NightlyTest.pl does not exist.
[llvm-complete.git] / docs / LangRef.html
blobe220764ac6e0711de16be312a54f6eb782535388
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11 </head>
13 <body>
15 <div class="doc_title"> LLVM Language Reference Manual </div>
16 <ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
29 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
30 <li><a href="#datalayout">Data Layout</a></li>
31 </ol>
32 </li>
33 <li><a href="#typesystem">Type System</a>
34 <ol>
35 <li><a href="#t_primitive">Primitive Types</a>
36 <ol>
37 <li><a href="#t_classifications">Type Classifications</a></li>
38 </ol>
39 </li>
40 <li><a href="#t_derived">Derived Types</a>
41 <ol>
42 <li><a href="#t_array">Array Type</a></li>
43 <li><a href="#t_function">Function Type</a></li>
44 <li><a href="#t_pointer">Pointer Type</a></li>
45 <li><a href="#t_struct">Structure Type</a></li>
46 <li><a href="#t_pstruct">Packed Structure Type</a></li>
47 <li><a href="#t_vector">Vector Type</a></li>
48 <li><a href="#t_opaque">Opaque Type</a></li>
49 </ol>
50 </li>
51 </ol>
52 </li>
53 <li><a href="#constants">Constants</a>
54 <ol>
55 <li><a href="#simpleconstants">Simple Constants</a>
56 <li><a href="#aggregateconstants">Aggregate Constants</a>
57 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58 <li><a href="#undefvalues">Undefined Values</a>
59 <li><a href="#constantexprs">Constant Expressions</a>
60 </ol>
61 </li>
62 <li><a href="#othervalues">Other Values</a>
63 <ol>
64 <li><a href="#inlineasm">Inline Assembler Expressions</a>
65 </ol>
66 </li>
67 <li><a href="#instref">Instruction Reference</a>
68 <ol>
69 <li><a href="#terminators">Terminator Instructions</a>
70 <ol>
71 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
73 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
75 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
76 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
77 </ol>
78 </li>
79 <li><a href="#binaryops">Binary Operations</a>
80 <ol>
81 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
84 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
87 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
90 </ol>
91 </li>
92 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93 <ol>
94 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
97 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
98 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
99 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
100 </ol>
101 </li>
102 <li><a href="#vectorops">Vector Operations</a>
103 <ol>
104 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
107 </ol>
108 </li>
109 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
110 <ol>
111 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
112 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
113 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
114 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
115 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
116 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
117 </ol>
118 </li>
119 <li><a href="#convertops">Conversion Operations</a>
120 <ol>
121 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
126 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
130 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
132 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
133 </ol>
134 <li><a href="#otherops">Other Operations</a>
135 <ol>
136 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
138 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
139 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
140 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
141 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
142 </ol>
143 </li>
144 </ol>
145 </li>
146 <li><a href="#intrinsics">Intrinsic Functions</a>
147 <ol>
148 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149 <ol>
150 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
152 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
153 </ol>
154 </li>
155 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156 <ol>
157 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
160 </ol>
161 </li>
162 <li><a href="#int_codegen">Code Generator Intrinsics</a>
163 <ol>
164 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
166 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
168 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
169 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
170 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
171 </ol>
172 </li>
173 <li><a href="#int_libc">Standard C Library Intrinsics</a>
174 <ol>
175 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
178 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
179 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
180 </ol>
181 </li>
182 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
183 <ol>
184 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
185 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
186 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
187 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
188 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
189 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
190 </ol>
191 </li>
192 <li><a href="#int_debugger">Debugger intrinsics</a></li>
193 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
194 </ol>
195 </li>
196 </ol>
198 <div class="doc_author">
199 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
200 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
201 </div>
203 <!-- *********************************************************************** -->
204 <div class="doc_section"> <a name="abstract">Abstract </a></div>
205 <!-- *********************************************************************** -->
207 <div class="doc_text">
208 <p>This document is a reference manual for the LLVM assembly language.
209 LLVM is an SSA based representation that provides type safety,
210 low-level operations, flexibility, and the capability of representing
211 'all' high-level languages cleanly. It is the common code
212 representation used throughout all phases of the LLVM compilation
213 strategy.</p>
214 </div>
216 <!-- *********************************************************************** -->
217 <div class="doc_section"> <a name="introduction">Introduction</a> </div>
218 <!-- *********************************************************************** -->
220 <div class="doc_text">
222 <p>The LLVM code representation is designed to be used in three
223 different forms: as an in-memory compiler IR, as an on-disk bytecode
224 representation (suitable for fast loading by a Just-In-Time compiler),
225 and as a human readable assembly language representation. This allows
226 LLVM to provide a powerful intermediate representation for efficient
227 compiler transformations and analysis, while providing a natural means
228 to debug and visualize the transformations. The three different forms
229 of LLVM are all equivalent. This document describes the human readable
230 representation and notation.</p>
232 <p>The LLVM representation aims to be light-weight and low-level
233 while being expressive, typed, and extensible at the same time. It
234 aims to be a "universal IR" of sorts, by being at a low enough level
235 that high-level ideas may be cleanly mapped to it (similar to how
236 microprocessors are "universal IR's", allowing many source languages to
237 be mapped to them). By providing type information, LLVM can be used as
238 the target of optimizations: for example, through pointer analysis, it
239 can be proven that a C automatic variable is never accessed outside of
240 the current function... allowing it to be promoted to a simple SSA
241 value instead of a memory location.</p>
243 </div>
245 <!-- _______________________________________________________________________ -->
246 <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
248 <div class="doc_text">
250 <p>It is important to note that this document describes 'well formed'
251 LLVM assembly language. There is a difference between what the parser
252 accepts and what is considered 'well formed'. For example, the
253 following instruction is syntactically okay, but not well formed:</p>
255 <pre>
256 %x = <a href="#i_add">add</a> i32 1, %x
257 </pre>
259 <p>...because the definition of <tt>%x</tt> does not dominate all of
260 its uses. The LLVM infrastructure provides a verification pass that may
261 be used to verify that an LLVM module is well formed. This pass is
262 automatically run by the parser after parsing input assembly and by
263 the optimizer before it outputs bytecode. The violations pointed out
264 by the verifier pass indicate bugs in transformation passes or input to
265 the parser.</p>
267 <!-- Describe the typesetting conventions here. --> </div>
269 <!-- *********************************************************************** -->
270 <div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
271 <!-- *********************************************************************** -->
273 <div class="doc_text">
275 <p>LLVM uses three different forms of identifiers, for different
276 purposes:</p>
278 <ol>
279 <li>Named values are represented as a string of characters with a '%' prefix.
280 For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual
281 regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
282 Identifiers which require other characters in their names can be surrounded
283 with quotes. In this way, anything except a <tt>&quot;</tt> character can be used
284 in a name.</li>
286 <li>Unnamed values are represented as an unsigned numeric value with a '%'
287 prefix. For example, %12, %2, %44.</li>
289 <li>Constants, which are described in a <a href="#constants">section about
290 constants</a>, below.</li>
291 </ol>
293 <p>LLVM requires that values start with a '%' sign for two reasons: Compilers
294 don't need to worry about name clashes with reserved words, and the set of
295 reserved words may be expanded in the future without penalty. Additionally,
296 unnamed identifiers allow a compiler to quickly come up with a temporary
297 variable without having to avoid symbol table conflicts.</p>
299 <p>Reserved words in LLVM are very similar to reserved words in other
300 languages. There are keywords for different opcodes
301 ('<tt><a href="#i_add">add</a></tt>',
302 '<tt><a href="#i_bitcast">bitcast</a></tt>',
303 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
304 href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
305 and others. These reserved words cannot conflict with variable names, because
306 none of them start with a '%' character.</p>
308 <p>Here is an example of LLVM code to multiply the integer variable
309 '<tt>%X</tt>' by 8:</p>
311 <p>The easy way:</p>
313 <pre>
314 %result = <a href="#i_mul">mul</a> i32 %X, 8
315 </pre>
317 <p>After strength reduction:</p>
319 <pre>
320 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
321 </pre>
323 <p>And the hard way:</p>
325 <pre>
326 <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
327 <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
328 %result = <a href="#i_add">add</a> i32 %1, %1
329 </pre>
331 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
332 important lexical features of LLVM:</p>
334 <ol>
336 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
337 line.</li>
339 <li>Unnamed temporaries are created when the result of a computation is not
340 assigned to a named value.</li>
342 <li>Unnamed temporaries are numbered sequentially</li>
344 </ol>
346 <p>...and it also shows a convention that we follow in this document. When
347 demonstrating instructions, we will follow an instruction with a comment that
348 defines the type and name of value produced. Comments are shown in italic
349 text.</p>
351 </div>
353 <!-- *********************************************************************** -->
354 <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
355 <!-- *********************************************************************** -->
357 <!-- ======================================================================= -->
358 <div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
359 </div>
361 <div class="doc_text">
363 <p>LLVM programs are composed of "Module"s, each of which is a
364 translation unit of the input programs. Each module consists of
365 functions, global variables, and symbol table entries. Modules may be
366 combined together with the LLVM linker, which merges function (and
367 global variable) definitions, resolves forward declarations, and merges
368 symbol table entries. Here is an example of the "hello world" module:</p>
370 <pre><i>; Declare the string constant as a global constant...</i>
371 <a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a
372 href="#globalvars">constant</a> <a href="#t_array">[13 x i8 ]</a> c"hello world\0A\00" <i>; [13 x i8 ]*</i>
374 <i>; External declaration of the puts function</i>
375 <a href="#functionstructure">declare</a> i32 %puts(i8 *) <i>; i32(i8 *)* </i>
377 <i>; Definition of main function</i>
378 define i32 %main() { <i>; i32()* </i>
379 <i>; Convert [13x i8 ]* to i8 *...</i>
380 %cast210 = <a
381 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* %.LC0, i64 0, i64 0 <i>; i8 *</i>
383 <i>; Call puts function to write out the string to stdout...</i>
385 href="#i_call">call</a> i32 %puts(i8 * %cast210) <i>; i32</i>
387 href="#i_ret">ret</a> i32 0<br>}<br></pre>
389 <p>This example is made up of a <a href="#globalvars">global variable</a>
390 named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
391 function, and a <a href="#functionstructure">function definition</a>
392 for "<tt>main</tt>".</p>
394 <p>In general, a module is made up of a list of global values,
395 where both functions and global variables are global values. Global values are
396 represented by a pointer to a memory location (in this case, a pointer to an
397 array of char, and a pointer to a function), and have one of the following <a
398 href="#linkage">linkage types</a>.</p>
400 </div>
402 <!-- ======================================================================= -->
403 <div class="doc_subsection">
404 <a name="linkage">Linkage Types</a>
405 </div>
407 <div class="doc_text">
410 All Global Variables and Functions have one of the following types of linkage:
411 </p>
413 <dl>
415 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
417 <dd>Global values with internal linkage are only directly accessible by
418 objects in the current module. In particular, linking code into a module with
419 an internal global value may cause the internal to be renamed as necessary to
420 avoid collisions. Because the symbol is internal to the module, all
421 references can be updated. This corresponds to the notion of the
422 '<tt>static</tt>' keyword in C.
423 </dd>
425 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
427 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
428 the same name when linkage occurs. This is typically used to implement
429 inline functions, templates, or other code which must be generated in each
430 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
431 allowed to be discarded.
432 </dd>
434 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
436 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
437 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
438 used for globals that may be emitted in multiple translation units, but that
439 are not guaranteed to be emitted into every translation unit that uses them.
440 One example of this are common globals in C, such as "<tt>int X;</tt>" at
441 global scope.
442 </dd>
444 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
446 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
447 pointer to array type. When two global variables with appending linkage are
448 linked together, the two global arrays are appended together. This is the
449 LLVM, typesafe, equivalent of having the system linker append together
450 "sections" with identical names when .o files are linked.
451 </dd>
453 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
454 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
455 until linked, if not linked, the symbol becomes null instead of being an
456 undefined reference.
457 </dd>
459 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
461 <dd>If none of the above identifiers are used, the global is externally
462 visible, meaning that it participates in linkage and can be used to resolve
463 external symbol references.
464 </dd>
465 </dl>
468 The next two types of linkage are targeted for Microsoft Windows platform
469 only. They are designed to support importing (exporting) symbols from (to)
470 DLLs.
471 </p>
473 <dl>
474 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
476 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
477 or variable via a global pointer to a pointer that is set up by the DLL
478 exporting the symbol. On Microsoft Windows targets, the pointer name is
479 formed by combining <code>_imp__</code> and the function or variable name.
480 </dd>
482 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
484 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
485 pointer to a pointer in a DLL, so that it can be referenced with the
486 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
487 name is formed by combining <code>_imp__</code> and the function or variable
488 name.
489 </dd>
491 </dl>
493 <p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
494 variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
495 variable and was linked with this one, one of the two would be renamed,
496 preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
497 external (i.e., lacking any linkage declarations), they are accessible
498 outside of the current module.</p>
499 <p>It is illegal for a function <i>declaration</i>
500 to have any linkage type other than "externally visible", <tt>dllimport</tt>,
501 or <tt>extern_weak</tt>.</p>
502 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
503 linkages.
504 </div>
506 <!-- ======================================================================= -->
507 <div class="doc_subsection">
508 <a name="callingconv">Calling Conventions</a>
509 </div>
511 <div class="doc_text">
513 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
514 and <a href="#i_invoke">invokes</a> can all have an optional calling convention
515 specified for the call. The calling convention of any pair of dynamic
516 caller/callee must match, or the behavior of the program is undefined. The
517 following calling conventions are supported by LLVM, and more may be added in
518 the future:</p>
520 <dl>
521 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
523 <dd>This calling convention (the default if no other calling convention is
524 specified) matches the target C calling conventions. This calling convention
525 supports varargs function calls and tolerates some mismatch in the declared
526 prototype and implemented declaration of the function (as does normal C).
527 </dd>
529 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
531 <dd>This calling convention attempts to make calls as fast as possible
532 (e.g. by passing things in registers). This calling convention allows the
533 target to use whatever tricks it wants to produce fast code for the target,
534 without having to conform to an externally specified ABI. Implementations of
535 this convention should allow arbitrary tail call optimization to be supported.
536 This calling convention does not support varargs and requires the prototype of
537 all callees to exactly match the prototype of the function definition.
538 </dd>
540 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
542 <dd>This calling convention attempts to make code in the caller as efficient
543 as possible under the assumption that the call is not commonly executed. As
544 such, these calls often preserve all registers so that the call does not break
545 any live ranges in the caller side. This calling convention does not support
546 varargs and requires the prototype of all callees to exactly match the
547 prototype of the function definition.
548 </dd>
550 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
552 <dd>Any calling convention may be specified by number, allowing
553 target-specific calling conventions to be used. Target specific calling
554 conventions start at 64.
555 </dd>
556 </dl>
558 <p>More calling conventions can be added/defined on an as-needed basis, to
559 support pascal conventions or any other well-known target-independent
560 convention.</p>
562 </div>
564 <!-- ======================================================================= -->
565 <div class="doc_subsection">
566 <a name="visibility">Visibility Styles</a>
567 </div>
569 <div class="doc_text">
572 All Global Variables and Functions have one of the following visibility styles:
573 </p>
575 <dl>
576 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
578 <dd>On ELF, default visibility means that the declaration is visible to other
579 modules and, in shared libraries, means that the declared entity may be
580 overridden. On Darwin, default visibility means that the declaration is
581 visible to other modules. Default visibility corresponds to "external
582 linkage" in the language.
583 </dd>
585 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
587 <dd>Two declarations of an object with hidden visibility refer to the same
588 object if they are in the same shared object. Usually, hidden visibility
589 indicates that the symbol will not be placed into the dynamic symbol table,
590 so no other module (executable or shared library) can reference it
591 directly.
592 </dd>
594 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
596 <dd>On ELF, protected visibility indicates that the symbol will be placed in
597 the dynamic symbol table, but that references within the defining module will
598 bind to the local symbol. That is, the symbol cannot be overridden by another
599 module.
600 </dd>
601 </dl>
603 </div>
605 <!-- ======================================================================= -->
606 <div class="doc_subsection">
607 <a name="globalvars">Global Variables</a>
608 </div>
610 <div class="doc_text">
612 <p>Global variables define regions of memory allocated at compilation time
613 instead of run-time. Global variables may optionally be initialized, may have
614 an explicit section to be placed in, and may have an optional explicit alignment
615 specified. A variable may be defined as "thread_local", which means that it
616 will not be shared by threads (each thread will have a separated copy of the
617 variable). A variable may be defined as a global "constant," which indicates
618 that the contents of the variable will <b>never</b> be modified (enabling better
619 optimization, allowing the global data to be placed in the read-only section of
620 an executable, etc). Note that variables that need runtime initialization
621 cannot be marked "constant" as there is a store to the variable.</p>
624 LLVM explicitly allows <em>declarations</em> of global variables to be marked
625 constant, even if the final definition of the global is not. This capability
626 can be used to enable slightly better optimization of the program, but requires
627 the language definition to guarantee that optimizations based on the
628 'constantness' are valid for the translation units that do not include the
629 definition.
630 </p>
632 <p>As SSA values, global variables define pointer values that are in
633 scope (i.e. they dominate) all basic blocks in the program. Global
634 variables always define a pointer to their "content" type because they
635 describe a region of memory, and all memory objects in LLVM are
636 accessed through pointers.</p>
638 <p>LLVM allows an explicit section to be specified for globals. If the target
639 supports it, it will emit globals to the section specified.</p>
641 <p>An explicit alignment may be specified for a global. If not present, or if
642 the alignment is set to zero, the alignment of the global is set by the target
643 to whatever it feels convenient. If an explicit alignment is specified, the
644 global is forced to have at least that much alignment. All alignments must be
645 a power of 2.</p>
647 <p>For example, the following defines a global with an initializer, section,
648 and alignment:</p>
650 <pre>
651 %G = constant float 1.0, section "foo", align 4
652 </pre>
654 </div>
657 <!-- ======================================================================= -->
658 <div class="doc_subsection">
659 <a name="functionstructure">Functions</a>
660 </div>
662 <div class="doc_text">
664 <p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
665 an optional <a href="#linkage">linkage type</a>, an optional
666 <a href="#visibility">visibility style</a>, an optional
667 <a href="#callingconv">calling convention</a>, a return type, an optional
668 <a href="#paramattrs">parameter attribute</a> for the return type, a function
669 name, a (possibly empty) argument list (each with optional
670 <a href="#paramattrs">parameter attributes</a>), an optional section, an
671 optional alignment, an opening curly brace, a list of basic blocks, and a
672 closing curly brace.
674 LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
675 optional <a href="#linkage">linkage type</a>, an optional
676 <a href="#visibility">visibility style</a>, an optional
677 <a href="#callingconv">calling convention</a>, a return type, an optional
678 <a href="#paramattrs">parameter attribute</a> for the return type, a function
679 name, a possibly empty list of arguments, and an optional alignment.</p>
681 <p>A function definition contains a list of basic blocks, forming the CFG for
682 the function. Each basic block may optionally start with a label (giving the
683 basic block a symbol table entry), contains a list of instructions, and ends
684 with a <a href="#terminators">terminator</a> instruction (such as a branch or
685 function return).</p>
687 <p>The first basic block in a program is special in two ways: it is immediately
688 executed on entrance to the function, and it is not allowed to have predecessor
689 basic blocks (i.e. there can not be any branches to the entry block of a
690 function). Because the block can have no predecessors, it also cannot have any
691 <a href="#i_phi">PHI nodes</a>.</p>
693 <p>LLVM functions are identified by their name and type signature. Hence, two
694 functions with the same name but different parameter lists or return values are
695 considered different functions, and LLVM will resolve references to each
696 appropriately.</p>
698 <p>LLVM allows an explicit section to be specified for functions. If the target
699 supports it, it will emit functions to the section specified.</p>
701 <p>An explicit alignment may be specified for a function. If not present, or if
702 the alignment is set to zero, the alignment of the function is set by the target
703 to whatever it feels convenient. If an explicit alignment is specified, the
704 function is forced to have at least that much alignment. All alignments must be
705 a power of 2.</p>
707 </div>
710 <!-- ======================================================================= -->
711 <div class="doc_subsection">
712 <a name="aliasstructure">Aliases</a>
713 </div>
714 <div class="doc_text">
715 <p>Aliases act as "second name" for the aliasee value (which can be either
716 function or global variable or bitcast of global value). Aliases may have an
717 optional <a href="#linkage">linkage type</a>, and an
718 optional <a href="#visibility">visibility style</a>.</p>
720 <h5>Syntax:</h5>
722 <pre>
723 @&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
724 </pre>
726 </div>
730 <!-- ======================================================================= -->
731 <div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
732 <div class="doc_text">
733 <p>The return type and each parameter of a function type may have a set of
734 <i>parameter attributes</i> associated with them. Parameter attributes are
735 used to communicate additional information about the result or parameters of
736 a function. Parameter attributes are considered to be part of the function
737 type so two functions types that differ only by the parameter attributes
738 are different function types.</p>
740 <p>Parameter attributes are simple keywords that follow the type specified. If
741 multiple parameter attributes are needed, they are space separated. For
742 example:</p><pre>
743 %someFunc = i16 (i8 sext %someParam) zext
744 %someFunc = i16 (i8 zext %someParam) zext</pre>
745 <p>Note that the two function types above are unique because the parameter has
746 a different attribute (sext in the first one, zext in the second). Also note
747 that the attribute for the function result (zext) comes immediately after the
748 argument list.</p>
750 <p>Currently, only the following parameter attributes are defined:</p>
751 <dl>
752 <dt><tt>zext</tt></dt>
753 <dd>This indicates that the parameter should be zero extended just before
754 a call to this function.</dd>
755 <dt><tt>sext</tt></dt>
756 <dd>This indicates that the parameter should be sign extended just before
757 a call to this function.</dd>
758 <dt><tt>inreg</tt></dt>
759 <dd>This indicates that the parameter should be placed in register (if
760 possible) during assembling function call. Support for this attribute is
761 target-specific</dd>
762 <dt><tt>sret</tt></dt>
763 <dd>This indicates that the parameter specifies the address of a structure
764 that is the return value of the function in the source program.</dd>
765 <dt><tt>noreturn</tt></dt>
766 <dd>This function attribute indicates that the function never returns. This
767 indicates to LLVM that every call to this function should be treated as if
768 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
769 <dt><tt>nounwind</tt></dt>
770 <dd>This function attribute indicates that the function type does not use
771 the unwind instruction and does not allow stack unwinding to propagate
772 through it.</dd>
773 </dl>
775 </div>
777 <!-- ======================================================================= -->
778 <div class="doc_subsection">
779 <a name="moduleasm">Module-Level Inline Assembly</a>
780 </div>
782 <div class="doc_text">
784 Modules may contain "module-level inline asm" blocks, which corresponds to the
785 GCC "file scope inline asm" blocks. These blocks are internally concatenated by
786 LLVM and treated as a single unit, but may be separated in the .ll file if
787 desired. The syntax is very simple:
788 </p>
790 <div class="doc_code"><pre>
791 module asm "inline asm code goes here"
792 module asm "more can go here"
793 </pre></div>
795 <p>The strings can contain any character by escaping non-printable characters.
796 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
797 for the number.
798 </p>
801 The inline asm code is simply printed to the machine code .s file when
802 assembly code is generated.
803 </p>
804 </div>
806 <!-- ======================================================================= -->
807 <div class="doc_subsection">
808 <a name="datalayout">Data Layout</a>
809 </div>
811 <div class="doc_text">
812 <p>A module may specify a target specific data layout string that specifies how
813 data is to be laid out in memory. The syntax for the data layout is simply:</p>
814 <pre> target datalayout = "<i>layout specification</i>"</pre>
815 <p>The <i>layout specification</i> consists of a list of specifications
816 separated by the minus sign character ('-'). Each specification starts with a
817 letter and may include other information after the letter to define some
818 aspect of the data layout. The specifications accepted are as follows: </p>
819 <dl>
820 <dt><tt>E</tt></dt>
821 <dd>Specifies that the target lays out data in big-endian form. That is, the
822 bits with the most significance have the lowest address location.</dd>
823 <dt><tt>e</tt></dt>
824 <dd>Specifies that hte target lays out data in little-endian form. That is,
825 the bits with the least significance have the lowest address location.</dd>
826 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
827 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
828 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
829 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
830 too.</dd>
831 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
832 <dd>This specifies the alignment for an integer type of a given bit
833 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
834 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
835 <dd>This specifies the alignment for a vector type of a given bit
836 <i>size</i>.</dd>
837 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
838 <dd>This specifies the alignment for a floating point type of a given bit
839 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
840 (double).</dd>
841 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
842 <dd>This specifies the alignment for an aggregate type of a given bit
843 <i>size</i>.</dd>
844 </dl>
845 <p>When constructing the data layout for a given target, LLVM starts with a
846 default set of specifications which are then (possibly) overriden by the
847 specifications in the <tt>datalayout</tt> keyword. The default specifications
848 are given in this list:</p>
849 <ul>
850 <li><tt>E</tt> - big endian</li>
851 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
852 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
853 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
854 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
855 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
856 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
857 alignment of 64-bits</li>
858 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
859 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
860 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
861 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
862 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
863 </ul>
864 <p>When llvm is determining the alignment for a given type, it uses the
865 following rules:
866 <ol>
867 <li>If the type sought is an exact match for one of the specifications, that
868 specification is used.</li>
869 <li>If no match is found, and the type sought is an integer type, then the
870 smallest integer type that is larger than the bitwidth of the sought type is
871 used. If none of the specifications are larger than the bitwidth then the the
872 largest integer type is used. For example, given the default specifications
873 above, the i7 type will use the alignment of i8 (next largest) while both
874 i65 and i256 will use the alignment of i64 (largest specified).</li>
875 <li>If no match is found, and the type sought is a vector type, then the
876 largest vector type that is smaller than the sought vector type will be used
877 as a fall back. This happens because <128 x double> can be implemented in
878 terms of 64 <2 x double>, for example.</li>
879 </ol>
880 </div>
882 <!-- *********************************************************************** -->
883 <div class="doc_section"> <a name="typesystem">Type System</a> </div>
884 <!-- *********************************************************************** -->
886 <div class="doc_text">
888 <p>The LLVM type system is one of the most important features of the
889 intermediate representation. Being typed enables a number of
890 optimizations to be performed on the IR directly, without having to do
891 extra analyses on the side before the transformation. A strong type
892 system makes it easier to read the generated code and enables novel
893 analyses and transformations that are not feasible to perform on normal
894 three address code representations.</p>
896 </div>
898 <!-- ======================================================================= -->
899 <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
900 <div class="doc_text">
901 <p>The primitive types are the fundamental building blocks of the LLVM
902 system. The current set of primitive types is as follows:</p>
904 <table class="layout">
905 <tr class="layout">
906 <td class="left">
907 <table>
908 <tbody>
909 <tr><th>Type</th><th>Description</th></tr>
910 <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
911 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
912 </tbody>
913 </table>
914 </td>
915 <td class="right">
916 <table>
917 <tbody>
918 <tr><th>Type</th><th>Description</th></tr>
919 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
920 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
921 </tbody>
922 </table>
923 </td>
924 </tr>
925 </table>
926 </div>
928 <!-- _______________________________________________________________________ -->
929 <div class="doc_subsubsection"> <a name="t_classifications">Type
930 Classifications</a> </div>
931 <div class="doc_text">
932 <p>These different primitive types fall into a few useful
933 classifications:</p>
935 <table border="1" cellspacing="0" cellpadding="4">
936 <tbody>
937 <tr><th>Classification</th><th>Types</th></tr>
938 <tr>
939 <td><a name="t_integer">integer</a></td>
940 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
941 </tr>
942 <tr>
943 <td><a name="t_floating">floating point</a></td>
944 <td><tt>float, double</tt></td>
945 </tr>
946 <tr>
947 <td><a name="t_firstclass">first class</a></td>
948 <td><tt>i1, ..., float, double, <br/>
949 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
950 </td>
951 </tr>
952 </tbody>
953 </table>
955 <p>The <a href="#t_firstclass">first class</a> types are perhaps the
956 most important. Values of these types are the only ones which can be
957 produced by instructions, passed as arguments, or used as operands to
958 instructions. This means that all structures and arrays must be
959 manipulated either by pointer or by component.</p>
960 </div>
962 <!-- ======================================================================= -->
963 <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
965 <div class="doc_text">
967 <p>The real power in LLVM comes from the derived types in the system.
968 This is what allows a programmer to represent arrays, functions,
969 pointers, and other useful types. Note that these derived types may be
970 recursive: For example, it is possible to have a two dimensional array.</p>
972 </div>
974 <!-- _______________________________________________________________________ -->
975 <div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
977 <div class="doc_text">
979 <h5>Overview:</h5>
980 <p>The integer type is a very simple derived type that simply specifies an
981 arbitrary bit width for the integer type desired. Any bit width from 1 bit to
982 2^23-1 (about 8 million) can be specified.</p>
984 <h5>Syntax:</h5>
986 <pre>
988 </pre>
990 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
991 value.</p>
993 <h5>Examples:</h5>
994 <table class="layout">
995 <tr class="layout">
996 <td class="left">
997 <tt>i1</tt><br/>
998 <tt>i4</tt><br/>
999 <tt>i8</tt><br/>
1000 <tt>i16</tt><br/>
1001 <tt>i32</tt><br/>
1002 <tt>i42</tt><br/>
1003 <tt>i64</tt><br/>
1004 <tt>i1942652</tt><br/>
1005 </td>
1006 <td class="left">
1007 A boolean integer of 1 bit<br/>
1008 A nibble sized integer of 4 bits.<br/>
1009 A byte sized integer of 8 bits.<br/>
1010 A half word sized integer of 16 bits.<br/>
1011 A word sized integer of 32 bits.<br/>
1012 An integer whose bit width is the answer. <br/>
1013 A double word sized integer of 64 bits.<br/>
1014 A really big integer of over 1 million bits.<br/>
1015 </td>
1016 </tr>
1017 </table>
1019 <!-- _______________________________________________________________________ -->
1020 <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1022 <div class="doc_text">
1024 <h5>Overview:</h5>
1026 <p>The array type is a very simple derived type that arranges elements
1027 sequentially in memory. The array type requires a size (number of
1028 elements) and an underlying data type.</p>
1030 <h5>Syntax:</h5>
1032 <pre>
1033 [&lt;# elements&gt; x &lt;elementtype&gt;]
1034 </pre>
1036 <p>The number of elements is a constant integer value; elementtype may
1037 be any type with a size.</p>
1039 <h5>Examples:</h5>
1040 <table class="layout">
1041 <tr class="layout">
1042 <td class="left">
1043 <tt>[40 x i32 ]</tt><br/>
1044 <tt>[41 x i32 ]</tt><br/>
1045 <tt>[40 x i8]</tt><br/>
1046 </td>
1047 <td class="left">
1048 Array of 40 32-bit integer values.<br/>
1049 Array of 41 32-bit integer values.<br/>
1050 Array of 40 8-bit integer values.<br/>
1051 </td>
1052 </tr>
1053 </table>
1054 <p>Here are some examples of multidimensional arrays:</p>
1055 <table class="layout">
1056 <tr class="layout">
1057 <td class="left">
1058 <tt>[3 x [4 x i32]]</tt><br/>
1059 <tt>[12 x [10 x float]]</tt><br/>
1060 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
1061 </td>
1062 <td class="left">
1063 3x4 array of 32-bit integer values.<br/>
1064 12x10 array of single precision floating point values.<br/>
1065 2x3x4 array of 16-bit integer values.<br/>
1066 </td>
1067 </tr>
1068 </table>
1070 <p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1071 length array. Normally, accesses past the end of an array are undefined in
1072 LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1073 As a special case, however, zero length arrays are recognized to be variable
1074 length. This allows implementation of 'pascal style arrays' with the LLVM
1075 type "{ i32, [0 x float]}", for example.</p>
1077 </div>
1079 <!-- _______________________________________________________________________ -->
1080 <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1081 <div class="doc_text">
1082 <h5>Overview:</h5>
1083 <p>The function type can be thought of as a function signature. It
1084 consists of a return type and a list of formal parameter types.
1085 Function types are usually used to build virtual function tables
1086 (which are structures of pointers to functions), for indirect function
1087 calls, and when defining a function.</p>
1089 The return type of a function type cannot be an aggregate type.
1090 </p>
1091 <h5>Syntax:</h5>
1092 <pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
1093 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1094 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1095 which indicates that the function takes a variable number of arguments.
1096 Variable argument functions can access their arguments with the <a
1097 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
1098 <h5>Examples:</h5>
1099 <table class="layout">
1100 <tr class="layout">
1101 <td class="left"><tt>i32 (i32)</tt></td>
1102 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1103 </td>
1104 </tr><tr class="layout">
1105 <td class="left"><tt>float&nbsp;(i16&nbsp;sext,&nbsp;i32&nbsp;*)&nbsp;*
1106 </tt></td>
1107 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1108 an <tt>i16</tt> that should be sign extended and a
1109 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1110 <tt>float</tt>.
1111 </td>
1112 </tr><tr class="layout">
1113 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1114 <td class="left">A vararg function that takes at least one
1115 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1116 which returns an integer. This is the signature for <tt>printf</tt> in
1117 LLVM.
1118 </td>
1119 </tr>
1120 </table>
1122 </div>
1123 <!-- _______________________________________________________________________ -->
1124 <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1125 <div class="doc_text">
1126 <h5>Overview:</h5>
1127 <p>The structure type is used to represent a collection of data members
1128 together in memory. The packing of the field types is defined to match
1129 the ABI of the underlying processor. The elements of a structure may
1130 be any type that has a size.</p>
1131 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1132 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1133 field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1134 instruction.</p>
1135 <h5>Syntax:</h5>
1136 <pre> { &lt;type list&gt; }<br></pre>
1137 <h5>Examples:</h5>
1138 <table class="layout">
1139 <tr class="layout">
1140 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1141 <td class="left">A triple of three <tt>i32</tt> values</td>
1142 </tr><tr class="layout">
1143 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1144 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1145 second element is a <a href="#t_pointer">pointer</a> to a
1146 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1147 an <tt>i32</tt>.</td>
1148 </tr>
1149 </table>
1150 </div>
1152 <!-- _______________________________________________________________________ -->
1153 <div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1154 </div>
1155 <div class="doc_text">
1156 <h5>Overview:</h5>
1157 <p>The packed structure type is used to represent a collection of data members
1158 together in memory. There is no padding between fields. Further, the alignment
1159 of a packed structure is 1 byte. The elements of a packed structure may
1160 be any type that has a size.</p>
1161 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1162 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1163 field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1164 instruction.</p>
1165 <h5>Syntax:</h5>
1166 <pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1167 <h5>Examples:</h5>
1168 <table class="layout">
1169 <tr class="layout">
1170 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1171 <td class="left">A triple of three <tt>i32</tt> values</td>
1172 </tr><tr class="layout">
1173 <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
1174 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1175 second element is a <a href="#t_pointer">pointer</a> to a
1176 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1177 an <tt>i32</tt>.</td>
1178 </tr>
1179 </table>
1180 </div>
1182 <!-- _______________________________________________________________________ -->
1183 <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1184 <div class="doc_text">
1185 <h5>Overview:</h5>
1186 <p>As in many languages, the pointer type represents a pointer or
1187 reference to another object, which must live in memory.</p>
1188 <h5>Syntax:</h5>
1189 <pre> &lt;type&gt; *<br></pre>
1190 <h5>Examples:</h5>
1191 <table class="layout">
1192 <tr class="layout">
1193 <td class="left">
1194 <tt>[4x i32]*</tt><br/>
1195 <tt>i32 (i32 *) *</tt><br/>
1196 </td>
1197 <td class="left">
1198 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
1199 four <tt>i32</tt> values<br/>
1200 A <a href="#t_pointer">pointer</a> to a <a
1201 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1202 <tt>i32</tt>.<br/>
1203 </td>
1204 </tr>
1205 </table>
1206 </div>
1208 <!-- _______________________________________________________________________ -->
1209 <div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1210 <div class="doc_text">
1212 <h5>Overview:</h5>
1214 <p>A vector type is a simple derived type that represents a vector
1215 of elements. Vector types are used when multiple primitive data
1216 are operated in parallel using a single instruction (SIMD).
1217 A vector type requires a size (number of
1218 elements) and an underlying primitive data type. Vectors must have a power
1219 of two length (1, 2, 4, 8, 16 ...). Vector types are
1220 considered <a href="#t_firstclass">first class</a>.</p>
1222 <h5>Syntax:</h5>
1224 <pre>
1225 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1226 </pre>
1228 <p>The number of elements is a constant integer value; elementtype may
1229 be any integer or floating point type.</p>
1231 <h5>Examples:</h5>
1233 <table class="layout">
1234 <tr class="layout">
1235 <td class="left">
1236 <tt>&lt;4 x i32&gt;</tt><br/>
1237 <tt>&lt;8 x float&gt;</tt><br/>
1238 <tt>&lt;2 x i64&gt;</tt><br/>
1239 </td>
1240 <td class="left">
1241 Vector of 4 32-bit integer values.<br/>
1242 Vector of 8 floating-point values.<br/>
1243 Vector of 2 64-bit integer values.<br/>
1244 </td>
1245 </tr>
1246 </table>
1247 </div>
1249 <!-- _______________________________________________________________________ -->
1250 <div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1251 <div class="doc_text">
1253 <h5>Overview:</h5>
1255 <p>Opaque types are used to represent unknown types in the system. This
1256 corresponds (for example) to the C notion of a foward declared structure type.
1257 In LLVM, opaque types can eventually be resolved to any type (not just a
1258 structure type).</p>
1260 <h5>Syntax:</h5>
1262 <pre>
1263 opaque
1264 </pre>
1266 <h5>Examples:</h5>
1268 <table class="layout">
1269 <tr class="layout">
1270 <td class="left">
1271 <tt>opaque</tt>
1272 </td>
1273 <td class="left">
1274 An opaque type.<br/>
1275 </td>
1276 </tr>
1277 </table>
1278 </div>
1281 <!-- *********************************************************************** -->
1282 <div class="doc_section"> <a name="constants">Constants</a> </div>
1283 <!-- *********************************************************************** -->
1285 <div class="doc_text">
1287 <p>LLVM has several different basic types of constants. This section describes
1288 them all and their syntax.</p>
1290 </div>
1292 <!-- ======================================================================= -->
1293 <div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1295 <div class="doc_text">
1297 <dl>
1298 <dt><b>Boolean constants</b></dt>
1300 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1301 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1302 </dd>
1304 <dt><b>Integer constants</b></dt>
1306 <dd>Standard integers (such as '4') are constants of the <a
1307 href="#t_integer">integer</a> type. Negative numbers may be used with
1308 integer types.
1309 </dd>
1311 <dt><b>Floating point constants</b></dt>
1313 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1314 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1315 notation (see below). Floating point constants must have a <a
1316 href="#t_floating">floating point</a> type. </dd>
1318 <dt><b>Null pointer constants</b></dt>
1320 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1321 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1323 </dl>
1325 <p>The one non-intuitive notation for constants is the optional hexadecimal form
1326 of floating point constants. For example, the form '<tt>double
1327 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
1328 4.5e+15</tt>'. The only time hexadecimal floating point constants are required
1329 (and the only time that they are generated by the disassembler) is when a
1330 floating point constant must be emitted but it cannot be represented as a
1331 decimal floating point number. For example, NaN's, infinities, and other
1332 special values are represented in their IEEE hexadecimal format so that
1333 assembly and disassembly do not cause any bits to change in the constants.</p>
1335 </div>
1337 <!-- ======================================================================= -->
1338 <div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1339 </div>
1341 <div class="doc_text">
1342 <p>Aggregate constants arise from aggregation of simple constants
1343 and smaller aggregate constants.</p>
1345 <dl>
1346 <dt><b>Structure constants</b></dt>
1348 <dd>Structure constants are represented with notation similar to structure
1349 type definitions (a comma separated list of elements, surrounded by braces
1350 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1351 where "<tt>%G</tt>" is declared as "<tt>%G = external global i32</tt>". Structure constants
1352 must have <a href="#t_struct">structure type</a>, and the number and
1353 types of elements must match those specified by the type.
1354 </dd>
1356 <dt><b>Array constants</b></dt>
1358 <dd>Array constants are represented with notation similar to array type
1359 definitions (a comma separated list of elements, surrounded by square brackets
1360 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1361 constants must have <a href="#t_array">array type</a>, and the number and
1362 types of elements must match those specified by the type.
1363 </dd>
1365 <dt><b>Vector constants</b></dt>
1367 <dd>Vector constants are represented with notation similar to vector type
1368 definitions (a comma separated list of elements, surrounded by
1369 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1370 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1371 href="#t_vector">vector type</a>, and the number and types of elements must
1372 match those specified by the type.
1373 </dd>
1375 <dt><b>Zero initialization</b></dt>
1377 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1378 value to zero of <em>any</em> type, including scalar and aggregate types.
1379 This is often used to avoid having to print large zero initializers (e.g. for
1380 large arrays) and is always exactly equivalent to using explicit zero
1381 initializers.
1382 </dd>
1383 </dl>
1385 </div>
1387 <!-- ======================================================================= -->
1388 <div class="doc_subsection">
1389 <a name="globalconstants">Global Variable and Function Addresses</a>
1390 </div>
1392 <div class="doc_text">
1394 <p>The addresses of <a href="#globalvars">global variables</a> and <a
1395 href="#functionstructure">functions</a> are always implicitly valid (link-time)
1396 constants. These constants are explicitly referenced when the <a
1397 href="#identifiers">identifier for the global</a> is used and always have <a
1398 href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1399 file:</p>
1401 <pre>
1402 %X = global i32 17
1403 %Y = global i32 42
1404 %Z = global [2 x i32*] [ i32* %X, i32* %Y ]
1405 </pre>
1407 </div>
1409 <!-- ======================================================================= -->
1410 <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1411 <div class="doc_text">
1412 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1413 no specific value. Undefined values may be of any type and be used anywhere
1414 a constant is permitted.</p>
1416 <p>Undefined values indicate to the compiler that the program is well defined
1417 no matter what value is used, giving the compiler more freedom to optimize.
1418 </p>
1419 </div>
1421 <!-- ======================================================================= -->
1422 <div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1423 </div>
1425 <div class="doc_text">
1427 <p>Constant expressions are used to allow expressions involving other constants
1428 to be used as constants. Constant expressions may be of any <a
1429 href="#t_firstclass">first class</a> type and may involve any LLVM operation
1430 that does not have side effects (e.g. load and call are not supported). The
1431 following is the syntax for constant expressions:</p>
1433 <dl>
1434 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1435 <dd>Truncate a constant to another type. The bit size of CST must be larger
1436 than the bit size of TYPE. Both types must be integers.</dd>
1438 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1439 <dd>Zero extend a constant to another type. The bit size of CST must be
1440 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1442 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1443 <dd>Sign extend a constant to another type. The bit size of CST must be
1444 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1446 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1447 <dd>Truncate a floating point constant to another floating point type. The
1448 size of CST must be larger than the size of TYPE. Both types must be
1449 floating point.</dd>
1451 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1452 <dd>Floating point extend a constant to another type. The size of CST must be
1453 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1455 <dt><b><tt>fp2uint ( CST to TYPE )</tt></b></dt>
1456 <dd>Convert a floating point constant to the corresponding unsigned integer
1457 constant. TYPE must be an integer type. CST must be floating point. If the
1458 value won't fit in the integer type, the results are undefined.</dd>
1460 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1461 <dd>Convert a floating point constant to the corresponding signed integer
1462 constant. TYPE must be an integer type. CST must be floating point. If the
1463 value won't fit in the integer type, the results are undefined.</dd>
1465 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1466 <dd>Convert an unsigned integer constant to the corresponding floating point
1467 constant. TYPE must be floating point. CST must be of integer type. If the
1468 value won't fit in the floating point type, the results are undefined.</dd>
1470 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1471 <dd>Convert a signed integer constant to the corresponding floating point
1472 constant. TYPE must be floating point. CST must be of integer type. If the
1473 value won't fit in the floating point type, the results are undefined.</dd>
1475 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1476 <dd>Convert a pointer typed constant to the corresponding integer constant
1477 TYPE must be an integer type. CST must be of pointer type. The CST value is
1478 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1480 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1481 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1482 pointer type. CST must be of integer type. The CST value is zero extended,
1483 truncated, or unchanged to make it fit in a pointer size. This one is
1484 <i>really</i> dangerous!</dd>
1486 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1487 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1488 identical (same number of bits). The conversion is done as if the CST value
1489 was stored to memory and read back as TYPE. In other words, no bits change
1490 with this operator, just the type. This can be used for conversion of
1491 vector types to any other type, as long as they have the same bit width. For
1492 pointers it is only valid to cast to another pointer type.
1493 </dd>
1495 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1497 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1498 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1499 instruction, the index list may have zero or more indexes, which are required
1500 to make sense for the type of "CSTPTR".</dd>
1502 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1504 <dd>Perform the <a href="#i_select">select operation</a> on
1505 constants.</dd>
1507 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1508 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1510 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1511 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1513 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1515 <dd>Perform the <a href="#i_extractelement">extractelement
1516 operation</a> on constants.
1518 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1520 <dd>Perform the <a href="#i_insertelement">insertelement
1521 operation</a> on constants.</dd>
1524 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1526 <dd>Perform the <a href="#i_shufflevector">shufflevector
1527 operation</a> on constants.</dd>
1529 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1531 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1532 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1533 binary</a> operations. The constraints on operands are the same as those for
1534 the corresponding instruction (e.g. no bitwise operations on floating point
1535 values are allowed).</dd>
1536 </dl>
1537 </div>
1539 <!-- *********************************************************************** -->
1540 <div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1541 <!-- *********************************************************************** -->
1543 <!-- ======================================================================= -->
1544 <div class="doc_subsection">
1545 <a name="inlineasm">Inline Assembler Expressions</a>
1546 </div>
1548 <div class="doc_text">
1551 LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1552 Module-Level Inline Assembly</a>) through the use of a special value. This
1553 value represents the inline assembler as a string (containing the instructions
1554 to emit), a list of operand constraints (stored as a string), and a flag that
1555 indicates whether or not the inline asm expression has side effects. An example
1556 inline assembler expression is:
1557 </p>
1559 <pre>
1560 i32 (i32) asm "bswap $0", "=r,r"
1561 </pre>
1564 Inline assembler expressions may <b>only</b> be used as the callee operand of
1565 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1566 </p>
1568 <pre>
1569 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1570 </pre>
1573 Inline asms with side effects not visible in the constraint list must be marked
1574 as having side effects. This is done through the use of the
1575 '<tt>sideeffect</tt>' keyword, like so:
1576 </p>
1578 <pre>
1579 call void asm sideeffect "eieio", ""()
1580 </pre>
1582 <p>TODO: The format of the asm and constraints string still need to be
1583 documented here. Constraints on what can be done (e.g. duplication, moving, etc
1584 need to be documented).
1585 </p>
1587 </div>
1589 <!-- *********************************************************************** -->
1590 <div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1591 <!-- *********************************************************************** -->
1593 <div class="doc_text">
1595 <p>The LLVM instruction set consists of several different
1596 classifications of instructions: <a href="#terminators">terminator
1597 instructions</a>, <a href="#binaryops">binary instructions</a>,
1598 <a href="#bitwiseops">bitwise binary instructions</a>, <a
1599 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1600 instructions</a>.</p>
1602 </div>
1604 <!-- ======================================================================= -->
1605 <div class="doc_subsection"> <a name="terminators">Terminator
1606 Instructions</a> </div>
1608 <div class="doc_text">
1610 <p>As mentioned <a href="#functionstructure">previously</a>, every
1611 basic block in a program ends with a "Terminator" instruction, which
1612 indicates which block should be executed after the current block is
1613 finished. These terminator instructions typically yield a '<tt>void</tt>'
1614 value: they produce control flow, not values (the one exception being
1615 the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1616 <p>There are six different terminator instructions: the '<a
1617 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1618 instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1619 the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1620 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1621 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1623 </div>
1625 <!-- _______________________________________________________________________ -->
1626 <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1627 Instruction</a> </div>
1628 <div class="doc_text">
1629 <h5>Syntax:</h5>
1630 <pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1631 ret void <i>; Return from void function</i>
1632 </pre>
1633 <h5>Overview:</h5>
1634 <p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1635 value) from a function back to the caller.</p>
1636 <p>There are two forms of the '<tt>ret</tt>' instruction: one that
1637 returns a value and then causes control flow, and one that just causes
1638 control flow to occur.</p>
1639 <h5>Arguments:</h5>
1640 <p>The '<tt>ret</tt>' instruction may return any '<a
1641 href="#t_firstclass">first class</a>' type. Notice that a function is
1642 not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1643 instruction inside of the function that returns a value that does not
1644 match the return type of the function.</p>
1645 <h5>Semantics:</h5>
1646 <p>When the '<tt>ret</tt>' instruction is executed, control flow
1647 returns back to the calling function's context. If the caller is a "<a
1648 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1649 the instruction after the call. If the caller was an "<a
1650 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1651 at the beginning of the "normal" destination block. If the instruction
1652 returns a value, that value shall set the call or invoke instruction's
1653 return value.</p>
1654 <h5>Example:</h5>
1655 <pre> ret i32 5 <i>; Return an integer value of 5</i>
1656 ret void <i>; Return from a void function</i>
1657 </pre>
1658 </div>
1659 <!-- _______________________________________________________________________ -->
1660 <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1661 <div class="doc_text">
1662 <h5>Syntax:</h5>
1663 <pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1664 </pre>
1665 <h5>Overview:</h5>
1666 <p>The '<tt>br</tt>' instruction is used to cause control flow to
1667 transfer to a different basic block in the current function. There are
1668 two forms of this instruction, corresponding to a conditional branch
1669 and an unconditional branch.</p>
1670 <h5>Arguments:</h5>
1671 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1672 single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1673 unconditional form of the '<tt>br</tt>' instruction takes a single
1674 '<tt>label</tt>' value as a target.</p>
1675 <h5>Semantics:</h5>
1676 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1677 argument is evaluated. If the value is <tt>true</tt>, control flows
1678 to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1679 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1680 <h5>Example:</h5>
1681 <pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1682 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1683 </div>
1684 <!-- _______________________________________________________________________ -->
1685 <div class="doc_subsubsection">
1686 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1687 </div>
1689 <div class="doc_text">
1690 <h5>Syntax:</h5>
1692 <pre>
1693 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1694 </pre>
1696 <h5>Overview:</h5>
1698 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1699 several different places. It is a generalization of the '<tt>br</tt>'
1700 instruction, allowing a branch to occur to one of many possible
1701 destinations.</p>
1704 <h5>Arguments:</h5>
1706 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1707 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1708 an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1709 table is not allowed to contain duplicate constant entries.</p>
1711 <h5>Semantics:</h5>
1713 <p>The <tt>switch</tt> instruction specifies a table of values and
1714 destinations. When the '<tt>switch</tt>' instruction is executed, this
1715 table is searched for the given value. If the value is found, control flow is
1716 transfered to the corresponding destination; otherwise, control flow is
1717 transfered to the default destination.</p>
1719 <h5>Implementation:</h5>
1721 <p>Depending on properties of the target machine and the particular
1722 <tt>switch</tt> instruction, this instruction may be code generated in different
1723 ways. For example, it could be generated as a series of chained conditional
1724 branches or with a lookup table.</p>
1726 <h5>Example:</h5>
1728 <pre>
1729 <i>; Emulate a conditional br instruction</i>
1730 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1731 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1733 <i>; Emulate an unconditional br instruction</i>
1734 switch i32 0, label %dest [ ]
1736 <i>; Implement a jump table:</i>
1737 switch i32 %val, label %otherwise [ i32 0, label %onzero
1738 i32 1, label %onone
1739 i32 2, label %ontwo ]
1740 </pre>
1741 </div>
1743 <!-- _______________________________________________________________________ -->
1744 <div class="doc_subsubsection">
1745 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1746 </div>
1748 <div class="doc_text">
1750 <h5>Syntax:</h5>
1752 <pre>
1753 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
1754 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1755 </pre>
1757 <h5>Overview:</h5>
1759 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1760 function, with the possibility of control flow transfer to either the
1761 '<tt>normal</tt>' label or the
1762 '<tt>exception</tt>' label. If the callee function returns with the
1763 "<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1764 "normal" label. If the callee (or any indirect callees) returns with the "<a
1765 href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1766 continued at the dynamically nearest "exception" label.</p>
1768 <h5>Arguments:</h5>
1770 <p>This instruction requires several arguments:</p>
1772 <ol>
1773 <li>
1774 The optional "cconv" marker indicates which <a href="#callingconv">calling
1775 convention</a> the call should use. If none is specified, the call defaults
1776 to using C calling conventions.
1777 </li>
1778 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1779 function value being invoked. In most cases, this is a direct function
1780 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1781 an arbitrary pointer to function value.
1782 </li>
1784 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1785 function to be invoked. </li>
1787 <li>'<tt>function args</tt>': argument list whose types match the function
1788 signature argument types. If the function signature indicates the function
1789 accepts a variable number of arguments, the extra arguments can be
1790 specified. </li>
1792 <li>'<tt>normal label</tt>': the label reached when the called function
1793 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1795 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1796 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1798 </ol>
1800 <h5>Semantics:</h5>
1802 <p>This instruction is designed to operate as a standard '<tt><a
1803 href="#i_call">call</a></tt>' instruction in most regards. The primary
1804 difference is that it establishes an association with a label, which is used by
1805 the runtime library to unwind the stack.</p>
1807 <p>This instruction is used in languages with destructors to ensure that proper
1808 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1809 exception. Additionally, this is important for implementation of
1810 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
1812 <h5>Example:</h5>
1813 <pre>
1814 %retval = invoke i32 %Test(i32 15) to label %Continue
1815 unwind label %TestCleanup <i>; {i32}:retval set</i>
1816 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1817 unwind label %TestCleanup <i>; {i32}:retval set</i>
1818 </pre>
1819 </div>
1822 <!-- _______________________________________________________________________ -->
1824 <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1825 Instruction</a> </div>
1827 <div class="doc_text">
1829 <h5>Syntax:</h5>
1830 <pre>
1831 unwind
1832 </pre>
1834 <h5>Overview:</h5>
1836 <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1837 at the first callee in the dynamic call stack which used an <a
1838 href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1839 primarily used to implement exception handling.</p>
1841 <h5>Semantics:</h5>
1843 <p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1844 immediately halt. The dynamic call stack is then searched for the first <a
1845 href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1846 execution continues at the "exceptional" destination block specified by the
1847 <tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1848 dynamic call chain, undefined behavior results.</p>
1849 </div>
1851 <!-- _______________________________________________________________________ -->
1853 <div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1854 Instruction</a> </div>
1856 <div class="doc_text">
1858 <h5>Syntax:</h5>
1859 <pre>
1860 unreachable
1861 </pre>
1863 <h5>Overview:</h5>
1865 <p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1866 instruction is used to inform the optimizer that a particular portion of the
1867 code is not reachable. This can be used to indicate that the code after a
1868 no-return function cannot be reached, and other facts.</p>
1870 <h5>Semantics:</h5>
1872 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1873 </div>
1877 <!-- ======================================================================= -->
1878 <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
1879 <div class="doc_text">
1880 <p>Binary operators are used to do most of the computation in a
1881 program. They require two operands, execute an operation on them, and
1882 produce a single value. The operands might represent
1883 multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
1884 The result value of a binary operator is not
1885 necessarily the same type as its operands.</p>
1886 <p>There are several different binary operators:</p>
1887 </div>
1888 <!-- _______________________________________________________________________ -->
1889 <div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1890 Instruction</a> </div>
1891 <div class="doc_text">
1892 <h5>Syntax:</h5>
1893 <pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1894 </pre>
1895 <h5>Overview:</h5>
1896 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
1897 <h5>Arguments:</h5>
1898 <p>The two arguments to the '<tt>add</tt>' instruction must be either <a
1899 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1900 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1901 Both arguments must have identical types.</p>
1902 <h5>Semantics:</h5>
1903 <p>The value produced is the integer or floating point sum of the two
1904 operands.</p>
1905 <h5>Example:</h5>
1906 <pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
1907 </pre>
1908 </div>
1909 <!-- _______________________________________________________________________ -->
1910 <div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1911 Instruction</a> </div>
1912 <div class="doc_text">
1913 <h5>Syntax:</h5>
1914 <pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1915 </pre>
1916 <h5>Overview:</h5>
1917 <p>The '<tt>sub</tt>' instruction returns the difference of its two
1918 operands.</p>
1919 <p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1920 instruction present in most other intermediate representations.</p>
1921 <h5>Arguments:</h5>
1922 <p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
1923 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1924 values.
1925 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1926 Both arguments must have identical types.</p>
1927 <h5>Semantics:</h5>
1928 <p>The value produced is the integer or floating point difference of
1929 the two operands.</p>
1930 <h5>Example:</h5>
1931 <pre> &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1932 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
1933 </pre>
1934 </div>
1935 <!-- _______________________________________________________________________ -->
1936 <div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1937 Instruction</a> </div>
1938 <div class="doc_text">
1939 <h5>Syntax:</h5>
1940 <pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1941 </pre>
1942 <h5>Overview:</h5>
1943 <p>The '<tt>mul</tt>' instruction returns the product of its two
1944 operands.</p>
1945 <h5>Arguments:</h5>
1946 <p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
1947 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1948 values.
1949 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1950 Both arguments must have identical types.</p>
1951 <h5>Semantics:</h5>
1952 <p>The value produced is the integer or floating point product of the
1953 two operands.</p>
1954 <p>Because the operands are the same width, the result of an integer
1955 multiplication is the same whether the operands should be deemed unsigned or
1956 signed.</p>
1957 <h5>Example:</h5>
1958 <pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
1959 </pre>
1960 </div>
1961 <!-- _______________________________________________________________________ -->
1962 <div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
1963 </a></div>
1964 <div class="doc_text">
1965 <h5>Syntax:</h5>
1966 <pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1967 </pre>
1968 <h5>Overview:</h5>
1969 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two
1970 operands.</p>
1971 <h5>Arguments:</h5>
1972 <p>The two arguments to the '<tt>udiv</tt>' instruction must be
1973 <a href="#t_integer">integer</a> values. Both arguments must have identical
1974 types. This instruction can also take <a href="#t_vector">vector</a> versions
1975 of the values in which case the elements must be integers.</p>
1976 <h5>Semantics:</h5>
1977 <p>The value produced is the unsigned integer quotient of the two operands. This
1978 instruction always performs an unsigned division operation, regardless of
1979 whether the arguments are unsigned or not.</p>
1980 <h5>Example:</h5>
1981 <pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
1982 </pre>
1983 </div>
1984 <!-- _______________________________________________________________________ -->
1985 <div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
1986 </a> </div>
1987 <div class="doc_text">
1988 <h5>Syntax:</h5>
1989 <pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1990 </pre>
1991 <h5>Overview:</h5>
1992 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
1993 operands.</p>
1994 <h5>Arguments:</h5>
1995 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
1996 <a href="#t_integer">integer</a> values. Both arguments must have identical
1997 types. This instruction can also take <a href="#t_vector">vector</a> versions
1998 of the values in which case the elements must be integers.</p>
1999 <h5>Semantics:</h5>
2000 <p>The value produced is the signed integer quotient of the two operands. This
2001 instruction always performs a signed division operation, regardless of whether
2002 the arguments are signed or not.</p>
2003 <h5>Example:</h5>
2004 <pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2005 </pre>
2006 </div>
2007 <!-- _______________________________________________________________________ -->
2008 <div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2009 Instruction</a> </div>
2010 <div class="doc_text">
2011 <h5>Syntax:</h5>
2012 <pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2013 </pre>
2014 <h5>Overview:</h5>
2015 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2016 operands.</p>
2017 <h5>Arguments:</h5>
2018 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2019 <a href="#t_floating">floating point</a> values. Both arguments must have
2020 identical types. This instruction can also take <a href="#t_vector">vector</a>
2021 versions of floating point values.</p>
2022 <h5>Semantics:</h5>
2023 <p>The value produced is the floating point quotient of the two operands.</p>
2024 <h5>Example:</h5>
2025 <pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
2026 </pre>
2027 </div>
2028 <!-- _______________________________________________________________________ -->
2029 <div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2030 </div>
2031 <div class="doc_text">
2032 <h5>Syntax:</h5>
2033 <pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2034 </pre>
2035 <h5>Overview:</h5>
2036 <p>The '<tt>urem</tt>' instruction returns the remainder from the
2037 unsigned division of its two arguments.</p>
2038 <h5>Arguments:</h5>
2039 <p>The two arguments to the '<tt>urem</tt>' instruction must be
2040 <a href="#t_integer">integer</a> values. Both arguments must have identical
2041 types.</p>
2042 <h5>Semantics:</h5>
2043 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2044 This instruction always performs an unsigned division to get the remainder,
2045 regardless of whether the arguments are unsigned or not.</p>
2046 <h5>Example:</h5>
2047 <pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2048 </pre>
2050 </div>
2051 <!-- _______________________________________________________________________ -->
2052 <div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2053 Instruction</a> </div>
2054 <div class="doc_text">
2055 <h5>Syntax:</h5>
2056 <pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2057 </pre>
2058 <h5>Overview:</h5>
2059 <p>The '<tt>srem</tt>' instruction returns the remainder from the
2060 signed division of its two operands.</p>
2061 <h5>Arguments:</h5>
2062 <p>The two arguments to the '<tt>srem</tt>' instruction must be
2063 <a href="#t_integer">integer</a> values. Both arguments must have identical
2064 types.</p>
2065 <h5>Semantics:</h5>
2066 <p>This instruction returns the <i>remainder</i> of a division (where the result
2067 has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2068 operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2069 a value. For more information about the difference, see <a
2070 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2071 Math Forum</a>. For a table of how this is implemented in various languages,
2072 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2073 Wikipedia: modulo operation</a>.</p>
2074 <h5>Example:</h5>
2075 <pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2076 </pre>
2078 </div>
2079 <!-- _______________________________________________________________________ -->
2080 <div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2081 Instruction</a> </div>
2082 <div class="doc_text">
2083 <h5>Syntax:</h5>
2084 <pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2085 </pre>
2086 <h5>Overview:</h5>
2087 <p>The '<tt>frem</tt>' instruction returns the remainder from the
2088 division of its two operands.</p>
2089 <h5>Arguments:</h5>
2090 <p>The two arguments to the '<tt>frem</tt>' instruction must be
2091 <a href="#t_floating">floating point</a> values. Both arguments must have
2092 identical types.</p>
2093 <h5>Semantics:</h5>
2094 <p>This instruction returns the <i>remainder</i> of a division.</p>
2095 <h5>Example:</h5>
2096 <pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
2097 </pre>
2098 </div>
2100 <!-- ======================================================================= -->
2101 <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2102 Operations</a> </div>
2103 <div class="doc_text">
2104 <p>Bitwise binary operators are used to do various forms of
2105 bit-twiddling in a program. They are generally very efficient
2106 instructions and can commonly be strength reduced from other
2107 instructions. They require two operands, execute an operation on them,
2108 and produce a single value. The resulting value of the bitwise binary
2109 operators is always the same type as its first operand.</p>
2110 </div>
2112 <!-- _______________________________________________________________________ -->
2113 <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2114 Instruction</a> </div>
2115 <div class="doc_text">
2116 <h5>Syntax:</h5>
2117 <pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2118 </pre>
2119 <h5>Overview:</h5>
2120 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2121 the left a specified number of bits.</p>
2122 <h5>Arguments:</h5>
2123 <p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2124 href="#t_integer">integer</a> type.</p>
2125 <h5>Semantics:</h5>
2126 <p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
2127 <h5>Example:</h5><pre>
2128 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2129 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2130 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
2131 </pre>
2132 </div>
2133 <!-- _______________________________________________________________________ -->
2134 <div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2135 Instruction</a> </div>
2136 <div class="doc_text">
2137 <h5>Syntax:</h5>
2138 <pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2139 </pre>
2141 <h5>Overview:</h5>
2142 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2143 operand shifted to the right a specified number of bits with zero fill.</p>
2145 <h5>Arguments:</h5>
2146 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2147 <a href="#t_integer">integer</a> type.</p>
2149 <h5>Semantics:</h5>
2150 <p>This instruction always performs a logical shift right operation. The most
2151 significant bits of the result will be filled with zero bits after the
2152 shift.</p>
2154 <h5>Example:</h5>
2155 <pre>
2156 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2157 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2158 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2159 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
2160 </pre>
2161 </div>
2163 <!-- _______________________________________________________________________ -->
2164 <div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2165 Instruction</a> </div>
2166 <div class="doc_text">
2168 <h5>Syntax:</h5>
2169 <pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2170 </pre>
2172 <h5>Overview:</h5>
2173 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2174 operand shifted to the right a specified number of bits with sign extension.</p>
2176 <h5>Arguments:</h5>
2177 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2178 <a href="#t_integer">integer</a> type.</p>
2180 <h5>Semantics:</h5>
2181 <p>This instruction always performs an arithmetic shift right operation,
2182 The most significant bits of the result will be filled with the sign bit
2183 of <tt>var1</tt>.</p>
2185 <h5>Example:</h5>
2186 <pre>
2187 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2188 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2189 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2190 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
2191 </pre>
2192 </div>
2194 <!-- _______________________________________________________________________ -->
2195 <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2196 Instruction</a> </div>
2197 <div class="doc_text">
2198 <h5>Syntax:</h5>
2199 <pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2200 </pre>
2201 <h5>Overview:</h5>
2202 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2203 its two operands.</p>
2204 <h5>Arguments:</h5>
2205 <p>The two arguments to the '<tt>and</tt>' instruction must be <a
2206 href="#t_integer">integer</a> values. Both arguments must have
2207 identical types.</p>
2208 <h5>Semantics:</h5>
2209 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2210 <p> </p>
2211 <div style="align: center">
2212 <table border="1" cellspacing="0" cellpadding="4">
2213 <tbody>
2214 <tr>
2215 <td>In0</td>
2216 <td>In1</td>
2217 <td>Out</td>
2218 </tr>
2219 <tr>
2220 <td>0</td>
2221 <td>0</td>
2222 <td>0</td>
2223 </tr>
2224 <tr>
2225 <td>0</td>
2226 <td>1</td>
2227 <td>0</td>
2228 </tr>
2229 <tr>
2230 <td>1</td>
2231 <td>0</td>
2232 <td>0</td>
2233 </tr>
2234 <tr>
2235 <td>1</td>
2236 <td>1</td>
2237 <td>1</td>
2238 </tr>
2239 </tbody>
2240 </table>
2241 </div>
2242 <h5>Example:</h5>
2243 <pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2244 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2245 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2246 </pre>
2247 </div>
2248 <!-- _______________________________________________________________________ -->
2249 <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2250 <div class="doc_text">
2251 <h5>Syntax:</h5>
2252 <pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2253 </pre>
2254 <h5>Overview:</h5>
2255 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2256 or of its two operands.</p>
2257 <h5>Arguments:</h5>
2258 <p>The two arguments to the '<tt>or</tt>' instruction must be <a
2259 href="#t_integer">integer</a> values. Both arguments must have
2260 identical types.</p>
2261 <h5>Semantics:</h5>
2262 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2263 <p> </p>
2264 <div style="align: center">
2265 <table border="1" cellspacing="0" cellpadding="4">
2266 <tbody>
2267 <tr>
2268 <td>In0</td>
2269 <td>In1</td>
2270 <td>Out</td>
2271 </tr>
2272 <tr>
2273 <td>0</td>
2274 <td>0</td>
2275 <td>0</td>
2276 </tr>
2277 <tr>
2278 <td>0</td>
2279 <td>1</td>
2280 <td>1</td>
2281 </tr>
2282 <tr>
2283 <td>1</td>
2284 <td>0</td>
2285 <td>1</td>
2286 </tr>
2287 <tr>
2288 <td>1</td>
2289 <td>1</td>
2290 <td>1</td>
2291 </tr>
2292 </tbody>
2293 </table>
2294 </div>
2295 <h5>Example:</h5>
2296 <pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2297 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2298 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2299 </pre>
2300 </div>
2301 <!-- _______________________________________________________________________ -->
2302 <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2303 Instruction</a> </div>
2304 <div class="doc_text">
2305 <h5>Syntax:</h5>
2306 <pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2307 </pre>
2308 <h5>Overview:</h5>
2309 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2310 or of its two operands. The <tt>xor</tt> is used to implement the
2311 "one's complement" operation, which is the "~" operator in C.</p>
2312 <h5>Arguments:</h5>
2313 <p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2314 href="#t_integer">integer</a> values. Both arguments must have
2315 identical types.</p>
2316 <h5>Semantics:</h5>
2317 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2318 <p> </p>
2319 <div style="align: center">
2320 <table border="1" cellspacing="0" cellpadding="4">
2321 <tbody>
2322 <tr>
2323 <td>In0</td>
2324 <td>In1</td>
2325 <td>Out</td>
2326 </tr>
2327 <tr>
2328 <td>0</td>
2329 <td>0</td>
2330 <td>0</td>
2331 </tr>
2332 <tr>
2333 <td>0</td>
2334 <td>1</td>
2335 <td>1</td>
2336 </tr>
2337 <tr>
2338 <td>1</td>
2339 <td>0</td>
2340 <td>1</td>
2341 </tr>
2342 <tr>
2343 <td>1</td>
2344 <td>1</td>
2345 <td>0</td>
2346 </tr>
2347 </tbody>
2348 </table>
2349 </div>
2350 <p> </p>
2351 <h5>Example:</h5>
2352 <pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2353 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2354 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2355 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2356 </pre>
2357 </div>
2359 <!-- ======================================================================= -->
2360 <div class="doc_subsection">
2361 <a name="vectorops">Vector Operations</a>
2362 </div>
2364 <div class="doc_text">
2366 <p>LLVM supports several instructions to represent vector operations in a
2367 target-independent manner. These instructions cover the element-access and
2368 vector-specific operations needed to process vectors effectively. While LLVM
2369 does directly support these vector operations, many sophisticated algorithms
2370 will want to use target-specific intrinsics to take full advantage of a specific
2371 target.</p>
2373 </div>
2375 <!-- _______________________________________________________________________ -->
2376 <div class="doc_subsubsection">
2377 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2378 </div>
2380 <div class="doc_text">
2382 <h5>Syntax:</h5>
2384 <pre>
2385 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2386 </pre>
2388 <h5>Overview:</h5>
2391 The '<tt>extractelement</tt>' instruction extracts a single scalar
2392 element from a vector at a specified index.
2393 </p>
2396 <h5>Arguments:</h5>
2399 The first operand of an '<tt>extractelement</tt>' instruction is a
2400 value of <a href="#t_vector">vector</a> type. The second operand is
2401 an index indicating the position from which to extract the element.
2402 The index may be a variable.</p>
2404 <h5>Semantics:</h5>
2407 The result is a scalar of the same type as the element type of
2408 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2409 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2410 results are undefined.
2411 </p>
2413 <h5>Example:</h5>
2415 <pre>
2416 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2417 </pre>
2418 </div>
2421 <!-- _______________________________________________________________________ -->
2422 <div class="doc_subsubsection">
2423 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2424 </div>
2426 <div class="doc_text">
2428 <h5>Syntax:</h5>
2430 <pre>
2431 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2432 </pre>
2434 <h5>Overview:</h5>
2437 The '<tt>insertelement</tt>' instruction inserts a scalar
2438 element into a vector at a specified index.
2439 </p>
2442 <h5>Arguments:</h5>
2445 The first operand of an '<tt>insertelement</tt>' instruction is a
2446 value of <a href="#t_vector">vector</a> type. The second operand is a
2447 scalar value whose type must equal the element type of the first
2448 operand. The third operand is an index indicating the position at
2449 which to insert the value. The index may be a variable.</p>
2451 <h5>Semantics:</h5>
2454 The result is a vector of the same type as <tt>val</tt>. Its
2455 element values are those of <tt>val</tt> except at position
2456 <tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2457 exceeds the length of <tt>val</tt>, the results are undefined.
2458 </p>
2460 <h5>Example:</h5>
2462 <pre>
2463 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2464 </pre>
2465 </div>
2467 <!-- _______________________________________________________________________ -->
2468 <div class="doc_subsubsection">
2469 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2470 </div>
2472 <div class="doc_text">
2474 <h5>Syntax:</h5>
2476 <pre>
2477 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2478 </pre>
2480 <h5>Overview:</h5>
2483 The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2484 from two input vectors, returning a vector of the same type.
2485 </p>
2487 <h5>Arguments:</h5>
2490 The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2491 with types that match each other and types that match the result of the
2492 instruction. The third argument is a shuffle mask, which has the same number
2493 of elements as the other vector type, but whose element type is always 'i32'.
2494 </p>
2497 The shuffle mask operand is required to be a constant vector with either
2498 constant integer or undef values.
2499 </p>
2501 <h5>Semantics:</h5>
2504 The elements of the two input vectors are numbered from left to right across
2505 both of the vectors. The shuffle mask operand specifies, for each element of
2506 the result vector, which element of the two input registers the result element
2507 gets. The element selector may be undef (meaning "don't care") and the second
2508 operand may be undef if performing a shuffle from only one vector.
2509 </p>
2511 <h5>Example:</h5>
2513 <pre>
2514 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2515 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2516 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2517 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2518 </pre>
2519 </div>
2522 <!-- ======================================================================= -->
2523 <div class="doc_subsection">
2524 <a name="memoryops">Memory Access and Addressing Operations</a>
2525 </div>
2527 <div class="doc_text">
2529 <p>A key design point of an SSA-based representation is how it
2530 represents memory. In LLVM, no memory locations are in SSA form, which
2531 makes things very simple. This section describes how to read, write,
2532 allocate, and free memory in LLVM.</p>
2534 </div>
2536 <!-- _______________________________________________________________________ -->
2537 <div class="doc_subsubsection">
2538 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2539 </div>
2541 <div class="doc_text">
2543 <h5>Syntax:</h5>
2545 <pre>
2546 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2547 </pre>
2549 <h5>Overview:</h5>
2551 <p>The '<tt>malloc</tt>' instruction allocates memory from the system
2552 heap and returns a pointer to it.</p>
2554 <h5>Arguments:</h5>
2556 <p>The '<tt>malloc</tt>' instruction allocates
2557 <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2558 bytes of memory from the operating system and returns a pointer of the
2559 appropriate type to the program. If "NumElements" is specified, it is the
2560 number of elements allocated. If an alignment is specified, the value result
2561 of the allocation is guaranteed to be aligned to at least that boundary. If
2562 not specified, or if zero, the target can choose to align the allocation on any
2563 convenient boundary.</p>
2565 <p>'<tt>type</tt>' must be a sized type.</p>
2567 <h5>Semantics:</h5>
2569 <p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2570 a pointer is returned.</p>
2572 <h5>Example:</h5>
2574 <pre>
2575 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
2577 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2578 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2579 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2580 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2581 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
2582 </pre>
2583 </div>
2585 <!-- _______________________________________________________________________ -->
2586 <div class="doc_subsubsection">
2587 <a name="i_free">'<tt>free</tt>' Instruction</a>
2588 </div>
2590 <div class="doc_text">
2592 <h5>Syntax:</h5>
2594 <pre>
2595 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
2596 </pre>
2598 <h5>Overview:</h5>
2600 <p>The '<tt>free</tt>' instruction returns memory back to the unused
2601 memory heap to be reallocated in the future.</p>
2603 <h5>Arguments:</h5>
2605 <p>'<tt>value</tt>' shall be a pointer value that points to a value
2606 that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2607 instruction.</p>
2609 <h5>Semantics:</h5>
2611 <p>Access to the memory pointed to by the pointer is no longer defined
2612 after this instruction executes.</p>
2614 <h5>Example:</h5>
2616 <pre>
2617 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2618 free [4 x i8]* %array
2619 </pre>
2620 </div>
2622 <!-- _______________________________________________________________________ -->
2623 <div class="doc_subsubsection">
2624 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2625 </div>
2627 <div class="doc_text">
2629 <h5>Syntax:</h5>
2631 <pre>
2632 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2633 </pre>
2635 <h5>Overview:</h5>
2637 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2638 currently executing function, to be automatically released when this function
2639 returns to its caller.</p>
2641 <h5>Arguments:</h5>
2643 <p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2644 bytes of memory on the runtime stack, returning a pointer of the
2645 appropriate type to the program. If "NumElements" is specified, it is the
2646 number of elements allocated. If an alignment is specified, the value result
2647 of the allocation is guaranteed to be aligned to at least that boundary. If
2648 not specified, or if zero, the target can choose to align the allocation on any
2649 convenient boundary.</p>
2651 <p>'<tt>type</tt>' may be any sized type.</p>
2653 <h5>Semantics:</h5>
2655 <p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
2656 memory is automatically released when the function returns. The '<tt>alloca</tt>'
2657 instruction is commonly used to represent automatic variables that must
2658 have an address available. When the function returns (either with the <tt><a
2659 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2660 instructions), the memory is reclaimed.</p>
2662 <h5>Example:</h5>
2664 <pre>
2665 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2666 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2667 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2668 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
2669 </pre>
2670 </div>
2672 <!-- _______________________________________________________________________ -->
2673 <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2674 Instruction</a> </div>
2675 <div class="doc_text">
2676 <h5>Syntax:</h5>
2677 <pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2678 <h5>Overview:</h5>
2679 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2680 <h5>Arguments:</h5>
2681 <p>The argument to the '<tt>load</tt>' instruction specifies the memory
2682 address from which to load. The pointer must point to a <a
2683 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
2684 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2685 the number or order of execution of this <tt>load</tt> with other
2686 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2687 instructions. </p>
2688 <h5>Semantics:</h5>
2689 <p>The location of memory pointed to is loaded.</p>
2690 <h5>Examples:</h5>
2691 <pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2693 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2694 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2695 </pre>
2696 </div>
2697 <!-- _______________________________________________________________________ -->
2698 <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2699 Instruction</a> </div>
2700 <div class="doc_text">
2701 <h5>Syntax:</h5>
2702 <pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2703 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2704 </pre>
2705 <h5>Overview:</h5>
2706 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2707 <h5>Arguments:</h5>
2708 <p>There are two arguments to the '<tt>store</tt>' instruction: a value
2709 to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
2710 operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2711 operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2712 optimizer is not allowed to modify the number or order of execution of
2713 this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2714 href="#i_store">store</a></tt> instructions.</p>
2715 <h5>Semantics:</h5>
2716 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2717 at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2718 <h5>Example:</h5>
2719 <pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2721 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2722 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2723 </pre>
2724 </div>
2726 <!-- _______________________________________________________________________ -->
2727 <div class="doc_subsubsection">
2728 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2729 </div>
2731 <div class="doc_text">
2732 <h5>Syntax:</h5>
2733 <pre>
2734 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2735 </pre>
2737 <h5>Overview:</h5>
2740 The '<tt>getelementptr</tt>' instruction is used to get the address of a
2741 subelement of an aggregate data structure.</p>
2743 <h5>Arguments:</h5>
2745 <p>This instruction takes a list of integer operands that indicate what
2746 elements of the aggregate object to index to. The actual types of the arguments
2747 provided depend on the type of the first pointer argument. The
2748 '<tt>getelementptr</tt>' instruction is used to index down through the type
2749 levels of a structure or to a specific index in an array. When indexing into a
2750 structure, only <tt>i32</tt> integer constants are allowed. When indexing
2751 into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2752 be sign extended to 64-bit values.</p>
2754 <p>For example, let's consider a C code fragment and how it gets
2755 compiled to LLVM:</p>
2757 <pre>
2758 struct RT {
2759 char A;
2760 i32 B[10][20];
2761 char C;
2763 struct ST {
2764 i32 X;
2765 double Y;
2766 struct RT Z;
2769 define i32 *foo(struct ST *s) {
2770 return &amp;s[1].Z.B[5][13];
2772 </pre>
2774 <p>The LLVM code generated by the GCC frontend is:</p>
2776 <pre>
2777 %RT = type { i8 , [10 x [20 x i32]], i8 }
2778 %ST = type { i32, double, %RT }
2780 define i32* %foo(%ST* %s) {
2781 entry:
2782 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2783 ret i32* %reg
2785 </pre>
2787 <h5>Semantics:</h5>
2789 <p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
2790 on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
2791 and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
2792 <a href="#t_integer">integer</a> type but the value will always be sign extended
2793 to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
2794 <b>constants</b>.</p>
2796 <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
2797 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
2798 }</tt>' type, a structure. The second index indexes into the third element of
2799 the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2800 i8 }</tt>' type, another structure. The third index indexes into the second
2801 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
2802 array. The two dimensions of the array are subscripted into, yielding an
2803 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2804 to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
2806 <p>Note that it is perfectly legal to index partially through a
2807 structure, returning a pointer to an inner element. Because of this,
2808 the LLVM code for the given testcase is equivalent to:</p>
2810 <pre>
2811 define i32* %foo(%ST* %s) {
2812 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2813 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2814 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2815 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2816 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2817 ret i32* %t5
2819 </pre>
2821 <p>Note that it is undefined to access an array out of bounds: array and
2822 pointer indexes must always be within the defined bounds of the array type.
2823 The one exception for this rules is zero length arrays. These arrays are
2824 defined to be accessible as variable length arrays, which requires access
2825 beyond the zero'th element.</p>
2827 <p>The getelementptr instruction is often confusing. For some more insight
2828 into how it works, see <a href="GetElementPtr.html">the getelementptr
2829 FAQ</a>.</p>
2831 <h5>Example:</h5>
2833 <pre>
2834 <i>; yields [12 x i8]*:aptr</i>
2835 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
2836 </pre>
2837 </div>
2839 <!-- ======================================================================= -->
2840 <div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
2841 </div>
2842 <div class="doc_text">
2843 <p>The instructions in this category are the conversion instructions (casting)
2844 which all take a single operand and a type. They perform various bit conversions
2845 on the operand.</p>
2846 </div>
2848 <!-- _______________________________________________________________________ -->
2849 <div class="doc_subsubsection">
2850 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2851 </div>
2852 <div class="doc_text">
2854 <h5>Syntax:</h5>
2855 <pre>
2856 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2857 </pre>
2859 <h5>Overview:</h5>
2861 The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2862 </p>
2864 <h5>Arguments:</h5>
2866 The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2867 be an <a href="#t_integer">integer</a> type, and a type that specifies the size
2868 and type of the result, which must be an <a href="#t_integer">integer</a>
2869 type. The bit size of <tt>value</tt> must be larger than the bit size of
2870 <tt>ty2</tt>. Equal sized types are not allowed.</p>
2872 <h5>Semantics:</h5>
2874 The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
2875 and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2876 larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2877 It will always truncate bits.</p>
2879 <h5>Example:</h5>
2880 <pre>
2881 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
2882 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2883 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
2884 </pre>
2885 </div>
2887 <!-- _______________________________________________________________________ -->
2888 <div class="doc_subsubsection">
2889 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2890 </div>
2891 <div class="doc_text">
2893 <h5>Syntax:</h5>
2894 <pre>
2895 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2896 </pre>
2898 <h5>Overview:</h5>
2899 <p>The '<tt>zext</tt>' instruction zero extends its operand to type
2900 <tt>ty2</tt>.</p>
2903 <h5>Arguments:</h5>
2904 <p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
2905 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
2906 also be of <a href="#t_integer">integer</a> type. The bit size of the
2907 <tt>value</tt> must be smaller than the bit size of the destination type,
2908 <tt>ty2</tt>.</p>
2910 <h5>Semantics:</h5>
2911 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2912 bits until it reaches the size of the destination type, <tt>ty2</tt>. When the
2913 the operand and the type are the same size, no bit filling is done and the
2914 cast is considered a <i>no-op cast</i> because no bits change (only the type
2915 changes).</p>
2917 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
2919 <h5>Example:</h5>
2920 <pre>
2921 %X = zext i32 257 to i64 <i>; yields i64:257</i>
2922 %Y = zext i1 true to i32 <i>; yields i32:1</i>
2923 </pre>
2924 </div>
2926 <!-- _______________________________________________________________________ -->
2927 <div class="doc_subsubsection">
2928 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2929 </div>
2930 <div class="doc_text">
2932 <h5>Syntax:</h5>
2933 <pre>
2934 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2935 </pre>
2937 <h5>Overview:</h5>
2938 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2940 <h5>Arguments:</h5>
2942 The '<tt>sext</tt>' instruction takes a value to cast, which must be of
2943 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
2944 also be of <a href="#t_integer">integer</a> type. The bit size of the
2945 <tt>value</tt> must be smaller than the bit size of the destination type,
2946 <tt>ty2</tt>.</p>
2948 <h5>Semantics:</h5>
2950 The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
2951 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
2952 the type <tt>ty2</tt>. When the the operand and the type are the same size,
2953 no bit filling is done and the cast is considered a <i>no-op cast</i> because
2954 no bits change (only the type changes).</p>
2956 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
2958 <h5>Example:</h5>
2959 <pre>
2960 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
2961 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
2962 </pre>
2963 </div>
2965 <!-- _______________________________________________________________________ -->
2966 <div class="doc_subsubsection">
2967 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
2968 </div>
2970 <div class="doc_text">
2972 <h5>Syntax:</h5>
2974 <pre>
2975 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2976 </pre>
2978 <h5>Overview:</h5>
2979 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
2980 <tt>ty2</tt>.</p>
2983 <h5>Arguments:</h5>
2984 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
2985 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
2986 cast it to. The size of <tt>value</tt> must be larger than the size of
2987 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
2988 <i>no-op cast</i>.</p>
2990 <h5>Semantics:</h5>
2991 <p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
2992 <a href="#t_floating">floating point</a> type to a smaller
2993 <a href="#t_floating">floating point</a> type. If the value cannot fit within
2994 the destination type, <tt>ty2</tt>, then the results are undefined.</p>
2996 <h5>Example:</h5>
2997 <pre>
2998 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
2999 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3000 </pre>
3001 </div>
3003 <!-- _______________________________________________________________________ -->
3004 <div class="doc_subsubsection">
3005 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3006 </div>
3007 <div class="doc_text">
3009 <h5>Syntax:</h5>
3010 <pre>
3011 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3012 </pre>
3014 <h5>Overview:</h5>
3015 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3016 floating point value.</p>
3018 <h5>Arguments:</h5>
3019 <p>The '<tt>fpext</tt>' instruction takes a
3020 <a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3021 and a <a href="#t_floating">floating point</a> type to cast it to. The source
3022 type must be smaller than the destination type.</p>
3024 <h5>Semantics:</h5>
3025 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3026 <a href="#t_floating">floating point</a> type to a larger
3027 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3028 used to make a <i>no-op cast</i> because it always changes bits. Use
3029 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3031 <h5>Example:</h5>
3032 <pre>
3033 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3034 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3035 </pre>
3036 </div>
3038 <!-- _______________________________________________________________________ -->
3039 <div class="doc_subsubsection">
3040 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3041 </div>
3042 <div class="doc_text">
3044 <h5>Syntax:</h5>
3045 <pre>
3046 &lt;result&gt; = fp2uint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3047 </pre>
3049 <h5>Overview:</h5>
3050 <p>The '<tt>fp2uint</tt>' converts a floating point <tt>value</tt> to its
3051 unsigned integer equivalent of type <tt>ty2</tt>.
3052 </p>
3054 <h5>Arguments:</h5>
3055 <p>The '<tt>fp2uint</tt>' instruction takes a value to cast, which must be a
3056 <a href="#t_floating">floating point</a> value, and a type to cast it to, which
3057 must be an <a href="#t_integer">integer</a> type.</p>
3059 <h5>Semantics:</h5>
3060 <p> The '<tt>fp2uint</tt>' instruction converts its
3061 <a href="#t_floating">floating point</a> operand into the nearest (rounding
3062 towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3063 the results are undefined.</p>
3065 <p>When converting to i1, the conversion is done as a comparison against
3066 zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3067 If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3069 <h5>Example:</h5>
3070 <pre>
3071 %X = fp2uint double 123.0 to i32 <i>; yields i32:123</i>
3072 %Y = fp2uint float 1.0E+300 to i1 <i>; yields i1:true</i>
3073 %X = fp2uint float 1.04E+17 to i8 <i>; yields undefined:1</i>
3074 </pre>
3075 </div>
3077 <!-- _______________________________________________________________________ -->
3078 <div class="doc_subsubsection">
3079 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3080 </div>
3081 <div class="doc_text">
3083 <h5>Syntax:</h5>
3084 <pre>
3085 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3086 </pre>
3088 <h5>Overview:</h5>
3089 <p>The '<tt>fptosi</tt>' instruction converts
3090 <a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3091 </p>
3094 <h5>Arguments:</h5>
3095 <p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
3096 <a href="#t_floating">floating point</a> value, and a type to cast it to, which
3097 must also be an <a href="#t_integer">integer</a> type.</p>
3099 <h5>Semantics:</h5>
3100 <p>The '<tt>fptosi</tt>' instruction converts its
3101 <a href="#t_floating">floating point</a> operand into the nearest (rounding
3102 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3103 the results are undefined.</p>
3105 <p>When converting to i1, the conversion is done as a comparison against
3106 zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3107 If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3109 <h5>Example:</h5>
3110 <pre>
3111 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
3112 %Y = fptosi float 1.0E-247 to i1 <i>; yields i1:true</i>
3113 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3114 </pre>
3115 </div>
3117 <!-- _______________________________________________________________________ -->
3118 <div class="doc_subsubsection">
3119 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3120 </div>
3121 <div class="doc_text">
3123 <h5>Syntax:</h5>
3124 <pre>
3125 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3126 </pre>
3128 <h5>Overview:</h5>
3129 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3130 integer and converts that value to the <tt>ty2</tt> type.</p>
3133 <h5>Arguments:</h5>
3134 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
3135 <a href="#t_integer">integer</a> value, and a type to cast it to, which must
3136 be a <a href="#t_floating">floating point</a> type.</p>
3138 <h5>Semantics:</h5>
3139 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3140 integer quantity and converts it to the corresponding floating point value. If
3141 the value cannot fit in the floating point value, the results are undefined.</p>
3144 <h5>Example:</h5>
3145 <pre>
3146 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3147 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3148 </pre>
3149 </div>
3151 <!-- _______________________________________________________________________ -->
3152 <div class="doc_subsubsection">
3153 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3154 </div>
3155 <div class="doc_text">
3157 <h5>Syntax:</h5>
3158 <pre>
3159 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3160 </pre>
3162 <h5>Overview:</h5>
3163 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3164 integer and converts that value to the <tt>ty2</tt> type.</p>
3166 <h5>Arguments:</h5>
3167 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
3168 <a href="#t_integer">integer</a> value, and a type to cast it to, which must be
3169 a <a href="#t_floating">floating point</a> type.</p>
3171 <h5>Semantics:</h5>
3172 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3173 integer quantity and converts it to the corresponding floating point value. If
3174 the value cannot fit in the floating point value, the results are undefined.</p>
3176 <h5>Example:</h5>
3177 <pre>
3178 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3179 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3180 </pre>
3181 </div>
3183 <!-- _______________________________________________________________________ -->
3184 <div class="doc_subsubsection">
3185 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3186 </div>
3187 <div class="doc_text">
3189 <h5>Syntax:</h5>
3190 <pre>
3191 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3192 </pre>
3194 <h5>Overview:</h5>
3195 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3196 the integer type <tt>ty2</tt>.</p>
3198 <h5>Arguments:</h5>
3199 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3200 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3201 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3203 <h5>Semantics:</h5>
3204 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3205 <tt>ty2</tt> by interpreting the pointer value as an integer and either
3206 truncating or zero extending that value to the size of the integer type. If
3207 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3208 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3209 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3210 change.</p>
3212 <h5>Example:</h5>
3213 <pre>
3214 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3215 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3216 </pre>
3217 </div>
3219 <!-- _______________________________________________________________________ -->
3220 <div class="doc_subsubsection">
3221 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3222 </div>
3223 <div class="doc_text">
3225 <h5>Syntax:</h5>
3226 <pre>
3227 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3228 </pre>
3230 <h5>Overview:</h5>
3231 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3232 a pointer type, <tt>ty2</tt>.</p>
3234 <h5>Arguments:</h5>
3235 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3236 value to cast, and a type to cast it to, which must be a
3237 <a href="#t_pointer">pointer</a> type.
3239 <h5>Semantics:</h5>
3240 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3241 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
3242 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3243 size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3244 the size of a pointer then a zero extension is done. If they are the same size,
3245 nothing is done (<i>no-op cast</i>).</p>
3247 <h5>Example:</h5>
3248 <pre>
3249 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3250 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3251 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3252 </pre>
3253 </div>
3255 <!-- _______________________________________________________________________ -->
3256 <div class="doc_subsubsection">
3257 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3258 </div>
3259 <div class="doc_text">
3261 <h5>Syntax:</h5>
3262 <pre>
3263 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3264 </pre>
3266 <h5>Overview:</h5>
3267 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3268 <tt>ty2</tt> without changing any bits.</p>
3270 <h5>Arguments:</h5>
3271 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
3272 a first class value, and a type to cast it to, which must also be a <a
3273 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3274 and the destination type, <tt>ty2</tt>, must be identical. If the source
3275 type is a pointer, the destination type must also be a pointer.</p>
3277 <h5>Semantics:</h5>
3278 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3279 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3280 this conversion. The conversion is done as if the <tt>value</tt> had been
3281 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3282 converted to other pointer types with this instruction. To convert pointers to
3283 other types, use the <a href="#i_inttoptr">inttoptr</a> or
3284 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3286 <h5>Example:</h5>
3287 <pre>
3288 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3289 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3290 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3291 </pre>
3292 </div>
3294 <!-- ======================================================================= -->
3295 <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3296 <div class="doc_text">
3297 <p>The instructions in this category are the "miscellaneous"
3298 instructions, which defy better classification.</p>
3299 </div>
3301 <!-- _______________________________________________________________________ -->
3302 <div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3303 </div>
3304 <div class="doc_text">
3305 <h5>Syntax:</h5>
3306 <pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3307 </pre>
3308 <h5>Overview:</h5>
3309 <p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3310 of its two integer operands.</p>
3311 <h5>Arguments:</h5>
3312 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3313 the condition code indicating the kind of comparison to perform. It is not
3314 a value, just a keyword. The possible condition code are:
3315 <ol>
3316 <li><tt>eq</tt>: equal</li>
3317 <li><tt>ne</tt>: not equal </li>
3318 <li><tt>ugt</tt>: unsigned greater than</li>
3319 <li><tt>uge</tt>: unsigned greater or equal</li>
3320 <li><tt>ult</tt>: unsigned less than</li>
3321 <li><tt>ule</tt>: unsigned less or equal</li>
3322 <li><tt>sgt</tt>: signed greater than</li>
3323 <li><tt>sge</tt>: signed greater or equal</li>
3324 <li><tt>slt</tt>: signed less than</li>
3325 <li><tt>sle</tt>: signed less or equal</li>
3326 </ol>
3327 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3328 <a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3329 <h5>Semantics:</h5>
3330 <p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3331 the condition code given as <tt>cond</tt>. The comparison performed always
3332 yields a <a href="#t_primitive">i1</a> result, as follows:
3333 <ol>
3334 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3335 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3336 </li>
3337 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3338 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3339 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3340 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3341 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3342 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3343 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3344 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3345 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3346 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3347 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3348 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3349 <li><tt>sge</tt>: interprets the operands as signed values and yields
3350 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3351 <li><tt>slt</tt>: interprets the operands as signed values and yields
3352 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3353 <li><tt>sle</tt>: interprets the operands as signed values and yields
3354 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3355 </ol>
3356 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3357 values are compared as if they were integers.</p>
3359 <h5>Example:</h5>
3360 <pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3361 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3362 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3363 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3364 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3365 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3366 </pre>
3367 </div>
3369 <!-- _______________________________________________________________________ -->
3370 <div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3371 </div>
3372 <div class="doc_text">
3373 <h5>Syntax:</h5>
3374 <pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3375 </pre>
3376 <h5>Overview:</h5>
3377 <p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3378 of its floating point operands.</p>
3379 <h5>Arguments:</h5>
3380 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3381 the condition code indicating the kind of comparison to perform. It is not
3382 a value, just a keyword. The possible condition code are:
3383 <ol>
3384 <li><tt>false</tt>: no comparison, always returns false</li>
3385 <li><tt>oeq</tt>: ordered and equal</li>
3386 <li><tt>ogt</tt>: ordered and greater than </li>
3387 <li><tt>oge</tt>: ordered and greater than or equal</li>
3388 <li><tt>olt</tt>: ordered and less than </li>
3389 <li><tt>ole</tt>: ordered and less than or equal</li>
3390 <li><tt>one</tt>: ordered and not equal</li>
3391 <li><tt>ord</tt>: ordered (no nans)</li>
3392 <li><tt>ueq</tt>: unordered or equal</li>
3393 <li><tt>ugt</tt>: unordered or greater than </li>
3394 <li><tt>uge</tt>: unordered or greater than or equal</li>
3395 <li><tt>ult</tt>: unordered or less than </li>
3396 <li><tt>ule</tt>: unordered or less than or equal</li>
3397 <li><tt>une</tt>: unordered or not equal</li>
3398 <li><tt>uno</tt>: unordered (either nans)</li>
3399 <li><tt>true</tt>: no comparison, always returns true</li>
3400 </ol>
3401 <p><i>Ordered</i> means that neither operand is a QNAN while
3402 <i>unordered</i> means that either operand may be a QNAN.</p>
3403 <p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3404 <a href="#t_floating">floating point</a> typed. They must have identical
3405 types.</p>
3406 <h5>Semantics:</h5>
3407 <p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3408 the condition code given as <tt>cond</tt>. The comparison performed always
3409 yields a <a href="#t_primitive">i1</a> result, as follows:
3410 <ol>
3411 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3412 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3413 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3414 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3415 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3416 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3417 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3418 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3419 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3420 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3421 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3422 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3423 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3424 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3425 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
3426 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3427 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
3428 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3429 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
3430 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3431 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
3432 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3433 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
3434 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3435 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
3436 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3437 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3438 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3439 </ol>
3441 <h5>Example:</h5>
3442 <pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3443 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3444 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3445 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3446 </pre>
3447 </div>
3449 <!-- _______________________________________________________________________ -->
3450 <div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3451 Instruction</a> </div>
3452 <div class="doc_text">
3453 <h5>Syntax:</h5>
3454 <pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3455 <h5>Overview:</h5>
3456 <p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3457 the SSA graph representing the function.</p>
3458 <h5>Arguments:</h5>
3459 <p>The type of the incoming values is specified with the first type
3460 field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3461 as arguments, with one pair for each predecessor basic block of the
3462 current block. Only values of <a href="#t_firstclass">first class</a>
3463 type may be used as the value arguments to the PHI node. Only labels
3464 may be used as the label arguments.</p>
3465 <p>There must be no non-phi instructions between the start of a basic
3466 block and the PHI instructions: i.e. PHI instructions must be first in
3467 a basic block.</p>
3468 <h5>Semantics:</h5>
3469 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3470 specified by the pair corresponding to the predecessor basic block that executed
3471 just prior to the current block.</p>
3472 <h5>Example:</h5>
3473 <pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
3474 </div>
3476 <!-- _______________________________________________________________________ -->
3477 <div class="doc_subsubsection">
3478 <a name="i_select">'<tt>select</tt>' Instruction</a>
3479 </div>
3481 <div class="doc_text">
3483 <h5>Syntax:</h5>
3485 <pre>
3486 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3487 </pre>
3489 <h5>Overview:</h5>
3492 The '<tt>select</tt>' instruction is used to choose one value based on a
3493 condition, without branching.
3494 </p>
3497 <h5>Arguments:</h5>
3500 The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3501 </p>
3503 <h5>Semantics:</h5>
3506 If the boolean condition evaluates to true, the instruction returns the first
3507 value argument; otherwise, it returns the second value argument.
3508 </p>
3510 <h5>Example:</h5>
3512 <pre>
3513 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
3514 </pre>
3515 </div>
3518 <!-- _______________________________________________________________________ -->
3519 <div class="doc_subsubsection">
3520 <a name="i_call">'<tt>call</tt>' Instruction</a>
3521 </div>
3523 <div class="doc_text">
3525 <h5>Syntax:</h5>
3526 <pre>
3527 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
3528 </pre>
3530 <h5>Overview:</h5>
3532 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3534 <h5>Arguments:</h5>
3536 <p>This instruction requires several arguments:</p>
3538 <ol>
3539 <li>
3540 <p>The optional "tail" marker indicates whether the callee function accesses
3541 any allocas or varargs in the caller. If the "tail" marker is present, the
3542 function call is eligible for tail call optimization. Note that calls may
3543 be marked "tail" even if they do not occur before a <a
3544 href="#i_ret"><tt>ret</tt></a> instruction.
3545 </li>
3546 <li>
3547 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3548 convention</a> the call should use. If none is specified, the call defaults
3549 to using C calling conventions.
3550 </li>
3551 <li>
3552 <p>'<tt>ty</tt>': shall be the signature of the pointer to function value
3553 being invoked. The argument types must match the types implied by this
3554 signature. This type can be omitted if the function is not varargs and
3555 if the function type does not return a pointer to a function.</p>
3556 </li>
3557 <li>
3558 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3559 be invoked. In most cases, this is a direct function invocation, but
3560 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3561 to function value.</p>
3562 </li>
3563 <li>
3564 <p>'<tt>function args</tt>': argument list whose types match the
3565 function signature argument types. All arguments must be of
3566 <a href="#t_firstclass">first class</a> type. If the function signature
3567 indicates the function accepts a variable number of arguments, the extra
3568 arguments can be specified.</p>
3569 </li>
3570 </ol>
3572 <h5>Semantics:</h5>
3574 <p>The '<tt>call</tt>' instruction is used to cause control flow to
3575 transfer to a specified function, with its incoming arguments bound to
3576 the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3577 instruction in the called function, control flow continues with the
3578 instruction after the function call, and the return value of the
3579 function is bound to the result argument. This is a simpler case of
3580 the <a href="#i_invoke">invoke</a> instruction.</p>
3582 <h5>Example:</h5>
3584 <pre>
3585 %retval = call i32 %test(i32 %argc)
3586 call i32(i8 *, ...) *%printf(i8 * %msg, i32 12, i8 42);
3587 %X = tail call i32 %foo()
3588 %Y = tail call <a href="#callingconv">fastcc</a> i32 %foo()
3589 </pre>
3591 </div>
3593 <!-- _______________________________________________________________________ -->
3594 <div class="doc_subsubsection">
3595 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3596 </div>
3598 <div class="doc_text">
3600 <h5>Syntax:</h5>
3602 <pre>
3603 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3604 </pre>
3606 <h5>Overview:</h5>
3608 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3609 the "variable argument" area of a function call. It is used to implement the
3610 <tt>va_arg</tt> macro in C.</p>
3612 <h5>Arguments:</h5>
3614 <p>This instruction takes a <tt>va_list*</tt> value and the type of
3615 the argument. It returns a value of the specified argument type and
3616 increments the <tt>va_list</tt> to point to the next argument. The
3617 actual type of <tt>va_list</tt> is target specific.</p>
3619 <h5>Semantics:</h5>
3621 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3622 type from the specified <tt>va_list</tt> and causes the
3623 <tt>va_list</tt> to point to the next argument. For more information,
3624 see the variable argument handling <a href="#int_varargs">Intrinsic
3625 Functions</a>.</p>
3627 <p>It is legal for this instruction to be called in a function which does not
3628 take a variable number of arguments, for example, the <tt>vfprintf</tt>
3629 function.</p>
3631 <p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3632 href="#intrinsics">intrinsic function</a> because it takes a type as an
3633 argument.</p>
3635 <h5>Example:</h5>
3637 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3639 </div>
3641 <!-- *********************************************************************** -->
3642 <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3643 <!-- *********************************************************************** -->
3645 <div class="doc_text">
3647 <p>LLVM supports the notion of an "intrinsic function". These functions have
3648 well known names and semantics and are required to follow certain restrictions.
3649 Overall, these intrinsics represent an extension mechanism for the LLVM
3650 language that does not require changing all of the transformations in LLVM when
3651 adding to the language (or the bytecode reader/writer, the parser, etc...).</p>
3653 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3654 prefix is reserved in LLVM for intrinsic names; thus, function names may not
3655 begin with this prefix. Intrinsic functions must always be external functions:
3656 you cannot define the body of intrinsic functions. Intrinsic functions may
3657 only be used in call or invoke instructions: it is illegal to take the address
3658 of an intrinsic function. Additionally, because intrinsic functions are part
3659 of the LLVM language, it is required if any are added that they be documented
3660 here.</p>
3662 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3663 a family of functions that perform the same operation but on different data
3664 types. This is most frequent with the integer types. Since LLVM can represent
3665 over 8 million different integer types, there is a way to declare an intrinsic
3666 that can be overloaded based on its arguments. Such an intrinsic will have the
3667 names of its argument types encoded into its function name, each
3668 preceded by a period. For example, the <tt>llvm.ctpop</tt> function can take an
3669 integer of any width. This leads to a family of functions such as
3670 <tt>i32 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i32 @llvm.ctpop.i29(i29 %val)</tt>.
3671 </p>
3674 <p>To learn how to add an intrinsic function, please see the
3675 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3676 </p>
3678 </div>
3680 <!-- ======================================================================= -->
3681 <div class="doc_subsection">
3682 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3683 </div>
3685 <div class="doc_text">
3687 <p>Variable argument support is defined in LLVM with the <a
3688 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3689 intrinsic functions. These functions are related to the similarly
3690 named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3692 <p>All of these functions operate on arguments that use a
3693 target-specific value type "<tt>va_list</tt>". The LLVM assembly
3694 language reference manual does not define what this type is, so all
3695 transformations should be prepared to handle these functions regardless of
3696 the type used.</p>
3698 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
3699 instruction and the variable argument handling intrinsic functions are
3700 used.</p>
3702 <pre>
3703 define i32 @test(i32 %X, ...) {
3704 ; Initialize variable argument processing
3705 %ap = alloca i8*
3706 %ap2 = bitcast i8** %ap to i8*
3707 call void @llvm.va_start(i8* %ap2)
3709 ; Read a single integer argument
3710 %tmp = va_arg i8** %ap, i32
3712 ; Demonstrate usage of llvm.va_copy and llvm.va_end
3713 %aq = alloca i8*
3714 %aq2 = bitcast i8** %aq to i8*
3715 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
3716 call void @llvm.va_end(i8* %aq2)
3718 ; Stop processing of arguments.
3719 call void @llvm.va_end(i8* %ap2)
3720 ret i32 %tmp
3723 declare void @llvm.va_start(i8*)
3724 declare void @llvm.va_copy(i8*, i8*)
3725 declare void @llvm.va_end(i8*)
3726 </pre>
3727 </div>
3729 <!-- _______________________________________________________________________ -->
3730 <div class="doc_subsubsection">
3731 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3732 </div>
3735 <div class="doc_text">
3736 <h5>Syntax:</h5>
3737 <pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
3738 <h5>Overview:</h5>
3739 <P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3740 <tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3741 href="#i_va_arg">va_arg</a></tt>.</p>
3743 <h5>Arguments:</h5>
3745 <P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3747 <h5>Semantics:</h5>
3749 <P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3750 macro available in C. In a target-dependent way, it initializes the
3751 <tt>va_list</tt> element to which the argument points, so that the next call to
3752 <tt>va_arg</tt> will produce the first variable argument passed to the function.
3753 Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3754 last argument of the function as the compiler can figure that out.</p>
3756 </div>
3758 <!-- _______________________________________________________________________ -->
3759 <div class="doc_subsubsection">
3760 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3761 </div>
3763 <div class="doc_text">
3764 <h5>Syntax:</h5>
3765 <pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
3766 <h5>Overview:</h5>
3768 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
3769 which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
3770 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
3772 <h5>Arguments:</h5>
3774 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
3776 <h5>Semantics:</h5>
3778 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
3779 macro available in C. In a target-dependent way, it destroys the
3780 <tt>va_list</tt> element to which the argument points. Calls to <a
3781 href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3782 <tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3783 <tt>llvm.va_end</tt>.</p>
3785 </div>
3787 <!-- _______________________________________________________________________ -->
3788 <div class="doc_subsubsection">
3789 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3790 </div>
3792 <div class="doc_text">
3794 <h5>Syntax:</h5>
3796 <pre>
3797 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
3798 </pre>
3800 <h5>Overview:</h5>
3802 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3803 from the source argument list to the destination argument list.</p>
3805 <h5>Arguments:</h5>
3807 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
3808 The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
3811 <h5>Semantics:</h5>
3813 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
3814 macro available in C. In a target-dependent way, it copies the source
3815 <tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
3816 intrinsic is necessary because the <tt><a href="#int_va_start">
3817 llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
3818 example, memory allocation.</p>
3820 </div>
3822 <!-- ======================================================================= -->
3823 <div class="doc_subsection">
3824 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3825 </div>
3827 <div class="doc_text">
3830 LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3831 Collection</a> requires the implementation and generation of these intrinsics.
3832 These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
3833 stack</a>, as well as garbage collector implementations that require <a
3834 href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
3835 Front-ends for type-safe garbage collected languages should generate these
3836 intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3837 href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3838 </p>
3839 </div>
3841 <!-- _______________________________________________________________________ -->
3842 <div class="doc_subsubsection">
3843 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3844 </div>
3846 <div class="doc_text">
3848 <h5>Syntax:</h5>
3850 <pre>
3851 declare void @llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
3852 </pre>
3854 <h5>Overview:</h5>
3856 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
3857 the code generator, and allows some metadata to be associated with it.</p>
3859 <h5>Arguments:</h5>
3861 <p>The first argument specifies the address of a stack object that contains the
3862 root pointer. The second pointer (which must be either a constant or a global
3863 value address) contains the meta-data to be associated with the root.</p>
3865 <h5>Semantics:</h5>
3867 <p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3868 location. At compile-time, the code generator generates information to allow
3869 the runtime to find the pointer at GC safe points.
3870 </p>
3872 </div>
3875 <!-- _______________________________________________________________________ -->
3876 <div class="doc_subsubsection">
3877 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3878 </div>
3880 <div class="doc_text">
3882 <h5>Syntax:</h5>
3884 <pre>
3885 declare i8 * @llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr)
3886 </pre>
3888 <h5>Overview:</h5>
3890 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3891 locations, allowing garbage collector implementations that require read
3892 barriers.</p>
3894 <h5>Arguments:</h5>
3896 <p>The second argument is the address to read from, which should be an address
3897 allocated from the garbage collector. The first object is a pointer to the
3898 start of the referenced object, if needed by the language runtime (otherwise
3899 null).</p>
3901 <h5>Semantics:</h5>
3903 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3904 instruction, but may be replaced with substantially more complex code by the
3905 garbage collector runtime, as needed.</p>
3907 </div>
3910 <!-- _______________________________________________________________________ -->
3911 <div class="doc_subsubsection">
3912 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3913 </div>
3915 <div class="doc_text">
3917 <h5>Syntax:</h5>
3919 <pre>
3920 declare void @llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2)
3921 </pre>
3923 <h5>Overview:</h5>
3925 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
3926 locations, allowing garbage collector implementations that require write
3927 barriers (such as generational or reference counting collectors).</p>
3929 <h5>Arguments:</h5>
3931 <p>The first argument is the reference to store, the second is the start of the
3932 object to store it to, and the third is the address of the field of Obj to
3933 store to. If the runtime does not require a pointer to the object, Obj may be
3934 null.</p>
3936 <h5>Semantics:</h5>
3938 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
3939 instruction, but may be replaced with substantially more complex code by the
3940 garbage collector runtime, as needed.</p>
3942 </div>
3946 <!-- ======================================================================= -->
3947 <div class="doc_subsection">
3948 <a name="int_codegen">Code Generator Intrinsics</a>
3949 </div>
3951 <div class="doc_text">
3953 These intrinsics are provided by LLVM to expose special features that may only
3954 be implemented with code generator support.
3955 </p>
3957 </div>
3959 <!-- _______________________________________________________________________ -->
3960 <div class="doc_subsubsection">
3961 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
3962 </div>
3964 <div class="doc_text">
3966 <h5>Syntax:</h5>
3967 <pre>
3968 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
3969 </pre>
3971 <h5>Overview:</h5>
3974 The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
3975 target-specific value indicating the return address of the current function
3976 or one of its callers.
3977 </p>
3979 <h5>Arguments:</h5>
3982 The argument to this intrinsic indicates which function to return the address
3983 for. Zero indicates the calling function, one indicates its caller, etc. The
3984 argument is <b>required</b> to be a constant integer value.
3985 </p>
3987 <h5>Semantics:</h5>
3990 The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
3991 the return address of the specified call frame, or zero if it cannot be
3992 identified. The value returned by this intrinsic is likely to be incorrect or 0
3993 for arguments other than zero, so it should only be used for debugging purposes.
3994 </p>
3997 Note that calling this intrinsic does not prevent function inlining or other
3998 aggressive transformations, so the value returned may not be that of the obvious
3999 source-language caller.
4000 </p>
4001 </div>
4004 <!-- _______________________________________________________________________ -->
4005 <div class="doc_subsubsection">
4006 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4007 </div>
4009 <div class="doc_text">
4011 <h5>Syntax:</h5>
4012 <pre>
4013 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
4014 </pre>
4016 <h5>Overview:</h5>
4019 The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4020 target-specific frame pointer value for the specified stack frame.
4021 </p>
4023 <h5>Arguments:</h5>
4026 The argument to this intrinsic indicates which function to return the frame
4027 pointer for. Zero indicates the calling function, one indicates its caller,
4028 etc. The argument is <b>required</b> to be a constant integer value.
4029 </p>
4031 <h5>Semantics:</h5>
4034 The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4035 the frame address of the specified call frame, or zero if it cannot be
4036 identified. The value returned by this intrinsic is likely to be incorrect or 0
4037 for arguments other than zero, so it should only be used for debugging purposes.
4038 </p>
4041 Note that calling this intrinsic does not prevent function inlining or other
4042 aggressive transformations, so the value returned may not be that of the obvious
4043 source-language caller.
4044 </p>
4045 </div>
4047 <!-- _______________________________________________________________________ -->
4048 <div class="doc_subsubsection">
4049 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4050 </div>
4052 <div class="doc_text">
4054 <h5>Syntax:</h5>
4055 <pre>
4056 declare i8 *@llvm.stacksave()
4057 </pre>
4059 <h5>Overview:</h5>
4062 The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4063 the function stack, for use with <a href="#int_stackrestore">
4064 <tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4065 features like scoped automatic variable sized arrays in C99.
4066 </p>
4068 <h5>Semantics:</h5>
4071 This intrinsic returns a opaque pointer value that can be passed to <a
4072 href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4073 <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4074 <tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4075 state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4076 practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4077 that were allocated after the <tt>llvm.stacksave</tt> was executed.
4078 </p>
4080 </div>
4082 <!-- _______________________________________________________________________ -->
4083 <div class="doc_subsubsection">
4084 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4085 </div>
4087 <div class="doc_text">
4089 <h5>Syntax:</h5>
4090 <pre>
4091 declare void @llvm.stackrestore(i8 * %ptr)
4092 </pre>
4094 <h5>Overview:</h5>
4097 The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4098 the function stack to the state it was in when the corresponding <a
4099 href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4100 useful for implementing language features like scoped automatic variable sized
4101 arrays in C99.
4102 </p>
4104 <h5>Semantics:</h5>
4107 See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4108 </p>
4110 </div>
4113 <!-- _______________________________________________________________________ -->
4114 <div class="doc_subsubsection">
4115 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4116 </div>
4118 <div class="doc_text">
4120 <h5>Syntax:</h5>
4121 <pre>
4122 declare void @llvm.prefetch(i8 * &lt;address&gt;,
4123 i32 &lt;rw&gt;, i32 &lt;locality&gt;)
4124 </pre>
4126 <h5>Overview:</h5>
4130 The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4131 a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4133 effect on the behavior of the program but can change its performance
4134 characteristics.
4135 </p>
4137 <h5>Arguments:</h5>
4140 <tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4141 determining if the fetch should be for a read (0) or write (1), and
4142 <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4143 locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4144 <tt>locality</tt> arguments must be constant integers.
4145 </p>
4147 <h5>Semantics:</h5>
4150 This intrinsic does not modify the behavior of the program. In particular,
4151 prefetches cannot trap and do not produce a value. On targets that support this
4152 intrinsic, the prefetch can provide hints to the processor cache for better
4153 performance.
4154 </p>
4156 </div>
4158 <!-- _______________________________________________________________________ -->
4159 <div class="doc_subsubsection">
4160 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4161 </div>
4163 <div class="doc_text">
4165 <h5>Syntax:</h5>
4166 <pre>
4167 declare void @llvm.pcmarker( i32 &lt;id&gt; )
4168 </pre>
4170 <h5>Overview:</h5>
4174 The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4175 (PC) in a region of
4176 code to simulators and other tools. The method is target specific, but it is
4177 expected that the marker will use exported symbols to transmit the PC of the marker.
4178 The marker makes no guarantees that it will remain with any specific instruction
4179 after optimizations. It is possible that the presence of a marker will inhibit
4180 optimizations. The intended use is to be inserted after optimizations to allow
4181 correlations of simulation runs.
4182 </p>
4184 <h5>Arguments:</h5>
4187 <tt>id</tt> is a numerical id identifying the marker.
4188 </p>
4190 <h5>Semantics:</h5>
4193 This intrinsic does not modify the behavior of the program. Backends that do not
4194 support this intrinisic may ignore it.
4195 </p>
4197 </div>
4199 <!-- _______________________________________________________________________ -->
4200 <div class="doc_subsubsection">
4201 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4202 </div>
4204 <div class="doc_text">
4206 <h5>Syntax:</h5>
4207 <pre>
4208 declare i64 @llvm.readcyclecounter( )
4209 </pre>
4211 <h5>Overview:</h5>
4215 The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4216 counter register (or similar low latency, high accuracy clocks) on those targets
4217 that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4218 As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4219 should only be used for small timings.
4220 </p>
4222 <h5>Semantics:</h5>
4225 When directly supported, reading the cycle counter should not modify any memory.
4226 Implementations are allowed to either return a application specific value or a
4227 system wide value. On backends without support, this is lowered to a constant 0.
4228 </p>
4230 </div>
4232 <!-- ======================================================================= -->
4233 <div class="doc_subsection">
4234 <a name="int_libc">Standard C Library Intrinsics</a>
4235 </div>
4237 <div class="doc_text">
4239 LLVM provides intrinsics for a few important standard C library functions.
4240 These intrinsics allow source-language front-ends to pass information about the
4241 alignment of the pointer arguments to the code generator, providing opportunity
4242 for more efficient code generation.
4243 </p>
4245 </div>
4247 <!-- _______________________________________________________________________ -->
4248 <div class="doc_subsubsection">
4249 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4250 </div>
4252 <div class="doc_text">
4254 <h5>Syntax:</h5>
4255 <pre>
4256 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4257 i32 &lt;len&gt;, i32 &lt;align&gt;)
4258 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4259 i64 &lt;len&gt;, i32 &lt;align&gt;)
4260 </pre>
4262 <h5>Overview:</h5>
4265 The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4266 location to the destination location.
4267 </p>
4270 Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4271 intrinsics do not return a value, and takes an extra alignment argument.
4272 </p>
4274 <h5>Arguments:</h5>
4277 The first argument is a pointer to the destination, the second is a pointer to
4278 the source. The third argument is an integer argument
4279 specifying the number of bytes to copy, and the fourth argument is the alignment
4280 of the source and destination locations.
4281 </p>
4284 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4285 the caller guarantees that both the source and destination pointers are aligned
4286 to that boundary.
4287 </p>
4289 <h5>Semantics:</h5>
4292 The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4293 location to the destination location, which are not allowed to overlap. It
4294 copies "len" bytes of memory over. If the argument is known to be aligned to
4295 some boundary, this can be specified as the fourth argument, otherwise it should
4296 be set to 0 or 1.
4297 </p>
4298 </div>
4301 <!-- _______________________________________________________________________ -->
4302 <div class="doc_subsubsection">
4303 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4304 </div>
4306 <div class="doc_text">
4308 <h5>Syntax:</h5>
4309 <pre>
4310 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4311 i32 &lt;len&gt;, i32 &lt;align&gt;)
4312 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4313 i64 &lt;len&gt;, i32 &lt;align&gt;)
4314 </pre>
4316 <h5>Overview:</h5>
4319 The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4320 location to the destination location. It is similar to the
4321 '<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
4322 </p>
4325 Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4326 intrinsics do not return a value, and takes an extra alignment argument.
4327 </p>
4329 <h5>Arguments:</h5>
4332 The first argument is a pointer to the destination, the second is a pointer to
4333 the source. The third argument is an integer argument
4334 specifying the number of bytes to copy, and the fourth argument is the alignment
4335 of the source and destination locations.
4336 </p>
4339 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4340 the caller guarantees that the source and destination pointers are aligned to
4341 that boundary.
4342 </p>
4344 <h5>Semantics:</h5>
4347 The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4348 location to the destination location, which may overlap. It
4349 copies "len" bytes of memory over. If the argument is known to be aligned to
4350 some boundary, this can be specified as the fourth argument, otherwise it should
4351 be set to 0 or 1.
4352 </p>
4353 </div>
4356 <!-- _______________________________________________________________________ -->
4357 <div class="doc_subsubsection">
4358 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4359 </div>
4361 <div class="doc_text">
4363 <h5>Syntax:</h5>
4364 <pre>
4365 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4366 i32 &lt;len&gt;, i32 &lt;align&gt;)
4367 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4368 i64 &lt;len&gt;, i32 &lt;align&gt;)
4369 </pre>
4371 <h5>Overview:</h5>
4374 The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4375 byte value.
4376 </p>
4379 Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4380 does not return a value, and takes an extra alignment argument.
4381 </p>
4383 <h5>Arguments:</h5>
4386 The first argument is a pointer to the destination to fill, the second is the
4387 byte value to fill it with, the third argument is an integer
4388 argument specifying the number of bytes to fill, and the fourth argument is the
4389 known alignment of destination location.
4390 </p>
4393 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4394 the caller guarantees that the destination pointer is aligned to that boundary.
4395 </p>
4397 <h5>Semantics:</h5>
4400 The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4402 destination location. If the argument is known to be aligned to some boundary,
4403 this can be specified as the fourth argument, otherwise it should be set to 0 or
4405 </p>
4406 </div>
4409 <!-- _______________________________________________________________________ -->
4410 <div class="doc_subsubsection">
4411 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4412 </div>
4414 <div class="doc_text">
4416 <h5>Syntax:</h5>
4417 <pre>
4418 declare float @llvm.sqrt.f32(float %Val)
4419 declare double @llvm.sqrt.f64(double %Val)
4420 </pre>
4422 <h5>Overview:</h5>
4425 The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
4426 returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4427 <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4428 negative numbers (which allows for better optimization).
4429 </p>
4431 <h5>Arguments:</h5>
4434 The argument and return value are floating point numbers of the same type.
4435 </p>
4437 <h5>Semantics:</h5>
4440 This function returns the sqrt of the specified operand if it is a positive
4441 floating point number.
4442 </p>
4443 </div>
4445 <!-- _______________________________________________________________________ -->
4446 <div class="doc_subsubsection">
4447 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4448 </div>
4450 <div class="doc_text">
4452 <h5>Syntax:</h5>
4453 <pre>
4454 declare float @llvm.powi.f32(float %Val, i32 %power)
4455 declare double @llvm.powi.f64(double %Val, i32 %power)
4456 </pre>
4458 <h5>Overview:</h5>
4461 The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4462 specified (positive or negative) power. The order of evaluation of
4463 multiplications is not defined.
4464 </p>
4466 <h5>Arguments:</h5>
4469 The second argument is an integer power, and the first is a value to raise to
4470 that power.
4471 </p>
4473 <h5>Semantics:</h5>
4476 This function returns the first value raised to the second power with an
4477 unspecified sequence of rounding operations.</p>
4478 </div>
4481 <!-- ======================================================================= -->
4482 <div class="doc_subsection">
4483 <a name="int_manip">Bit Manipulation Intrinsics</a>
4484 </div>
4486 <div class="doc_text">
4488 LLVM provides intrinsics for a few important bit manipulation operations.
4489 These allow efficient code generation for some algorithms.
4490 </p>
4492 </div>
4494 <!-- _______________________________________________________________________ -->
4495 <div class="doc_subsubsection">
4496 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4497 </div>
4499 <div class="doc_text">
4501 <h5>Syntax:</h5>
4502 <p>This is an overloaded intrinsic function. You can use bswap on any integer
4503 type that is an even number of bytes (i.e. BitWidth % 16 == 0). Note the suffix
4504 that includes the type for the result and the operand.
4505 <pre>
4506 declare i16 @llvm.bswap.i16.i16(i16 &lt;id&gt;)
4507 declare i32 @llvm.bswap.i32.i32(i32 &lt;id&gt;)
4508 declare i64 @llvm.bswap.i64.i64(i64 &lt;id&gt;)
4509 </pre>
4511 <h5>Overview:</h5>
4514 The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
4515 values with an even number of bytes (positive multiple of 16 bits). These are
4516 useful for performing operations on data that is not in the target's native
4517 byte order.
4518 </p>
4520 <h5>Semantics:</h5>
4523 The <tt>llvm.bswap.16.i16</tt> intrinsic returns an i16 value that has the high
4524 and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4525 intrinsic returns an i32 value that has the four bytes of the input i32
4526 swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
4527 i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48.i48</tt>,
4528 <tt>llvm.bswap.i64.i64</tt> and other intrinsics extend this concept to
4529 additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4530 </p>
4532 </div>
4534 <!-- _______________________________________________________________________ -->
4535 <div class="doc_subsubsection">
4536 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4537 </div>
4539 <div class="doc_text">
4541 <h5>Syntax:</h5>
4542 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4543 width. Not all targets support all bit widths however.
4544 <pre>
4545 declare i32 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4546 declare i32 @llvm.ctpop.i16(i16 &lt;src&gt;)
4547 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
4548 declare i32 @llvm.ctpop.i64(i64 &lt;src&gt;)
4549 declare i32 @llvm.ctpop.i256(i256 &lt;src&gt;)
4550 </pre>
4552 <h5>Overview:</h5>
4555 The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4556 value.
4557 </p>
4559 <h5>Arguments:</h5>
4562 The only argument is the value to be counted. The argument may be of any
4563 integer type. The return type must match the argument type.
4564 </p>
4566 <h5>Semantics:</h5>
4569 The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4570 </p>
4571 </div>
4573 <!-- _______________________________________________________________________ -->
4574 <div class="doc_subsubsection">
4575 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
4576 </div>
4578 <div class="doc_text">
4580 <h5>Syntax:</h5>
4581 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4582 integer bit width. Not all targets support all bit widths however.
4583 <pre>
4584 declare i32 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4585 declare i32 @llvm.ctlz.i16(i16 &lt;src&gt;)
4586 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
4587 declare i32 @llvm.ctlz.i64(i64 &lt;src&gt;)
4588 declare i32 @llvm.ctlz.i256(i256 &lt;src&gt;)
4589 </pre>
4591 <h5>Overview:</h5>
4594 The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4595 leading zeros in a variable.
4596 </p>
4598 <h5>Arguments:</h5>
4601 The only argument is the value to be counted. The argument may be of any
4602 integer type. The return type must match the argument type.
4603 </p>
4605 <h5>Semantics:</h5>
4608 The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4609 in a variable. If the src == 0 then the result is the size in bits of the type
4610 of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
4611 </p>
4612 </div>
4616 <!-- _______________________________________________________________________ -->
4617 <div class="doc_subsubsection">
4618 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
4619 </div>
4621 <div class="doc_text">
4623 <h5>Syntax:</h5>
4624 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4625 integer bit width. Not all targets support all bit widths however.
4626 <pre>
4627 declare i32 @llvm.cttz.i8 (i8 &lt;src&gt;)
4628 declare i32 @llvm.cttz.i16(i16 &lt;src&gt;)
4629 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
4630 declare i32 @llvm.cttz.i64(i64 &lt;src&gt;)
4631 declare i32 @llvm.cttz.i256(i256 &lt;src&gt;)
4632 </pre>
4634 <h5>Overview:</h5>
4637 The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4638 trailing zeros.
4639 </p>
4641 <h5>Arguments:</h5>
4644 The only argument is the value to be counted. The argument may be of any
4645 integer type. The return type must match the argument type.
4646 </p>
4648 <h5>Semantics:</h5>
4651 The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4652 in a variable. If the src == 0 then the result is the size in bits of the type
4653 of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4654 </p>
4655 </div>
4657 <!-- _______________________________________________________________________ -->
4658 <div class="doc_subsubsection">
4659 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
4660 </div>
4662 <div class="doc_text">
4664 <h5>Syntax:</h5>
4665 <p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
4666 on any integer bit width.
4667 <pre>
4668 declare i17 @llvm.part.select.i17.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4669 declare i29 @llvm.part.select.i29.i29 (i29 %val, i32 %loBit, i32 %hiBit)
4670 </pre>
4672 <h5>Overview:</h5>
4673 <p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
4674 range of bits from an integer value and returns them in the same bit width as
4675 the original value.</p>
4677 <h5>Arguments:</h5>
4678 <p>The first argument, <tt>%val</tt> and the result may be integer types of
4679 any bit width but they must have the same bit width. The second and third
4680 arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
4682 <h5>Semantics:</h5>
4683 <p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
4684 of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4685 <tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4686 operates in forward mode.</p>
4687 <p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4688 right by <tt>%loBit</tt> bits and then ANDing it with a mask with
4689 only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4690 <ol>
4691 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4692 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4693 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4694 to determine the number of bits to retain.</li>
4695 <li>A mask of the retained bits is created by shifting a -1 value.</li>
4696 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4697 </ol>
4698 <p>In reverse mode, a similar computation is made except that the bits are
4699 returned in the reverse order. So, for example, if <tt>X</tt> has the value
4700 <tt>i16 0x0ACF (101011001111)</tt> and we apply
4701 <tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
4702 <tt>i16 0x0026 (000000100110)</tt>.</p>
4703 </div>
4705 <div class="doc_subsubsection">
4706 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4707 </div>
4709 <div class="doc_text">
4711 <h5>Syntax:</h5>
4712 <p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
4713 on any integer bit width.
4714 <pre>
4715 declare i17 @llvm.part.set.i17.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4716 declare i29 @llvm.part.set.i29.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
4717 </pre>
4719 <h5>Overview:</h5>
4720 <p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4721 of bits in an integer value with another integer value. It returns the integer
4722 with the replaced bits.</p>
4724 <h5>Arguments:</h5>
4725 <p>The first argument, <tt>%val</tt> and the result may be integer types of
4726 any bit width but they must have the same bit width. <tt>%val</tt> is the value
4727 whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
4728 integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
4729 type since they specify only a bit index.</p>
4731 <h5>Semantics:</h5>
4732 <p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4733 of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4734 <tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4735 operates in forward mode.</p>
4736 <p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4737 truncating it down to the size of the replacement area or zero extending it
4738 up to that size.</p>
4739 <p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4740 are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4741 in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4742 to the <tt>%hi</tt>th bit.
4743 <p>In reverse mode, a similar computation is made except that the bits are
4744 reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
4745 <tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
4746 <h5>Examples:</h5>
4747 <pre>
4748 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
4749 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
4750 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
4751 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
4752 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
4753 </pre>
4754 </div>
4756 <!-- ======================================================================= -->
4757 <div class="doc_subsection">
4758 <a name="int_debugger">Debugger Intrinsics</a>
4759 </div>
4761 <div class="doc_text">
4763 The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4764 are described in the <a
4765 href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4766 Debugging</a> document.
4767 </p>
4768 </div>
4771 <!-- ======================================================================= -->
4772 <div class="doc_subsection">
4773 <a name="int_eh">Exception Handling Intrinsics</a>
4774 </div>
4776 <div class="doc_text">
4777 <p> The LLVM exception handling intrinsics (which all start with
4778 <tt>llvm.eh.</tt> prefix), are described in the <a
4779 href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4780 Handling</a> document. </p>
4781 </div>
4784 <!-- *********************************************************************** -->
4785 <hr>
4786 <address>
4787 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
4788 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
4789 <a href="http://validator.w3.org/check/referer"><img
4790 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
4792 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
4793 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
4794 Last modified: $Date$
4795 </address>
4796 </body>
4797 </html>