[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / docs / OptBisect.rst
blob4dcbb76ccebe183a3667349d379c9b4b1f4eaff3
1 ====================================================
2 Using -opt-bisect-limit to debug optimization errors
3 ====================================================
4 .. contents::
5    :local:
6    :depth: 1
8 Introduction
9 ============
11 The -opt-bisect-limit option provides a way to disable all optimization passes
12 above a specified limit without modifying the way in which the Pass Managers
13 are populated.  The intention of this option is to assist in tracking down
14 problems where incorrect transformations during optimization result in incorrect
15 run-time behavior.
17 This feature is implemented on an opt-in basis.  Passes which can be safely
18 skipped while still allowing correct code generation call a function to
19 check the opt-bisect limit before performing optimizations.  Passes which
20 either must be run or do not modify the IR do not perform this check and are
21 therefore never skipped.  Generally, this means analysis passes, passes
22 that are run at CodeGenOpt::None and passes which are required for register
23 allocation.
25 The -opt-bisect-limit option can be used with any tool, including front ends
26 such as clang, that uses the core LLVM library for optimization and code
27 generation.  The exact syntax for invoking the option is discussed below.
29 This feature is not intended to replace other debugging tools such as bugpoint.
30 Rather it provides an alternate course of action when reproducing the problem
31 requires a complex build infrastructure that would make using bugpoint
32 impractical or when reproducing the failure requires a sequence of
33 transformations that is difficult to replicate with tools like opt and llc.
36 Getting Started
37 ===============
39 The -opt-bisect-limit command line option can be passed directly to tools such
40 as opt, llc and lli.  The syntax is as follows:
44   <tool name> [other options] -opt-bisect-limit=<limit>
46 If a value of -1 is used the tool will perform all optimizations but a message
47 will be printed to stderr for each optimization that could be skipped
48 indicating the index value that is associated with that optimization.  To skip
49 optimizations, pass the value of the last optimization to be performed as the
50 opt-bisect-limit.  All optimizations with a higher index value will be skipped.
52 In order to use the -opt-bisect-limit option with a driver that provides a
53 wrapper around the LLVM core library, an additional prefix option may be
54 required, as defined by the driver.  For example, to use this option with
55 clang, the "-mllvm" prefix must be used.  A typical clang invocation would look
56 like this:
60   clang -O2 -mllvm -opt-bisect-limit=256 my_file.c
62 The -opt-bisect-limit option may also be applied to link-time optimizations by
63 using a prefix to indicate that this is a plug-in option for the linker. The
64 following syntax will set a bisect limit for LTO transformations:
68   # When using lld, or ld64 (macOS)
69   clang -flto -Wl,-mllvm,-opt-bisect-limit=256 my_file.o my_other_file.o
70   # When using Gold
71   clang -flto -Wl,-plugin-opt,-opt-bisect-limit=256 my_file.o my_other_file.o
73 LTO passes are run by a library instance invoked by the linker. Therefore any
74 passes run in the primary driver compilation phase are not affected by options
75 passed via '-Wl,-plugin-opt' and LTO passes are not affected by options
76 passed to the driver-invoked LLVM invocation via '-mllvm'.
79 Bisection Index Values
80 ======================
82 The granularity of the optimizations associated with a single index value is
83 variable.  Depending on how the optimization pass has been instrumented the
84 value may be associated with as much as all transformations that would have
85 been performed by an optimization pass on an IR unit for which it is invoked
86 (for instance, during a single call of runOnFunction for a FunctionPass) or as
87 little as a single transformation. The index values may also be nested so that
88 if an invocation of the pass is not skipped individual transformations within
89 that invocation may still be skipped.
91 The order of the values assigned is guaranteed to remain stable and consistent
92 from one run to the next up to and including the value specified as the limit.
93 Above the limit value skipping of optimizations can cause a change in the
94 numbering, but because all optimizations above the limit are skipped this
95 is not a problem.
97 When an opt-bisect index value refers to an entire invocation of the run
98 function for a pass, the pass will query whether or not it should be skipped
99 each time it is invoked and each invocation will be assigned a unique value.
100 For example, if a FunctionPass is used with a module containing three functions
101 a different index value will be assigned to the pass for each of the functions
102 as the pass is run. The pass may be run on two functions but skipped for the
103 third.
105 If the pass internally performs operations on a smaller IR unit the pass must be
106 specifically instrumented to enable bisection at this finer level of granularity
107 (see below for details).
110 Example Usage
111 =============
113 .. code-block:: console
115   $ opt -O2 -o test-opt.bc -opt-bisect-limit=16 test.ll
117   BISECT: running pass (1) Simplify the CFG on function (g)
118   BISECT: running pass (2) SROA on function (g)
119   BISECT: running pass (3) Early CSE on function (g)
120   BISECT: running pass (4) Infer set function attributes on module (test.ll)
121   BISECT: running pass (5) Interprocedural Sparse Conditional Constant Propagation on module (test.ll)
122   BISECT: running pass (6) Global Variable Optimizer on module (test.ll)
123   BISECT: running pass (7) Promote Memory to Register on function (g)
124   BISECT: running pass (8) Dead Argument Elimination on module (test.ll)
125   BISECT: running pass (9) Combine redundant instructions on function (g)
126   BISECT: running pass (10) Simplify the CFG on function (g)
127   BISECT: running pass (11) Remove unused exception handling info on SCC (<<null function>>)
128   BISECT: running pass (12) Function Integration/Inlining on SCC (<<null function>>)
129   BISECT: running pass (13) Deduce function attributes on SCC (<<null function>>)
130   BISECT: running pass (14) Remove unused exception handling info on SCC (f)
131   BISECT: running pass (15) Function Integration/Inlining on SCC (f)
132   BISECT: running pass (16) Deduce function attributes on SCC (f)
133   BISECT: NOT running pass (17) Remove unused exception handling info on SCC (g)
134   BISECT: NOT running pass (18) Function Integration/Inlining on SCC (g)
135   BISECT: NOT running pass (19) Deduce function attributes on SCC (g)
136   BISECT: NOT running pass (20) SROA on function (g)
137   BISECT: NOT running pass (21) Early CSE on function (g)
138   BISECT: NOT running pass (22) Speculatively execute instructions if target has divergent branches on function (g)
139   ... etc. ...
142 Pass Skipping Implementation
143 ============================
145 The -opt-bisect-limit implementation depends on individual passes opting in to
146 the opt-bisect process.  The OptBisect object that manages the process is
147 entirely passive and has no knowledge of how any pass is implemented.  When a
148 pass is run if the pass may be skipped, it should call the OptBisect object to
149 see if it should be skipped.
151 The OptBisect object is intended to be accessed through LLVMContext and each
152 Pass base class contains a helper function that abstracts the details in order
153 to make this check uniform across all passes.  These helper functions are:
155 .. code-block:: c++
157   bool ModulePass::skipModule(Module &M);
158   bool CallGraphSCCPass::skipSCC(CallGraphSCC &SCC);
159   bool FunctionPass::skipFunction(const Function &F);
160   bool BasicBlockPass::skipBasicBlock(const BasicBlock &BB);
161   bool LoopPass::skipLoop(const Loop *L);
163 A MachineFunctionPass should use FunctionPass::skipFunction() as such:
165 .. code-block:: c++
167   bool MyMachineFunctionPass::runOnMachineFunction(Function &MF) {
168     if (skipFunction(*MF.getFunction())
169       return false;
170     // Otherwise, run the pass normally.
171   }
173 In addition to checking with the OptBisect class to see if the pass should be
174 skipped, the skipFunction(), skipLoop() and skipBasicBlock() helper functions
175 also look for the presence of the "optnone" function attribute.  The calling
176 pass will be unable to determine whether it is being skipped because the
177 "optnone" attribute is present or because the opt-bisect-limit has been
178 reached.  This is desirable because the behavior should be the same in either
179 case.
181 The majority of LLVM passes which can be skipped have already been instrumented
182 in the manner described above.  If you are adding a new pass or believe you
183 have found a pass which is not being included in the opt-bisect process but
184 should be, you can add it as described above.
187 Adding Finer Granularity
188 ========================
190 Once the pass in which an incorrect transformation is performed has been
191 determined, it may be useful to perform further analysis in order to determine
192 which specific transformation is causing the problem.  Debug counters
193 can be used for this purpose.