[MIPS GlobalISel] Select float constants
[llvm-complete.git] / lib / AsmParser / LLParser.cpp
blob1ab2702941d9136ebeee8166dde670a4230f99fa
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the parser class for .ll files.
11 //===----------------------------------------------------------------------===//
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
54 using namespace llvm;
56 static std::string getTypeString(Type *T) {
57 std::string Result;
58 raw_string_ostream Tmp(Result);
59 Tmp << *T;
60 return Tmp.str();
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65 // Prime the lexer.
66 Lex.Lex();
68 if (Context.shouldDiscardValueNames())
69 return Error(
70 Lex.getLoc(),
71 "Can't read textual IR with a Context that discards named Values");
73 return ParseTopLevelEntities() || ValidateEndOfModule() ||
74 ValidateEndOfIndex();
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78 const SlotMapping *Slots) {
79 restoreParsingState(Slots);
80 Lex.Lex();
82 Type *Ty = nullptr;
83 if (ParseType(Ty) || parseConstantValue(Ty, C))
84 return true;
85 if (Lex.getKind() != lltok::Eof)
86 return Error(Lex.getLoc(), "expected end of string");
87 return false;
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91 const SlotMapping *Slots) {
92 restoreParsingState(Slots);
93 Lex.Lex();
95 Read = 0;
96 SMLoc Start = Lex.getLoc();
97 Ty = nullptr;
98 if (ParseType(Ty))
99 return true;
100 SMLoc End = Lex.getLoc();
101 Read = End.getPointer() - Start.getPointer();
103 return false;
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107 if (!Slots)
108 return;
109 NumberedVals = Slots->GlobalValues;
110 NumberedMetadata = Slots->MetadataNodes;
111 for (const auto &I : Slots->NamedTypes)
112 NamedTypes.insert(
113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114 for (const auto &I : Slots->Types)
115 NumberedTypes.insert(
116 std::make_pair(I.first, std::make_pair(I.second, LocTy())));
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122 if (!M)
123 return false;
124 // Handle any function attribute group forward references.
125 for (const auto &RAG : ForwardRefAttrGroups) {
126 Value *V = RAG.first;
127 const std::vector<unsigned> &Attrs = RAG.second;
128 AttrBuilder B;
130 for (const auto &Attr : Attrs)
131 B.merge(NumberedAttrBuilders[Attr]);
133 if (Function *Fn = dyn_cast<Function>(V)) {
134 AttributeList AS = Fn->getAttributes();
135 AttrBuilder FnAttrs(AS.getFnAttributes());
136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
138 FnAttrs.merge(B);
140 // If the alignment was parsed as an attribute, move to the alignment
141 // field.
142 if (FnAttrs.hasAlignmentAttr()) {
143 Fn->setAlignment(FnAttrs.getAlignment());
144 FnAttrs.removeAttribute(Attribute::Alignment);
147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148 AttributeSet::get(Context, FnAttrs));
149 Fn->setAttributes(AS);
150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151 AttributeList AS = CI->getAttributes();
152 AttrBuilder FnAttrs(AS.getFnAttributes());
153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154 FnAttrs.merge(B);
155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156 AttributeSet::get(Context, FnAttrs));
157 CI->setAttributes(AS);
158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159 AttributeList AS = II->getAttributes();
160 AttrBuilder FnAttrs(AS.getFnAttributes());
161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162 FnAttrs.merge(B);
163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164 AttributeSet::get(Context, FnAttrs));
165 II->setAttributes(AS);
166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167 AttributeList AS = CBI->getAttributes();
168 AttrBuilder FnAttrs(AS.getFnAttributes());
169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170 FnAttrs.merge(B);
171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172 AttributeSet::get(Context, FnAttrs));
173 CBI->setAttributes(AS);
174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175 AttrBuilder Attrs(GV->getAttributes());
176 Attrs.merge(B);
177 GV->setAttributes(AttributeSet::get(Context,Attrs));
178 } else {
179 llvm_unreachable("invalid object with forward attribute group reference");
183 // If there are entries in ForwardRefBlockAddresses at this point, the
184 // function was never defined.
185 if (!ForwardRefBlockAddresses.empty())
186 return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187 "expected function name in blockaddress");
189 for (const auto &NT : NumberedTypes)
190 if (NT.second.second.isValid())
191 return Error(NT.second.second,
192 "use of undefined type '%" + Twine(NT.first) + "'");
194 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196 if (I->second.second.isValid())
197 return Error(I->second.second,
198 "use of undefined type named '" + I->getKey() + "'");
200 if (!ForwardRefComdats.empty())
201 return Error(ForwardRefComdats.begin()->second,
202 "use of undefined comdat '$" +
203 ForwardRefComdats.begin()->first + "'");
205 if (!ForwardRefVals.empty())
206 return Error(ForwardRefVals.begin()->second.second,
207 "use of undefined value '@" + ForwardRefVals.begin()->first +
208 "'");
210 if (!ForwardRefValIDs.empty())
211 return Error(ForwardRefValIDs.begin()->second.second,
212 "use of undefined value '@" +
213 Twine(ForwardRefValIDs.begin()->first) + "'");
215 if (!ForwardRefMDNodes.empty())
216 return Error(ForwardRefMDNodes.begin()->second.second,
217 "use of undefined metadata '!" +
218 Twine(ForwardRefMDNodes.begin()->first) + "'");
220 // Resolve metadata cycles.
221 for (auto &N : NumberedMetadata) {
222 if (N.second && !N.second->isResolved())
223 N.second->resolveCycles();
226 for (auto *Inst : InstsWithTBAATag) {
227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229 auto *UpgradedMD = UpgradeTBAANode(*MD);
230 if (MD != UpgradedMD)
231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
234 // Look for intrinsic functions and CallInst that need to be upgraded
235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
238 // Some types could be renamed during loading if several modules are
239 // loaded in the same LLVMContext (LTO scenario). In this case we should
240 // remangle intrinsics names as well.
241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242 Function *F = &*FI++;
243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244 F->replaceAllUsesWith(Remangled.getValue());
245 F->eraseFromParent();
249 if (UpgradeDebugInfo)
250 llvm::UpgradeDebugInfo(*M);
252 UpgradeModuleFlags(*M);
253 UpgradeSectionAttributes(*M);
255 if (!Slots)
256 return false;
257 // Initialize the slot mapping.
258 // Because by this point we've parsed and validated everything, we can "steal"
259 // the mapping from LLParser as it doesn't need it anymore.
260 Slots->GlobalValues = std::move(NumberedVals);
261 Slots->MetadataNodes = std::move(NumberedMetadata);
262 for (const auto &I : NamedTypes)
263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264 for (const auto &I : NumberedTypes)
265 Slots->Types.insert(std::make_pair(I.first, I.second.first));
267 return false;
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272 if (!Index)
273 return false;
275 if (!ForwardRefValueInfos.empty())
276 return Error(ForwardRefValueInfos.begin()->second.front().second,
277 "use of undefined summary '^" +
278 Twine(ForwardRefValueInfos.begin()->first) + "'");
280 if (!ForwardRefAliasees.empty())
281 return Error(ForwardRefAliasees.begin()->second.front().second,
282 "use of undefined summary '^" +
283 Twine(ForwardRefAliasees.begin()->first) + "'");
285 if (!ForwardRefTypeIds.empty())
286 return Error(ForwardRefTypeIds.begin()->second.front().second,
287 "use of undefined type id summary '^" +
288 Twine(ForwardRefTypeIds.begin()->first) + "'");
290 return false;
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
297 bool LLParser::ParseTopLevelEntities() {
298 // If there is no Module, then parse just the summary index entries.
299 if (!M) {
300 while (true) {
301 switch (Lex.getKind()) {
302 case lltok::Eof:
303 return false;
304 case lltok::SummaryID:
305 if (ParseSummaryEntry())
306 return true;
307 break;
308 case lltok::kw_source_filename:
309 if (ParseSourceFileName())
310 return true;
311 break;
312 default:
313 // Skip everything else
314 Lex.Lex();
318 while (true) {
319 switch (Lex.getKind()) {
320 default: return TokError("expected top-level entity");
321 case lltok::Eof: return false;
322 case lltok::kw_declare: if (ParseDeclare()) return true; break;
323 case lltok::kw_define: if (ParseDefine()) return true; break;
324 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
326 case lltok::kw_source_filename:
327 if (ParseSourceFileName())
328 return true;
329 break;
330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332 case lltok::LocalVar: if (ParseNamedType()) return true; break;
333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
335 case lltok::ComdatVar: if (parseComdat()) return true; break;
336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
337 case lltok::SummaryID:
338 if (ParseSummaryEntry())
339 return true;
340 break;
341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344 case lltok::kw_uselistorder_bb:
345 if (ParseUseListOrderBB())
346 return true;
347 break;
352 /// toplevelentity
353 /// ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355 assert(Lex.getKind() == lltok::kw_module);
356 Lex.Lex();
358 std::string AsmStr;
359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360 ParseStringConstant(AsmStr)) return true;
362 M->appendModuleInlineAsm(AsmStr);
363 return false;
366 /// toplevelentity
367 /// ::= 'target' 'triple' '=' STRINGCONSTANT
368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370 assert(Lex.getKind() == lltok::kw_target);
371 std::string Str;
372 switch (Lex.Lex()) {
373 default: return TokError("unknown target property");
374 case lltok::kw_triple:
375 Lex.Lex();
376 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377 ParseStringConstant(Str))
378 return true;
379 M->setTargetTriple(Str);
380 return false;
381 case lltok::kw_datalayout:
382 Lex.Lex();
383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384 ParseStringConstant(Str))
385 return true;
386 if (DataLayoutStr.empty())
387 M->setDataLayout(Str);
388 return false;
392 /// toplevelentity
393 /// ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395 assert(Lex.getKind() == lltok::kw_source_filename);
396 Lex.Lex();
397 if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398 ParseStringConstant(SourceFileName))
399 return true;
400 if (M)
401 M->setSourceFileName(SourceFileName);
402 return false;
405 /// toplevelentity
406 /// ::= 'deplibs' '=' '[' ']'
407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410 assert(Lex.getKind() == lltok::kw_deplibs);
411 Lex.Lex();
412 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414 return true;
416 if (EatIfPresent(lltok::rsquare))
417 return false;
419 do {
420 std::string Str;
421 if (ParseStringConstant(Str)) return true;
422 } while (EatIfPresent(lltok::comma));
424 return ParseToken(lltok::rsquare, "expected ']' at end of list");
427 /// ParseUnnamedType:
428 /// ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430 LocTy TypeLoc = Lex.getLoc();
431 unsigned TypeID = Lex.getUIntVal();
432 Lex.Lex(); // eat LocalVarID;
434 if (ParseToken(lltok::equal, "expected '=' after name") ||
435 ParseToken(lltok::kw_type, "expected 'type' after '='"))
436 return true;
438 Type *Result = nullptr;
439 if (ParseStructDefinition(TypeLoc, "",
440 NumberedTypes[TypeID], Result)) return true;
442 if (!isa<StructType>(Result)) {
443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444 if (Entry.first)
445 return Error(TypeLoc, "non-struct types may not be recursive");
446 Entry.first = Result;
447 Entry.second = SMLoc();
450 return false;
453 /// toplevelentity
454 /// ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456 std::string Name = Lex.getStrVal();
457 LocTy NameLoc = Lex.getLoc();
458 Lex.Lex(); // eat LocalVar.
460 if (ParseToken(lltok::equal, "expected '=' after name") ||
461 ParseToken(lltok::kw_type, "expected 'type' after name"))
462 return true;
464 Type *Result = nullptr;
465 if (ParseStructDefinition(NameLoc, Name,
466 NamedTypes[Name], Result)) return true;
468 if (!isa<StructType>(Result)) {
469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470 if (Entry.first)
471 return Error(NameLoc, "non-struct types may not be recursive");
472 Entry.first = Result;
473 Entry.second = SMLoc();
476 return false;
479 /// toplevelentity
480 /// ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482 assert(Lex.getKind() == lltok::kw_declare);
483 Lex.Lex();
485 std::vector<std::pair<unsigned, MDNode *>> MDs;
486 while (Lex.getKind() == lltok::MetadataVar) {
487 unsigned MDK;
488 MDNode *N;
489 if (ParseMetadataAttachment(MDK, N))
490 return true;
491 MDs.push_back({MDK, N});
494 Function *F;
495 if (ParseFunctionHeader(F, false))
496 return true;
497 for (auto &MD : MDs)
498 F->addMetadata(MD.first, *MD.second);
499 return false;
502 /// toplevelentity
503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505 assert(Lex.getKind() == lltok::kw_define);
506 Lex.Lex();
508 Function *F;
509 return ParseFunctionHeader(F, true) ||
510 ParseOptionalFunctionMetadata(*F) ||
511 ParseFunctionBody(*F);
514 /// ParseGlobalType
515 /// ::= 'constant'
516 /// ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518 if (Lex.getKind() == lltok::kw_constant)
519 IsConstant = true;
520 else if (Lex.getKind() == lltok::kw_global)
521 IsConstant = false;
522 else {
523 IsConstant = false;
524 return TokError("expected 'global' or 'constant'");
526 Lex.Lex();
527 return false;
530 bool LLParser::ParseOptionalUnnamedAddr(
531 GlobalVariable::UnnamedAddr &UnnamedAddr) {
532 if (EatIfPresent(lltok::kw_unnamed_addr))
533 UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534 else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535 UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536 else
537 UnnamedAddr = GlobalValue::UnnamedAddr::None;
538 return false;
541 /// ParseUnnamedGlobal:
542 /// OptionalVisibility (ALIAS | IFUNC) ...
543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 /// OptionalDLLStorageClass
545 /// ... -> global variable
546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 /// OptionalDLLStorageClass
549 /// ... -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551 unsigned VarID = NumberedVals.size();
552 std::string Name;
553 LocTy NameLoc = Lex.getLoc();
555 // Handle the GlobalID form.
556 if (Lex.getKind() == lltok::GlobalID) {
557 if (Lex.getUIntVal() != VarID)
558 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559 Twine(VarID) + "'");
560 Lex.Lex(); // eat GlobalID;
562 if (ParseToken(lltok::equal, "expected '=' after name"))
563 return true;
566 bool HasLinkage;
567 unsigned Linkage, Visibility, DLLStorageClass;
568 bool DSOLocal;
569 GlobalVariable::ThreadLocalMode TLM;
570 GlobalVariable::UnnamedAddr UnnamedAddr;
571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572 DSOLocal) ||
573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574 return true;
576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
584 /// ParseNamedGlobal:
585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 /// OptionalVisibility OptionalDLLStorageClass
588 /// ... -> global variable
589 bool LLParser::ParseNamedGlobal() {
590 assert(Lex.getKind() == lltok::GlobalVar);
591 LocTy NameLoc = Lex.getLoc();
592 std::string Name = Lex.getStrVal();
593 Lex.Lex();
595 bool HasLinkage;
596 unsigned Linkage, Visibility, DLLStorageClass;
597 bool DSOLocal;
598 GlobalVariable::ThreadLocalMode TLM;
599 GlobalVariable::UnnamedAddr UnnamedAddr;
600 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602 DSOLocal) ||
603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604 return true;
606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
614 bool LLParser::parseComdat() {
615 assert(Lex.getKind() == lltok::ComdatVar);
616 std::string Name = Lex.getStrVal();
617 LocTy NameLoc = Lex.getLoc();
618 Lex.Lex();
620 if (ParseToken(lltok::equal, "expected '=' here"))
621 return true;
623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624 return TokError("expected comdat type");
626 Comdat::SelectionKind SK;
627 switch (Lex.getKind()) {
628 default:
629 return TokError("unknown selection kind");
630 case lltok::kw_any:
631 SK = Comdat::Any;
632 break;
633 case lltok::kw_exactmatch:
634 SK = Comdat::ExactMatch;
635 break;
636 case lltok::kw_largest:
637 SK = Comdat::Largest;
638 break;
639 case lltok::kw_noduplicates:
640 SK = Comdat::NoDuplicates;
641 break;
642 case lltok::kw_samesize:
643 SK = Comdat::SameSize;
644 break;
646 Lex.Lex();
648 // See if the comdat was forward referenced, if so, use the comdat.
649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
654 Comdat *C;
655 if (I != ComdatSymTab.end())
656 C = &I->second;
657 else
658 C = M->getOrInsertComdat(Name);
659 C->setSelectionKind(SK);
661 return false;
664 // MDString:
665 // ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667 std::string Str;
668 if (ParseStringConstant(Str)) return true;
669 Result = MDString::get(Context, Str);
670 return false;
673 // MDNode:
674 // ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676 // !{ ..., !42, ... }
677 LocTy IDLoc = Lex.getLoc();
678 unsigned MID = 0;
679 if (ParseUInt32(MID))
680 return true;
682 // If not a forward reference, just return it now.
683 if (NumberedMetadata.count(MID)) {
684 Result = NumberedMetadata[MID];
685 return false;
688 // Otherwise, create MDNode forward reference.
689 auto &FwdRef = ForwardRefMDNodes[MID];
690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
692 Result = FwdRef.first.get();
693 NumberedMetadata[MID].reset(Result);
694 return false;
697 /// ParseNamedMetadata:
698 /// !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700 assert(Lex.getKind() == lltok::MetadataVar);
701 std::string Name = Lex.getStrVal();
702 Lex.Lex();
704 if (ParseToken(lltok::equal, "expected '=' here") ||
705 ParseToken(lltok::exclaim, "Expected '!' here") ||
706 ParseToken(lltok::lbrace, "Expected '{' here"))
707 return true;
709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710 if (Lex.getKind() != lltok::rbrace)
711 do {
712 MDNode *N = nullptr;
713 // Parse DIExpressions inline as a special case. They are still MDNodes,
714 // so they can still appear in named metadata. Remove this logic if they
715 // become plain Metadata.
716 if (Lex.getKind() == lltok::MetadataVar &&
717 Lex.getStrVal() == "DIExpression") {
718 if (ParseDIExpression(N, /*IsDistinct=*/false))
719 return true;
720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721 ParseMDNodeID(N)) {
722 return true;
724 NMD->addOperand(N);
725 } while (EatIfPresent(lltok::comma));
727 return ParseToken(lltok::rbrace, "expected end of metadata node");
730 /// ParseStandaloneMetadata:
731 /// !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733 assert(Lex.getKind() == lltok::exclaim);
734 Lex.Lex();
735 unsigned MetadataID = 0;
737 MDNode *Init;
738 if (ParseUInt32(MetadataID) ||
739 ParseToken(lltok::equal, "expected '=' here"))
740 return true;
742 // Detect common error, from old metadata syntax.
743 if (Lex.getKind() == lltok::Type)
744 return TokError("unexpected type in metadata definition");
746 bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747 if (Lex.getKind() == lltok::MetadataVar) {
748 if (ParseSpecializedMDNode(Init, IsDistinct))
749 return true;
750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751 ParseMDTuple(Init, IsDistinct))
752 return true;
754 // See if this was forward referenced, if so, handle it.
755 auto FI = ForwardRefMDNodes.find(MetadataID);
756 if (FI != ForwardRefMDNodes.end()) {
757 FI->second.first->replaceAllUsesWith(Init);
758 ForwardRefMDNodes.erase(FI);
760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761 } else {
762 if (NumberedMetadata.count(MetadataID))
763 return TokError("Metadata id is already used");
764 NumberedMetadata[MetadataID].reset(Init);
767 return false;
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772 // Each module summary entry consists of a tag for the entry
773 // type, followed by a colon, then the fields surrounded by nested sets of
774 // parentheses. The "tag:" looks like a Label. Once parsing support is
775 // in place we will look for the tokens corresponding to the expected tags.
776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777 Lex.getKind() != lltok::kw_typeid)
778 return TokError(
779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780 Lex.Lex();
781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782 ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783 return true;
784 // Now walk through the parenthesized entry, until the number of open
785 // parentheses goes back down to 0 (the first '(' was parsed above).
786 unsigned NumOpenParen = 1;
787 do {
788 switch (Lex.getKind()) {
789 case lltok::lparen:
790 NumOpenParen++;
791 break;
792 case lltok::rparen:
793 NumOpenParen--;
794 break;
795 case lltok::Eof:
796 return TokError("found end of file while parsing summary entry");
797 default:
798 // Skip everything in between parentheses.
799 break;
801 Lex.Lex();
802 } while (NumOpenParen > 0);
803 return false;
806 /// SummaryEntry
807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809 assert(Lex.getKind() == lltok::SummaryID);
810 unsigned SummaryID = Lex.getUIntVal();
812 // For summary entries, colons should be treated as distinct tokens,
813 // not an indication of the end of a label token.
814 Lex.setIgnoreColonInIdentifiers(true);
816 Lex.Lex();
817 if (ParseToken(lltok::equal, "expected '=' here"))
818 return true;
820 // If we don't have an index object, skip the summary entry.
821 if (!Index)
822 return SkipModuleSummaryEntry();
824 switch (Lex.getKind()) {
825 case lltok::kw_gv:
826 return ParseGVEntry(SummaryID);
827 case lltok::kw_module:
828 return ParseModuleEntry(SummaryID);
829 case lltok::kw_typeid:
830 return ParseTypeIdEntry(SummaryID);
831 break;
832 default:
833 return Error(Lex.getLoc(), "unexpected summary kind");
835 Lex.setIgnoreColonInIdentifiers(false);
836 return false;
839 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
840 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
841 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
844 // If there was an explicit dso_local, update GV. In the absence of an explicit
845 // dso_local we keep the default value.
846 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
847 if (DSOLocal)
848 GV.setDSOLocal(true);
851 /// parseIndirectSymbol:
852 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
853 /// OptionalVisibility OptionalDLLStorageClass
854 /// OptionalThreadLocal OptionalUnnamedAddr
855 // 'alias|ifunc' IndirectSymbol
857 /// IndirectSymbol
858 /// ::= TypeAndValue
860 /// Everything through OptionalUnnamedAddr has already been parsed.
862 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
863 unsigned L, unsigned Visibility,
864 unsigned DLLStorageClass, bool DSOLocal,
865 GlobalVariable::ThreadLocalMode TLM,
866 GlobalVariable::UnnamedAddr UnnamedAddr) {
867 bool IsAlias;
868 if (Lex.getKind() == lltok::kw_alias)
869 IsAlias = true;
870 else if (Lex.getKind() == lltok::kw_ifunc)
871 IsAlias = false;
872 else
873 llvm_unreachable("Not an alias or ifunc!");
874 Lex.Lex();
876 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
878 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
879 return Error(NameLoc, "invalid linkage type for alias");
881 if (!isValidVisibilityForLinkage(Visibility, L))
882 return Error(NameLoc,
883 "symbol with local linkage must have default visibility");
885 Type *Ty;
886 LocTy ExplicitTypeLoc = Lex.getLoc();
887 if (ParseType(Ty) ||
888 ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
889 return true;
891 Constant *Aliasee;
892 LocTy AliaseeLoc = Lex.getLoc();
893 if (Lex.getKind() != lltok::kw_bitcast &&
894 Lex.getKind() != lltok::kw_getelementptr &&
895 Lex.getKind() != lltok::kw_addrspacecast &&
896 Lex.getKind() != lltok::kw_inttoptr) {
897 if (ParseGlobalTypeAndValue(Aliasee))
898 return true;
899 } else {
900 // The bitcast dest type is not present, it is implied by the dest type.
901 ValID ID;
902 if (ParseValID(ID))
903 return true;
904 if (ID.Kind != ValID::t_Constant)
905 return Error(AliaseeLoc, "invalid aliasee");
906 Aliasee = ID.ConstantVal;
909 Type *AliaseeType = Aliasee->getType();
910 auto *PTy = dyn_cast<PointerType>(AliaseeType);
911 if (!PTy)
912 return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
913 unsigned AddrSpace = PTy->getAddressSpace();
915 if (IsAlias && Ty != PTy->getElementType())
916 return Error(
917 ExplicitTypeLoc,
918 "explicit pointee type doesn't match operand's pointee type");
920 if (!IsAlias && !PTy->getElementType()->isFunctionTy())
921 return Error(
922 ExplicitTypeLoc,
923 "explicit pointee type should be a function type");
925 GlobalValue *GVal = nullptr;
927 // See if the alias was forward referenced, if so, prepare to replace the
928 // forward reference.
929 if (!Name.empty()) {
930 GVal = M->getNamedValue(Name);
931 if (GVal) {
932 if (!ForwardRefVals.erase(Name))
933 return Error(NameLoc, "redefinition of global '@" + Name + "'");
935 } else {
936 auto I = ForwardRefValIDs.find(NumberedVals.size());
937 if (I != ForwardRefValIDs.end()) {
938 GVal = I->second.first;
939 ForwardRefValIDs.erase(I);
943 // Okay, create the alias but do not insert it into the module yet.
944 std::unique_ptr<GlobalIndirectSymbol> GA;
945 if (IsAlias)
946 GA.reset(GlobalAlias::create(Ty, AddrSpace,
947 (GlobalValue::LinkageTypes)Linkage, Name,
948 Aliasee, /*Parent*/ nullptr));
949 else
950 GA.reset(GlobalIFunc::create(Ty, AddrSpace,
951 (GlobalValue::LinkageTypes)Linkage, Name,
952 Aliasee, /*Parent*/ nullptr));
953 GA->setThreadLocalMode(TLM);
954 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
955 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
956 GA->setUnnamedAddr(UnnamedAddr);
957 maybeSetDSOLocal(DSOLocal, *GA);
959 if (Name.empty())
960 NumberedVals.push_back(GA.get());
962 if (GVal) {
963 // Verify that types agree.
964 if (GVal->getType() != GA->getType())
965 return Error(
966 ExplicitTypeLoc,
967 "forward reference and definition of alias have different types");
969 // If they agree, just RAUW the old value with the alias and remove the
970 // forward ref info.
971 GVal->replaceAllUsesWith(GA.get());
972 GVal->eraseFromParent();
975 // Insert into the module, we know its name won't collide now.
976 if (IsAlias)
977 M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
978 else
979 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
980 assert(GA->getName() == Name && "Should not be a name conflict!");
982 // The module owns this now
983 GA.release();
985 return false;
988 /// ParseGlobal
989 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
990 /// OptionalVisibility OptionalDLLStorageClass
991 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
992 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
993 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
994 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
995 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
996 /// Const OptionalAttrs
998 /// Everything up to and including OptionalUnnamedAddr has been parsed
999 /// already.
1001 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1002 unsigned Linkage, bool HasLinkage,
1003 unsigned Visibility, unsigned DLLStorageClass,
1004 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1005 GlobalVariable::UnnamedAddr UnnamedAddr) {
1006 if (!isValidVisibilityForLinkage(Visibility, Linkage))
1007 return Error(NameLoc,
1008 "symbol with local linkage must have default visibility");
1010 unsigned AddrSpace;
1011 bool IsConstant, IsExternallyInitialized;
1012 LocTy IsExternallyInitializedLoc;
1013 LocTy TyLoc;
1015 Type *Ty = nullptr;
1016 if (ParseOptionalAddrSpace(AddrSpace) ||
1017 ParseOptionalToken(lltok::kw_externally_initialized,
1018 IsExternallyInitialized,
1019 &IsExternallyInitializedLoc) ||
1020 ParseGlobalType(IsConstant) ||
1021 ParseType(Ty, TyLoc))
1022 return true;
1024 // If the linkage is specified and is external, then no initializer is
1025 // present.
1026 Constant *Init = nullptr;
1027 if (!HasLinkage ||
1028 !GlobalValue::isValidDeclarationLinkage(
1029 (GlobalValue::LinkageTypes)Linkage)) {
1030 if (ParseGlobalValue(Ty, Init))
1031 return true;
1034 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1035 return Error(TyLoc, "invalid type for global variable");
1037 GlobalValue *GVal = nullptr;
1039 // See if the global was forward referenced, if so, use the global.
1040 if (!Name.empty()) {
1041 GVal = M->getNamedValue(Name);
1042 if (GVal) {
1043 if (!ForwardRefVals.erase(Name))
1044 return Error(NameLoc, "redefinition of global '@" + Name + "'");
1046 } else {
1047 auto I = ForwardRefValIDs.find(NumberedVals.size());
1048 if (I != ForwardRefValIDs.end()) {
1049 GVal = I->second.first;
1050 ForwardRefValIDs.erase(I);
1054 GlobalVariable *GV;
1055 if (!GVal) {
1056 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1057 Name, nullptr, GlobalVariable::NotThreadLocal,
1058 AddrSpace);
1059 } else {
1060 if (GVal->getValueType() != Ty)
1061 return Error(TyLoc,
1062 "forward reference and definition of global have different types");
1064 GV = cast<GlobalVariable>(GVal);
1066 // Move the forward-reference to the correct spot in the module.
1067 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1070 if (Name.empty())
1071 NumberedVals.push_back(GV);
1073 // Set the parsed properties on the global.
1074 if (Init)
1075 GV->setInitializer(Init);
1076 GV->setConstant(IsConstant);
1077 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1078 maybeSetDSOLocal(DSOLocal, *GV);
1079 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1080 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1081 GV->setExternallyInitialized(IsExternallyInitialized);
1082 GV->setThreadLocalMode(TLM);
1083 GV->setUnnamedAddr(UnnamedAddr);
1085 // Parse attributes on the global.
1086 while (Lex.getKind() == lltok::comma) {
1087 Lex.Lex();
1089 if (Lex.getKind() == lltok::kw_section) {
1090 Lex.Lex();
1091 GV->setSection(Lex.getStrVal());
1092 if (ParseToken(lltok::StringConstant, "expected global section string"))
1093 return true;
1094 } else if (Lex.getKind() == lltok::kw_align) {
1095 unsigned Alignment;
1096 if (ParseOptionalAlignment(Alignment)) return true;
1097 GV->setAlignment(Alignment);
1098 } else if (Lex.getKind() == lltok::MetadataVar) {
1099 if (ParseGlobalObjectMetadataAttachment(*GV))
1100 return true;
1101 } else {
1102 Comdat *C;
1103 if (parseOptionalComdat(Name, C))
1104 return true;
1105 if (C)
1106 GV->setComdat(C);
1107 else
1108 return TokError("unknown global variable property!");
1112 AttrBuilder Attrs;
1113 LocTy BuiltinLoc;
1114 std::vector<unsigned> FwdRefAttrGrps;
1115 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1116 return true;
1117 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1118 GV->setAttributes(AttributeSet::get(Context, Attrs));
1119 ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1122 return false;
1125 /// ParseUnnamedAttrGrp
1126 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1127 bool LLParser::ParseUnnamedAttrGrp() {
1128 assert(Lex.getKind() == lltok::kw_attributes);
1129 LocTy AttrGrpLoc = Lex.getLoc();
1130 Lex.Lex();
1132 if (Lex.getKind() != lltok::AttrGrpID)
1133 return TokError("expected attribute group id");
1135 unsigned VarID = Lex.getUIntVal();
1136 std::vector<unsigned> unused;
1137 LocTy BuiltinLoc;
1138 Lex.Lex();
1140 if (ParseToken(lltok::equal, "expected '=' here") ||
1141 ParseToken(lltok::lbrace, "expected '{' here") ||
1142 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1143 BuiltinLoc) ||
1144 ParseToken(lltok::rbrace, "expected end of attribute group"))
1145 return true;
1147 if (!NumberedAttrBuilders[VarID].hasAttributes())
1148 return Error(AttrGrpLoc, "attribute group has no attributes");
1150 return false;
1153 /// ParseFnAttributeValuePairs
1154 /// ::= <attr> | <attr> '=' <value>
1155 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1156 std::vector<unsigned> &FwdRefAttrGrps,
1157 bool inAttrGrp, LocTy &BuiltinLoc) {
1158 bool HaveError = false;
1160 B.clear();
1162 while (true) {
1163 lltok::Kind Token = Lex.getKind();
1164 if (Token == lltok::kw_builtin)
1165 BuiltinLoc = Lex.getLoc();
1166 switch (Token) {
1167 default:
1168 if (!inAttrGrp) return HaveError;
1169 return Error(Lex.getLoc(), "unterminated attribute group");
1170 case lltok::rbrace:
1171 // Finished.
1172 return false;
1174 case lltok::AttrGrpID: {
1175 // Allow a function to reference an attribute group:
1177 // define void @foo() #1 { ... }
1178 if (inAttrGrp)
1179 HaveError |=
1180 Error(Lex.getLoc(),
1181 "cannot have an attribute group reference in an attribute group");
1183 unsigned AttrGrpNum = Lex.getUIntVal();
1184 if (inAttrGrp) break;
1186 // Save the reference to the attribute group. We'll fill it in later.
1187 FwdRefAttrGrps.push_back(AttrGrpNum);
1188 break;
1190 // Target-dependent attributes:
1191 case lltok::StringConstant: {
1192 if (ParseStringAttribute(B))
1193 return true;
1194 continue;
1197 // Target-independent attributes:
1198 case lltok::kw_align: {
1199 // As a hack, we allow function alignment to be initially parsed as an
1200 // attribute on a function declaration/definition or added to an attribute
1201 // group and later moved to the alignment field.
1202 unsigned Alignment;
1203 if (inAttrGrp) {
1204 Lex.Lex();
1205 if (ParseToken(lltok::equal, "expected '=' here") ||
1206 ParseUInt32(Alignment))
1207 return true;
1208 } else {
1209 if (ParseOptionalAlignment(Alignment))
1210 return true;
1212 B.addAlignmentAttr(Alignment);
1213 continue;
1215 case lltok::kw_alignstack: {
1216 unsigned Alignment;
1217 if (inAttrGrp) {
1218 Lex.Lex();
1219 if (ParseToken(lltok::equal, "expected '=' here") ||
1220 ParseUInt32(Alignment))
1221 return true;
1222 } else {
1223 if (ParseOptionalStackAlignment(Alignment))
1224 return true;
1226 B.addStackAlignmentAttr(Alignment);
1227 continue;
1229 case lltok::kw_allocsize: {
1230 unsigned ElemSizeArg;
1231 Optional<unsigned> NumElemsArg;
1232 // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1233 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1234 return true;
1235 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1236 continue;
1238 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1239 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1240 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1241 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1242 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1243 case lltok::kw_inaccessiblememonly:
1244 B.addAttribute(Attribute::InaccessibleMemOnly); break;
1245 case lltok::kw_inaccessiblemem_or_argmemonly:
1246 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1247 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1248 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1249 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1250 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1251 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1252 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1253 case lltok::kw_noimplicitfloat:
1254 B.addAttribute(Attribute::NoImplicitFloat); break;
1255 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1256 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1257 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1258 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1259 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1260 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1261 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1262 case lltok::kw_optforfuzzing:
1263 B.addAttribute(Attribute::OptForFuzzing); break;
1264 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1265 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1266 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1267 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1268 case lltok::kw_returns_twice:
1269 B.addAttribute(Attribute::ReturnsTwice); break;
1270 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1271 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1272 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1273 case lltok::kw_sspstrong:
1274 B.addAttribute(Attribute::StackProtectStrong); break;
1275 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1276 case lltok::kw_shadowcallstack:
1277 B.addAttribute(Attribute::ShadowCallStack); break;
1278 case lltok::kw_sanitize_address:
1279 B.addAttribute(Attribute::SanitizeAddress); break;
1280 case lltok::kw_sanitize_hwaddress:
1281 B.addAttribute(Attribute::SanitizeHWAddress); break;
1282 case lltok::kw_sanitize_thread:
1283 B.addAttribute(Attribute::SanitizeThread); break;
1284 case lltok::kw_sanitize_memory:
1285 B.addAttribute(Attribute::SanitizeMemory); break;
1286 case lltok::kw_speculative_load_hardening:
1287 B.addAttribute(Attribute::SpeculativeLoadHardening);
1288 break;
1289 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1290 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1291 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1293 // Error handling.
1294 case lltok::kw_inreg:
1295 case lltok::kw_signext:
1296 case lltok::kw_zeroext:
1297 HaveError |=
1298 Error(Lex.getLoc(),
1299 "invalid use of attribute on a function");
1300 break;
1301 case lltok::kw_byval:
1302 case lltok::kw_dereferenceable:
1303 case lltok::kw_dereferenceable_or_null:
1304 case lltok::kw_inalloca:
1305 case lltok::kw_nest:
1306 case lltok::kw_noalias:
1307 case lltok::kw_nocapture:
1308 case lltok::kw_nonnull:
1309 case lltok::kw_returned:
1310 case lltok::kw_sret:
1311 case lltok::kw_swifterror:
1312 case lltok::kw_swiftself:
1313 case lltok::kw_immarg:
1314 HaveError |=
1315 Error(Lex.getLoc(),
1316 "invalid use of parameter-only attribute on a function");
1317 break;
1320 Lex.Lex();
1324 //===----------------------------------------------------------------------===//
1325 // GlobalValue Reference/Resolution Routines.
1326 //===----------------------------------------------------------------------===//
1328 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1329 const std::string &Name) {
1330 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1331 return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1332 PTy->getAddressSpace(), Name, M);
1333 else
1334 return new GlobalVariable(*M, PTy->getElementType(), false,
1335 GlobalValue::ExternalWeakLinkage, nullptr, Name,
1336 nullptr, GlobalVariable::NotThreadLocal,
1337 PTy->getAddressSpace());
1340 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1341 Value *Val, bool IsCall) {
1342 if (Val->getType() == Ty)
1343 return Val;
1344 // For calls we also accept variables in the program address space.
1345 Type *SuggestedTy = Ty;
1346 if (IsCall && isa<PointerType>(Ty)) {
1347 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1348 M->getDataLayout().getProgramAddressSpace());
1349 SuggestedTy = TyInProgAS;
1350 if (Val->getType() == TyInProgAS)
1351 return Val;
1353 if (Ty->isLabelTy())
1354 Error(Loc, "'" + Name + "' is not a basic block");
1355 else
1356 Error(Loc, "'" + Name + "' defined with type '" +
1357 getTypeString(Val->getType()) + "' but expected '" +
1358 getTypeString(SuggestedTy) + "'");
1359 return nullptr;
1362 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1363 /// forward reference record if needed. This can return null if the value
1364 /// exists but does not have the right type.
1365 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1366 LocTy Loc, bool IsCall) {
1367 PointerType *PTy = dyn_cast<PointerType>(Ty);
1368 if (!PTy) {
1369 Error(Loc, "global variable reference must have pointer type");
1370 return nullptr;
1373 // Look this name up in the normal function symbol table.
1374 GlobalValue *Val =
1375 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1377 // If this is a forward reference for the value, see if we already created a
1378 // forward ref record.
1379 if (!Val) {
1380 auto I = ForwardRefVals.find(Name);
1381 if (I != ForwardRefVals.end())
1382 Val = I->second.first;
1385 // If we have the value in the symbol table or fwd-ref table, return it.
1386 if (Val)
1387 return cast_or_null<GlobalValue>(
1388 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1390 // Otherwise, create a new forward reference for this value and remember it.
1391 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1392 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1393 return FwdVal;
1396 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1397 bool IsCall) {
1398 PointerType *PTy = dyn_cast<PointerType>(Ty);
1399 if (!PTy) {
1400 Error(Loc, "global variable reference must have pointer type");
1401 return nullptr;
1404 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1406 // If this is a forward reference for the value, see if we already created a
1407 // forward ref record.
1408 if (!Val) {
1409 auto I = ForwardRefValIDs.find(ID);
1410 if (I != ForwardRefValIDs.end())
1411 Val = I->second.first;
1414 // If we have the value in the symbol table or fwd-ref table, return it.
1415 if (Val)
1416 return cast_or_null<GlobalValue>(
1417 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1419 // Otherwise, create a new forward reference for this value and remember it.
1420 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1421 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1422 return FwdVal;
1425 //===----------------------------------------------------------------------===//
1426 // Comdat Reference/Resolution Routines.
1427 //===----------------------------------------------------------------------===//
1429 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1430 // Look this name up in the comdat symbol table.
1431 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1432 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1433 if (I != ComdatSymTab.end())
1434 return &I->second;
1436 // Otherwise, create a new forward reference for this value and remember it.
1437 Comdat *C = M->getOrInsertComdat(Name);
1438 ForwardRefComdats[Name] = Loc;
1439 return C;
1442 //===----------------------------------------------------------------------===//
1443 // Helper Routines.
1444 //===----------------------------------------------------------------------===//
1446 /// ParseToken - If the current token has the specified kind, eat it and return
1447 /// success. Otherwise, emit the specified error and return failure.
1448 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1449 if (Lex.getKind() != T)
1450 return TokError(ErrMsg);
1451 Lex.Lex();
1452 return false;
1455 /// ParseStringConstant
1456 /// ::= StringConstant
1457 bool LLParser::ParseStringConstant(std::string &Result) {
1458 if (Lex.getKind() != lltok::StringConstant)
1459 return TokError("expected string constant");
1460 Result = Lex.getStrVal();
1461 Lex.Lex();
1462 return false;
1465 /// ParseUInt32
1466 /// ::= uint32
1467 bool LLParser::ParseUInt32(uint32_t &Val) {
1468 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1469 return TokError("expected integer");
1470 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1471 if (Val64 != unsigned(Val64))
1472 return TokError("expected 32-bit integer (too large)");
1473 Val = Val64;
1474 Lex.Lex();
1475 return false;
1478 /// ParseUInt64
1479 /// ::= uint64
1480 bool LLParser::ParseUInt64(uint64_t &Val) {
1481 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1482 return TokError("expected integer");
1483 Val = Lex.getAPSIntVal().getLimitedValue();
1484 Lex.Lex();
1485 return false;
1488 /// ParseTLSModel
1489 /// := 'localdynamic'
1490 /// := 'initialexec'
1491 /// := 'localexec'
1492 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1493 switch (Lex.getKind()) {
1494 default:
1495 return TokError("expected localdynamic, initialexec or localexec");
1496 case lltok::kw_localdynamic:
1497 TLM = GlobalVariable::LocalDynamicTLSModel;
1498 break;
1499 case lltok::kw_initialexec:
1500 TLM = GlobalVariable::InitialExecTLSModel;
1501 break;
1502 case lltok::kw_localexec:
1503 TLM = GlobalVariable::LocalExecTLSModel;
1504 break;
1507 Lex.Lex();
1508 return false;
1511 /// ParseOptionalThreadLocal
1512 /// := /*empty*/
1513 /// := 'thread_local'
1514 /// := 'thread_local' '(' tlsmodel ')'
1515 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1516 TLM = GlobalVariable::NotThreadLocal;
1517 if (!EatIfPresent(lltok::kw_thread_local))
1518 return false;
1520 TLM = GlobalVariable::GeneralDynamicTLSModel;
1521 if (Lex.getKind() == lltok::lparen) {
1522 Lex.Lex();
1523 return ParseTLSModel(TLM) ||
1524 ParseToken(lltok::rparen, "expected ')' after thread local model");
1526 return false;
1529 /// ParseOptionalAddrSpace
1530 /// := /*empty*/
1531 /// := 'addrspace' '(' uint32 ')'
1532 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1533 AddrSpace = DefaultAS;
1534 if (!EatIfPresent(lltok::kw_addrspace))
1535 return false;
1536 return ParseToken(lltok::lparen, "expected '(' in address space") ||
1537 ParseUInt32(AddrSpace) ||
1538 ParseToken(lltok::rparen, "expected ')' in address space");
1541 /// ParseStringAttribute
1542 /// := StringConstant
1543 /// := StringConstant '=' StringConstant
1544 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1545 std::string Attr = Lex.getStrVal();
1546 Lex.Lex();
1547 std::string Val;
1548 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1549 return true;
1550 B.addAttribute(Attr, Val);
1551 return false;
1554 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1555 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1556 bool HaveError = false;
1558 B.clear();
1560 while (true) {
1561 lltok::Kind Token = Lex.getKind();
1562 switch (Token) {
1563 default: // End of attributes.
1564 return HaveError;
1565 case lltok::StringConstant: {
1566 if (ParseStringAttribute(B))
1567 return true;
1568 continue;
1570 case lltok::kw_align: {
1571 unsigned Alignment;
1572 if (ParseOptionalAlignment(Alignment))
1573 return true;
1574 B.addAlignmentAttr(Alignment);
1575 continue;
1577 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break;
1578 case lltok::kw_dereferenceable: {
1579 uint64_t Bytes;
1580 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1581 return true;
1582 B.addDereferenceableAttr(Bytes);
1583 continue;
1585 case lltok::kw_dereferenceable_or_null: {
1586 uint64_t Bytes;
1587 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1588 return true;
1589 B.addDereferenceableOrNullAttr(Bytes);
1590 continue;
1592 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
1593 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1594 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1595 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1596 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1597 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1598 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1599 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1600 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1601 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1602 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1603 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break;
1604 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break;
1605 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1606 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1607 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break;
1609 case lltok::kw_alignstack:
1610 case lltok::kw_alwaysinline:
1611 case lltok::kw_argmemonly:
1612 case lltok::kw_builtin:
1613 case lltok::kw_inlinehint:
1614 case lltok::kw_jumptable:
1615 case lltok::kw_minsize:
1616 case lltok::kw_naked:
1617 case lltok::kw_nobuiltin:
1618 case lltok::kw_noduplicate:
1619 case lltok::kw_noimplicitfloat:
1620 case lltok::kw_noinline:
1621 case lltok::kw_nonlazybind:
1622 case lltok::kw_noredzone:
1623 case lltok::kw_noreturn:
1624 case lltok::kw_nocf_check:
1625 case lltok::kw_nounwind:
1626 case lltok::kw_optforfuzzing:
1627 case lltok::kw_optnone:
1628 case lltok::kw_optsize:
1629 case lltok::kw_returns_twice:
1630 case lltok::kw_sanitize_address:
1631 case lltok::kw_sanitize_hwaddress:
1632 case lltok::kw_sanitize_memory:
1633 case lltok::kw_sanitize_thread:
1634 case lltok::kw_speculative_load_hardening:
1635 case lltok::kw_ssp:
1636 case lltok::kw_sspreq:
1637 case lltok::kw_sspstrong:
1638 case lltok::kw_safestack:
1639 case lltok::kw_shadowcallstack:
1640 case lltok::kw_strictfp:
1641 case lltok::kw_uwtable:
1642 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1643 break;
1646 Lex.Lex();
1650 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1651 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1652 bool HaveError = false;
1654 B.clear();
1656 while (true) {
1657 lltok::Kind Token = Lex.getKind();
1658 switch (Token) {
1659 default: // End of attributes.
1660 return HaveError;
1661 case lltok::StringConstant: {
1662 if (ParseStringAttribute(B))
1663 return true;
1664 continue;
1666 case lltok::kw_dereferenceable: {
1667 uint64_t Bytes;
1668 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1669 return true;
1670 B.addDereferenceableAttr(Bytes);
1671 continue;
1673 case lltok::kw_dereferenceable_or_null: {
1674 uint64_t Bytes;
1675 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1676 return true;
1677 B.addDereferenceableOrNullAttr(Bytes);
1678 continue;
1680 case lltok::kw_align: {
1681 unsigned Alignment;
1682 if (ParseOptionalAlignment(Alignment))
1683 return true;
1684 B.addAlignmentAttr(Alignment);
1685 continue;
1687 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1688 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1689 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1690 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1691 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1693 // Error handling.
1694 case lltok::kw_byval:
1695 case lltok::kw_inalloca:
1696 case lltok::kw_nest:
1697 case lltok::kw_nocapture:
1698 case lltok::kw_returned:
1699 case lltok::kw_sret:
1700 case lltok::kw_swifterror:
1701 case lltok::kw_swiftself:
1702 case lltok::kw_immarg:
1703 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1704 break;
1706 case lltok::kw_alignstack:
1707 case lltok::kw_alwaysinline:
1708 case lltok::kw_argmemonly:
1709 case lltok::kw_builtin:
1710 case lltok::kw_cold:
1711 case lltok::kw_inlinehint:
1712 case lltok::kw_jumptable:
1713 case lltok::kw_minsize:
1714 case lltok::kw_naked:
1715 case lltok::kw_nobuiltin:
1716 case lltok::kw_noduplicate:
1717 case lltok::kw_noimplicitfloat:
1718 case lltok::kw_noinline:
1719 case lltok::kw_nonlazybind:
1720 case lltok::kw_noredzone:
1721 case lltok::kw_noreturn:
1722 case lltok::kw_nocf_check:
1723 case lltok::kw_nounwind:
1724 case lltok::kw_optforfuzzing:
1725 case lltok::kw_optnone:
1726 case lltok::kw_optsize:
1727 case lltok::kw_returns_twice:
1728 case lltok::kw_sanitize_address:
1729 case lltok::kw_sanitize_hwaddress:
1730 case lltok::kw_sanitize_memory:
1731 case lltok::kw_sanitize_thread:
1732 case lltok::kw_speculative_load_hardening:
1733 case lltok::kw_ssp:
1734 case lltok::kw_sspreq:
1735 case lltok::kw_sspstrong:
1736 case lltok::kw_safestack:
1737 case lltok::kw_shadowcallstack:
1738 case lltok::kw_strictfp:
1739 case lltok::kw_uwtable:
1740 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1741 break;
1743 case lltok::kw_readnone:
1744 case lltok::kw_readonly:
1745 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1748 Lex.Lex();
1752 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1753 HasLinkage = true;
1754 switch (Kind) {
1755 default:
1756 HasLinkage = false;
1757 return GlobalValue::ExternalLinkage;
1758 case lltok::kw_private:
1759 return GlobalValue::PrivateLinkage;
1760 case lltok::kw_internal:
1761 return GlobalValue::InternalLinkage;
1762 case lltok::kw_weak:
1763 return GlobalValue::WeakAnyLinkage;
1764 case lltok::kw_weak_odr:
1765 return GlobalValue::WeakODRLinkage;
1766 case lltok::kw_linkonce:
1767 return GlobalValue::LinkOnceAnyLinkage;
1768 case lltok::kw_linkonce_odr:
1769 return GlobalValue::LinkOnceODRLinkage;
1770 case lltok::kw_available_externally:
1771 return GlobalValue::AvailableExternallyLinkage;
1772 case lltok::kw_appending:
1773 return GlobalValue::AppendingLinkage;
1774 case lltok::kw_common:
1775 return GlobalValue::CommonLinkage;
1776 case lltok::kw_extern_weak:
1777 return GlobalValue::ExternalWeakLinkage;
1778 case lltok::kw_external:
1779 return GlobalValue::ExternalLinkage;
1783 /// ParseOptionalLinkage
1784 /// ::= /*empty*/
1785 /// ::= 'private'
1786 /// ::= 'internal'
1787 /// ::= 'weak'
1788 /// ::= 'weak_odr'
1789 /// ::= 'linkonce'
1790 /// ::= 'linkonce_odr'
1791 /// ::= 'available_externally'
1792 /// ::= 'appending'
1793 /// ::= 'common'
1794 /// ::= 'extern_weak'
1795 /// ::= 'external'
1796 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1797 unsigned &Visibility,
1798 unsigned &DLLStorageClass,
1799 bool &DSOLocal) {
1800 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1801 if (HasLinkage)
1802 Lex.Lex();
1803 ParseOptionalDSOLocal(DSOLocal);
1804 ParseOptionalVisibility(Visibility);
1805 ParseOptionalDLLStorageClass(DLLStorageClass);
1807 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1808 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1811 return false;
1814 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1815 switch (Lex.getKind()) {
1816 default:
1817 DSOLocal = false;
1818 break;
1819 case lltok::kw_dso_local:
1820 DSOLocal = true;
1821 Lex.Lex();
1822 break;
1823 case lltok::kw_dso_preemptable:
1824 DSOLocal = false;
1825 Lex.Lex();
1826 break;
1830 /// ParseOptionalVisibility
1831 /// ::= /*empty*/
1832 /// ::= 'default'
1833 /// ::= 'hidden'
1834 /// ::= 'protected'
1836 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1837 switch (Lex.getKind()) {
1838 default:
1839 Res = GlobalValue::DefaultVisibility;
1840 return;
1841 case lltok::kw_default:
1842 Res = GlobalValue::DefaultVisibility;
1843 break;
1844 case lltok::kw_hidden:
1845 Res = GlobalValue::HiddenVisibility;
1846 break;
1847 case lltok::kw_protected:
1848 Res = GlobalValue::ProtectedVisibility;
1849 break;
1851 Lex.Lex();
1854 /// ParseOptionalDLLStorageClass
1855 /// ::= /*empty*/
1856 /// ::= 'dllimport'
1857 /// ::= 'dllexport'
1859 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1860 switch (Lex.getKind()) {
1861 default:
1862 Res = GlobalValue::DefaultStorageClass;
1863 return;
1864 case lltok::kw_dllimport:
1865 Res = GlobalValue::DLLImportStorageClass;
1866 break;
1867 case lltok::kw_dllexport:
1868 Res = GlobalValue::DLLExportStorageClass;
1869 break;
1871 Lex.Lex();
1874 /// ParseOptionalCallingConv
1875 /// ::= /*empty*/
1876 /// ::= 'ccc'
1877 /// ::= 'fastcc'
1878 /// ::= 'intel_ocl_bicc'
1879 /// ::= 'coldcc'
1880 /// ::= 'x86_stdcallcc'
1881 /// ::= 'x86_fastcallcc'
1882 /// ::= 'x86_thiscallcc'
1883 /// ::= 'x86_vectorcallcc'
1884 /// ::= 'arm_apcscc'
1885 /// ::= 'arm_aapcscc'
1886 /// ::= 'arm_aapcs_vfpcc'
1887 /// ::= 'aarch64_vector_pcs'
1888 /// ::= 'msp430_intrcc'
1889 /// ::= 'avr_intrcc'
1890 /// ::= 'avr_signalcc'
1891 /// ::= 'ptx_kernel'
1892 /// ::= 'ptx_device'
1893 /// ::= 'spir_func'
1894 /// ::= 'spir_kernel'
1895 /// ::= 'x86_64_sysvcc'
1896 /// ::= 'win64cc'
1897 /// ::= 'webkit_jscc'
1898 /// ::= 'anyregcc'
1899 /// ::= 'preserve_mostcc'
1900 /// ::= 'preserve_allcc'
1901 /// ::= 'ghccc'
1902 /// ::= 'swiftcc'
1903 /// ::= 'x86_intrcc'
1904 /// ::= 'hhvmcc'
1905 /// ::= 'hhvm_ccc'
1906 /// ::= 'cxx_fast_tlscc'
1907 /// ::= 'amdgpu_vs'
1908 /// ::= 'amdgpu_ls'
1909 /// ::= 'amdgpu_hs'
1910 /// ::= 'amdgpu_es'
1911 /// ::= 'amdgpu_gs'
1912 /// ::= 'amdgpu_ps'
1913 /// ::= 'amdgpu_cs'
1914 /// ::= 'amdgpu_kernel'
1915 /// ::= 'cc' UINT
1917 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1918 switch (Lex.getKind()) {
1919 default: CC = CallingConv::C; return false;
1920 case lltok::kw_ccc: CC = CallingConv::C; break;
1921 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1922 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1923 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1924 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1925 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break;
1926 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1927 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1928 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1929 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1930 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1931 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1932 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1933 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
1934 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break;
1935 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1936 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1937 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
1938 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1939 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1940 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
1941 case lltok::kw_win64cc: CC = CallingConv::Win64; break;
1942 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break;
1943 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1944 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1945 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1946 case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1947 case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
1948 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
1949 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
1950 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
1951 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1952 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
1953 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
1954 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
1955 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
1956 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
1957 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
1958 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
1959 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break;
1960 case lltok::kw_cc: {
1961 Lex.Lex();
1962 return ParseUInt32(CC);
1966 Lex.Lex();
1967 return false;
1970 /// ParseMetadataAttachment
1971 /// ::= !dbg !42
1972 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1973 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1975 std::string Name = Lex.getStrVal();
1976 Kind = M->getMDKindID(Name);
1977 Lex.Lex();
1979 return ParseMDNode(MD);
1982 /// ParseInstructionMetadata
1983 /// ::= !dbg !42 (',' !dbg !57)*
1984 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1985 do {
1986 if (Lex.getKind() != lltok::MetadataVar)
1987 return TokError("expected metadata after comma");
1989 unsigned MDK;
1990 MDNode *N;
1991 if (ParseMetadataAttachment(MDK, N))
1992 return true;
1994 Inst.setMetadata(MDK, N);
1995 if (MDK == LLVMContext::MD_tbaa)
1996 InstsWithTBAATag.push_back(&Inst);
1998 // If this is the end of the list, we're done.
1999 } while (EatIfPresent(lltok::comma));
2000 return false;
2003 /// ParseGlobalObjectMetadataAttachment
2004 /// ::= !dbg !57
2005 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2006 unsigned MDK;
2007 MDNode *N;
2008 if (ParseMetadataAttachment(MDK, N))
2009 return true;
2011 GO.addMetadata(MDK, *N);
2012 return false;
2015 /// ParseOptionalFunctionMetadata
2016 /// ::= (!dbg !57)*
2017 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2018 while (Lex.getKind() == lltok::MetadataVar)
2019 if (ParseGlobalObjectMetadataAttachment(F))
2020 return true;
2021 return false;
2024 /// ParseOptionalAlignment
2025 /// ::= /* empty */
2026 /// ::= 'align' 4
2027 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2028 Alignment = 0;
2029 if (!EatIfPresent(lltok::kw_align))
2030 return false;
2031 LocTy AlignLoc = Lex.getLoc();
2032 if (ParseUInt32(Alignment)) return true;
2033 if (!isPowerOf2_32(Alignment))
2034 return Error(AlignLoc, "alignment is not a power of two");
2035 if (Alignment > Value::MaximumAlignment)
2036 return Error(AlignLoc, "huge alignments are not supported yet");
2037 return false;
2040 /// ParseOptionalDerefAttrBytes
2041 /// ::= /* empty */
2042 /// ::= AttrKind '(' 4 ')'
2044 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2045 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2046 uint64_t &Bytes) {
2047 assert((AttrKind == lltok::kw_dereferenceable ||
2048 AttrKind == lltok::kw_dereferenceable_or_null) &&
2049 "contract!");
2051 Bytes = 0;
2052 if (!EatIfPresent(AttrKind))
2053 return false;
2054 LocTy ParenLoc = Lex.getLoc();
2055 if (!EatIfPresent(lltok::lparen))
2056 return Error(ParenLoc, "expected '('");
2057 LocTy DerefLoc = Lex.getLoc();
2058 if (ParseUInt64(Bytes)) return true;
2059 ParenLoc = Lex.getLoc();
2060 if (!EatIfPresent(lltok::rparen))
2061 return Error(ParenLoc, "expected ')'");
2062 if (!Bytes)
2063 return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2064 return false;
2067 /// ParseOptionalCommaAlign
2068 /// ::=
2069 /// ::= ',' align 4
2071 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2072 /// end.
2073 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2074 bool &AteExtraComma) {
2075 AteExtraComma = false;
2076 while (EatIfPresent(lltok::comma)) {
2077 // Metadata at the end is an early exit.
2078 if (Lex.getKind() == lltok::MetadataVar) {
2079 AteExtraComma = true;
2080 return false;
2083 if (Lex.getKind() != lltok::kw_align)
2084 return Error(Lex.getLoc(), "expected metadata or 'align'");
2086 if (ParseOptionalAlignment(Alignment)) return true;
2089 return false;
2092 /// ParseOptionalCommaAddrSpace
2093 /// ::=
2094 /// ::= ',' addrspace(1)
2096 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2097 /// end.
2098 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2099 LocTy &Loc,
2100 bool &AteExtraComma) {
2101 AteExtraComma = false;
2102 while (EatIfPresent(lltok::comma)) {
2103 // Metadata at the end is an early exit.
2104 if (Lex.getKind() == lltok::MetadataVar) {
2105 AteExtraComma = true;
2106 return false;
2109 Loc = Lex.getLoc();
2110 if (Lex.getKind() != lltok::kw_addrspace)
2111 return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2113 if (ParseOptionalAddrSpace(AddrSpace))
2114 return true;
2117 return false;
2120 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2121 Optional<unsigned> &HowManyArg) {
2122 Lex.Lex();
2124 auto StartParen = Lex.getLoc();
2125 if (!EatIfPresent(lltok::lparen))
2126 return Error(StartParen, "expected '('");
2128 if (ParseUInt32(BaseSizeArg))
2129 return true;
2131 if (EatIfPresent(lltok::comma)) {
2132 auto HowManyAt = Lex.getLoc();
2133 unsigned HowMany;
2134 if (ParseUInt32(HowMany))
2135 return true;
2136 if (HowMany == BaseSizeArg)
2137 return Error(HowManyAt,
2138 "'allocsize' indices can't refer to the same parameter");
2139 HowManyArg = HowMany;
2140 } else
2141 HowManyArg = None;
2143 auto EndParen = Lex.getLoc();
2144 if (!EatIfPresent(lltok::rparen))
2145 return Error(EndParen, "expected ')'");
2146 return false;
2149 /// ParseScopeAndOrdering
2150 /// if isAtomic: ::= SyncScope? AtomicOrdering
2151 /// else: ::=
2153 /// This sets Scope and Ordering to the parsed values.
2154 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2155 AtomicOrdering &Ordering) {
2156 if (!isAtomic)
2157 return false;
2159 return ParseScope(SSID) || ParseOrdering(Ordering);
2162 /// ParseScope
2163 /// ::= syncscope("singlethread" | "<target scope>")?
2165 /// This sets synchronization scope ID to the ID of the parsed value.
2166 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2167 SSID = SyncScope::System;
2168 if (EatIfPresent(lltok::kw_syncscope)) {
2169 auto StartParenAt = Lex.getLoc();
2170 if (!EatIfPresent(lltok::lparen))
2171 return Error(StartParenAt, "Expected '(' in syncscope");
2173 std::string SSN;
2174 auto SSNAt = Lex.getLoc();
2175 if (ParseStringConstant(SSN))
2176 return Error(SSNAt, "Expected synchronization scope name");
2178 auto EndParenAt = Lex.getLoc();
2179 if (!EatIfPresent(lltok::rparen))
2180 return Error(EndParenAt, "Expected ')' in syncscope");
2182 SSID = Context.getOrInsertSyncScopeID(SSN);
2185 return false;
2188 /// ParseOrdering
2189 /// ::= AtomicOrdering
2191 /// This sets Ordering to the parsed value.
2192 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2193 switch (Lex.getKind()) {
2194 default: return TokError("Expected ordering on atomic instruction");
2195 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2196 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2197 // Not specified yet:
2198 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2199 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2200 case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2201 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2202 case lltok::kw_seq_cst:
2203 Ordering = AtomicOrdering::SequentiallyConsistent;
2204 break;
2206 Lex.Lex();
2207 return false;
2210 /// ParseOptionalStackAlignment
2211 /// ::= /* empty */
2212 /// ::= 'alignstack' '(' 4 ')'
2213 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2214 Alignment = 0;
2215 if (!EatIfPresent(lltok::kw_alignstack))
2216 return false;
2217 LocTy ParenLoc = Lex.getLoc();
2218 if (!EatIfPresent(lltok::lparen))
2219 return Error(ParenLoc, "expected '('");
2220 LocTy AlignLoc = Lex.getLoc();
2221 if (ParseUInt32(Alignment)) return true;
2222 ParenLoc = Lex.getLoc();
2223 if (!EatIfPresent(lltok::rparen))
2224 return Error(ParenLoc, "expected ')'");
2225 if (!isPowerOf2_32(Alignment))
2226 return Error(AlignLoc, "stack alignment is not a power of two");
2227 return false;
2230 /// ParseIndexList - This parses the index list for an insert/extractvalue
2231 /// instruction. This sets AteExtraComma in the case where we eat an extra
2232 /// comma at the end of the line and find that it is followed by metadata.
2233 /// Clients that don't allow metadata can call the version of this function that
2234 /// only takes one argument.
2236 /// ParseIndexList
2237 /// ::= (',' uint32)+
2239 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2240 bool &AteExtraComma) {
2241 AteExtraComma = false;
2243 if (Lex.getKind() != lltok::comma)
2244 return TokError("expected ',' as start of index list");
2246 while (EatIfPresent(lltok::comma)) {
2247 if (Lex.getKind() == lltok::MetadataVar) {
2248 if (Indices.empty()) return TokError("expected index");
2249 AteExtraComma = true;
2250 return false;
2252 unsigned Idx = 0;
2253 if (ParseUInt32(Idx)) return true;
2254 Indices.push_back(Idx);
2257 return false;
2260 //===----------------------------------------------------------------------===//
2261 // Type Parsing.
2262 //===----------------------------------------------------------------------===//
2264 /// ParseType - Parse a type.
2265 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2266 SMLoc TypeLoc = Lex.getLoc();
2267 switch (Lex.getKind()) {
2268 default:
2269 return TokError(Msg);
2270 case lltok::Type:
2271 // Type ::= 'float' | 'void' (etc)
2272 Result = Lex.getTyVal();
2273 Lex.Lex();
2274 break;
2275 case lltok::lbrace:
2276 // Type ::= StructType
2277 if (ParseAnonStructType(Result, false))
2278 return true;
2279 break;
2280 case lltok::lsquare:
2281 // Type ::= '[' ... ']'
2282 Lex.Lex(); // eat the lsquare.
2283 if (ParseArrayVectorType(Result, false))
2284 return true;
2285 break;
2286 case lltok::less: // Either vector or packed struct.
2287 // Type ::= '<' ... '>'
2288 Lex.Lex();
2289 if (Lex.getKind() == lltok::lbrace) {
2290 if (ParseAnonStructType(Result, true) ||
2291 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2292 return true;
2293 } else if (ParseArrayVectorType(Result, true))
2294 return true;
2295 break;
2296 case lltok::LocalVar: {
2297 // Type ::= %foo
2298 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2300 // If the type hasn't been defined yet, create a forward definition and
2301 // remember where that forward def'n was seen (in case it never is defined).
2302 if (!Entry.first) {
2303 Entry.first = StructType::create(Context, Lex.getStrVal());
2304 Entry.second = Lex.getLoc();
2306 Result = Entry.first;
2307 Lex.Lex();
2308 break;
2311 case lltok::LocalVarID: {
2312 // Type ::= %4
2313 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2315 // If the type hasn't been defined yet, create a forward definition and
2316 // remember where that forward def'n was seen (in case it never is defined).
2317 if (!Entry.first) {
2318 Entry.first = StructType::create(Context);
2319 Entry.second = Lex.getLoc();
2321 Result = Entry.first;
2322 Lex.Lex();
2323 break;
2327 // Parse the type suffixes.
2328 while (true) {
2329 switch (Lex.getKind()) {
2330 // End of type.
2331 default:
2332 if (!AllowVoid && Result->isVoidTy())
2333 return Error(TypeLoc, "void type only allowed for function results");
2334 return false;
2336 // Type ::= Type '*'
2337 case lltok::star:
2338 if (Result->isLabelTy())
2339 return TokError("basic block pointers are invalid");
2340 if (Result->isVoidTy())
2341 return TokError("pointers to void are invalid - use i8* instead");
2342 if (!PointerType::isValidElementType(Result))
2343 return TokError("pointer to this type is invalid");
2344 Result = PointerType::getUnqual(Result);
2345 Lex.Lex();
2346 break;
2348 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2349 case lltok::kw_addrspace: {
2350 if (Result->isLabelTy())
2351 return TokError("basic block pointers are invalid");
2352 if (Result->isVoidTy())
2353 return TokError("pointers to void are invalid; use i8* instead");
2354 if (!PointerType::isValidElementType(Result))
2355 return TokError("pointer to this type is invalid");
2356 unsigned AddrSpace;
2357 if (ParseOptionalAddrSpace(AddrSpace) ||
2358 ParseToken(lltok::star, "expected '*' in address space"))
2359 return true;
2361 Result = PointerType::get(Result, AddrSpace);
2362 break;
2365 /// Types '(' ArgTypeListI ')' OptFuncAttrs
2366 case lltok::lparen:
2367 if (ParseFunctionType(Result))
2368 return true;
2369 break;
2374 /// ParseParameterList
2375 /// ::= '(' ')'
2376 /// ::= '(' Arg (',' Arg)* ')'
2377 /// Arg
2378 /// ::= Type OptionalAttributes Value OptionalAttributes
2379 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2380 PerFunctionState &PFS, bool IsMustTailCall,
2381 bool InVarArgsFunc) {
2382 if (ParseToken(lltok::lparen, "expected '(' in call"))
2383 return true;
2385 while (Lex.getKind() != lltok::rparen) {
2386 // If this isn't the first argument, we need a comma.
2387 if (!ArgList.empty() &&
2388 ParseToken(lltok::comma, "expected ',' in argument list"))
2389 return true;
2391 // Parse an ellipsis if this is a musttail call in a variadic function.
2392 if (Lex.getKind() == lltok::dotdotdot) {
2393 const char *Msg = "unexpected ellipsis in argument list for ";
2394 if (!IsMustTailCall)
2395 return TokError(Twine(Msg) + "non-musttail call");
2396 if (!InVarArgsFunc)
2397 return TokError(Twine(Msg) + "musttail call in non-varargs function");
2398 Lex.Lex(); // Lex the '...', it is purely for readability.
2399 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2402 // Parse the argument.
2403 LocTy ArgLoc;
2404 Type *ArgTy = nullptr;
2405 AttrBuilder ArgAttrs;
2406 Value *V;
2407 if (ParseType(ArgTy, ArgLoc))
2408 return true;
2410 if (ArgTy->isMetadataTy()) {
2411 if (ParseMetadataAsValue(V, PFS))
2412 return true;
2413 } else {
2414 // Otherwise, handle normal operands.
2415 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2416 return true;
2418 ArgList.push_back(ParamInfo(
2419 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2422 if (IsMustTailCall && InVarArgsFunc)
2423 return TokError("expected '...' at end of argument list for musttail call "
2424 "in varargs function");
2426 Lex.Lex(); // Lex the ')'.
2427 return false;
2430 /// ParseOptionalOperandBundles
2431 /// ::= /*empty*/
2432 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
2434 /// OperandBundle
2435 /// ::= bundle-tag '(' ')'
2436 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2438 /// bundle-tag ::= String Constant
2439 bool LLParser::ParseOptionalOperandBundles(
2440 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2441 LocTy BeginLoc = Lex.getLoc();
2442 if (!EatIfPresent(lltok::lsquare))
2443 return false;
2445 while (Lex.getKind() != lltok::rsquare) {
2446 // If this isn't the first operand bundle, we need a comma.
2447 if (!BundleList.empty() &&
2448 ParseToken(lltok::comma, "expected ',' in input list"))
2449 return true;
2451 std::string Tag;
2452 if (ParseStringConstant(Tag))
2453 return true;
2455 if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2456 return true;
2458 std::vector<Value *> Inputs;
2459 while (Lex.getKind() != lltok::rparen) {
2460 // If this isn't the first input, we need a comma.
2461 if (!Inputs.empty() &&
2462 ParseToken(lltok::comma, "expected ',' in input list"))
2463 return true;
2465 Type *Ty = nullptr;
2466 Value *Input = nullptr;
2467 if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2468 return true;
2469 Inputs.push_back(Input);
2472 BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2474 Lex.Lex(); // Lex the ')'.
2477 if (BundleList.empty())
2478 return Error(BeginLoc, "operand bundle set must not be empty");
2480 Lex.Lex(); // Lex the ']'.
2481 return false;
2484 /// ParseArgumentList - Parse the argument list for a function type or function
2485 /// prototype.
2486 /// ::= '(' ArgTypeListI ')'
2487 /// ArgTypeListI
2488 /// ::= /*empty*/
2489 /// ::= '...'
2490 /// ::= ArgTypeList ',' '...'
2491 /// ::= ArgType (',' ArgType)*
2493 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2494 bool &isVarArg){
2495 isVarArg = false;
2496 assert(Lex.getKind() == lltok::lparen);
2497 Lex.Lex(); // eat the (.
2499 if (Lex.getKind() == lltok::rparen) {
2500 // empty
2501 } else if (Lex.getKind() == lltok::dotdotdot) {
2502 isVarArg = true;
2503 Lex.Lex();
2504 } else {
2505 LocTy TypeLoc = Lex.getLoc();
2506 Type *ArgTy = nullptr;
2507 AttrBuilder Attrs;
2508 std::string Name;
2510 if (ParseType(ArgTy) ||
2511 ParseOptionalParamAttrs(Attrs)) return true;
2513 if (ArgTy->isVoidTy())
2514 return Error(TypeLoc, "argument can not have void type");
2516 if (Lex.getKind() == lltok::LocalVar) {
2517 Name = Lex.getStrVal();
2518 Lex.Lex();
2521 if (!FunctionType::isValidArgumentType(ArgTy))
2522 return Error(TypeLoc, "invalid type for function argument");
2524 ArgList.emplace_back(TypeLoc, ArgTy,
2525 AttributeSet::get(ArgTy->getContext(), Attrs),
2526 std::move(Name));
2528 while (EatIfPresent(lltok::comma)) {
2529 // Handle ... at end of arg list.
2530 if (EatIfPresent(lltok::dotdotdot)) {
2531 isVarArg = true;
2532 break;
2535 // Otherwise must be an argument type.
2536 TypeLoc = Lex.getLoc();
2537 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2539 if (ArgTy->isVoidTy())
2540 return Error(TypeLoc, "argument can not have void type");
2542 if (Lex.getKind() == lltok::LocalVar) {
2543 Name = Lex.getStrVal();
2544 Lex.Lex();
2545 } else {
2546 Name = "";
2549 if (!ArgTy->isFirstClassType())
2550 return Error(TypeLoc, "invalid type for function argument");
2552 ArgList.emplace_back(TypeLoc, ArgTy,
2553 AttributeSet::get(ArgTy->getContext(), Attrs),
2554 std::move(Name));
2558 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2561 /// ParseFunctionType
2562 /// ::= Type ArgumentList OptionalAttrs
2563 bool LLParser::ParseFunctionType(Type *&Result) {
2564 assert(Lex.getKind() == lltok::lparen);
2566 if (!FunctionType::isValidReturnType(Result))
2567 return TokError("invalid function return type");
2569 SmallVector<ArgInfo, 8> ArgList;
2570 bool isVarArg;
2571 if (ParseArgumentList(ArgList, isVarArg))
2572 return true;
2574 // Reject names on the arguments lists.
2575 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2576 if (!ArgList[i].Name.empty())
2577 return Error(ArgList[i].Loc, "argument name invalid in function type");
2578 if (ArgList[i].Attrs.hasAttributes())
2579 return Error(ArgList[i].Loc,
2580 "argument attributes invalid in function type");
2583 SmallVector<Type*, 16> ArgListTy;
2584 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2585 ArgListTy.push_back(ArgList[i].Ty);
2587 Result = FunctionType::get(Result, ArgListTy, isVarArg);
2588 return false;
2591 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2592 /// other structs.
2593 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2594 SmallVector<Type*, 8> Elts;
2595 if (ParseStructBody(Elts)) return true;
2597 Result = StructType::get(Context, Elts, Packed);
2598 return false;
2601 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2602 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2603 std::pair<Type*, LocTy> &Entry,
2604 Type *&ResultTy) {
2605 // If the type was already defined, diagnose the redefinition.
2606 if (Entry.first && !Entry.second.isValid())
2607 return Error(TypeLoc, "redefinition of type");
2609 // If we have opaque, just return without filling in the definition for the
2610 // struct. This counts as a definition as far as the .ll file goes.
2611 if (EatIfPresent(lltok::kw_opaque)) {
2612 // This type is being defined, so clear the location to indicate this.
2613 Entry.second = SMLoc();
2615 // If this type number has never been uttered, create it.
2616 if (!Entry.first)
2617 Entry.first = StructType::create(Context, Name);
2618 ResultTy = Entry.first;
2619 return false;
2622 // If the type starts with '<', then it is either a packed struct or a vector.
2623 bool isPacked = EatIfPresent(lltok::less);
2625 // If we don't have a struct, then we have a random type alias, which we
2626 // accept for compatibility with old files. These types are not allowed to be
2627 // forward referenced and not allowed to be recursive.
2628 if (Lex.getKind() != lltok::lbrace) {
2629 if (Entry.first)
2630 return Error(TypeLoc, "forward references to non-struct type");
2632 ResultTy = nullptr;
2633 if (isPacked)
2634 return ParseArrayVectorType(ResultTy, true);
2635 return ParseType(ResultTy);
2638 // This type is being defined, so clear the location to indicate this.
2639 Entry.second = SMLoc();
2641 // If this type number has never been uttered, create it.
2642 if (!Entry.first)
2643 Entry.first = StructType::create(Context, Name);
2645 StructType *STy = cast<StructType>(Entry.first);
2647 SmallVector<Type*, 8> Body;
2648 if (ParseStructBody(Body) ||
2649 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2650 return true;
2652 STy->setBody(Body, isPacked);
2653 ResultTy = STy;
2654 return false;
2657 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2658 /// StructType
2659 /// ::= '{' '}'
2660 /// ::= '{' Type (',' Type)* '}'
2661 /// ::= '<' '{' '}' '>'
2662 /// ::= '<' '{' Type (',' Type)* '}' '>'
2663 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2664 assert(Lex.getKind() == lltok::lbrace);
2665 Lex.Lex(); // Consume the '{'
2667 // Handle the empty struct.
2668 if (EatIfPresent(lltok::rbrace))
2669 return false;
2671 LocTy EltTyLoc = Lex.getLoc();
2672 Type *Ty = nullptr;
2673 if (ParseType(Ty)) return true;
2674 Body.push_back(Ty);
2676 if (!StructType::isValidElementType(Ty))
2677 return Error(EltTyLoc, "invalid element type for struct");
2679 while (EatIfPresent(lltok::comma)) {
2680 EltTyLoc = Lex.getLoc();
2681 if (ParseType(Ty)) return true;
2683 if (!StructType::isValidElementType(Ty))
2684 return Error(EltTyLoc, "invalid element type for struct");
2686 Body.push_back(Ty);
2689 return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2692 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2693 /// token has already been consumed.
2694 /// Type
2695 /// ::= '[' APSINTVAL 'x' Types ']'
2696 /// ::= '<' APSINTVAL 'x' Types '>'
2697 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2698 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2699 Lex.getAPSIntVal().getBitWidth() > 64)
2700 return TokError("expected number in address space");
2702 LocTy SizeLoc = Lex.getLoc();
2703 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2704 Lex.Lex();
2706 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2707 return true;
2709 LocTy TypeLoc = Lex.getLoc();
2710 Type *EltTy = nullptr;
2711 if (ParseType(EltTy)) return true;
2713 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2714 "expected end of sequential type"))
2715 return true;
2717 if (isVector) {
2718 if (Size == 0)
2719 return Error(SizeLoc, "zero element vector is illegal");
2720 if ((unsigned)Size != Size)
2721 return Error(SizeLoc, "size too large for vector");
2722 if (!VectorType::isValidElementType(EltTy))
2723 return Error(TypeLoc, "invalid vector element type");
2724 Result = VectorType::get(EltTy, unsigned(Size));
2725 } else {
2726 if (!ArrayType::isValidElementType(EltTy))
2727 return Error(TypeLoc, "invalid array element type");
2728 Result = ArrayType::get(EltTy, Size);
2730 return false;
2733 //===----------------------------------------------------------------------===//
2734 // Function Semantic Analysis.
2735 //===----------------------------------------------------------------------===//
2737 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2738 int functionNumber)
2739 : P(p), F(f), FunctionNumber(functionNumber) {
2741 // Insert unnamed arguments into the NumberedVals list.
2742 for (Argument &A : F.args())
2743 if (!A.hasName())
2744 NumberedVals.push_back(&A);
2747 LLParser::PerFunctionState::~PerFunctionState() {
2748 // If there were any forward referenced non-basicblock values, delete them.
2750 for (const auto &P : ForwardRefVals) {
2751 if (isa<BasicBlock>(P.second.first))
2752 continue;
2753 P.second.first->replaceAllUsesWith(
2754 UndefValue::get(P.second.first->getType()));
2755 P.second.first->deleteValue();
2758 for (const auto &P : ForwardRefValIDs) {
2759 if (isa<BasicBlock>(P.second.first))
2760 continue;
2761 P.second.first->replaceAllUsesWith(
2762 UndefValue::get(P.second.first->getType()));
2763 P.second.first->deleteValue();
2767 bool LLParser::PerFunctionState::FinishFunction() {
2768 if (!ForwardRefVals.empty())
2769 return P.Error(ForwardRefVals.begin()->second.second,
2770 "use of undefined value '%" + ForwardRefVals.begin()->first +
2771 "'");
2772 if (!ForwardRefValIDs.empty())
2773 return P.Error(ForwardRefValIDs.begin()->second.second,
2774 "use of undefined value '%" +
2775 Twine(ForwardRefValIDs.begin()->first) + "'");
2776 return false;
2779 /// GetVal - Get a value with the specified name or ID, creating a
2780 /// forward reference record if needed. This can return null if the value
2781 /// exists but does not have the right type.
2782 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2783 LocTy Loc, bool IsCall) {
2784 // Look this name up in the normal function symbol table.
2785 Value *Val = F.getValueSymbolTable()->lookup(Name);
2787 // If this is a forward reference for the value, see if we already created a
2788 // forward ref record.
2789 if (!Val) {
2790 auto I = ForwardRefVals.find(Name);
2791 if (I != ForwardRefVals.end())
2792 Val = I->second.first;
2795 // If we have the value in the symbol table or fwd-ref table, return it.
2796 if (Val)
2797 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2799 // Don't make placeholders with invalid type.
2800 if (!Ty->isFirstClassType()) {
2801 P.Error(Loc, "invalid use of a non-first-class type");
2802 return nullptr;
2805 // Otherwise, create a new forward reference for this value and remember it.
2806 Value *FwdVal;
2807 if (Ty->isLabelTy()) {
2808 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2809 } else {
2810 FwdVal = new Argument(Ty, Name);
2813 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2814 return FwdVal;
2817 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2818 bool IsCall) {
2819 // Look this name up in the normal function symbol table.
2820 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2822 // If this is a forward reference for the value, see if we already created a
2823 // forward ref record.
2824 if (!Val) {
2825 auto I = ForwardRefValIDs.find(ID);
2826 if (I != ForwardRefValIDs.end())
2827 Val = I->second.first;
2830 // If we have the value in the symbol table or fwd-ref table, return it.
2831 if (Val)
2832 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2834 if (!Ty->isFirstClassType()) {
2835 P.Error(Loc, "invalid use of a non-first-class type");
2836 return nullptr;
2839 // Otherwise, create a new forward reference for this value and remember it.
2840 Value *FwdVal;
2841 if (Ty->isLabelTy()) {
2842 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2843 } else {
2844 FwdVal = new Argument(Ty);
2847 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2848 return FwdVal;
2851 /// SetInstName - After an instruction is parsed and inserted into its
2852 /// basic block, this installs its name.
2853 bool LLParser::PerFunctionState::SetInstName(int NameID,
2854 const std::string &NameStr,
2855 LocTy NameLoc, Instruction *Inst) {
2856 // If this instruction has void type, it cannot have a name or ID specified.
2857 if (Inst->getType()->isVoidTy()) {
2858 if (NameID != -1 || !NameStr.empty())
2859 return P.Error(NameLoc, "instructions returning void cannot have a name");
2860 return false;
2863 // If this was a numbered instruction, verify that the instruction is the
2864 // expected value and resolve any forward references.
2865 if (NameStr.empty()) {
2866 // If neither a name nor an ID was specified, just use the next ID.
2867 if (NameID == -1)
2868 NameID = NumberedVals.size();
2870 if (unsigned(NameID) != NumberedVals.size())
2871 return P.Error(NameLoc, "instruction expected to be numbered '%" +
2872 Twine(NumberedVals.size()) + "'");
2874 auto FI = ForwardRefValIDs.find(NameID);
2875 if (FI != ForwardRefValIDs.end()) {
2876 Value *Sentinel = FI->second.first;
2877 if (Sentinel->getType() != Inst->getType())
2878 return P.Error(NameLoc, "instruction forward referenced with type '" +
2879 getTypeString(FI->second.first->getType()) + "'");
2881 Sentinel->replaceAllUsesWith(Inst);
2882 Sentinel->deleteValue();
2883 ForwardRefValIDs.erase(FI);
2886 NumberedVals.push_back(Inst);
2887 return false;
2890 // Otherwise, the instruction had a name. Resolve forward refs and set it.
2891 auto FI = ForwardRefVals.find(NameStr);
2892 if (FI != ForwardRefVals.end()) {
2893 Value *Sentinel = FI->second.first;
2894 if (Sentinel->getType() != Inst->getType())
2895 return P.Error(NameLoc, "instruction forward referenced with type '" +
2896 getTypeString(FI->second.first->getType()) + "'");
2898 Sentinel->replaceAllUsesWith(Inst);
2899 Sentinel->deleteValue();
2900 ForwardRefVals.erase(FI);
2903 // Set the name on the instruction.
2904 Inst->setName(NameStr);
2906 if (Inst->getName() != NameStr)
2907 return P.Error(NameLoc, "multiple definition of local value named '" +
2908 NameStr + "'");
2909 return false;
2912 /// GetBB - Get a basic block with the specified name or ID, creating a
2913 /// forward reference record if needed.
2914 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2915 LocTy Loc) {
2916 return dyn_cast_or_null<BasicBlock>(
2917 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2920 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2921 return dyn_cast_or_null<BasicBlock>(
2922 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2925 /// DefineBB - Define the specified basic block, which is either named or
2926 /// unnamed. If there is an error, this returns null otherwise it returns
2927 /// the block being defined.
2928 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2929 int NameID, LocTy Loc) {
2930 BasicBlock *BB;
2931 if (Name.empty()) {
2932 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2933 P.Error(Loc, "label expected to be numbered '" +
2934 Twine(NumberedVals.size()) + "'");
2935 return nullptr;
2937 BB = GetBB(NumberedVals.size(), Loc);
2938 if (!BB) {
2939 P.Error(Loc, "unable to create block numbered '" +
2940 Twine(NumberedVals.size()) + "'");
2941 return nullptr;
2943 } else {
2944 BB = GetBB(Name, Loc);
2945 if (!BB) {
2946 P.Error(Loc, "unable to create block named '" + Name + "'");
2947 return nullptr;
2951 // Move the block to the end of the function. Forward ref'd blocks are
2952 // inserted wherever they happen to be referenced.
2953 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2955 // Remove the block from forward ref sets.
2956 if (Name.empty()) {
2957 ForwardRefValIDs.erase(NumberedVals.size());
2958 NumberedVals.push_back(BB);
2959 } else {
2960 // BB forward references are already in the function symbol table.
2961 ForwardRefVals.erase(Name);
2964 return BB;
2967 //===----------------------------------------------------------------------===//
2968 // Constants.
2969 //===----------------------------------------------------------------------===//
2971 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2972 /// type implied. For example, if we parse "4" we don't know what integer type
2973 /// it has. The value will later be combined with its type and checked for
2974 /// sanity. PFS is used to convert function-local operands of metadata (since
2975 /// metadata operands are not just parsed here but also converted to values).
2976 /// PFS can be null when we are not parsing metadata values inside a function.
2977 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2978 ID.Loc = Lex.getLoc();
2979 switch (Lex.getKind()) {
2980 default: return TokError("expected value token");
2981 case lltok::GlobalID: // @42
2982 ID.UIntVal = Lex.getUIntVal();
2983 ID.Kind = ValID::t_GlobalID;
2984 break;
2985 case lltok::GlobalVar: // @foo
2986 ID.StrVal = Lex.getStrVal();
2987 ID.Kind = ValID::t_GlobalName;
2988 break;
2989 case lltok::LocalVarID: // %42
2990 ID.UIntVal = Lex.getUIntVal();
2991 ID.Kind = ValID::t_LocalID;
2992 break;
2993 case lltok::LocalVar: // %foo
2994 ID.StrVal = Lex.getStrVal();
2995 ID.Kind = ValID::t_LocalName;
2996 break;
2997 case lltok::APSInt:
2998 ID.APSIntVal = Lex.getAPSIntVal();
2999 ID.Kind = ValID::t_APSInt;
3000 break;
3001 case lltok::APFloat:
3002 ID.APFloatVal = Lex.getAPFloatVal();
3003 ID.Kind = ValID::t_APFloat;
3004 break;
3005 case lltok::kw_true:
3006 ID.ConstantVal = ConstantInt::getTrue(Context);
3007 ID.Kind = ValID::t_Constant;
3008 break;
3009 case lltok::kw_false:
3010 ID.ConstantVal = ConstantInt::getFalse(Context);
3011 ID.Kind = ValID::t_Constant;
3012 break;
3013 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3014 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3015 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3016 case lltok::kw_none: ID.Kind = ValID::t_None; break;
3018 case lltok::lbrace: {
3019 // ValID ::= '{' ConstVector '}'
3020 Lex.Lex();
3021 SmallVector<Constant*, 16> Elts;
3022 if (ParseGlobalValueVector(Elts) ||
3023 ParseToken(lltok::rbrace, "expected end of struct constant"))
3024 return true;
3026 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3027 ID.UIntVal = Elts.size();
3028 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3029 Elts.size() * sizeof(Elts[0]));
3030 ID.Kind = ValID::t_ConstantStruct;
3031 return false;
3033 case lltok::less: {
3034 // ValID ::= '<' ConstVector '>' --> Vector.
3035 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3036 Lex.Lex();
3037 bool isPackedStruct = EatIfPresent(lltok::lbrace);
3039 SmallVector<Constant*, 16> Elts;
3040 LocTy FirstEltLoc = Lex.getLoc();
3041 if (ParseGlobalValueVector(Elts) ||
3042 (isPackedStruct &&
3043 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3044 ParseToken(lltok::greater, "expected end of constant"))
3045 return true;
3047 if (isPackedStruct) {
3048 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3049 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3050 Elts.size() * sizeof(Elts[0]));
3051 ID.UIntVal = Elts.size();
3052 ID.Kind = ValID::t_PackedConstantStruct;
3053 return false;
3056 if (Elts.empty())
3057 return Error(ID.Loc, "constant vector must not be empty");
3059 if (!Elts[0]->getType()->isIntegerTy() &&
3060 !Elts[0]->getType()->isFloatingPointTy() &&
3061 !Elts[0]->getType()->isPointerTy())
3062 return Error(FirstEltLoc,
3063 "vector elements must have integer, pointer or floating point type");
3065 // Verify that all the vector elements have the same type.
3066 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3067 if (Elts[i]->getType() != Elts[0]->getType())
3068 return Error(FirstEltLoc,
3069 "vector element #" + Twine(i) +
3070 " is not of type '" + getTypeString(Elts[0]->getType()));
3072 ID.ConstantVal = ConstantVector::get(Elts);
3073 ID.Kind = ValID::t_Constant;
3074 return false;
3076 case lltok::lsquare: { // Array Constant
3077 Lex.Lex();
3078 SmallVector<Constant*, 16> Elts;
3079 LocTy FirstEltLoc = Lex.getLoc();
3080 if (ParseGlobalValueVector(Elts) ||
3081 ParseToken(lltok::rsquare, "expected end of array constant"))
3082 return true;
3084 // Handle empty element.
3085 if (Elts.empty()) {
3086 // Use undef instead of an array because it's inconvenient to determine
3087 // the element type at this point, there being no elements to examine.
3088 ID.Kind = ValID::t_EmptyArray;
3089 return false;
3092 if (!Elts[0]->getType()->isFirstClassType())
3093 return Error(FirstEltLoc, "invalid array element type: " +
3094 getTypeString(Elts[0]->getType()));
3096 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3098 // Verify all elements are correct type!
3099 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3100 if (Elts[i]->getType() != Elts[0]->getType())
3101 return Error(FirstEltLoc,
3102 "array element #" + Twine(i) +
3103 " is not of type '" + getTypeString(Elts[0]->getType()));
3106 ID.ConstantVal = ConstantArray::get(ATy, Elts);
3107 ID.Kind = ValID::t_Constant;
3108 return false;
3110 case lltok::kw_c: // c "foo"
3111 Lex.Lex();
3112 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3113 false);
3114 if (ParseToken(lltok::StringConstant, "expected string")) return true;
3115 ID.Kind = ValID::t_Constant;
3116 return false;
3118 case lltok::kw_asm: {
3119 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3120 // STRINGCONSTANT
3121 bool HasSideEffect, AlignStack, AsmDialect;
3122 Lex.Lex();
3123 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3124 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3125 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3126 ParseStringConstant(ID.StrVal) ||
3127 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3128 ParseToken(lltok::StringConstant, "expected constraint string"))
3129 return true;
3130 ID.StrVal2 = Lex.getStrVal();
3131 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3132 (unsigned(AsmDialect)<<2);
3133 ID.Kind = ValID::t_InlineAsm;
3134 return false;
3137 case lltok::kw_blockaddress: {
3138 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3139 Lex.Lex();
3141 ValID Fn, Label;
3143 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3144 ParseValID(Fn) ||
3145 ParseToken(lltok::comma, "expected comma in block address expression")||
3146 ParseValID(Label) ||
3147 ParseToken(lltok::rparen, "expected ')' in block address expression"))
3148 return true;
3150 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3151 return Error(Fn.Loc, "expected function name in blockaddress");
3152 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3153 return Error(Label.Loc, "expected basic block name in blockaddress");
3155 // Try to find the function (but skip it if it's forward-referenced).
3156 GlobalValue *GV = nullptr;
3157 if (Fn.Kind == ValID::t_GlobalID) {
3158 if (Fn.UIntVal < NumberedVals.size())
3159 GV = NumberedVals[Fn.UIntVal];
3160 } else if (!ForwardRefVals.count(Fn.StrVal)) {
3161 GV = M->getNamedValue(Fn.StrVal);
3163 Function *F = nullptr;
3164 if (GV) {
3165 // Confirm that it's actually a function with a definition.
3166 if (!isa<Function>(GV))
3167 return Error(Fn.Loc, "expected function name in blockaddress");
3168 F = cast<Function>(GV);
3169 if (F->isDeclaration())
3170 return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3173 if (!F) {
3174 // Make a global variable as a placeholder for this reference.
3175 GlobalValue *&FwdRef =
3176 ForwardRefBlockAddresses.insert(std::make_pair(
3177 std::move(Fn),
3178 std::map<ValID, GlobalValue *>()))
3179 .first->second.insert(std::make_pair(std::move(Label), nullptr))
3180 .first->second;
3181 if (!FwdRef)
3182 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3183 GlobalValue::InternalLinkage, nullptr, "");
3184 ID.ConstantVal = FwdRef;
3185 ID.Kind = ValID::t_Constant;
3186 return false;
3189 // We found the function; now find the basic block. Don't use PFS, since we
3190 // might be inside a constant expression.
3191 BasicBlock *BB;
3192 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3193 if (Label.Kind == ValID::t_LocalID)
3194 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3195 else
3196 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3197 if (!BB)
3198 return Error(Label.Loc, "referenced value is not a basic block");
3199 } else {
3200 if (Label.Kind == ValID::t_LocalID)
3201 return Error(Label.Loc, "cannot take address of numeric label after "
3202 "the function is defined");
3203 BB = dyn_cast_or_null<BasicBlock>(
3204 F->getValueSymbolTable()->lookup(Label.StrVal));
3205 if (!BB)
3206 return Error(Label.Loc, "referenced value is not a basic block");
3209 ID.ConstantVal = BlockAddress::get(F, BB);
3210 ID.Kind = ValID::t_Constant;
3211 return false;
3214 case lltok::kw_trunc:
3215 case lltok::kw_zext:
3216 case lltok::kw_sext:
3217 case lltok::kw_fptrunc:
3218 case lltok::kw_fpext:
3219 case lltok::kw_bitcast:
3220 case lltok::kw_addrspacecast:
3221 case lltok::kw_uitofp:
3222 case lltok::kw_sitofp:
3223 case lltok::kw_fptoui:
3224 case lltok::kw_fptosi:
3225 case lltok::kw_inttoptr:
3226 case lltok::kw_ptrtoint: {
3227 unsigned Opc = Lex.getUIntVal();
3228 Type *DestTy = nullptr;
3229 Constant *SrcVal;
3230 Lex.Lex();
3231 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3232 ParseGlobalTypeAndValue(SrcVal) ||
3233 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3234 ParseType(DestTy) ||
3235 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3236 return true;
3237 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3238 return Error(ID.Loc, "invalid cast opcode for cast from '" +
3239 getTypeString(SrcVal->getType()) + "' to '" +
3240 getTypeString(DestTy) + "'");
3241 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3242 SrcVal, DestTy);
3243 ID.Kind = ValID::t_Constant;
3244 return false;
3246 case lltok::kw_extractvalue: {
3247 Lex.Lex();
3248 Constant *Val;
3249 SmallVector<unsigned, 4> Indices;
3250 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3251 ParseGlobalTypeAndValue(Val) ||
3252 ParseIndexList(Indices) ||
3253 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3254 return true;
3256 if (!Val->getType()->isAggregateType())
3257 return Error(ID.Loc, "extractvalue operand must be aggregate type");
3258 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3259 return Error(ID.Loc, "invalid indices for extractvalue");
3260 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3261 ID.Kind = ValID::t_Constant;
3262 return false;
3264 case lltok::kw_insertvalue: {
3265 Lex.Lex();
3266 Constant *Val0, *Val1;
3267 SmallVector<unsigned, 4> Indices;
3268 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3269 ParseGlobalTypeAndValue(Val0) ||
3270 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3271 ParseGlobalTypeAndValue(Val1) ||
3272 ParseIndexList(Indices) ||
3273 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3274 return true;
3275 if (!Val0->getType()->isAggregateType())
3276 return Error(ID.Loc, "insertvalue operand must be aggregate type");
3277 Type *IndexedType =
3278 ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3279 if (!IndexedType)
3280 return Error(ID.Loc, "invalid indices for insertvalue");
3281 if (IndexedType != Val1->getType())
3282 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3283 getTypeString(Val1->getType()) +
3284 "' instead of '" + getTypeString(IndexedType) +
3285 "'");
3286 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3287 ID.Kind = ValID::t_Constant;
3288 return false;
3290 case lltok::kw_icmp:
3291 case lltok::kw_fcmp: {
3292 unsigned PredVal, Opc = Lex.getUIntVal();
3293 Constant *Val0, *Val1;
3294 Lex.Lex();
3295 if (ParseCmpPredicate(PredVal, Opc) ||
3296 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3297 ParseGlobalTypeAndValue(Val0) ||
3298 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3299 ParseGlobalTypeAndValue(Val1) ||
3300 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3301 return true;
3303 if (Val0->getType() != Val1->getType())
3304 return Error(ID.Loc, "compare operands must have the same type");
3306 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3308 if (Opc == Instruction::FCmp) {
3309 if (!Val0->getType()->isFPOrFPVectorTy())
3310 return Error(ID.Loc, "fcmp requires floating point operands");
3311 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3312 } else {
3313 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3314 if (!Val0->getType()->isIntOrIntVectorTy() &&
3315 !Val0->getType()->isPtrOrPtrVectorTy())
3316 return Error(ID.Loc, "icmp requires pointer or integer operands");
3317 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3319 ID.Kind = ValID::t_Constant;
3320 return false;
3323 // Unary Operators.
3324 case lltok::kw_fneg: {
3325 unsigned Opc = Lex.getUIntVal();
3326 Constant *Val;
3327 Lex.Lex();
3328 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3329 ParseGlobalTypeAndValue(Val) ||
3330 ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3331 return true;
3333 // Check that the type is valid for the operator.
3334 switch (Opc) {
3335 case Instruction::FNeg:
3336 if (!Val->getType()->isFPOrFPVectorTy())
3337 return Error(ID.Loc, "constexpr requires fp operands");
3338 break;
3339 default: llvm_unreachable("Unknown unary operator!");
3341 unsigned Flags = 0;
3342 Constant *C = ConstantExpr::get(Opc, Val, Flags);
3343 ID.ConstantVal = C;
3344 ID.Kind = ValID::t_Constant;
3345 return false;
3347 // Binary Operators.
3348 case lltok::kw_add:
3349 case lltok::kw_fadd:
3350 case lltok::kw_sub:
3351 case lltok::kw_fsub:
3352 case lltok::kw_mul:
3353 case lltok::kw_fmul:
3354 case lltok::kw_udiv:
3355 case lltok::kw_sdiv:
3356 case lltok::kw_fdiv:
3357 case lltok::kw_urem:
3358 case lltok::kw_srem:
3359 case lltok::kw_frem:
3360 case lltok::kw_shl:
3361 case lltok::kw_lshr:
3362 case lltok::kw_ashr: {
3363 bool NUW = false;
3364 bool NSW = false;
3365 bool Exact = false;
3366 unsigned Opc = Lex.getUIntVal();
3367 Constant *Val0, *Val1;
3368 Lex.Lex();
3369 LocTy ModifierLoc = Lex.getLoc();
3370 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3371 Opc == Instruction::Mul || Opc == Instruction::Shl) {
3372 if (EatIfPresent(lltok::kw_nuw))
3373 NUW = true;
3374 if (EatIfPresent(lltok::kw_nsw)) {
3375 NSW = true;
3376 if (EatIfPresent(lltok::kw_nuw))
3377 NUW = true;
3379 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3380 Opc == Instruction::LShr || Opc == Instruction::AShr) {
3381 if (EatIfPresent(lltok::kw_exact))
3382 Exact = true;
3384 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3385 ParseGlobalTypeAndValue(Val0) ||
3386 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3387 ParseGlobalTypeAndValue(Val1) ||
3388 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3389 return true;
3390 if (Val0->getType() != Val1->getType())
3391 return Error(ID.Loc, "operands of constexpr must have same type");
3392 if (!Val0->getType()->isIntOrIntVectorTy()) {
3393 if (NUW)
3394 return Error(ModifierLoc, "nuw only applies to integer operations");
3395 if (NSW)
3396 return Error(ModifierLoc, "nsw only applies to integer operations");
3398 // Check that the type is valid for the operator.
3399 switch (Opc) {
3400 case Instruction::Add:
3401 case Instruction::Sub:
3402 case Instruction::Mul:
3403 case Instruction::UDiv:
3404 case Instruction::SDiv:
3405 case Instruction::URem:
3406 case Instruction::SRem:
3407 case Instruction::Shl:
3408 case Instruction::AShr:
3409 case Instruction::LShr:
3410 if (!Val0->getType()->isIntOrIntVectorTy())
3411 return Error(ID.Loc, "constexpr requires integer operands");
3412 break;
3413 case Instruction::FAdd:
3414 case Instruction::FSub:
3415 case Instruction::FMul:
3416 case Instruction::FDiv:
3417 case Instruction::FRem:
3418 if (!Val0->getType()->isFPOrFPVectorTy())
3419 return Error(ID.Loc, "constexpr requires fp operands");
3420 break;
3421 default: llvm_unreachable("Unknown binary operator!");
3423 unsigned Flags = 0;
3424 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3425 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
3426 if (Exact) Flags |= PossiblyExactOperator::IsExact;
3427 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3428 ID.ConstantVal = C;
3429 ID.Kind = ValID::t_Constant;
3430 return false;
3433 // Logical Operations
3434 case lltok::kw_and:
3435 case lltok::kw_or:
3436 case lltok::kw_xor: {
3437 unsigned Opc = Lex.getUIntVal();
3438 Constant *Val0, *Val1;
3439 Lex.Lex();
3440 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3441 ParseGlobalTypeAndValue(Val0) ||
3442 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3443 ParseGlobalTypeAndValue(Val1) ||
3444 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3445 return true;
3446 if (Val0->getType() != Val1->getType())
3447 return Error(ID.Loc, "operands of constexpr must have same type");
3448 if (!Val0->getType()->isIntOrIntVectorTy())
3449 return Error(ID.Loc,
3450 "constexpr requires integer or integer vector operands");
3451 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3452 ID.Kind = ValID::t_Constant;
3453 return false;
3456 case lltok::kw_getelementptr:
3457 case lltok::kw_shufflevector:
3458 case lltok::kw_insertelement:
3459 case lltok::kw_extractelement:
3460 case lltok::kw_select: {
3461 unsigned Opc = Lex.getUIntVal();
3462 SmallVector<Constant*, 16> Elts;
3463 bool InBounds = false;
3464 Type *Ty;
3465 Lex.Lex();
3467 if (Opc == Instruction::GetElementPtr)
3468 InBounds = EatIfPresent(lltok::kw_inbounds);
3470 if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3471 return true;
3473 LocTy ExplicitTypeLoc = Lex.getLoc();
3474 if (Opc == Instruction::GetElementPtr) {
3475 if (ParseType(Ty) ||
3476 ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3477 return true;
3480 Optional<unsigned> InRangeOp;
3481 if (ParseGlobalValueVector(
3482 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3483 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3484 return true;
3486 if (Opc == Instruction::GetElementPtr) {
3487 if (Elts.size() == 0 ||
3488 !Elts[0]->getType()->isPtrOrPtrVectorTy())
3489 return Error(ID.Loc, "base of getelementptr must be a pointer");
3491 Type *BaseType = Elts[0]->getType();
3492 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3493 if (Ty != BasePointerType->getElementType())
3494 return Error(
3495 ExplicitTypeLoc,
3496 "explicit pointee type doesn't match operand's pointee type");
3498 unsigned GEPWidth =
3499 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3501 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3502 for (Constant *Val : Indices) {
3503 Type *ValTy = Val->getType();
3504 if (!ValTy->isIntOrIntVectorTy())
3505 return Error(ID.Loc, "getelementptr index must be an integer");
3506 if (ValTy->isVectorTy()) {
3507 unsigned ValNumEl = ValTy->getVectorNumElements();
3508 if (GEPWidth && (ValNumEl != GEPWidth))
3509 return Error(
3510 ID.Loc,
3511 "getelementptr vector index has a wrong number of elements");
3512 // GEPWidth may have been unknown because the base is a scalar,
3513 // but it is known now.
3514 GEPWidth = ValNumEl;
3518 SmallPtrSet<Type*, 4> Visited;
3519 if (!Indices.empty() && !Ty->isSized(&Visited))
3520 return Error(ID.Loc, "base element of getelementptr must be sized");
3522 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3523 return Error(ID.Loc, "invalid getelementptr indices");
3525 if (InRangeOp) {
3526 if (*InRangeOp == 0)
3527 return Error(ID.Loc,
3528 "inrange keyword may not appear on pointer operand");
3529 --*InRangeOp;
3532 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3533 InBounds, InRangeOp);
3534 } else if (Opc == Instruction::Select) {
3535 if (Elts.size() != 3)
3536 return Error(ID.Loc, "expected three operands to select");
3537 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3538 Elts[2]))
3539 return Error(ID.Loc, Reason);
3540 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3541 } else if (Opc == Instruction::ShuffleVector) {
3542 if (Elts.size() != 3)
3543 return Error(ID.Loc, "expected three operands to shufflevector");
3544 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3545 return Error(ID.Loc, "invalid operands to shufflevector");
3546 ID.ConstantVal =
3547 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3548 } else if (Opc == Instruction::ExtractElement) {
3549 if (Elts.size() != 2)
3550 return Error(ID.Loc, "expected two operands to extractelement");
3551 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3552 return Error(ID.Loc, "invalid extractelement operands");
3553 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3554 } else {
3555 assert(Opc == Instruction::InsertElement && "Unknown opcode");
3556 if (Elts.size() != 3)
3557 return Error(ID.Loc, "expected three operands to insertelement");
3558 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3559 return Error(ID.Loc, "invalid insertelement operands");
3560 ID.ConstantVal =
3561 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3564 ID.Kind = ValID::t_Constant;
3565 return false;
3569 Lex.Lex();
3570 return false;
3573 /// ParseGlobalValue - Parse a global value with the specified type.
3574 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3575 C = nullptr;
3576 ValID ID;
3577 Value *V = nullptr;
3578 bool Parsed = ParseValID(ID) ||
3579 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3580 if (V && !(C = dyn_cast<Constant>(V)))
3581 return Error(ID.Loc, "global values must be constants");
3582 return Parsed;
3585 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3586 Type *Ty = nullptr;
3587 return ParseType(Ty) ||
3588 ParseGlobalValue(Ty, V);
3591 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3592 C = nullptr;
3594 LocTy KwLoc = Lex.getLoc();
3595 if (!EatIfPresent(lltok::kw_comdat))
3596 return false;
3598 if (EatIfPresent(lltok::lparen)) {
3599 if (Lex.getKind() != lltok::ComdatVar)
3600 return TokError("expected comdat variable");
3601 C = getComdat(Lex.getStrVal(), Lex.getLoc());
3602 Lex.Lex();
3603 if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3604 return true;
3605 } else {
3606 if (GlobalName.empty())
3607 return TokError("comdat cannot be unnamed");
3608 C = getComdat(GlobalName, KwLoc);
3611 return false;
3614 /// ParseGlobalValueVector
3615 /// ::= /*empty*/
3616 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3617 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3618 Optional<unsigned> *InRangeOp) {
3619 // Empty list.
3620 if (Lex.getKind() == lltok::rbrace ||
3621 Lex.getKind() == lltok::rsquare ||
3622 Lex.getKind() == lltok::greater ||
3623 Lex.getKind() == lltok::rparen)
3624 return false;
3626 do {
3627 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3628 *InRangeOp = Elts.size();
3630 Constant *C;
3631 if (ParseGlobalTypeAndValue(C)) return true;
3632 Elts.push_back(C);
3633 } while (EatIfPresent(lltok::comma));
3635 return false;
3638 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3639 SmallVector<Metadata *, 16> Elts;
3640 if (ParseMDNodeVector(Elts))
3641 return true;
3643 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3644 return false;
3647 /// MDNode:
3648 /// ::= !{ ... }
3649 /// ::= !7
3650 /// ::= !DILocation(...)
3651 bool LLParser::ParseMDNode(MDNode *&N) {
3652 if (Lex.getKind() == lltok::MetadataVar)
3653 return ParseSpecializedMDNode(N);
3655 return ParseToken(lltok::exclaim, "expected '!' here") ||
3656 ParseMDNodeTail(N);
3659 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3660 // !{ ... }
3661 if (Lex.getKind() == lltok::lbrace)
3662 return ParseMDTuple(N);
3664 // !42
3665 return ParseMDNodeID(N);
3668 namespace {
3670 /// Structure to represent an optional metadata field.
3671 template <class FieldTy> struct MDFieldImpl {
3672 typedef MDFieldImpl ImplTy;
3673 FieldTy Val;
3674 bool Seen;
3676 void assign(FieldTy Val) {
3677 Seen = true;
3678 this->Val = std::move(Val);
3681 explicit MDFieldImpl(FieldTy Default)
3682 : Val(std::move(Default)), Seen(false) {}
3685 /// Structure to represent an optional metadata field that
3686 /// can be of either type (A or B) and encapsulates the
3687 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3688 /// to reimplement the specifics for representing each Field.
3689 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3690 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3691 FieldTypeA A;
3692 FieldTypeB B;
3693 bool Seen;
3695 enum {
3696 IsInvalid = 0,
3697 IsTypeA = 1,
3698 IsTypeB = 2
3699 } WhatIs;
3701 void assign(FieldTypeA A) {
3702 Seen = true;
3703 this->A = std::move(A);
3704 WhatIs = IsTypeA;
3707 void assign(FieldTypeB B) {
3708 Seen = true;
3709 this->B = std::move(B);
3710 WhatIs = IsTypeB;
3713 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3714 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3715 WhatIs(IsInvalid) {}
3718 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3719 uint64_t Max;
3721 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3722 : ImplTy(Default), Max(Max) {}
3725 struct LineField : public MDUnsignedField {
3726 LineField() : MDUnsignedField(0, UINT32_MAX) {}
3729 struct ColumnField : public MDUnsignedField {
3730 ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3733 struct DwarfTagField : public MDUnsignedField {
3734 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3735 DwarfTagField(dwarf::Tag DefaultTag)
3736 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3739 struct DwarfMacinfoTypeField : public MDUnsignedField {
3740 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3741 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3742 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3745 struct DwarfAttEncodingField : public MDUnsignedField {
3746 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3749 struct DwarfVirtualityField : public MDUnsignedField {
3750 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3753 struct DwarfLangField : public MDUnsignedField {
3754 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3757 struct DwarfCCField : public MDUnsignedField {
3758 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3761 struct EmissionKindField : public MDUnsignedField {
3762 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3765 struct NameTableKindField : public MDUnsignedField {
3766 NameTableKindField()
3767 : MDUnsignedField(
3768 0, (unsigned)
3769 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3772 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3773 DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3776 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3777 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3780 struct MDSignedField : public MDFieldImpl<int64_t> {
3781 int64_t Min;
3782 int64_t Max;
3784 MDSignedField(int64_t Default = 0)
3785 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3786 MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3787 : ImplTy(Default), Min(Min), Max(Max) {}
3790 struct MDBoolField : public MDFieldImpl<bool> {
3791 MDBoolField(bool Default = false) : ImplTy(Default) {}
3794 struct MDField : public MDFieldImpl<Metadata *> {
3795 bool AllowNull;
3797 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3800 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3801 MDConstant() : ImplTy(nullptr) {}
3804 struct MDStringField : public MDFieldImpl<MDString *> {
3805 bool AllowEmpty;
3806 MDStringField(bool AllowEmpty = true)
3807 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3810 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3811 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3814 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3815 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3818 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3819 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3820 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3822 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3823 bool AllowNull = true)
3824 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3826 bool isMDSignedField() const { return WhatIs == IsTypeA; }
3827 bool isMDField() const { return WhatIs == IsTypeB; }
3828 int64_t getMDSignedValue() const {
3829 assert(isMDSignedField() && "Wrong field type");
3830 return A.Val;
3832 Metadata *getMDFieldValue() const {
3833 assert(isMDField() && "Wrong field type");
3834 return B.Val;
3838 struct MDSignedOrUnsignedField
3839 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3840 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3842 bool isMDSignedField() const { return WhatIs == IsTypeA; }
3843 bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3844 int64_t getMDSignedValue() const {
3845 assert(isMDSignedField() && "Wrong field type");
3846 return A.Val;
3848 uint64_t getMDUnsignedValue() const {
3849 assert(isMDUnsignedField() && "Wrong field type");
3850 return B.Val;
3854 } // end anonymous namespace
3856 namespace llvm {
3858 template <>
3859 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3860 MDUnsignedField &Result) {
3861 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3862 return TokError("expected unsigned integer");
3864 auto &U = Lex.getAPSIntVal();
3865 if (U.ugt(Result.Max))
3866 return TokError("value for '" + Name + "' too large, limit is " +
3867 Twine(Result.Max));
3868 Result.assign(U.getZExtValue());
3869 assert(Result.Val <= Result.Max && "Expected value in range");
3870 Lex.Lex();
3871 return false;
3874 template <>
3875 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3876 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3878 template <>
3879 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3880 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3883 template <>
3884 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3885 if (Lex.getKind() == lltok::APSInt)
3886 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3888 if (Lex.getKind() != lltok::DwarfTag)
3889 return TokError("expected DWARF tag");
3891 unsigned Tag = dwarf::getTag(Lex.getStrVal());
3892 if (Tag == dwarf::DW_TAG_invalid)
3893 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3894 assert(Tag <= Result.Max && "Expected valid DWARF tag");
3896 Result.assign(Tag);
3897 Lex.Lex();
3898 return false;
3901 template <>
3902 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3903 DwarfMacinfoTypeField &Result) {
3904 if (Lex.getKind() == lltok::APSInt)
3905 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3907 if (Lex.getKind() != lltok::DwarfMacinfo)
3908 return TokError("expected DWARF macinfo type");
3910 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3911 if (Macinfo == dwarf::DW_MACINFO_invalid)
3912 return TokError(
3913 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3914 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3916 Result.assign(Macinfo);
3917 Lex.Lex();
3918 return false;
3921 template <>
3922 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3923 DwarfVirtualityField &Result) {
3924 if (Lex.getKind() == lltok::APSInt)
3925 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3927 if (Lex.getKind() != lltok::DwarfVirtuality)
3928 return TokError("expected DWARF virtuality code");
3930 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3931 if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3932 return TokError("invalid DWARF virtuality code" + Twine(" '") +
3933 Lex.getStrVal() + "'");
3934 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3935 Result.assign(Virtuality);
3936 Lex.Lex();
3937 return false;
3940 template <>
3941 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3942 if (Lex.getKind() == lltok::APSInt)
3943 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3945 if (Lex.getKind() != lltok::DwarfLang)
3946 return TokError("expected DWARF language");
3948 unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3949 if (!Lang)
3950 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3951 "'");
3952 assert(Lang <= Result.Max && "Expected valid DWARF language");
3953 Result.assign(Lang);
3954 Lex.Lex();
3955 return false;
3958 template <>
3959 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3960 if (Lex.getKind() == lltok::APSInt)
3961 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3963 if (Lex.getKind() != lltok::DwarfCC)
3964 return TokError("expected DWARF calling convention");
3966 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3967 if (!CC)
3968 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3969 "'");
3970 assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3971 Result.assign(CC);
3972 Lex.Lex();
3973 return false;
3976 template <>
3977 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3978 if (Lex.getKind() == lltok::APSInt)
3979 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3981 if (Lex.getKind() != lltok::EmissionKind)
3982 return TokError("expected emission kind");
3984 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3985 if (!Kind)
3986 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3987 "'");
3988 assert(*Kind <= Result.Max && "Expected valid emission kind");
3989 Result.assign(*Kind);
3990 Lex.Lex();
3991 return false;
3994 template <>
3995 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3996 NameTableKindField &Result) {
3997 if (Lex.getKind() == lltok::APSInt)
3998 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4000 if (Lex.getKind() != lltok::NameTableKind)
4001 return TokError("expected nameTable kind");
4003 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4004 if (!Kind)
4005 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4006 "'");
4007 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4008 Result.assign((unsigned)*Kind);
4009 Lex.Lex();
4010 return false;
4013 template <>
4014 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4015 DwarfAttEncodingField &Result) {
4016 if (Lex.getKind() == lltok::APSInt)
4017 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4019 if (Lex.getKind() != lltok::DwarfAttEncoding)
4020 return TokError("expected DWARF type attribute encoding");
4022 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4023 if (!Encoding)
4024 return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4025 Lex.getStrVal() + "'");
4026 assert(Encoding <= Result.Max && "Expected valid DWARF language");
4027 Result.assign(Encoding);
4028 Lex.Lex();
4029 return false;
4032 /// DIFlagField
4033 /// ::= uint32
4034 /// ::= DIFlagVector
4035 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4036 template <>
4037 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4039 // Parser for a single flag.
4040 auto parseFlag = [&](DINode::DIFlags &Val) {
4041 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4042 uint32_t TempVal = static_cast<uint32_t>(Val);
4043 bool Res = ParseUInt32(TempVal);
4044 Val = static_cast<DINode::DIFlags>(TempVal);
4045 return Res;
4048 if (Lex.getKind() != lltok::DIFlag)
4049 return TokError("expected debug info flag");
4051 Val = DINode::getFlag(Lex.getStrVal());
4052 if (!Val)
4053 return TokError(Twine("invalid debug info flag flag '") +
4054 Lex.getStrVal() + "'");
4055 Lex.Lex();
4056 return false;
4059 // Parse the flags and combine them together.
4060 DINode::DIFlags Combined = DINode::FlagZero;
4061 do {
4062 DINode::DIFlags Val;
4063 if (parseFlag(Val))
4064 return true;
4065 Combined |= Val;
4066 } while (EatIfPresent(lltok::bar));
4068 Result.assign(Combined);
4069 return false;
4072 /// DISPFlagField
4073 /// ::= uint32
4074 /// ::= DISPFlagVector
4075 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32
4076 template <>
4077 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4079 // Parser for a single flag.
4080 auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4081 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4082 uint32_t TempVal = static_cast<uint32_t>(Val);
4083 bool Res = ParseUInt32(TempVal);
4084 Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4085 return Res;
4088 if (Lex.getKind() != lltok::DISPFlag)
4089 return TokError("expected debug info flag");
4091 Val = DISubprogram::getFlag(Lex.getStrVal());
4092 if (!Val)
4093 return TokError(Twine("invalid subprogram debug info flag '") +
4094 Lex.getStrVal() + "'");
4095 Lex.Lex();
4096 return false;
4099 // Parse the flags and combine them together.
4100 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4101 do {
4102 DISubprogram::DISPFlags Val;
4103 if (parseFlag(Val))
4104 return true;
4105 Combined |= Val;
4106 } while (EatIfPresent(lltok::bar));
4108 Result.assign(Combined);
4109 return false;
4112 template <>
4113 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4114 MDSignedField &Result) {
4115 if (Lex.getKind() != lltok::APSInt)
4116 return TokError("expected signed integer");
4118 auto &S = Lex.getAPSIntVal();
4119 if (S < Result.Min)
4120 return TokError("value for '" + Name + "' too small, limit is " +
4121 Twine(Result.Min));
4122 if (S > Result.Max)
4123 return TokError("value for '" + Name + "' too large, limit is " +
4124 Twine(Result.Max));
4125 Result.assign(S.getExtValue());
4126 assert(Result.Val >= Result.Min && "Expected value in range");
4127 assert(Result.Val <= Result.Max && "Expected value in range");
4128 Lex.Lex();
4129 return false;
4132 template <>
4133 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4134 switch (Lex.getKind()) {
4135 default:
4136 return TokError("expected 'true' or 'false'");
4137 case lltok::kw_true:
4138 Result.assign(true);
4139 break;
4140 case lltok::kw_false:
4141 Result.assign(false);
4142 break;
4144 Lex.Lex();
4145 return false;
4148 template <>
4149 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4150 if (Lex.getKind() == lltok::kw_null) {
4151 if (!Result.AllowNull)
4152 return TokError("'" + Name + "' cannot be null");
4153 Lex.Lex();
4154 Result.assign(nullptr);
4155 return false;
4158 Metadata *MD;
4159 if (ParseMetadata(MD, nullptr))
4160 return true;
4162 Result.assign(MD);
4163 return false;
4166 template <>
4167 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4168 MDSignedOrMDField &Result) {
4169 // Try to parse a signed int.
4170 if (Lex.getKind() == lltok::APSInt) {
4171 MDSignedField Res = Result.A;
4172 if (!ParseMDField(Loc, Name, Res)) {
4173 Result.assign(Res);
4174 return false;
4176 return true;
4179 // Otherwise, try to parse as an MDField.
4180 MDField Res = Result.B;
4181 if (!ParseMDField(Loc, Name, Res)) {
4182 Result.assign(Res);
4183 return false;
4186 return true;
4189 template <>
4190 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4191 MDSignedOrUnsignedField &Result) {
4192 if (Lex.getKind() != lltok::APSInt)
4193 return false;
4195 if (Lex.getAPSIntVal().isSigned()) {
4196 MDSignedField Res = Result.A;
4197 if (ParseMDField(Loc, Name, Res))
4198 return true;
4199 Result.assign(Res);
4200 return false;
4203 MDUnsignedField Res = Result.B;
4204 if (ParseMDField(Loc, Name, Res))
4205 return true;
4206 Result.assign(Res);
4207 return false;
4210 template <>
4211 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4212 LocTy ValueLoc = Lex.getLoc();
4213 std::string S;
4214 if (ParseStringConstant(S))
4215 return true;
4217 if (!Result.AllowEmpty && S.empty())
4218 return Error(ValueLoc, "'" + Name + "' cannot be empty");
4220 Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4221 return false;
4224 template <>
4225 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4226 SmallVector<Metadata *, 4> MDs;
4227 if (ParseMDNodeVector(MDs))
4228 return true;
4230 Result.assign(std::move(MDs));
4231 return false;
4234 template <>
4235 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4236 ChecksumKindField &Result) {
4237 Optional<DIFile::ChecksumKind> CSKind =
4238 DIFile::getChecksumKind(Lex.getStrVal());
4240 if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4241 return TokError(
4242 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4244 Result.assign(*CSKind);
4245 Lex.Lex();
4246 return false;
4249 } // end namespace llvm
4251 template <class ParserTy>
4252 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4253 do {
4254 if (Lex.getKind() != lltok::LabelStr)
4255 return TokError("expected field label here");
4257 if (parseField())
4258 return true;
4259 } while (EatIfPresent(lltok::comma));
4261 return false;
4264 template <class ParserTy>
4265 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4266 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4267 Lex.Lex();
4269 if (ParseToken(lltok::lparen, "expected '(' here"))
4270 return true;
4271 if (Lex.getKind() != lltok::rparen)
4272 if (ParseMDFieldsImplBody(parseField))
4273 return true;
4275 ClosingLoc = Lex.getLoc();
4276 return ParseToken(lltok::rparen, "expected ')' here");
4279 template <class FieldTy>
4280 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4281 if (Result.Seen)
4282 return TokError("field '" + Name + "' cannot be specified more than once");
4284 LocTy Loc = Lex.getLoc();
4285 Lex.Lex();
4286 return ParseMDField(Loc, Name, Result);
4289 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4290 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4292 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
4293 if (Lex.getStrVal() == #CLASS) \
4294 return Parse##CLASS(N, IsDistinct);
4295 #include "llvm/IR/Metadata.def"
4297 return TokError("expected metadata type");
4300 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4301 #define NOP_FIELD(NAME, TYPE, INIT)
4302 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
4303 if (!NAME.Seen) \
4304 return Error(ClosingLoc, "missing required field '" #NAME "'");
4305 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
4306 if (Lex.getStrVal() == #NAME) \
4307 return ParseMDField(#NAME, NAME);
4308 #define PARSE_MD_FIELDS() \
4309 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
4310 do { \
4311 LocTy ClosingLoc; \
4312 if (ParseMDFieldsImpl([&]() -> bool { \
4313 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
4314 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
4315 }, ClosingLoc)) \
4316 return true; \
4317 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
4318 } while (false)
4319 #define GET_OR_DISTINCT(CLASS, ARGS) \
4320 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4322 /// ParseDILocationFields:
4323 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4324 /// isImplicitCode: true)
4325 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4326 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4327 OPTIONAL(line, LineField, ); \
4328 OPTIONAL(column, ColumnField, ); \
4329 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4330 OPTIONAL(inlinedAt, MDField, ); \
4331 OPTIONAL(isImplicitCode, MDBoolField, (false));
4332 PARSE_MD_FIELDS();
4333 #undef VISIT_MD_FIELDS
4335 Result =
4336 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4337 inlinedAt.Val, isImplicitCode.Val));
4338 return false;
4341 /// ParseGenericDINode:
4342 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4343 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4344 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4345 REQUIRED(tag, DwarfTagField, ); \
4346 OPTIONAL(header, MDStringField, ); \
4347 OPTIONAL(operands, MDFieldList, );
4348 PARSE_MD_FIELDS();
4349 #undef VISIT_MD_FIELDS
4351 Result = GET_OR_DISTINCT(GenericDINode,
4352 (Context, tag.Val, header.Val, operands.Val));
4353 return false;
4356 /// ParseDISubrange:
4357 /// ::= !DISubrange(count: 30, lowerBound: 2)
4358 /// ::= !DISubrange(count: !node, lowerBound: 2)
4359 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4360 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4361 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
4362 OPTIONAL(lowerBound, MDSignedField, );
4363 PARSE_MD_FIELDS();
4364 #undef VISIT_MD_FIELDS
4366 if (count.isMDSignedField())
4367 Result = GET_OR_DISTINCT(
4368 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4369 else if (count.isMDField())
4370 Result = GET_OR_DISTINCT(
4371 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4372 else
4373 return true;
4375 return false;
4378 /// ParseDIEnumerator:
4379 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4380 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4381 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4382 REQUIRED(name, MDStringField, ); \
4383 REQUIRED(value, MDSignedOrUnsignedField, ); \
4384 OPTIONAL(isUnsigned, MDBoolField, (false));
4385 PARSE_MD_FIELDS();
4386 #undef VISIT_MD_FIELDS
4388 if (isUnsigned.Val && value.isMDSignedField())
4389 return TokError("unsigned enumerator with negative value");
4391 int64_t Value = value.isMDSignedField()
4392 ? value.getMDSignedValue()
4393 : static_cast<int64_t>(value.getMDUnsignedValue());
4394 Result =
4395 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4397 return false;
4400 /// ParseDIBasicType:
4401 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4402 /// encoding: DW_ATE_encoding, flags: 0)
4403 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4404 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4405 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
4406 OPTIONAL(name, MDStringField, ); \
4407 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4408 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4409 OPTIONAL(encoding, DwarfAttEncodingField, ); \
4410 OPTIONAL(flags, DIFlagField, );
4411 PARSE_MD_FIELDS();
4412 #undef VISIT_MD_FIELDS
4414 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4415 align.Val, encoding.Val, flags.Val));
4416 return false;
4419 /// ParseDIDerivedType:
4420 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4421 /// line: 7, scope: !1, baseType: !2, size: 32,
4422 /// align: 32, offset: 0, flags: 0, extraData: !3,
4423 /// dwarfAddressSpace: 3)
4424 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4425 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4426 REQUIRED(tag, DwarfTagField, ); \
4427 OPTIONAL(name, MDStringField, ); \
4428 OPTIONAL(file, MDField, ); \
4429 OPTIONAL(line, LineField, ); \
4430 OPTIONAL(scope, MDField, ); \
4431 REQUIRED(baseType, MDField, ); \
4432 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4433 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4434 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4435 OPTIONAL(flags, DIFlagField, ); \
4436 OPTIONAL(extraData, MDField, ); \
4437 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4438 PARSE_MD_FIELDS();
4439 #undef VISIT_MD_FIELDS
4441 Optional<unsigned> DWARFAddressSpace;
4442 if (dwarfAddressSpace.Val != UINT32_MAX)
4443 DWARFAddressSpace = dwarfAddressSpace.Val;
4445 Result = GET_OR_DISTINCT(DIDerivedType,
4446 (Context, tag.Val, name.Val, file.Val, line.Val,
4447 scope.Val, baseType.Val, size.Val, align.Val,
4448 offset.Val, DWARFAddressSpace, flags.Val,
4449 extraData.Val));
4450 return false;
4453 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4454 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4455 REQUIRED(tag, DwarfTagField, ); \
4456 OPTIONAL(name, MDStringField, ); \
4457 OPTIONAL(file, MDField, ); \
4458 OPTIONAL(line, LineField, ); \
4459 OPTIONAL(scope, MDField, ); \
4460 OPTIONAL(baseType, MDField, ); \
4461 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4462 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4463 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4464 OPTIONAL(flags, DIFlagField, ); \
4465 OPTIONAL(elements, MDField, ); \
4466 OPTIONAL(runtimeLang, DwarfLangField, ); \
4467 OPTIONAL(vtableHolder, MDField, ); \
4468 OPTIONAL(templateParams, MDField, ); \
4469 OPTIONAL(identifier, MDStringField, ); \
4470 OPTIONAL(discriminator, MDField, );
4471 PARSE_MD_FIELDS();
4472 #undef VISIT_MD_FIELDS
4474 // If this has an identifier try to build an ODR type.
4475 if (identifier.Val)
4476 if (auto *CT = DICompositeType::buildODRType(
4477 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4478 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4479 elements.Val, runtimeLang.Val, vtableHolder.Val,
4480 templateParams.Val, discriminator.Val)) {
4481 Result = CT;
4482 return false;
4485 // Create a new node, and save it in the context if it belongs in the type
4486 // map.
4487 Result = GET_OR_DISTINCT(
4488 DICompositeType,
4489 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4490 size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4491 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4492 discriminator.Val));
4493 return false;
4496 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4497 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4498 OPTIONAL(flags, DIFlagField, ); \
4499 OPTIONAL(cc, DwarfCCField, ); \
4500 REQUIRED(types, MDField, );
4501 PARSE_MD_FIELDS();
4502 #undef VISIT_MD_FIELDS
4504 Result = GET_OR_DISTINCT(DISubroutineType,
4505 (Context, flags.Val, cc.Val, types.Val));
4506 return false;
4509 /// ParseDIFileType:
4510 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4511 /// checksumkind: CSK_MD5,
4512 /// checksum: "000102030405060708090a0b0c0d0e0f",
4513 /// source: "source file contents")
4514 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4515 // The default constructed value for checksumkind is required, but will never
4516 // be used, as the parser checks if the field was actually Seen before using
4517 // the Val.
4518 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4519 REQUIRED(filename, MDStringField, ); \
4520 REQUIRED(directory, MDStringField, ); \
4521 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
4522 OPTIONAL(checksum, MDStringField, ); \
4523 OPTIONAL(source, MDStringField, );
4524 PARSE_MD_FIELDS();
4525 #undef VISIT_MD_FIELDS
4527 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4528 if (checksumkind.Seen && checksum.Seen)
4529 OptChecksum.emplace(checksumkind.Val, checksum.Val);
4530 else if (checksumkind.Seen || checksum.Seen)
4531 return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4533 Optional<MDString *> OptSource;
4534 if (source.Seen)
4535 OptSource = source.Val;
4536 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4537 OptChecksum, OptSource));
4538 return false;
4541 /// ParseDICompileUnit:
4542 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4543 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
4544 /// splitDebugFilename: "abc.debug",
4545 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4546 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4547 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4548 if (!IsDistinct)
4549 return Lex.Error("missing 'distinct', required for !DICompileUnit");
4551 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4552 REQUIRED(language, DwarfLangField, ); \
4553 REQUIRED(file, MDField, (/* AllowNull */ false)); \
4554 OPTIONAL(producer, MDStringField, ); \
4555 OPTIONAL(isOptimized, MDBoolField, ); \
4556 OPTIONAL(flags, MDStringField, ); \
4557 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
4558 OPTIONAL(splitDebugFilename, MDStringField, ); \
4559 OPTIONAL(emissionKind, EmissionKindField, ); \
4560 OPTIONAL(enums, MDField, ); \
4561 OPTIONAL(retainedTypes, MDField, ); \
4562 OPTIONAL(globals, MDField, ); \
4563 OPTIONAL(imports, MDField, ); \
4564 OPTIONAL(macros, MDField, ); \
4565 OPTIONAL(dwoId, MDUnsignedField, ); \
4566 OPTIONAL(splitDebugInlining, MDBoolField, = true); \
4567 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
4568 OPTIONAL(nameTableKind, NameTableKindField, ); \
4569 OPTIONAL(debugBaseAddress, MDBoolField, = false);
4570 PARSE_MD_FIELDS();
4571 #undef VISIT_MD_FIELDS
4573 Result = DICompileUnit::getDistinct(
4574 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4575 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4576 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4577 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4578 debugBaseAddress.Val);
4579 return false;
4582 /// ParseDISubprogram:
4583 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4584 /// file: !1, line: 7, type: !2, isLocal: false,
4585 /// isDefinition: true, scopeLine: 8, containingType: !3,
4586 /// virtuality: DW_VIRTUALTIY_pure_virtual,
4587 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
4588 /// spFlags: 10, isOptimized: false, templateParams: !4,
4589 /// declaration: !5, retainedNodes: !6, thrownTypes: !7)
4590 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4591 auto Loc = Lex.getLoc();
4592 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4593 OPTIONAL(scope, MDField, ); \
4594 OPTIONAL(name, MDStringField, ); \
4595 OPTIONAL(linkageName, MDStringField, ); \
4596 OPTIONAL(file, MDField, ); \
4597 OPTIONAL(line, LineField, ); \
4598 OPTIONAL(type, MDField, ); \
4599 OPTIONAL(isLocal, MDBoolField, ); \
4600 OPTIONAL(isDefinition, MDBoolField, (true)); \
4601 OPTIONAL(scopeLine, LineField, ); \
4602 OPTIONAL(containingType, MDField, ); \
4603 OPTIONAL(virtuality, DwarfVirtualityField, ); \
4604 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
4605 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
4606 OPTIONAL(flags, DIFlagField, ); \
4607 OPTIONAL(spFlags, DISPFlagField, ); \
4608 OPTIONAL(isOptimized, MDBoolField, ); \
4609 OPTIONAL(unit, MDField, ); \
4610 OPTIONAL(templateParams, MDField, ); \
4611 OPTIONAL(declaration, MDField, ); \
4612 OPTIONAL(retainedNodes, MDField, ); \
4613 OPTIONAL(thrownTypes, MDField, );
4614 PARSE_MD_FIELDS();
4615 #undef VISIT_MD_FIELDS
4617 // An explicit spFlags field takes precedence over individual fields in
4618 // older IR versions.
4619 DISubprogram::DISPFlags SPFlags =
4620 spFlags.Seen ? spFlags.Val
4621 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4622 isOptimized.Val, virtuality.Val);
4623 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4624 return Lex.Error(
4625 Loc,
4626 "missing 'distinct', required for !DISubprogram that is a Definition");
4627 Result = GET_OR_DISTINCT(
4628 DISubprogram,
4629 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4630 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4631 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4632 declaration.Val, retainedNodes.Val, thrownTypes.Val));
4633 return false;
4636 /// ParseDILexicalBlock:
4637 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4638 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4639 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4640 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4641 OPTIONAL(file, MDField, ); \
4642 OPTIONAL(line, LineField, ); \
4643 OPTIONAL(column, ColumnField, );
4644 PARSE_MD_FIELDS();
4645 #undef VISIT_MD_FIELDS
4647 Result = GET_OR_DISTINCT(
4648 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4649 return false;
4652 /// ParseDILexicalBlockFile:
4653 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4654 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4655 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4656 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4657 OPTIONAL(file, MDField, ); \
4658 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4659 PARSE_MD_FIELDS();
4660 #undef VISIT_MD_FIELDS
4662 Result = GET_OR_DISTINCT(DILexicalBlockFile,
4663 (Context, scope.Val, file.Val, discriminator.Val));
4664 return false;
4667 /// ParseDINamespace:
4668 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4669 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4670 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4671 REQUIRED(scope, MDField, ); \
4672 OPTIONAL(name, MDStringField, ); \
4673 OPTIONAL(exportSymbols, MDBoolField, );
4674 PARSE_MD_FIELDS();
4675 #undef VISIT_MD_FIELDS
4677 Result = GET_OR_DISTINCT(DINamespace,
4678 (Context, scope.Val, name.Val, exportSymbols.Val));
4679 return false;
4682 /// ParseDIMacro:
4683 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4684 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4685 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4686 REQUIRED(type, DwarfMacinfoTypeField, ); \
4687 OPTIONAL(line, LineField, ); \
4688 REQUIRED(name, MDStringField, ); \
4689 OPTIONAL(value, MDStringField, );
4690 PARSE_MD_FIELDS();
4691 #undef VISIT_MD_FIELDS
4693 Result = GET_OR_DISTINCT(DIMacro,
4694 (Context, type.Val, line.Val, name.Val, value.Val));
4695 return false;
4698 /// ParseDIMacroFile:
4699 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4700 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4701 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4702 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
4703 OPTIONAL(line, LineField, ); \
4704 REQUIRED(file, MDField, ); \
4705 OPTIONAL(nodes, MDField, );
4706 PARSE_MD_FIELDS();
4707 #undef VISIT_MD_FIELDS
4709 Result = GET_OR_DISTINCT(DIMacroFile,
4710 (Context, type.Val, line.Val, file.Val, nodes.Val));
4711 return false;
4714 /// ParseDIModule:
4715 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4716 /// includePath: "/usr/include", isysroot: "/")
4717 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4718 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4719 REQUIRED(scope, MDField, ); \
4720 REQUIRED(name, MDStringField, ); \
4721 OPTIONAL(configMacros, MDStringField, ); \
4722 OPTIONAL(includePath, MDStringField, ); \
4723 OPTIONAL(isysroot, MDStringField, );
4724 PARSE_MD_FIELDS();
4725 #undef VISIT_MD_FIELDS
4727 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4728 configMacros.Val, includePath.Val, isysroot.Val));
4729 return false;
4732 /// ParseDITemplateTypeParameter:
4733 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4734 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4735 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4736 OPTIONAL(name, MDStringField, ); \
4737 REQUIRED(type, MDField, );
4738 PARSE_MD_FIELDS();
4739 #undef VISIT_MD_FIELDS
4741 Result =
4742 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4743 return false;
4746 /// ParseDITemplateValueParameter:
4747 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4748 /// name: "V", type: !1, value: i32 7)
4749 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4750 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4751 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
4752 OPTIONAL(name, MDStringField, ); \
4753 OPTIONAL(type, MDField, ); \
4754 REQUIRED(value, MDField, );
4755 PARSE_MD_FIELDS();
4756 #undef VISIT_MD_FIELDS
4758 Result = GET_OR_DISTINCT(DITemplateValueParameter,
4759 (Context, tag.Val, name.Val, type.Val, value.Val));
4760 return false;
4763 /// ParseDIGlobalVariable:
4764 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4765 /// file: !1, line: 7, type: !2, isLocal: false,
4766 /// isDefinition: true, templateParams: !3,
4767 /// declaration: !4, align: 8)
4768 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4769 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4770 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
4771 OPTIONAL(scope, MDField, ); \
4772 OPTIONAL(linkageName, MDStringField, ); \
4773 OPTIONAL(file, MDField, ); \
4774 OPTIONAL(line, LineField, ); \
4775 OPTIONAL(type, MDField, ); \
4776 OPTIONAL(isLocal, MDBoolField, ); \
4777 OPTIONAL(isDefinition, MDBoolField, (true)); \
4778 OPTIONAL(templateParams, MDField, ); \
4779 OPTIONAL(declaration, MDField, ); \
4780 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4781 PARSE_MD_FIELDS();
4782 #undef VISIT_MD_FIELDS
4784 Result =
4785 GET_OR_DISTINCT(DIGlobalVariable,
4786 (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4787 line.Val, type.Val, isLocal.Val, isDefinition.Val,
4788 declaration.Val, templateParams.Val, align.Val));
4789 return false;
4792 /// ParseDILocalVariable:
4793 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4794 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4795 /// align: 8)
4796 /// ::= !DILocalVariable(scope: !0, name: "foo",
4797 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4798 /// align: 8)
4799 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4800 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4801 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4802 OPTIONAL(name, MDStringField, ); \
4803 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
4804 OPTIONAL(file, MDField, ); \
4805 OPTIONAL(line, LineField, ); \
4806 OPTIONAL(type, MDField, ); \
4807 OPTIONAL(flags, DIFlagField, ); \
4808 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4809 PARSE_MD_FIELDS();
4810 #undef VISIT_MD_FIELDS
4812 Result = GET_OR_DISTINCT(DILocalVariable,
4813 (Context, scope.Val, name.Val, file.Val, line.Val,
4814 type.Val, arg.Val, flags.Val, align.Val));
4815 return false;
4818 /// ParseDILabel:
4819 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4820 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4821 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4822 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4823 REQUIRED(name, MDStringField, ); \
4824 REQUIRED(file, MDField, ); \
4825 REQUIRED(line, LineField, );
4826 PARSE_MD_FIELDS();
4827 #undef VISIT_MD_FIELDS
4829 Result = GET_OR_DISTINCT(DILabel,
4830 (Context, scope.Val, name.Val, file.Val, line.Val));
4831 return false;
4834 /// ParseDIExpression:
4835 /// ::= !DIExpression(0, 7, -1)
4836 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4837 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4838 Lex.Lex();
4840 if (ParseToken(lltok::lparen, "expected '(' here"))
4841 return true;
4843 SmallVector<uint64_t, 8> Elements;
4844 if (Lex.getKind() != lltok::rparen)
4845 do {
4846 if (Lex.getKind() == lltok::DwarfOp) {
4847 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4848 Lex.Lex();
4849 Elements.push_back(Op);
4850 continue;
4852 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4855 if (Lex.getKind() == lltok::DwarfAttEncoding) {
4856 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4857 Lex.Lex();
4858 Elements.push_back(Op);
4859 continue;
4861 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4864 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4865 return TokError("expected unsigned integer");
4867 auto &U = Lex.getAPSIntVal();
4868 if (U.ugt(UINT64_MAX))
4869 return TokError("element too large, limit is " + Twine(UINT64_MAX));
4870 Elements.push_back(U.getZExtValue());
4871 Lex.Lex();
4872 } while (EatIfPresent(lltok::comma));
4874 if (ParseToken(lltok::rparen, "expected ')' here"))
4875 return true;
4877 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4878 return false;
4881 /// ParseDIGlobalVariableExpression:
4882 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4883 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4884 bool IsDistinct) {
4885 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4886 REQUIRED(var, MDField, ); \
4887 REQUIRED(expr, MDField, );
4888 PARSE_MD_FIELDS();
4889 #undef VISIT_MD_FIELDS
4891 Result =
4892 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4893 return false;
4896 /// ParseDIObjCProperty:
4897 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4898 /// getter: "getFoo", attributes: 7, type: !2)
4899 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4900 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4901 OPTIONAL(name, MDStringField, ); \
4902 OPTIONAL(file, MDField, ); \
4903 OPTIONAL(line, LineField, ); \
4904 OPTIONAL(setter, MDStringField, ); \
4905 OPTIONAL(getter, MDStringField, ); \
4906 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
4907 OPTIONAL(type, MDField, );
4908 PARSE_MD_FIELDS();
4909 #undef VISIT_MD_FIELDS
4911 Result = GET_OR_DISTINCT(DIObjCProperty,
4912 (Context, name.Val, file.Val, line.Val, setter.Val,
4913 getter.Val, attributes.Val, type.Val));
4914 return false;
4917 /// ParseDIImportedEntity:
4918 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4919 /// line: 7, name: "foo")
4920 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4921 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4922 REQUIRED(tag, DwarfTagField, ); \
4923 REQUIRED(scope, MDField, ); \
4924 OPTIONAL(entity, MDField, ); \
4925 OPTIONAL(file, MDField, ); \
4926 OPTIONAL(line, LineField, ); \
4927 OPTIONAL(name, MDStringField, );
4928 PARSE_MD_FIELDS();
4929 #undef VISIT_MD_FIELDS
4931 Result = GET_OR_DISTINCT(
4932 DIImportedEntity,
4933 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4934 return false;
4937 #undef PARSE_MD_FIELD
4938 #undef NOP_FIELD
4939 #undef REQUIRE_FIELD
4940 #undef DECLARE_FIELD
4942 /// ParseMetadataAsValue
4943 /// ::= metadata i32 %local
4944 /// ::= metadata i32 @global
4945 /// ::= metadata i32 7
4946 /// ::= metadata !0
4947 /// ::= metadata !{...}
4948 /// ::= metadata !"string"
4949 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4950 // Note: the type 'metadata' has already been parsed.
4951 Metadata *MD;
4952 if (ParseMetadata(MD, &PFS))
4953 return true;
4955 V = MetadataAsValue::get(Context, MD);
4956 return false;
4959 /// ParseValueAsMetadata
4960 /// ::= i32 %local
4961 /// ::= i32 @global
4962 /// ::= i32 7
4963 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4964 PerFunctionState *PFS) {
4965 Type *Ty;
4966 LocTy Loc;
4967 if (ParseType(Ty, TypeMsg, Loc))
4968 return true;
4969 if (Ty->isMetadataTy())
4970 return Error(Loc, "invalid metadata-value-metadata roundtrip");
4972 Value *V;
4973 if (ParseValue(Ty, V, PFS))
4974 return true;
4976 MD = ValueAsMetadata::get(V);
4977 return false;
4980 /// ParseMetadata
4981 /// ::= i32 %local
4982 /// ::= i32 @global
4983 /// ::= i32 7
4984 /// ::= !42
4985 /// ::= !{...}
4986 /// ::= !"string"
4987 /// ::= !DILocation(...)
4988 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4989 if (Lex.getKind() == lltok::MetadataVar) {
4990 MDNode *N;
4991 if (ParseSpecializedMDNode(N))
4992 return true;
4993 MD = N;
4994 return false;
4997 // ValueAsMetadata:
4998 // <type> <value>
4999 if (Lex.getKind() != lltok::exclaim)
5000 return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5002 // '!'.
5003 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5004 Lex.Lex();
5006 // MDString:
5007 // ::= '!' STRINGCONSTANT
5008 if (Lex.getKind() == lltok::StringConstant) {
5009 MDString *S;
5010 if (ParseMDString(S))
5011 return true;
5012 MD = S;
5013 return false;
5016 // MDNode:
5017 // !{ ... }
5018 // !7
5019 MDNode *N;
5020 if (ParseMDNodeTail(N))
5021 return true;
5022 MD = N;
5023 return false;
5026 //===----------------------------------------------------------------------===//
5027 // Function Parsing.
5028 //===----------------------------------------------------------------------===//
5030 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5031 PerFunctionState *PFS, bool IsCall) {
5032 if (Ty->isFunctionTy())
5033 return Error(ID.Loc, "functions are not values, refer to them as pointers");
5035 switch (ID.Kind) {
5036 case ValID::t_LocalID:
5037 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5038 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5039 return V == nullptr;
5040 case ValID::t_LocalName:
5041 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5042 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5043 return V == nullptr;
5044 case ValID::t_InlineAsm: {
5045 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5046 return Error(ID.Loc, "invalid type for inline asm constraint string");
5047 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5048 (ID.UIntVal >> 1) & 1,
5049 (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5050 return false;
5052 case ValID::t_GlobalName:
5053 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5054 return V == nullptr;
5055 case ValID::t_GlobalID:
5056 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5057 return V == nullptr;
5058 case ValID::t_APSInt:
5059 if (!Ty->isIntegerTy())
5060 return Error(ID.Loc, "integer constant must have integer type");
5061 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5062 V = ConstantInt::get(Context, ID.APSIntVal);
5063 return false;
5064 case ValID::t_APFloat:
5065 if (!Ty->isFloatingPointTy() ||
5066 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5067 return Error(ID.Loc, "floating point constant invalid for type");
5069 // The lexer has no type info, so builds all half, float, and double FP
5070 // constants as double. Fix this here. Long double does not need this.
5071 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5072 bool Ignored;
5073 if (Ty->isHalfTy())
5074 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5075 &Ignored);
5076 else if (Ty->isFloatTy())
5077 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5078 &Ignored);
5080 V = ConstantFP::get(Context, ID.APFloatVal);
5082 if (V->getType() != Ty)
5083 return Error(ID.Loc, "floating point constant does not have type '" +
5084 getTypeString(Ty) + "'");
5086 return false;
5087 case ValID::t_Null:
5088 if (!Ty->isPointerTy())
5089 return Error(ID.Loc, "null must be a pointer type");
5090 V = ConstantPointerNull::get(cast<PointerType>(Ty));
5091 return false;
5092 case ValID::t_Undef:
5093 // FIXME: LabelTy should not be a first-class type.
5094 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5095 return Error(ID.Loc, "invalid type for undef constant");
5096 V = UndefValue::get(Ty);
5097 return false;
5098 case ValID::t_EmptyArray:
5099 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5100 return Error(ID.Loc, "invalid empty array initializer");
5101 V = UndefValue::get(Ty);
5102 return false;
5103 case ValID::t_Zero:
5104 // FIXME: LabelTy should not be a first-class type.
5105 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5106 return Error(ID.Loc, "invalid type for null constant");
5107 V = Constant::getNullValue(Ty);
5108 return false;
5109 case ValID::t_None:
5110 if (!Ty->isTokenTy())
5111 return Error(ID.Loc, "invalid type for none constant");
5112 V = Constant::getNullValue(Ty);
5113 return false;
5114 case ValID::t_Constant:
5115 if (ID.ConstantVal->getType() != Ty)
5116 return Error(ID.Loc, "constant expression type mismatch");
5118 V = ID.ConstantVal;
5119 return false;
5120 case ValID::t_ConstantStruct:
5121 case ValID::t_PackedConstantStruct:
5122 if (StructType *ST = dyn_cast<StructType>(Ty)) {
5123 if (ST->getNumElements() != ID.UIntVal)
5124 return Error(ID.Loc,
5125 "initializer with struct type has wrong # elements");
5126 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5127 return Error(ID.Loc, "packed'ness of initializer and type don't match");
5129 // Verify that the elements are compatible with the structtype.
5130 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5131 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5132 return Error(ID.Loc, "element " + Twine(i) +
5133 " of struct initializer doesn't match struct element type");
5135 V = ConstantStruct::get(
5136 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5137 } else
5138 return Error(ID.Loc, "constant expression type mismatch");
5139 return false;
5141 llvm_unreachable("Invalid ValID");
5144 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5145 C = nullptr;
5146 ValID ID;
5147 auto Loc = Lex.getLoc();
5148 if (ParseValID(ID, /*PFS=*/nullptr))
5149 return true;
5150 switch (ID.Kind) {
5151 case ValID::t_APSInt:
5152 case ValID::t_APFloat:
5153 case ValID::t_Undef:
5154 case ValID::t_Constant:
5155 case ValID::t_ConstantStruct:
5156 case ValID::t_PackedConstantStruct: {
5157 Value *V;
5158 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5159 return true;
5160 assert(isa<Constant>(V) && "Expected a constant value");
5161 C = cast<Constant>(V);
5162 return false;
5164 case ValID::t_Null:
5165 C = Constant::getNullValue(Ty);
5166 return false;
5167 default:
5168 return Error(Loc, "expected a constant value");
5172 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5173 V = nullptr;
5174 ValID ID;
5175 return ParseValID(ID, PFS) ||
5176 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5179 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5180 Type *Ty = nullptr;
5181 return ParseType(Ty) ||
5182 ParseValue(Ty, V, PFS);
5185 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5186 PerFunctionState &PFS) {
5187 Value *V;
5188 Loc = Lex.getLoc();
5189 if (ParseTypeAndValue(V, PFS)) return true;
5190 if (!isa<BasicBlock>(V))
5191 return Error(Loc, "expected a basic block");
5192 BB = cast<BasicBlock>(V);
5193 return false;
5196 /// FunctionHeader
5197 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5198 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5199 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5200 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5201 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5202 // Parse the linkage.
5203 LocTy LinkageLoc = Lex.getLoc();
5204 unsigned Linkage;
5205 unsigned Visibility;
5206 unsigned DLLStorageClass;
5207 bool DSOLocal;
5208 AttrBuilder RetAttrs;
5209 unsigned CC;
5210 bool HasLinkage;
5211 Type *RetType = nullptr;
5212 LocTy RetTypeLoc = Lex.getLoc();
5213 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5214 DSOLocal) ||
5215 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5216 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5217 return true;
5219 // Verify that the linkage is ok.
5220 switch ((GlobalValue::LinkageTypes)Linkage) {
5221 case GlobalValue::ExternalLinkage:
5222 break; // always ok.
5223 case GlobalValue::ExternalWeakLinkage:
5224 if (isDefine)
5225 return Error(LinkageLoc, "invalid linkage for function definition");
5226 break;
5227 case GlobalValue::PrivateLinkage:
5228 case GlobalValue::InternalLinkage:
5229 case GlobalValue::AvailableExternallyLinkage:
5230 case GlobalValue::LinkOnceAnyLinkage:
5231 case GlobalValue::LinkOnceODRLinkage:
5232 case GlobalValue::WeakAnyLinkage:
5233 case GlobalValue::WeakODRLinkage:
5234 if (!isDefine)
5235 return Error(LinkageLoc, "invalid linkage for function declaration");
5236 break;
5237 case GlobalValue::AppendingLinkage:
5238 case GlobalValue::CommonLinkage:
5239 return Error(LinkageLoc, "invalid function linkage type");
5242 if (!isValidVisibilityForLinkage(Visibility, Linkage))
5243 return Error(LinkageLoc,
5244 "symbol with local linkage must have default visibility");
5246 if (!FunctionType::isValidReturnType(RetType))
5247 return Error(RetTypeLoc, "invalid function return type");
5249 LocTy NameLoc = Lex.getLoc();
5251 std::string FunctionName;
5252 if (Lex.getKind() == lltok::GlobalVar) {
5253 FunctionName = Lex.getStrVal();
5254 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
5255 unsigned NameID = Lex.getUIntVal();
5257 if (NameID != NumberedVals.size())
5258 return TokError("function expected to be numbered '%" +
5259 Twine(NumberedVals.size()) + "'");
5260 } else {
5261 return TokError("expected function name");
5264 Lex.Lex();
5266 if (Lex.getKind() != lltok::lparen)
5267 return TokError("expected '(' in function argument list");
5269 SmallVector<ArgInfo, 8> ArgList;
5270 bool isVarArg;
5271 AttrBuilder FuncAttrs;
5272 std::vector<unsigned> FwdRefAttrGrps;
5273 LocTy BuiltinLoc;
5274 std::string Section;
5275 unsigned Alignment;
5276 std::string GC;
5277 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5278 unsigned AddrSpace = 0;
5279 Constant *Prefix = nullptr;
5280 Constant *Prologue = nullptr;
5281 Constant *PersonalityFn = nullptr;
5282 Comdat *C;
5284 if (ParseArgumentList(ArgList, isVarArg) ||
5285 ParseOptionalUnnamedAddr(UnnamedAddr) ||
5286 ParseOptionalProgramAddrSpace(AddrSpace) ||
5287 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5288 BuiltinLoc) ||
5289 (EatIfPresent(lltok::kw_section) &&
5290 ParseStringConstant(Section)) ||
5291 parseOptionalComdat(FunctionName, C) ||
5292 ParseOptionalAlignment(Alignment) ||
5293 (EatIfPresent(lltok::kw_gc) &&
5294 ParseStringConstant(GC)) ||
5295 (EatIfPresent(lltok::kw_prefix) &&
5296 ParseGlobalTypeAndValue(Prefix)) ||
5297 (EatIfPresent(lltok::kw_prologue) &&
5298 ParseGlobalTypeAndValue(Prologue)) ||
5299 (EatIfPresent(lltok::kw_personality) &&
5300 ParseGlobalTypeAndValue(PersonalityFn)))
5301 return true;
5303 if (FuncAttrs.contains(Attribute::Builtin))
5304 return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5306 // If the alignment was parsed as an attribute, move to the alignment field.
5307 if (FuncAttrs.hasAlignmentAttr()) {
5308 Alignment = FuncAttrs.getAlignment();
5309 FuncAttrs.removeAttribute(Attribute::Alignment);
5312 // Okay, if we got here, the function is syntactically valid. Convert types
5313 // and do semantic checks.
5314 std::vector<Type*> ParamTypeList;
5315 SmallVector<AttributeSet, 8> Attrs;
5317 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5318 ParamTypeList.push_back(ArgList[i].Ty);
5319 Attrs.push_back(ArgList[i].Attrs);
5322 AttributeList PAL =
5323 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5324 AttributeSet::get(Context, RetAttrs), Attrs);
5326 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5327 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5329 FunctionType *FT =
5330 FunctionType::get(RetType, ParamTypeList, isVarArg);
5331 PointerType *PFT = PointerType::get(FT, AddrSpace);
5333 Fn = nullptr;
5334 if (!FunctionName.empty()) {
5335 // If this was a definition of a forward reference, remove the definition
5336 // from the forward reference table and fill in the forward ref.
5337 auto FRVI = ForwardRefVals.find(FunctionName);
5338 if (FRVI != ForwardRefVals.end()) {
5339 Fn = M->getFunction(FunctionName);
5340 if (!Fn)
5341 return Error(FRVI->second.second, "invalid forward reference to "
5342 "function as global value!");
5343 if (Fn->getType() != PFT)
5344 return Error(FRVI->second.second, "invalid forward reference to "
5345 "function '" + FunctionName + "' with wrong type: "
5346 "expected '" + getTypeString(PFT) + "' but was '" +
5347 getTypeString(Fn->getType()) + "'");
5348 ForwardRefVals.erase(FRVI);
5349 } else if ((Fn = M->getFunction(FunctionName))) {
5350 // Reject redefinitions.
5351 return Error(NameLoc, "invalid redefinition of function '" +
5352 FunctionName + "'");
5353 } else if (M->getNamedValue(FunctionName)) {
5354 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5357 } else {
5358 // If this is a definition of a forward referenced function, make sure the
5359 // types agree.
5360 auto I = ForwardRefValIDs.find(NumberedVals.size());
5361 if (I != ForwardRefValIDs.end()) {
5362 Fn = cast<Function>(I->second.first);
5363 if (Fn->getType() != PFT)
5364 return Error(NameLoc, "type of definition and forward reference of '@" +
5365 Twine(NumberedVals.size()) + "' disagree: "
5366 "expected '" + getTypeString(PFT) + "' but was '" +
5367 getTypeString(Fn->getType()) + "'");
5368 ForwardRefValIDs.erase(I);
5372 if (!Fn)
5373 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5374 FunctionName, M);
5375 else // Move the forward-reference to the correct spot in the module.
5376 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5378 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5380 if (FunctionName.empty())
5381 NumberedVals.push_back(Fn);
5383 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5384 maybeSetDSOLocal(DSOLocal, *Fn);
5385 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5386 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5387 Fn->setCallingConv(CC);
5388 Fn->setAttributes(PAL);
5389 Fn->setUnnamedAddr(UnnamedAddr);
5390 Fn->setAlignment(Alignment);
5391 Fn->setSection(Section);
5392 Fn->setComdat(C);
5393 Fn->setPersonalityFn(PersonalityFn);
5394 if (!GC.empty()) Fn->setGC(GC);
5395 Fn->setPrefixData(Prefix);
5396 Fn->setPrologueData(Prologue);
5397 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5399 // Add all of the arguments we parsed to the function.
5400 Function::arg_iterator ArgIt = Fn->arg_begin();
5401 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5402 // If the argument has a name, insert it into the argument symbol table.
5403 if (ArgList[i].Name.empty()) continue;
5405 // Set the name, if it conflicted, it will be auto-renamed.
5406 ArgIt->setName(ArgList[i].Name);
5408 if (ArgIt->getName() != ArgList[i].Name)
5409 return Error(ArgList[i].Loc, "redefinition of argument '%" +
5410 ArgList[i].Name + "'");
5413 if (isDefine)
5414 return false;
5416 // Check the declaration has no block address forward references.
5417 ValID ID;
5418 if (FunctionName.empty()) {
5419 ID.Kind = ValID::t_GlobalID;
5420 ID.UIntVal = NumberedVals.size() - 1;
5421 } else {
5422 ID.Kind = ValID::t_GlobalName;
5423 ID.StrVal = FunctionName;
5425 auto Blocks = ForwardRefBlockAddresses.find(ID);
5426 if (Blocks != ForwardRefBlockAddresses.end())
5427 return Error(Blocks->first.Loc,
5428 "cannot take blockaddress inside a declaration");
5429 return false;
5432 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5433 ValID ID;
5434 if (FunctionNumber == -1) {
5435 ID.Kind = ValID::t_GlobalName;
5436 ID.StrVal = F.getName();
5437 } else {
5438 ID.Kind = ValID::t_GlobalID;
5439 ID.UIntVal = FunctionNumber;
5442 auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5443 if (Blocks == P.ForwardRefBlockAddresses.end())
5444 return false;
5446 for (const auto &I : Blocks->second) {
5447 const ValID &BBID = I.first;
5448 GlobalValue *GV = I.second;
5450 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5451 "Expected local id or name");
5452 BasicBlock *BB;
5453 if (BBID.Kind == ValID::t_LocalName)
5454 BB = GetBB(BBID.StrVal, BBID.Loc);
5455 else
5456 BB = GetBB(BBID.UIntVal, BBID.Loc);
5457 if (!BB)
5458 return P.Error(BBID.Loc, "referenced value is not a basic block");
5460 GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5461 GV->eraseFromParent();
5464 P.ForwardRefBlockAddresses.erase(Blocks);
5465 return false;
5468 /// ParseFunctionBody
5469 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
5470 bool LLParser::ParseFunctionBody(Function &Fn) {
5471 if (Lex.getKind() != lltok::lbrace)
5472 return TokError("expected '{' in function body");
5473 Lex.Lex(); // eat the {.
5475 int FunctionNumber = -1;
5476 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5478 PerFunctionState PFS(*this, Fn, FunctionNumber);
5480 // Resolve block addresses and allow basic blocks to be forward-declared
5481 // within this function.
5482 if (PFS.resolveForwardRefBlockAddresses())
5483 return true;
5484 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5486 // We need at least one basic block.
5487 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5488 return TokError("function body requires at least one basic block");
5490 while (Lex.getKind() != lltok::rbrace &&
5491 Lex.getKind() != lltok::kw_uselistorder)
5492 if (ParseBasicBlock(PFS)) return true;
5494 while (Lex.getKind() != lltok::rbrace)
5495 if (ParseUseListOrder(&PFS))
5496 return true;
5498 // Eat the }.
5499 Lex.Lex();
5501 // Verify function is ok.
5502 return PFS.FinishFunction();
5505 /// ParseBasicBlock
5506 /// ::= (LabelStr|LabelID)? Instruction*
5507 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5508 // If this basic block starts out with a name, remember it.
5509 std::string Name;
5510 int NameID = -1;
5511 LocTy NameLoc = Lex.getLoc();
5512 if (Lex.getKind() == lltok::LabelStr) {
5513 Name = Lex.getStrVal();
5514 Lex.Lex();
5515 } else if (Lex.getKind() == lltok::LabelID) {
5516 NameID = Lex.getUIntVal();
5517 Lex.Lex();
5520 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5521 if (!BB)
5522 return true;
5524 std::string NameStr;
5526 // Parse the instructions in this block until we get a terminator.
5527 Instruction *Inst;
5528 do {
5529 // This instruction may have three possibilities for a name: a) none
5530 // specified, b) name specified "%foo =", c) number specified: "%4 =".
5531 LocTy NameLoc = Lex.getLoc();
5532 int NameID = -1;
5533 NameStr = "";
5535 if (Lex.getKind() == lltok::LocalVarID) {
5536 NameID = Lex.getUIntVal();
5537 Lex.Lex();
5538 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5539 return true;
5540 } else if (Lex.getKind() == lltok::LocalVar) {
5541 NameStr = Lex.getStrVal();
5542 Lex.Lex();
5543 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5544 return true;
5547 switch (ParseInstruction(Inst, BB, PFS)) {
5548 default: llvm_unreachable("Unknown ParseInstruction result!");
5549 case InstError: return true;
5550 case InstNormal:
5551 BB->getInstList().push_back(Inst);
5553 // With a normal result, we check to see if the instruction is followed by
5554 // a comma and metadata.
5555 if (EatIfPresent(lltok::comma))
5556 if (ParseInstructionMetadata(*Inst))
5557 return true;
5558 break;
5559 case InstExtraComma:
5560 BB->getInstList().push_back(Inst);
5562 // If the instruction parser ate an extra comma at the end of it, it
5563 // *must* be followed by metadata.
5564 if (ParseInstructionMetadata(*Inst))
5565 return true;
5566 break;
5569 // Set the name on the instruction.
5570 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5571 } while (!Inst->isTerminator());
5573 return false;
5576 //===----------------------------------------------------------------------===//
5577 // Instruction Parsing.
5578 //===----------------------------------------------------------------------===//
5580 /// ParseInstruction - Parse one of the many different instructions.
5582 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5583 PerFunctionState &PFS) {
5584 lltok::Kind Token = Lex.getKind();
5585 if (Token == lltok::Eof)
5586 return TokError("found end of file when expecting more instructions");
5587 LocTy Loc = Lex.getLoc();
5588 unsigned KeywordVal = Lex.getUIntVal();
5589 Lex.Lex(); // Eat the keyword.
5591 switch (Token) {
5592 default: return Error(Loc, "expected instruction opcode");
5593 // Terminator Instructions.
5594 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5595 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
5596 case lltok::kw_br: return ParseBr(Inst, PFS);
5597 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
5598 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
5599 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
5600 case lltok::kw_resume: return ParseResume(Inst, PFS);
5601 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS);
5602 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS);
5603 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5604 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS);
5605 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS);
5606 case lltok::kw_callbr: return ParseCallBr(Inst, PFS);
5607 // Unary Operators.
5608 case lltok::kw_fneg: {
5609 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5610 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, 2);
5611 if (Res != 0)
5612 return Res;
5613 if (FMF.any())
5614 Inst->setFastMathFlags(FMF);
5615 return false;
5617 // Binary Operators.
5618 case lltok::kw_add:
5619 case lltok::kw_sub:
5620 case lltok::kw_mul:
5621 case lltok::kw_shl: {
5622 bool NUW = EatIfPresent(lltok::kw_nuw);
5623 bool NSW = EatIfPresent(lltok::kw_nsw);
5624 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5626 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5628 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5629 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5630 return false;
5632 case lltok::kw_fadd:
5633 case lltok::kw_fsub:
5634 case lltok::kw_fmul:
5635 case lltok::kw_fdiv:
5636 case lltok::kw_frem: {
5637 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5638 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5639 if (Res != 0)
5640 return Res;
5641 if (FMF.any())
5642 Inst->setFastMathFlags(FMF);
5643 return 0;
5646 case lltok::kw_sdiv:
5647 case lltok::kw_udiv:
5648 case lltok::kw_lshr:
5649 case lltok::kw_ashr: {
5650 bool Exact = EatIfPresent(lltok::kw_exact);
5652 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5653 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5654 return false;
5657 case lltok::kw_urem:
5658 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5659 case lltok::kw_and:
5660 case lltok::kw_or:
5661 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
5662 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal);
5663 case lltok::kw_fcmp: {
5664 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5665 int Res = ParseCompare(Inst, PFS, KeywordVal);
5666 if (Res != 0)
5667 return Res;
5668 if (FMF.any())
5669 Inst->setFastMathFlags(FMF);
5670 return 0;
5673 // Casts.
5674 case lltok::kw_trunc:
5675 case lltok::kw_zext:
5676 case lltok::kw_sext:
5677 case lltok::kw_fptrunc:
5678 case lltok::kw_fpext:
5679 case lltok::kw_bitcast:
5680 case lltok::kw_addrspacecast:
5681 case lltok::kw_uitofp:
5682 case lltok::kw_sitofp:
5683 case lltok::kw_fptoui:
5684 case lltok::kw_fptosi:
5685 case lltok::kw_inttoptr:
5686 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
5687 // Other.
5688 case lltok::kw_select: return ParseSelect(Inst, PFS);
5689 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
5690 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5691 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
5692 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
5693 case lltok::kw_phi: return ParsePHI(Inst, PFS);
5694 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
5695 // Call.
5696 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None);
5697 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5698 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5699 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5700 // Memory.
5701 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
5702 case lltok::kw_load: return ParseLoad(Inst, PFS);
5703 case lltok::kw_store: return ParseStore(Inst, PFS);
5704 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
5705 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
5706 case lltok::kw_fence: return ParseFence(Inst, PFS);
5707 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5708 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
5709 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
5713 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5714 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5715 if (Opc == Instruction::FCmp) {
5716 switch (Lex.getKind()) {
5717 default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5718 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5719 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5720 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5721 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5722 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5723 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5724 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5725 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5726 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5727 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5728 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5729 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5730 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5731 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5732 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5733 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5735 } else {
5736 switch (Lex.getKind()) {
5737 default: return TokError("expected icmp predicate (e.g. 'eq')");
5738 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
5739 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
5740 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5741 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5742 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5743 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5744 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5745 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5746 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5747 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5750 Lex.Lex();
5751 return false;
5754 //===----------------------------------------------------------------------===//
5755 // Terminator Instructions.
5756 //===----------------------------------------------------------------------===//
5758 /// ParseRet - Parse a return instruction.
5759 /// ::= 'ret' void (',' !dbg, !1)*
5760 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
5761 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5762 PerFunctionState &PFS) {
5763 SMLoc TypeLoc = Lex.getLoc();
5764 Type *Ty = nullptr;
5765 if (ParseType(Ty, true /*void allowed*/)) return true;
5767 Type *ResType = PFS.getFunction().getReturnType();
5769 if (Ty->isVoidTy()) {
5770 if (!ResType->isVoidTy())
5771 return Error(TypeLoc, "value doesn't match function result type '" +
5772 getTypeString(ResType) + "'");
5774 Inst = ReturnInst::Create(Context);
5775 return false;
5778 Value *RV;
5779 if (ParseValue(Ty, RV, PFS)) return true;
5781 if (ResType != RV->getType())
5782 return Error(TypeLoc, "value doesn't match function result type '" +
5783 getTypeString(ResType) + "'");
5785 Inst = ReturnInst::Create(Context, RV);
5786 return false;
5789 /// ParseBr
5790 /// ::= 'br' TypeAndValue
5791 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5792 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5793 LocTy Loc, Loc2;
5794 Value *Op0;
5795 BasicBlock *Op1, *Op2;
5796 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5798 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5799 Inst = BranchInst::Create(BB);
5800 return false;
5803 if (Op0->getType() != Type::getInt1Ty(Context))
5804 return Error(Loc, "branch condition must have 'i1' type");
5806 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5807 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5808 ParseToken(lltok::comma, "expected ',' after true destination") ||
5809 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5810 return true;
5812 Inst = BranchInst::Create(Op1, Op2, Op0);
5813 return false;
5816 /// ParseSwitch
5817 /// Instruction
5818 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5819 /// JumpTable
5820 /// ::= (TypeAndValue ',' TypeAndValue)*
5821 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5822 LocTy CondLoc, BBLoc;
5823 Value *Cond;
5824 BasicBlock *DefaultBB;
5825 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5826 ParseToken(lltok::comma, "expected ',' after switch condition") ||
5827 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5828 ParseToken(lltok::lsquare, "expected '[' with switch table"))
5829 return true;
5831 if (!Cond->getType()->isIntegerTy())
5832 return Error(CondLoc, "switch condition must have integer type");
5834 // Parse the jump table pairs.
5835 SmallPtrSet<Value*, 32> SeenCases;
5836 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5837 while (Lex.getKind() != lltok::rsquare) {
5838 Value *Constant;
5839 BasicBlock *DestBB;
5841 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5842 ParseToken(lltok::comma, "expected ',' after case value") ||
5843 ParseTypeAndBasicBlock(DestBB, PFS))
5844 return true;
5846 if (!SeenCases.insert(Constant).second)
5847 return Error(CondLoc, "duplicate case value in switch");
5848 if (!isa<ConstantInt>(Constant))
5849 return Error(CondLoc, "case value is not a constant integer");
5851 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5854 Lex.Lex(); // Eat the ']'.
5856 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5857 for (unsigned i = 0, e = Table.size(); i != e; ++i)
5858 SI->addCase(Table[i].first, Table[i].second);
5859 Inst = SI;
5860 return false;
5863 /// ParseIndirectBr
5864 /// Instruction
5865 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5866 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5867 LocTy AddrLoc;
5868 Value *Address;
5869 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5870 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5871 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5872 return true;
5874 if (!Address->getType()->isPointerTy())
5875 return Error(AddrLoc, "indirectbr address must have pointer type");
5877 // Parse the destination list.
5878 SmallVector<BasicBlock*, 16> DestList;
5880 if (Lex.getKind() != lltok::rsquare) {
5881 BasicBlock *DestBB;
5882 if (ParseTypeAndBasicBlock(DestBB, PFS))
5883 return true;
5884 DestList.push_back(DestBB);
5886 while (EatIfPresent(lltok::comma)) {
5887 if (ParseTypeAndBasicBlock(DestBB, PFS))
5888 return true;
5889 DestList.push_back(DestBB);
5893 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5894 return true;
5896 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5897 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5898 IBI->addDestination(DestList[i]);
5899 Inst = IBI;
5900 return false;
5903 /// ParseInvoke
5904 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5905 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5906 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5907 LocTy CallLoc = Lex.getLoc();
5908 AttrBuilder RetAttrs, FnAttrs;
5909 std::vector<unsigned> FwdRefAttrGrps;
5910 LocTy NoBuiltinLoc;
5911 unsigned CC;
5912 unsigned InvokeAddrSpace;
5913 Type *RetType = nullptr;
5914 LocTy RetTypeLoc;
5915 ValID CalleeID;
5916 SmallVector<ParamInfo, 16> ArgList;
5917 SmallVector<OperandBundleDef, 2> BundleList;
5919 BasicBlock *NormalBB, *UnwindBB;
5920 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5921 ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
5922 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5923 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5924 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5925 NoBuiltinLoc) ||
5926 ParseOptionalOperandBundles(BundleList, PFS) ||
5927 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5928 ParseTypeAndBasicBlock(NormalBB, PFS) ||
5929 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5930 ParseTypeAndBasicBlock(UnwindBB, PFS))
5931 return true;
5933 // If RetType is a non-function pointer type, then this is the short syntax
5934 // for the call, which means that RetType is just the return type. Infer the
5935 // rest of the function argument types from the arguments that are present.
5936 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5937 if (!Ty) {
5938 // Pull out the types of all of the arguments...
5939 std::vector<Type*> ParamTypes;
5940 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5941 ParamTypes.push_back(ArgList[i].V->getType());
5943 if (!FunctionType::isValidReturnType(RetType))
5944 return Error(RetTypeLoc, "Invalid result type for LLVM function");
5946 Ty = FunctionType::get(RetType, ParamTypes, false);
5949 CalleeID.FTy = Ty;
5951 // Look up the callee.
5952 Value *Callee;
5953 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
5954 Callee, &PFS, /*IsCall=*/true))
5955 return true;
5957 // Set up the Attribute for the function.
5958 SmallVector<Value *, 8> Args;
5959 SmallVector<AttributeSet, 8> ArgAttrs;
5961 // Loop through FunctionType's arguments and ensure they are specified
5962 // correctly. Also, gather any parameter attributes.
5963 FunctionType::param_iterator I = Ty->param_begin();
5964 FunctionType::param_iterator E = Ty->param_end();
5965 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5966 Type *ExpectedTy = nullptr;
5967 if (I != E) {
5968 ExpectedTy = *I++;
5969 } else if (!Ty->isVarArg()) {
5970 return Error(ArgList[i].Loc, "too many arguments specified");
5973 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5974 return Error(ArgList[i].Loc, "argument is not of expected type '" +
5975 getTypeString(ExpectedTy) + "'");
5976 Args.push_back(ArgList[i].V);
5977 ArgAttrs.push_back(ArgList[i].Attrs);
5980 if (I != E)
5981 return Error(CallLoc, "not enough parameters specified for call");
5983 if (FnAttrs.hasAlignmentAttr())
5984 return Error(CallLoc, "invoke instructions may not have an alignment");
5986 // Finish off the Attribute and check them
5987 AttributeList PAL =
5988 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5989 AttributeSet::get(Context, RetAttrs), ArgAttrs);
5991 InvokeInst *II =
5992 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5993 II->setCallingConv(CC);
5994 II->setAttributes(PAL);
5995 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5996 Inst = II;
5997 return false;
6000 /// ParseResume
6001 /// ::= 'resume' TypeAndValue
6002 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6003 Value *Exn; LocTy ExnLoc;
6004 if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6005 return true;
6007 ResumeInst *RI = ResumeInst::Create(Exn);
6008 Inst = RI;
6009 return false;
6012 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6013 PerFunctionState &PFS) {
6014 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6015 return true;
6017 while (Lex.getKind() != lltok::rsquare) {
6018 // If this isn't the first argument, we need a comma.
6019 if (!Args.empty() &&
6020 ParseToken(lltok::comma, "expected ',' in argument list"))
6021 return true;
6023 // Parse the argument.
6024 LocTy ArgLoc;
6025 Type *ArgTy = nullptr;
6026 if (ParseType(ArgTy, ArgLoc))
6027 return true;
6029 Value *V;
6030 if (ArgTy->isMetadataTy()) {
6031 if (ParseMetadataAsValue(V, PFS))
6032 return true;
6033 } else {
6034 if (ParseValue(ArgTy, V, PFS))
6035 return true;
6037 Args.push_back(V);
6040 Lex.Lex(); // Lex the ']'.
6041 return false;
6044 /// ParseCleanupRet
6045 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6046 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6047 Value *CleanupPad = nullptr;
6049 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6050 return true;
6052 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6053 return true;
6055 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6056 return true;
6058 BasicBlock *UnwindBB = nullptr;
6059 if (Lex.getKind() == lltok::kw_to) {
6060 Lex.Lex();
6061 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6062 return true;
6063 } else {
6064 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6065 return true;
6069 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6070 return false;
6073 /// ParseCatchRet
6074 /// ::= 'catchret' from Parent Value 'to' TypeAndValue
6075 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6076 Value *CatchPad = nullptr;
6078 if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6079 return true;
6081 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6082 return true;
6084 BasicBlock *BB;
6085 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6086 ParseTypeAndBasicBlock(BB, PFS))
6087 return true;
6089 Inst = CatchReturnInst::Create(CatchPad, BB);
6090 return false;
6093 /// ParseCatchSwitch
6094 /// ::= 'catchswitch' within Parent
6095 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6096 Value *ParentPad;
6098 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6099 return true;
6101 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6102 Lex.getKind() != lltok::LocalVarID)
6103 return TokError("expected scope value for catchswitch");
6105 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6106 return true;
6108 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6109 return true;
6111 SmallVector<BasicBlock *, 32> Table;
6112 do {
6113 BasicBlock *DestBB;
6114 if (ParseTypeAndBasicBlock(DestBB, PFS))
6115 return true;
6116 Table.push_back(DestBB);
6117 } while (EatIfPresent(lltok::comma));
6119 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6120 return true;
6122 if (ParseToken(lltok::kw_unwind,
6123 "expected 'unwind' after catchswitch scope"))
6124 return true;
6126 BasicBlock *UnwindBB = nullptr;
6127 if (EatIfPresent(lltok::kw_to)) {
6128 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6129 return true;
6130 } else {
6131 if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6132 return true;
6135 auto *CatchSwitch =
6136 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6137 for (BasicBlock *DestBB : Table)
6138 CatchSwitch->addHandler(DestBB);
6139 Inst = CatchSwitch;
6140 return false;
6143 /// ParseCatchPad
6144 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6145 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6146 Value *CatchSwitch = nullptr;
6148 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6149 return true;
6151 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6152 return TokError("expected scope value for catchpad");
6154 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6155 return true;
6157 SmallVector<Value *, 8> Args;
6158 if (ParseExceptionArgs(Args, PFS))
6159 return true;
6161 Inst = CatchPadInst::Create(CatchSwitch, Args);
6162 return false;
6165 /// ParseCleanupPad
6166 /// ::= 'cleanuppad' within Parent ParamList
6167 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6168 Value *ParentPad = nullptr;
6170 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6171 return true;
6173 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6174 Lex.getKind() != lltok::LocalVarID)
6175 return TokError("expected scope value for cleanuppad");
6177 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6178 return true;
6180 SmallVector<Value *, 8> Args;
6181 if (ParseExceptionArgs(Args, PFS))
6182 return true;
6184 Inst = CleanupPadInst::Create(ParentPad, Args);
6185 return false;
6188 //===----------------------------------------------------------------------===//
6189 // Unary Operators.
6190 //===----------------------------------------------------------------------===//
6192 /// ParseUnaryOp
6193 /// ::= UnaryOp TypeAndValue ',' Value
6195 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
6196 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6197 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6198 unsigned Opc, unsigned OperandType) {
6199 LocTy Loc; Value *LHS;
6200 if (ParseTypeAndValue(LHS, Loc, PFS))
6201 return true;
6203 bool Valid;
6204 switch (OperandType) {
6205 default: llvm_unreachable("Unknown operand type!");
6206 case 0: // int or FP.
6207 Valid = LHS->getType()->isIntOrIntVectorTy() ||
6208 LHS->getType()->isFPOrFPVectorTy();
6209 break;
6210 case 1:
6211 Valid = LHS->getType()->isIntOrIntVectorTy();
6212 break;
6213 case 2:
6214 Valid = LHS->getType()->isFPOrFPVectorTy();
6215 break;
6218 if (!Valid)
6219 return Error(Loc, "invalid operand type for instruction");
6221 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6222 return false;
6225 /// ParseCallBr
6226 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6227 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6228 /// '[' LabelList ']'
6229 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6230 LocTy CallLoc = Lex.getLoc();
6231 AttrBuilder RetAttrs, FnAttrs;
6232 std::vector<unsigned> FwdRefAttrGrps;
6233 LocTy NoBuiltinLoc;
6234 unsigned CC;
6235 Type *RetType = nullptr;
6236 LocTy RetTypeLoc;
6237 ValID CalleeID;
6238 SmallVector<ParamInfo, 16> ArgList;
6239 SmallVector<OperandBundleDef, 2> BundleList;
6241 BasicBlock *DefaultDest;
6242 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6243 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6244 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6245 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6246 NoBuiltinLoc) ||
6247 ParseOptionalOperandBundles(BundleList, PFS) ||
6248 ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6249 ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6250 ParseToken(lltok::lsquare, "expected '[' in callbr"))
6251 return true;
6253 // Parse the destination list.
6254 SmallVector<BasicBlock *, 16> IndirectDests;
6256 if (Lex.getKind() != lltok::rsquare) {
6257 BasicBlock *DestBB;
6258 if (ParseTypeAndBasicBlock(DestBB, PFS))
6259 return true;
6260 IndirectDests.push_back(DestBB);
6262 while (EatIfPresent(lltok::comma)) {
6263 if (ParseTypeAndBasicBlock(DestBB, PFS))
6264 return true;
6265 IndirectDests.push_back(DestBB);
6269 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6270 return true;
6272 // If RetType is a non-function pointer type, then this is the short syntax
6273 // for the call, which means that RetType is just the return type. Infer the
6274 // rest of the function argument types from the arguments that are present.
6275 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6276 if (!Ty) {
6277 // Pull out the types of all of the arguments...
6278 std::vector<Type *> ParamTypes;
6279 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6280 ParamTypes.push_back(ArgList[i].V->getType());
6282 if (!FunctionType::isValidReturnType(RetType))
6283 return Error(RetTypeLoc, "Invalid result type for LLVM function");
6285 Ty = FunctionType::get(RetType, ParamTypes, false);
6288 CalleeID.FTy = Ty;
6290 // Look up the callee.
6291 Value *Callee;
6292 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6293 /*IsCall=*/true))
6294 return true;
6296 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6297 return Error(RetTypeLoc, "asm-goto outputs not supported");
6299 // Set up the Attribute for the function.
6300 SmallVector<Value *, 8> Args;
6301 SmallVector<AttributeSet, 8> ArgAttrs;
6303 // Loop through FunctionType's arguments and ensure they are specified
6304 // correctly. Also, gather any parameter attributes.
6305 FunctionType::param_iterator I = Ty->param_begin();
6306 FunctionType::param_iterator E = Ty->param_end();
6307 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6308 Type *ExpectedTy = nullptr;
6309 if (I != E) {
6310 ExpectedTy = *I++;
6311 } else if (!Ty->isVarArg()) {
6312 return Error(ArgList[i].Loc, "too many arguments specified");
6315 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6316 return Error(ArgList[i].Loc, "argument is not of expected type '" +
6317 getTypeString(ExpectedTy) + "'");
6318 Args.push_back(ArgList[i].V);
6319 ArgAttrs.push_back(ArgList[i].Attrs);
6322 if (I != E)
6323 return Error(CallLoc, "not enough parameters specified for call");
6325 if (FnAttrs.hasAlignmentAttr())
6326 return Error(CallLoc, "callbr instructions may not have an alignment");
6328 // Finish off the Attribute and check them
6329 AttributeList PAL =
6330 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6331 AttributeSet::get(Context, RetAttrs), ArgAttrs);
6333 CallBrInst *CBI =
6334 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6335 BundleList);
6336 CBI->setCallingConv(CC);
6337 CBI->setAttributes(PAL);
6338 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6339 Inst = CBI;
6340 return false;
6343 //===----------------------------------------------------------------------===//
6344 // Binary Operators.
6345 //===----------------------------------------------------------------------===//
6347 /// ParseArithmetic
6348 /// ::= ArithmeticOps TypeAndValue ',' Value
6350 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
6351 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6352 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6353 unsigned Opc, unsigned OperandType) {
6354 LocTy Loc; Value *LHS, *RHS;
6355 if (ParseTypeAndValue(LHS, Loc, PFS) ||
6356 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6357 ParseValue(LHS->getType(), RHS, PFS))
6358 return true;
6360 bool Valid;
6361 switch (OperandType) {
6362 default: llvm_unreachable("Unknown operand type!");
6363 case 0: // int or FP.
6364 Valid = LHS->getType()->isIntOrIntVectorTy() ||
6365 LHS->getType()->isFPOrFPVectorTy();
6366 break;
6367 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
6368 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
6371 if (!Valid)
6372 return Error(Loc, "invalid operand type for instruction");
6374 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6375 return false;
6378 /// ParseLogical
6379 /// ::= ArithmeticOps TypeAndValue ',' Value {
6380 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6381 unsigned Opc) {
6382 LocTy Loc; Value *LHS, *RHS;
6383 if (ParseTypeAndValue(LHS, Loc, PFS) ||
6384 ParseToken(lltok::comma, "expected ',' in logical operation") ||
6385 ParseValue(LHS->getType(), RHS, PFS))
6386 return true;
6388 if (!LHS->getType()->isIntOrIntVectorTy())
6389 return Error(Loc,"instruction requires integer or integer vector operands");
6391 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6392 return false;
6395 /// ParseCompare
6396 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
6397 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
6398 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6399 unsigned Opc) {
6400 // Parse the integer/fp comparison predicate.
6401 LocTy Loc;
6402 unsigned Pred;
6403 Value *LHS, *RHS;
6404 if (ParseCmpPredicate(Pred, Opc) ||
6405 ParseTypeAndValue(LHS, Loc, PFS) ||
6406 ParseToken(lltok::comma, "expected ',' after compare value") ||
6407 ParseValue(LHS->getType(), RHS, PFS))
6408 return true;
6410 if (Opc == Instruction::FCmp) {
6411 if (!LHS->getType()->isFPOrFPVectorTy())
6412 return Error(Loc, "fcmp requires floating point operands");
6413 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6414 } else {
6415 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6416 if (!LHS->getType()->isIntOrIntVectorTy() &&
6417 !LHS->getType()->isPtrOrPtrVectorTy())
6418 return Error(Loc, "icmp requires integer operands");
6419 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6421 return false;
6424 //===----------------------------------------------------------------------===//
6425 // Other Instructions.
6426 //===----------------------------------------------------------------------===//
6429 /// ParseCast
6430 /// ::= CastOpc TypeAndValue 'to' Type
6431 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6432 unsigned Opc) {
6433 LocTy Loc;
6434 Value *Op;
6435 Type *DestTy = nullptr;
6436 if (ParseTypeAndValue(Op, Loc, PFS) ||
6437 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6438 ParseType(DestTy))
6439 return true;
6441 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6442 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6443 return Error(Loc, "invalid cast opcode for cast from '" +
6444 getTypeString(Op->getType()) + "' to '" +
6445 getTypeString(DestTy) + "'");
6447 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6448 return false;
6451 /// ParseSelect
6452 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6453 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6454 LocTy Loc;
6455 Value *Op0, *Op1, *Op2;
6456 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6457 ParseToken(lltok::comma, "expected ',' after select condition") ||
6458 ParseTypeAndValue(Op1, PFS) ||
6459 ParseToken(lltok::comma, "expected ',' after select value") ||
6460 ParseTypeAndValue(Op2, PFS))
6461 return true;
6463 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6464 return Error(Loc, Reason);
6466 Inst = SelectInst::Create(Op0, Op1, Op2);
6467 return false;
6470 /// ParseVA_Arg
6471 /// ::= 'va_arg' TypeAndValue ',' Type
6472 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6473 Value *Op;
6474 Type *EltTy = nullptr;
6475 LocTy TypeLoc;
6476 if (ParseTypeAndValue(Op, PFS) ||
6477 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6478 ParseType(EltTy, TypeLoc))
6479 return true;
6481 if (!EltTy->isFirstClassType())
6482 return Error(TypeLoc, "va_arg requires operand with first class type");
6484 Inst = new VAArgInst(Op, EltTy);
6485 return false;
6488 /// ParseExtractElement
6489 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
6490 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6491 LocTy Loc;
6492 Value *Op0, *Op1;
6493 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6494 ParseToken(lltok::comma, "expected ',' after extract value") ||
6495 ParseTypeAndValue(Op1, PFS))
6496 return true;
6498 if (!ExtractElementInst::isValidOperands(Op0, Op1))
6499 return Error(Loc, "invalid extractelement operands");
6501 Inst = ExtractElementInst::Create(Op0, Op1);
6502 return false;
6505 /// ParseInsertElement
6506 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6507 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6508 LocTy Loc;
6509 Value *Op0, *Op1, *Op2;
6510 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6511 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6512 ParseTypeAndValue(Op1, PFS) ||
6513 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6514 ParseTypeAndValue(Op2, PFS))
6515 return true;
6517 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6518 return Error(Loc, "invalid insertelement operands");
6520 Inst = InsertElementInst::Create(Op0, Op1, Op2);
6521 return false;
6524 /// ParseShuffleVector
6525 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6526 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6527 LocTy Loc;
6528 Value *Op0, *Op1, *Op2;
6529 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6530 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6531 ParseTypeAndValue(Op1, PFS) ||
6532 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6533 ParseTypeAndValue(Op2, PFS))
6534 return true;
6536 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6537 return Error(Loc, "invalid shufflevector operands");
6539 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6540 return false;
6543 /// ParsePHI
6544 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6545 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6546 Type *Ty = nullptr; LocTy TypeLoc;
6547 Value *Op0, *Op1;
6549 if (ParseType(Ty, TypeLoc) ||
6550 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6551 ParseValue(Ty, Op0, PFS) ||
6552 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6553 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6554 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6555 return true;
6557 bool AteExtraComma = false;
6558 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6560 while (true) {
6561 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6563 if (!EatIfPresent(lltok::comma))
6564 break;
6566 if (Lex.getKind() == lltok::MetadataVar) {
6567 AteExtraComma = true;
6568 break;
6571 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6572 ParseValue(Ty, Op0, PFS) ||
6573 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6574 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6575 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6576 return true;
6579 if (!Ty->isFirstClassType())
6580 return Error(TypeLoc, "phi node must have first class type");
6582 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6583 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6584 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6585 Inst = PN;
6586 return AteExtraComma ? InstExtraComma : InstNormal;
6589 /// ParseLandingPad
6590 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6591 /// Clause
6592 /// ::= 'catch' TypeAndValue
6593 /// ::= 'filter'
6594 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6595 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6596 Type *Ty = nullptr; LocTy TyLoc;
6598 if (ParseType(Ty, TyLoc))
6599 return true;
6601 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6602 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6604 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6605 LandingPadInst::ClauseType CT;
6606 if (EatIfPresent(lltok::kw_catch))
6607 CT = LandingPadInst::Catch;
6608 else if (EatIfPresent(lltok::kw_filter))
6609 CT = LandingPadInst::Filter;
6610 else
6611 return TokError("expected 'catch' or 'filter' clause type");
6613 Value *V;
6614 LocTy VLoc;
6615 if (ParseTypeAndValue(V, VLoc, PFS))
6616 return true;
6618 // A 'catch' type expects a non-array constant. A filter clause expects an
6619 // array constant.
6620 if (CT == LandingPadInst::Catch) {
6621 if (isa<ArrayType>(V->getType()))
6622 Error(VLoc, "'catch' clause has an invalid type");
6623 } else {
6624 if (!isa<ArrayType>(V->getType()))
6625 Error(VLoc, "'filter' clause has an invalid type");
6628 Constant *CV = dyn_cast<Constant>(V);
6629 if (!CV)
6630 return Error(VLoc, "clause argument must be a constant");
6631 LP->addClause(CV);
6634 Inst = LP.release();
6635 return false;
6638 /// ParseCall
6639 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv
6640 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6641 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6642 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6643 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6644 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6645 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
6646 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6647 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6648 CallInst::TailCallKind TCK) {
6649 AttrBuilder RetAttrs, FnAttrs;
6650 std::vector<unsigned> FwdRefAttrGrps;
6651 LocTy BuiltinLoc;
6652 unsigned CallAddrSpace;
6653 unsigned CC;
6654 Type *RetType = nullptr;
6655 LocTy RetTypeLoc;
6656 ValID CalleeID;
6657 SmallVector<ParamInfo, 16> ArgList;
6658 SmallVector<OperandBundleDef, 2> BundleList;
6659 LocTy CallLoc = Lex.getLoc();
6661 if (TCK != CallInst::TCK_None &&
6662 ParseToken(lltok::kw_call,
6663 "expected 'tail call', 'musttail call', or 'notail call'"))
6664 return true;
6666 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6668 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6669 ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6670 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6671 ParseValID(CalleeID) ||
6672 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6673 PFS.getFunction().isVarArg()) ||
6674 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6675 ParseOptionalOperandBundles(BundleList, PFS))
6676 return true;
6678 if (FMF.any() && !RetType->isFPOrFPVectorTy())
6679 return Error(CallLoc, "fast-math-flags specified for call without "
6680 "floating-point scalar or vector return type");
6682 // If RetType is a non-function pointer type, then this is the short syntax
6683 // for the call, which means that RetType is just the return type. Infer the
6684 // rest of the function argument types from the arguments that are present.
6685 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6686 if (!Ty) {
6687 // Pull out the types of all of the arguments...
6688 std::vector<Type*> ParamTypes;
6689 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6690 ParamTypes.push_back(ArgList[i].V->getType());
6692 if (!FunctionType::isValidReturnType(RetType))
6693 return Error(RetTypeLoc, "Invalid result type for LLVM function");
6695 Ty = FunctionType::get(RetType, ParamTypes, false);
6698 CalleeID.FTy = Ty;
6700 // Look up the callee.
6701 Value *Callee;
6702 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6703 &PFS, /*IsCall=*/true))
6704 return true;
6706 // Set up the Attribute for the function.
6707 SmallVector<AttributeSet, 8> Attrs;
6709 SmallVector<Value*, 8> Args;
6711 // Loop through FunctionType's arguments and ensure they are specified
6712 // correctly. Also, gather any parameter attributes.
6713 FunctionType::param_iterator I = Ty->param_begin();
6714 FunctionType::param_iterator E = Ty->param_end();
6715 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6716 Type *ExpectedTy = nullptr;
6717 if (I != E) {
6718 ExpectedTy = *I++;
6719 } else if (!Ty->isVarArg()) {
6720 return Error(ArgList[i].Loc, "too many arguments specified");
6723 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6724 return Error(ArgList[i].Loc, "argument is not of expected type '" +
6725 getTypeString(ExpectedTy) + "'");
6726 Args.push_back(ArgList[i].V);
6727 Attrs.push_back(ArgList[i].Attrs);
6730 if (I != E)
6731 return Error(CallLoc, "not enough parameters specified for call");
6733 if (FnAttrs.hasAlignmentAttr())
6734 return Error(CallLoc, "call instructions may not have an alignment");
6736 // Finish off the Attribute and check them
6737 AttributeList PAL =
6738 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6739 AttributeSet::get(Context, RetAttrs), Attrs);
6741 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6742 CI->setTailCallKind(TCK);
6743 CI->setCallingConv(CC);
6744 if (FMF.any())
6745 CI->setFastMathFlags(FMF);
6746 CI->setAttributes(PAL);
6747 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6748 Inst = CI;
6749 return false;
6752 //===----------------------------------------------------------------------===//
6753 // Memory Instructions.
6754 //===----------------------------------------------------------------------===//
6756 /// ParseAlloc
6757 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6758 /// (',' 'align' i32)? (',', 'addrspace(n))?
6759 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6760 Value *Size = nullptr;
6761 LocTy SizeLoc, TyLoc, ASLoc;
6762 unsigned Alignment = 0;
6763 unsigned AddrSpace = 0;
6764 Type *Ty = nullptr;
6766 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6767 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6769 if (ParseType(Ty, TyLoc)) return true;
6771 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6772 return Error(TyLoc, "invalid type for alloca");
6774 bool AteExtraComma = false;
6775 if (EatIfPresent(lltok::comma)) {
6776 if (Lex.getKind() == lltok::kw_align) {
6777 if (ParseOptionalAlignment(Alignment))
6778 return true;
6779 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6780 return true;
6781 } else if (Lex.getKind() == lltok::kw_addrspace) {
6782 ASLoc = Lex.getLoc();
6783 if (ParseOptionalAddrSpace(AddrSpace))
6784 return true;
6785 } else if (Lex.getKind() == lltok::MetadataVar) {
6786 AteExtraComma = true;
6787 } else {
6788 if (ParseTypeAndValue(Size, SizeLoc, PFS))
6789 return true;
6790 if (EatIfPresent(lltok::comma)) {
6791 if (Lex.getKind() == lltok::kw_align) {
6792 if (ParseOptionalAlignment(Alignment))
6793 return true;
6794 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6795 return true;
6796 } else if (Lex.getKind() == lltok::kw_addrspace) {
6797 ASLoc = Lex.getLoc();
6798 if (ParseOptionalAddrSpace(AddrSpace))
6799 return true;
6800 } else if (Lex.getKind() == lltok::MetadataVar) {
6801 AteExtraComma = true;
6807 if (Size && !Size->getType()->isIntegerTy())
6808 return Error(SizeLoc, "element count must have integer type");
6810 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6811 AI->setUsedWithInAlloca(IsInAlloca);
6812 AI->setSwiftError(IsSwiftError);
6813 Inst = AI;
6814 return AteExtraComma ? InstExtraComma : InstNormal;
6817 /// ParseLoad
6818 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6819 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
6820 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
6821 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6822 Value *Val; LocTy Loc;
6823 unsigned Alignment = 0;
6824 bool AteExtraComma = false;
6825 bool isAtomic = false;
6826 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6827 SyncScope::ID SSID = SyncScope::System;
6829 if (Lex.getKind() == lltok::kw_atomic) {
6830 isAtomic = true;
6831 Lex.Lex();
6834 bool isVolatile = false;
6835 if (Lex.getKind() == lltok::kw_volatile) {
6836 isVolatile = true;
6837 Lex.Lex();
6840 Type *Ty;
6841 LocTy ExplicitTypeLoc = Lex.getLoc();
6842 if (ParseType(Ty) ||
6843 ParseToken(lltok::comma, "expected comma after load's type") ||
6844 ParseTypeAndValue(Val, Loc, PFS) ||
6845 ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6846 ParseOptionalCommaAlign(Alignment, AteExtraComma))
6847 return true;
6849 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6850 return Error(Loc, "load operand must be a pointer to a first class type");
6851 if (isAtomic && !Alignment)
6852 return Error(Loc, "atomic load must have explicit non-zero alignment");
6853 if (Ordering == AtomicOrdering::Release ||
6854 Ordering == AtomicOrdering::AcquireRelease)
6855 return Error(Loc, "atomic load cannot use Release ordering");
6857 if (Ty != cast<PointerType>(Val->getType())->getElementType())
6858 return Error(ExplicitTypeLoc,
6859 "explicit pointee type doesn't match operand's pointee type");
6861 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6862 return AteExtraComma ? InstExtraComma : InstNormal;
6865 /// ParseStore
6867 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6868 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6869 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
6870 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6871 Value *Val, *Ptr; LocTy Loc, PtrLoc;
6872 unsigned Alignment = 0;
6873 bool AteExtraComma = false;
6874 bool isAtomic = false;
6875 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6876 SyncScope::ID SSID = SyncScope::System;
6878 if (Lex.getKind() == lltok::kw_atomic) {
6879 isAtomic = true;
6880 Lex.Lex();
6883 bool isVolatile = false;
6884 if (Lex.getKind() == lltok::kw_volatile) {
6885 isVolatile = true;
6886 Lex.Lex();
6889 if (ParseTypeAndValue(Val, Loc, PFS) ||
6890 ParseToken(lltok::comma, "expected ',' after store operand") ||
6891 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6892 ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6893 ParseOptionalCommaAlign(Alignment, AteExtraComma))
6894 return true;
6896 if (!Ptr->getType()->isPointerTy())
6897 return Error(PtrLoc, "store operand must be a pointer");
6898 if (!Val->getType()->isFirstClassType())
6899 return Error(Loc, "store operand must be a first class value");
6900 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6901 return Error(Loc, "stored value and pointer type do not match");
6902 if (isAtomic && !Alignment)
6903 return Error(Loc, "atomic store must have explicit non-zero alignment");
6904 if (Ordering == AtomicOrdering::Acquire ||
6905 Ordering == AtomicOrdering::AcquireRelease)
6906 return Error(Loc, "atomic store cannot use Acquire ordering");
6908 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6909 return AteExtraComma ? InstExtraComma : InstNormal;
6912 /// ParseCmpXchg
6913 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6914 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6915 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6916 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6917 bool AteExtraComma = false;
6918 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6919 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6920 SyncScope::ID SSID = SyncScope::System;
6921 bool isVolatile = false;
6922 bool isWeak = false;
6924 if (EatIfPresent(lltok::kw_weak))
6925 isWeak = true;
6927 if (EatIfPresent(lltok::kw_volatile))
6928 isVolatile = true;
6930 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6931 ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6932 ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6933 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6934 ParseTypeAndValue(New, NewLoc, PFS) ||
6935 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6936 ParseOrdering(FailureOrdering))
6937 return true;
6939 if (SuccessOrdering == AtomicOrdering::Unordered ||
6940 FailureOrdering == AtomicOrdering::Unordered)
6941 return TokError("cmpxchg cannot be unordered");
6942 if (isStrongerThan(FailureOrdering, SuccessOrdering))
6943 return TokError("cmpxchg failure argument shall be no stronger than the "
6944 "success argument");
6945 if (FailureOrdering == AtomicOrdering::Release ||
6946 FailureOrdering == AtomicOrdering::AcquireRelease)
6947 return TokError(
6948 "cmpxchg failure ordering cannot include release semantics");
6949 if (!Ptr->getType()->isPointerTy())
6950 return Error(PtrLoc, "cmpxchg operand must be a pointer");
6951 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6952 return Error(CmpLoc, "compare value and pointer type do not match");
6953 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6954 return Error(NewLoc, "new value and pointer type do not match");
6955 if (!New->getType()->isFirstClassType())
6956 return Error(NewLoc, "cmpxchg operand must be a first class value");
6957 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6958 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6959 CXI->setVolatile(isVolatile);
6960 CXI->setWeak(isWeak);
6961 Inst = CXI;
6962 return AteExtraComma ? InstExtraComma : InstNormal;
6965 /// ParseAtomicRMW
6966 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6967 /// 'singlethread'? AtomicOrdering
6968 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6969 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6970 bool AteExtraComma = false;
6971 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6972 SyncScope::ID SSID = SyncScope::System;
6973 bool isVolatile = false;
6974 bool IsFP = false;
6975 AtomicRMWInst::BinOp Operation;
6977 if (EatIfPresent(lltok::kw_volatile))
6978 isVolatile = true;
6980 switch (Lex.getKind()) {
6981 default: return TokError("expected binary operation in atomicrmw");
6982 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6983 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6984 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6985 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6986 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6987 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6988 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6989 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6990 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6991 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6992 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6993 case lltok::kw_fadd:
6994 Operation = AtomicRMWInst::FAdd;
6995 IsFP = true;
6996 break;
6997 case lltok::kw_fsub:
6998 Operation = AtomicRMWInst::FSub;
6999 IsFP = true;
7000 break;
7002 Lex.Lex(); // Eat the operation.
7004 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7005 ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7006 ParseTypeAndValue(Val, ValLoc, PFS) ||
7007 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7008 return true;
7010 if (Ordering == AtomicOrdering::Unordered)
7011 return TokError("atomicrmw cannot be unordered");
7012 if (!Ptr->getType()->isPointerTy())
7013 return Error(PtrLoc, "atomicrmw operand must be a pointer");
7014 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7015 return Error(ValLoc, "atomicrmw value and pointer type do not match");
7017 if (Operation == AtomicRMWInst::Xchg) {
7018 if (!Val->getType()->isIntegerTy() &&
7019 !Val->getType()->isFloatingPointTy()) {
7020 return Error(ValLoc, "atomicrmw " +
7021 AtomicRMWInst::getOperationName(Operation) +
7022 " operand must be an integer or floating point type");
7024 } else if (IsFP) {
7025 if (!Val->getType()->isFloatingPointTy()) {
7026 return Error(ValLoc, "atomicrmw " +
7027 AtomicRMWInst::getOperationName(Operation) +
7028 " operand must be a floating point type");
7030 } else {
7031 if (!Val->getType()->isIntegerTy()) {
7032 return Error(ValLoc, "atomicrmw " +
7033 AtomicRMWInst::getOperationName(Operation) +
7034 " operand must be an integer");
7038 unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7039 if (Size < 8 || (Size & (Size - 1)))
7040 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7041 " integer");
7043 AtomicRMWInst *RMWI =
7044 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7045 RMWI->setVolatile(isVolatile);
7046 Inst = RMWI;
7047 return AteExtraComma ? InstExtraComma : InstNormal;
7050 /// ParseFence
7051 /// ::= 'fence' 'singlethread'? AtomicOrdering
7052 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7053 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7054 SyncScope::ID SSID = SyncScope::System;
7055 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7056 return true;
7058 if (Ordering == AtomicOrdering::Unordered)
7059 return TokError("fence cannot be unordered");
7060 if (Ordering == AtomicOrdering::Monotonic)
7061 return TokError("fence cannot be monotonic");
7063 Inst = new FenceInst(Context, Ordering, SSID);
7064 return InstNormal;
7067 /// ParseGetElementPtr
7068 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7069 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7070 Value *Ptr = nullptr;
7071 Value *Val = nullptr;
7072 LocTy Loc, EltLoc;
7074 bool InBounds = EatIfPresent(lltok::kw_inbounds);
7076 Type *Ty = nullptr;
7077 LocTy ExplicitTypeLoc = Lex.getLoc();
7078 if (ParseType(Ty) ||
7079 ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7080 ParseTypeAndValue(Ptr, Loc, PFS))
7081 return true;
7083 Type *BaseType = Ptr->getType();
7084 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7085 if (!BasePointerType)
7086 return Error(Loc, "base of getelementptr must be a pointer");
7088 if (Ty != BasePointerType->getElementType())
7089 return Error(ExplicitTypeLoc,
7090 "explicit pointee type doesn't match operand's pointee type");
7092 SmallVector<Value*, 16> Indices;
7093 bool AteExtraComma = false;
7094 // GEP returns a vector of pointers if at least one of parameters is a vector.
7095 // All vector parameters should have the same vector width.
7096 unsigned GEPWidth = BaseType->isVectorTy() ?
7097 BaseType->getVectorNumElements() : 0;
7099 while (EatIfPresent(lltok::comma)) {
7100 if (Lex.getKind() == lltok::MetadataVar) {
7101 AteExtraComma = true;
7102 break;
7104 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7105 if (!Val->getType()->isIntOrIntVectorTy())
7106 return Error(EltLoc, "getelementptr index must be an integer");
7108 if (Val->getType()->isVectorTy()) {
7109 unsigned ValNumEl = Val->getType()->getVectorNumElements();
7110 if (GEPWidth && GEPWidth != ValNumEl)
7111 return Error(EltLoc,
7112 "getelementptr vector index has a wrong number of elements");
7113 GEPWidth = ValNumEl;
7115 Indices.push_back(Val);
7118 SmallPtrSet<Type*, 4> Visited;
7119 if (!Indices.empty() && !Ty->isSized(&Visited))
7120 return Error(Loc, "base element of getelementptr must be sized");
7122 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7123 return Error(Loc, "invalid getelementptr indices");
7124 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7125 if (InBounds)
7126 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7127 return AteExtraComma ? InstExtraComma : InstNormal;
7130 /// ParseExtractValue
7131 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
7132 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7133 Value *Val; LocTy Loc;
7134 SmallVector<unsigned, 4> Indices;
7135 bool AteExtraComma;
7136 if (ParseTypeAndValue(Val, Loc, PFS) ||
7137 ParseIndexList(Indices, AteExtraComma))
7138 return true;
7140 if (!Val->getType()->isAggregateType())
7141 return Error(Loc, "extractvalue operand must be aggregate type");
7143 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7144 return Error(Loc, "invalid indices for extractvalue");
7145 Inst = ExtractValueInst::Create(Val, Indices);
7146 return AteExtraComma ? InstExtraComma : InstNormal;
7149 /// ParseInsertValue
7150 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7151 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7152 Value *Val0, *Val1; LocTy Loc0, Loc1;
7153 SmallVector<unsigned, 4> Indices;
7154 bool AteExtraComma;
7155 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7156 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7157 ParseTypeAndValue(Val1, Loc1, PFS) ||
7158 ParseIndexList(Indices, AteExtraComma))
7159 return true;
7161 if (!Val0->getType()->isAggregateType())
7162 return Error(Loc0, "insertvalue operand must be aggregate type");
7164 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7165 if (!IndexedType)
7166 return Error(Loc0, "invalid indices for insertvalue");
7167 if (IndexedType != Val1->getType())
7168 return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7169 getTypeString(Val1->getType()) + "' instead of '" +
7170 getTypeString(IndexedType) + "'");
7171 Inst = InsertValueInst::Create(Val0, Val1, Indices);
7172 return AteExtraComma ? InstExtraComma : InstNormal;
7175 //===----------------------------------------------------------------------===//
7176 // Embedded metadata.
7177 //===----------------------------------------------------------------------===//
7179 /// ParseMDNodeVector
7180 /// ::= { Element (',' Element)* }
7181 /// Element
7182 /// ::= 'null' | TypeAndValue
7183 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7184 if (ParseToken(lltok::lbrace, "expected '{' here"))
7185 return true;
7187 // Check for an empty list.
7188 if (EatIfPresent(lltok::rbrace))
7189 return false;
7191 do {
7192 // Null is a special case since it is typeless.
7193 if (EatIfPresent(lltok::kw_null)) {
7194 Elts.push_back(nullptr);
7195 continue;
7198 Metadata *MD;
7199 if (ParseMetadata(MD, nullptr))
7200 return true;
7201 Elts.push_back(MD);
7202 } while (EatIfPresent(lltok::comma));
7204 return ParseToken(lltok::rbrace, "expected end of metadata node");
7207 //===----------------------------------------------------------------------===//
7208 // Use-list order directives.
7209 //===----------------------------------------------------------------------===//
7210 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7211 SMLoc Loc) {
7212 if (V->use_empty())
7213 return Error(Loc, "value has no uses");
7215 unsigned NumUses = 0;
7216 SmallDenseMap<const Use *, unsigned, 16> Order;
7217 for (const Use &U : V->uses()) {
7218 if (++NumUses > Indexes.size())
7219 break;
7220 Order[&U] = Indexes[NumUses - 1];
7222 if (NumUses < 2)
7223 return Error(Loc, "value only has one use");
7224 if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7225 return Error(Loc,
7226 "wrong number of indexes, expected " + Twine(V->getNumUses()));
7228 V->sortUseList([&](const Use &L, const Use &R) {
7229 return Order.lookup(&L) < Order.lookup(&R);
7231 return false;
7234 /// ParseUseListOrderIndexes
7235 /// ::= '{' uint32 (',' uint32)+ '}'
7236 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7237 SMLoc Loc = Lex.getLoc();
7238 if (ParseToken(lltok::lbrace, "expected '{' here"))
7239 return true;
7240 if (Lex.getKind() == lltok::rbrace)
7241 return Lex.Error("expected non-empty list of uselistorder indexes");
7243 // Use Offset, Max, and IsOrdered to check consistency of indexes. The
7244 // indexes should be distinct numbers in the range [0, size-1], and should
7245 // not be in order.
7246 unsigned Offset = 0;
7247 unsigned Max = 0;
7248 bool IsOrdered = true;
7249 assert(Indexes.empty() && "Expected empty order vector");
7250 do {
7251 unsigned Index;
7252 if (ParseUInt32(Index))
7253 return true;
7255 // Update consistency checks.
7256 Offset += Index - Indexes.size();
7257 Max = std::max(Max, Index);
7258 IsOrdered &= Index == Indexes.size();
7260 Indexes.push_back(Index);
7261 } while (EatIfPresent(lltok::comma));
7263 if (ParseToken(lltok::rbrace, "expected '}' here"))
7264 return true;
7266 if (Indexes.size() < 2)
7267 return Error(Loc, "expected >= 2 uselistorder indexes");
7268 if (Offset != 0 || Max >= Indexes.size())
7269 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7270 if (IsOrdered)
7271 return Error(Loc, "expected uselistorder indexes to change the order");
7273 return false;
7276 /// ParseUseListOrder
7277 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7278 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7279 SMLoc Loc = Lex.getLoc();
7280 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7281 return true;
7283 Value *V;
7284 SmallVector<unsigned, 16> Indexes;
7285 if (ParseTypeAndValue(V, PFS) ||
7286 ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7287 ParseUseListOrderIndexes(Indexes))
7288 return true;
7290 return sortUseListOrder(V, Indexes, Loc);
7293 /// ParseUseListOrderBB
7294 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7295 bool LLParser::ParseUseListOrderBB() {
7296 assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7297 SMLoc Loc = Lex.getLoc();
7298 Lex.Lex();
7300 ValID Fn, Label;
7301 SmallVector<unsigned, 16> Indexes;
7302 if (ParseValID(Fn) ||
7303 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7304 ParseValID(Label) ||
7305 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7306 ParseUseListOrderIndexes(Indexes))
7307 return true;
7309 // Check the function.
7310 GlobalValue *GV;
7311 if (Fn.Kind == ValID::t_GlobalName)
7312 GV = M->getNamedValue(Fn.StrVal);
7313 else if (Fn.Kind == ValID::t_GlobalID)
7314 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7315 else
7316 return Error(Fn.Loc, "expected function name in uselistorder_bb");
7317 if (!GV)
7318 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7319 auto *F = dyn_cast<Function>(GV);
7320 if (!F)
7321 return Error(Fn.Loc, "expected function name in uselistorder_bb");
7322 if (F->isDeclaration())
7323 return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7325 // Check the basic block.
7326 if (Label.Kind == ValID::t_LocalID)
7327 return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7328 if (Label.Kind != ValID::t_LocalName)
7329 return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7330 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7331 if (!V)
7332 return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7333 if (!isa<BasicBlock>(V))
7334 return Error(Label.Loc, "expected basic block in uselistorder_bb");
7336 return sortUseListOrder(V, Indexes, Loc);
7339 /// ModuleEntry
7340 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7341 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7342 bool LLParser::ParseModuleEntry(unsigned ID) {
7343 assert(Lex.getKind() == lltok::kw_module);
7344 Lex.Lex();
7346 std::string Path;
7347 if (ParseToken(lltok::colon, "expected ':' here") ||
7348 ParseToken(lltok::lparen, "expected '(' here") ||
7349 ParseToken(lltok::kw_path, "expected 'path' here") ||
7350 ParseToken(lltok::colon, "expected ':' here") ||
7351 ParseStringConstant(Path) ||
7352 ParseToken(lltok::comma, "expected ',' here") ||
7353 ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7354 ParseToken(lltok::colon, "expected ':' here") ||
7355 ParseToken(lltok::lparen, "expected '(' here"))
7356 return true;
7358 ModuleHash Hash;
7359 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7360 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7361 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7362 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7363 ParseUInt32(Hash[4]))
7364 return true;
7366 if (ParseToken(lltok::rparen, "expected ')' here") ||
7367 ParseToken(lltok::rparen, "expected ')' here"))
7368 return true;
7370 auto ModuleEntry = Index->addModule(Path, ID, Hash);
7371 ModuleIdMap[ID] = ModuleEntry->first();
7373 return false;
7376 /// TypeIdEntry
7377 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7378 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7379 assert(Lex.getKind() == lltok::kw_typeid);
7380 Lex.Lex();
7382 std::string Name;
7383 if (ParseToken(lltok::colon, "expected ':' here") ||
7384 ParseToken(lltok::lparen, "expected '(' here") ||
7385 ParseToken(lltok::kw_name, "expected 'name' here") ||
7386 ParseToken(lltok::colon, "expected ':' here") ||
7387 ParseStringConstant(Name))
7388 return true;
7390 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7391 if (ParseToken(lltok::comma, "expected ',' here") ||
7392 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7393 return true;
7395 // Check if this ID was forward referenced, and if so, update the
7396 // corresponding GUIDs.
7397 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7398 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7399 for (auto TIDRef : FwdRefTIDs->second) {
7400 assert(!*TIDRef.first &&
7401 "Forward referenced type id GUID expected to be 0");
7402 *TIDRef.first = GlobalValue::getGUID(Name);
7404 ForwardRefTypeIds.erase(FwdRefTIDs);
7407 return false;
7410 /// TypeIdSummary
7411 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7412 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7413 if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7414 ParseToken(lltok::colon, "expected ':' here") ||
7415 ParseToken(lltok::lparen, "expected '(' here") ||
7416 ParseTypeTestResolution(TIS.TTRes))
7417 return true;
7419 if (EatIfPresent(lltok::comma)) {
7420 // Expect optional wpdResolutions field
7421 if (ParseOptionalWpdResolutions(TIS.WPDRes))
7422 return true;
7425 if (ParseToken(lltok::rparen, "expected ')' here"))
7426 return true;
7428 return false;
7431 /// TypeTestResolution
7432 /// ::= 'typeTestRes' ':' '(' 'kind' ':'
7433 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7434 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7435 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7436 /// [',' 'inlinesBits' ':' UInt64]? ')'
7437 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7438 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7439 ParseToken(lltok::colon, "expected ':' here") ||
7440 ParseToken(lltok::lparen, "expected '(' here") ||
7441 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7442 ParseToken(lltok::colon, "expected ':' here"))
7443 return true;
7445 switch (Lex.getKind()) {
7446 case lltok::kw_unsat:
7447 TTRes.TheKind = TypeTestResolution::Unsat;
7448 break;
7449 case lltok::kw_byteArray:
7450 TTRes.TheKind = TypeTestResolution::ByteArray;
7451 break;
7452 case lltok::kw_inline:
7453 TTRes.TheKind = TypeTestResolution::Inline;
7454 break;
7455 case lltok::kw_single:
7456 TTRes.TheKind = TypeTestResolution::Single;
7457 break;
7458 case lltok::kw_allOnes:
7459 TTRes.TheKind = TypeTestResolution::AllOnes;
7460 break;
7461 default:
7462 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7464 Lex.Lex();
7466 if (ParseToken(lltok::comma, "expected ',' here") ||
7467 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7468 ParseToken(lltok::colon, "expected ':' here") ||
7469 ParseUInt32(TTRes.SizeM1BitWidth))
7470 return true;
7472 // Parse optional fields
7473 while (EatIfPresent(lltok::comma)) {
7474 switch (Lex.getKind()) {
7475 case lltok::kw_alignLog2:
7476 Lex.Lex();
7477 if (ParseToken(lltok::colon, "expected ':'") ||
7478 ParseUInt64(TTRes.AlignLog2))
7479 return true;
7480 break;
7481 case lltok::kw_sizeM1:
7482 Lex.Lex();
7483 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7484 return true;
7485 break;
7486 case lltok::kw_bitMask: {
7487 unsigned Val;
7488 Lex.Lex();
7489 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7490 return true;
7491 assert(Val <= 0xff);
7492 TTRes.BitMask = (uint8_t)Val;
7493 break;
7495 case lltok::kw_inlineBits:
7496 Lex.Lex();
7497 if (ParseToken(lltok::colon, "expected ':'") ||
7498 ParseUInt64(TTRes.InlineBits))
7499 return true;
7500 break;
7501 default:
7502 return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7506 if (ParseToken(lltok::rparen, "expected ')' here"))
7507 return true;
7509 return false;
7512 /// OptionalWpdResolutions
7513 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7514 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7515 bool LLParser::ParseOptionalWpdResolutions(
7516 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7517 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7518 ParseToken(lltok::colon, "expected ':' here") ||
7519 ParseToken(lltok::lparen, "expected '(' here"))
7520 return true;
7522 do {
7523 uint64_t Offset;
7524 WholeProgramDevirtResolution WPDRes;
7525 if (ParseToken(lltok::lparen, "expected '(' here") ||
7526 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7527 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7528 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7529 ParseToken(lltok::rparen, "expected ')' here"))
7530 return true;
7531 WPDResMap[Offset] = WPDRes;
7532 } while (EatIfPresent(lltok::comma));
7534 if (ParseToken(lltok::rparen, "expected ')' here"))
7535 return true;
7537 return false;
7540 /// WpdRes
7541 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7542 /// [',' OptionalResByArg]? ')'
7543 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7544 /// ',' 'singleImplName' ':' STRINGCONSTANT ','
7545 /// [',' OptionalResByArg]? ')'
7546 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7547 /// [',' OptionalResByArg]? ')'
7548 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7549 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7550 ParseToken(lltok::colon, "expected ':' here") ||
7551 ParseToken(lltok::lparen, "expected '(' here") ||
7552 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7553 ParseToken(lltok::colon, "expected ':' here"))
7554 return true;
7556 switch (Lex.getKind()) {
7557 case lltok::kw_indir:
7558 WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7559 break;
7560 case lltok::kw_singleImpl:
7561 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7562 break;
7563 case lltok::kw_branchFunnel:
7564 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7565 break;
7566 default:
7567 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7569 Lex.Lex();
7571 // Parse optional fields
7572 while (EatIfPresent(lltok::comma)) {
7573 switch (Lex.getKind()) {
7574 case lltok::kw_singleImplName:
7575 Lex.Lex();
7576 if (ParseToken(lltok::colon, "expected ':' here") ||
7577 ParseStringConstant(WPDRes.SingleImplName))
7578 return true;
7579 break;
7580 case lltok::kw_resByArg:
7581 if (ParseOptionalResByArg(WPDRes.ResByArg))
7582 return true;
7583 break;
7584 default:
7585 return Error(Lex.getLoc(),
7586 "expected optional WholeProgramDevirtResolution field");
7590 if (ParseToken(lltok::rparen, "expected ')' here"))
7591 return true;
7593 return false;
7596 /// OptionalResByArg
7597 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7598 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7599 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7600 /// 'virtualConstProp' )
7601 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7602 /// [',' 'bit' ':' UInt32]? ')'
7603 bool LLParser::ParseOptionalResByArg(
7604 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7605 &ResByArg) {
7606 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7607 ParseToken(lltok::colon, "expected ':' here") ||
7608 ParseToken(lltok::lparen, "expected '(' here"))
7609 return true;
7611 do {
7612 std::vector<uint64_t> Args;
7613 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7614 ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7615 ParseToken(lltok::colon, "expected ':' here") ||
7616 ParseToken(lltok::lparen, "expected '(' here") ||
7617 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7618 ParseToken(lltok::colon, "expected ':' here"))
7619 return true;
7621 WholeProgramDevirtResolution::ByArg ByArg;
7622 switch (Lex.getKind()) {
7623 case lltok::kw_indir:
7624 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7625 break;
7626 case lltok::kw_uniformRetVal:
7627 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7628 break;
7629 case lltok::kw_uniqueRetVal:
7630 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7631 break;
7632 case lltok::kw_virtualConstProp:
7633 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7634 break;
7635 default:
7636 return Error(Lex.getLoc(),
7637 "unexpected WholeProgramDevirtResolution::ByArg kind");
7639 Lex.Lex();
7641 // Parse optional fields
7642 while (EatIfPresent(lltok::comma)) {
7643 switch (Lex.getKind()) {
7644 case lltok::kw_info:
7645 Lex.Lex();
7646 if (ParseToken(lltok::colon, "expected ':' here") ||
7647 ParseUInt64(ByArg.Info))
7648 return true;
7649 break;
7650 case lltok::kw_byte:
7651 Lex.Lex();
7652 if (ParseToken(lltok::colon, "expected ':' here") ||
7653 ParseUInt32(ByArg.Byte))
7654 return true;
7655 break;
7656 case lltok::kw_bit:
7657 Lex.Lex();
7658 if (ParseToken(lltok::colon, "expected ':' here") ||
7659 ParseUInt32(ByArg.Bit))
7660 return true;
7661 break;
7662 default:
7663 return Error(Lex.getLoc(),
7664 "expected optional whole program devirt field");
7668 if (ParseToken(lltok::rparen, "expected ')' here"))
7669 return true;
7671 ResByArg[Args] = ByArg;
7672 } while (EatIfPresent(lltok::comma));
7674 if (ParseToken(lltok::rparen, "expected ')' here"))
7675 return true;
7677 return false;
7680 /// OptionalResByArg
7681 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7682 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7683 if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7684 ParseToken(lltok::colon, "expected ':' here") ||
7685 ParseToken(lltok::lparen, "expected '(' here"))
7686 return true;
7688 do {
7689 uint64_t Val;
7690 if (ParseUInt64(Val))
7691 return true;
7692 Args.push_back(Val);
7693 } while (EatIfPresent(lltok::comma));
7695 if (ParseToken(lltok::rparen, "expected ')' here"))
7696 return true;
7698 return false;
7701 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7703 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7704 bool ReadOnly = Fwd->isReadOnly();
7705 *Fwd = Resolved;
7706 if (ReadOnly)
7707 Fwd->setReadOnly();
7710 /// Stores the given Name/GUID and associated summary into the Index.
7711 /// Also updates any forward references to the associated entry ID.
7712 void LLParser::AddGlobalValueToIndex(
7713 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7714 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7715 // First create the ValueInfo utilizing the Name or GUID.
7716 ValueInfo VI;
7717 if (GUID != 0) {
7718 assert(Name.empty());
7719 VI = Index->getOrInsertValueInfo(GUID);
7720 } else {
7721 assert(!Name.empty());
7722 if (M) {
7723 auto *GV = M->getNamedValue(Name);
7724 assert(GV);
7725 VI = Index->getOrInsertValueInfo(GV);
7726 } else {
7727 assert(
7728 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7729 "Need a source_filename to compute GUID for local");
7730 GUID = GlobalValue::getGUID(
7731 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7732 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7736 // Resolve forward references from calls/refs
7737 auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7738 if (FwdRefVIs != ForwardRefValueInfos.end()) {
7739 for (auto VIRef : FwdRefVIs->second) {
7740 assert(VIRef.first->getRef() == FwdVIRef &&
7741 "Forward referenced ValueInfo expected to be empty");
7742 resolveFwdRef(VIRef.first, VI);
7744 ForwardRefValueInfos.erase(FwdRefVIs);
7747 // Resolve forward references from aliases
7748 auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7749 if (FwdRefAliasees != ForwardRefAliasees.end()) {
7750 for (auto AliaseeRef : FwdRefAliasees->second) {
7751 assert(!AliaseeRef.first->hasAliasee() &&
7752 "Forward referencing alias already has aliasee");
7753 assert(Summary && "Aliasee must be a definition");
7754 AliaseeRef.first->setAliasee(VI, Summary.get());
7756 ForwardRefAliasees.erase(FwdRefAliasees);
7759 // Add the summary if one was provided.
7760 if (Summary)
7761 Index->addGlobalValueSummary(VI, std::move(Summary));
7763 // Save the associated ValueInfo for use in later references by ID.
7764 if (ID == NumberedValueInfos.size())
7765 NumberedValueInfos.push_back(VI);
7766 else {
7767 // Handle non-continuous numbers (to make test simplification easier).
7768 if (ID > NumberedValueInfos.size())
7769 NumberedValueInfos.resize(ID + 1);
7770 NumberedValueInfos[ID] = VI;
7774 /// ParseGVEntry
7775 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7776 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7777 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7778 bool LLParser::ParseGVEntry(unsigned ID) {
7779 assert(Lex.getKind() == lltok::kw_gv);
7780 Lex.Lex();
7782 if (ParseToken(lltok::colon, "expected ':' here") ||
7783 ParseToken(lltok::lparen, "expected '(' here"))
7784 return true;
7786 std::string Name;
7787 GlobalValue::GUID GUID = 0;
7788 switch (Lex.getKind()) {
7789 case lltok::kw_name:
7790 Lex.Lex();
7791 if (ParseToken(lltok::colon, "expected ':' here") ||
7792 ParseStringConstant(Name))
7793 return true;
7794 // Can't create GUID/ValueInfo until we have the linkage.
7795 break;
7796 case lltok::kw_guid:
7797 Lex.Lex();
7798 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7799 return true;
7800 break;
7801 default:
7802 return Error(Lex.getLoc(), "expected name or guid tag");
7805 if (!EatIfPresent(lltok::comma)) {
7806 // No summaries. Wrap up.
7807 if (ParseToken(lltok::rparen, "expected ')' here"))
7808 return true;
7809 // This was created for a call to an external or indirect target.
7810 // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7811 // created for indirect calls with VP. A Name with no GUID came from
7812 // an external definition. We pass ExternalLinkage since that is only
7813 // used when the GUID must be computed from Name, and in that case
7814 // the symbol must have external linkage.
7815 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7816 nullptr);
7817 return false;
7820 // Have a list of summaries
7821 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7822 ParseToken(lltok::colon, "expected ':' here"))
7823 return true;
7825 do {
7826 if (ParseToken(lltok::lparen, "expected '(' here"))
7827 return true;
7828 switch (Lex.getKind()) {
7829 case lltok::kw_function:
7830 if (ParseFunctionSummary(Name, GUID, ID))
7831 return true;
7832 break;
7833 case lltok::kw_variable:
7834 if (ParseVariableSummary(Name, GUID, ID))
7835 return true;
7836 break;
7837 case lltok::kw_alias:
7838 if (ParseAliasSummary(Name, GUID, ID))
7839 return true;
7840 break;
7841 default:
7842 return Error(Lex.getLoc(), "expected summary type");
7844 if (ParseToken(lltok::rparen, "expected ')' here"))
7845 return true;
7846 } while (EatIfPresent(lltok::comma));
7848 if (ParseToken(lltok::rparen, "expected ')' here"))
7849 return true;
7851 return false;
7854 /// FunctionSummary
7855 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7856 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7857 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
7858 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7859 unsigned ID) {
7860 assert(Lex.getKind() == lltok::kw_function);
7861 Lex.Lex();
7863 StringRef ModulePath;
7864 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7865 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7866 /*Live=*/false, /*IsLocal=*/false);
7867 unsigned InstCount;
7868 std::vector<FunctionSummary::EdgeTy> Calls;
7869 FunctionSummary::TypeIdInfo TypeIdInfo;
7870 std::vector<ValueInfo> Refs;
7871 // Default is all-zeros (conservative values).
7872 FunctionSummary::FFlags FFlags = {};
7873 if (ParseToken(lltok::colon, "expected ':' here") ||
7874 ParseToken(lltok::lparen, "expected '(' here") ||
7875 ParseModuleReference(ModulePath) ||
7876 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7877 ParseToken(lltok::comma, "expected ',' here") ||
7878 ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7879 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7880 return true;
7882 // Parse optional fields
7883 while (EatIfPresent(lltok::comma)) {
7884 switch (Lex.getKind()) {
7885 case lltok::kw_funcFlags:
7886 if (ParseOptionalFFlags(FFlags))
7887 return true;
7888 break;
7889 case lltok::kw_calls:
7890 if (ParseOptionalCalls(Calls))
7891 return true;
7892 break;
7893 case lltok::kw_typeIdInfo:
7894 if (ParseOptionalTypeIdInfo(TypeIdInfo))
7895 return true;
7896 break;
7897 case lltok::kw_refs:
7898 if (ParseOptionalRefs(Refs))
7899 return true;
7900 break;
7901 default:
7902 return Error(Lex.getLoc(), "expected optional function summary field");
7906 if (ParseToken(lltok::rparen, "expected ')' here"))
7907 return true;
7909 auto FS = llvm::make_unique<FunctionSummary>(
7910 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
7911 std::move(Calls), std::move(TypeIdInfo.TypeTests),
7912 std::move(TypeIdInfo.TypeTestAssumeVCalls),
7913 std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7914 std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7915 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7917 FS->setModulePath(ModulePath);
7919 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7920 ID, std::move(FS));
7922 return false;
7925 /// VariableSummary
7926 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7927 /// [',' OptionalRefs]? ')'
7928 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7929 unsigned ID) {
7930 assert(Lex.getKind() == lltok::kw_variable);
7931 Lex.Lex();
7933 StringRef ModulePath;
7934 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7935 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7936 /*Live=*/false, /*IsLocal=*/false);
7937 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false);
7938 std::vector<ValueInfo> Refs;
7939 if (ParseToken(lltok::colon, "expected ':' here") ||
7940 ParseToken(lltok::lparen, "expected '(' here") ||
7941 ParseModuleReference(ModulePath) ||
7942 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7943 ParseToken(lltok::comma, "expected ',' here") ||
7944 ParseGVarFlags(GVarFlags))
7945 return true;
7947 // Parse optional refs field
7948 if (EatIfPresent(lltok::comma)) {
7949 if (ParseOptionalRefs(Refs))
7950 return true;
7953 if (ParseToken(lltok::rparen, "expected ')' here"))
7954 return true;
7956 auto GS =
7957 llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
7959 GS->setModulePath(ModulePath);
7961 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7962 ID, std::move(GS));
7964 return false;
7967 /// AliasSummary
7968 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
7969 /// 'aliasee' ':' GVReference ')'
7970 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
7971 unsigned ID) {
7972 assert(Lex.getKind() == lltok::kw_alias);
7973 LocTy Loc = Lex.getLoc();
7974 Lex.Lex();
7976 StringRef ModulePath;
7977 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7978 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7979 /*Live=*/false, /*IsLocal=*/false);
7980 if (ParseToken(lltok::colon, "expected ':' here") ||
7981 ParseToken(lltok::lparen, "expected '(' here") ||
7982 ParseModuleReference(ModulePath) ||
7983 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7984 ParseToken(lltok::comma, "expected ',' here") ||
7985 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
7986 ParseToken(lltok::colon, "expected ':' here"))
7987 return true;
7989 ValueInfo AliaseeVI;
7990 unsigned GVId;
7991 if (ParseGVReference(AliaseeVI, GVId))
7992 return true;
7994 if (ParseToken(lltok::rparen, "expected ')' here"))
7995 return true;
7997 auto AS = llvm::make_unique<AliasSummary>(GVFlags);
7999 AS->setModulePath(ModulePath);
8001 // Record forward reference if the aliasee is not parsed yet.
8002 if (AliaseeVI.getRef() == FwdVIRef) {
8003 auto FwdRef = ForwardRefAliasees.insert(
8004 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8005 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8006 } else {
8007 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8008 assert(Summary && "Aliasee must be a definition");
8009 AS->setAliasee(AliaseeVI, Summary);
8012 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8013 ID, std::move(AS));
8015 return false;
8018 /// Flag
8019 /// ::= [0|1]
8020 bool LLParser::ParseFlag(unsigned &Val) {
8021 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8022 return TokError("expected integer");
8023 Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8024 Lex.Lex();
8025 return false;
8028 /// OptionalFFlags
8029 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8030 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8031 /// [',' 'returnDoesNotAlias' ':' Flag]? ')'
8032 /// [',' 'noInline' ':' Flag]? ')'
8033 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8034 assert(Lex.getKind() == lltok::kw_funcFlags);
8035 Lex.Lex();
8037 if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8038 ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8039 return true;
8041 do {
8042 unsigned Val;
8043 switch (Lex.getKind()) {
8044 case lltok::kw_readNone:
8045 Lex.Lex();
8046 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8047 return true;
8048 FFlags.ReadNone = Val;
8049 break;
8050 case lltok::kw_readOnly:
8051 Lex.Lex();
8052 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8053 return true;
8054 FFlags.ReadOnly = Val;
8055 break;
8056 case lltok::kw_noRecurse:
8057 Lex.Lex();
8058 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8059 return true;
8060 FFlags.NoRecurse = Val;
8061 break;
8062 case lltok::kw_returnDoesNotAlias:
8063 Lex.Lex();
8064 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8065 return true;
8066 FFlags.ReturnDoesNotAlias = Val;
8067 break;
8068 case lltok::kw_noInline:
8069 Lex.Lex();
8070 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8071 return true;
8072 FFlags.NoInline = Val;
8073 break;
8074 default:
8075 return Error(Lex.getLoc(), "expected function flag type");
8077 } while (EatIfPresent(lltok::comma));
8079 if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8080 return true;
8082 return false;
8085 /// OptionalCalls
8086 /// := 'calls' ':' '(' Call [',' Call]* ')'
8087 /// Call ::= '(' 'callee' ':' GVReference
8088 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8089 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8090 assert(Lex.getKind() == lltok::kw_calls);
8091 Lex.Lex();
8093 if (ParseToken(lltok::colon, "expected ':' in calls") |
8094 ParseToken(lltok::lparen, "expected '(' in calls"))
8095 return true;
8097 IdToIndexMapType IdToIndexMap;
8098 // Parse each call edge
8099 do {
8100 ValueInfo VI;
8101 if (ParseToken(lltok::lparen, "expected '(' in call") ||
8102 ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8103 ParseToken(lltok::colon, "expected ':'"))
8104 return true;
8106 LocTy Loc = Lex.getLoc();
8107 unsigned GVId;
8108 if (ParseGVReference(VI, GVId))
8109 return true;
8111 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8112 unsigned RelBF = 0;
8113 if (EatIfPresent(lltok::comma)) {
8114 // Expect either hotness or relbf
8115 if (EatIfPresent(lltok::kw_hotness)) {
8116 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8117 return true;
8118 } else {
8119 if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8120 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8121 return true;
8124 // Keep track of the Call array index needing a forward reference.
8125 // We will save the location of the ValueInfo needing an update, but
8126 // can only do so once the std::vector is finalized.
8127 if (VI.getRef() == FwdVIRef)
8128 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8129 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8131 if (ParseToken(lltok::rparen, "expected ')' in call"))
8132 return true;
8133 } while (EatIfPresent(lltok::comma));
8135 // Now that the Calls vector is finalized, it is safe to save the locations
8136 // of any forward GV references that need updating later.
8137 for (auto I : IdToIndexMap) {
8138 for (auto P : I.second) {
8139 assert(Calls[P.first].first.getRef() == FwdVIRef &&
8140 "Forward referenced ValueInfo expected to be empty");
8141 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8142 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8143 FwdRef.first->second.push_back(
8144 std::make_pair(&Calls[P.first].first, P.second));
8148 if (ParseToken(lltok::rparen, "expected ')' in calls"))
8149 return true;
8151 return false;
8154 /// Hotness
8155 /// := ('unknown'|'cold'|'none'|'hot'|'critical')
8156 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8157 switch (Lex.getKind()) {
8158 case lltok::kw_unknown:
8159 Hotness = CalleeInfo::HotnessType::Unknown;
8160 break;
8161 case lltok::kw_cold:
8162 Hotness = CalleeInfo::HotnessType::Cold;
8163 break;
8164 case lltok::kw_none:
8165 Hotness = CalleeInfo::HotnessType::None;
8166 break;
8167 case lltok::kw_hot:
8168 Hotness = CalleeInfo::HotnessType::Hot;
8169 break;
8170 case lltok::kw_critical:
8171 Hotness = CalleeInfo::HotnessType::Critical;
8172 break;
8173 default:
8174 return Error(Lex.getLoc(), "invalid call edge hotness");
8176 Lex.Lex();
8177 return false;
8180 /// OptionalRefs
8181 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8182 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8183 assert(Lex.getKind() == lltok::kw_refs);
8184 Lex.Lex();
8186 if (ParseToken(lltok::colon, "expected ':' in refs") |
8187 ParseToken(lltok::lparen, "expected '(' in refs"))
8188 return true;
8190 struct ValueContext {
8191 ValueInfo VI;
8192 unsigned GVId;
8193 LocTy Loc;
8195 std::vector<ValueContext> VContexts;
8196 // Parse each ref edge
8197 do {
8198 ValueContext VC;
8199 VC.Loc = Lex.getLoc();
8200 if (ParseGVReference(VC.VI, VC.GVId))
8201 return true;
8202 VContexts.push_back(VC);
8203 } while (EatIfPresent(lltok::comma));
8205 // Sort value contexts so that ones with readonly ValueInfo are at the end
8206 // of VContexts vector. This is needed to match immutableRefCount() behavior.
8207 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8208 return VC1.VI.isReadOnly() < VC2.VI.isReadOnly();
8211 IdToIndexMapType IdToIndexMap;
8212 for (auto &VC : VContexts) {
8213 // Keep track of the Refs array index needing a forward reference.
8214 // We will save the location of the ValueInfo needing an update, but
8215 // can only do so once the std::vector is finalized.
8216 if (VC.VI.getRef() == FwdVIRef)
8217 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8218 Refs.push_back(VC.VI);
8221 // Now that the Refs vector is finalized, it is safe to save the locations
8222 // of any forward GV references that need updating later.
8223 for (auto I : IdToIndexMap) {
8224 for (auto P : I.second) {
8225 assert(Refs[P.first].getRef() == FwdVIRef &&
8226 "Forward referenced ValueInfo expected to be empty");
8227 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8228 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8229 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8233 if (ParseToken(lltok::rparen, "expected ')' in refs"))
8234 return true;
8236 return false;
8239 /// OptionalTypeIdInfo
8240 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8241 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]?
8242 /// [',' TypeCheckedLoadConstVCalls]? ')'
8243 bool LLParser::ParseOptionalTypeIdInfo(
8244 FunctionSummary::TypeIdInfo &TypeIdInfo) {
8245 assert(Lex.getKind() == lltok::kw_typeIdInfo);
8246 Lex.Lex();
8248 if (ParseToken(lltok::colon, "expected ':' here") ||
8249 ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8250 return true;
8252 do {
8253 switch (Lex.getKind()) {
8254 case lltok::kw_typeTests:
8255 if (ParseTypeTests(TypeIdInfo.TypeTests))
8256 return true;
8257 break;
8258 case lltok::kw_typeTestAssumeVCalls:
8259 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8260 TypeIdInfo.TypeTestAssumeVCalls))
8261 return true;
8262 break;
8263 case lltok::kw_typeCheckedLoadVCalls:
8264 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8265 TypeIdInfo.TypeCheckedLoadVCalls))
8266 return true;
8267 break;
8268 case lltok::kw_typeTestAssumeConstVCalls:
8269 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8270 TypeIdInfo.TypeTestAssumeConstVCalls))
8271 return true;
8272 break;
8273 case lltok::kw_typeCheckedLoadConstVCalls:
8274 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8275 TypeIdInfo.TypeCheckedLoadConstVCalls))
8276 return true;
8277 break;
8278 default:
8279 return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8281 } while (EatIfPresent(lltok::comma));
8283 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8284 return true;
8286 return false;
8289 /// TypeTests
8290 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8291 /// [',' (SummaryID | UInt64)]* ')'
8292 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8293 assert(Lex.getKind() == lltok::kw_typeTests);
8294 Lex.Lex();
8296 if (ParseToken(lltok::colon, "expected ':' here") ||
8297 ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8298 return true;
8300 IdToIndexMapType IdToIndexMap;
8301 do {
8302 GlobalValue::GUID GUID = 0;
8303 if (Lex.getKind() == lltok::SummaryID) {
8304 unsigned ID = Lex.getUIntVal();
8305 LocTy Loc = Lex.getLoc();
8306 // Keep track of the TypeTests array index needing a forward reference.
8307 // We will save the location of the GUID needing an update, but
8308 // can only do so once the std::vector is finalized.
8309 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8310 Lex.Lex();
8311 } else if (ParseUInt64(GUID))
8312 return true;
8313 TypeTests.push_back(GUID);
8314 } while (EatIfPresent(lltok::comma));
8316 // Now that the TypeTests vector is finalized, it is safe to save the
8317 // locations of any forward GV references that need updating later.
8318 for (auto I : IdToIndexMap) {
8319 for (auto P : I.second) {
8320 assert(TypeTests[P.first] == 0 &&
8321 "Forward referenced type id GUID expected to be 0");
8322 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8323 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8324 FwdRef.first->second.push_back(
8325 std::make_pair(&TypeTests[P.first], P.second));
8329 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8330 return true;
8332 return false;
8335 /// VFuncIdList
8336 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8337 bool LLParser::ParseVFuncIdList(
8338 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8339 assert(Lex.getKind() == Kind);
8340 Lex.Lex();
8342 if (ParseToken(lltok::colon, "expected ':' here") ||
8343 ParseToken(lltok::lparen, "expected '(' here"))
8344 return true;
8346 IdToIndexMapType IdToIndexMap;
8347 do {
8348 FunctionSummary::VFuncId VFuncId;
8349 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8350 return true;
8351 VFuncIdList.push_back(VFuncId);
8352 } while (EatIfPresent(lltok::comma));
8354 if (ParseToken(lltok::rparen, "expected ')' here"))
8355 return true;
8357 // Now that the VFuncIdList vector is finalized, it is safe to save the
8358 // locations of any forward GV references that need updating later.
8359 for (auto I : IdToIndexMap) {
8360 for (auto P : I.second) {
8361 assert(VFuncIdList[P.first].GUID == 0 &&
8362 "Forward referenced type id GUID expected to be 0");
8363 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8364 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8365 FwdRef.first->second.push_back(
8366 std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8370 return false;
8373 /// ConstVCallList
8374 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8375 bool LLParser::ParseConstVCallList(
8376 lltok::Kind Kind,
8377 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8378 assert(Lex.getKind() == Kind);
8379 Lex.Lex();
8381 if (ParseToken(lltok::colon, "expected ':' here") ||
8382 ParseToken(lltok::lparen, "expected '(' here"))
8383 return true;
8385 IdToIndexMapType IdToIndexMap;
8386 do {
8387 FunctionSummary::ConstVCall ConstVCall;
8388 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8389 return true;
8390 ConstVCallList.push_back(ConstVCall);
8391 } while (EatIfPresent(lltok::comma));
8393 if (ParseToken(lltok::rparen, "expected ')' here"))
8394 return true;
8396 // Now that the ConstVCallList vector is finalized, it is safe to save the
8397 // locations of any forward GV references that need updating later.
8398 for (auto I : IdToIndexMap) {
8399 for (auto P : I.second) {
8400 assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8401 "Forward referenced type id GUID expected to be 0");
8402 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8403 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8404 FwdRef.first->second.push_back(
8405 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8409 return false;
8412 /// ConstVCall
8413 /// ::= '(' VFuncId ',' Args ')'
8414 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8415 IdToIndexMapType &IdToIndexMap, unsigned Index) {
8416 if (ParseToken(lltok::lparen, "expected '(' here") ||
8417 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8418 return true;
8420 if (EatIfPresent(lltok::comma))
8421 if (ParseArgs(ConstVCall.Args))
8422 return true;
8424 if (ParseToken(lltok::rparen, "expected ')' here"))
8425 return true;
8427 return false;
8430 /// VFuncId
8431 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8432 /// 'offset' ':' UInt64 ')'
8433 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8434 IdToIndexMapType &IdToIndexMap, unsigned Index) {
8435 assert(Lex.getKind() == lltok::kw_vFuncId);
8436 Lex.Lex();
8438 if (ParseToken(lltok::colon, "expected ':' here") ||
8439 ParseToken(lltok::lparen, "expected '(' here"))
8440 return true;
8442 if (Lex.getKind() == lltok::SummaryID) {
8443 VFuncId.GUID = 0;
8444 unsigned ID = Lex.getUIntVal();
8445 LocTy Loc = Lex.getLoc();
8446 // Keep track of the array index needing a forward reference.
8447 // We will save the location of the GUID needing an update, but
8448 // can only do so once the caller's std::vector is finalized.
8449 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8450 Lex.Lex();
8451 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8452 ParseToken(lltok::colon, "expected ':' here") ||
8453 ParseUInt64(VFuncId.GUID))
8454 return true;
8456 if (ParseToken(lltok::comma, "expected ',' here") ||
8457 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8458 ParseToken(lltok::colon, "expected ':' here") ||
8459 ParseUInt64(VFuncId.Offset) ||
8460 ParseToken(lltok::rparen, "expected ')' here"))
8461 return true;
8463 return false;
8466 /// GVFlags
8467 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8468 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8469 /// 'dsoLocal' ':' Flag ')'
8470 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8471 assert(Lex.getKind() == lltok::kw_flags);
8472 Lex.Lex();
8474 bool HasLinkage;
8475 if (ParseToken(lltok::colon, "expected ':' here") ||
8476 ParseToken(lltok::lparen, "expected '(' here") ||
8477 ParseToken(lltok::kw_linkage, "expected 'linkage' here") ||
8478 ParseToken(lltok::colon, "expected ':' here"))
8479 return true;
8481 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8482 assert(HasLinkage && "Linkage not optional in summary entry");
8483 Lex.Lex();
8485 unsigned Flag;
8486 if (ParseToken(lltok::comma, "expected ',' here") ||
8487 ParseToken(lltok::kw_notEligibleToImport,
8488 "expected 'notEligibleToImport' here") ||
8489 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8490 return true;
8491 GVFlags.NotEligibleToImport = Flag;
8493 if (ParseToken(lltok::comma, "expected ',' here") ||
8494 ParseToken(lltok::kw_live, "expected 'live' here") ||
8495 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8496 return true;
8497 GVFlags.Live = Flag;
8499 if (ParseToken(lltok::comma, "expected ',' here") ||
8500 ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") ||
8501 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8502 return true;
8503 GVFlags.DSOLocal = Flag;
8505 if (ParseToken(lltok::rparen, "expected ')' here"))
8506 return true;
8508 return false;
8511 /// GVarFlags
8512 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')'
8513 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8514 assert(Lex.getKind() == lltok::kw_varFlags);
8515 Lex.Lex();
8517 unsigned Flag;
8518 if (ParseToken(lltok::colon, "expected ':' here") ||
8519 ParseToken(lltok::lparen, "expected '(' here") ||
8520 ParseToken(lltok::kw_readonly, "expected 'readonly' here") ||
8521 ParseToken(lltok::colon, "expected ':' here"))
8522 return true;
8524 ParseFlag(Flag);
8525 GVarFlags.ReadOnly = Flag;
8527 if (ParseToken(lltok::rparen, "expected ')' here"))
8528 return true;
8529 return false;
8532 /// ModuleReference
8533 /// ::= 'module' ':' UInt
8534 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8535 // Parse module id.
8536 if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8537 ParseToken(lltok::colon, "expected ':' here") ||
8538 ParseToken(lltok::SummaryID, "expected module ID"))
8539 return true;
8541 unsigned ModuleID = Lex.getUIntVal();
8542 auto I = ModuleIdMap.find(ModuleID);
8543 // We should have already parsed all module IDs
8544 assert(I != ModuleIdMap.end());
8545 ModulePath = I->second;
8546 return false;
8549 /// GVReference
8550 /// ::= SummaryID
8551 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8552 bool ReadOnly = EatIfPresent(lltok::kw_readonly);
8553 if (ParseToken(lltok::SummaryID, "expected GV ID"))
8554 return true;
8556 GVId = Lex.getUIntVal();
8557 // Check if we already have a VI for this GV
8558 if (GVId < NumberedValueInfos.size()) {
8559 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8560 VI = NumberedValueInfos[GVId];
8561 } else
8562 // We will create a forward reference to the stored location.
8563 VI = ValueInfo(false, FwdVIRef);
8565 if (ReadOnly)
8566 VI.setReadOnly();
8567 return false;