[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Analysis / CFLSteensAliasAnalysis.cpp
blobb87aa4065392cd6b90f0a62839166012b0d22b29
1 //===- CFLSteensAliasAnalysis.cpp - Unification-based Alias Analysis ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a CFL-base, summary-based alias analysis algorithm. It
10 // does not depend on types. The algorithm is a mixture of the one described in
11 // "Demand-driven alias analysis for C" by Xin Zheng and Radu Rugina, and "Fast
12 // algorithms for Dyck-CFL-reachability with applications to Alias Analysis" by
13 // Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the papers, we build a
14 // graph of the uses of a variable, where each node is a memory location, and
15 // each edge is an action that happened on that memory location. The "actions"
16 // can be one of Dereference, Reference, or Assign. The precision of this
17 // analysis is roughly the same as that of an one level context-sensitive
18 // Steensgaard's algorithm.
20 // Two variables are considered as aliasing iff you can reach one value's node
21 // from the other value's node and the language formed by concatenating all of
22 // the edge labels (actions) conforms to a context-free grammar.
24 // Because this algorithm requires a graph search on each query, we execute the
25 // algorithm outlined in "Fast algorithms..." (mentioned above)
26 // in order to transform the graph into sets of variables that may alias in
27 // ~nlogn time (n = number of variables), which makes queries take constant
28 // time.
29 //===----------------------------------------------------------------------===//
31 // N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
32 // CFLSteensAA is interprocedural. This is *technically* A Bad Thing, because
33 // FunctionPasses are only allowed to inspect the Function that they're being
34 // run on. Realistically, this likely isn't a problem until we allow
35 // FunctionPasses to run concurrently.
37 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
38 #include "AliasAnalysisSummary.h"
39 #include "CFLGraph.h"
40 #include "StratifiedSets.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <limits>
55 #include <memory>
56 #include <utility>
58 using namespace llvm;
59 using namespace llvm::cflaa;
61 #define DEBUG_TYPE "cfl-steens-aa"
63 CFLSteensAAResult::CFLSteensAAResult(
64 std::function<const TargetLibraryInfo &(Function &F)> GetTLI)
65 : AAResultBase(), GetTLI(std::move(GetTLI)) {}
66 CFLSteensAAResult::CFLSteensAAResult(CFLSteensAAResult &&Arg)
67 : AAResultBase(std::move(Arg)), GetTLI(std::move(Arg.GetTLI)) {}
68 CFLSteensAAResult::~CFLSteensAAResult() = default;
70 /// Information we have about a function and would like to keep around.
71 class CFLSteensAAResult::FunctionInfo {
72 StratifiedSets<InstantiatedValue> Sets;
73 AliasSummary Summary;
75 public:
76 FunctionInfo(Function &Fn, const SmallVectorImpl<Value *> &RetVals,
77 StratifiedSets<InstantiatedValue> S);
79 const StratifiedSets<InstantiatedValue> &getStratifiedSets() const {
80 return Sets;
83 const AliasSummary &getAliasSummary() const { return Summary; }
86 const StratifiedIndex StratifiedLink::SetSentinel =
87 std::numeric_limits<StratifiedIndex>::max();
89 //===----------------------------------------------------------------------===//
90 // Function declarations that require types defined in the namespace above
91 //===----------------------------------------------------------------------===//
93 /// Determines whether it would be pointless to add the given Value to our sets.
94 static bool canSkipAddingToSets(Value *Val) {
95 // Constants can share instances, which may falsely unify multiple
96 // sets, e.g. in
97 // store i32* null, i32** %ptr1
98 // store i32* null, i32** %ptr2
99 // clearly ptr1 and ptr2 should not be unified into the same set, so
100 // we should filter out the (potentially shared) instance to
101 // i32* null.
102 if (isa<Constant>(Val)) {
103 // TODO: Because all of these things are constant, we can determine whether
104 // the data is *actually* mutable at graph building time. This will probably
105 // come for free/cheap with offset awareness.
106 bool CanStoreMutableData = isa<GlobalValue>(Val) ||
107 isa<ConstantExpr>(Val) ||
108 isa<ConstantAggregate>(Val);
109 return !CanStoreMutableData;
112 return false;
115 CFLSteensAAResult::FunctionInfo::FunctionInfo(
116 Function &Fn, const SmallVectorImpl<Value *> &RetVals,
117 StratifiedSets<InstantiatedValue> S)
118 : Sets(std::move(S)) {
119 // Historically, an arbitrary upper-bound of 50 args was selected. We may want
120 // to remove this if it doesn't really matter in practice.
121 if (Fn.arg_size() > MaxSupportedArgsInSummary)
122 return;
124 DenseMap<StratifiedIndex, InterfaceValue> InterfaceMap;
126 // Our intention here is to record all InterfaceValues that share the same
127 // StratifiedIndex in RetParamRelations. For each valid InterfaceValue, we
128 // have its StratifiedIndex scanned here and check if the index is presented
129 // in InterfaceMap: if it is not, we add the correspondence to the map;
130 // otherwise, an aliasing relation is found and we add it to
131 // RetParamRelations.
133 auto AddToRetParamRelations = [&](unsigned InterfaceIndex,
134 StratifiedIndex SetIndex) {
135 unsigned Level = 0;
136 while (true) {
137 InterfaceValue CurrValue{InterfaceIndex, Level};
139 auto Itr = InterfaceMap.find(SetIndex);
140 if (Itr != InterfaceMap.end()) {
141 if (CurrValue != Itr->second)
142 Summary.RetParamRelations.push_back(
143 ExternalRelation{CurrValue, Itr->second, UnknownOffset});
144 break;
147 auto &Link = Sets.getLink(SetIndex);
148 InterfaceMap.insert(std::make_pair(SetIndex, CurrValue));
149 auto ExternalAttrs = getExternallyVisibleAttrs(Link.Attrs);
150 if (ExternalAttrs.any())
151 Summary.RetParamAttributes.push_back(
152 ExternalAttribute{CurrValue, ExternalAttrs});
154 if (!Link.hasBelow())
155 break;
157 ++Level;
158 SetIndex = Link.Below;
162 // Populate RetParamRelations for return values
163 for (auto *RetVal : RetVals) {
164 assert(RetVal != nullptr);
165 assert(RetVal->getType()->isPointerTy());
166 auto RetInfo = Sets.find(InstantiatedValue{RetVal, 0});
167 if (RetInfo.hasValue())
168 AddToRetParamRelations(0, RetInfo->Index);
171 // Populate RetParamRelations for parameters
172 unsigned I = 0;
173 for (auto &Param : Fn.args()) {
174 if (Param.getType()->isPointerTy()) {
175 auto ParamInfo = Sets.find(InstantiatedValue{&Param, 0});
176 if (ParamInfo.hasValue())
177 AddToRetParamRelations(I + 1, ParamInfo->Index);
179 ++I;
183 // Builds the graph + StratifiedSets for a function.
184 CFLSteensAAResult::FunctionInfo CFLSteensAAResult::buildSetsFrom(Function *Fn) {
185 CFLGraphBuilder<CFLSteensAAResult> GraphBuilder(*this, GetTLI(*Fn), *Fn);
186 StratifiedSetsBuilder<InstantiatedValue> SetBuilder;
188 // Add all CFLGraph nodes and all Dereference edges to StratifiedSets
189 auto &Graph = GraphBuilder.getCFLGraph();
190 for (const auto &Mapping : Graph.value_mappings()) {
191 auto Val = Mapping.first;
192 if (canSkipAddingToSets(Val))
193 continue;
194 auto &ValueInfo = Mapping.second;
196 assert(ValueInfo.getNumLevels() > 0);
197 SetBuilder.add(InstantiatedValue{Val, 0});
198 SetBuilder.noteAttributes(InstantiatedValue{Val, 0},
199 ValueInfo.getNodeInfoAtLevel(0).Attr);
200 for (unsigned I = 0, E = ValueInfo.getNumLevels() - 1; I < E; ++I) {
201 SetBuilder.add(InstantiatedValue{Val, I + 1});
202 SetBuilder.noteAttributes(InstantiatedValue{Val, I + 1},
203 ValueInfo.getNodeInfoAtLevel(I + 1).Attr);
204 SetBuilder.addBelow(InstantiatedValue{Val, I},
205 InstantiatedValue{Val, I + 1});
209 // Add all assign edges to StratifiedSets
210 for (const auto &Mapping : Graph.value_mappings()) {
211 auto Val = Mapping.first;
212 if (canSkipAddingToSets(Val))
213 continue;
214 auto &ValueInfo = Mapping.second;
216 for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
217 auto Src = InstantiatedValue{Val, I};
218 for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges)
219 SetBuilder.addWith(Src, Edge.Other);
223 return FunctionInfo(*Fn, GraphBuilder.getReturnValues(), SetBuilder.build());
226 void CFLSteensAAResult::scan(Function *Fn) {
227 auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
228 (void)InsertPair;
229 assert(InsertPair.second &&
230 "Trying to scan a function that has already been cached");
232 // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
233 // may get evaluated after operator[], potentially triggering a DenseMap
234 // resize and invalidating the reference returned by operator[]
235 auto FunInfo = buildSetsFrom(Fn);
236 Cache[Fn] = std::move(FunInfo);
238 Handles.emplace_front(Fn, this);
241 void CFLSteensAAResult::evict(Function *Fn) { Cache.erase(Fn); }
243 /// Ensures that the given function is available in the cache, and returns the
244 /// entry.
245 const Optional<CFLSteensAAResult::FunctionInfo> &
246 CFLSteensAAResult::ensureCached(Function *Fn) {
247 auto Iter = Cache.find(Fn);
248 if (Iter == Cache.end()) {
249 scan(Fn);
250 Iter = Cache.find(Fn);
251 assert(Iter != Cache.end());
252 assert(Iter->second.hasValue());
254 return Iter->second;
257 const AliasSummary *CFLSteensAAResult::getAliasSummary(Function &Fn) {
258 auto &FunInfo = ensureCached(&Fn);
259 if (FunInfo.hasValue())
260 return &FunInfo->getAliasSummary();
261 else
262 return nullptr;
265 AliasResult CFLSteensAAResult::query(const MemoryLocation &LocA,
266 const MemoryLocation &LocB) {
267 auto *ValA = const_cast<Value *>(LocA.Ptr);
268 auto *ValB = const_cast<Value *>(LocB.Ptr);
270 if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
271 return NoAlias;
273 Function *Fn = nullptr;
274 Function *MaybeFnA = const_cast<Function *>(parentFunctionOfValue(ValA));
275 Function *MaybeFnB = const_cast<Function *>(parentFunctionOfValue(ValB));
276 if (!MaybeFnA && !MaybeFnB) {
277 // The only times this is known to happen are when globals + InlineAsm are
278 // involved
279 LLVM_DEBUG(
280 dbgs()
281 << "CFLSteensAA: could not extract parent function information.\n");
282 return MayAlias;
285 if (MaybeFnA) {
286 Fn = MaybeFnA;
287 assert((!MaybeFnB || MaybeFnB == MaybeFnA) &&
288 "Interprocedural queries not supported");
289 } else {
290 Fn = MaybeFnB;
293 assert(Fn != nullptr);
294 auto &MaybeInfo = ensureCached(Fn);
295 assert(MaybeInfo.hasValue());
297 auto &Sets = MaybeInfo->getStratifiedSets();
298 auto MaybeA = Sets.find(InstantiatedValue{ValA, 0});
299 if (!MaybeA.hasValue())
300 return MayAlias;
302 auto MaybeB = Sets.find(InstantiatedValue{ValB, 0});
303 if (!MaybeB.hasValue())
304 return MayAlias;
306 auto SetA = *MaybeA;
307 auto SetB = *MaybeB;
308 auto AttrsA = Sets.getLink(SetA.Index).Attrs;
309 auto AttrsB = Sets.getLink(SetB.Index).Attrs;
311 // If both values are local (meaning the corresponding set has attribute
312 // AttrNone or AttrEscaped), then we know that CFLSteensAA fully models them:
313 // they may-alias each other if and only if they are in the same set.
314 // If at least one value is non-local (meaning it either is global/argument or
315 // it comes from unknown sources like integer cast), the situation becomes a
316 // bit more interesting. We follow three general rules described below:
317 // - Non-local values may alias each other
318 // - AttrNone values do not alias any non-local values
319 // - AttrEscaped do not alias globals/arguments, but they may alias
320 // AttrUnknown values
321 if (SetA.Index == SetB.Index)
322 return MayAlias;
323 if (AttrsA.none() || AttrsB.none())
324 return NoAlias;
325 if (hasUnknownOrCallerAttr(AttrsA) || hasUnknownOrCallerAttr(AttrsB))
326 return MayAlias;
327 if (isGlobalOrArgAttr(AttrsA) && isGlobalOrArgAttr(AttrsB))
328 return MayAlias;
329 return NoAlias;
332 AnalysisKey CFLSteensAA::Key;
334 CFLSteensAAResult CFLSteensAA::run(Function &F, FunctionAnalysisManager &AM) {
335 auto GetTLI = [&AM](Function &F) -> const TargetLibraryInfo & {
336 return AM.getResult<TargetLibraryAnalysis>(F);
338 return CFLSteensAAResult(GetTLI);
341 char CFLSteensAAWrapperPass::ID = 0;
342 INITIALIZE_PASS(CFLSteensAAWrapperPass, "cfl-steens-aa",
343 "Unification-Based CFL Alias Analysis", false, true)
345 ImmutablePass *llvm::createCFLSteensAAWrapperPass() {
346 return new CFLSteensAAWrapperPass();
349 CFLSteensAAWrapperPass::CFLSteensAAWrapperPass() : ImmutablePass(ID) {
350 initializeCFLSteensAAWrapperPassPass(*PassRegistry::getPassRegistry());
353 void CFLSteensAAWrapperPass::initializePass() {
354 auto GetTLI = [this](Function &F) -> const TargetLibraryInfo & {
355 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
357 Result.reset(new CFLSteensAAResult(GetTLI));
360 void CFLSteensAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
361 AU.setPreservesAll();
362 AU.addRequired<TargetLibraryInfoWrapperPass>();