EL0.MaxNotTaken;
7231 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7232 BECount = EL0.ExactNotTaken;
7235 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7236 // to be more aggressive when computing BECount than when computing
7237 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
7238 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7239 // to not.
7240 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7241 !isa<SCEVCouldNotCompute>(BECount))
7242 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7244 return ExitLimit(BECount, MaxBECount, false,
7245 {&EL0.Predicates, &EL1.Predicates});
7247 if (BO->getOpcode() == Instruction::Or) {
7248 // Recurse on the operands of the or.
7249 bool EitherMayExit = ExitIfTrue;
7250 ExitLimit EL0 = computeExitLimitFromCondCached(
7251 Cache, L, BO->getOperand(0), ExitIfTrue,
7252 ControlsExit && !EitherMayExit, AllowPredicates);
7253 ExitLimit EL1 = computeExitLimitFromCondCached(
7254 Cache, L, BO->getOperand(1), ExitIfTrue,
7255 ControlsExit && !EitherMayExit, AllowPredicates);
7256 const SCEV *BECount = getCouldNotCompute();
7257 const SCEV *MaxBECount = getCouldNotCompute();
7258 if (EitherMayExit) {
7259 // Both conditions must be false for the loop to continue executing.
7260 // Choose the less conservative count.
7261 if (EL0.ExactNotTaken == getCouldNotCompute() ||
7262 EL1.ExactNotTaken == getCouldNotCompute())
7263 BECount = getCouldNotCompute();
7264 else
7265 BECount =
7266 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7267 if (EL0.MaxNotTaken == getCouldNotCompute())
7268 MaxBECount = EL1.MaxNotTaken;
7269 else if (EL1.MaxNotTaken == getCouldNotCompute())
7270 MaxBECount = EL0.MaxNotTaken;
7271 else
7272 MaxBECount =
7273 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7274 } else {
7275 // Both conditions must be false at the same time for the loop to exit.
7276 // For now, be conservative.
7277 if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7278 MaxBECount = EL0.MaxNotTaken;
7279 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7280 BECount = EL0.ExactNotTaken;
7282 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7283 // to be more aggressive when computing BECount than when computing
7284 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
7285 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7286 // to not.
7287 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7288 !isa<SCEVCouldNotCompute>(BECount))
7289 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7291 return ExitLimit(BECount, MaxBECount, false,
7292 {&EL0.Predicates, &EL1.Predicates});
7296 // With an icmp, it may be feasible to compute an exact backedge-taken count.
7297 // Proceed to the next level to examine the icmp.
7298 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7299 ExitLimit EL =
7300 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7301 if (EL.hasFullInfo() || !AllowPredicates)
7302 return EL;
7304 // Try again, but use SCEV predicates this time.
7305 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7306 /*AllowPredicates=*/true);
7309 // Check for a constant condition. These are normally stripped out by
7310 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7311 // preserve the CFG and is temporarily leaving constant conditions
7312 // in place.
7313 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7314 if (ExitIfTrue == !CI->getZExtValue())
7315 // The backedge is always taken.
7316 return getCouldNotCompute();
7317 else
7318 // The backedge is never taken.
7319 return getZero(CI->getType());
7322 // If it's not an integer or pointer comparison then compute it the hard way.
7323 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7326 ScalarEvolution::ExitLimit
7327 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7328 ICmpInst *ExitCond,
7329 bool ExitIfTrue,
7330 bool ControlsExit,
7331 bool AllowPredicates) {
7332 // If the condition was exit on true, convert the condition to exit on false
7333 ICmpInst::Predicate Pred;
7334 if (!ExitIfTrue)
7335 Pred = ExitCond->getPredicate();
7336 else
7337 Pred = ExitCond->getInversePredicate();
7338 const ICmpInst::Predicate OriginalPred = Pred;
7340 // Handle common loops like: for (X = "string"; *X; ++X)
7341 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7342 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7343 ExitLimit ItCnt =
7344 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7345 if (ItCnt.hasAnyInfo())
7346 return ItCnt;
7349 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7350 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7352 // Try to evaluate any dependencies out of the loop.
7353 LHS = getSCEVAtScope(LHS, L);
7354 RHS = getSCEVAtScope(RHS, L);
7356 // At this point, we would like to compute how many iterations of the
7357 // loop the predicate will return true for these inputs.
7358 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7359 // If there is a loop-invariant, force it into the RHS.
7360 std::swap(LHS, RHS);
7361 Pred = ICmpInst::getSwappedPredicate(Pred);
7364 // Simplify the operands before analyzing them.
7365 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7367 // If we have a comparison of a chrec against a constant, try to use value
7368 // ranges to answer this query.
7369 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7370 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7371 if (AddRec->getLoop() == L) {
7372 // Form the constant range.
7373 ConstantRange CompRange =
7374 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7376 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7377 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7380 switch (Pred) {
7381 case ICmpInst::ICMP_NE: { // while (X != Y)
7382 // Convert to: while (X-Y != 0)
7383 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7384 AllowPredicates);
7385 if (EL.hasAnyInfo()) return EL;
7386 break;
7388 case ICmpInst::ICMP_EQ: { // while (X == Y)
7389 // Convert to: while (X-Y == 0)
7390 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7391 if (EL.hasAnyInfo()) return EL;
7392 break;
7394 case ICmpInst::ICMP_SLT:
7395 case ICmpInst::ICMP_ULT: { // while (X < Y)
7396 bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7397 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7398 AllowPredicates);
7399 if (EL.hasAnyInfo()) return EL;
7400 break;
7402 case ICmpInst::ICMP_SGT:
7403 case ICmpInst::ICMP_UGT: { // while (X > Y)
7404 bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7405 ExitLimit EL =
7406 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7407 AllowPredicates);
7408 if (EL.hasAnyInfo()) return EL;
7409 break;
7411 default:
7412 break;
7415 auto *ExhaustiveCount =
7416 computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7418 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7419 return ExhaustiveCount;
7421 return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7422 ExitCond->getOperand(1), L, OriginalPred);
7425 ScalarEvolution::ExitLimit
7426 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7427 SwitchInst *Switch,
7428 BasicBlock *ExitingBlock,
7429 bool ControlsExit) {
7430 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7432 // Give up if the exit is the default dest of a switch.
7433 if (Switch->getDefaultDest() == ExitingBlock)
7434 return getCouldNotCompute();
7436 assert(L->contains(Switch->getDefaultDest()) &&
7437 "Default case must not exit the loop!");
7438 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7439 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7441 // while (X != Y) --> while (X-Y != 0)
7442 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7443 if (EL.hasAnyInfo())
7444 return EL;
7446 return getCouldNotCompute();
7449 static ConstantInt *
7450 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7451 ScalarEvolution &SE) {
7452 const SCEV *InVal = SE.getConstant(C);
7453 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7454 assert(isa<SCEVConstant>(Val) &&
7455 "Evaluation of SCEV at constant didn't fold correctly?");
7456 return cast<SCEVConstant>(Val)->getValue();
7459 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7460 /// compute the backedge execution count.
7461 ScalarEvolution::ExitLimit
7462 ScalarEvolution::computeLoadConstantCompareExitLimit(
7463 LoadInst *LI,
7464 Constant *RHS,
7465 const Loop *L,
7466 ICmpInst::Predicate predicate) {
7467 if (LI->isVolatile()) return getCouldNotCompute();
7469 // Check to see if the loaded pointer is a getelementptr of a global.
7470 // TODO: Use SCEV instead of manually grubbing with GEPs.
7471 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7472 if (!GEP) return getCouldNotCompute();
7474 // Make sure that it is really a constant global we are gepping, with an
7475 // initializer, and make sure the first IDX is really 0.
7476 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7477 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7478 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7479 !cast<Constant>(GEP->getOperand(1))->isNullValue())
7480 return getCouldNotCompute();
7482 // Okay, we allow one non-constant index into the GEP instruction.
7483 Value *VarIdx = nullptr;
7484 std::vector<Constant*> Indexes;
7485 unsigned VarIdxNum = 0;
7486 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7487 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7488 Indexes.push_back(CI);
7489 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7490 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
7491 VarIdx = GEP->getOperand(i);
7492 VarIdxNum = i-2;
7493 Indexes.push_back(nullptr);
7496 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7497 if (!VarIdx)
7498 return getCouldNotCompute();
7500 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7501 // Check to see if X is a loop variant variable value now.
7502 const SCEV *Idx = getSCEV(VarIdx);
7503 Idx = getSCEVAtScope(Idx, L);
7505 // We can only recognize very limited forms of loop index expressions, in
7506 // particular, only affine AddRec's like {C1,+,C2}.
7507 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7508 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7509 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7510 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7511 return getCouldNotCompute();
7513 unsigned MaxSteps = MaxBruteForceIterations;
7514 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7515 ConstantInt *ItCst = ConstantInt::get(
7516 cast<IntegerType>(IdxExpr->getType()), IterationNum);
7517 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7519 // Form the GEP offset.
7520 Indexes[VarIdxNum] = Val;
7522 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7523 Indexes);
7524 if (!Result) break; // Cannot compute!
7526 // Evaluate the condition for this iteration.
7527 Result = ConstantExpr::getICmp(predicate, Result, RHS);
7528 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
7529 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7530 ++NumArrayLenItCounts;
7531 return getConstant(ItCst); // Found terminating iteration!
7534 return getCouldNotCompute();
7537 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7538 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7539 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7540 if (!RHS)
7541 return getCouldNotCompute();
7543 const BasicBlock *Latch = L->getLoopLatch();
7544 if (!Latch)
7545 return getCouldNotCompute();
7547 const BasicBlock *Predecessor = L->getLoopPredecessor();
7548 if (!Predecessor)
7549 return getCouldNotCompute();
7551 // Return true if V is of the form "LHS `shift_op` <positive constant>".
7552 // Return LHS in OutLHS and shift_opt in OutOpCode.
7553 auto MatchPositiveShift =
7554 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7556 using namespace PatternMatch;
7558 ConstantInt *ShiftAmt;
7559 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7560 OutOpCode = Instruction::LShr;
7561 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7562 OutOpCode = Instruction::AShr;
7563 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7564 OutOpCode = Instruction::Shl;
7565 else
7566 return false;
7568 return ShiftAmt->getValue().isStrictlyPositive();
7571 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7573 // loop:
7574 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7575 // %iv.shifted = lshr i32 %iv, <positive constant>
7577 // Return true on a successful match. Return the corresponding PHI node (%iv
7578 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7579 auto MatchShiftRecurrence =
7580 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7581 Optional<Instruction::BinaryOps> PostShiftOpCode;
7584 Instruction::BinaryOps OpC;
7585 Value *V;
7587 // If we encounter a shift instruction, "peel off" the shift operation,
7588 // and remember that we did so. Later when we inspect %iv's backedge
7589 // value, we will make sure that the backedge value uses the same
7590 // operation.
7592 // Note: the peeled shift operation does not have to be the same
7593 // instruction as the one feeding into the PHI's backedge value. We only
7594 // really care about it being the same *kind* of shift instruction --
7595 // that's all that is required for our later inferences to hold.
7596 if (MatchPositiveShift(LHS, V, OpC)) {
7597 PostShiftOpCode = OpC;
7598 LHS = V;
7602 PNOut = dyn_cast<PHINode>(LHS);
7603 if (!PNOut || PNOut->getParent() != L->getHeader())
7604 return false;
7606 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7607 Value *OpLHS;
7609 return
7610 // The backedge value for the PHI node must be a shift by a positive
7611 // amount
7612 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7614 // of the PHI node itself
7615 OpLHS == PNOut &&
7617 // and the kind of shift should be match the kind of shift we peeled
7618 // off, if any.
7619 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7622 PHINode *PN;
7623 Instruction::BinaryOps OpCode;
7624 if (!MatchShiftRecurrence(LHS, PN, OpCode))
7625 return getCouldNotCompute();
7627 const DataLayout &DL = getDataLayout();
7629 // The key rationale for this optimization is that for some kinds of shift
7630 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7631 // within a finite number of iterations. If the condition guarding the
7632 // backedge (in the sense that the backedge is taken if the condition is true)
7633 // is false for the value the shift recurrence stabilizes to, then we know
7634 // that the backedge is taken only a finite number of times.
7636 ConstantInt *StableValue = nullptr;
7637 switch (OpCode) {
7638 default:
7639 llvm_unreachable("Impossible case!");
7641 case Instruction::AShr: {
7642 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7643 // bitwidth(K) iterations.
7644 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7645 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7646 Predecessor->getTerminator(), &DT);
7647 auto *Ty = cast<IntegerType>(RHS->getType());
7648 if (Known.isNonNegative())
7649 StableValue = ConstantInt::get(Ty, 0);
7650 else if (Known.isNegative())
7651 StableValue = ConstantInt::get(Ty, -1, true);
7652 else
7653 return getCouldNotCompute();
7655 break;
7657 case Instruction::LShr:
7658 case Instruction::Shl:
7659 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7660 // stabilize to 0 in at most bitwidth(K) iterations.
7661 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7662 break;
7665 auto *Result =
7666 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7667 assert(Result->getType()->isIntegerTy(1) &&
7668 "Otherwise cannot be an operand to a branch instruction");
7670 if (Result->isZeroValue()) {
7671 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7672 const SCEV *UpperBound =
7673 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7674 return ExitLimit(getCouldNotCompute(), UpperBound, false);
7677 return getCouldNotCompute();
7680 /// Return true if we can constant fold an instruction of the specified type,
7681 /// assuming that all operands were constants.
7682 static bool CanConstantFold(const Instruction *I) {
7683 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7684 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7685 isa<LoadInst>(I))
7686 return true;
7688 if (const CallInst *CI = dyn_cast<CallInst>(I))
7689 if (const Function *F = CI->getCalledFunction())
7690 return canConstantFoldCallTo(CI, F);
7691 return false;
7694 /// Determine whether this instruction can constant evolve within this loop
7695 /// assuming its operands can all constant evolve.
7696 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7697 // An instruction outside of the loop can't be derived from a loop PHI.
7698 if (!L->contains(I)) return false;
7700 if (isa<PHINode>(I)) {
7701 // We don't currently keep track of the control flow needed to evaluate
7702 // PHIs, so we cannot handle PHIs inside of loops.
7703 return L->getHeader() == I->getParent();
7706 // If we won't be able to constant fold this expression even if the operands
7707 // are constants, bail early.
7708 return CanConstantFold(I);
7711 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7712 /// recursing through each instruction operand until reaching a loop header phi.
7713 static PHINode *
7714 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7715 DenseMap<Instruction *, PHINode *> &PHIMap,
7716 unsigned Depth) {
7717 if (Depth > MaxConstantEvolvingDepth)
7718 return nullptr;
7720 // Otherwise, we can evaluate this instruction if all of its operands are
7721 // constant or derived from a PHI node themselves.
7722 PHINode *PHI = nullptr;
7723 for (Value *Op : UseInst->operands()) {
7724 if (isa<Constant>(Op)) continue;
7726 Instruction *OpInst = dyn_cast<Instruction>(Op);
7727 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7729 PHINode *P = dyn_cast<PHINode>(OpInst);
7730 if (!P)
7731 // If this operand is already visited, reuse the prior result.
7732 // We may have P != PHI if this is the deepest point at which the
7733 // inconsistent paths meet.
7734 P = PHIMap.lookup(OpInst);
7735 if (!P) {
7736 // Recurse and memoize the results, whether a phi is found or not.
7737 // This recursive call invalidates pointers into PHIMap.
7738 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7739 PHIMap[OpInst] = P;
7741 if (!P)
7742 return nullptr; // Not evolving from PHI
7743 if (PHI && PHI != P)
7744 return nullptr; // Evolving from multiple different PHIs.
7745 PHI = P;
7747 // This is a expression evolving from a constant PHI!
7748 return PHI;
7751 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7752 /// in the loop that V is derived from. We allow arbitrary operations along the
7753 /// way, but the operands of an operation must either be constants or a value
7754 /// derived from a constant PHI. If this expression does not fit with these
7755 /// constraints, return null.
7756 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7757 Instruction *I = dyn_cast<Instruction>(V);
7758 if (!I || !canConstantEvolve(I, L)) return nullptr;
7760 if (PHINode *PN = dyn_cast<PHINode>(I))
7761 return PN;
7763 // Record non-constant instructions contained by the loop.
7764 DenseMap<Instruction *, PHINode *> PHIMap;
7765 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7768 /// EvaluateExpression - Given an expression that passes the
7769 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7770 /// in the loop has the value PHIVal. If we can't fold this expression for some
7771 /// reason, return null.
7772 static Constant *EvaluateExpression(Value *V, const Loop *L,
7773 DenseMap<Instruction *, Constant *> &Vals,
7774 const DataLayout &DL,
7775 const TargetLibraryInfo *TLI) {
7776 // Convenient constant check, but redundant for recursive calls.
7777 if (Constant *C = dyn_cast<Constant>(V)) return C;
7778 Instruction *I = dyn_cast<Instruction>(V);
7779 if (!I) return nullptr;
7781 if (Constant *C = Vals.lookup(I)) return C;
7783 // An instruction inside the loop depends on a value outside the loop that we
7784 // weren't given a mapping for, or a value such as a call inside the loop.
7785 if (!canConstantEvolve(I, L)) return nullptr;
7787 // An unmapped PHI can be due to a branch or another loop inside this loop,
7788 // or due to this not being the initial iteration through a loop where we
7789 // couldn't compute the evolution of this particular PHI last time.
7790 if (isa<PHINode>(I)) return nullptr;
7792 std::vector<Constant*> Operands(I->getNumOperands());
7794 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7795 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7796 if (!Operand) {
7797 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7798 if (!Operands[i]) return nullptr;
7799 continue;
7801 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7802 Vals[Operand] = C;
7803 if (!C) return nullptr;
7804 Operands[i] = C;
7807 if (CmpInst *CI = dyn_cast<CmpInst>(I))
7808 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7809 Operands[1], DL, TLI);
7810 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7811 if (!LI->isVolatile())
7812 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7814 return ConstantFoldInstOperands(I, Operands, DL, TLI);
7818 // If every incoming value to PN except the one for BB is a specific Constant,
7819 // return that, else return nullptr.
7820 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7821 Constant *IncomingVal = nullptr;
7823 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7824 if (PN->getIncomingBlock(i) == BB)
7825 continue;
7827 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7828 if (!CurrentVal)
7829 return nullptr;
7831 if (IncomingVal != CurrentVal) {
7832 if (IncomingVal)
7833 return nullptr;
7834 IncomingVal = CurrentVal;
7838 return IncomingVal;
7841 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7842 /// in the header of its containing loop, we know the loop executes a
7843 /// constant number of times, and the PHI node is just a recurrence
7844 /// involving constants, fold it.
7845 Constant *
7846 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7847 const APInt &BEs,
7848 const Loop *L) {
7849 auto I = ConstantEvolutionLoopExitValue.find(PN);
7850 if (I != ConstantEvolutionLoopExitValue.end())
7851 return I->second;
7853 if (BEs.ugt(MaxBruteForceIterations))
7854 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
7856 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7858 DenseMap<Instruction *, Constant *> CurrentIterVals;
7859 BasicBlock *Header = L->getHeader();
7860 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7862 BasicBlock *Latch = L->getLoopLatch();
7863 if (!Latch)
7864 return nullptr;
7866 for (PHINode &PHI : Header->phis()) {
7867 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7868 CurrentIterVals[&PHI] = StartCST;
7870 if (!CurrentIterVals.count(PN))
7871 return RetVal = nullptr;
7873 Value *BEValue = PN->getIncomingValueForBlock(Latch);
7875 // Execute the loop symbolically to determine the exit value.
7876 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7877 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7879 unsigned NumIterations = BEs.getZExtValue(); // must be in range
7880 unsigned IterationNum = 0;
7881 const DataLayout &DL = getDataLayout();
7882 for (; ; ++IterationNum) {
7883 if (IterationNum == NumIterations)
7884 return RetVal = CurrentIterVals[PN]; // Got exit value!
7886 // Compute the value of the PHIs for the next iteration.
7887 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7888 DenseMap<Instruction *, Constant *> NextIterVals;
7889 Constant *NextPHI =
7890 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7891 if (!NextPHI)
7892 return nullptr; // Couldn't evaluate!
7893 NextIterVals[PN] = NextPHI;
7895 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7897 // Also evaluate the other PHI nodes. However, we don't get to stop if we
7898 // cease to be able to evaluate one of them or if they stop evolving,
7899 // because that doesn't necessarily prevent us from computing PN.
7900 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7901 for (const auto &I : CurrentIterVals) {
7902 PHINode *PHI = dyn_cast<PHINode>(I.first);
7903 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7904 PHIsToCompute.emplace_back(PHI, I.second);
7906 // We use two distinct loops because EvaluateExpression may invalidate any
7907 // iterators into CurrentIterVals.
7908 for (const auto &I : PHIsToCompute) {
7909 PHINode *PHI = I.first;
7910 Constant *&NextPHI = NextIterVals[PHI];
7911 if (!NextPHI) { // Not already computed.
7912 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7913 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7915 if (NextPHI != I.second)
7916 StoppedEvolving = false;
7919 // If all entries in CurrentIterVals == NextIterVals then we can stop
7920 // iterating, the loop can't continue to change.
7921 if (StoppedEvolving)
7922 return RetVal = CurrentIterVals[PN];
7924 CurrentIterVals.swap(NextIterVals);
7928 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7929 Value *Cond,
7930 bool ExitWhen) {
7931 PHINode *PN = getConstantEvolvingPHI(Cond, L);
7932 if (!PN) return getCouldNotCompute();
7934 // If the loop is canonicalized, the PHI will have exactly two entries.
7935 // That's the only form we support here.
7936 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7938 DenseMap<Instruction *, Constant *> CurrentIterVals;
7939 BasicBlock *Header = L->getHeader();
7940 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7942 BasicBlock *Latch = L->getLoopLatch();
7943 assert(Latch && "Should follow from NumIncomingValues == 2!");
7945 for (PHINode &PHI : Header->phis()) {
7946 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7947 CurrentIterVals[&PHI] = StartCST;
7949 if (!CurrentIterVals.count(PN))
7950 return getCouldNotCompute();
7952 // Okay, we find a PHI node that defines the trip count of this loop. Execute
7953 // the loop symbolically to determine when the condition gets a value of
7954 // "ExitWhen".
7955 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
7956 const DataLayout &DL = getDataLayout();
7957 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7958 auto *CondVal = dyn_cast_or_null<ConstantInt>(
7959 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7961 // Couldn't symbolically evaluate.
7962 if (!CondVal) return getCouldNotCompute();
7964 if (CondVal->getValue() == uint64_t(ExitWhen)) {
7965 ++NumBruteForceTripCountsComputed;
7966 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7969 // Update all the PHI nodes for the next iteration.
7970 DenseMap<Instruction *, Constant *> NextIterVals;
7972 // Create a list of which PHIs we need to compute. We want to do this before
7973 // calling EvaluateExpression on them because that may invalidate iterators
7974 // into CurrentIterVals.
7975 SmallVector<PHINode *, 8> PHIsToCompute;
7976 for (const auto &I : CurrentIterVals) {
7977 PHINode *PHI = dyn_cast<PHINode>(I.first);
7978 if (!PHI || PHI->getParent() != Header) continue;
7979 PHIsToCompute.push_back(PHI);
7981 for (PHINode *PHI : PHIsToCompute) {
7982 Constant *&NextPHI = NextIterVals[PHI];
7983 if (NextPHI) continue; // Already computed!
7985 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7986 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7988 CurrentIterVals.swap(NextIterVals);
7991 // Too many iterations were needed to evaluate.
7992 return getCouldNotCompute();
7995 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7996 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7997 ValuesAtScopes[V];
7998 // Check to see if we've folded this expression at this loop before.
7999 for (auto &LS : Values)
8000 if (LS.first == L)
8001 return LS.second ? LS.second : V;
8003 Values.emplace_back(L, nullptr);
8005 // Otherwise compute it.
8006 const SCEV *C = computeSCEVAtScope(V, L);
8007 for (auto &LS : reverse(ValuesAtScopes[V]))
8008 if (LS.first == L) {
8009 LS.second = C;
8010 break;
8012 return C;
8015 /// This builds up a Constant using the ConstantExpr interface. That way, we
8016 /// will return Constants for objects which aren't represented by a
8017 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8018 /// Returns NULL if the SCEV isn't representable as a Constant.
8019 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8020 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
8021 case scCouldNotCompute:
8022 case scAddRecExpr:
8023 break;
8024 case scConstant:
8025 return cast<SCEVConstant>(V)->getValue();
8026 case scUnknown:
8027 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8028 case scSignExtend: {
8029 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8030 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8031 return ConstantExpr::getSExt(CastOp, SS->getType());
8032 break;
8034 case scZeroExtend: {
8035 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8036 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8037 return ConstantExpr::getZExt(CastOp, SZ->getType());
8038 break;
8040 case scTruncate: {
8041 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8042 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8043 return ConstantExpr::getTrunc(CastOp, ST->getType());
8044 break;
8046 case scAddExpr: {
8047 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8048 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8049 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8050 unsigned AS = PTy->getAddressSpace();
8051 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8052 C = ConstantExpr::getBitCast(C, DestPtrTy);
8054 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8055 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8056 if (!C2) return nullptr;
8058 // First pointer!
8059 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8060 unsigned AS = C2->getType()->getPointerAddressSpace();
8061 std::swap(C, C2);
8062 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8063 // The offsets have been converted to bytes. We can add bytes to an
8064 // i8* by GEP with the byte count in the first index.
8065 C = ConstantExpr::getBitCast(C, DestPtrTy);
8068 // Don't bother trying to sum two pointers. We probably can't
8069 // statically compute a load that results from it anyway.
8070 if (C2->getType()->isPointerTy())
8071 return nullptr;
8073 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8074 if (PTy->getElementType()->isStructTy())
8075 C2 = ConstantExpr::getIntegerCast(
8076 C2, Type::getInt32Ty(C->getContext()), true);
8077 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8078 } else
8079 C = ConstantExpr::getAdd(C, C2);
8081 return C;
8083 break;
8085 case scMulExpr: {
8086 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8087 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8088 // Don't bother with pointers at all.
8089 if (C->getType()->isPointerTy()) return nullptr;
8090 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8091 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8092 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8093 C = ConstantExpr::getMul(C, C2);
8095 return C;
8097 break;
8099 case scUDivExpr: {
8100 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8101 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8102 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8103 if (LHS->getType() == RHS->getType())
8104 return ConstantExpr::getUDiv(LHS, RHS);
8105 break;
8107 case scSMaxExpr:
8108 case scUMaxExpr:
8109 break; // TODO: smax, umax.
8111 return nullptr;
8114 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8115 if (isa<SCEVConstant>(V)) return V;
8117 // If this instruction is evolved from a constant-evolving PHI, compute the
8118 // exit value from the loop without using SCEVs.
8119 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8120 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8121 if (PHINode *PN = dyn_cast<PHINode>(I)) {
8122 const Loop *LI = this->LI[I->getParent()];
8123 // Looking for loop exit value.
8124 if (LI && LI->getParentLoop() == L &&
8125 PN->getParent() == LI->getHeader()) {
8126 // Okay, there is no closed form solution for the PHI node. Check
8127 // to see if the loop that contains it has a known backedge-taken
8128 // count. If so, we may be able to force computation of the exit
8129 // value.
8130 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8131 if (const SCEVConstant *BTCC =
8132 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8134 // This trivial case can show up in some degenerate cases where
8135 // the incoming IR has not yet been fully simplified.
8136 if (BTCC->getValue()->isZero()) {
8137 Value *InitValue = nullptr;
8138 bool MultipleInitValues = false;
8139 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8140 if (!LI->contains(PN->getIncomingBlock(i))) {
8141 if (!InitValue)
8142 InitValue = PN->getIncomingValue(i);
8143 else if (InitValue != PN->getIncomingValue(i)) {
8144 MultipleInitValues = true;
8145 break;
8148 if (!MultipleInitValues && InitValue)
8149 return getSCEV(InitValue);
8152 // Okay, we know how many times the containing loop executes. If
8153 // this is a constant evolving PHI node, get the final value at
8154 // the specified iteration number.
8155 Constant *RV =
8156 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8157 if (RV) return getSCEV(RV);
8162 // Okay, this is an expression that we cannot symbolically evaluate
8163 // into a SCEV. Check to see if it's possible to symbolically evaluate
8164 // the arguments into constants, and if so, try to constant propagate the
8165 // result. This is particularly useful for computing loop exit values.
8166 if (CanConstantFold(I)) {
8167 SmallVector<Constant *, 4> Operands;
8168 bool MadeImprovement = false;
8169 for (Value *Op : I->operands()) {
8170 if (Constant *C = dyn_cast<Constant>(Op)) {
8171 Operands.push_back(C);
8172 continue;
8175 // If any of the operands is non-constant and if they are
8176 // non-integer and non-pointer, don't even try to analyze them
8177 // with scev techniques.
8178 if (!isSCEVable(Op->getType()))
8179 return V;
8181 const SCEV *OrigV = getSCEV(Op);
8182 const SCEV *OpV = getSCEVAtScope(OrigV, L);
8183 MadeImprovement |= OrigV != OpV;
8185 Constant *C = BuildConstantFromSCEV(OpV);
8186 if (!C) return V;
8187 if (C->getType() != Op->getType())
8188 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8189 Op->getType(),
8190 false),
8191 C, Op->getType());
8192 Operands.push_back(C);
8195 // Check to see if getSCEVAtScope actually made an improvement.
8196 if (MadeImprovement) {
8197 Constant *C = nullptr;
8198 const DataLayout &DL = getDataLayout();
8199 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8200 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8201 Operands[1], DL, &TLI);
8202 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8203 if (!LI->isVolatile())
8204 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8205 } else
8206 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8207 if (!C) return V;
8208 return getSCEV(C);
8213 // This is some other type of SCEVUnknown, just return it.
8214 return V;
8217 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8218 // Avoid performing the look-up in the common case where the specified
8219 // expression has no loop-variant portions.
8220 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8221 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8222 if (OpAtScope != Comm->getOperand(i)) {
8223 // Okay, at least one of these operands is loop variant but might be
8224 // foldable. Build a new instance of the folded commutative expression.
8225 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8226 Comm->op_begin()+i);
8227 NewOps.push_back(OpAtScope);
8229 for (++i; i != e; ++i) {
8230 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8231 NewOps.push_back(OpAtScope);
8233 if (isa<SCEVAddExpr>(Comm))
8234 return getAddExpr(NewOps);
8235 if (isa<SCEVMulExpr>(Comm))
8236 return getMulExpr(NewOps);
8237 if (isa<SCEVSMaxExpr>(Comm))
8238 return getSMaxExpr(NewOps);
8239 if (isa<SCEVUMaxExpr>(Comm))
8240 return getUMaxExpr(NewOps);
8241 llvm_unreachable("Unknown commutative SCEV type!");
8244 // If we got here, all operands are loop invariant.
8245 return Comm;
8248 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8249 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8250 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8251 if (LHS == Div->getLHS() && RHS == Div->getRHS())
8252 return Div; // must be loop invariant
8253 return getUDivExpr(LHS, RHS);
8256 // If this is a loop recurrence for a loop that does not contain L, then we
8257 // are dealing with the final value computed by the loop.
8258 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8259 // First, attempt to evaluate each operand.
8260 // Avoid performing the look-up in the common case where the specified
8261 // expression has no loop-variant portions.
8262 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8263 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8264 if (OpAtScope == AddRec->getOperand(i))
8265 continue;
8267 // Okay, at least one of these operands is loop variant but might be
8268 // foldable. Build a new instance of the folded commutative expression.
8269 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8270 AddRec->op_begin()+i);
8271 NewOps.push_back(OpAtScope);
8272 for (++i; i != e; ++i)
8273 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8275 const SCEV *FoldedRec =
8276 getAddRecExpr(NewOps, AddRec->getLoop(),
8277 AddRec->getNoWrapFlags(SCEV::FlagNW));
8278 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8279 // The addrec may be folded to a nonrecurrence, for example, if the
8280 // induction variable is multiplied by zero after constant folding. Go
8281 // ahead and return the folded value.
8282 if (!AddRec)
8283 return FoldedRec;
8284 break;
8287 // If the scope is outside the addrec's loop, evaluate it by using the
8288 // loop exit value of the addrec.
8289 if (!AddRec->getLoop()->contains(L)) {
8290 // To evaluate this recurrence, we need to know how many times the AddRec
8291 // loop iterates. Compute this now.
8292 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8293 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8295 // Then, evaluate the AddRec.
8296 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8299 return AddRec;
8302 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8303 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8304 if (Op == Cast->getOperand())
8305 return Cast; // must be loop invariant
8306 return getZeroExtendExpr(Op, Cast->getType());
8309 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8310 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8311 if (Op == Cast->getOperand())
8312 return Cast; // must be loop invariant
8313 return getSignExtendExpr(Op, Cast->getType());
8316 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8317 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8318 if (Op == Cast->getOperand())
8319 return Cast; // must be loop invariant
8320 return getTruncateExpr(Op, Cast->getType());
8323 llvm_unreachable("Unknown SCEV type!");
8326 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8327 return getSCEVAtScope(getSCEV(V), L);
8330 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8331 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8332 return stripInjectiveFunctions(ZExt->getOperand());
8333 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8334 return stripInjectiveFunctions(SExt->getOperand());
8335 return S;
8338 /// Finds the minimum unsigned root of the following equation:
8340 /// A * X = B (mod N)
8342 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8343 /// A and B isn't important.
8345 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8346 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8347 ScalarEvolution &SE) {
8348 uint32_t BW = A.getBitWidth();
8349 assert(BW == SE.getTypeSizeInBits(B->getType()));
8350 assert(A != 0 && "A must be non-zero.");
8352 // 1. D = gcd(A, N)
8354 // The gcd of A and N may have only one prime factor: 2. The number of
8355 // trailing zeros in A is its multiplicity
8356 uint32_t Mult2 = A.countTrailingZeros();
8357 // D = 2^Mult2
8359 // 2. Check if B is divisible by D.
8361 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8362 // is not less than multiplicity of this prime factor for D.
8363 if (SE.GetMinTrailingZeros(B) < Mult2)
8364 return SE.getCouldNotCompute();
8366 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8367 // modulo (N / D).
8369 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8370 // (N / D) in general. The inverse itself always fits into BW bits, though,
8371 // so we immediately truncate it.
8372 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
8373 APInt Mod(BW + 1, 0);
8374 Mod.setBit(BW - Mult2); // Mod = N / D
8375 APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8377 // 4. Compute the minimum unsigned root of the equation:
8378 // I * (B / D) mod (N / D)
8379 // To simplify the computation, we factor out the divide by D:
8380 // (I * B mod N) / D
8381 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8382 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8385 /// For a given quadratic addrec, generate coefficients of the corresponding
8386 /// quadratic equation, multiplied by a common value to ensure that they are
8387 /// integers.
8388 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8389 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8390 /// were multiplied by, and BitWidth is the bit width of the original addrec
8391 /// coefficients.
8392 /// This function returns None if the addrec coefficients are not compile-
8393 /// time constants.
8394 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8395 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8396 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8397 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8398 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8399 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8400 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8401 << *AddRec << '\n');
8403 // We currently can only solve this if the coefficients are constants.
8404 if (!LC || !MC || !NC) {
8405 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8406 return None;
8409 APInt L = LC->getAPInt();
8410 APInt M = MC->getAPInt();
8411 APInt N = NC->getAPInt();
8412 assert(!N.isNullValue() && "This is not a quadratic addrec");
8414 unsigned BitWidth = LC->getAPInt().getBitWidth();
8415 unsigned NewWidth = BitWidth + 1;
8416 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8417 << BitWidth << '\n');
8418 // The sign-extension (as opposed to a zero-extension) here matches the
8419 // extension used in SolveQuadraticEquationWrap (with the same motivation).
8420 N = N.sext(NewWidth);
8421 M = M.sext(NewWidth);
8422 L = L.sext(NewWidth);
8424 // The increments are M, M+N, M+2N, ..., so the accumulated values are
8425 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8426 // L+M, L+2M+N, L+3M+3N, ...
8427 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8429 // The equation Acc = 0 is then
8430 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
8431 // In a quadratic form it becomes:
8432 // N n^2 + (2M-N) n + 2L = 0.
8434 APInt A = N;
8435 APInt B = 2 * M - A;
8436 APInt C = 2 * L;
8437 APInt T = APInt(NewWidth, 2);
8438 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8439 << "x + " << C << ", coeff bw: " << NewWidth
8440 << ", multiplied by " << T << '\n');
8441 return std::make_tuple(A, B, C, T, BitWidth);
8444 /// Helper function to compare optional APInts:
8445 /// (a) if X and Y both exist, return min(X, Y),
8446 /// (b) if neither X nor Y exist, return None,
8447 /// (c) if exactly one of X and Y exists, return that value.
8448 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8449 if (X.hasValue() && Y.hasValue()) {
8450 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8451 APInt XW = X->sextOrSelf(W);
8452 APInt YW = Y->sextOrSelf(W);
8453 return XW.slt(YW) ? *X : *Y;
8455 if (!X.hasValue() && !Y.hasValue())
8456 return None;
8457 return X.hasValue() ? *X : *Y;
8460 /// Helper function to truncate an optional APInt to a given BitWidth.
8461 /// When solving addrec-related equations, it is preferable to return a value
8462 /// that has the same bit width as the original addrec's coefficients. If the
8463 /// solution fits in the original bit width, truncate it (except for i1).
8464 /// Returning a value of a different bit width may inhibit some optimizations.
8466 /// In general, a solution to a quadratic equation generated from an addrec
8467 /// may require BW+1 bits, where BW is the bit width of the addrec's
8468 /// coefficients. The reason is that the coefficients of the quadratic
8469 /// equation are BW+1 bits wide (to avoid truncation when converting from
8470 /// the addrec to the equation).
8471 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8472 if (!X.hasValue())
8473 return None;
8474 unsigned W = X->getBitWidth();
8475 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8476 return X->trunc(BitWidth);
8477 return X;
8480 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8481 /// iterations. The values L, M, N are assumed to be signed, and they
8482 /// should all have the same bit widths.
8483 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8484 /// where BW is the bit width of the addrec's coefficients.
8485 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8486 /// returned as such, otherwise the bit width of the returned value may
8487 /// be greater than BW.
8489 /// This function returns None if
8490 /// (a) the addrec coefficients are not constant, or
8491 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8492 /// like x^2 = 5, no integer solutions exist, in other cases an integer
8493 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8494 static Optional<APInt>
8495 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8496 APInt A, B, C, M;
8497 unsigned BitWidth;
8498 auto T = GetQuadraticEquation(AddRec);
8499 if (!T.hasValue())
8500 return None;
8502 std::tie(A, B, C, M, BitWidth) = *T;
8503 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8504 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8505 if (!X.hasValue())
8506 return None;
8508 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8509 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8510 if (!V->isZero())
8511 return None;
8513 return TruncIfPossible(X, BitWidth);
8516 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8517 /// iterations. The values M, N are assumed to be signed, and they
8518 /// should all have the same bit widths.
8519 /// Find the least n such that c(n) does not belong to the given range,
8520 /// while c(n-1) does.
8522 /// This function returns None if
8523 /// (a) the addrec coefficients are not constant, or
8524 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8525 /// bounds of the range.
8526 static Optional<APInt>
8527 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8528 const ConstantRange &Range, ScalarEvolution &SE) {
8529 assert(AddRec->getOperand(0)->isZero() &&
8530 "Starting value of addrec should be 0");
8531 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8532 << Range << ", addrec " << *AddRec << '\n');
8533 // This case is handled in getNumIterationsInRange. Here we can assume that
8534 // we start in the range.
8535 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8536 "Addrec's initial value should be in range");
8538 APInt A, B, C, M;
8539 unsigned BitWidth;
8540 auto T = GetQuadraticEquation(AddRec);
8541 if (!T.hasValue())
8542 return None;
8544 // Be careful about the return value: there can be two reasons for not
8545 // returning an actual number. First, if no solutions to the equations
8546 // were found, and second, if the solutions don't leave the given range.
8547 // The first case means that the actual solution is "unknown", the second
8548 // means that it's known, but not valid. If the solution is unknown, we
8549 // cannot make any conclusions.
8550 // Return a pair: the optional solution and a flag indicating if the
8551 // solution was found.
8552 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8553 // Solve for signed overflow and unsigned overflow, pick the lower
8554 // solution.
8555 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8556 << Bound << " (before multiplying by " << M << ")\n");
8557 Bound *= M; // The quadratic equation multiplier.
8559 Optional<APInt> SO = None;
8560 if (BitWidth > 1) {
8561 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8562 "signed overflow\n");
8563 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8565 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8566 "unsigned overflow\n");
8567 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8568 BitWidth+1);
8570 auto LeavesRange = [&] (const APInt &X) {
8571 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8572 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8573 if (Range.contains(V0->getValue()))
8574 return false;
8575 // X should be at least 1, so X-1 is non-negative.
8576 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8577 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8578 if (Range.contains(V1->getValue()))
8579 return true;
8580 return false;
8583 // If SolveQuadraticEquationWrap returns None, it means that there can
8584 // be a solution, but the function failed to find it. We cannot treat it
8585 // as "no solution".
8586 if (!SO.hasValue() || !UO.hasValue())
8587 return { None, false };
8589 // Check the smaller value first to see if it leaves the range.
8590 // At this point, both SO and UO must have values.
8591 Optional<APInt> Min = MinOptional(SO, UO);
8592 if (LeavesRange(*Min))
8593 return { Min, true };
8594 Optional<APInt> Max = Min == SO ? UO : SO;
8595 if (LeavesRange(*Max))
8596 return { Max, true };
8598 // Solutions were found, but were eliminated, hence the "true".
8599 return { None, true };
8602 std::tie(A, B, C, M, BitWidth) = *T;
8603 // Lower bound is inclusive, subtract 1 to represent the exiting value.
8604 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8605 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8606 auto SL = SolveForBoundary(Lower);
8607 auto SU = SolveForBoundary(Upper);
8608 // If any of the solutions was unknown, no meaninigful conclusions can
8609 // be made.
8610 if (!SL.second || !SU.second)
8611 return None;
8613 // Claim: The correct solution is not some value between Min and Max.
8615 // Justification: Assuming that Min and Max are different values, one of
8616 // them is when the first signed overflow happens, the other is when the
8617 // first unsigned overflow happens. Crossing the range boundary is only
8618 // possible via an overflow (treating 0 as a special case of it, modeling
8619 // an overflow as crossing k*2^W for some k).
8621 // The interesting case here is when Min was eliminated as an invalid
8622 // solution, but Max was not. The argument is that if there was another
8623 // overflow between Min and Max, it would also have been eliminated if
8624 // it was considered.
8626 // For a given boundary, it is possible to have two overflows of the same
8627 // type (signed/unsigned) without having the other type in between: this
8628 // can happen when the vertex of the parabola is between the iterations
8629 // corresponding to the overflows. This is only possible when the two
8630 // overflows cross k*2^W for the same k. In such case, if the second one
8631 // left the range (and was the first one to do so), the first overflow
8632 // would have to enter the range, which would mean that either we had left
8633 // the range before or that we started outside of it. Both of these cases
8634 // are contradictions.
8636 // Claim: In the case where SolveForBoundary returns None, the correct
8637 // solution is not some value between the Max for this boundary and the
8638 // Min of the other boundary.
8640 // Justification: Assume that we had such Max_A and Min_B corresponding
8641 // to range boundaries A and B and such that Max_A < Min_B. If there was
8642 // a solution between Max_A and Min_B, it would have to be caused by an
8643 // overflow corresponding to either A or B. It cannot correspond to B,
8644 // since Min_B is the first occurrence of such an overflow. If it
8645 // corresponded to A, it would have to be either a signed or an unsigned
8646 // overflow that is larger than both eliminated overflows for A. But
8647 // between the eliminated overflows and this overflow, the values would
8648 // cover the entire value space, thus crossing the other boundary, which
8649 // is a contradiction.
8651 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8654 ScalarEvolution::ExitLimit
8655 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8656 bool AllowPredicates) {
8658 // This is only used for loops with a "x != y" exit test. The exit condition
8659 // is now expressed as a single expression, V = x-y. So the exit test is
8660 // effectively V != 0. We know and take advantage of the fact that this
8661 // expression only being used in a comparison by zero context.
8663 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8664 // If the value is a constant
8665 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8666 // If the value is already zero, the branch will execute zero times.
8667 if (C->getValue()->isZero()) return C;
8668 return getCouldNotCompute(); // Otherwise it will loop infinitely.
8671 const SCEVAddRecExpr *AddRec =
8672 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8674 if (!AddRec && AllowPredicates)
8675 // Try to make this an AddRec using runtime tests, in the first X
8676 // iterations of this loop, where X is the SCEV expression found by the
8677 // algorithm below.
8678 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8680 if (!AddRec || AddRec->getLoop() != L)
8681 return getCouldNotCompute();
8683 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8684 // the quadratic equation to solve it.
8685 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8686 // We can only use this value if the chrec ends up with an exact zero
8687 // value at this index. When solving for "X*X != 5", for example, we
8688 // should not accept a root of 2.
8689 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8690 const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8691 return ExitLimit(R, R, false, Predicates);
8693 return getCouldNotCompute();
8696 // Otherwise we can only handle this if it is affine.
8697 if (!AddRec->isAffine())
8698 return getCouldNotCompute();
8700 // If this is an affine expression, the execution count of this branch is
8701 // the minimum unsigned root of the following equation:
8703 // Start + Step*N = 0 (mod 2^BW)
8705 // equivalent to:
8707 // Step*N = -Start (mod 2^BW)
8709 // where BW is the common bit width of Start and Step.
8711 // Get the initial value for the loop.
8712 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8713 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8715 // For now we handle only constant steps.
8717 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8718 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8719 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8720 // We have not yet seen any such cases.
8721 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8722 if (!StepC || StepC->getValue()->isZero())
8723 return getCouldNotCompute();
8725 // For positive steps (counting up until unsigned overflow):
8726 // N = -Start/Step (as unsigned)
8727 // For negative steps (counting down to zero):
8728 // N = Start/-Step
8729 // First compute the unsigned distance from zero in the direction of Step.
8730 bool CountDown = StepC->getAPInt().isNegative();
8731 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8733 // Handle unitary steps, which cannot wraparound.
8734 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8735 // N = Distance (as unsigned)
8736 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8737 APInt MaxBECount = getUnsignedRangeMax(Distance);
8739 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8740 // we end up with a loop whose backedge-taken count is n - 1. Detect this
8741 // case, and see if we can improve the bound.
8743 // Explicitly handling this here is necessary because getUnsignedRange
8744 // isn't context-sensitive; it doesn't know that we only care about the
8745 // range inside the loop.
8746 const SCEV *Zero = getZero(Distance->getType());
8747 const SCEV *One = getOne(Distance->getType());
8748 const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8749 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8750 // If Distance + 1 doesn't overflow, we can compute the maximum distance
8751 // as "unsigned_max(Distance + 1) - 1".
8752 ConstantRange CR = getUnsignedRange(DistancePlusOne);
8753 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8755 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8758 // If the condition controls loop exit (the loop exits only if the expression
8759 // is true) and the addition is no-wrap we can use unsigned divide to
8760 // compute the backedge count. In this case, the step may not divide the
8761 // distance, but we don't care because if the condition is "missed" the loop
8762 // will have undefined behavior due to wrapping.
8763 if (ControlsExit && AddRec->hasNoSelfWrap() &&
8764 loopHasNoAbnormalExits(AddRec->getLoop())) {
8765 const SCEV *Exact =
8766 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8767 const SCEV *Max =
8768 Exact == getCouldNotCompute()
8769 ? Exact
8770 : getConstant(getUnsignedRangeMax(Exact));
8771 return ExitLimit(Exact, Max, false, Predicates);
8774 // Solve the general equation.
8775 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8776 getNegativeSCEV(Start), *this);
8777 const SCEV *M = E == getCouldNotCompute()
8779 : getConstant(getUnsignedRangeMax(E));
8780 return ExitLimit(E, M, false, Predicates);
8783 ScalarEvolution::ExitLimit
8784 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8785 // Loops that look like: while (X == 0) are very strange indeed. We don't
8786 // handle them yet except for the trivial case. This could be expanded in the
8787 // future as needed.
8789 // If the value is a constant, check to see if it is known to be non-zero
8790 // already. If so, the backedge will execute zero times.
8791 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8792 if (!C->getValue()->isZero())
8793 return getZero(C->getType());
8794 return getCouldNotCompute(); // Otherwise it will loop infinitely.
8797 // We could implement others, but I really doubt anyone writes loops like
8798 // this, and if they did, they would already be constant folded.
8799 return getCouldNotCompute();
8802 std::pair<BasicBlock *, BasicBlock *>
8803 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8804 // If the block has a unique predecessor, then there is no path from the
8805 // predecessor to the block that does not go through the direct edge
8806 // from the predecessor to the block.
8807 if (BasicBlock *Pred = BB->getSinglePredecessor())
8808 return {Pred, BB};
8810 // A loop's header is defined to be a block that dominates the loop.
8811 // If the header has a unique predecessor outside the loop, it must be
8812 // a block that has exactly one successor that can reach the loop.
8813 if (Loop *L = LI.getLoopFor(BB))
8814 return {L->getLoopPredecessor(), L->getHeader()};
8816 return {nullptr, nullptr};
8819 /// SCEV structural equivalence is usually sufficient for testing whether two
8820 /// expressions are equal, however for the purposes of looking for a condition
8821 /// guarding a loop, it can be useful to be a little more general, since a
8822 /// front-end may have replicated the controlling expression.
8823 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8824 // Quick check to see if they are the same SCEV.
8825 if (A == B) return true;
8827 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8828 // Not all instructions that are "identical" compute the same value. For
8829 // instance, two distinct alloca instructions allocating the same type are
8830 // identical and do not read memory; but compute distinct values.
8831 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8834 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8835 // two different instructions with the same value. Check for this case.
8836 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8837 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8838 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8839 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8840 if (ComputesEqualValues(AI, BI))
8841 return true;
8843 // Otherwise assume they may have a different value.
8844 return false;
8847 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8848 const SCEV *&LHS, const SCEV *&RHS,
8849 unsigned Depth) {
8850 bool Changed = false;
8851 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8852 // '0 != 0'.
8853 auto TrivialCase = [&](bool TriviallyTrue) {
8854 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8855 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8856 return true;
8858 // If we hit the max recursion limit bail out.
8859 if (Depth >= 3)
8860 return false;
8862 // Canonicalize a constant to the right side.
8863 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8864 // Check for both operands constant.
8865 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8866 if (ConstantExpr::getICmp(Pred,
8867 LHSC->getValue(),
8868 RHSC->getValue())->isNullValue())
8869 return TrivialCase(false);
8870 else
8871 return TrivialCase(true);
8873 // Otherwise swap the operands to put the constant on the right.
8874 std::swap(LHS, RHS);
8875 Pred = ICmpInst::getSwappedPredicate(Pred);
8876 Changed = true;
8879 // If we're comparing an addrec with a value which is loop-invariant in the
8880 // addrec's loop, put the addrec on the left. Also make a dominance check,
8881 // as both operands could be addrecs loop-invariant in each other's loop.
8882 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8883 const Loop *L = AR->getLoop();
8884 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8885 std::swap(LHS, RHS);
8886 Pred = ICmpInst::getSwappedPredicate(Pred);
8887 Changed = true;
8891 // If there's a constant operand, canonicalize comparisons with boundary
8892 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8893 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8894 const APInt &RA = RC->getAPInt();
8896 bool SimplifiedByConstantRange = false;
8898 if (!ICmpInst::isEquality(Pred)) {
8899 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8900 if (ExactCR.isFullSet())
8901 return TrivialCase(true);
8902 else if (ExactCR.isEmptySet())
8903 return TrivialCase(false);
8905 APInt NewRHS;
8906 CmpInst::Predicate NewPred;
8907 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8908 ICmpInst::isEquality(NewPred)) {
8909 // We were able to convert an inequality to an equality.
8910 Pred = NewPred;
8911 RHS = getConstant(NewRHS);
8912 Changed = SimplifiedByConstantRange = true;
8916 if (!SimplifiedByConstantRange) {
8917 switch (Pred) {
8918 default:
8919 break;
8920 case ICmpInst::ICMP_EQ:
8921 case ICmpInst::ICMP_NE:
8922 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8923 if (!RA)
8924 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8925 if (const SCEVMulExpr *ME =
8926 dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8927 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8928 ME->getOperand(0)->isAllOnesValue()) {
8929 RHS = AE->getOperand(1);
8930 LHS = ME->getOperand(1);
8931 Changed = true;
8933 break;
8936 // The "Should have been caught earlier!" messages refer to the fact
8937 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8938 // should have fired on the corresponding cases, and canonicalized the
8939 // check to trivial case.
8941 case ICmpInst::ICMP_UGE:
8942 assert(!RA.isMinValue() && "Should have been caught earlier!");
8943 Pred = ICmpInst::ICMP_UGT;
8944 RHS = getConstant(RA - 1);
8945 Changed = true;
8946 break;
8947 case ICmpInst::ICMP_ULE:
8948 assert(!RA.isMaxValue() && "Should have been caught earlier!");
8949 Pred = ICmpInst::ICMP_ULT;
8950 RHS = getConstant(RA + 1);
8951 Changed = true;
8952 break;
8953 case ICmpInst::ICMP_SGE:
8954 assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8955 Pred = ICmpInst::ICMP_SGT;
8956 RHS = getConstant(RA - 1);
8957 Changed = true;
8958 break;
8959 case ICmpInst::ICMP_SLE:
8960 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8961 Pred = ICmpInst::ICMP_SLT;
8962 RHS = getConstant(RA + 1);
8963 Changed = true;
8964 break;
8969 // Check for obvious equality.
8970 if (HasSameValue(LHS, RHS)) {
8971 if (ICmpInst::isTrueWhenEqual(Pred))
8972 return TrivialCase(true);
8973 if (ICmpInst::isFalseWhenEqual(Pred))
8974 return TrivialCase(false);
8977 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8978 // adding or subtracting 1 from one of the operands.
8979 switch (Pred) {
8980 case ICmpInst::ICMP_SLE:
8981 if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8982 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8983 SCEV::FlagNSW);
8984 Pred = ICmpInst::ICMP_SLT;
8985 Changed = true;
8986 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8987 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8988 SCEV::FlagNSW);
8989 Pred = ICmpInst::ICMP_SLT;
8990 Changed = true;
8992 break;
8993 case ICmpInst::ICMP_SGE:
8994 if (!getSignedRangeMin(RHS).isMinSignedValue()) {
8995 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
8996 SCEV::FlagNSW);
8997 Pred = ICmpInst::ICMP_SGT;
8998 Changed = true;
8999 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9000 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9001 SCEV::FlagNSW);
9002 Pred = ICmpInst::ICMP_SGT;
9003 Changed = true;
9005 break;
9006 case ICmpInst::ICMP_ULE:
9007 if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9008 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9009 SCEV::FlagNUW);
9010 Pred = ICmpInst::ICMP_ULT;
9011 Changed = true;
9012 } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9013 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9014 Pred = ICmpInst::ICMP_ULT;
9015 Changed = true;
9017 break;
9018 case ICmpInst::ICMP_UGE:
9019 if (!getUnsignedRangeMin(RHS).isMinValue()) {
9020 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9021 Pred = ICmpInst::ICMP_UGT;
9022 Changed = true;
9023 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9024 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9025 SCEV::FlagNUW);
9026 Pred = ICmpInst::ICMP_UGT;
9027 Changed = true;
9029 break;
9030 default:
9031 break;
9034 // TODO: More simplifications are possible here.
9036 // Recursively simplify until we either hit a recursion limit or nothing
9037 // changes.
9038 if (Changed)
9039 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9041 return Changed;
9044 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9045 return getSignedRangeMax(S).isNegative();
9048 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9049 return getSignedRangeMin(S).isStrictlyPositive();
9052 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9053 return !getSignedRangeMin(S).isNegative();
9056 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9057 return !getSignedRangeMax(S).isStrictlyPositive();
9060 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9061 return isKnownNegative(S) || isKnownPositive(S);
9064 std::pair<const SCEV *, const SCEV *>
9065 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9066 // Compute SCEV on entry of loop L.
9067 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9068 if (Start == getCouldNotCompute())
9069 return { Start, Start };
9070 // Compute post increment SCEV for loop L.
9071 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9072 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9073 return { Start, PostInc };
9076 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9077 const SCEV *LHS, const SCEV *RHS) {
9078 // First collect all loops.
9079 SmallPtrSet<const Loop *, 8> LoopsUsed;
9080 getUsedLoops(LHS, LoopsUsed);
9081 getUsedLoops(RHS, LoopsUsed);
9083 if (LoopsUsed.empty())
9084 return false;
9086 // Domination relationship must be a linear order on collected loops.
9087 #ifndef NDEBUG
9088 for (auto *L1 : LoopsUsed)
9089 for (auto *L2 : LoopsUsed)
9090 assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9091 DT.dominates(L2->getHeader(), L1->getHeader())) &&
9092 "Domination relationship is not a linear order");
9093 #endif
9095 const Loop *MDL =
9096 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9097 [&](const Loop *L1, const Loop *L2) {
9098 return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9101 // Get init and post increment value for LHS.
9102 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9103 // if LHS contains unknown non-invariant SCEV then bail out.
9104 if (SplitLHS.first == getCouldNotCompute())
9105 return false;
9106 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9107 // Get init and post increment value for RHS.
9108 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9109 // if RHS contains unknown non-invariant SCEV then bail out.
9110 if (SplitRHS.first == getCouldNotCompute())
9111 return false;
9112 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9113 // It is possible that init SCEV contains an invariant load but it does
9114 // not dominate MDL and is not available at MDL loop entry, so we should
9115 // check it here.
9116 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9117 !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9118 return false;
9120 return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
9121 isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9122 SplitRHS.second);
9125 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9126 const SCEV *LHS, const SCEV *RHS) {
9127 // Canonicalize the inputs first.
9128 (void)SimplifyICmpOperands(Pred, LHS, RHS);
9130 if (isKnownViaInduction(Pred, LHS, RHS))
9131 return true;
9133 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9134 return true;
9136 // Otherwise see what can be done with some simple reasoning.
9137 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9140 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9141 const SCEVAddRecExpr *LHS,
9142 const SCEV *RHS) {
9143 const Loop *L = LHS->getLoop();
9144 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9145 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9148 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9149 ICmpInst::Predicate Pred,
9150 bool &Increasing) {
9151 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9153 #ifndef NDEBUG
9154 // Verify an invariant: inverting the predicate should turn a monotonically
9155 // increasing change to a monotonically decreasing one, and vice versa.
9156 bool IncreasingSwapped;
9157 bool ResultSwapped = isMonotonicPredicateImpl(
9158 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9160 assert(Result == ResultSwapped && "should be able to analyze both!");
9161 if (ResultSwapped)
9162 assert(Increasing == !IncreasingSwapped &&
9163 "monotonicity should flip as we flip the predicate");
9164 #endif
9166 return Result;
9169 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9170 ICmpInst::Predicate Pred,
9171 bool &Increasing) {
9173 // A zero step value for LHS means the induction variable is essentially a
9174 // loop invariant value. We don't really depend on the predicate actually
9175 // flipping from false to true (for increasing predicates, and the other way
9176 // around for decreasing predicates), all we care about is that *if* the
9177 // predicate changes then it only changes from false to true.
9179 // A zero step value in itself is not very useful, but there may be places
9180 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9181 // as general as possible.
9183 switch (Pred) {
9184 default:
9185 return false; // Conservative answer
9187 case ICmpInst::ICMP_UGT:
9188 case ICmpInst::ICMP_UGE:
9189 case ICmpInst::ICMP_ULT:
9190 case ICmpInst::ICMP_ULE:
9191 if (!LHS->hasNoUnsignedWrap())
9192 return false;
9194 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9195 return true;
9197 case ICmpInst::ICMP_SGT:
9198 case ICmpInst::ICMP_SGE:
9199 case ICmpInst::ICMP_SLT:
9200 case ICmpInst::ICMP_SLE: {
9201 if (!LHS->hasNoSignedWrap())
9202 return false;
9204 const SCEV *Step = LHS->getStepRecurrence(*this);
9206 if (isKnownNonNegative(Step)) {
9207 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9208 return true;
9211 if (isKnownNonPositive(Step)) {
9212 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9213 return true;
9216 return false;
9221 llvm_unreachable("switch has default clause!");
9224 bool ScalarEvolution::isLoopInvariantPredicate(
9225 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9226 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9227 const SCEV *&InvariantRHS) {
9229 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9230 if (!isLoopInvariant(RHS, L)) {
9231 if (!isLoopInvariant(LHS, L))
9232 return false;
9234 std::swap(LHS, RHS);
9235 Pred = ICmpInst::getSwappedPredicate(Pred);
9238 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9239 if (!ArLHS || ArLHS->getLoop() != L)
9240 return false;
9242 bool Increasing;
9243 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9244 return false;
9246 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9247 // true as the loop iterates, and the backedge is control dependent on
9248 // "ArLHS `Pred` RHS" == true then we can reason as follows:
9250 // * if the predicate was false in the first iteration then the predicate
9251 // is never evaluated again, since the loop exits without taking the
9252 // backedge.
9253 // * if the predicate was true in the first iteration then it will
9254 // continue to be true for all future iterations since it is
9255 // monotonically increasing.
9257 // For both the above possibilities, we can replace the loop varying
9258 // predicate with its value on the first iteration of the loop (which is
9259 // loop invariant).
9261 // A similar reasoning applies for a monotonically decreasing predicate, by
9262 // replacing true with false and false with true in the above two bullets.
9264 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9266 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9267 return false;
9269 InvariantPred = Pred;
9270 InvariantLHS = ArLHS->getStart();
9271 InvariantRHS = RHS;
9272 return true;
9275 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9276 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9277 if (HasSameValue(LHS, RHS))
9278 return ICmpInst::isTrueWhenEqual(Pred);
9280 // This code is split out from isKnownPredicate because it is called from
9281 // within isLoopEntryGuardedByCond.
9283 auto CheckRanges =
9284 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9285 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9286 .contains(RangeLHS);
9289 // The check at the top of the function catches the case where the values are
9290 // known to be equal.
9291 if (Pred == CmpInst::ICMP_EQ)
9292 return false;
9294 if (Pred == CmpInst::ICMP_NE)
9295 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9296 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9297 isKnownNonZero(getMinusSCEV(LHS, RHS));
9299 if (CmpInst::isSigned(Pred))
9300 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9302 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9305 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9306 const SCEV *LHS,
9307 const SCEV *RHS) {
9308 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9309 // Return Y via OutY.
9310 auto MatchBinaryAddToConst =
9311 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9312 SCEV::NoWrapFlags ExpectedFlags) {
9313 const SCEV *NonConstOp, *ConstOp;
9314 SCEV::NoWrapFlags FlagsPresent;
9316 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9317 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9318 return false;
9320 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9321 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9324 APInt C;
9326 switch (Pred) {
9327 default:
9328 break;
9330 case ICmpInst::ICMP_SGE:
9331 std::swap(LHS, RHS);
9332 LLVM_FALLTHROUGH;
9333 case ICmpInst::ICMP_SLE:
9334 // X s<= (X + C)<nsw> if C >= 0
9335 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9336 return true;
9338 // (X + C)<nsw> s<= X if C <= 0
9339 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9340 !C.isStrictlyPositive())
9341 return true;
9342 break;
9344 case ICmpInst::ICMP_SGT:
9345 std::swap(LHS, RHS);
9346 LLVM_FALLTHROUGH;
9347 case ICmpInst::ICMP_SLT:
9348 // X s< (X + C)<nsw> if C > 0
9349 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9350 C.isStrictlyPositive())
9351 return true;
9353 // (X + C)<nsw> s< X if C < 0
9354 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9355 return true;
9356 break;
9359 return false;
9362 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9363 const SCEV *LHS,
9364 const SCEV *RHS) {
9365 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9366 return false;
9368 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9369 // the stack can result in exponential time complexity.
9370 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9372 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9374 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9375 // isKnownPredicate. isKnownPredicate is more powerful, but also more
9376 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9377 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
9378 // use isKnownPredicate later if needed.
9379 return isKnownNonNegative(RHS) &&
9380 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9381 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9384 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9385 ICmpInst::Predicate Pred,
9386 const SCEV *LHS, const SCEV *RHS) {
9387 // No need to even try if we know the module has no guards.
9388 if (!HasGuards)
9389 return false;
9391 return any_of(*BB, [&](Instruction &I) {
9392 using namespace llvm::PatternMatch;
9394 Value *Condition;
9395 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9396 m_Value(Condition))) &&
9397 isImpliedCond(Pred, LHS, RHS, Condition, false);
9401 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9402 /// protected by a conditional between LHS and RHS. This is used to
9403 /// to eliminate casts.
9404 bool
9405 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9406 ICmpInst::Predicate Pred,
9407 const SCEV *LHS, const SCEV *RHS) {
9408 // Interpret a null as meaning no loop, where there is obviously no guard
9409 // (interprocedural conditions notwithstanding).
9410 if (!L) return true;
9412 if (VerifyIR)
9413 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9414 "This cannot be done on broken IR!");
9417 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9418 return true;
9420 BasicBlock *Latch = L->getLoopLatch();
9421 if (!Latch)
9422 return false;
9424 BranchInst *LoopContinuePredicate =
9425 dyn_cast<BranchInst>(Latch->getTerminator());
9426 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9427 isImpliedCond(Pred, LHS, RHS,
9428 LoopContinuePredicate->getCondition(),
9429 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9430 return true;
9432 // We don't want more than one activation of the following loops on the stack
9433 // -- that can lead to O(n!) time complexity.
9434 if (WalkingBEDominatingConds)
9435 return false;
9437 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9439 // See if we can exploit a trip count to prove the predicate.
9440 const auto &BETakenInfo = getBackedgeTakenInfo(L);
9441 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9442 if (LatchBECount != getCouldNotCompute()) {
9443 // We know that Latch branches back to the loop header exactly
9444 // LatchBECount times. This means the backdege condition at Latch is
9445 // equivalent to "{0,+,1} u< LatchBECount".
9446 Type *Ty = LatchBECount->getType();
9447 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9448 const SCEV *LoopCounter =
9449 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9450 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9451 LatchBECount))
9452 return true;
9455 // Check conditions due to any @llvm.assume intrinsics.
9456 for (auto &AssumeVH : AC.assumptions()) {
9457 if (!AssumeVH)
9458 continue;
9459 auto *CI = cast<CallInst>(AssumeVH);
9460 if (!DT.dominates(CI, Latch->getTerminator()))
9461 continue;
9463 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9464 return true;
9467 // If the loop is not reachable from the entry block, we risk running into an
9468 // infinite loop as we walk up into the dom tree. These loops do not matter
9469 // anyway, so we just return a conservative answer when we see them.
9470 if (!DT.isReachableFromEntry(L->getHeader()))
9471 return false;
9473 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9474 return true;
9476 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9477 DTN != HeaderDTN; DTN = DTN->getIDom()) {
9478 assert(DTN && "should reach the loop header before reaching the root!");
9480 BasicBlock *BB = DTN->getBlock();
9481 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9482 return true;
9484 BasicBlock *PBB = BB->getSinglePredecessor();
9485 if (!PBB)
9486 continue;
9488 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9489 if (!ContinuePredicate || !ContinuePredicate->isConditional())
9490 continue;
9492 Value *Condition = ContinuePredicate->getCondition();
9494 // If we have an edge `E` within the loop body that dominates the only
9495 // latch, the condition guarding `E` also guards the backedge. This
9496 // reasoning works only for loops with a single latch.
9498 BasicBlockEdge DominatingEdge(PBB, BB);
9499 if (DominatingEdge.isSingleEdge()) {
9500 // We're constructively (and conservatively) enumerating edges within the
9501 // loop body that dominate the latch. The dominator tree better agree
9502 // with us on this:
9503 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9505 if (isImpliedCond(Pred, LHS, RHS, Condition,
9506 BB != ContinuePredicate->getSuccessor(0)))
9507 return true;
9511 return false;
9514 bool
9515 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9516 ICmpInst::Predicate Pred,
9517 const SCEV *LHS, const SCEV *RHS) {
9518 // Interpret a null as meaning no loop, where there is obviously no guard
9519 // (interprocedural conditions notwithstanding).
9520 if (!L) return false;
9522 if (VerifyIR)
9523 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9524 "This cannot be done on broken IR!");
9526 // Both LHS and RHS must be available at loop entry.
9527 assert(isAvailableAtLoopEntry(LHS, L) &&
9528 "LHS is not available at Loop Entry");
9529 assert(isAvailableAtLoopEntry(RHS, L) &&
9530 "RHS is not available at Loop Entry");
9532 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9533 return true;
9535 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9536 // the facts (a >= b && a != b) separately. A typical situation is when the
9537 // non-strict comparison is known from ranges and non-equality is known from
9538 // dominating predicates. If we are proving strict comparison, we always try
9539 // to prove non-equality and non-strict comparison separately.
9540 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9541 const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9542 bool ProvedNonStrictComparison = false;
9543 bool ProvedNonEquality = false;
9545 if (ProvingStrictComparison) {
9546 ProvedNonStrictComparison =
9547 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9548 ProvedNonEquality =
9549 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9550 if (ProvedNonStrictComparison && ProvedNonEquality)
9551 return true;
9554 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9555 auto ProveViaGuard = [&](BasicBlock *Block) {
9556 if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9557 return true;
9558 if (ProvingStrictComparison) {
9559 if (!ProvedNonStrictComparison)
9560 ProvedNonStrictComparison =
9561 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9562 if (!ProvedNonEquality)
9563 ProvedNonEquality =
9564 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9565 if (ProvedNonStrictComparison && ProvedNonEquality)
9566 return true;
9568 return false;
9571 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9572 auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9573 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9574 return true;
9575 if (ProvingStrictComparison) {
9576 if (!ProvedNonStrictComparison)
9577 ProvedNonStrictComparison =
9578 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9579 if (!ProvedNonEquality)
9580 ProvedNonEquality =
9581 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9582 if (ProvedNonStrictComparison && ProvedNonEquality)
9583 return true;
9585 return false;
9588 // Starting at the loop predecessor, climb up the predecessor chain, as long
9589 // as there are predecessors that can be found that have unique successors
9590 // leading to the original header.
9591 for (std::pair<BasicBlock *, BasicBlock *>
9592 Pair(L->getLoopPredecessor(), L->getHeader());
9593 Pair.first;
9594 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9596 if (ProveViaGuard(Pair.first))
9597 return true;
9599 BranchInst *LoopEntryPredicate =
9600 dyn_cast<BranchInst>(Pair.first->getTerminator());
9601 if (!LoopEntryPredicate ||
9602 LoopEntryPredicate->isUnconditional())
9603 continue;
9605 if (ProveViaCond(LoopEntryPredicate->getCondition(),
9606 LoopEntryPredicate->getSuccessor(0) != Pair.second))
9607 return true;
9610 // Check conditions due to any @llvm.assume intrinsics.
9611 for (auto &AssumeVH : AC.assumptions()) {
9612 if (!AssumeVH)
9613 continue;
9614 auto *CI = cast<CallInst>(AssumeVH);
9615 if (!DT.dominates(CI, L->getHeader()))
9616 continue;
9618 if (ProveViaCond(CI->getArgOperand(0), false))
9619 return true;
9622 return false;
9625 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9626 const SCEV *LHS, const SCEV *RHS,
9627 Value *FoundCondValue,
9628 bool Inverse) {
9629 if (!PendingLoopPredicates.insert(FoundCondValue).second)
9630 return false;
9632 auto ClearOnExit =
9633 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9635 // Recursively handle And and Or conditions.
9636 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9637 if (BO->getOpcode() == Instruction::And) {
9638 if (!Inverse)
9639 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9640 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9641 } else if (BO->getOpcode() == Instruction::Or) {
9642 if (Inverse)
9643 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9644 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9648 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9649 if (!ICI) return false;
9651 // Now that we found a conditional branch that dominates the loop or controls
9652 // the loop latch. Check to see if it is the comparison we are looking for.
9653 ICmpInst::Predicate FoundPred;
9654 if (Inverse)
9655 FoundPred = ICI->getInversePredicate();
9656 else
9657 FoundPred = ICI->getPredicate();
9659 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9660 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9662 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9665 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9666 const SCEV *RHS,
9667 ICmpInst::Predicate FoundPred,
9668 const SCEV *FoundLHS,
9669 const SCEV *FoundRHS) {
9670 // Balance the types.
9671 if (getTypeSizeInBits(LHS->getType()) <
9672 getTypeSizeInBits(FoundLHS->getType())) {
9673 if (CmpInst::isSigned(Pred)) {
9674 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9675 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9676 } else {
9677 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9678 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9680 } else if (getTypeSizeInBits(LHS->getType()) >
9681 getTypeSizeInBits(FoundLHS->getType())) {
9682 if (CmpInst::isSigned(FoundPred)) {
9683 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9684 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9685 } else {
9686 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9687 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9691 // Canonicalize the query to match the way instcombine will have
9692 // canonicalized the comparison.
9693 if (SimplifyICmpOperands(Pred, LHS, RHS))
9694 if (LHS == RHS)
9695 return CmpInst::isTrueWhenEqual(Pred);
9696 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9697 if (FoundLHS == FoundRHS)
9698 return CmpInst::isFalseWhenEqual(FoundPred);
9700 // Check to see if we can make the LHS or RHS match.
9701 if (LHS == FoundRHS || RHS == FoundLHS) {
9702 if (isa<SCEVConstant>(RHS)) {
9703 std::swap(FoundLHS, FoundRHS);
9704 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9705 } else {
9706 std::swap(LHS, RHS);
9707 Pred = ICmpInst::getSwappedPredicate(Pred);
9711 // Check whether the found predicate is the same as the desired predicate.
9712 if (FoundPred == Pred)
9713 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9715 // Check whether swapping the found predicate makes it the same as the
9716 // desired predicate.
9717 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9718 if (isa<SCEVConstant>(RHS))
9719 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9720 else
9721 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9722 RHS, LHS, FoundLHS, FoundRHS);
9725 // Unsigned comparison is the same as signed comparison when both the operands
9726 // are non-negative.
9727 if (CmpInst::isUnsigned(FoundPred) &&
9728 CmpInst::getSignedPredicate(FoundPred) == Pred &&
9729 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9730 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9732 // Check if we can make progress by sharpening ranges.
9733 if (FoundPred == ICmpInst::ICMP_NE &&
9734 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9736 const SCEVConstant *C = nullptr;
9737 const SCEV *V = nullptr;
9739 if (isa<SCEVConstant>(FoundLHS)) {
9740 C = cast<SCEVConstant>(FoundLHS);
9741 V = FoundRHS;
9742 } else {
9743 C = cast<SCEVConstant>(FoundRHS);
9744 V = FoundLHS;
9747 // The guarding predicate tells us that C != V. If the known range
9748 // of V is [C, t), we can sharpen the range to [C + 1, t). The
9749 // range we consider has to correspond to same signedness as the
9750 // predicate we're interested in folding.
9752 APInt Min = ICmpInst::isSigned(Pred) ?
9753 getSignedRangeMin(V) : getUnsignedRangeMin(V);
9755 if (Min == C->getAPInt()) {
9756 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9757 // This is true even if (Min + 1) wraps around -- in case of
9758 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9760 APInt SharperMin = Min + 1;
9762 switch (Pred) {
9763 case ICmpInst::ICMP_SGE:
9764 case ICmpInst::ICMP_UGE:
9765 // We know V `Pred` SharperMin. If this implies LHS `Pred`
9766 // RHS, we're done.
9767 if (isImpliedCondOperands(Pred, LHS, RHS, V,
9768 getConstant(SharperMin)))
9769 return true;
9770 LLVM_FALLTHROUGH;
9772 case ICmpInst::ICMP_SGT:
9773 case ICmpInst::ICMP_UGT:
9774 // We know from the range information that (V `Pred` Min ||
9775 // V == Min). We know from the guarding condition that !(V
9776 // == Min). This gives us
9778 // V `Pred` Min || V == Min && !(V == Min)
9779 // => V `Pred` Min
9781 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9783 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9784 return true;
9785 LLVM_FALLTHROUGH;
9787 default:
9788 // No change
9789 break;
9794 // Check whether the actual condition is beyond sufficient.
9795 if (FoundPred == ICmpInst::ICMP_EQ)
9796 if (ICmpInst::isTrueWhenEqual(Pred))
9797 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9798 return true;
9799 if (Pred == ICmpInst::ICMP_NE)
9800 if (!ICmpInst::isTrueWhenEqual(FoundPred))
9801 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9802 return true;
9804 // Otherwise assume the worst.
9805 return false;
9808 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9809 const SCEV *&L, const SCEV *&R,
9810 SCEV::NoWrapFlags &Flags) {
9811 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9812 if (!AE || AE->getNumOperands() != 2)
9813 return false;
9815 L = AE->getOperand(0);
9816 R = AE->getOperand(1);
9817 Flags = AE->getNoWrapFlags();
9818 return true;
9821 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9822 const SCEV *Less) {
9823 // We avoid subtracting expressions here because this function is usually
9824 // fairly deep in the call stack (i.e. is called many times).
9826 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9827 const auto *LAR = cast<SCEVAddRecExpr>(Less);
9828 const auto *MAR = cast<SCEVAddRecExpr>(More);
9830 if (LAR->getLoop() != MAR->getLoop())
9831 return None;
9833 // We look at affine expressions only; not for correctness but to keep
9834 // getStepRecurrence cheap.
9835 if (!LAR->isAffine() || !MAR->isAffine())
9836 return None;
9838 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9839 return None;
9841 Less = LAR->getStart();
9842 More = MAR->getStart();
9844 // fall through
9847 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9848 const auto &M = cast<SCEVConstant>(More)->getAPInt();
9849 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9850 return M - L;
9853 SCEV::NoWrapFlags Flags;
9854 const SCEV *LLess = nullptr, *RLess = nullptr;
9855 const SCEV *LMore = nullptr, *RMore = nullptr;
9856 const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9857 // Compare (X + C1) vs X.
9858 if (splitBinaryAdd(Less, LLess, RLess, Flags))
9859 if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9860 if (RLess == More)
9861 return -(C1->getAPInt());
9863 // Compare X vs (X + C2).
9864 if (splitBinaryAdd(More, LMore, RMore, Flags))
9865 if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9866 if (RMore == Less)
9867 return C2->getAPInt();
9869 // Compare (X + C1) vs (X + C2).
9870 if (C1 && C2 && RLess == RMore)
9871 return C2->getAPInt() - C1->getAPInt();
9873 return None;
9876 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9877 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9878 const SCEV *FoundLHS, const SCEV *FoundRHS) {
9879 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9880 return false;
9882 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9883 if (!AddRecLHS)
9884 return false;
9886 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9887 if (!AddRecFoundLHS)
9888 return false;
9890 // We'd like to let SCEV reason about control dependencies, so we constrain
9891 // both the inequalities to be about add recurrences on the same loop. This
9892 // way we can use isLoopEntryGuardedByCond later.
9894 const Loop *L = AddRecFoundLHS->getLoop();
9895 if (L != AddRecLHS->getLoop())
9896 return false;
9898 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
9900 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9901 // ... (2)
9903 // Informal proof for (2), assuming (1) [*]:
9905 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9907 // Then
9909 // FoundLHS s< FoundRHS s< INT_MIN - C
9910 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
9911 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9912 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
9913 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9914 // <=> FoundLHS + C s< FoundRHS + C
9916 // [*]: (1) can be proved by ruling out overflow.
9918 // [**]: This can be proved by analyzing all the four possibilities:
9919 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9920 // (A s>= 0, B s>= 0).
9922 // Note:
9923 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9924 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
9925 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
9926 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
9927 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9928 // C)".
9930 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9931 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9932 if (!LDiff || !RDiff || *LDiff != *RDiff)
9933 return false;
9935 if (LDiff->isMinValue())
9936 return true;
9938 APInt FoundRHSLimit;
9940 if (Pred == CmpInst::ICMP_ULT) {
9941 FoundRHSLimit = -(*RDiff);
9942 } else {
9943 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9944 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9947 // Try to prove (1) or (2), as needed.
9948 return isAvailableAtLoopEntry(FoundRHS, L) &&
9949 isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9950 getConstant(FoundRHSLimit));
9953 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
9954 const SCEV *LHS, const SCEV *RHS,
9955 const SCEV *FoundLHS,
9956 const SCEV *FoundRHS, unsigned Depth) {
9957 const PHINode *LPhi = nullptr, *RPhi = nullptr;
9959 auto ClearOnExit = make_scope_exit([&]() {
9960 if (LPhi) {
9961 bool Erased = PendingMerges.erase(LPhi);
9962 assert(Erased && "Failed to erase LPhi!");
9963 (void)Erased;
9965 if (RPhi) {
9966 bool Erased = PendingMerges.erase(RPhi);
9967 assert(Erased && "Failed to erase RPhi!");
9968 (void)Erased;
9972 // Find respective Phis and check that they are not being pending.
9973 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
9974 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
9975 if (!PendingMerges.insert(Phi).second)
9976 return false;
9977 LPhi = Phi;
9979 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
9980 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
9981 // If we detect a loop of Phi nodes being processed by this method, for
9982 // example:
9984 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
9985 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
9987 // we don't want to deal with a case that complex, so return conservative
9988 // answer false.
9989 if (!PendingMerges.insert(Phi).second)
9990 return false;
9991 RPhi = Phi;
9994 // If none of LHS, RHS is a Phi, nothing to do here.
9995 if (!LPhi && !RPhi)
9996 return false;
9998 // If there is a SCEVUnknown Phi we are interested in, make it left.
9999 if (!LPhi) {
10000 std::swap(LHS, RHS);
10001 std::swap(FoundLHS, FoundRHS);
10002 std::swap(LPhi, RPhi);
10003 Pred = ICmpInst::getSwappedPredicate(Pred);
10006 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10007 const BasicBlock *LBB = LPhi->getParent();
10008 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10010 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10011 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10012 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10013 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10016 if (RPhi && RPhi->getParent() == LBB) {
10017 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10018 // If we compare two Phis from the same block, and for each entry block
10019 // the predicate is true for incoming values from this block, then the
10020 // predicate is also true for the Phis.
10021 for (const BasicBlock *IncBB : predecessors(LBB)) {
10022 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10023 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10024 if (!ProvedEasily(L, R))
10025 return false;
10027 } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10028 // Case two: RHS is also a Phi from the same basic block, and it is an
10029 // AddRec. It means that there is a loop which has both AddRec and Unknown
10030 // PHIs, for it we can compare incoming values of AddRec from above the loop
10031 // and latch with their respective incoming values of LPhi.
10032 // TODO: Generalize to handle loops with many inputs in a header.
10033 if (LPhi->getNumIncomingValues() != 2) return false;
10035 auto *RLoop = RAR->getLoop();
10036 auto *Predecessor = RLoop->getLoopPredecessor();
10037 assert(Predecessor && "Loop with AddRec with no predecessor?");
10038 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10039 if (!ProvedEasily(L1, RAR->getStart()))
10040 return false;
10041 auto *Latch = RLoop->getLoopLatch();
10042 assert(Latch && "Loop with AddRec with no latch?");
10043 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10044 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10045 return false;
10046 } else {
10047 // In all other cases go over inputs of LHS and compare each of them to RHS,
10048 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10049 // At this point RHS is either a non-Phi, or it is a Phi from some block
10050 // different from LBB.
10051 for (const BasicBlock *IncBB : predecessors(LBB)) {
10052 // Check that RHS is available in this block.
10053 if (!dominates(RHS, IncBB))
10054 return false;
10055 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10056 if (!ProvedEasily(L, RHS))
10057 return false;
10060 return true;
10063 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10064 const SCEV *LHS, const SCEV *RHS,
10065 const SCEV *FoundLHS,
10066 const SCEV *FoundRHS) {
10067 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10068 return true;
10070 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10071 return true;
10073 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10074 FoundLHS, FoundRHS) ||
10075 // ~x < ~y --> x > y
10076 isImpliedCondOperandsHelper(Pred, LHS, RHS,
10077 getNotSCEV(FoundRHS),
10078 getNotSCEV(FoundLHS));
10081 /// If Expr computes ~A, return A else return nullptr
10082 static const SCEV *MatchNotExpr(const SCEV *Expr) {
10083 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
10084 if (!Add || Add->getNumOperands() != 2 ||
10085 !Add->getOperand(0)->isAllOnesValue())
10086 return nullptr;
10088 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
10089 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
10090 !AddRHS->getOperand(0)->isAllOnesValue())
10091 return nullptr;
10093 return AddRHS->getOperand(1);
10096 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
10097 template<typename MaxExprType>
10098 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
10099 const SCEV *Candidate) {
10100 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
10101 if (!MaxExpr) return false;
10103 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
10106 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
10107 template<typename MaxExprType>
10108 static bool IsMinConsistingOf(ScalarEvolution &SE,
10109 const SCEV *MaybeMinExpr,
10110 const SCEV *Candidate) {
10111 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
10112 if (!MaybeMaxExpr)
10113 return false;
10115 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
10118 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10119 ICmpInst::Predicate Pred,
10120 const SCEV *LHS, const SCEV *RHS) {
10121 // If both sides are affine addrecs for the same loop, with equal
10122 // steps, and we know the recurrences don't wrap, then we only
10123 // need to check the predicate on the starting values.
10125 if (!ICmpInst::isRelational(Pred))
10126 return false;
10128 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10129 if (!LAR)
10130 return false;
10131 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10132 if (!RAR)
10133 return false;
10134 if (LAR->getLoop() != RAR->getLoop())
10135 return false;
10136 if (!LAR->isAffine() || !RAR->isAffine())
10137 return false;
10139 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10140 return false;
10142 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10143 SCEV::FlagNSW : SCEV::FlagNUW;
10144 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10145 return false;
10147 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10150 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10151 /// expression?
10152 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10153 ICmpInst::Predicate Pred,
10154 const SCEV *LHS, const SCEV *RHS) {
10155 switch (Pred) {
10156 default:
10157 return false;
10159 case ICmpInst::ICMP_SGE:
10160 std::swap(LHS, RHS);
10161 LLVM_FALLTHROUGH;
10162 case ICmpInst::ICMP_SLE:
10163 return
10164 // min(A, ...) <= A
10165 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
10166 // A <= max(A, ...)
10167 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10169 case ICmpInst::ICMP_UGE:
10170 std::swap(LHS, RHS);
10171 LLVM_FALLTHROUGH;
10172 case ICmpInst::ICMP_ULE:
10173 return
10174 // min(A, ...) <= A
10175 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
10176 // A <= max(A, ...)
10177 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10180 llvm_unreachable("covered switch fell through?!");
10183 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10184 const SCEV *LHS, const SCEV *RHS,
10185 const SCEV *FoundLHS,
10186 const SCEV *FoundRHS,
10187 unsigned Depth) {
10188 assert(getTypeSizeInBits(LHS->getType()) ==
10189 getTypeSizeInBits(RHS->getType()) &&
10190 "LHS and RHS have different sizes?");
10191 assert(getTypeSizeInBits(FoundLHS->getType()) ==
10192 getTypeSizeInBits(FoundRHS->getType()) &&
10193 "FoundLHS and FoundRHS have different sizes?");
10194 // We want to avoid hurting the compile time with analysis of too big trees.
10195 if (Depth > MaxSCEVOperationsImplicationDepth)
10196 return false;
10197 // We only want to work with ICMP_SGT comparison so far.
10198 // TODO: Extend to ICMP_UGT?
10199 if (Pred == ICmpInst::ICMP_SLT) {
10200 Pred = ICmpInst::ICMP_SGT;
10201 std::swap(LHS, RHS);
10202 std::swap(FoundLHS, FoundRHS);
10204 if (Pred != ICmpInst::ICMP_SGT)
10205 return false;
10207 auto GetOpFromSExt = [&](const SCEV *S) {
10208 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10209 return Ext->getOperand();
10210 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10211 // the constant in some cases.
10212 return S;
10215 // Acquire values from extensions.
10216 auto *OrigLHS = LHS;
10217 auto *OrigFoundLHS = FoundLHS;
10218 LHS = GetOpFromSExt(LHS);
10219 FoundLHS = GetOpFromSExt(FoundLHS);
10221 // Is the SGT predicate can be proved trivially or using the found context.
10222 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10223 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10224 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10225 FoundRHS, Depth + 1);
10228 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10229 // We want to avoid creation of any new non-constant SCEV. Since we are
10230 // going to compare the operands to RHS, we should be certain that we don't
10231 // need any size extensions for this. So let's decline all cases when the
10232 // sizes of types of LHS and RHS do not match.
10233 // TODO: Maybe try to get RHS from sext to catch more cases?
10234 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10235 return false;
10237 // Should not overflow.
10238 if (!LHSAddExpr->hasNoSignedWrap())
10239 return false;
10241 auto *LL = LHSAddExpr->getOperand(0);
10242 auto *LR = LHSAddExpr->getOperand(1);
10243 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10245 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10246 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10247 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10249 // Try to prove the following rule:
10250 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10251 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10252 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10253 return true;
10254 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10255 Value *LL, *LR;
10256 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10258 using namespace llvm::PatternMatch;
10260 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10261 // Rules for division.
10262 // We are going to perform some comparisons with Denominator and its
10263 // derivative expressions. In general case, creating a SCEV for it may
10264 // lead to a complex analysis of the entire graph, and in particular it
10265 // can request trip count recalculation for the same loop. This would
10266 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10267 // this, we only want to create SCEVs that are constants in this section.
10268 // So we bail if Denominator is not a constant.
10269 if (!isa<ConstantInt>(LR))
10270 return false;
10272 auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10274 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10275 // then a SCEV for the numerator already exists and matches with FoundLHS.
10276 auto *Numerator = getExistingSCEV(LL);
10277 if (!Numerator || Numerator->getType() != FoundLHS->getType())
10278 return false;
10280 // Make sure that the numerator matches with FoundLHS and the denominator
10281 // is positive.
10282 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10283 return false;
10285 auto *DTy = Denominator->getType();
10286 auto *FRHSTy = FoundRHS->getType();
10287 if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10288 // One of types is a pointer and another one is not. We cannot extend
10289 // them properly to a wider type, so let us just reject this case.
10290 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10291 // to avoid this check.
10292 return false;
10294 // Given that:
10295 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10296 auto *WTy = getWiderType(DTy, FRHSTy);
10297 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10298 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10300 // Try to prove the following rule:
10301 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10302 // For example, given that FoundLHS > 2. It means that FoundLHS is at
10303 // least 3. If we divide it by Denominator < 4, we will have at least 1.
10304 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10305 if (isKnownNonPositive(RHS) &&
10306 IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10307 return true;
10309 // Try to prove the following rule:
10310 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10311 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10312 // If we divide it by Denominator > 2, then:
10313 // 1. If FoundLHS is negative, then the result is 0.
10314 // 2. If FoundLHS is non-negative, then the result is non-negative.
10315 // Anyways, the result is non-negative.
10316 auto *MinusOne = getNegativeSCEV(getOne(WTy));
10317 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10318 if (isKnownNegative(RHS) &&
10319 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10320 return true;
10324 // If our expression contained SCEVUnknown Phis, and we split it down and now
10325 // need to prove something for them, try to prove the predicate for every
10326 // possible incoming values of those Phis.
10327 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10328 return true;
10330 return false;
10333 bool
10334 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10335 const SCEV *LHS, const SCEV *RHS) {
10336 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10337 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10338 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10339 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10342 bool
10343 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10344 const SCEV *LHS, const SCEV *RHS,
10345 const SCEV *FoundLHS,
10346 const SCEV *FoundRHS) {
10347 switch (Pred) {
10348 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10349 case ICmpInst::ICMP_EQ:
10350 case ICmpInst::ICMP_NE:
10351 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10352 return true;
10353 break;
10354 case ICmpInst::ICMP_SLT:
10355 case ICmpInst::ICMP_SLE:
10356 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10357 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10358 return true;
10359 break;
10360 case ICmpInst::ICMP_SGT:
10361 case ICmpInst::ICMP_SGE:
10362 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10363 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10364 return true;
10365 break;
10366 case ICmpInst::ICMP_ULT:
10367 case ICmpInst::ICMP_ULE:
10368 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10369 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10370 return true;
10371 break;
10372 case ICmpInst::ICMP_UGT:
10373 case ICmpInst::ICMP_UGE:
10374 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10375 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10376 return true;
10377 break;
10380 // Maybe it can be proved via operations?
10381 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10382 return true;
10384 return false;
10387 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10388 const SCEV *LHS,
10389 const SCEV *RHS,
10390 const SCEV *FoundLHS,
10391 const SCEV *FoundRHS) {
10392 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10393 // The restriction on `FoundRHS` be lifted easily -- it exists only to
10394 // reduce the compile time impact of this optimization.
10395 return false;
10397 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10398 if (!Addend)
10399 return false;
10401 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10403 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10404 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10405 ConstantRange FoundLHSRange =
10406 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10408 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10409 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10411 // We can also compute the range of values for `LHS` that satisfy the
10412 // consequent, "`LHS` `Pred` `RHS`":
10413 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10414 ConstantRange SatisfyingLHSRange =
10415 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10417 // The antecedent implies the consequent if every value of `LHS` that
10418 // satisfies the antecedent also satisfies the consequent.
10419 return SatisfyingLHSRange.contains(LHSRange);
10422 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10423 bool IsSigned, bool NoWrap) {
10424 assert(isKnownPositive(Stride) && "Positive stride expected!");
10426 if (NoWrap) return false;
10428 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10429 const SCEV *One = getOne(Stride->getType());
10431 if (IsSigned) {
10432 APInt MaxRHS = getSignedRangeMax(RHS);
10433 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10434 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10436 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10437 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10440 APInt MaxRHS = getUnsignedRangeMax(RHS);
10441 APInt MaxValue = APInt::getMaxValue(BitWidth);
10442 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10444 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10445 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10448 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10449 bool IsSigned, bool NoWrap) {
10450 if (NoWrap) return false;
10452 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10453 const SCEV *One = getOne(Stride->getType());
10455 if (IsSigned) {
10456 APInt MinRHS = getSignedRangeMin(RHS);
10457 APInt MinValue = APInt::getSignedMinValue(BitWidth);
10458 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10460 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10461 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10464 APInt MinRHS = getUnsignedRangeMin(RHS);
10465 APInt MinValue = APInt::getMinValue(BitWidth);
10466 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10468 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10469 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10472 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10473 bool Equality) {
10474 const SCEV *One = getOne(Step->getType());
10475 Delta = Equality ? getAddExpr(Delta, Step)
10476 : getAddExpr(Delta, getMinusSCEV(Step, One));
10477 return getUDivExpr(Delta, Step);
10480 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10481 const SCEV *Stride,
10482 const SCEV *End,
10483 unsigned BitWidth,
10484 bool IsSigned) {
10486 assert(!isKnownNonPositive(Stride) &&
10487 "Stride is expected strictly positive!");
10488 // Calculate the maximum backedge count based on the range of values
10489 // permitted by Start, End, and Stride.
10490 const SCEV *MaxBECount;
10491 APInt MinStart =
10492 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10494 APInt StrideForMaxBECount =
10495 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10497 // We already know that the stride is positive, so we paper over conservatism
10498 // in our range computation by forcing StrideForMaxBECount to be at least one.
10499 // In theory this is unnecessary, but we expect MaxBECount to be a
10500 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10501 // is nothing to constant fold it to).
10502 APInt One(BitWidth, 1, IsSigned);
10503 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10505 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10506 : APInt::getMaxValue(BitWidth);
10507 APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10509 // Although End can be a MAX expression we estimate MaxEnd considering only
10510 // the case End = RHS of the loop termination condition. This is safe because
10511 // in the other case (End - Start) is zero, leading to a zero maximum backedge
10512 // taken count.
10513 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10514 : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10516 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10517 getConstant(StrideForMaxBECount) /* Step */,
10518 false /* Equality */);
10520 return MaxBECount;
10523 ScalarEvolution::ExitLimit
10524 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10525 const Loop *L, bool IsSigned,
10526 bool ControlsExit, bool AllowPredicates) {
10527 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10529 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10530 bool PredicatedIV = false;
10532 if (!IV && AllowPredicates) {
10533 // Try to make this an AddRec using runtime tests, in the first X
10534 // iterations of this loop, where X is the SCEV expression found by the
10535 // algorithm below.
10536 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10537 PredicatedIV = true;
10540 // Avoid weird loops
10541 if (!IV || IV->getLoop() != L || !IV->isAffine())
10542 return getCouldNotCompute();
10544 bool NoWrap = ControlsExit &&
10545 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10547 const SCEV *Stride = IV->getStepRecurrence(*this);
10549 bool PositiveStride = isKnownPositive(Stride);
10551 // Avoid negative or zero stride values.
10552 if (!PositiveStride) {
10553 // We can compute the correct backedge taken count for loops with unknown
10554 // strides if we can prove that the loop is not an infinite loop with side
10555 // effects. Here's the loop structure we are trying to handle -
10557 // i = start
10558 // do {
10559 // A[i] = i;
10560 // i += s;
10561 // } while (i < end);
10563 // The backedge taken count for such loops is evaluated as -
10564 // (max(end, start + stride) - start - 1) /u stride
10566 // The additional preconditions that we need to check to prove correctness
10567 // of the above formula is as follows -
10569 // a) IV is either nuw or nsw depending upon signedness (indicated by the
10570 // NoWrap flag).
10571 // b) loop is single exit with no side effects.
10574 // Precondition a) implies that if the stride is negative, this is a single
10575 // trip loop. The backedge taken count formula reduces to zero in this case.
10577 // Precondition b) implies that the unknown stride cannot be zero otherwise
10578 // we have UB.
10580 // The positive stride case is the same as isKnownPositive(Stride) returning
10581 // true (original behavior of the function).
10583 // We want to make sure that the stride is truly unknown as there are edge
10584 // cases where ScalarEvolution propagates no wrap flags to the
10585 // post-increment/decrement IV even though the increment/decrement operation
10586 // itself is wrapping. The computed backedge taken count may be wrong in
10587 // such cases. This is prevented by checking that the stride is not known to
10588 // be either positive or non-positive. For example, no wrap flags are
10589 // propagated to the post-increment IV of this loop with a trip count of 2 -
10591 // unsigned char i;
10592 // for(i=127; i<128; i+=129)
10593 // A[i] = i;
10595 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10596 !loopHasNoSideEffects(L))
10597 return getCouldNotCompute();
10598 } else if (!Stride->isOne() &&
10599 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10600 // Avoid proven overflow cases: this will ensure that the backedge taken
10601 // count will not generate any unsigned overflow. Relaxed no-overflow
10602 // conditions exploit NoWrapFlags, allowing to optimize in presence of
10603 // undefined behaviors like the case of C language.
10604 return getCouldNotCompute();
10606 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10607 : ICmpInst::ICMP_ULT;
10608 const SCEV *Start = IV->getStart();
10609 const SCEV *End = RHS;
10610 // When the RHS is not invariant, we do not know the end bound of the loop and
10611 // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10612 // calculate the MaxBECount, given the start, stride and max value for the end
10613 // bound of the loop (RHS), and the fact that IV does not overflow (which is
10614 // checked above).
10615 if (!isLoopInvariant(RHS, L)) {
10616 const SCEV *MaxBECount = computeMaxBECountForLT(
10617 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10618 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10619 false /*MaxOrZero*/, Predicates);
10621 // If the backedge is taken at least once, then it will be taken
10622 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10623 // is the LHS value of the less-than comparison the first time it is evaluated
10624 // and End is the RHS.
10625 const SCEV *BECountIfBackedgeTaken =
10626 computeBECount(getMinusSCEV(End, Start), Stride, false);
10627 // If the loop entry is guarded by the result of the backedge test of the
10628 // first loop iteration, then we know the backedge will be taken at least
10629 // once and so the backedge taken count is as above. If not then we use the
10630 // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10631 // as if the backedge is taken at least once max(End,Start) is End and so the
10632 // result is as above, and if not max(End,Start) is Start so we get a backedge
10633 // count of zero.
10634 const SCEV *BECount;
10635 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10636 BECount = BECountIfBackedgeTaken;
10637 else {
10638 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10639 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10642 const SCEV *MaxBECount;
10643 bool MaxOrZero = false;
10644 if (isa<SCEVConstant>(BECount))
10645 MaxBECount = BECount;
10646 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10647 // If we know exactly how many times the backedge will be taken if it's
10648 // taken at least once, then the backedge count will either be that or
10649 // zero.
10650 MaxBECount = BECountIfBackedgeTaken;
10651 MaxOrZero = true;
10652 } else {
10653 MaxBECount = computeMaxBECountForLT(
10654 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10657 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10658 !isa<SCEVCouldNotCompute>(BECount))
10659 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10661 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10664 ScalarEvolution::ExitLimit
10665 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10666 const Loop *L, bool IsSigned,
10667 bool ControlsExit, bool AllowPredicates) {
10668 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10669 // We handle only IV > Invariant
10670 if (!isLoopInvariant(RHS, L))
10671 return getCouldNotCompute();
10673 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10674 if (!IV && AllowPredicates)
10675 // Try to make this an AddRec using runtime tests, in the first X
10676 // iterations of this loop, where X is the SCEV expression found by the
10677 // algorithm below.
10678 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10680 // Avoid weird loops
10681 if (!IV || IV->getLoop() != L || !IV->isAffine())
10682 return getCouldNotCompute();
10684 bool NoWrap = ControlsExit &&
10685 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10687 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10689 // Avoid negative or zero stride values
10690 if (!isKnownPositive(Stride))
10691 return getCouldNotCompute();
10693 // Avoid proven overflow cases: this will ensure that the backedge taken count
10694 // will not generate any unsigned overflow. Relaxed no-overflow conditions
10695 // exploit NoWrapFlags, allowing to optimize in presence of undefined
10696 // behaviors like the case of C language.
10697 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10698 return getCouldNotCompute();
10700 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10701 : ICmpInst::ICMP_UGT;
10703 const SCEV *Start = IV->getStart();
10704 const SCEV *End = RHS;
10705 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10706 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10708 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10710 APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10711 : getUnsignedRangeMax(Start);
10713 APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10714 : getUnsignedRangeMin(Stride);
10716 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10717 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10718 : APInt::getMinValue(BitWidth) + (MinStride - 1);
10720 // Although End can be a MIN expression we estimate MinEnd considering only
10721 // the case End = RHS. This is safe because in the other case (Start - End)
10722 // is zero, leading to a zero maximum backedge taken count.
10723 APInt MinEnd =
10724 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10725 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10728 const SCEV *MaxBECount = getCouldNotCompute();
10729 if (isa<SCEVConstant>(BECount))
10730 MaxBECount = BECount;
10731 else
10732 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
10733 getConstant(MinStride), false);
10735 if (isa<SCEVCouldNotCompute>(MaxBECount))
10736 MaxBECount = BECount;
10738 return ExitLimit(BECount, MaxBECount, false, Predicates);
10741 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10742 ScalarEvolution &SE) const {
10743 if (Range.isFullSet()) // Infinite loop.
10744 return SE.getCouldNotCompute();
10746 // If the start is a non-zero constant, shift the range to simplify things.
10747 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10748 if (!SC->getValue()->isZero()) {
10749 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10750 Operands[0] = SE.getZero(SC->getType());
10751 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10752 getNoWrapFlags(FlagNW));
10753 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10754 return ShiftedAddRec->getNumIterationsInRange(
10755 Range.subtract(SC->getAPInt()), SE);
10756 // This is strange and shouldn't happen.
10757 return SE.getCouldNotCompute();
10760 // The only time we can solve this is when we have all constant indices.
10761 // Otherwise, we cannot determine the overflow conditions.
10762 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10763 return SE.getCouldNotCompute();
10765 // Okay at this point we know that all elements of the chrec are constants and
10766 // that the start element is zero.
10768 // First check to see if the range contains zero. If not, the first
10769 // iteration exits.
10770 unsigned BitWidth = SE.getTypeSizeInBits(getType());
10771 if (!Range.contains(APInt(BitWidth, 0)))
10772 return SE.getZero(getType());
10774 if (isAffine()) {
10775 // If this is an affine expression then we have this situation:
10776 // Solve {0,+,A} in Range === Ax in Range
10778 // We know that zero is in the range. If A is positive then we know that
10779 // the upper value of the range must be the first possible exit value.
10780 // If A is negative then the lower of the range is the last possible loop
10781 // value. Also note that we already checked for a full range.
10782 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10783 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10785 // The exit value should be (End+A)/A.
10786 APInt ExitVal = (End + A).udiv(A);
10787 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10789 // Evaluate at the exit value. If we really did fall out of the valid
10790 // range, then we computed our trip count, otherwise wrap around or other
10791 // things must have happened.
10792 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10793 if (Range.contains(Val->getValue()))
10794 return SE.getCouldNotCompute(); // Something strange happened
10796 // Ensure that the previous value is in the range. This is a sanity check.
10797 assert(Range.contains(
10798 EvaluateConstantChrecAtConstant(this,
10799 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10800 "Linear scev computation is off in a bad way!");
10801 return SE.getConstant(ExitValue);
10804 if (isQuadratic()) {
10805 if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10806 return SE.getConstant(S.getValue());
10809 return SE.getCouldNotCompute();
10812 const SCEVAddRecExpr *
10813 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10814 assert(getNumOperands() > 1 && "AddRec with zero step?");
10815 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10816 // but in this case we cannot guarantee that the value returned will be an
10817 // AddRec because SCEV does not have a fixed point where it stops
10818 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10819 // may happen if we reach arithmetic depth limit while simplifying. So we
10820 // construct the returned value explicitly.
10821 SmallVector<const SCEV *, 3> Ops;
10822 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10823 // (this + Step) is {A+B,+,B+C,+...,+,N}.
10824 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10825 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10826 // We know that the last operand is not a constant zero (otherwise it would
10827 // have been popped out earlier). This guarantees us that if the result has
10828 // the same last operand, then it will also not be popped out, meaning that
10829 // the returned value will be an AddRec.
10830 const SCEV *Last = getOperand(getNumOperands() - 1);
10831 assert(!Last->isZero() && "Recurrency with zero step?");
10832 Ops.push_back(Last);
10833 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10834 SCEV::FlagAnyWrap));
10837 // Return true when S contains at least an undef value.
10838 static inline bool containsUndefs(const SCEV *S) {
10839 return SCEVExprContains(S, [](const SCEV *S) {
10840 if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10841 return isa<UndefValue>(SU->getValue());
10842 return false;
10846 namespace {
10848 // Collect all steps of SCEV expressions.
10849 struct SCEVCollectStrides {
10850 ScalarEvolution &SE;
10851 SmallVectorImpl<const SCEV *> &Strides;
10853 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10854 : SE(SE), Strides(S) {}
10856 bool follow(const SCEV *S) {
10857 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10858 Strides.push_back(AR->getStepRecurrence(SE));
10859 return true;
10862 bool isDone() const { return false; }
10865 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10866 struct SCEVCollectTerms {
10867 SmallVectorImpl<const SCEV *> &Terms;
10869 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10871 bool follow(const SCEV *S) {
10872 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10873 isa<SCEVSignExtendExpr>(S)) {
10874 if (!containsUndefs(S))
10875 Terms.push_back(S);
10877 // Stop recursion: once we collected a term, do not walk its operands.
10878 return false;
10881 // Keep looking.
10882 return true;
10885 bool isDone() const { return false; }
10888 // Check if a SCEV contains an AddRecExpr.
10889 struct SCEVHasAddRec {
10890 bool &ContainsAddRec;
10892 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10893 ContainsAddRec = false;
10896 bool follow(const SCEV *S) {
10897 if (isa<SCEVAddRecExpr>(S)) {
10898 ContainsAddRec = true;
10900 // Stop recursion: once we collected a term, do not walk its operands.
10901 return false;
10904 // Keep looking.
10905 return true;
10908 bool isDone() const { return false; }
10911 // Find factors that are multiplied with an expression that (possibly as a
10912 // subexpression) contains an AddRecExpr. In the expression:
10914 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
10916 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10917 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10918 // parameters as they form a product with an induction variable.
10920 // This collector expects all array size parameters to be in the same MulExpr.
10921 // It might be necessary to later add support for collecting parameters that are
10922 // spread over different nested MulExpr.
10923 struct SCEVCollectAddRecMultiplies {
10924 SmallVectorImpl<const SCEV *> &Terms;
10925 ScalarEvolution &SE;
10927 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10928 : Terms(T), SE(SE) {}
10930 bool follow(const SCEV *S) {
10931 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10932 bool HasAddRec = false;
10933 SmallVector<const SCEV *, 0> Operands;
10934 for (auto Op : Mul->operands()) {
10935 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10936 if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10937 Operands.push_back(Op);
10938 } else if (Unknown) {
10939 HasAddRec = true;
10940 } else {
10941 bool ContainsAddRec;
10942 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10943 visitAll(Op, ContiansAddRec);
10944 HasAddRec |= ContainsAddRec;
10947 if (Operands.size() == 0)
10948 return true;
10950 if (!HasAddRec)
10951 return false;
10953 Terms.push_back(SE.getMulExpr(Operands));
10954 // Stop recursion: once we collected a term, do not walk its operands.
10955 return false;
10958 // Keep looking.
10959 return true;
10962 bool isDone() const { return false; }
10965 } // end anonymous namespace
10967 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10968 /// two places:
10969 /// 1) The strides of AddRec expressions.
10970 /// 2) Unknowns that are multiplied with AddRec expressions.
10971 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10972 SmallVectorImpl<const SCEV *> &Terms) {
10973 SmallVector<const SCEV *, 4> Strides;
10974 SCEVCollectStrides StrideCollector(*this, Strides);
10975 visitAll(Expr, StrideCollector);
10977 LLVM_DEBUG({
10978 dbgs() << "Strides:\n";
10979 for (const SCEV *S : Strides)
10980 dbgs() << *S << "\n";
10983 for (const SCEV *S : Strides) {
10984 SCEVCollectTerms TermCollector(Terms);
10985 visitAll(S, TermCollector);
10988 LLVM_DEBUG({
10989 dbgs() << "Terms:\n";
10990 for (const SCEV *T : Terms)
10991 dbgs() << *T << "\n";
10994 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
10995 visitAll(Expr, MulCollector);
10998 static bool findArrayDimensionsRec(ScalarEvolution &SE,
10999 SmallVectorImpl<const SCEV *> &Terms,
11000 SmallVectorImpl<const SCEV *> &Sizes) {
11001 int Last = Terms.size() - 1;
11002 const SCEV *Step = Terms[Last];
11004 // End of recursion.
11005 if (Last == 0) {
11006 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11007 SmallVector<const SCEV *, 2> Qs;
11008 for (const SCEV *Op : M->operands())
11009 if (!isa<SCEVConstant>(Op))
11010 Qs.push_back(Op);
11012 Step = SE.getMulExpr(Qs);
11015 Sizes.push_back(Step);
11016 return true;
11019 for (const SCEV *&Term : Terms) {
11020 // Normalize the terms before the next call to findArrayDimensionsRec.
11021 const SCEV *Q, *R;
11022 SCEVDivision::divide(SE, Term, Step, &Q, &R);
11024 // Bail out when GCD does not evenly divide one of the terms.
11025 if (!R->isZero())
11026 return false;
11028 Term = Q;
11031 // Remove all SCEVConstants.
11032 Terms.erase(
11033 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11034 Terms.end());
11036 if (Terms.size() > 0)
11037 if (!findArrayDimensionsRec(SE, Terms, Sizes))
11038 return false;
11040 Sizes.push_back(Step);
11041 return true;
11044 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11045 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11046 for (const SCEV *T : Terms)
11047 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
11048 return true;
11049 return false;
11052 // Return the number of product terms in S.
11053 static inline int numberOfTerms(const SCEV *S) {
11054 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11055 return Expr->getNumOperands();
11056 return 1;
11059 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11060 if (isa<SCEVConstant>(T))
11061 return nullptr;
11063 if (isa<SCEVUnknown>(T))
11064 return T;
11066 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11067 SmallVector<const SCEV *, 2> Factors;
11068 for (const SCEV *Op : M->operands())
11069 if (!isa<SCEVConstant>(Op))
11070 Factors.push_back(Op);
11072 return SE.getMulExpr(Factors);
11075 return T;
11078 /// Return the size of an element read or written by Inst.
11079 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11080 Type *Ty;
11081 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11082 Ty = Store->getValueOperand()->getType();
11083 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11084 Ty = Load->getType();
11085 else
11086 return nullptr;
11088 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11089 return getSizeOfExpr(ETy, Ty);
11092 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11093 SmallVectorImpl<const SCEV *> &Sizes,
11094 const SCEV *ElementSize) {
11095 if (Terms.size() < 1 || !ElementSize)
11096 return;
11098 // Early return when Terms do not contain parameters: we do not delinearize
11099 // non parametric SCEVs.
11100 if (!containsParameters(Terms))
11101 return;
11103 LLVM_DEBUG({
11104 dbgs() << "Terms:\n";
11105 for (const SCEV *T : Terms)
11106 dbgs() << *T << "\n";
11109 // Remove duplicates.
11110 array_pod_sort(Terms.begin(), Terms.end());
11111 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11113 // Put larger terms first.
11114 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11115 return numberOfTerms(LHS) > numberOfTerms(RHS);
11118 // Try to divide all terms by the element size. If term is not divisible by
11119 // element size, proceed with the original term.
11120 for (const SCEV *&Term : Terms) {
11121 const SCEV *Q, *R;
11122 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11123 if (!Q->isZero())
11124 Term = Q;
11127 SmallVector<const SCEV *, 4> NewTerms;
11129 // Remove constant factors.
11130 for (const SCEV *T : Terms)
11131 if (const SCEV *NewT = removeConstantFactors(*this, T))
11132 NewTerms.push_back(NewT);
11134 LLVM_DEBUG({
11135 dbgs() << "Terms after sorting:\n";
11136 for (const SCEV *T : NewTerms)
11137 dbgs() << *T << "\n";
11140 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11141 Sizes.clear();
11142 return;
11145 // The last element to be pushed into Sizes is the size of an element.
11146 Sizes.push_back(ElementSize);
11148 LLVM_DEBUG({
11149 dbgs() << "Sizes:\n";
11150 for (const SCEV *S : Sizes)
11151 dbgs() << *S << "\n";
11155 void ScalarEvolution::computeAccessFunctions(
11156 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11157 SmallVectorImpl<const SCEV *> &Sizes) {
11158 // Early exit in case this SCEV is not an affine multivariate function.
11159 if (Sizes.empty())
11160 return;
11162 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11163 if (!AR->isAffine())
11164 return;
11166 const SCEV *Res = Expr;
11167 int Last = Sizes.size() - 1;
11168 for (int i = Last; i >= 0; i--) {
11169 const SCEV *Q, *R;
11170 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11172 LLVM_DEBUG({
11173 dbgs() << "Res: " << *Res << "\n";
11174 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11175 dbgs() << "Res divided by Sizes[i]:\n";
11176 dbgs() << "Quotient: " << *Q << "\n";
11177 dbgs() << "Remainder: " << *R << "\n";
11180 Res = Q;
11182 // Do not record the last subscript corresponding to the size of elements in
11183 // the array.
11184 if (i == Last) {
11186 // Bail out if the remainder is too complex.
11187 if (isa<SCEVAddRecExpr>(R)) {
11188 Subscripts.clear();
11189 Sizes.clear();
11190 return;
11193 continue;
11196 // Record the access function for the current subscript.
11197 Subscripts.push_back(R);
11200 // Also push in last position the remainder of the last division: it will be
11201 // the access function of the innermost dimension.
11202 Subscripts.push_back(Res);
11204 std::reverse(Subscripts.begin(), Subscripts.end());
11206 LLVM_DEBUG({
11207 dbgs() << "Subscripts:\n";
11208 for (const SCEV *S : Subscripts)
11209 dbgs() << *S << "\n";
11213 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11214 /// sizes of an array access. Returns the remainder of the delinearization that
11215 /// is the offset start of the array. The SCEV->delinearize algorithm computes
11216 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11217 /// expressions in the stride and base of a SCEV corresponding to the
11218 /// computation of a GCD (greatest common divisor) of base and stride. When
11219 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11221 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11223 /// void foo(long n, long m, long o, double A[n][m][o]) {
11225 /// for (long i = 0; i < n; i++)
11226 /// for (long j = 0; j < m; j++)
11227 /// for (long k = 0; k < o; k++)
11228 /// A[i][j][k] = 1.0;
11229 /// }
11231 /// the delinearization input is the following AddRec SCEV:
11233 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11235 /// From this SCEV, we are able to say that the base offset of the access is %A
11236 /// because it appears as an offset that does not divide any of the strides in
11237 /// the loops:
11239 /// CHECK: Base offset: %A
11241 /// and then SCEV->delinearize determines the size of some of the dimensions of
11242 /// the array as these are the multiples by which the strides are happening:
11244 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11246 /// Note that the outermost dimension remains of UnknownSize because there are
11247 /// no strides that would help identifying the size of the last dimension: when
11248 /// the array has been statically allocated, one could compute the size of that
11249 /// dimension by dividing the overall size of the array by the size of the known
11250 /// dimensions: %m * %o * 8.
11252 /// Finally delinearize provides the access functions for the array reference
11253 /// that does correspond to A[i][j][k] of the above C testcase:
11255 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11257 /// The testcases are checking the output of a function pass:
11258 /// DelinearizationPass that walks through all loads and stores of a function
11259 /// asking for the SCEV of the memory access with respect to all enclosing
11260 /// loops, calling SCEV->delinearize on that and printing the results.
11261 void ScalarEvolution::delinearize(const SCEV *Expr,
11262 SmallVectorImpl<const SCEV *> &Subscripts,
11263 SmallVectorImpl<const SCEV *> &Sizes,
11264 const SCEV *ElementSize) {
11265 // First step: collect parametric terms.
11266 SmallVector<const SCEV *, 4> Terms;
11267 collectParametricTerms(Expr, Terms);
11269 if (Terms.empty())
11270 return;
11272 // Second step: find subscript sizes.
11273 findArrayDimensions(Terms, Sizes, ElementSize);
11275 if (Sizes.empty())
11276 return;
11278 // Third step: compute the access functions for each subscript.
11279 computeAccessFunctions(Expr, Subscripts, Sizes);
11281 if (Subscripts.empty())
11282 return;
11284 LLVM_DEBUG({
11285 dbgs() << "succeeded to delinearize " << *Expr << "\n";
11286 dbgs() << "ArrayDecl[UnknownSize]";
11287 for (const SCEV *S : Sizes)
11288 dbgs() << "[" << *S << "]";
11290 dbgs() << "\nArrayRef";
11291 for (const SCEV *S : Subscripts)
11292 dbgs() << "[" << *S << "]";
11293 dbgs() << "\n";
11297 //===----------------------------------------------------------------------===//
11298 // SCEVCallbackVH Class Implementation
11299 //===----------------------------------------------------------------------===//
11301 void ScalarEvolution::SCEVCallbackVH::deleted() {
11302 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11303 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11304 SE->ConstantEvolutionLoopExitValue.erase(PN);
11305 SE->eraseValueFromMap(getValPtr());
11306 // this now dangles!
11309 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11310 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11312 // Forget all the expressions associated with users of the old value,
11313 // so that future queries will recompute the expressions using the new
11314 // value.
11315 Value *Old = getValPtr();
11316 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11317 SmallPtrSet<User *, 8> Visited;
11318 while (!Worklist.empty()) {
11319 User *U = Worklist.pop_back_val();
11320 // Deleting the Old value will cause this to dangle. Postpone
11321 // that until everything else is done.
11322 if (U == Old)
11323 continue;
11324 if (!Visited.insert(U).second)
11325 continue;
11326 if (PHINode *PN = dyn_cast<PHINode>(U))
11327 SE->ConstantEvolutionLoopExitValue.erase(PN);
11328 SE->eraseValueFromMap(U);
11329 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11331 // Delete the Old value.
11332 if (PHINode *PN = dyn_cast<PHINode>(Old))
11333 SE->ConstantEvolutionLoopExitValue.erase(PN);
11334 SE->eraseValueFromMap(Old);
11335 // this now dangles!
11338 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11339 : CallbackVH(V), SE(se) {}
11341 //===----------------------------------------------------------------------===//
11342 // ScalarEvolution Class Implementation
11343 //===----------------------------------------------------------------------===//
11345 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11346 AssumptionCache &AC, DominatorTree &DT,
11347 LoopInfo &LI)
11348 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11349 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11350 LoopDispositions(64), BlockDispositions(64) {
11351 // To use guards for proving predicates, we need to scan every instruction in
11352 // relevant basic blocks, and not just terminators. Doing this is a waste of
11353 // time if the IR does not actually contain any calls to
11354 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11356 // This pessimizes the case where a pass that preserves ScalarEvolution wants
11357 // to _add_ guards to the module when there weren't any before, and wants
11358 // ScalarEvolution to optimize based on those guards. For now we prefer to be
11359 // efficient in lieu of being smart in that rather obscure case.
11361 auto *GuardDecl = F.getParent()->getFunction(
11362 Intrinsic::getName(Intrinsic::experimental_guard));
11363 HasGuards = GuardDecl && !GuardDecl->use_empty();
11366 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11367 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11368 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11369 ValueExprMap(std::move(Arg.ValueExprMap)),
11370 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11371 PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11372 PendingMerges(std::move(Arg.PendingMerges)),
11373 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11374 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11375 PredicatedBackedgeTakenCounts(
11376 std::move(Arg.PredicatedBackedgeTakenCounts)),
11377 ConstantEvolutionLoopExitValue(
11378 std::move(Arg.ConstantEvolutionLoopExitValue)),
11379 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11380 LoopDispositions(std::move(Arg.LoopDispositions)),
11381 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11382 BlockDispositions(std::move(Arg.BlockDispositions)),
11383 UnsignedRanges(std::move(Arg.UnsignedRanges)),
11384 SignedRanges(std::move(Arg.SignedRanges)),
11385 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11386 UniquePreds(std::move(Arg.UniquePreds)),
11387 SCEVAllocator(std::move(Arg.SCEVAllocator)),
11388 LoopUsers(std::move(Arg.LoopUsers)),
11389 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11390 FirstUnknown(Arg.FirstUnknown) {
11391 Arg.FirstUnknown = nullptr;
11394 ScalarEvolution::~ScalarEvolution() {
11395 // Iterate through all the SCEVUnknown instances and call their
11396 // destructors, so that they release their references to their values.
11397 for (SCEVUnknown *U = FirstUnknown; U;) {
11398 SCEVUnknown *Tmp = U;
11399 U = U->Next;
11400 Tmp->~SCEVUnknown();
11402 FirstUnknown = nullptr;
11404 ExprValueMap.clear();
11405 ValueExprMap.clear();
11406 HasRecMap.clear();
11408 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11409 // that a loop had multiple computable exits.
11410 for (auto &BTCI : BackedgeTakenCounts)
11411 BTCI.second.clear();
11412 for (auto &BTCI : PredicatedBackedgeTakenCounts)
11413 BTCI.second.clear();
11415 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11416 assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11417 assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11418 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11419 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11422 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11423 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11426 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11427 const Loop *L) {
11428 // Print all inner loops first
11429 for (Loop *I : *L)
11430 PrintLoopInfo(OS, SE, I);
11432 OS << "Loop ";
11433 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11434 OS << ": ";
11436 SmallVector<BasicBlock *, 8> ExitBlocks;
11437 L->getExitBlocks(ExitBlocks);
11438 if (ExitBlocks.size() != 1)
11439 OS << "<multiple exits> ";
11441 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11442 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
11443 } else {
11444 OS << "Unpredictable backedge-taken count. ";
11447 OS << "\n"
11448 "Loop ";
11449 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11450 OS << ": ";
11452 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
11453 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
11454 if (SE->isBackedgeTakenCountMaxOrZero(L))
11455 OS << ", actual taken count either this or zero.";
11456 } else {
11457 OS << "Unpredictable max backedge-taken count. ";
11460 OS << "\n"
11461 "Loop ";
11462 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11463 OS << ": ";
11465 SCEVUnionPredicate Pred;
11466 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11467 if (!isa<SCEVCouldNotCompute>(PBT)) {
11468 OS << "Predicated backedge-taken count is " << *PBT << "\n";
11469 OS << " Predicates:\n";
11470 Pred.print(OS, 4);
11471 } else {
11472 OS << "Unpredictable predicated backedge-taken count. ";
11474 OS << "\n";
11476 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11477 OS << "Loop ";
11478 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11479 OS << ": ";
11480 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11484 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11485 switch (LD) {
11486 case ScalarEvolution::LoopVariant:
11487 return "Variant";
11488 case ScalarEvolution::LoopInvariant:
11489 return "Invariant";
11490 case ScalarEvolution::LoopComputable:
11491 return "Computable";
11493 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11496 void ScalarEvolution::print(raw_ostream &OS) const {
11497 // ScalarEvolution's implementation of the print method is to print
11498 // out SCEV values of all instructions that are interesting. Doing
11499 // this potentially causes it to create new SCEV objects though,
11500 // which technically conflicts with the const qualifier. This isn't
11501 // observable from outside the class though, so casting away the
11502 // const isn't dangerous.
11503 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11505 OS << "Classifying expressions for: ";
11506 F.printAsOperand(OS, /*PrintType=*/false);
11507 OS << "\n";
11508 for (Instruction &I : instructions(F))
11509 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11510 OS << I << '\n';
11511 OS << " --> ";
11512 const SCEV *SV = SE.getSCEV(&I);
11513 SV->print(OS);
11514 if (!isa<SCEVCouldNotCompute>(SV)) {
11515 OS << " U: ";
11516 SE.getUnsignedRange(SV).print(OS);
11517 OS << " S: ";
11518 SE.getSignedRange(SV).print(OS);
11521 const Loop *L = LI.getLoopFor(I.getParent());
11523 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11524 if (AtUse != SV) {
11525 OS << " --> ";
11526 AtUse->print(OS);
11527 if (!isa<SCEVCouldNotCompute>(AtUse)) {
11528 OS << " U: ";
11529 SE.getUnsignedRange(AtUse).print(OS);
11530 OS << " S: ";
11531 SE.getSignedRange(AtUse).print(OS);
11535 if (L) {
11536 OS << "\t\t" "Exits: ";
11537 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11538 if (!SE.isLoopInvariant(ExitValue, L)) {
11539 OS << "<<Unknown>>";
11540 } else {
11541 OS << *ExitValue;
11544 bool First = true;
11545 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11546 if (First) {
11547 OS << "\t\t" "LoopDispositions: { ";
11548 First = false;
11549 } else {
11550 OS << ", ";
11553 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11554 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11557 for (auto *InnerL : depth_first(L)) {
11558 if (InnerL == L)
11559 continue;
11560 if (First) {
11561 OS << "\t\t" "LoopDispositions: { ";
11562 First = false;
11563 } else {
11564 OS << ", ";
11567 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11568 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11571 OS << " }";
11574 OS << "\n";
11577 OS << "Determining loop execution counts for: ";
11578 F.printAsOperand(OS, /*PrintType=*/false);
11579 OS << "\n";
11580 for (Loop *I : LI)
11581 PrintLoopInfo(OS, &SE, I);
11584 ScalarEvolution::LoopDisposition
11585 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11586 auto &Values = LoopDispositions[S];
11587 for (auto &V : Values) {
11588 if (V.getPointer() == L)
11589 return V.getInt();
11591 Values.emplace_back(L, LoopVariant);
11592 LoopDisposition D = computeLoopDisposition(S, L);
11593 auto &Values2 = LoopDispositions[S];
11594 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11595 if (V.getPointer() == L) {
11596 V.setInt(D);
11597 break;
11600 return D;
11603 ScalarEvolution::LoopDisposition
11604 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11605 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11606 case scConstant:
11607 return LoopInvariant;
11608 case scTruncate:
11609 case scZeroExtend:
11610 case scSignExtend:
11611 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11612 case scAddRecExpr: {
11613 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11615 // If L is the addrec's loop, it's computable.
11616 if (AR->getLoop() == L)
11617 return LoopComputable;
11619 // Add recurrences are never invariant in the function-body (null loop).
11620 if (!L)
11621 return LoopVariant;
11623 // Everything that is not defined at loop entry is variant.
11624 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11625 return LoopVariant;
11626 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11627 " dominate the contained loop's header?");
11629 // This recurrence is invariant w.r.t. L if AR's loop contains L.
11630 if (AR->getLoop()->contains(L))
11631 return LoopInvariant;
11633 // This recurrence is variant w.r.t. L if any of its operands
11634 // are variant.
11635 for (auto *Op : AR->operands())
11636 if (!isLoopInvariant(Op, L))
11637 return LoopVariant;
11639 // Otherwise it's loop-invariant.
11640 return LoopInvariant;
11642 case scAddExpr:
11643 case scMulExpr:
11644 case scUMaxExpr:
11645 case scSMaxExpr: {
11646 bool HasVarying = false;
11647 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11648 LoopDisposition D = getLoopDisposition(Op, L);
11649 if (D == LoopVariant)
11650 return LoopVariant;
11651 if (D == LoopComputable)
11652 HasVarying = true;
11654 return HasVarying ? LoopComputable : LoopInvariant;
11656 case scUDivExpr: {
11657 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11658 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11659 if (LD == LoopVariant)
11660 return LoopVariant;
11661 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11662 if (RD == LoopVariant)
11663 return LoopVariant;
11664 return (LD == LoopInvariant && RD == LoopInvariant) ?
11665 LoopInvariant : LoopComputable;
11667 case scUnknown:
11668 // All non-instruction values are loop invariant. All instructions are loop
11669 // invariant if they are not contained in the specified loop.
11670 // Instructions are never considered invariant in the function body
11671 // (null loop) because they are defined within the "loop".
11672 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11673 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11674 return LoopInvariant;
11675 case scCouldNotCompute:
11676 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11678 llvm_unreachable("Unknown SCEV kind!");
11681 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11682 return getLoopDisposition(S, L) == LoopInvariant;
11685 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11686 return getLoopDisposition(S, L) == LoopComputable;
11689 ScalarEvolution::BlockDisposition
11690 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11691 auto &Values = BlockDispositions[S];
11692 for (auto &V : Values) {
11693 if (V.getPointer() == BB)
11694 return V.getInt();
11696 Values.emplace_back(BB, DoesNotDominateBlock);
11697 BlockDisposition D = computeBlockDisposition(S, BB);
11698 auto &Values2 = BlockDispositions[S];
11699 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11700 if (V.getPointer() == BB) {
11701 V.setInt(D);
11702 break;
11705 return D;
11708 ScalarEvolution::BlockDisposition
11709 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11710 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11711 case scConstant:
11712 return ProperlyDominatesBlock;
11713 case scTruncate:
11714 case scZeroExtend:
11715 case scSignExtend:
11716 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11717 case scAddRecExpr: {
11718 // This uses a "dominates" query instead of "properly dominates" query
11719 // to test for proper dominance too, because the instruction which
11720 // produces the addrec's value is a PHI, and a PHI effectively properly
11721 // dominates its entire containing block.
11722 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11723 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11724 return DoesNotDominateBlock;
11726 // Fall through into SCEVNAryExpr handling.
11727 LLVM_FALLTHROUGH;
11729 case scAddExpr:
11730 case scMulExpr:
11731 case scUMaxExpr:
11732 case scSMaxExpr: {
11733 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11734 bool Proper = true;
11735 for (const SCEV *NAryOp : NAry->operands()) {
11736 BlockDisposition D = getBlockDisposition(NAryOp, BB);
11737 if (D == DoesNotDominateBlock)
11738 return DoesNotDominateBlock;
11739 if (D == DominatesBlock)
11740 Proper = false;
11742 return Proper ? ProperlyDominatesBlock : DominatesBlock;
11744 case scUDivExpr: {
11745 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11746 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11747 BlockDisposition LD = getBlockDisposition(LHS, BB);
11748 if (LD == DoesNotDominateBlock)
11749 return DoesNotDominateBlock;
11750 BlockDisposition RD = getBlockDisposition(RHS, BB);
11751 if (RD == DoesNotDominateBlock)
11752 return DoesNotDominateBlock;
11753 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11754 ProperlyDominatesBlock : DominatesBlock;
11756 case scUnknown:
11757 if (Instruction *I =
11758 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11759 if (I->getParent() == BB)
11760 return DominatesBlock;
11761 if (DT.properlyDominates(I->getParent(), BB))
11762 return ProperlyDominatesBlock;
11763 return DoesNotDominateBlock;
11765 return ProperlyDominatesBlock;
11766 case scCouldNotCompute:
11767 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11769 llvm_unreachable("Unknown SCEV kind!");
11772 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11773 return getBlockDisposition(S, BB) >= DominatesBlock;
11776 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11777 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11780 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11781 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11784 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11785 auto IsS = [&](const SCEV *X) { return S == X; };
11786 auto ContainsS = [&](const SCEV *X) {
11787 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11789 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11792 void
11793 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11794 ValuesAtScopes.erase(S);
11795 LoopDispositions.erase(S);
11796 BlockDispositions.erase(S);
11797 UnsignedRanges.erase(S);
11798 SignedRanges.erase(S);
11799 ExprValueMap.erase(S);
11800 HasRecMap.erase(S);
11801 MinTrailingZerosCache.erase(S);
11803 for (auto I = PredicatedSCEVRewrites.begin();
11804 I != PredicatedSCEVRewrites.end();) {
11805 std::pair<const SCEV *, const Loop *> Entry = I->first;
11806 if (Entry.first == S)
11807 PredicatedSCEVRewrites.erase(I++);
11808 else
11809 ++I;
11812 auto RemoveSCEVFromBackedgeMap =
11813 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11814 for (auto I = Map.begin(), E = Map.end(); I != E;) {
11815 BackedgeTakenInfo &BEInfo = I->second;
11816 if (BEInfo.hasOperand(S, this)) {
11817 BEInfo.clear();
11818 Map.erase(I++);
11819 } else
11820 ++I;
11824 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11825 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11828 void
11829 ScalarEvolution::getUsedLoops(const SCEV *S,
11830 SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11831 struct FindUsedLoops {
11832 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11833 : LoopsUsed(LoopsUsed) {}
11834 SmallPtrSetImpl<const Loop *> &LoopsUsed;
11835 bool follow(const SCEV *S) {
11836 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11837 LoopsUsed.insert(AR->getLoop());
11838 return true;
11841 bool isDone() const { return false; }
11844 FindUsedLoops F(LoopsUsed);
11845 SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11848 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11849 SmallPtrSet<const Loop *, 8> LoopsUsed;
11850 getUsedLoops(S, LoopsUsed);
11851 for (auto *L : LoopsUsed)
11852 LoopUsers[L].push_back(S);
11855 void ScalarEvolution::verify() const {
11856 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11857 ScalarEvolution SE2(F, TLI, AC, DT, LI);
11859 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11861 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11862 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11863 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11865 const SCEV *visitConstant(const SCEVConstant *Constant) {
11866 return SE.getConstant(Constant->getAPInt());
11869 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11870 return SE.getUnknown(Expr->getValue());
11873 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11874 return SE.getCouldNotCompute();
11878 SCEVMapper SCM(SE2);
11880 while (!LoopStack.empty()) {
11881 auto *L = LoopStack.pop_back_val();
11882 LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11884 auto *CurBECount = SCM.visit(
11885 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11886 auto *NewBECount = SE2.getBackedgeTakenCount(L);
11888 if (CurBECount == SE2.getCouldNotCompute() ||
11889 NewBECount == SE2.getCouldNotCompute()) {
11890 // NB! This situation is legal, but is very suspicious -- whatever pass
11891 // change the loop to make a trip count go from could not compute to
11892 // computable or vice-versa *should have* invalidated SCEV. However, we
11893 // choose not to assert here (for now) since we don't want false
11894 // positives.
11895 continue;
11898 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11899 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11900 // not propagate undef aggressively). This means we can (and do) fail
11901 // verification in cases where a transform makes the trip count of a loop
11902 // go from "undef" to "undef+1" (say). The transform is fine, since in
11903 // both cases the loop iterates "undef" times, but SCEV thinks we
11904 // increased the trip count of the loop by 1 incorrectly.
11905 continue;
11908 if (SE.getTypeSizeInBits(CurBECount->getType()) >
11909 SE.getTypeSizeInBits(NewBECount->getType()))
11910 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11911 else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11912 SE.getTypeSizeInBits(NewBECount->getType()))
11913 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11915 auto *ConstantDelta =
11916 dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount));
11918 if (ConstantDelta && ConstantDelta->getAPInt() != 0) {
11919 dbgs() << "Trip Count Changed!\n";
11920 dbgs() << "Old: " << *CurBECount << "\n";
11921 dbgs() << "New: " << *NewBECount << "\n";
11922 dbgs() << "Delta: " << *ConstantDelta << "\n";
11923 std::abort();
11928 bool ScalarEvolution::invalidate(
11929 Function &F, const PreservedAnalyses &PA,
11930 FunctionAnalysisManager::Invalidator &Inv) {
11931 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11932 // of its dependencies is invalidated.
11933 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11934 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11935 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11936 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11937 Inv.invalidate<LoopAnalysis>(F, PA);
11940 AnalysisKey ScalarEvolutionAnalysis::Key;
11942 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11943 FunctionAnalysisManager &AM) {
11944 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11945 AM.getResult<AssumptionAnalysis>(F),
11946 AM.getResult<DominatorTreeAnalysis>(F),
11947 AM.getResult<LoopAnalysis>(F));
11950 PreservedAnalyses
11951 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11952 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11953 return PreservedAnalyses::all();
11956 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11957 "Scalar Evolution Analysis", false, true)
11958 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11959 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11960 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11961 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11962 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11963 "Scalar Evolution Analysis", false, true)
11965 char ScalarEvolutionWrapperPass::ID = 0;
11967 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11968 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11971 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11972 SE.reset(new ScalarEvolution(
11973 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
11974 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11975 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11976 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11977 return false;
11980 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
11982 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
11983 SE->print(OS);
11986 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
11987 if (!VerifySCEV)
11988 return;
11990 SE->verify();
11993 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
11994 AU.setPreservesAll();
11995 AU.addRequiredTransitive<AssumptionCacheTracker>();
11996 AU.addRequiredTransitive<LoopInfoWrapperPass>();
11997 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
11998 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12001 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12002 const SCEV *RHS) {
12003 FoldingSetNodeID ID;
12004 assert(LHS->getType() == RHS->getType() &&
12005 "Type mismatch between LHS and RHS");
12006 // Unique this node based on the arguments
12007 ID.AddInteger(SCEVPredicate::P_Equal);
12008 ID.AddPointer(LHS);
12009 ID.AddPointer(RHS);
12010 void *IP = nullptr;
12011 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12012 return S;
12013 SCEVEqualPredicate *Eq = new (SCEVAllocator)
12014 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12015 UniquePreds.InsertNode(Eq, IP);
12016 return Eq;
12019 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12020 const SCEVAddRecExpr *AR,
12021 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12022 FoldingSetNodeID ID;
12023 // Unique this node based on the arguments
12024 ID.AddInteger(SCEVPredicate::P_Wrap);
12025 ID.AddPointer(AR);
12026 ID.AddInteger(AddedFlags);
12027 void *IP = nullptr;
12028 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12029 return S;
12030 auto *OF = new (SCEVAllocator)
12031 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12032 UniquePreds.InsertNode(OF, IP);
12033 return OF;
12036 namespace {
12038 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12039 public:
12041 /// Rewrites \p S in the context of a loop L and the SCEV predication
12042 /// infrastructure.
12044 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12045 /// equivalences present in \p Pred.
12047 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12048 /// \p NewPreds such that the result will be an AddRecExpr.
12049 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12050 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12051 SCEVUnionPredicate *Pred) {
12052 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12053 return Rewriter.visit(S);
12056 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12057 if (Pred) {
12058 auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12059 for (auto *Pred : ExprPreds)
12060 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12061 if (IPred->getLHS() == Expr)
12062 return IPred->getRHS();
12064 return convertToAddRecWithPreds(Expr);
12067 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12068 const SCEV *Operand = visit(Expr->getOperand());
12069 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12070 if (AR && AR->getLoop() == L && AR->isAffine()) {
12071 // This couldn't be folded because the operand didn't have the nuw
12072 // flag. Add the nusw flag as an assumption that we could make.
12073 const SCEV *Step = AR->getStepRecurrence(SE);
12074 Type *Ty = Expr->getType();
12075 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12076 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12077 SE.getSignExtendExpr(Step, Ty), L,
12078 AR->getNoWrapFlags());
12080 return SE.getZeroExtendExpr(Operand, Expr->getType());
12083 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12084 const SCEV *Operand = visit(Expr->getOperand());
12085 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12086 if (AR && AR->getLoop() == L && AR->isAffine()) {
12087 // This couldn't be folded because the operand didn't have the nsw
12088 // flag. Add the nssw flag as an assumption that we could make.
12089 const SCEV *Step = AR->getStepRecurrence(SE);
12090 Type *Ty = Expr->getType();
12091 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12092 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12093 SE.getSignExtendExpr(Step, Ty), L,
12094 AR->getNoWrapFlags());
12096 return SE.getSignExtendExpr(Operand, Expr->getType());
12099 private:
12100 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12101 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12102 SCEVUnionPredicate *Pred)
12103 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12105 bool addOverflowAssumption(const SCEVPredicate *P) {
12106 if (!NewPreds) {
12107 // Check if we've already made this assumption.
12108 return Pred && Pred->implies(P);
12110 NewPreds->insert(P);
12111 return true;
12114 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12115 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12116 auto *A = SE.getWrapPredicate(AR, AddedFlags);
12117 return addOverflowAssumption(A);
12120 // If \p Expr represents a PHINode, we try to see if it can be represented
12121 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12122 // to add this predicate as a runtime overflow check, we return the AddRec.
12123 // If \p Expr does not meet these conditions (is not a PHI node, or we
12124 // couldn't create an AddRec for it, or couldn't add the predicate), we just
12125 // return \p Expr.
12126 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12127 if (!isa<PHINode>(Expr->getValue()))
12128 return Expr;
12129 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12130 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12131 if (!PredicatedRewrite)
12132 return Expr;
12133 for (auto *P : PredicatedRewrite->second){
12134 // Wrap predicates from outer loops are not supported.
12135 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12136 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12137 if (L != AR->getLoop())
12138 return Expr;
12140 if (!addOverflowAssumption(P))
12141 return Expr;
12143 return PredicatedRewrite->first;
12146 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12147 SCEVUnionPredicate *Pred;
12148 const Loop *L;
12151 } // end anonymous namespace
12153 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12154 SCEVUnionPredicate &Preds) {
12155 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12158 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12159 const SCEV *S, const Loop *L,
12160 SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12161 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12162 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12163 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12165 if (!AddRec)
12166 return nullptr;
12168 // Since the transformation was successful, we can now transfer the SCEV
12169 // predicates.
12170 for (auto *P : TransformPreds)
12171 Preds.insert(P);
12173 return AddRec;
12176 /// SCEV predicates
12177 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12178 SCEVPredicateKind Kind)
12179 : FastID(ID), Kind(Kind) {}
12181 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12182 const SCEV *LHS, const SCEV *RHS)
12183 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12184 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12185 assert(LHS != RHS && "LHS and RHS are the same SCEV");
12188 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12189 const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12191 if (!Op)
12192 return false;
12194 return Op->LHS == LHS && Op->RHS == RHS;
12197 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12199 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12201 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12202 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12205 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12206 const SCEVAddRecExpr *AR,
12207 IncrementWrapFlags Flags)
12208 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12210 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12212 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12213 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12215 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12218 bool SCEVWrapPredicate::isAlwaysTrue() const {
12219 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12220 IncrementWrapFlags IFlags = Flags;
12222 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12223 IFlags = clearFlags(IFlags, IncrementNSSW);
12225 return IFlags == IncrementAnyWrap;
12228 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12229 OS.indent(Depth) << *getExpr() << " Added Flags: ";
12230 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12231 OS << "<nusw>";
12232 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12233 OS << "<nssw>";
12234 OS << "\n";
12237 SCEVWrapPredicate::IncrementWrapFlags
12238 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12239 ScalarEvolution &SE) {
12240 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12241 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12243 // We can safely transfer the NSW flag as NSSW.
12244 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12245 ImpliedFlags = IncrementNSSW;
12247 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12248 // If the increment is positive, the SCEV NUW flag will also imply the
12249 // WrapPredicate NUSW flag.
12250 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12251 if (Step->getValue()->getValue().isNonNegative())
12252 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12255 return ImpliedFlags;
12258 /// Union predicates don't get cached so create a dummy set ID for it.
12259 SCEVUnionPredicate::SCEVUnionPredicate()
12260 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12262 bool SCEVUnionPredicate::isAlwaysTrue() const {
12263 return all_of(Preds,
12264 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12267 ArrayRef<const SCEVPredicate *>
12268 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12269 auto I = SCEVToPreds.find(Expr);
12270 if (I == SCEVToPreds.end())
12271 return ArrayRef<const SCEVPredicate *>();
12272 return I->second;
12275 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12276 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12277 return all_of(Set->Preds,
12278 [this](const SCEVPredicate *I) { return this->implies(I); });
12280 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12281 if (ScevPredsIt == SCEVToPreds.end())
12282 return false;
12283 auto &SCEVPreds = ScevPredsIt->second;
12285 return any_of(SCEVPreds,
12286 [N](const SCEVPredicate *I) { return I->implies(N); });
12289 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12291 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12292 for (auto Pred : Preds)
12293 Pred->print(OS, Depth);
12296 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12297 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12298 for (auto Pred : Set->Preds)
12299 add(Pred);
12300 return;
12303 if (implies(N))
12304 return;
12306 const SCEV *Key = N->getExpr();
12307 assert(Key && "Only SCEVUnionPredicate doesn't have an "
12308 " associated expression!");
12310 SCEVToPreds[Key].push_back(N);
12311 Preds.push_back(N);
12314 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12315 Loop &L)
12316 : SE(SE), L(L) {}
12318 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12319 const SCEV *Expr = SE.getSCEV(V);
12320 RewriteEntry &Entry = RewriteMap[Expr];
12322 // If we already have an entry and the version matches, return it.
12323 if (Entry.second && Generation == Entry.first)
12324 return Entry.second;
12326 // We found an entry but it's stale. Rewrite the stale entry
12327 // according to the current predicate.
12328 if (Entry.second)
12329 Expr = Entry.second;
12331 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12332 Entry = {Generation, NewSCEV};
12334 return NewSCEV;
12337 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12338 if (!BackedgeCount) {
12339 SCEVUnionPredicate BackedgePred;
12340 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12341 addPredicate(BackedgePred);
12343 return BackedgeCount;
12346 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12347 if (Preds.implies(&Pred))
12348 return;
12349 Preds.add(&Pred);
12350 updateGeneration();
12353 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12354 return Preds;
12357 void PredicatedScalarEvolution::updateGeneration() {
12358 // If the generation number wrapped recompute everything.
12359 if (++Generation == 0) {
12360 for (auto &II : RewriteMap) {
12361 const SCEV *Rewritten = II.second.second;
12362 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12367 void PredicatedScalarEvolution::setNoOverflow(
12368 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12369 const SCEV *Expr = getSCEV(V);
12370 const auto *AR = cast<SCEVAddRecExpr>(Expr);
12372 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12374 // Clear the statically implied flags.
12375 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12376 addPredicate(*SE.getWrapPredicate(AR, Flags));
12378 auto II = FlagsMap.insert({V, Flags});
12379 if (!II.second)
12380 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12383 bool PredicatedScalarEvolution::hasNoOverflow(
12384 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12385 const SCEV *Expr = getSCEV(V);
12386 const auto *AR = cast<SCEVAddRecExpr>(Expr);
12388 Flags = SCEVWrapPredicate::clearFlags(
12389 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12391 auto II = FlagsMap.find(V);
12393 if (II != FlagsMap.end())
12394 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12396 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12399 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12400 const SCEV *Expr = this->getSCEV(V);
12401 SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12402 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12404 if (!New)
12405 return nullptr;
12407 for (auto *P : NewPreds)
12408 Preds.add(P);
12410 updateGeneration();
12411 RewriteMap[SE.getSCEV(V)] = {Generation, New};
12412 return New;
12415 PredicatedScalarEvolution::PredicatedScalarEvolution(
12416 const PredicatedScalarEvolution &Init)
12417 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12418 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12419 for (const auto &I : Init.FlagsMap)
12420 FlagsMap.insert(I);
12423 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12424 // For each block.
12425 for (auto *BB : L.getBlocks())
12426 for (auto &I : *BB) {
12427 if (!SE.isSCEVable(I.getType()))
12428 continue;
12430 auto *Expr = SE.getSCEV(&I);
12431 auto II = RewriteMap.find(Expr);
12433 if (II == RewriteMap.end())
12434 continue;
12436 // Don't print things that are not interesting.
12437 if (II->second.second == Expr)
12438 continue;
12440 OS.indent(Depth) << "[PSE]" << I << ":\n";
12441 OS.indent(Depth + 2) << *Expr << "\n";
12442 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12446 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12447 // arbitrary expressions.
12448 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12449 // 4, A / B becomes X / 8).
12450 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12451 const SCEV *&RHS) {
12452 const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12453 if (Add == nullptr || Add->getNumOperands() != 2)
12454 return false;
12456 const SCEV *A = Add->getOperand(1);
12457 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12459 if (Mul == nullptr)
12460 return false;
12462 const auto MatchURemWithDivisor = [&](const SCEV *B) {
12463 // (SomeExpr + (-(SomeExpr / B) * B)).
12464 if (Expr == getURemExpr(A, B)) {
12465 LHS = A;
12466 RHS = B;
12467 return true;
12469 return false;
12472 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12473 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12474 return MatchURemWithDivisor(Mul->getOperand(1)) ||
12475 MatchURemWithDivisor(Mul->getOperand(2));
12477 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12478 if (Mul->getNumOperands() == 2)
12479 return MatchURemWithDivisor(Mul->getOperand(1)) ||
12480 MatchURemWithDivisor(Mul->getOperand(0)) ||
12481 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12482 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12483 return false;