[Alignment][NFC] Value::getPointerAlignment returns MaybeAlign
[llvm-complete.git] / lib / Analysis / Loads.cpp
bloba4fd49920ad9f44442f0b5500684174caf34a5f7
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/Analysis/ScalarEvolution.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/GlobalAlias.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/Statepoint.h"
28 using namespace llvm;
30 static MaybeAlign getBaseAlign(const Value *Base, const DataLayout &DL) {
31 if (const MaybeAlign PA = Base->getPointerAlignment(DL))
32 return *PA;
33 Type *const Ty = Base->getType()->getPointerElementType();
34 if (!Ty->isSized())
35 return None;
36 return Align(DL.getABITypeAlignment(Ty));
39 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
40 const DataLayout &DL) {
41 if (MaybeAlign BA = getBaseAlign(Base, DL)) {
42 const APInt APBaseAlign(Offset.getBitWidth(), BA->value());
43 const APInt APAlign(Offset.getBitWidth(), Alignment.value());
44 assert(APAlign.isPowerOf2() && "must be a power of 2!");
45 return APBaseAlign.uge(APAlign) && !(Offset & (APAlign - 1));
47 return false;
50 /// Test if V is always a pointer to allocated and suitably aligned memory for
51 /// a simple load or store.
52 static bool isDereferenceableAndAlignedPointer(
53 const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL,
54 const Instruction *CtxI, const DominatorTree *DT,
55 SmallPtrSetImpl<const Value *> &Visited) {
56 // Already visited? Bail out, we've likely hit unreachable code.
57 if (!Visited.insert(V).second)
58 return false;
60 // Note that it is not safe to speculate into a malloc'd region because
61 // malloc may return null.
63 // bitcast instructions are no-ops as far as dereferenceability is concerned.
64 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
65 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size,
66 DL, CtxI, DT, Visited);
68 bool CheckForNonNull = false;
69 APInt KnownDerefBytes(Size.getBitWidth(),
70 V->getPointerDereferenceableBytes(DL, CheckForNonNull));
71 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size))
72 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
73 // As we recursed through GEPs to get here, we've incrementally checked
74 // that each step advanced by a multiple of the alignment. If our base is
75 // properly aligned, then the original offset accessed must also be.
76 Type *Ty = V->getType();
77 assert(Ty->isSized() && "must be sized");
78 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
79 return isAligned(V, Offset, llvm::Align(Align), DL);
82 // For GEPs, determine if the indexing lands within the allocated object.
83 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
84 const Value *Base = GEP->getPointerOperand();
86 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
87 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
88 !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue())
89 return false;
91 // If the base pointer is dereferenceable for Offset+Size bytes, then the
92 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
93 // pointer is aligned to Align bytes, and the Offset is divisible by Align
94 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
95 // aligned to Align bytes.
97 // Offset and Size may have different bit widths if we have visited an
98 // addrspacecast, so we can't do arithmetic directly on the APInt values.
99 return isDereferenceableAndAlignedPointer(
100 Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()),
101 DL, CtxI, DT, Visited);
104 // For gc.relocate, look through relocations
105 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
106 return isDereferenceableAndAlignedPointer(
107 RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited);
109 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
110 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size,
111 DL, CtxI, DT, Visited);
113 if (const auto *Call = dyn_cast<CallBase>(V))
114 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
115 return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT,
116 Visited);
118 // If we don't know, assume the worst.
119 return false;
122 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
123 const APInt &Size,
124 const DataLayout &DL,
125 const Instruction *CtxI,
126 const DominatorTree *DT) {
127 assert(Align != 0 && "expected explicitly set alignment");
128 // Note: At the moment, Size can be zero. This ends up being interpreted as
129 // a query of whether [Base, V] is dereferenceable and V is aligned (since
130 // that's what the implementation happened to do). It's unclear if this is
131 // the desired semantic, but at least SelectionDAG does exercise this case.
133 SmallPtrSet<const Value *, 32> Visited;
134 return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT,
135 Visited);
138 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
139 unsigned Align,
140 const DataLayout &DL,
141 const Instruction *CtxI,
142 const DominatorTree *DT) {
143 // When dereferenceability information is provided by a dereferenceable
144 // attribute, we know exactly how many bytes are dereferenceable. If we can
145 // determine the exact offset to the attributed variable, we can use that
146 // information here.
148 // Require ABI alignment for loads without alignment specification
149 if (Align == 0)
150 Align = DL.getABITypeAlignment(Ty);
152 if (!Ty->isSized())
153 return false;
155 APInt AccessSize(DL.getIndexTypeSizeInBits(V->getType()),
156 DL.getTypeStoreSize(Ty));
157 return isDereferenceableAndAlignedPointer(V, Align, AccessSize,
158 DL, CtxI, DT);
161 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
162 const DataLayout &DL,
163 const Instruction *CtxI,
164 const DominatorTree *DT) {
165 return isDereferenceableAndAlignedPointer(V, Ty, 1, DL, CtxI, DT);
168 /// Test if A and B will obviously have the same value.
170 /// This includes recognizing that %t0 and %t1 will have the same
171 /// value in code like this:
172 /// \code
173 /// %t0 = getelementptr \@a, 0, 3
174 /// store i32 0, i32* %t0
175 /// %t1 = getelementptr \@a, 0, 3
176 /// %t2 = load i32* %t1
177 /// \endcode
179 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
180 // Test if the values are trivially equivalent.
181 if (A == B)
182 return true;
184 // Test if the values come from identical arithmetic instructions.
185 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
186 // this function is only used when one address use dominates the
187 // other, which means that they'll always either have the same
188 // value or one of them will have an undefined value.
189 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
190 isa<GetElementPtrInst>(A))
191 if (const Instruction *BI = dyn_cast<Instruction>(B))
192 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
193 return true;
195 // Otherwise they may not be equivalent.
196 return false;
199 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
200 ScalarEvolution &SE,
201 DominatorTree &DT) {
202 auto &DL = LI->getModule()->getDataLayout();
203 Value *Ptr = LI->getPointerOperand();
205 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
206 DL.getTypeStoreSize(LI->getType()));
207 unsigned Align = LI->getAlignment();
208 if (Align == 0)
209 Align = DL.getABITypeAlignment(LI->getType());
211 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
213 // If given a uniform (i.e. non-varying) address, see if we can prove the
214 // access is safe within the loop w/o needing predication.
215 if (L->isLoopInvariant(Ptr))
216 return isDereferenceableAndAlignedPointer(Ptr, Align, EltSize, DL,
217 HeaderFirstNonPHI, &DT);
219 // Otherwise, check to see if we have a repeating access pattern where we can
220 // prove that all accesses are well aligned and dereferenceable.
221 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
222 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
223 return false;
224 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
225 if (!Step)
226 return false;
227 // TODO: generalize to access patterns which have gaps
228 if (Step->getAPInt() != EltSize)
229 return false;
231 // TODO: If the symbolic trip count has a small bound (max count), we might
232 // be able to prove safety.
233 auto TC = SE.getSmallConstantTripCount(L);
234 if (!TC)
235 return false;
237 const APInt AccessSize = TC * EltSize;
239 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart());
240 if (!StartS)
241 return false;
242 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition");
243 Value *Base = StartS->getValue();
245 // For the moment, restrict ourselves to the case where the access size is a
246 // multiple of the requested alignment and the base is aligned.
247 // TODO: generalize if a case found which warrants
248 if (EltSize.urem(Align) != 0)
249 return false;
250 return isDereferenceableAndAlignedPointer(Base, Align, AccessSize,
251 DL, HeaderFirstNonPHI, &DT);
254 /// Check if executing a load of this pointer value cannot trap.
256 /// If DT and ScanFrom are specified this method performs context-sensitive
257 /// analysis and returns true if it is safe to load immediately before ScanFrom.
259 /// If it is not obviously safe to load from the specified pointer, we do
260 /// a quick local scan of the basic block containing \c ScanFrom, to determine
261 /// if the address is already accessed.
263 /// This uses the pointee type to determine how many bytes need to be safe to
264 /// load from the pointer.
265 bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align, APInt &Size,
266 const DataLayout &DL,
267 Instruction *ScanFrom,
268 const DominatorTree *DT) {
269 // Zero alignment means that the load has the ABI alignment for the target
270 if (Align == 0)
271 Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
272 assert(isPowerOf2_32(Align));
274 // If DT is not specified we can't make context-sensitive query
275 const Instruction* CtxI = DT ? ScanFrom : nullptr;
276 if (isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT))
277 return true;
279 if (!ScanFrom)
280 return false;
282 if (Size.getBitWidth() > 64)
283 return false;
284 const uint64_t LoadSize = Size.getZExtValue();
286 // Otherwise, be a little bit aggressive by scanning the local block where we
287 // want to check to see if the pointer is already being loaded or stored
288 // from/to. If so, the previous load or store would have already trapped,
289 // so there is no harm doing an extra load (also, CSE will later eliminate
290 // the load entirely).
291 BasicBlock::iterator BBI = ScanFrom->getIterator(),
292 E = ScanFrom->getParent()->begin();
294 // We can at least always strip pointer casts even though we can't use the
295 // base here.
296 V = V->stripPointerCasts();
298 while (BBI != E) {
299 --BBI;
301 // If we see a free or a call which may write to memory (i.e. which might do
302 // a free) the pointer could be marked invalid.
303 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
304 !isa<DbgInfoIntrinsic>(BBI))
305 return false;
307 Value *AccessedPtr;
308 unsigned AccessedAlign;
309 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
310 // Ignore volatile loads. The execution of a volatile load cannot
311 // be used to prove an address is backed by regular memory; it can,
312 // for example, point to an MMIO register.
313 if (LI->isVolatile())
314 continue;
315 AccessedPtr = LI->getPointerOperand();
316 AccessedAlign = LI->getAlignment();
317 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
318 // Ignore volatile stores (see comment for loads).
319 if (SI->isVolatile())
320 continue;
321 AccessedPtr = SI->getPointerOperand();
322 AccessedAlign = SI->getAlignment();
323 } else
324 continue;
326 Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
327 if (AccessedAlign == 0)
328 AccessedAlign = DL.getABITypeAlignment(AccessedTy);
329 if (AccessedAlign < Align)
330 continue;
332 // Handle trivial cases.
333 if (AccessedPtr == V &&
334 LoadSize <= DL.getTypeStoreSize(AccessedTy))
335 return true;
337 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
338 LoadSize <= DL.getTypeStoreSize(AccessedTy))
339 return true;
341 return false;
344 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, unsigned Align,
345 const DataLayout &DL,
346 Instruction *ScanFrom,
347 const DominatorTree *DT) {
348 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
349 return isSafeToLoadUnconditionally(V, Align, Size, DL, ScanFrom, DT);
352 /// DefMaxInstsToScan - the default number of maximum instructions
353 /// to scan in the block, used by FindAvailableLoadedValue().
354 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
355 /// threading in part by eliminating partially redundant loads.
356 /// At that point, the value of MaxInstsToScan was already set to '6'
357 /// without documented explanation.
358 cl::opt<unsigned>
359 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
360 cl::desc("Use this to specify the default maximum number of instructions "
361 "to scan backward from a given instruction, when searching for "
362 "available loaded value"));
364 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
365 BasicBlock *ScanBB,
366 BasicBlock::iterator &ScanFrom,
367 unsigned MaxInstsToScan,
368 AliasAnalysis *AA, bool *IsLoad,
369 unsigned *NumScanedInst) {
370 // Don't CSE load that is volatile or anything stronger than unordered.
371 if (!Load->isUnordered())
372 return nullptr;
374 return FindAvailablePtrLoadStore(
375 Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
376 ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
379 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
380 bool AtLeastAtomic, BasicBlock *ScanBB,
381 BasicBlock::iterator &ScanFrom,
382 unsigned MaxInstsToScan,
383 AliasAnalysis *AA, bool *IsLoadCSE,
384 unsigned *NumScanedInst) {
385 if (MaxInstsToScan == 0)
386 MaxInstsToScan = ~0U;
388 const DataLayout &DL = ScanBB->getModule()->getDataLayout();
390 // Try to get the store size for the type.
391 auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
393 Value *StrippedPtr = Ptr->stripPointerCasts();
395 while (ScanFrom != ScanBB->begin()) {
396 // We must ignore debug info directives when counting (otherwise they
397 // would affect codegen).
398 Instruction *Inst = &*--ScanFrom;
399 if (isa<DbgInfoIntrinsic>(Inst))
400 continue;
402 // Restore ScanFrom to expected value in case next test succeeds
403 ScanFrom++;
405 if (NumScanedInst)
406 ++(*NumScanedInst);
408 // Don't scan huge blocks.
409 if (MaxInstsToScan-- == 0)
410 return nullptr;
412 --ScanFrom;
413 // If this is a load of Ptr, the loaded value is available.
414 // (This is true even if the load is volatile or atomic, although
415 // those cases are unlikely.)
416 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
417 if (AreEquivalentAddressValues(
418 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
419 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
421 // We can value forward from an atomic to a non-atomic, but not the
422 // other way around.
423 if (LI->isAtomic() < AtLeastAtomic)
424 return nullptr;
426 if (IsLoadCSE)
427 *IsLoadCSE = true;
428 return LI;
431 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
432 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
433 // If this is a store through Ptr, the value is available!
434 // (This is true even if the store is volatile or atomic, although
435 // those cases are unlikely.)
436 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
437 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
438 AccessTy, DL)) {
440 // We can value forward from an atomic to a non-atomic, but not the
441 // other way around.
442 if (SI->isAtomic() < AtLeastAtomic)
443 return nullptr;
445 if (IsLoadCSE)
446 *IsLoadCSE = false;
447 return SI->getOperand(0);
450 // If both StrippedPtr and StorePtr reach all the way to an alloca or
451 // global and they are different, ignore the store. This is a trivial form
452 // of alias analysis that is important for reg2mem'd code.
453 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
454 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
455 StrippedPtr != StorePtr)
456 continue;
458 // If we have alias analysis and it says the store won't modify the loaded
459 // value, ignore the store.
460 if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
461 continue;
463 // Otherwise the store that may or may not alias the pointer, bail out.
464 ++ScanFrom;
465 return nullptr;
468 // If this is some other instruction that may clobber Ptr, bail out.
469 if (Inst->mayWriteToMemory()) {
470 // If alias analysis claims that it really won't modify the load,
471 // ignore it.
472 if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
473 continue;
475 // May modify the pointer, bail out.
476 ++ScanFrom;
477 return nullptr;
481 // Got to the start of the block, we didn't find it, but are done for this
482 // block.
483 return nullptr;