1 //===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Contains generic JIT-linker types.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
14 #define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
16 #include "JITLinkMemoryManager.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/ExecutionEngine/JITSymbol.h"
22 #include "llvm/Support/Allocator.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/Error.h"
25 #include "llvm/Support/FormatVariadic.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/Memory.h"
28 #include "llvm/Support/MemoryBuffer.h"
32 #include <system_error>
37 /// Base class for errors originating in JIT linker, e.g. missing relocation
39 class JITLinkError
: public ErrorInfo
<JITLinkError
> {
43 JITLinkError(Twine ErrMsg
) : ErrMsg(ErrMsg
.str()) {}
45 void log(raw_ostream
&OS
) const override
;
46 const std::string
&getErrorMessage() const { return ErrMsg
; }
47 std::error_code
convertToErrorCode() const override
;
53 // Forward declare the Atom class.
56 /// Edge class. Represents both object file relocations, as well as layout and
57 /// keep-alive constraints.
62 using GenericEdgeKind
= enum : Kind
{
63 Invalid
, // Invalid edge value.
64 FirstKeepAlive
, // Keeps target alive. Offset/addend zero.
65 KeepAlive
= FirstKeepAlive
, // Tag first edge kind that preserves liveness.
66 LayoutNext
, // Layout constraint. Offset/Addend zero.
67 FirstRelocation
// First architecture specific relocation.
70 using OffsetT
= uint32_t;
71 using AddendT
= int64_t;
73 Edge(Kind K
, OffsetT Offset
, Atom
&Target
, AddendT Addend
)
74 : Target(&Target
), Offset(Offset
), Addend(Addend
), K(K
) {}
76 OffsetT
getOffset() const { return Offset
; }
77 Kind
getKind() const { return K
; }
78 void setKind(Kind K
) { this->K
= K
; }
79 bool isRelocation() const { return K
>= FirstRelocation
; }
80 Kind
getRelocation() const {
81 assert(isRelocation() && "Not a relocation edge");
82 return K
- FirstRelocation
;
84 bool isKeepAlive() const { return K
>= FirstKeepAlive
; }
85 Atom
&getTarget() const { return *Target
; }
86 void setTarget(Atom
&Target
) { this->Target
= &Target
; }
87 AddendT
getAddend() const { return Addend
; }
88 void setAddend(AddendT Addend
) { this->Addend
= Addend
; }
97 using EdgeVector
= std::vector
<Edge
>;
99 const StringRef
getGenericEdgeKindName(Edge::Kind K
);
101 /// Base Atom class. Used by absolute and undefined atoms.
103 friend class AtomGraph
;
106 /// Create a named (as yet unresolved) atom.
108 : Name(Name
), IsDefined(false), IsLive(false), ShouldDiscard(false),
109 IsGlobal(false), IsAbsolute(false), IsCallable(false),
110 IsExported(false), IsWeak(false), HasLayoutNext(false),
113 /// Create an absolute symbol atom.
114 Atom(StringRef Name
, JITTargetAddress Address
)
115 : Name(Name
), Address(Address
), IsDefined(true), IsLive(false),
116 ShouldDiscard(false), IsGlobal(false), IsAbsolute(false),
117 IsCallable(false), IsExported(false), IsWeak(false),
118 HasLayoutNext(false), IsCommon(false) {}
121 /// Returns true if this atom has a name.
122 bool hasName() const { return Name
!= StringRef(); }
124 /// Returns the name of this atom.
125 StringRef
getName() const { return Name
; }
127 /// Returns the current target address of this atom.
128 /// The initial target address (for atoms that have one) will be taken from
129 /// the input object file's virtual address space. During the layout phase
130 /// of JIT linking the atom's address will be updated to point to its final
131 /// address in the JIT'd process.
132 JITTargetAddress
getAddress() const { return Address
; }
134 /// Set the current target address of this atom.
135 void setAddress(JITTargetAddress Address
) { this->Address
= Address
; }
137 /// Returns true if this is a defined atom.
138 bool isDefined() const { return IsDefined
; }
140 /// Returns true if this atom is marked as live.
141 bool isLive() const { return IsLive
; }
143 /// Mark this atom as live.
145 /// Note: Only defined and absolute atoms can be marked live.
146 void setLive(bool IsLive
) {
147 assert((IsDefined
|| IsAbsolute
|| !IsLive
) &&
148 "Only defined and absolute atoms can be marked live");
149 this->IsLive
= IsLive
;
152 /// Returns true if this atom should be discarded during pruning.
153 bool shouldDiscard() const { return ShouldDiscard
; }
155 /// Mark this atom to be discarded.
157 /// Note: Only defined and absolute atoms can be marked live.
158 void setShouldDiscard(bool ShouldDiscard
) {
159 assert((IsDefined
|| IsAbsolute
|| !ShouldDiscard
) &&
160 "Only defined and absolute atoms can be marked live");
161 this->ShouldDiscard
= ShouldDiscard
;
164 /// Returns true if this definition is global (i.e. visible outside this
167 /// Note: This is distict from Exported, which means visibile outside the
168 /// JITDylib that this graph is being linked in to.
169 bool isGlobal() const { return IsGlobal
; }
171 /// Mark this atom as global.
172 void setGlobal(bool IsGlobal
) { this->IsGlobal
= IsGlobal
; }
174 /// Returns true if this atom represents an absolute symbol.
175 bool isAbsolute() const { return IsAbsolute
; }
177 /// Returns true if this atom is known to be callable.
179 /// Primarily provided for easy interoperability with ORC, which uses the
180 /// JITSymbolFlags::Common flag to identify symbols that can be interposed
182 bool isCallable() const { return IsCallable
; }
184 /// Mark this atom as callable.
185 void setCallable(bool IsCallable
) {
186 assert((IsDefined
|| IsAbsolute
|| !IsCallable
) &&
187 "Callable atoms must be defined or absolute");
188 this->IsCallable
= IsCallable
;
191 /// Returns true if this atom should appear in the symbol table of a final
193 bool isExported() const { return IsExported
; }
195 /// Mark this atom as exported.
196 void setExported(bool IsExported
) {
197 assert((!IsExported
|| ((IsDefined
|| IsAbsolute
) && hasName())) &&
198 "Exported atoms must have names");
199 this->IsExported
= IsExported
;
202 /// Returns true if this is a weak symbol.
203 bool isWeak() const { return IsWeak
; }
205 /// Mark this atom as weak.
206 void setWeak(bool IsWeak
) { this->IsWeak
= IsWeak
; }
210 JITTargetAddress Address
= 0;
214 bool ShouldDiscard
: 1;
223 // These flags only make sense for DefinedAtom, but we can minimize the size
224 // of DefinedAtom by defining them here.
225 bool HasLayoutNext
: 1;
229 // Forward declare DefinedAtom.
232 raw_ostream
&operator<<(raw_ostream
&OS
, const Atom
&A
);
233 void printEdge(raw_ostream
&OS
, const Atom
&FixupAtom
, const Edge
&E
,
234 StringRef EdgeKindName
);
236 /// Represents a section address range via a pair of DefinedAtom pointers to
237 /// the first and last atoms in the section.
240 SectionRange() = default;
241 SectionRange(DefinedAtom
*First
, DefinedAtom
*Last
)
242 : First(First
), Last(Last
) {}
243 DefinedAtom
*getFirstAtom() const {
244 assert((!Last
|| First
) && "First can not be null if end is non-null");
247 DefinedAtom
*getLastAtom() const {
248 assert((First
|| !Last
) && "Last can not be null if start is non-null");
251 bool isEmpty() const {
252 assert((First
|| !Last
) && "Last can not be null if start is non-null");
255 JITTargetAddress
getStart() const;
256 JITTargetAddress
getEnd() const;
257 uint64_t getSize() const;
260 DefinedAtom
*First
= nullptr;
261 DefinedAtom
*Last
= nullptr;
264 /// Represents an object file section.
266 friend class AtomGraph
;
269 Section(StringRef Name
, uint32_t Alignment
, sys::Memory::ProtectionFlags Prot
,
270 unsigned Ordinal
, bool IsZeroFill
)
271 : Name(Name
), Alignment(Alignment
), Prot(Prot
), Ordinal(Ordinal
),
272 IsZeroFill(IsZeroFill
) {
273 assert(isPowerOf2_32(Alignment
) && "Alignments must be a power of 2");
276 using DefinedAtomSet
= DenseSet
<DefinedAtom
*>;
279 using atom_iterator
= DefinedAtomSet::iterator
;
280 using const_atom_iterator
= DefinedAtomSet::const_iterator
;
283 StringRef
getName() const { return Name
; }
284 uint32_t getAlignment() const { return Alignment
; }
285 sys::Memory::ProtectionFlags
getProtectionFlags() const { return Prot
; }
286 unsigned getSectionOrdinal() const { return Ordinal
; }
287 size_t getNextAtomOrdinal() { return ++NextAtomOrdinal
; }
289 bool isZeroFill() const { return IsZeroFill
; }
291 /// Returns an iterator over the atoms in the section (in no particular
293 iterator_range
<atom_iterator
> atoms() {
294 return make_range(DefinedAtoms
.begin(), DefinedAtoms
.end());
297 /// Returns an iterator over the atoms in the section (in no particular
299 iterator_range
<const_atom_iterator
> atoms() const {
300 return make_range(DefinedAtoms
.begin(), DefinedAtoms
.end());
303 /// Return the number of atoms in this section.
304 DefinedAtomSet::size_type
atoms_size() { return DefinedAtoms
.size(); }
306 /// Return true if this section contains no atoms.
307 bool atoms_empty() const { return DefinedAtoms
.empty(); }
309 /// Returns the range of this section as the pair of atoms with the lowest
310 /// and highest target address. This operation is expensive, as it
311 /// must traverse all atoms in the section.
313 /// Note: If the section is empty, both values will be null. The section
314 /// address will evaluate to null, and the size to zero. If the section
315 /// contains a single atom both values will point to it, the address will
316 /// evaluate to the address of that atom, and the size will be the size of
318 SectionRange
getRange() const;
321 void addAtom(DefinedAtom
&DA
) {
322 assert(!DefinedAtoms
.count(&DA
) && "Atom is already in this section");
323 DefinedAtoms
.insert(&DA
);
326 void removeAtom(DefinedAtom
&DA
) {
327 assert(DefinedAtoms
.count(&DA
) && "Atom is not in this section");
328 DefinedAtoms
.erase(&DA
);
332 uint32_t Alignment
= 0;
333 sys::Memory::ProtectionFlags Prot
;
334 unsigned Ordinal
= 0;
335 unsigned NextAtomOrdinal
= 0;
336 bool IsZeroFill
= false;
337 DefinedAtomSet DefinedAtoms
;
340 /// Defined atom class. Suitable for use by defined named and anonymous
342 class DefinedAtom
: public Atom
{
343 friend class AtomGraph
;
346 DefinedAtom(Section
&Parent
, JITTargetAddress Address
, uint32_t Alignment
)
347 : Atom("", Address
), Parent(Parent
), Ordinal(Parent
.getNextAtomOrdinal()),
348 Alignment(Alignment
) {
349 assert(isPowerOf2_32(Alignment
) && "Alignments must be a power of two");
352 DefinedAtom(Section
&Parent
, StringRef Name
, JITTargetAddress Address
,
354 : Atom(Name
, Address
), Parent(Parent
),
355 Ordinal(Parent
.getNextAtomOrdinal()), Alignment(Alignment
) {
356 assert(isPowerOf2_32(Alignment
) && "Alignments must be a power of two");
360 using edge_iterator
= EdgeVector::iterator
;
362 Section
&getSection() const { return Parent
; }
364 uint64_t getSize() const { return Size
; }
366 StringRef
getContent() const {
367 assert(!Parent
.isZeroFill() && "Trying to get content for zero-fill atom");
368 assert(Size
<= std::numeric_limits
<size_t>::max() &&
369 "Content size too large");
370 return {ContentPtr
, static_cast<size_t>(Size
)};
372 void setContent(StringRef Content
) {
373 assert(!Parent
.isZeroFill() && "Calling setContent on zero-fill atom?");
374 ContentPtr
= Content
.data();
375 Size
= Content
.size();
378 bool isZeroFill() const { return Parent
.isZeroFill(); }
380 void setZeroFill(uint64_t Size
) {
381 assert(Parent
.isZeroFill() && !ContentPtr
&&
382 "Can't set zero-fill length of a non zero-fill atom");
386 uint64_t getZeroFillSize() const {
387 assert(Parent
.isZeroFill() &&
388 "Can't get zero-fill length of a non zero-fill atom");
392 uint32_t getAlignment() const { return Alignment
; }
394 bool hasLayoutNext() const { return HasLayoutNext
; }
395 void setLayoutNext(DefinedAtom
&Next
) {
396 assert(!HasLayoutNext
&& "Atom already has layout-next constraint");
397 HasLayoutNext
= true;
398 Edges
.push_back(Edge(Edge::LayoutNext
, 0, Next
, 0));
400 DefinedAtom
&getLayoutNext() {
401 assert(HasLayoutNext
&& "Atom does not have a layout-next constraint");
402 DefinedAtom
*Next
= nullptr;
403 for (auto &E
: edges())
404 if (E
.getKind() == Edge::LayoutNext
) {
405 assert(E
.getTarget().isDefined() &&
406 "layout-next target atom must be a defined atom");
407 Next
= static_cast<DefinedAtom
*>(&E
.getTarget());
410 assert(Next
&& "Missing LayoutNext edge");
414 bool isCommon() const { return IsCommon
; }
416 void addEdge(Edge::Kind K
, Edge::OffsetT Offset
, Atom
&Target
,
417 Edge::AddendT Addend
) {
418 assert(K
!= Edge::LayoutNext
&&
419 "Layout edges should be added via setLayoutNext");
420 Edges
.push_back(Edge(K
, Offset
, Target
, Addend
));
423 iterator_range
<edge_iterator
> edges() {
424 return make_range(Edges
.begin(), Edges
.end());
426 size_t edges_size() const { return Edges
.size(); }
427 bool edges_empty() const { return Edges
.empty(); }
429 unsigned getOrdinal() const { return Ordinal
; }
432 void setCommon(uint64_t Size
) {
433 assert(ContentPtr
== 0 && "Atom already has content?");
441 const char *ContentPtr
= nullptr;
442 unsigned Ordinal
= 0;
443 uint32_t Alignment
= 0;
446 inline JITTargetAddress
SectionRange::getStart() const {
447 return First
? First
->getAddress() : 0;
450 inline JITTargetAddress
SectionRange::getEnd() const {
451 return Last
? Last
->getAddress() + Last
->getSize() : 0;
454 inline uint64_t SectionRange::getSize() const { return getEnd() - getStart(); }
456 inline SectionRange
Section::getRange() const {
458 return SectionRange();
459 DefinedAtom
*First
= *DefinedAtoms
.begin(), *Last
= *DefinedAtoms
.begin();
460 for (auto *DA
: atoms()) {
461 if (DA
->getAddress() < First
->getAddress())
463 if (DA
->getAddress() > Last
->getAddress())
466 return SectionRange(First
, Last
);
471 using SectionList
= std::vector
<std::unique_ptr
<Section
>>;
472 using AddressToAtomMap
= std::map
<JITTargetAddress
, DefinedAtom
*>;
473 using NamedAtomMap
= DenseMap
<StringRef
, Atom
*>;
474 using ExternalAtomSet
= DenseSet
<Atom
*>;
477 using external_atom_iterator
= ExternalAtomSet::iterator
;
479 using section_iterator
= pointee_iterator
<SectionList::iterator
>;
480 using const_section_iterator
= pointee_iterator
<SectionList::const_iterator
>;
482 template <typename SecItrT
, typename AtomItrT
, typename T
>
483 class defined_atom_iterator_impl
484 : public iterator_facade_base
<
485 defined_atom_iterator_impl
<SecItrT
, AtomItrT
, T
>,
486 std::forward_iterator_tag
, T
> {
488 defined_atom_iterator_impl() = default;
490 defined_atom_iterator_impl(SecItrT SI
, SecItrT SE
)
492 AI(SI
!= SE
? SI
->atoms().begin() : Section::atom_iterator()) {
493 moveToNextAtomOrEnd();
496 bool operator==(const defined_atom_iterator_impl
&RHS
) const {
497 return (SI
== RHS
.SI
) && (AI
== RHS
.AI
);
500 T
operator*() const {
501 assert(AI
!= SI
->atoms().end() && "Dereferencing end?");
505 defined_atom_iterator_impl
operator++() {
507 moveToNextAtomOrEnd();
512 void moveToNextAtomOrEnd() {
513 while (SI
!= SE
&& AI
== SI
->atoms().end()) {
516 AI
= Section::atom_iterator();
518 AI
= SI
->atoms().begin();
526 using defined_atom_iterator
=
527 defined_atom_iterator_impl
<section_iterator
, Section::atom_iterator
,
530 using const_defined_atom_iterator
=
531 defined_atom_iterator_impl
<const_section_iterator
,
532 Section::const_atom_iterator
,
533 const DefinedAtom
*>;
535 AtomGraph(std::string Name
, unsigned PointerSize
,
536 support::endianness Endianness
)
537 : Name(std::move(Name
)), PointerSize(PointerSize
),
538 Endianness(Endianness
) {}
540 /// Returns the name of this graph (usually the name of the original
541 /// underlying MemoryBuffer).
542 const std::string
&getName() { return Name
; }
544 /// Returns the pointer size for use in this graph.
545 unsigned getPointerSize() const { return PointerSize
; }
547 /// Returns the endianness of atom-content in this graph.
548 support::endianness
getEndianness() const { return Endianness
; }
550 /// Create a section with the given name, protection flags, and alignment.
551 Section
&createSection(StringRef Name
, uint32_t Alignment
,
552 sys::Memory::ProtectionFlags Prot
, bool IsZeroFill
) {
553 std::unique_ptr
<Section
> Sec(
554 new Section(Name
, Alignment
, Prot
, Sections
.size(), IsZeroFill
));
555 Sections
.push_back(std::move(Sec
));
556 return *Sections
.back();
559 /// Add an external atom representing an undefined symbol in this graph.
560 Atom
&addExternalAtom(StringRef Name
) {
561 assert(!NamedAtoms
.count(Name
) && "Duplicate named atom inserted");
562 Atom
*A
= reinterpret_cast<Atom
*>(
563 AtomAllocator
.Allocate(sizeof(Atom
), alignof(Atom
)));
565 ExternalAtoms
.insert(A
);
566 NamedAtoms
[Name
] = A
;
570 /// Add an external atom representing an absolute symbol.
571 Atom
&addAbsoluteAtom(StringRef Name
, JITTargetAddress Addr
) {
572 assert(!NamedAtoms
.count(Name
) && "Duplicate named atom inserted");
573 Atom
*A
= reinterpret_cast<Atom
*>(
574 AtomAllocator
.Allocate(sizeof(Atom
), alignof(Atom
)));
575 new (A
) Atom(Name
, Addr
);
576 AbsoluteAtoms
.insert(A
);
577 NamedAtoms
[Name
] = A
;
581 /// Add an anonymous defined atom to the graph.
583 /// Anonymous atoms have content but no name. They must have an address.
584 DefinedAtom
&addAnonymousAtom(Section
&Parent
, JITTargetAddress Address
,
585 uint32_t Alignment
) {
586 DefinedAtom
*A
= reinterpret_cast<DefinedAtom
*>(
587 AtomAllocator
.Allocate(sizeof(DefinedAtom
), alignof(DefinedAtom
)));
588 new (A
) DefinedAtom(Parent
, Address
, Alignment
);
590 getAddrToAtomMap()[A
->getAddress()] = A
;
594 /// Add a defined atom to the graph.
596 /// Allocates and constructs a DefinedAtom instance with the given parent,
597 /// name, address, and alignment.
598 DefinedAtom
&addDefinedAtom(Section
&Parent
, StringRef Name
,
599 JITTargetAddress Address
, uint32_t Alignment
) {
600 assert(!NamedAtoms
.count(Name
) && "Duplicate named atom inserted");
601 DefinedAtom
*A
= reinterpret_cast<DefinedAtom
*>(
602 AtomAllocator
.Allocate(sizeof(DefinedAtom
), alignof(DefinedAtom
)));
603 new (A
) DefinedAtom(Parent
, Name
, Address
, Alignment
);
605 getAddrToAtomMap()[A
->getAddress()] = A
;
606 NamedAtoms
[Name
] = A
;
610 /// Add a common symbol atom to the graph.
612 /// Adds a common-symbol atom to the graph with the given parent, name,
613 /// address, alignment and size.
614 DefinedAtom
&addCommonAtom(Section
&Parent
, StringRef Name
,
615 JITTargetAddress Address
, uint32_t Alignment
,
617 assert(!NamedAtoms
.count(Name
) && "Duplicate named atom inserted");
618 DefinedAtom
*A
= reinterpret_cast<DefinedAtom
*>(
619 AtomAllocator
.Allocate(sizeof(DefinedAtom
), alignof(DefinedAtom
)));
620 new (A
) DefinedAtom(Parent
, Name
, Address
, Alignment
);
623 NamedAtoms
[Name
] = A
;
627 iterator_range
<section_iterator
> sections() {
628 return make_range(section_iterator(Sections
.begin()),
629 section_iterator(Sections
.end()));
632 /// Returns the section with the given name if it exists, otherwise returns
634 Section
*findSectionByName(StringRef Name
) {
635 for (auto &S
: sections())
636 if (S
.getName() == Name
)
641 iterator_range
<external_atom_iterator
> external_atoms() {
642 return make_range(ExternalAtoms
.begin(), ExternalAtoms
.end());
645 iterator_range
<external_atom_iterator
> absolute_atoms() {
646 return make_range(AbsoluteAtoms
.begin(), AbsoluteAtoms
.end());
649 iterator_range
<defined_atom_iterator
> defined_atoms() {
650 return make_range(defined_atom_iterator(Sections
.begin(), Sections
.end()),
651 defined_atom_iterator(Sections
.end(), Sections
.end()));
654 iterator_range
<const_defined_atom_iterator
> defined_atoms() const {
656 const_defined_atom_iterator(Sections
.begin(), Sections
.end()),
657 const_defined_atom_iterator(Sections
.end(), Sections
.end()));
660 /// Returns the atom with the given name, which must exist in this graph.
661 Atom
&getAtomByName(StringRef Name
) {
662 auto I
= NamedAtoms
.find(Name
);
663 assert(I
!= NamedAtoms
.end() && "Name not in NamedAtoms map");
667 /// Returns the atom with the given name, which must exist in this graph and
668 /// be a DefinedAtom.
669 DefinedAtom
&getDefinedAtomByName(StringRef Name
) {
670 auto &A
= getAtomByName(Name
);
671 assert(A
.isDefined() && "Atom is not a defined atom");
672 return static_cast<DefinedAtom
&>(A
);
675 /// Search for the given atom by name.
676 /// Returns the atom (if found) or an error (if no atom with this name
678 Expected
<Atom
&> findAtomByName(StringRef Name
) {
679 auto I
= NamedAtoms
.find(Name
);
680 if (I
== NamedAtoms
.end())
681 return make_error
<JITLinkError
>("No atom named " + Name
);
685 /// Search for the given defined atom by name.
686 /// Returns the defined atom (if found) or an error (if no atom with this
687 /// name exists, or if one exists but is not a defined atom).
688 Expected
<DefinedAtom
&> findDefinedAtomByName(StringRef Name
) {
689 auto I
= NamedAtoms
.find(Name
);
690 if (I
== NamedAtoms
.end())
691 return make_error
<JITLinkError
>("No atom named " + Name
);
692 if (!I
->second
->isDefined())
693 return make_error
<JITLinkError
>("Atom " + Name
+
694 " exists but is not a "
696 return static_cast<DefinedAtom
&>(*I
->second
);
699 /// Returns the atom covering the given address, or an error if no such atom
702 /// Returns null if no atom exists at the given address.
703 DefinedAtom
*getAtomByAddress(JITTargetAddress Address
) {
704 refreshAddrToAtomCache();
706 // If there are no defined atoms, bail out early.
707 if (AddrToAtomCache
->empty())
710 // Find the atom *after* the given address.
711 auto I
= AddrToAtomCache
->upper_bound(Address
);
713 // If this address falls before any known atom, bail out.
714 if (I
== AddrToAtomCache
->begin())
717 // The atom we're looking for is the one before the atom we found.
720 // Otherwise range check the atom that was found.
721 assert(!I
->second
->getContent().empty() && "Atom content not set");
722 if (Address
>= I
->second
->getAddress() + I
->second
->getContent().size())
728 /// Like getAtomByAddress, but returns an Error if the given address is not
729 /// covered by an atom, rather than a null pointer.
730 Expected
<DefinedAtom
&> findAtomByAddress(JITTargetAddress Address
) {
731 if (auto *DA
= getAtomByAddress(Address
))
733 return make_error
<JITLinkError
>("No atom at address " +
734 formatv("{0:x16}", Address
));
737 // Remove the given external atom from the graph.
738 void removeExternalAtom(Atom
&A
) {
739 assert(!A
.isDefined() && !A
.isAbsolute() && "A is not an external atom");
740 assert(ExternalAtoms
.count(&A
) && "A is not in the external atoms set");
741 ExternalAtoms
.erase(&A
);
745 /// Remove the given absolute atom from the graph.
746 void removeAbsoluteAtom(Atom
&A
) {
747 assert(A
.isAbsolute() && "A is not an absolute atom");
748 assert(AbsoluteAtoms
.count(&A
) && "A is not in the absolute atoms set");
749 AbsoluteAtoms
.erase(&A
);
753 /// Remove the given defined atom from the graph.
754 void removeDefinedAtom(DefinedAtom
&DA
) {
755 if (AddrToAtomCache
) {
756 assert(AddrToAtomCache
->count(DA
.getAddress()) &&
757 "Cache exists, but does not contain atom");
758 AddrToAtomCache
->erase(DA
.getAddress());
761 assert(NamedAtoms
.count(DA
.getName()) && "Named atom not in map");
762 NamedAtoms
.erase(DA
.getName());
764 DA
.getSection().removeAtom(DA
);
768 /// Invalidate the atom-to-address map.
769 void invalidateAddrToAtomMap() { AddrToAtomCache
= None
; }
773 /// If supplied, the EdgeKindToName function will be used to name edge
774 /// kinds in the debug output. Otherwise raw edge kind numbers will be
776 void dump(raw_ostream
&OS
,
777 std::function
<StringRef(Edge::Kind
)> EdegKindToName
=
778 std::function
<StringRef(Edge::Kind
)>());
781 AddressToAtomMap
&getAddrToAtomMap() {
782 refreshAddrToAtomCache();
783 return *AddrToAtomCache
;
786 const AddressToAtomMap
&getAddrToAtomMap() const {
787 refreshAddrToAtomCache();
788 return *AddrToAtomCache
;
791 void refreshAddrToAtomCache() const {
792 if (!AddrToAtomCache
) {
793 AddrToAtomCache
= AddressToAtomMap();
794 for (auto *DA
: defined_atoms())
795 (*AddrToAtomCache
)[DA
->getAddress()] = const_cast<DefinedAtom
*>(DA
);
799 // Put the BumpPtrAllocator first so that we don't free any of the atoms in
800 // it until all of their destructors have been run.
801 BumpPtrAllocator AtomAllocator
;
804 unsigned PointerSize
;
805 support::endianness Endianness
;
806 SectionList Sections
;
807 NamedAtomMap NamedAtoms
;
808 ExternalAtomSet ExternalAtoms
;
809 ExternalAtomSet AbsoluteAtoms
;
810 mutable Optional
<AddressToAtomMap
> AddrToAtomCache
;
813 /// A function for mutating AtomGraphs.
814 using AtomGraphPassFunction
= std::function
<Error(AtomGraph
&)>;
816 /// A list of atom graph passes.
817 using AtomGraphPassList
= std::vector
<AtomGraphPassFunction
>;
819 /// An atom graph pass configuration, consisting of a list of pre-prune,
820 /// post-prune, and post-fixup passes.
821 struct PassConfiguration
{
823 /// Pre-prune passes.
825 /// These passes are called on the graph after it is built, and before any
826 /// atoms have been pruned.
828 /// Notable use cases: Marking atoms live or should-discard.
829 AtomGraphPassList PrePrunePasses
;
831 /// Post-prune passes.
833 /// These passes are called on the graph after dead and should-discard atoms
834 /// have been removed, but before fixups are applied.
836 /// Notable use cases: Building GOT, stub, and TLV atoms.
837 AtomGraphPassList PostPrunePasses
;
839 /// Post-fixup passes.
841 /// These passes are called on the graph after atom contents has been copied
842 /// to working memory, and fixups applied.
844 /// Notable use cases: Testing and validation.
845 AtomGraphPassList PostFixupPasses
;
848 /// A map of symbol names to resolved addresses.
849 using AsyncLookupResult
= DenseMap
<StringRef
, JITEvaluatedSymbol
>;
851 /// A function to call with a resolved symbol map (See AsyncLookupResult) or an
852 /// error if resolution failed.
853 using JITLinkAsyncLookupContinuation
=
854 std::function
<void(Expected
<AsyncLookupResult
> LR
)>;
856 /// An asynchronous symbol lookup. Performs a search (possibly asynchronously)
857 /// for the given symbols, calling the given continuation with either the result
858 /// (if the lookup succeeds), or an error (if the lookup fails).
859 using JITLinkAsyncLookupFunction
=
860 std::function
<void(const DenseSet
<StringRef
> &Symbols
,
861 JITLinkAsyncLookupContinuation LookupContinuation
)>;
863 /// Holds context for a single jitLink invocation.
864 class JITLinkContext
{
866 /// Destroy a JITLinkContext.
867 virtual ~JITLinkContext();
869 /// Return the MemoryManager to be used for this link.
870 virtual JITLinkMemoryManager
&getMemoryManager() = 0;
872 /// Returns a StringRef for the object buffer.
873 /// This method can not be called once takeObjectBuffer has been called.
874 virtual MemoryBufferRef
getObjectBuffer() const = 0;
876 /// Notify this context that linking failed.
877 /// Called by JITLink if linking cannot be completed.
878 virtual void notifyFailed(Error Err
) = 0;
880 /// Called by JITLink to resolve external symbols. This method is passed a
881 /// lookup continutation which it must call with a result to continue the
883 virtual void lookup(const DenseSet
<StringRef
> &Symbols
,
884 JITLinkAsyncLookupContinuation LookupContinuation
) = 0;
886 /// Called by JITLink once all defined atoms in the graph have been assigned
887 /// their final memory locations in the target process. At this point he
888 /// atom graph can be, inspected to build a symbol table however the atom
889 /// content will not generally have been copied to the target location yet.
890 virtual void notifyResolved(AtomGraph
&G
) = 0;
892 /// Called by JITLink to notify the context that the object has been
893 /// finalized (i.e. emitted to memory and memory permissions set). If all of
894 /// this objects dependencies have also been finalized then the code is ready
897 notifyFinalized(std::unique_ptr
<JITLinkMemoryManager::Allocation
> A
) = 0;
899 /// Called by JITLink prior to linking to determine whether default passes for
900 /// the target should be added. The default implementation returns true.
901 /// If subclasses override this method to return false for any target then
902 /// they are required to fully configure the pass pipeline for that target.
903 virtual bool shouldAddDefaultTargetPasses(const Triple
&TT
) const;
905 /// Returns the mark-live pass to be used for this link. If no pass is
906 /// returned (the default) then the target-specific linker implementation will
907 /// choose a conservative default (usually marking all atoms live).
908 /// This function is only called if shouldAddDefaultTargetPasses returns true,
909 /// otherwise the JITContext is responsible for adding a mark-live pass in
910 /// modifyPassConfig.
911 virtual AtomGraphPassFunction
getMarkLivePass(const Triple
&TT
) const;
913 /// Called by JITLink to modify the pass pipeline prior to linking.
914 /// The default version performs no modification.
915 virtual Error
modifyPassConfig(const Triple
&TT
, PassConfiguration
&Config
);
918 /// Marks all atoms in a graph live. This can be used as a default, conservative
919 /// mark-live implementation.
920 Error
markAllAtomsLive(AtomGraph
&G
);
922 /// Basic JITLink implementation.
924 /// This function will use sensible defaults for GOT and Stub handling.
925 void jitLink(std::unique_ptr
<JITLinkContext
> Ctx
);
927 } // end namespace jitlink
928 } // end namespace llvm
930 #endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H