[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Analysis / InstructionSimplify.cpp
blob67b06ea40bc74d9e2b712899547d75dd17c2d05a
1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions. This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/CmpInstAnalysis.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
42 #include <algorithm>
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
46 #define DEBUG_TYPE "instsimplify"
48 enum { RecursionLimit = 3 };
50 STATISTIC(NumExpand, "Number of expansions");
51 STATISTIC(NumReassoc, "Number of reassociations");
53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
56 const SimplifyQuery &, unsigned);
57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
58 unsigned);
59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
60 const SimplifyQuery &, unsigned);
61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
62 unsigned);
63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
64 const SimplifyQuery &Q, unsigned MaxRecurse);
65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
67 static Value *SimplifyCastInst(unsigned, Value *, Type *,
68 const SimplifyQuery &, unsigned);
69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
70 unsigned);
72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
73 Value *FalseVal) {
74 BinaryOperator::BinaryOps BinOpCode;
75 if (auto *BO = dyn_cast<BinaryOperator>(Cond))
76 BinOpCode = BO->getOpcode();
77 else
78 return nullptr;
80 CmpInst::Predicate ExpectedPred, Pred1, Pred2;
81 if (BinOpCode == BinaryOperator::Or) {
82 ExpectedPred = ICmpInst::ICMP_NE;
83 } else if (BinOpCode == BinaryOperator::And) {
84 ExpectedPred = ICmpInst::ICMP_EQ;
85 } else
86 return nullptr;
88 // %A = icmp eq %TV, %FV
89 // %B = icmp eq %X, %Y (and one of these is a select operand)
90 // %C = and %A, %B
91 // %D = select %C, %TV, %FV
92 // -->
93 // %FV
95 // %A = icmp ne %TV, %FV
96 // %B = icmp ne %X, %Y (and one of these is a select operand)
97 // %C = or %A, %B
98 // %D = select %C, %TV, %FV
99 // -->
100 // %TV
101 Value *X, *Y;
102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
103 m_Specific(FalseVal)),
104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
105 Pred1 != Pred2 || Pred1 != ExpectedPred)
106 return nullptr;
108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
111 return nullptr;
114 /// For a boolean type or a vector of boolean type, return false or a vector
115 /// with every element false.
116 static Constant *getFalse(Type *Ty) {
117 return ConstantInt::getFalse(Ty);
120 /// For a boolean type or a vector of boolean type, return true or a vector
121 /// with every element true.
122 static Constant *getTrue(Type *Ty) {
123 return ConstantInt::getTrue(Ty);
126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
128 Value *RHS) {
129 CmpInst *Cmp = dyn_cast<CmpInst>(V);
130 if (!Cmp)
131 return false;
132 CmpInst::Predicate CPred = Cmp->getPredicate();
133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
134 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
135 return true;
136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
137 CRHS == LHS;
140 /// Does the given value dominate the specified phi node?
141 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
142 Instruction *I = dyn_cast<Instruction>(V);
143 if (!I)
144 // Arguments and constants dominate all instructions.
145 return true;
147 // If we are processing instructions (and/or basic blocks) that have not been
148 // fully added to a function, the parent nodes may still be null. Simply
149 // return the conservative answer in these cases.
150 if (!I->getParent() || !P->getParent() || !I->getFunction())
151 return false;
153 // If we have a DominatorTree then do a precise test.
154 if (DT)
155 return DT->dominates(I, P);
157 // Otherwise, if the instruction is in the entry block and is not an invoke,
158 // then it obviously dominates all phi nodes.
159 if (I->getParent() == &I->getFunction()->getEntryBlock() &&
160 !isa<InvokeInst>(I))
161 return true;
163 return false;
166 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
167 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
168 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
169 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
170 /// Returns the simplified value, or null if no simplification was performed.
171 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
172 Instruction::BinaryOps OpcodeToExpand,
173 const SimplifyQuery &Q, unsigned MaxRecurse) {
174 // Recursion is always used, so bail out at once if we already hit the limit.
175 if (!MaxRecurse--)
176 return nullptr;
178 // Check whether the expression has the form "(A op' B) op C".
179 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
180 if (Op0->getOpcode() == OpcodeToExpand) {
181 // It does! Try turning it into "(A op C) op' (B op C)".
182 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
183 // Do "A op C" and "B op C" both simplify?
184 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
185 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
186 // They do! Return "L op' R" if it simplifies or is already available.
187 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
188 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
189 && L == B && R == A)) {
190 ++NumExpand;
191 return LHS;
193 // Otherwise return "L op' R" if it simplifies.
194 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
195 ++NumExpand;
196 return V;
201 // Check whether the expression has the form "A op (B op' C)".
202 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
203 if (Op1->getOpcode() == OpcodeToExpand) {
204 // It does! Try turning it into "(A op B) op' (A op C)".
205 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
206 // Do "A op B" and "A op C" both simplify?
207 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
208 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
209 // They do! Return "L op' R" if it simplifies or is already available.
210 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
211 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
212 && L == C && R == B)) {
213 ++NumExpand;
214 return RHS;
216 // Otherwise return "L op' R" if it simplifies.
217 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
218 ++NumExpand;
219 return V;
224 return nullptr;
227 /// Generic simplifications for associative binary operations.
228 /// Returns the simpler value, or null if none was found.
229 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
230 Value *LHS, Value *RHS,
231 const SimplifyQuery &Q,
232 unsigned MaxRecurse) {
233 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
235 // Recursion is always used, so bail out at once if we already hit the limit.
236 if (!MaxRecurse--)
237 return nullptr;
239 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
240 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
242 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
243 if (Op0 && Op0->getOpcode() == Opcode) {
244 Value *A = Op0->getOperand(0);
245 Value *B = Op0->getOperand(1);
246 Value *C = RHS;
248 // Does "B op C" simplify?
249 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
250 // It does! Return "A op V" if it simplifies or is already available.
251 // If V equals B then "A op V" is just the LHS.
252 if (V == B) return LHS;
253 // Otherwise return "A op V" if it simplifies.
254 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
255 ++NumReassoc;
256 return W;
261 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
262 if (Op1 && Op1->getOpcode() == Opcode) {
263 Value *A = LHS;
264 Value *B = Op1->getOperand(0);
265 Value *C = Op1->getOperand(1);
267 // Does "A op B" simplify?
268 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
269 // It does! Return "V op C" if it simplifies or is already available.
270 // If V equals B then "V op C" is just the RHS.
271 if (V == B) return RHS;
272 // Otherwise return "V op C" if it simplifies.
273 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
274 ++NumReassoc;
275 return W;
280 // The remaining transforms require commutativity as well as associativity.
281 if (!Instruction::isCommutative(Opcode))
282 return nullptr;
284 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
285 if (Op0 && Op0->getOpcode() == Opcode) {
286 Value *A = Op0->getOperand(0);
287 Value *B = Op0->getOperand(1);
288 Value *C = RHS;
290 // Does "C op A" simplify?
291 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
292 // It does! Return "V op B" if it simplifies or is already available.
293 // If V equals A then "V op B" is just the LHS.
294 if (V == A) return LHS;
295 // Otherwise return "V op B" if it simplifies.
296 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
297 ++NumReassoc;
298 return W;
303 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
304 if (Op1 && Op1->getOpcode() == Opcode) {
305 Value *A = LHS;
306 Value *B = Op1->getOperand(0);
307 Value *C = Op1->getOperand(1);
309 // Does "C op A" simplify?
310 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
311 // It does! Return "B op V" if it simplifies or is already available.
312 // If V equals C then "B op V" is just the RHS.
313 if (V == C) return RHS;
314 // Otherwise return "B op V" if it simplifies.
315 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
316 ++NumReassoc;
317 return W;
322 return nullptr;
325 /// In the case of a binary operation with a select instruction as an operand,
326 /// try to simplify the binop by seeing whether evaluating it on both branches
327 /// of the select results in the same value. Returns the common value if so,
328 /// otherwise returns null.
329 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
330 Value *RHS, const SimplifyQuery &Q,
331 unsigned MaxRecurse) {
332 // Recursion is always used, so bail out at once if we already hit the limit.
333 if (!MaxRecurse--)
334 return nullptr;
336 SelectInst *SI;
337 if (isa<SelectInst>(LHS)) {
338 SI = cast<SelectInst>(LHS);
339 } else {
340 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
341 SI = cast<SelectInst>(RHS);
344 // Evaluate the BinOp on the true and false branches of the select.
345 Value *TV;
346 Value *FV;
347 if (SI == LHS) {
348 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
349 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
350 } else {
351 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
352 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
355 // If they simplified to the same value, then return the common value.
356 // If they both failed to simplify then return null.
357 if (TV == FV)
358 return TV;
360 // If one branch simplified to undef, return the other one.
361 if (TV && isa<UndefValue>(TV))
362 return FV;
363 if (FV && isa<UndefValue>(FV))
364 return TV;
366 // If applying the operation did not change the true and false select values,
367 // then the result of the binop is the select itself.
368 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
369 return SI;
371 // If one branch simplified and the other did not, and the simplified
372 // value is equal to the unsimplified one, return the simplified value.
373 // For example, select (cond, X, X & Z) & Z -> X & Z.
374 if ((FV && !TV) || (TV && !FV)) {
375 // Check that the simplified value has the form "X op Y" where "op" is the
376 // same as the original operation.
377 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
378 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
379 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
380 // We already know that "op" is the same as for the simplified value. See
381 // if the operands match too. If so, return the simplified value.
382 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
383 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
384 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
385 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
386 Simplified->getOperand(1) == UnsimplifiedRHS)
387 return Simplified;
388 if (Simplified->isCommutative() &&
389 Simplified->getOperand(1) == UnsimplifiedLHS &&
390 Simplified->getOperand(0) == UnsimplifiedRHS)
391 return Simplified;
395 return nullptr;
398 /// In the case of a comparison with a select instruction, try to simplify the
399 /// comparison by seeing whether both branches of the select result in the same
400 /// value. Returns the common value if so, otherwise returns null.
401 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
402 Value *RHS, const SimplifyQuery &Q,
403 unsigned MaxRecurse) {
404 // Recursion is always used, so bail out at once if we already hit the limit.
405 if (!MaxRecurse--)
406 return nullptr;
408 // Make sure the select is on the LHS.
409 if (!isa<SelectInst>(LHS)) {
410 std::swap(LHS, RHS);
411 Pred = CmpInst::getSwappedPredicate(Pred);
413 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
414 SelectInst *SI = cast<SelectInst>(LHS);
415 Value *Cond = SI->getCondition();
416 Value *TV = SI->getTrueValue();
417 Value *FV = SI->getFalseValue();
419 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
420 // Does "cmp TV, RHS" simplify?
421 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
422 if (TCmp == Cond) {
423 // It not only simplified, it simplified to the select condition. Replace
424 // it with 'true'.
425 TCmp = getTrue(Cond->getType());
426 } else if (!TCmp) {
427 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
428 // condition then we can replace it with 'true'. Otherwise give up.
429 if (!isSameCompare(Cond, Pred, TV, RHS))
430 return nullptr;
431 TCmp = getTrue(Cond->getType());
434 // Does "cmp FV, RHS" simplify?
435 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
436 if (FCmp == Cond) {
437 // It not only simplified, it simplified to the select condition. Replace
438 // it with 'false'.
439 FCmp = getFalse(Cond->getType());
440 } else if (!FCmp) {
441 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
442 // condition then we can replace it with 'false'. Otherwise give up.
443 if (!isSameCompare(Cond, Pred, FV, RHS))
444 return nullptr;
445 FCmp = getFalse(Cond->getType());
448 // If both sides simplified to the same value, then use it as the result of
449 // the original comparison.
450 if (TCmp == FCmp)
451 return TCmp;
453 // The remaining cases only make sense if the select condition has the same
454 // type as the result of the comparison, so bail out if this is not so.
455 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
456 return nullptr;
457 // If the false value simplified to false, then the result of the compare
458 // is equal to "Cond && TCmp". This also catches the case when the false
459 // value simplified to false and the true value to true, returning "Cond".
460 if (match(FCmp, m_Zero()))
461 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
462 return V;
463 // If the true value simplified to true, then the result of the compare
464 // is equal to "Cond || FCmp".
465 if (match(TCmp, m_One()))
466 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
467 return V;
468 // Finally, if the false value simplified to true and the true value to
469 // false, then the result of the compare is equal to "!Cond".
470 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
471 if (Value *V =
472 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
473 Q, MaxRecurse))
474 return V;
476 return nullptr;
479 /// In the case of a binary operation with an operand that is a PHI instruction,
480 /// try to simplify the binop by seeing whether evaluating it on the incoming
481 /// phi values yields the same result for every value. If so returns the common
482 /// value, otherwise returns null.
483 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
484 Value *RHS, const SimplifyQuery &Q,
485 unsigned MaxRecurse) {
486 // Recursion is always used, so bail out at once if we already hit the limit.
487 if (!MaxRecurse--)
488 return nullptr;
490 PHINode *PI;
491 if (isa<PHINode>(LHS)) {
492 PI = cast<PHINode>(LHS);
493 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
494 if (!valueDominatesPHI(RHS, PI, Q.DT))
495 return nullptr;
496 } else {
497 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
498 PI = cast<PHINode>(RHS);
499 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
500 if (!valueDominatesPHI(LHS, PI, Q.DT))
501 return nullptr;
504 // Evaluate the BinOp on the incoming phi values.
505 Value *CommonValue = nullptr;
506 for (Value *Incoming : PI->incoming_values()) {
507 // If the incoming value is the phi node itself, it can safely be skipped.
508 if (Incoming == PI) continue;
509 Value *V = PI == LHS ?
510 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
511 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
512 // If the operation failed to simplify, or simplified to a different value
513 // to previously, then give up.
514 if (!V || (CommonValue && V != CommonValue))
515 return nullptr;
516 CommonValue = V;
519 return CommonValue;
522 /// In the case of a comparison with a PHI instruction, try to simplify the
523 /// comparison by seeing whether comparing with all of the incoming phi values
524 /// yields the same result every time. If so returns the common result,
525 /// otherwise returns null.
526 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
527 const SimplifyQuery &Q, unsigned MaxRecurse) {
528 // Recursion is always used, so bail out at once if we already hit the limit.
529 if (!MaxRecurse--)
530 return nullptr;
532 // Make sure the phi is on the LHS.
533 if (!isa<PHINode>(LHS)) {
534 std::swap(LHS, RHS);
535 Pred = CmpInst::getSwappedPredicate(Pred);
537 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
538 PHINode *PI = cast<PHINode>(LHS);
540 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
541 if (!valueDominatesPHI(RHS, PI, Q.DT))
542 return nullptr;
544 // Evaluate the BinOp on the incoming phi values.
545 Value *CommonValue = nullptr;
546 for (Value *Incoming : PI->incoming_values()) {
547 // If the incoming value is the phi node itself, it can safely be skipped.
548 if (Incoming == PI) continue;
549 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
550 // If the operation failed to simplify, or simplified to a different value
551 // to previously, then give up.
552 if (!V || (CommonValue && V != CommonValue))
553 return nullptr;
554 CommonValue = V;
557 return CommonValue;
560 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
561 Value *&Op0, Value *&Op1,
562 const SimplifyQuery &Q) {
563 if (auto *CLHS = dyn_cast<Constant>(Op0)) {
564 if (auto *CRHS = dyn_cast<Constant>(Op1))
565 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
567 // Canonicalize the constant to the RHS if this is a commutative operation.
568 if (Instruction::isCommutative(Opcode))
569 std::swap(Op0, Op1);
571 return nullptr;
574 /// Given operands for an Add, see if we can fold the result.
575 /// If not, this returns null.
576 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
577 const SimplifyQuery &Q, unsigned MaxRecurse) {
578 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
579 return C;
581 // X + undef -> undef
582 if (match(Op1, m_Undef()))
583 return Op1;
585 // X + 0 -> X
586 if (match(Op1, m_Zero()))
587 return Op0;
589 // If two operands are negative, return 0.
590 if (isKnownNegation(Op0, Op1))
591 return Constant::getNullValue(Op0->getType());
593 // X + (Y - X) -> Y
594 // (Y - X) + X -> Y
595 // Eg: X + -X -> 0
596 Value *Y = nullptr;
597 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
598 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
599 return Y;
601 // X + ~X -> -1 since ~X = -X-1
602 Type *Ty = Op0->getType();
603 if (match(Op0, m_Not(m_Specific(Op1))) ||
604 match(Op1, m_Not(m_Specific(Op0))))
605 return Constant::getAllOnesValue(Ty);
607 // add nsw/nuw (xor Y, signmask), signmask --> Y
608 // The no-wrapping add guarantees that the top bit will be set by the add.
609 // Therefore, the xor must be clearing the already set sign bit of Y.
610 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
611 match(Op0, m_Xor(m_Value(Y), m_SignMask())))
612 return Y;
614 // add nuw %x, -1 -> -1, because %x can only be 0.
615 if (IsNUW && match(Op1, m_AllOnes()))
616 return Op1; // Which is -1.
618 /// i1 add -> xor.
619 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
620 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
621 return V;
623 // Try some generic simplifications for associative operations.
624 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
625 MaxRecurse))
626 return V;
628 // Threading Add over selects and phi nodes is pointless, so don't bother.
629 // Threading over the select in "A + select(cond, B, C)" means evaluating
630 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
631 // only if B and C are equal. If B and C are equal then (since we assume
632 // that operands have already been simplified) "select(cond, B, C)" should
633 // have been simplified to the common value of B and C already. Analysing
634 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
635 // for threading over phi nodes.
637 return nullptr;
640 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
641 const SimplifyQuery &Query) {
642 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
645 /// Compute the base pointer and cumulative constant offsets for V.
647 /// This strips all constant offsets off of V, leaving it the base pointer, and
648 /// accumulates the total constant offset applied in the returned constant. It
649 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
650 /// no constant offsets applied.
652 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
653 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
654 /// folding.
655 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
656 bool AllowNonInbounds = false) {
657 assert(V->getType()->isPtrOrPtrVectorTy());
659 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
660 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
662 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
663 // As that strip may trace through `addrspacecast`, need to sext or trunc
664 // the offset calculated.
665 IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
666 Offset = Offset.sextOrTrunc(IntPtrTy->getIntegerBitWidth());
668 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
669 if (V->getType()->isVectorTy())
670 return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
671 OffsetIntPtr);
672 return OffsetIntPtr;
675 /// Compute the constant difference between two pointer values.
676 /// If the difference is not a constant, returns zero.
677 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
678 Value *RHS) {
679 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
680 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
682 // If LHS and RHS are not related via constant offsets to the same base
683 // value, there is nothing we can do here.
684 if (LHS != RHS)
685 return nullptr;
687 // Otherwise, the difference of LHS - RHS can be computed as:
688 // LHS - RHS
689 // = (LHSOffset + Base) - (RHSOffset + Base)
690 // = LHSOffset - RHSOffset
691 return ConstantExpr::getSub(LHSOffset, RHSOffset);
694 /// Given operands for a Sub, see if we can fold the result.
695 /// If not, this returns null.
696 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
697 const SimplifyQuery &Q, unsigned MaxRecurse) {
698 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
699 return C;
701 // X - undef -> undef
702 // undef - X -> undef
703 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
704 return UndefValue::get(Op0->getType());
706 // X - 0 -> X
707 if (match(Op1, m_Zero()))
708 return Op0;
710 // X - X -> 0
711 if (Op0 == Op1)
712 return Constant::getNullValue(Op0->getType());
714 // Is this a negation?
715 if (match(Op0, m_Zero())) {
716 // 0 - X -> 0 if the sub is NUW.
717 if (isNUW)
718 return Constant::getNullValue(Op0->getType());
720 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
721 if (Known.Zero.isMaxSignedValue()) {
722 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
723 // Op1 must be 0 because negating the minimum signed value is undefined.
724 if (isNSW)
725 return Constant::getNullValue(Op0->getType());
727 // 0 - X -> X if X is 0 or the minimum signed value.
728 return Op1;
732 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
733 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
734 Value *X = nullptr, *Y = nullptr, *Z = Op1;
735 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
736 // See if "V === Y - Z" simplifies.
737 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
738 // It does! Now see if "X + V" simplifies.
739 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
740 // It does, we successfully reassociated!
741 ++NumReassoc;
742 return W;
744 // See if "V === X - Z" simplifies.
745 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
746 // It does! Now see if "Y + V" simplifies.
747 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
748 // It does, we successfully reassociated!
749 ++NumReassoc;
750 return W;
754 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
755 // For example, X - (X + 1) -> -1
756 X = Op0;
757 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
758 // See if "V === X - Y" simplifies.
759 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
760 // It does! Now see if "V - Z" simplifies.
761 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
762 // It does, we successfully reassociated!
763 ++NumReassoc;
764 return W;
766 // See if "V === X - Z" simplifies.
767 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
768 // It does! Now see if "V - Y" simplifies.
769 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
770 // It does, we successfully reassociated!
771 ++NumReassoc;
772 return W;
776 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
777 // For example, X - (X - Y) -> Y.
778 Z = Op0;
779 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
780 // See if "V === Z - X" simplifies.
781 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
782 // It does! Now see if "V + Y" simplifies.
783 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
784 // It does, we successfully reassociated!
785 ++NumReassoc;
786 return W;
789 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
790 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
791 match(Op1, m_Trunc(m_Value(Y))))
792 if (X->getType() == Y->getType())
793 // See if "V === X - Y" simplifies.
794 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
795 // It does! Now see if "trunc V" simplifies.
796 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
797 Q, MaxRecurse - 1))
798 // It does, return the simplified "trunc V".
799 return W;
801 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
802 if (match(Op0, m_PtrToInt(m_Value(X))) &&
803 match(Op1, m_PtrToInt(m_Value(Y))))
804 if (Constant *Result = computePointerDifference(Q.DL, X, Y))
805 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
807 // i1 sub -> xor.
808 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
809 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
810 return V;
812 // Threading Sub over selects and phi nodes is pointless, so don't bother.
813 // Threading over the select in "A - select(cond, B, C)" means evaluating
814 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
815 // only if B and C are equal. If B and C are equal then (since we assume
816 // that operands have already been simplified) "select(cond, B, C)" should
817 // have been simplified to the common value of B and C already. Analysing
818 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
819 // for threading over phi nodes.
821 return nullptr;
824 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
825 const SimplifyQuery &Q) {
826 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
829 /// Given operands for a Mul, see if we can fold the result.
830 /// If not, this returns null.
831 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
832 unsigned MaxRecurse) {
833 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
834 return C;
836 // X * undef -> 0
837 // X * 0 -> 0
838 if (match(Op1, m_CombineOr(m_Undef(), m_Zero())))
839 return Constant::getNullValue(Op0->getType());
841 // X * 1 -> X
842 if (match(Op1, m_One()))
843 return Op0;
845 // (X / Y) * Y -> X if the division is exact.
846 Value *X = nullptr;
847 if (Q.IIQ.UseInstrInfo &&
848 (match(Op0,
849 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
850 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
851 return X;
853 // i1 mul -> and.
854 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
855 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
856 return V;
858 // Try some generic simplifications for associative operations.
859 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
860 MaxRecurse))
861 return V;
863 // Mul distributes over Add. Try some generic simplifications based on this.
864 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
865 Q, MaxRecurse))
866 return V;
868 // If the operation is with the result of a select instruction, check whether
869 // operating on either branch of the select always yields the same value.
870 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
871 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
872 MaxRecurse))
873 return V;
875 // If the operation is with the result of a phi instruction, check whether
876 // operating on all incoming values of the phi always yields the same value.
877 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
878 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
879 MaxRecurse))
880 return V;
882 return nullptr;
885 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
886 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
889 /// Check for common or similar folds of integer division or integer remainder.
890 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
891 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
892 Type *Ty = Op0->getType();
894 // X / undef -> undef
895 // X % undef -> undef
896 if (match(Op1, m_Undef()))
897 return Op1;
899 // X / 0 -> undef
900 // X % 0 -> undef
901 // We don't need to preserve faults!
902 if (match(Op1, m_Zero()))
903 return UndefValue::get(Ty);
905 // If any element of a constant divisor vector is zero or undef, the whole op
906 // is undef.
907 auto *Op1C = dyn_cast<Constant>(Op1);
908 if (Op1C && Ty->isVectorTy()) {
909 unsigned NumElts = Ty->getVectorNumElements();
910 for (unsigned i = 0; i != NumElts; ++i) {
911 Constant *Elt = Op1C->getAggregateElement(i);
912 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
913 return UndefValue::get(Ty);
917 // undef / X -> 0
918 // undef % X -> 0
919 if (match(Op0, m_Undef()))
920 return Constant::getNullValue(Ty);
922 // 0 / X -> 0
923 // 0 % X -> 0
924 if (match(Op0, m_Zero()))
925 return Constant::getNullValue(Op0->getType());
927 // X / X -> 1
928 // X % X -> 0
929 if (Op0 == Op1)
930 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
932 // X / 1 -> X
933 // X % 1 -> 0
934 // If this is a boolean op (single-bit element type), we can't have
935 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
936 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
937 Value *X;
938 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
939 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
940 return IsDiv ? Op0 : Constant::getNullValue(Ty);
942 return nullptr;
945 /// Given a predicate and two operands, return true if the comparison is true.
946 /// This is a helper for div/rem simplification where we return some other value
947 /// when we can prove a relationship between the operands.
948 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
949 const SimplifyQuery &Q, unsigned MaxRecurse) {
950 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
951 Constant *C = dyn_cast_or_null<Constant>(V);
952 return (C && C->isAllOnesValue());
955 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
956 /// to simplify X % Y to X.
957 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
958 unsigned MaxRecurse, bool IsSigned) {
959 // Recursion is always used, so bail out at once if we already hit the limit.
960 if (!MaxRecurse--)
961 return false;
963 if (IsSigned) {
964 // |X| / |Y| --> 0
966 // We require that 1 operand is a simple constant. That could be extended to
967 // 2 variables if we computed the sign bit for each.
969 // Make sure that a constant is not the minimum signed value because taking
970 // the abs() of that is undefined.
971 Type *Ty = X->getType();
972 const APInt *C;
973 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
974 // Is the variable divisor magnitude always greater than the constant
975 // dividend magnitude?
976 // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
977 Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
978 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
979 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
980 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
981 return true;
983 if (match(Y, m_APInt(C))) {
984 // Special-case: we can't take the abs() of a minimum signed value. If
985 // that's the divisor, then all we have to do is prove that the dividend
986 // is also not the minimum signed value.
987 if (C->isMinSignedValue())
988 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
990 // Is the variable dividend magnitude always less than the constant
991 // divisor magnitude?
992 // |X| < |C| --> X > -abs(C) and X < abs(C)
993 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
994 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
995 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
996 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
997 return true;
999 return false;
1002 // IsSigned == false.
1003 // Is the dividend unsigned less than the divisor?
1004 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1007 /// These are simplifications common to SDiv and UDiv.
1008 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1009 const SimplifyQuery &Q, unsigned MaxRecurse) {
1010 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1011 return C;
1013 if (Value *V = simplifyDivRem(Op0, Op1, true))
1014 return V;
1016 bool IsSigned = Opcode == Instruction::SDiv;
1018 // (X * Y) / Y -> X if the multiplication does not overflow.
1019 Value *X;
1020 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1021 auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1022 // If the Mul does not overflow, then we are good to go.
1023 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1024 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
1025 return X;
1026 // If X has the form X = A / Y, then X * Y cannot overflow.
1027 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1028 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
1029 return X;
1032 // (X rem Y) / Y -> 0
1033 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1034 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1035 return Constant::getNullValue(Op0->getType());
1037 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1038 ConstantInt *C1, *C2;
1039 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1040 match(Op1, m_ConstantInt(C2))) {
1041 bool Overflow;
1042 (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1043 if (Overflow)
1044 return Constant::getNullValue(Op0->getType());
1047 // If the operation is with the result of a select instruction, check whether
1048 // operating on either branch of the select always yields the same value.
1049 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1050 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1051 return V;
1053 // If the operation is with the result of a phi instruction, check whether
1054 // operating on all incoming values of the phi always yields the same value.
1055 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1056 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1057 return V;
1059 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1060 return Constant::getNullValue(Op0->getType());
1062 return nullptr;
1065 /// These are simplifications common to SRem and URem.
1066 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1067 const SimplifyQuery &Q, unsigned MaxRecurse) {
1068 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1069 return C;
1071 if (Value *V = simplifyDivRem(Op0, Op1, false))
1072 return V;
1074 // (X % Y) % Y -> X % Y
1075 if ((Opcode == Instruction::SRem &&
1076 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1077 (Opcode == Instruction::URem &&
1078 match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1079 return Op0;
1081 // (X << Y) % X -> 0
1082 if (Q.IIQ.UseInstrInfo &&
1083 ((Opcode == Instruction::SRem &&
1084 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1085 (Opcode == Instruction::URem &&
1086 match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1087 return Constant::getNullValue(Op0->getType());
1089 // If the operation is with the result of a select instruction, check whether
1090 // operating on either branch of the select always yields the same value.
1091 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1092 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1093 return V;
1095 // If the operation is with the result of a phi instruction, check whether
1096 // operating on all incoming values of the phi always yields the same value.
1097 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1098 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1099 return V;
1101 // If X / Y == 0, then X % Y == X.
1102 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1103 return Op0;
1105 return nullptr;
1108 /// Given operands for an SDiv, see if we can fold the result.
1109 /// If not, this returns null.
1110 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1111 unsigned MaxRecurse) {
1112 // If two operands are negated and no signed overflow, return -1.
1113 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1114 return Constant::getAllOnesValue(Op0->getType());
1116 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1119 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1120 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1123 /// Given operands for a UDiv, see if we can fold the result.
1124 /// If not, this returns null.
1125 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1126 unsigned MaxRecurse) {
1127 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1130 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1131 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1134 /// Given operands for an SRem, see if we can fold the result.
1135 /// If not, this returns null.
1136 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1137 unsigned MaxRecurse) {
1138 // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1139 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1140 Value *X;
1141 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1142 return ConstantInt::getNullValue(Op0->getType());
1144 // If the two operands are negated, return 0.
1145 if (isKnownNegation(Op0, Op1))
1146 return ConstantInt::getNullValue(Op0->getType());
1148 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1151 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1152 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1155 /// Given operands for a URem, see if we can fold the result.
1156 /// If not, this returns null.
1157 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1158 unsigned MaxRecurse) {
1159 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1162 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1163 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1166 /// Returns true if a shift by \c Amount always yields undef.
1167 static bool isUndefShift(Value *Amount) {
1168 Constant *C = dyn_cast<Constant>(Amount);
1169 if (!C)
1170 return false;
1172 // X shift by undef -> undef because it may shift by the bitwidth.
1173 if (isa<UndefValue>(C))
1174 return true;
1176 // Shifting by the bitwidth or more is undefined.
1177 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1178 if (CI->getValue().getLimitedValue() >=
1179 CI->getType()->getScalarSizeInBits())
1180 return true;
1182 // If all lanes of a vector shift are undefined the whole shift is.
1183 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1184 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1185 if (!isUndefShift(C->getAggregateElement(I)))
1186 return false;
1187 return true;
1190 return false;
1193 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1194 /// If not, this returns null.
1195 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1196 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1197 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1198 return C;
1200 // 0 shift by X -> 0
1201 if (match(Op0, m_Zero()))
1202 return Constant::getNullValue(Op0->getType());
1204 // X shift by 0 -> X
1205 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1206 // would be poison.
1207 Value *X;
1208 if (match(Op1, m_Zero()) ||
1209 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1210 return Op0;
1212 // Fold undefined shifts.
1213 if (isUndefShift(Op1))
1214 return UndefValue::get(Op0->getType());
1216 // If the operation is with the result of a select instruction, check whether
1217 // operating on either branch of the select always yields the same value.
1218 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1219 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1220 return V;
1222 // If the operation is with the result of a phi instruction, check whether
1223 // operating on all incoming values of the phi always yields the same value.
1224 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1225 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1226 return V;
1228 // If any bits in the shift amount make that value greater than or equal to
1229 // the number of bits in the type, the shift is undefined.
1230 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1231 if (Known.One.getLimitedValue() >= Known.getBitWidth())
1232 return UndefValue::get(Op0->getType());
1234 // If all valid bits in the shift amount are known zero, the first operand is
1235 // unchanged.
1236 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1237 if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1238 return Op0;
1240 return nullptr;
1243 /// Given operands for an Shl, LShr or AShr, see if we can
1244 /// fold the result. If not, this returns null.
1245 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1246 Value *Op1, bool isExact, const SimplifyQuery &Q,
1247 unsigned MaxRecurse) {
1248 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1249 return V;
1251 // X >> X -> 0
1252 if (Op0 == Op1)
1253 return Constant::getNullValue(Op0->getType());
1255 // undef >> X -> 0
1256 // undef >> X -> undef (if it's exact)
1257 if (match(Op0, m_Undef()))
1258 return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1260 // The low bit cannot be shifted out of an exact shift if it is set.
1261 if (isExact) {
1262 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1263 if (Op0Known.One[0])
1264 return Op0;
1267 return nullptr;
1270 /// Given operands for an Shl, see if we can fold the result.
1271 /// If not, this returns null.
1272 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1273 const SimplifyQuery &Q, unsigned MaxRecurse) {
1274 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1275 return V;
1277 // undef << X -> 0
1278 // undef << X -> undef if (if it's NSW/NUW)
1279 if (match(Op0, m_Undef()))
1280 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1282 // (X >> A) << A -> X
1283 Value *X;
1284 if (Q.IIQ.UseInstrInfo &&
1285 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1286 return X;
1288 // shl nuw i8 C, %x -> C iff C has sign bit set.
1289 if (isNUW && match(Op0, m_Negative()))
1290 return Op0;
1291 // NOTE: could use computeKnownBits() / LazyValueInfo,
1292 // but the cost-benefit analysis suggests it isn't worth it.
1294 return nullptr;
1297 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1298 const SimplifyQuery &Q) {
1299 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1302 /// Given operands for an LShr, see if we can fold the result.
1303 /// If not, this returns null.
1304 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1305 const SimplifyQuery &Q, unsigned MaxRecurse) {
1306 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1307 MaxRecurse))
1308 return V;
1310 // (X << A) >> A -> X
1311 Value *X;
1312 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1313 return X;
1315 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A.
1316 // We can return X as we do in the above case since OR alters no bits in X.
1317 // SimplifyDemandedBits in InstCombine can do more general optimization for
1318 // bit manipulation. This pattern aims to provide opportunities for other
1319 // optimizers by supporting a simple but common case in InstSimplify.
1320 Value *Y;
1321 const APInt *ShRAmt, *ShLAmt;
1322 if (match(Op1, m_APInt(ShRAmt)) &&
1323 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1324 *ShRAmt == *ShLAmt) {
1325 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1326 const unsigned Width = Op0->getType()->getScalarSizeInBits();
1327 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1328 if (ShRAmt->uge(EffWidthY))
1329 return X;
1332 return nullptr;
1335 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1336 const SimplifyQuery &Q) {
1337 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1340 /// Given operands for an AShr, see if we can fold the result.
1341 /// If not, this returns null.
1342 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1343 const SimplifyQuery &Q, unsigned MaxRecurse) {
1344 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1345 MaxRecurse))
1346 return V;
1348 // all ones >>a X -> -1
1349 // Do not return Op0 because it may contain undef elements if it's a vector.
1350 if (match(Op0, m_AllOnes()))
1351 return Constant::getAllOnesValue(Op0->getType());
1353 // (X << A) >> A -> X
1354 Value *X;
1355 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1356 return X;
1358 // Arithmetic shifting an all-sign-bit value is a no-op.
1359 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1360 if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1361 return Op0;
1363 return nullptr;
1366 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1367 const SimplifyQuery &Q) {
1368 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1371 /// Commuted variants are assumed to be handled by calling this function again
1372 /// with the parameters swapped.
1373 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1374 ICmpInst *UnsignedICmp, bool IsAnd,
1375 const SimplifyQuery &Q) {
1376 Value *X, *Y;
1378 ICmpInst::Predicate EqPred;
1379 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1380 !ICmpInst::isEquality(EqPred))
1381 return nullptr;
1383 ICmpInst::Predicate UnsignedPred;
1385 Value *A, *B;
1386 // Y = (A - B);
1387 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1388 if (match(UnsignedICmp,
1389 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1390 ICmpInst::isUnsigned(UnsignedPred)) {
1391 if (UnsignedICmp->getOperand(0) != A)
1392 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1394 // A >=/<= B || (A - B) != 0 <--> true
1395 if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1396 UnsignedPred == ICmpInst::ICMP_ULE) &&
1397 EqPred == ICmpInst::ICMP_NE && !IsAnd)
1398 return ConstantInt::getTrue(UnsignedICmp->getType());
1399 // A </> B && (A - B) == 0 <--> false
1400 if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1401 UnsignedPred == ICmpInst::ICMP_UGT) &&
1402 EqPred == ICmpInst::ICMP_EQ && IsAnd)
1403 return ConstantInt::getFalse(UnsignedICmp->getType());
1406 // Given Y = (A - B)
1407 // Y >= A && Y != 0 --> Y >= A iff B != 0
1408 // Y < A || Y == 0 --> Y < A iff B != 0
1409 if (match(UnsignedICmp,
1410 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1411 if (UnsignedICmp->getOperand(0) != Y)
1412 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1414 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1415 EqPred == ICmpInst::ICMP_NE &&
1416 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1417 return UnsignedICmp;
1418 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1419 EqPred == ICmpInst::ICMP_EQ &&
1420 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1421 return UnsignedICmp;
1425 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1426 ICmpInst::isUnsigned(UnsignedPred))
1428 else if (match(UnsignedICmp,
1429 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1430 ICmpInst::isUnsigned(UnsignedPred))
1431 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1432 else
1433 return nullptr;
1435 // X < Y && Y != 0 --> X < Y
1436 // X < Y || Y != 0 --> Y != 0
1437 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1438 return IsAnd ? UnsignedICmp : ZeroICmp;
1440 // X <= Y && Y != 0 --> X <= Y iff X != 0
1441 // X <= Y || Y != 0 --> Y != 0 iff X != 0
1442 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1443 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1444 return IsAnd ? UnsignedICmp : ZeroICmp;
1446 // X >= Y && Y == 0 --> Y == 0
1447 // X >= Y || Y == 0 --> X >= Y
1448 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1449 return IsAnd ? ZeroICmp : UnsignedICmp;
1451 // X > Y && Y == 0 --> Y == 0 iff X != 0
1452 // X > Y || Y == 0 --> X > Y iff X != 0
1453 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1454 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1455 return IsAnd ? ZeroICmp : UnsignedICmp;
1457 // X < Y && Y == 0 --> false
1458 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1459 IsAnd)
1460 return getFalse(UnsignedICmp->getType());
1462 // X >= Y || Y != 0 --> true
1463 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1464 !IsAnd)
1465 return getTrue(UnsignedICmp->getType());
1467 return nullptr;
1470 /// Commuted variants are assumed to be handled by calling this function again
1471 /// with the parameters swapped.
1472 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1473 ICmpInst::Predicate Pred0, Pred1;
1474 Value *A ,*B;
1475 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1476 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1477 return nullptr;
1479 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1480 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1481 // can eliminate Op1 from this 'and'.
1482 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1483 return Op0;
1485 // Check for any combination of predicates that are guaranteed to be disjoint.
1486 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1487 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1488 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1489 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1490 return getFalse(Op0->getType());
1492 return nullptr;
1495 /// Commuted variants are assumed to be handled by calling this function again
1496 /// with the parameters swapped.
1497 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1498 ICmpInst::Predicate Pred0, Pred1;
1499 Value *A ,*B;
1500 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1501 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1502 return nullptr;
1504 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1505 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1506 // can eliminate Op0 from this 'or'.
1507 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1508 return Op1;
1510 // Check for any combination of predicates that cover the entire range of
1511 // possibilities.
1512 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1513 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1514 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1515 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1516 return getTrue(Op0->getType());
1518 return nullptr;
1521 /// Test if a pair of compares with a shared operand and 2 constants has an
1522 /// empty set intersection, full set union, or if one compare is a superset of
1523 /// the other.
1524 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1525 bool IsAnd) {
1526 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1527 if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1528 return nullptr;
1530 const APInt *C0, *C1;
1531 if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1532 !match(Cmp1->getOperand(1), m_APInt(C1)))
1533 return nullptr;
1535 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1536 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1538 // For and-of-compares, check if the intersection is empty:
1539 // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1540 if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1541 return getFalse(Cmp0->getType());
1543 // For or-of-compares, check if the union is full:
1544 // (icmp X, C0) || (icmp X, C1) --> full set --> true
1545 if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1546 return getTrue(Cmp0->getType());
1548 // Is one range a superset of the other?
1549 // If this is and-of-compares, take the smaller set:
1550 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1551 // If this is or-of-compares, take the larger set:
1552 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1553 if (Range0.contains(Range1))
1554 return IsAnd ? Cmp1 : Cmp0;
1555 if (Range1.contains(Range0))
1556 return IsAnd ? Cmp0 : Cmp1;
1558 return nullptr;
1561 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1562 bool IsAnd) {
1563 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1564 if (!match(Cmp0->getOperand(1), m_Zero()) ||
1565 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1566 return nullptr;
1568 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1569 return nullptr;
1571 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1572 Value *X = Cmp0->getOperand(0);
1573 Value *Y = Cmp1->getOperand(0);
1575 // If one of the compares is a masked version of a (not) null check, then
1576 // that compare implies the other, so we eliminate the other. Optionally, look
1577 // through a pointer-to-int cast to match a null check of a pointer type.
1579 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1580 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1581 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1582 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1583 if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1584 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1585 return Cmp1;
1587 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1588 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1589 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1590 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1591 if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1592 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1593 return Cmp0;
1595 return nullptr;
1598 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1599 const InstrInfoQuery &IIQ) {
1600 // (icmp (add V, C0), C1) & (icmp V, C0)
1601 ICmpInst::Predicate Pred0, Pred1;
1602 const APInt *C0, *C1;
1603 Value *V;
1604 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1605 return nullptr;
1607 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1608 return nullptr;
1610 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1611 if (AddInst->getOperand(1) != Op1->getOperand(1))
1612 return nullptr;
1614 Type *ITy = Op0->getType();
1615 bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1616 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1618 const APInt Delta = *C1 - *C0;
1619 if (C0->isStrictlyPositive()) {
1620 if (Delta == 2) {
1621 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1622 return getFalse(ITy);
1623 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1624 return getFalse(ITy);
1626 if (Delta == 1) {
1627 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1628 return getFalse(ITy);
1629 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1630 return getFalse(ITy);
1633 if (C0->getBoolValue() && isNUW) {
1634 if (Delta == 2)
1635 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1636 return getFalse(ITy);
1637 if (Delta == 1)
1638 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1639 return getFalse(ITy);
1642 return nullptr;
1645 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1646 const SimplifyQuery &Q) {
1647 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1648 return X;
1649 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1650 return X;
1652 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1653 return X;
1654 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1655 return X;
1657 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1658 return X;
1660 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1661 return X;
1663 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1664 return X;
1665 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1666 return X;
1668 return nullptr;
1671 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1672 const InstrInfoQuery &IIQ) {
1673 // (icmp (add V, C0), C1) | (icmp V, C0)
1674 ICmpInst::Predicate Pred0, Pred1;
1675 const APInt *C0, *C1;
1676 Value *V;
1677 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1678 return nullptr;
1680 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1681 return nullptr;
1683 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1684 if (AddInst->getOperand(1) != Op1->getOperand(1))
1685 return nullptr;
1687 Type *ITy = Op0->getType();
1688 bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1689 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1691 const APInt Delta = *C1 - *C0;
1692 if (C0->isStrictlyPositive()) {
1693 if (Delta == 2) {
1694 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1695 return getTrue(ITy);
1696 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1697 return getTrue(ITy);
1699 if (Delta == 1) {
1700 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1701 return getTrue(ITy);
1702 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1703 return getTrue(ITy);
1706 if (C0->getBoolValue() && isNUW) {
1707 if (Delta == 2)
1708 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1709 return getTrue(ITy);
1710 if (Delta == 1)
1711 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1712 return getTrue(ITy);
1715 return nullptr;
1718 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1719 const SimplifyQuery &Q) {
1720 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1721 return X;
1722 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1723 return X;
1725 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1726 return X;
1727 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1728 return X;
1730 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1731 return X;
1733 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1734 return X;
1736 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1737 return X;
1738 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1739 return X;
1741 return nullptr;
1744 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1745 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1746 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1747 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1748 if (LHS0->getType() != RHS0->getType())
1749 return nullptr;
1751 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1752 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1753 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1754 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1755 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1756 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1757 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1758 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1759 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1760 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1761 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1762 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1763 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1764 return RHS;
1766 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1767 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1768 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1769 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1770 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1771 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1772 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1773 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1774 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1775 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1776 return LHS;
1779 return nullptr;
1782 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1783 Value *Op0, Value *Op1, bool IsAnd) {
1784 // Look through casts of the 'and' operands to find compares.
1785 auto *Cast0 = dyn_cast<CastInst>(Op0);
1786 auto *Cast1 = dyn_cast<CastInst>(Op1);
1787 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1788 Cast0->getSrcTy() == Cast1->getSrcTy()) {
1789 Op0 = Cast0->getOperand(0);
1790 Op1 = Cast1->getOperand(0);
1793 Value *V = nullptr;
1794 auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1795 auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1796 if (ICmp0 && ICmp1)
1797 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1798 : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1800 auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1801 auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1802 if (FCmp0 && FCmp1)
1803 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1805 if (!V)
1806 return nullptr;
1807 if (!Cast0)
1808 return V;
1810 // If we looked through casts, we can only handle a constant simplification
1811 // because we are not allowed to create a cast instruction here.
1812 if (auto *C = dyn_cast<Constant>(V))
1813 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1815 return nullptr;
1818 /// Check that the Op1 is in expected form, i.e.:
1819 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1820 /// %Op1 = extractvalue { i4, i1 } %Agg, 1
1821 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1,
1822 Value *X) {
1823 auto *Extract = dyn_cast<ExtractValueInst>(Op1);
1824 // We should only be extracting the overflow bit.
1825 if (!Extract || !Extract->getIndices().equals(1))
1826 return false;
1827 Value *Agg = Extract->getAggregateOperand();
1828 // This should be a multiplication-with-overflow intrinsic.
1829 if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(),
1830 m_Intrinsic<Intrinsic::smul_with_overflow>())))
1831 return false;
1832 // One of its multipliers should be the value we checked for zero before.
1833 if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)),
1834 m_Argument<1>(m_Specific(X)))))
1835 return false;
1836 return true;
1839 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1840 /// other form of check, e.g. one that was using division; it may have been
1841 /// guarded against division-by-zero. We can drop that check now.
1842 /// Look for:
1843 /// %Op0 = icmp ne i4 %X, 0
1844 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1845 /// %Op1 = extractvalue { i4, i1 } %Agg, 1
1846 /// %??? = and i1 %Op0, %Op1
1847 /// We can just return %Op1
1848 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) {
1849 ICmpInst::Predicate Pred;
1850 Value *X;
1851 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1852 Pred != ICmpInst::Predicate::ICMP_NE)
1853 return nullptr;
1854 // Is Op1 in expected form?
1855 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1856 return nullptr;
1857 // Can omit 'and', and just return the overflow bit.
1858 return Op1;
1861 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1862 /// other form of check, e.g. one that was using division; it may have been
1863 /// guarded against division-by-zero. We can drop that check now.
1864 /// Look for:
1865 /// %Op0 = icmp eq i4 %X, 0
1866 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1867 /// %Op1 = extractvalue { i4, i1 } %Agg, 1
1868 /// %NotOp1 = xor i1 %Op1, true
1869 /// %or = or i1 %Op0, %NotOp1
1870 /// We can just return %NotOp1
1871 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0,
1872 Value *NotOp1) {
1873 ICmpInst::Predicate Pred;
1874 Value *X;
1875 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1876 Pred != ICmpInst::Predicate::ICMP_EQ)
1877 return nullptr;
1878 // We expect the other hand of an 'or' to be a 'not'.
1879 Value *Op1;
1880 if (!match(NotOp1, m_Not(m_Value(Op1))))
1881 return nullptr;
1882 // Is Op1 in expected form?
1883 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1884 return nullptr;
1885 // Can omit 'and', and just return the inverted overflow bit.
1886 return NotOp1;
1889 /// Given operands for an And, see if we can fold the result.
1890 /// If not, this returns null.
1891 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1892 unsigned MaxRecurse) {
1893 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1894 return C;
1896 // X & undef -> 0
1897 if (match(Op1, m_Undef()))
1898 return Constant::getNullValue(Op0->getType());
1900 // X & X = X
1901 if (Op0 == Op1)
1902 return Op0;
1904 // X & 0 = 0
1905 if (match(Op1, m_Zero()))
1906 return Constant::getNullValue(Op0->getType());
1908 // X & -1 = X
1909 if (match(Op1, m_AllOnes()))
1910 return Op0;
1912 // A & ~A = ~A & A = 0
1913 if (match(Op0, m_Not(m_Specific(Op1))) ||
1914 match(Op1, m_Not(m_Specific(Op0))))
1915 return Constant::getNullValue(Op0->getType());
1917 // (A | ?) & A = A
1918 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1919 return Op1;
1921 // A & (A | ?) = A
1922 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
1923 return Op0;
1925 // A mask that only clears known zeros of a shifted value is a no-op.
1926 Value *X;
1927 const APInt *Mask;
1928 const APInt *ShAmt;
1929 if (match(Op1, m_APInt(Mask))) {
1930 // If all bits in the inverted and shifted mask are clear:
1931 // and (shl X, ShAmt), Mask --> shl X, ShAmt
1932 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
1933 (~(*Mask)).lshr(*ShAmt).isNullValue())
1934 return Op0;
1936 // If all bits in the inverted and shifted mask are clear:
1937 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1938 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1939 (~(*Mask)).shl(*ShAmt).isNullValue())
1940 return Op0;
1943 // If we have a multiplication overflow check that is being 'and'ed with a
1944 // check that one of the multipliers is not zero, we can omit the 'and', and
1945 // only keep the overflow check.
1946 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1))
1947 return V;
1948 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0))
1949 return V;
1951 // A & (-A) = A if A is a power of two or zero.
1952 if (match(Op0, m_Neg(m_Specific(Op1))) ||
1953 match(Op1, m_Neg(m_Specific(Op0)))) {
1954 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1955 Q.DT))
1956 return Op0;
1957 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1958 Q.DT))
1959 return Op1;
1962 // This is a similar pattern used for checking if a value is a power-of-2:
1963 // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
1964 // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
1965 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
1966 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
1967 return Constant::getNullValue(Op1->getType());
1968 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
1969 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
1970 return Constant::getNullValue(Op0->getType());
1972 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
1973 return V;
1975 // Try some generic simplifications for associative operations.
1976 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1977 MaxRecurse))
1978 return V;
1980 // And distributes over Or. Try some generic simplifications based on this.
1981 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1982 Q, MaxRecurse))
1983 return V;
1985 // And distributes over Xor. Try some generic simplifications based on this.
1986 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1987 Q, MaxRecurse))
1988 return V;
1990 // If the operation is with the result of a select instruction, check whether
1991 // operating on either branch of the select always yields the same value.
1992 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1993 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1994 MaxRecurse))
1995 return V;
1997 // If the operation is with the result of a phi instruction, check whether
1998 // operating on all incoming values of the phi always yields the same value.
1999 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2000 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2001 MaxRecurse))
2002 return V;
2004 // Assuming the effective width of Y is not larger than A, i.e. all bits
2005 // from X and Y are disjoint in (X << A) | Y,
2006 // if the mask of this AND op covers all bits of X or Y, while it covers
2007 // no bits from the other, we can bypass this AND op. E.g.,
2008 // ((X << A) | Y) & Mask -> Y,
2009 // if Mask = ((1 << effective_width_of(Y)) - 1)
2010 // ((X << A) | Y) & Mask -> X << A,
2011 // if Mask = ((1 << effective_width_of(X)) - 1) << A
2012 // SimplifyDemandedBits in InstCombine can optimize the general case.
2013 // This pattern aims to help other passes for a common case.
2014 Value *Y, *XShifted;
2015 if (match(Op1, m_APInt(Mask)) &&
2016 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2017 m_Value(XShifted)),
2018 m_Value(Y)))) {
2019 const unsigned Width = Op0->getType()->getScalarSizeInBits();
2020 const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2021 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2022 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
2023 if (EffWidthY <= ShftCnt) {
2024 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2025 Q.DT);
2026 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
2027 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2028 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2029 // If the mask is extracting all bits from X or Y as is, we can skip
2030 // this AND op.
2031 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2032 return Y;
2033 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2034 return XShifted;
2038 return nullptr;
2041 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2042 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2045 /// Given operands for an Or, see if we can fold the result.
2046 /// If not, this returns null.
2047 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2048 unsigned MaxRecurse) {
2049 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2050 return C;
2052 // X | undef -> -1
2053 // X | -1 = -1
2054 // Do not return Op1 because it may contain undef elements if it's a vector.
2055 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes()))
2056 return Constant::getAllOnesValue(Op0->getType());
2058 // X | X = X
2059 // X | 0 = X
2060 if (Op0 == Op1 || match(Op1, m_Zero()))
2061 return Op0;
2063 // A | ~A = ~A | A = -1
2064 if (match(Op0, m_Not(m_Specific(Op1))) ||
2065 match(Op1, m_Not(m_Specific(Op0))))
2066 return Constant::getAllOnesValue(Op0->getType());
2068 // (A & ?) | A = A
2069 if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
2070 return Op1;
2072 // A | (A & ?) = A
2073 if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
2074 return Op0;
2076 // ~(A & ?) | A = -1
2077 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2078 return Constant::getAllOnesValue(Op1->getType());
2080 // A | ~(A & ?) = -1
2081 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2082 return Constant::getAllOnesValue(Op0->getType());
2084 Value *A, *B;
2085 // (A & ~B) | (A ^ B) -> (A ^ B)
2086 // (~B & A) | (A ^ B) -> (A ^ B)
2087 // (A & ~B) | (B ^ A) -> (B ^ A)
2088 // (~B & A) | (B ^ A) -> (B ^ A)
2089 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2090 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2091 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2092 return Op1;
2094 // Commute the 'or' operands.
2095 // (A ^ B) | (A & ~B) -> (A ^ B)
2096 // (A ^ B) | (~B & A) -> (A ^ B)
2097 // (B ^ A) | (A & ~B) -> (B ^ A)
2098 // (B ^ A) | (~B & A) -> (B ^ A)
2099 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2100 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2101 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2102 return Op0;
2104 // (A & B) | (~A ^ B) -> (~A ^ B)
2105 // (B & A) | (~A ^ B) -> (~A ^ B)
2106 // (A & B) | (B ^ ~A) -> (B ^ ~A)
2107 // (B & A) | (B ^ ~A) -> (B ^ ~A)
2108 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2109 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2110 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2111 return Op1;
2113 // (~A ^ B) | (A & B) -> (~A ^ B)
2114 // (~A ^ B) | (B & A) -> (~A ^ B)
2115 // (B ^ ~A) | (A & B) -> (B ^ ~A)
2116 // (B ^ ~A) | (B & A) -> (B ^ ~A)
2117 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2118 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2119 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2120 return Op0;
2122 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2123 return V;
2125 // If we have a multiplication overflow check that is being 'and'ed with a
2126 // check that one of the multipliers is not zero, we can omit the 'and', and
2127 // only keep the overflow check.
2128 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1))
2129 return V;
2130 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0))
2131 return V;
2133 // Try some generic simplifications for associative operations.
2134 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2135 MaxRecurse))
2136 return V;
2138 // Or distributes over And. Try some generic simplifications based on this.
2139 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
2140 MaxRecurse))
2141 return V;
2143 // If the operation is with the result of a select instruction, check whether
2144 // operating on either branch of the select always yields the same value.
2145 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2146 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2147 MaxRecurse))
2148 return V;
2150 // (A & C1)|(B & C2)
2151 const APInt *C1, *C2;
2152 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2153 match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2154 if (*C1 == ~*C2) {
2155 // (A & C1)|(B & C2)
2156 // If we have: ((V + N) & C1) | (V & C2)
2157 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2158 // replace with V+N.
2159 Value *N;
2160 if (C2->isMask() && // C2 == 0+1+
2161 match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2162 // Add commutes, try both ways.
2163 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2164 return A;
2166 // Or commutes, try both ways.
2167 if (C1->isMask() &&
2168 match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2169 // Add commutes, try both ways.
2170 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2171 return B;
2176 // If the operation is with the result of a phi instruction, check whether
2177 // operating on all incoming values of the phi always yields the same value.
2178 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2179 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2180 return V;
2182 return nullptr;
2185 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2186 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2189 /// Given operands for a Xor, see if we can fold the result.
2190 /// If not, this returns null.
2191 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2192 unsigned MaxRecurse) {
2193 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2194 return C;
2196 // A ^ undef -> undef
2197 if (match(Op1, m_Undef()))
2198 return Op1;
2200 // A ^ 0 = A
2201 if (match(Op1, m_Zero()))
2202 return Op0;
2204 // A ^ A = 0
2205 if (Op0 == Op1)
2206 return Constant::getNullValue(Op0->getType());
2208 // A ^ ~A = ~A ^ A = -1
2209 if (match(Op0, m_Not(m_Specific(Op1))) ||
2210 match(Op1, m_Not(m_Specific(Op0))))
2211 return Constant::getAllOnesValue(Op0->getType());
2213 // Try some generic simplifications for associative operations.
2214 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2215 MaxRecurse))
2216 return V;
2218 // Threading Xor over selects and phi nodes is pointless, so don't bother.
2219 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2220 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2221 // only if B and C are equal. If B and C are equal then (since we assume
2222 // that operands have already been simplified) "select(cond, B, C)" should
2223 // have been simplified to the common value of B and C already. Analysing
2224 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
2225 // for threading over phi nodes.
2227 return nullptr;
2230 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2231 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2235 static Type *GetCompareTy(Value *Op) {
2236 return CmpInst::makeCmpResultType(Op->getType());
2239 /// Rummage around inside V looking for something equivalent to the comparison
2240 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2241 /// Helper function for analyzing max/min idioms.
2242 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2243 Value *LHS, Value *RHS) {
2244 SelectInst *SI = dyn_cast<SelectInst>(V);
2245 if (!SI)
2246 return nullptr;
2247 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2248 if (!Cmp)
2249 return nullptr;
2250 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2251 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2252 return Cmp;
2253 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2254 LHS == CmpRHS && RHS == CmpLHS)
2255 return Cmp;
2256 return nullptr;
2259 // A significant optimization not implemented here is assuming that alloca
2260 // addresses are not equal to incoming argument values. They don't *alias*,
2261 // as we say, but that doesn't mean they aren't equal, so we take a
2262 // conservative approach.
2264 // This is inspired in part by C++11 5.10p1:
2265 // "Two pointers of the same type compare equal if and only if they are both
2266 // null, both point to the same function, or both represent the same
2267 // address."
2269 // This is pretty permissive.
2271 // It's also partly due to C11 6.5.9p6:
2272 // "Two pointers compare equal if and only if both are null pointers, both are
2273 // pointers to the same object (including a pointer to an object and a
2274 // subobject at its beginning) or function, both are pointers to one past the
2275 // last element of the same array object, or one is a pointer to one past the
2276 // end of one array object and the other is a pointer to the start of a
2277 // different array object that happens to immediately follow the first array
2278 // object in the address space.)
2280 // C11's version is more restrictive, however there's no reason why an argument
2281 // couldn't be a one-past-the-end value for a stack object in the caller and be
2282 // equal to the beginning of a stack object in the callee.
2284 // If the C and C++ standards are ever made sufficiently restrictive in this
2285 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2286 // this optimization.
2287 static Constant *
2288 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2289 const DominatorTree *DT, CmpInst::Predicate Pred,
2290 AssumptionCache *AC, const Instruction *CxtI,
2291 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
2292 // First, skip past any trivial no-ops.
2293 LHS = LHS->stripPointerCasts();
2294 RHS = RHS->stripPointerCasts();
2296 // A non-null pointer is not equal to a null pointer.
2297 if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2298 IIQ.UseInstrInfo) &&
2299 isa<ConstantPointerNull>(RHS) &&
2300 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2301 return ConstantInt::get(GetCompareTy(LHS),
2302 !CmpInst::isTrueWhenEqual(Pred));
2304 // We can only fold certain predicates on pointer comparisons.
2305 switch (Pred) {
2306 default:
2307 return nullptr;
2309 // Equality comaprisons are easy to fold.
2310 case CmpInst::ICMP_EQ:
2311 case CmpInst::ICMP_NE:
2312 break;
2314 // We can only handle unsigned relational comparisons because 'inbounds' on
2315 // a GEP only protects against unsigned wrapping.
2316 case CmpInst::ICMP_UGT:
2317 case CmpInst::ICMP_UGE:
2318 case CmpInst::ICMP_ULT:
2319 case CmpInst::ICMP_ULE:
2320 // However, we have to switch them to their signed variants to handle
2321 // negative indices from the base pointer.
2322 Pred = ICmpInst::getSignedPredicate(Pred);
2323 break;
2326 // Strip off any constant offsets so that we can reason about them.
2327 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2328 // here and compare base addresses like AliasAnalysis does, however there are
2329 // numerous hazards. AliasAnalysis and its utilities rely on special rules
2330 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2331 // doesn't need to guarantee pointer inequality when it says NoAlias.
2332 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2333 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2335 // If LHS and RHS are related via constant offsets to the same base
2336 // value, we can replace it with an icmp which just compares the offsets.
2337 if (LHS == RHS)
2338 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2340 // Various optimizations for (in)equality comparisons.
2341 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2342 // Different non-empty allocations that exist at the same time have
2343 // different addresses (if the program can tell). Global variables always
2344 // exist, so they always exist during the lifetime of each other and all
2345 // allocas. Two different allocas usually have different addresses...
2347 // However, if there's an @llvm.stackrestore dynamically in between two
2348 // allocas, they may have the same address. It's tempting to reduce the
2349 // scope of the problem by only looking at *static* allocas here. That would
2350 // cover the majority of allocas while significantly reducing the likelihood
2351 // of having an @llvm.stackrestore pop up in the middle. However, it's not
2352 // actually impossible for an @llvm.stackrestore to pop up in the middle of
2353 // an entry block. Also, if we have a block that's not attached to a
2354 // function, we can't tell if it's "static" under the current definition.
2355 // Theoretically, this problem could be fixed by creating a new kind of
2356 // instruction kind specifically for static allocas. Such a new instruction
2357 // could be required to be at the top of the entry block, thus preventing it
2358 // from being subject to a @llvm.stackrestore. Instcombine could even
2359 // convert regular allocas into these special allocas. It'd be nifty.
2360 // However, until then, this problem remains open.
2362 // So, we'll assume that two non-empty allocas have different addresses
2363 // for now.
2365 // With all that, if the offsets are within the bounds of their allocations
2366 // (and not one-past-the-end! so we can't use inbounds!), and their
2367 // allocations aren't the same, the pointers are not equal.
2369 // Note that it's not necessary to check for LHS being a global variable
2370 // address, due to canonicalization and constant folding.
2371 if (isa<AllocaInst>(LHS) &&
2372 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2373 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2374 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2375 uint64_t LHSSize, RHSSize;
2376 ObjectSizeOpts Opts;
2377 Opts.NullIsUnknownSize =
2378 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2379 if (LHSOffsetCI && RHSOffsetCI &&
2380 getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2381 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2382 const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2383 const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2384 if (!LHSOffsetValue.isNegative() &&
2385 !RHSOffsetValue.isNegative() &&
2386 LHSOffsetValue.ult(LHSSize) &&
2387 RHSOffsetValue.ult(RHSSize)) {
2388 return ConstantInt::get(GetCompareTy(LHS),
2389 !CmpInst::isTrueWhenEqual(Pred));
2393 // Repeat the above check but this time without depending on DataLayout
2394 // or being able to compute a precise size.
2395 if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2396 !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2397 LHSOffset->isNullValue() &&
2398 RHSOffset->isNullValue())
2399 return ConstantInt::get(GetCompareTy(LHS),
2400 !CmpInst::isTrueWhenEqual(Pred));
2403 // Even if an non-inbounds GEP occurs along the path we can still optimize
2404 // equality comparisons concerning the result. We avoid walking the whole
2405 // chain again by starting where the last calls to
2406 // stripAndComputeConstantOffsets left off and accumulate the offsets.
2407 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2408 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2409 if (LHS == RHS)
2410 return ConstantExpr::getICmp(Pred,
2411 ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2412 ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2414 // If one side of the equality comparison must come from a noalias call
2415 // (meaning a system memory allocation function), and the other side must
2416 // come from a pointer that cannot overlap with dynamically-allocated
2417 // memory within the lifetime of the current function (allocas, byval
2418 // arguments, globals), then determine the comparison result here.
2419 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2420 GetUnderlyingObjects(LHS, LHSUObjs, DL);
2421 GetUnderlyingObjects(RHS, RHSUObjs, DL);
2423 // Is the set of underlying objects all noalias calls?
2424 auto IsNAC = [](ArrayRef<const Value *> Objects) {
2425 return all_of(Objects, isNoAliasCall);
2428 // Is the set of underlying objects all things which must be disjoint from
2429 // noalias calls. For allocas, we consider only static ones (dynamic
2430 // allocas might be transformed into calls to malloc not simultaneously
2431 // live with the compared-to allocation). For globals, we exclude symbols
2432 // that might be resolve lazily to symbols in another dynamically-loaded
2433 // library (and, thus, could be malloc'ed by the implementation).
2434 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2435 return all_of(Objects, [](const Value *V) {
2436 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2437 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2438 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2439 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2440 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2441 !GV->isThreadLocal();
2442 if (const Argument *A = dyn_cast<Argument>(V))
2443 return A->hasByValAttr();
2444 return false;
2448 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2449 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2450 return ConstantInt::get(GetCompareTy(LHS),
2451 !CmpInst::isTrueWhenEqual(Pred));
2453 // Fold comparisons for non-escaping pointer even if the allocation call
2454 // cannot be elided. We cannot fold malloc comparison to null. Also, the
2455 // dynamic allocation call could be either of the operands.
2456 Value *MI = nullptr;
2457 if (isAllocLikeFn(LHS, TLI) &&
2458 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2459 MI = LHS;
2460 else if (isAllocLikeFn(RHS, TLI) &&
2461 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2462 MI = RHS;
2463 // FIXME: We should also fold the compare when the pointer escapes, but the
2464 // compare dominates the pointer escape
2465 if (MI && !PointerMayBeCaptured(MI, true, true))
2466 return ConstantInt::get(GetCompareTy(LHS),
2467 CmpInst::isFalseWhenEqual(Pred));
2470 // Otherwise, fail.
2471 return nullptr;
2474 /// Fold an icmp when its operands have i1 scalar type.
2475 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2476 Value *RHS, const SimplifyQuery &Q) {
2477 Type *ITy = GetCompareTy(LHS); // The return type.
2478 Type *OpTy = LHS->getType(); // The operand type.
2479 if (!OpTy->isIntOrIntVectorTy(1))
2480 return nullptr;
2482 // A boolean compared to true/false can be simplified in 14 out of the 20
2483 // (10 predicates * 2 constants) possible combinations. Cases not handled here
2484 // require a 'not' of the LHS, so those must be transformed in InstCombine.
2485 if (match(RHS, m_Zero())) {
2486 switch (Pred) {
2487 case CmpInst::ICMP_NE: // X != 0 -> X
2488 case CmpInst::ICMP_UGT: // X >u 0 -> X
2489 case CmpInst::ICMP_SLT: // X <s 0 -> X
2490 return LHS;
2492 case CmpInst::ICMP_ULT: // X <u 0 -> false
2493 case CmpInst::ICMP_SGT: // X >s 0 -> false
2494 return getFalse(ITy);
2496 case CmpInst::ICMP_UGE: // X >=u 0 -> true
2497 case CmpInst::ICMP_SLE: // X <=s 0 -> true
2498 return getTrue(ITy);
2500 default: break;
2502 } else if (match(RHS, m_One())) {
2503 switch (Pred) {
2504 case CmpInst::ICMP_EQ: // X == 1 -> X
2505 case CmpInst::ICMP_UGE: // X >=u 1 -> X
2506 case CmpInst::ICMP_SLE: // X <=s -1 -> X
2507 return LHS;
2509 case CmpInst::ICMP_UGT: // X >u 1 -> false
2510 case CmpInst::ICMP_SLT: // X <s -1 -> false
2511 return getFalse(ITy);
2513 case CmpInst::ICMP_ULE: // X <=u 1 -> true
2514 case CmpInst::ICMP_SGE: // X >=s -1 -> true
2515 return getTrue(ITy);
2517 default: break;
2521 switch (Pred) {
2522 default:
2523 break;
2524 case ICmpInst::ICMP_UGE:
2525 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2526 return getTrue(ITy);
2527 break;
2528 case ICmpInst::ICMP_SGE:
2529 /// For signed comparison, the values for an i1 are 0 and -1
2530 /// respectively. This maps into a truth table of:
2531 /// LHS | RHS | LHS >=s RHS | LHS implies RHS
2532 /// 0 | 0 | 1 (0 >= 0) | 1
2533 /// 0 | 1 | 1 (0 >= -1) | 1
2534 /// 1 | 0 | 0 (-1 >= 0) | 0
2535 /// 1 | 1 | 1 (-1 >= -1) | 1
2536 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2537 return getTrue(ITy);
2538 break;
2539 case ICmpInst::ICMP_ULE:
2540 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2541 return getTrue(ITy);
2542 break;
2545 return nullptr;
2548 /// Try hard to fold icmp with zero RHS because this is a common case.
2549 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2550 Value *RHS, const SimplifyQuery &Q) {
2551 if (!match(RHS, m_Zero()))
2552 return nullptr;
2554 Type *ITy = GetCompareTy(LHS); // The return type.
2555 switch (Pred) {
2556 default:
2557 llvm_unreachable("Unknown ICmp predicate!");
2558 case ICmpInst::ICMP_ULT:
2559 return getFalse(ITy);
2560 case ICmpInst::ICMP_UGE:
2561 return getTrue(ITy);
2562 case ICmpInst::ICMP_EQ:
2563 case ICmpInst::ICMP_ULE:
2564 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2565 return getFalse(ITy);
2566 break;
2567 case ICmpInst::ICMP_NE:
2568 case ICmpInst::ICMP_UGT:
2569 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2570 return getTrue(ITy);
2571 break;
2572 case ICmpInst::ICMP_SLT: {
2573 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2574 if (LHSKnown.isNegative())
2575 return getTrue(ITy);
2576 if (LHSKnown.isNonNegative())
2577 return getFalse(ITy);
2578 break;
2580 case ICmpInst::ICMP_SLE: {
2581 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2582 if (LHSKnown.isNegative())
2583 return getTrue(ITy);
2584 if (LHSKnown.isNonNegative() &&
2585 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2586 return getFalse(ITy);
2587 break;
2589 case ICmpInst::ICMP_SGE: {
2590 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2591 if (LHSKnown.isNegative())
2592 return getFalse(ITy);
2593 if (LHSKnown.isNonNegative())
2594 return getTrue(ITy);
2595 break;
2597 case ICmpInst::ICMP_SGT: {
2598 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2599 if (LHSKnown.isNegative())
2600 return getFalse(ITy);
2601 if (LHSKnown.isNonNegative() &&
2602 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2603 return getTrue(ITy);
2604 break;
2608 return nullptr;
2611 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2612 Value *RHS, const InstrInfoQuery &IIQ) {
2613 Type *ITy = GetCompareTy(RHS); // The return type.
2615 Value *X;
2616 // Sign-bit checks can be optimized to true/false after unsigned
2617 // floating-point casts:
2618 // icmp slt (bitcast (uitofp X)), 0 --> false
2619 // icmp sgt (bitcast (uitofp X)), -1 --> true
2620 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2621 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2622 return ConstantInt::getFalse(ITy);
2623 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2624 return ConstantInt::getTrue(ITy);
2627 const APInt *C;
2628 if (!match(RHS, m_APInt(C)))
2629 return nullptr;
2631 // Rule out tautological comparisons (eg., ult 0 or uge 0).
2632 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2633 if (RHS_CR.isEmptySet())
2634 return ConstantInt::getFalse(ITy);
2635 if (RHS_CR.isFullSet())
2636 return ConstantInt::getTrue(ITy);
2638 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2639 if (!LHS_CR.isFullSet()) {
2640 if (RHS_CR.contains(LHS_CR))
2641 return ConstantInt::getTrue(ITy);
2642 if (RHS_CR.inverse().contains(LHS_CR))
2643 return ConstantInt::getFalse(ITy);
2646 return nullptr;
2649 /// TODO: A large part of this logic is duplicated in InstCombine's
2650 /// foldICmpBinOp(). We should be able to share that and avoid the code
2651 /// duplication.
2652 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2653 Value *RHS, const SimplifyQuery &Q,
2654 unsigned MaxRecurse) {
2655 Type *ITy = GetCompareTy(LHS); // The return type.
2657 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2658 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2659 if (MaxRecurse && (LBO || RBO)) {
2660 // Analyze the case when either LHS or RHS is an add instruction.
2661 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2662 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2663 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2664 if (LBO && LBO->getOpcode() == Instruction::Add) {
2665 A = LBO->getOperand(0);
2666 B = LBO->getOperand(1);
2667 NoLHSWrapProblem =
2668 ICmpInst::isEquality(Pred) ||
2669 (CmpInst::isUnsigned(Pred) &&
2670 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
2671 (CmpInst::isSigned(Pred) &&
2672 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
2674 if (RBO && RBO->getOpcode() == Instruction::Add) {
2675 C = RBO->getOperand(0);
2676 D = RBO->getOperand(1);
2677 NoRHSWrapProblem =
2678 ICmpInst::isEquality(Pred) ||
2679 (CmpInst::isUnsigned(Pred) &&
2680 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
2681 (CmpInst::isSigned(Pred) &&
2682 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
2685 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2686 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2687 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2688 Constant::getNullValue(RHS->getType()), Q,
2689 MaxRecurse - 1))
2690 return V;
2692 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2693 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2694 if (Value *V =
2695 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2696 C == LHS ? D : C, Q, MaxRecurse - 1))
2697 return V;
2699 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2700 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2701 NoRHSWrapProblem) {
2702 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2703 Value *Y, *Z;
2704 if (A == C) {
2705 // C + B == C + D -> B == D
2706 Y = B;
2707 Z = D;
2708 } else if (A == D) {
2709 // D + B == C + D -> B == C
2710 Y = B;
2711 Z = C;
2712 } else if (B == C) {
2713 // A + C == C + D -> A == D
2714 Y = A;
2715 Z = D;
2716 } else {
2717 assert(B == D);
2718 // A + D == C + D -> A == C
2719 Y = A;
2720 Z = C;
2722 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2723 return V;
2728 Value *Y = nullptr;
2729 // icmp pred (or X, Y), X
2730 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2731 if (Pred == ICmpInst::ICMP_ULT)
2732 return getFalse(ITy);
2733 if (Pred == ICmpInst::ICMP_UGE)
2734 return getTrue(ITy);
2736 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2737 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2738 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2739 if (RHSKnown.isNonNegative() && YKnown.isNegative())
2740 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2741 if (RHSKnown.isNegative() || YKnown.isNonNegative())
2742 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2745 // icmp pred X, (or X, Y)
2746 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2747 if (Pred == ICmpInst::ICMP_ULE)
2748 return getTrue(ITy);
2749 if (Pred == ICmpInst::ICMP_UGT)
2750 return getFalse(ITy);
2752 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2753 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2754 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2755 if (LHSKnown.isNonNegative() && YKnown.isNegative())
2756 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2757 if (LHSKnown.isNegative() || YKnown.isNonNegative())
2758 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2763 // icmp pred (and X, Y), X
2764 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2765 if (Pred == ICmpInst::ICMP_UGT)
2766 return getFalse(ITy);
2767 if (Pred == ICmpInst::ICMP_ULE)
2768 return getTrue(ITy);
2770 // icmp pred X, (and X, Y)
2771 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
2772 if (Pred == ICmpInst::ICMP_UGE)
2773 return getTrue(ITy);
2774 if (Pred == ICmpInst::ICMP_ULT)
2775 return getFalse(ITy);
2778 // 0 - (zext X) pred C
2779 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2780 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2781 if (RHSC->getValue().isStrictlyPositive()) {
2782 if (Pred == ICmpInst::ICMP_SLT)
2783 return ConstantInt::getTrue(RHSC->getContext());
2784 if (Pred == ICmpInst::ICMP_SGE)
2785 return ConstantInt::getFalse(RHSC->getContext());
2786 if (Pred == ICmpInst::ICMP_EQ)
2787 return ConstantInt::getFalse(RHSC->getContext());
2788 if (Pred == ICmpInst::ICMP_NE)
2789 return ConstantInt::getTrue(RHSC->getContext());
2791 if (RHSC->getValue().isNonNegative()) {
2792 if (Pred == ICmpInst::ICMP_SLE)
2793 return ConstantInt::getTrue(RHSC->getContext());
2794 if (Pred == ICmpInst::ICMP_SGT)
2795 return ConstantInt::getFalse(RHSC->getContext());
2800 // icmp pred (urem X, Y), Y
2801 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2802 switch (Pred) {
2803 default:
2804 break;
2805 case ICmpInst::ICMP_SGT:
2806 case ICmpInst::ICMP_SGE: {
2807 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2808 if (!Known.isNonNegative())
2809 break;
2810 LLVM_FALLTHROUGH;
2812 case ICmpInst::ICMP_EQ:
2813 case ICmpInst::ICMP_UGT:
2814 case ICmpInst::ICMP_UGE:
2815 return getFalse(ITy);
2816 case ICmpInst::ICMP_SLT:
2817 case ICmpInst::ICMP_SLE: {
2818 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2819 if (!Known.isNonNegative())
2820 break;
2821 LLVM_FALLTHROUGH;
2823 case ICmpInst::ICMP_NE:
2824 case ICmpInst::ICMP_ULT:
2825 case ICmpInst::ICMP_ULE:
2826 return getTrue(ITy);
2830 // icmp pred X, (urem Y, X)
2831 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2832 switch (Pred) {
2833 default:
2834 break;
2835 case ICmpInst::ICMP_SGT:
2836 case ICmpInst::ICMP_SGE: {
2837 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2838 if (!Known.isNonNegative())
2839 break;
2840 LLVM_FALLTHROUGH;
2842 case ICmpInst::ICMP_NE:
2843 case ICmpInst::ICMP_UGT:
2844 case ICmpInst::ICMP_UGE:
2845 return getTrue(ITy);
2846 case ICmpInst::ICMP_SLT:
2847 case ICmpInst::ICMP_SLE: {
2848 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2849 if (!Known.isNonNegative())
2850 break;
2851 LLVM_FALLTHROUGH;
2853 case ICmpInst::ICMP_EQ:
2854 case ICmpInst::ICMP_ULT:
2855 case ICmpInst::ICMP_ULE:
2856 return getFalse(ITy);
2860 // x >> y <=u x
2861 // x udiv y <=u x.
2862 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2863 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2864 // icmp pred (X op Y), X
2865 if (Pred == ICmpInst::ICMP_UGT)
2866 return getFalse(ITy);
2867 if (Pred == ICmpInst::ICMP_ULE)
2868 return getTrue(ITy);
2871 // x >=u x >> y
2872 // x >=u x udiv y.
2873 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2874 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2875 // icmp pred X, (X op Y)
2876 if (Pred == ICmpInst::ICMP_ULT)
2877 return getFalse(ITy);
2878 if (Pred == ICmpInst::ICMP_UGE)
2879 return getTrue(ITy);
2882 // handle:
2883 // CI2 << X == CI
2884 // CI2 << X != CI
2886 // where CI2 is a power of 2 and CI isn't
2887 if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2888 const APInt *CI2Val, *CIVal = &CI->getValue();
2889 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2890 CI2Val->isPowerOf2()) {
2891 if (!CIVal->isPowerOf2()) {
2892 // CI2 << X can equal zero in some circumstances,
2893 // this simplification is unsafe if CI is zero.
2895 // We know it is safe if:
2896 // - The shift is nsw, we can't shift out the one bit.
2897 // - The shift is nuw, we can't shift out the one bit.
2898 // - CI2 is one
2899 // - CI isn't zero
2900 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2901 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2902 CI2Val->isOneValue() || !CI->isZero()) {
2903 if (Pred == ICmpInst::ICMP_EQ)
2904 return ConstantInt::getFalse(RHS->getContext());
2905 if (Pred == ICmpInst::ICMP_NE)
2906 return ConstantInt::getTrue(RHS->getContext());
2909 if (CIVal->isSignMask() && CI2Val->isOneValue()) {
2910 if (Pred == ICmpInst::ICMP_UGT)
2911 return ConstantInt::getFalse(RHS->getContext());
2912 if (Pred == ICmpInst::ICMP_ULE)
2913 return ConstantInt::getTrue(RHS->getContext());
2918 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2919 LBO->getOperand(1) == RBO->getOperand(1)) {
2920 switch (LBO->getOpcode()) {
2921 default:
2922 break;
2923 case Instruction::UDiv:
2924 case Instruction::LShr:
2925 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
2926 !Q.IIQ.isExact(RBO))
2927 break;
2928 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2929 RBO->getOperand(0), Q, MaxRecurse - 1))
2930 return V;
2931 break;
2932 case Instruction::SDiv:
2933 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
2934 !Q.IIQ.isExact(RBO))
2935 break;
2936 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2937 RBO->getOperand(0), Q, MaxRecurse - 1))
2938 return V;
2939 break;
2940 case Instruction::AShr:
2941 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
2942 break;
2943 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2944 RBO->getOperand(0), Q, MaxRecurse - 1))
2945 return V;
2946 break;
2947 case Instruction::Shl: {
2948 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
2949 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
2950 if (!NUW && !NSW)
2951 break;
2952 if (!NSW && ICmpInst::isSigned(Pred))
2953 break;
2954 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2955 RBO->getOperand(0), Q, MaxRecurse - 1))
2956 return V;
2957 break;
2961 return nullptr;
2964 /// Simplify integer comparisons where at least one operand of the compare
2965 /// matches an integer min/max idiom.
2966 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2967 Value *RHS, const SimplifyQuery &Q,
2968 unsigned MaxRecurse) {
2969 Type *ITy = GetCompareTy(LHS); // The return type.
2970 Value *A, *B;
2971 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2972 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2974 // Signed variants on "max(a,b)>=a -> true".
2975 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2976 if (A != RHS)
2977 std::swap(A, B); // smax(A, B) pred A.
2978 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2979 // We analyze this as smax(A, B) pred A.
2980 P = Pred;
2981 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2982 (A == LHS || B == LHS)) {
2983 if (A != LHS)
2984 std::swap(A, B); // A pred smax(A, B).
2985 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2986 // We analyze this as smax(A, B) swapped-pred A.
2987 P = CmpInst::getSwappedPredicate(Pred);
2988 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2989 (A == RHS || B == RHS)) {
2990 if (A != RHS)
2991 std::swap(A, B); // smin(A, B) pred A.
2992 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2993 // We analyze this as smax(-A, -B) swapped-pred -A.
2994 // Note that we do not need to actually form -A or -B thanks to EqP.
2995 P = CmpInst::getSwappedPredicate(Pred);
2996 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2997 (A == LHS || B == LHS)) {
2998 if (A != LHS)
2999 std::swap(A, B); // A pred smin(A, B).
3000 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3001 // We analyze this as smax(-A, -B) pred -A.
3002 // Note that we do not need to actually form -A or -B thanks to EqP.
3003 P = Pred;
3005 if (P != CmpInst::BAD_ICMP_PREDICATE) {
3006 // Cases correspond to "max(A, B) p A".
3007 switch (P) {
3008 default:
3009 break;
3010 case CmpInst::ICMP_EQ:
3011 case CmpInst::ICMP_SLE:
3012 // Equivalent to "A EqP B". This may be the same as the condition tested
3013 // in the max/min; if so, we can just return that.
3014 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3015 return V;
3016 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3017 return V;
3018 // Otherwise, see if "A EqP B" simplifies.
3019 if (MaxRecurse)
3020 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3021 return V;
3022 break;
3023 case CmpInst::ICMP_NE:
3024 case CmpInst::ICMP_SGT: {
3025 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3026 // Equivalent to "A InvEqP B". This may be the same as the condition
3027 // tested in the max/min; if so, we can just return that.
3028 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3029 return V;
3030 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3031 return V;
3032 // Otherwise, see if "A InvEqP B" simplifies.
3033 if (MaxRecurse)
3034 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3035 return V;
3036 break;
3038 case CmpInst::ICMP_SGE:
3039 // Always true.
3040 return getTrue(ITy);
3041 case CmpInst::ICMP_SLT:
3042 // Always false.
3043 return getFalse(ITy);
3047 // Unsigned variants on "max(a,b)>=a -> true".
3048 P = CmpInst::BAD_ICMP_PREDICATE;
3049 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3050 if (A != RHS)
3051 std::swap(A, B); // umax(A, B) pred A.
3052 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3053 // We analyze this as umax(A, B) pred A.
3054 P = Pred;
3055 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3056 (A == LHS || B == LHS)) {
3057 if (A != LHS)
3058 std::swap(A, B); // A pred umax(A, B).
3059 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3060 // We analyze this as umax(A, B) swapped-pred A.
3061 P = CmpInst::getSwappedPredicate(Pred);
3062 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3063 (A == RHS || B == RHS)) {
3064 if (A != RHS)
3065 std::swap(A, B); // umin(A, B) pred A.
3066 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3067 // We analyze this as umax(-A, -B) swapped-pred -A.
3068 // Note that we do not need to actually form -A or -B thanks to EqP.
3069 P = CmpInst::getSwappedPredicate(Pred);
3070 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3071 (A == LHS || B == LHS)) {
3072 if (A != LHS)
3073 std::swap(A, B); // A pred umin(A, B).
3074 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3075 // We analyze this as umax(-A, -B) pred -A.
3076 // Note that we do not need to actually form -A or -B thanks to EqP.
3077 P = Pred;
3079 if (P != CmpInst::BAD_ICMP_PREDICATE) {
3080 // Cases correspond to "max(A, B) p A".
3081 switch (P) {
3082 default:
3083 break;
3084 case CmpInst::ICMP_EQ:
3085 case CmpInst::ICMP_ULE:
3086 // Equivalent to "A EqP B". This may be the same as the condition tested
3087 // in the max/min; if so, we can just return that.
3088 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3089 return V;
3090 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3091 return V;
3092 // Otherwise, see if "A EqP B" simplifies.
3093 if (MaxRecurse)
3094 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3095 return V;
3096 break;
3097 case CmpInst::ICMP_NE:
3098 case CmpInst::ICMP_UGT: {
3099 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3100 // Equivalent to "A InvEqP B". This may be the same as the condition
3101 // tested in the max/min; if so, we can just return that.
3102 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3103 return V;
3104 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3105 return V;
3106 // Otherwise, see if "A InvEqP B" simplifies.
3107 if (MaxRecurse)
3108 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3109 return V;
3110 break;
3112 case CmpInst::ICMP_UGE:
3113 // Always true.
3114 return getTrue(ITy);
3115 case CmpInst::ICMP_ULT:
3116 // Always false.
3117 return getFalse(ITy);
3121 // Variants on "max(x,y) >= min(x,z)".
3122 Value *C, *D;
3123 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3124 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3125 (A == C || A == D || B == C || B == D)) {
3126 // max(x, ?) pred min(x, ?).
3127 if (Pred == CmpInst::ICMP_SGE)
3128 // Always true.
3129 return getTrue(ITy);
3130 if (Pred == CmpInst::ICMP_SLT)
3131 // Always false.
3132 return getFalse(ITy);
3133 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3134 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3135 (A == C || A == D || B == C || B == D)) {
3136 // min(x, ?) pred max(x, ?).
3137 if (Pred == CmpInst::ICMP_SLE)
3138 // Always true.
3139 return getTrue(ITy);
3140 if (Pred == CmpInst::ICMP_SGT)
3141 // Always false.
3142 return getFalse(ITy);
3143 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3144 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3145 (A == C || A == D || B == C || B == D)) {
3146 // max(x, ?) pred min(x, ?).
3147 if (Pred == CmpInst::ICMP_UGE)
3148 // Always true.
3149 return getTrue(ITy);
3150 if (Pred == CmpInst::ICMP_ULT)
3151 // Always false.
3152 return getFalse(ITy);
3153 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3154 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3155 (A == C || A == D || B == C || B == D)) {
3156 // min(x, ?) pred max(x, ?).
3157 if (Pred == CmpInst::ICMP_ULE)
3158 // Always true.
3159 return getTrue(ITy);
3160 if (Pred == CmpInst::ICMP_UGT)
3161 // Always false.
3162 return getFalse(ITy);
3165 return nullptr;
3168 /// Given operands for an ICmpInst, see if we can fold the result.
3169 /// If not, this returns null.
3170 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3171 const SimplifyQuery &Q, unsigned MaxRecurse) {
3172 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3173 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3175 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3176 if (Constant *CRHS = dyn_cast<Constant>(RHS))
3177 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3179 // If we have a constant, make sure it is on the RHS.
3180 std::swap(LHS, RHS);
3181 Pred = CmpInst::getSwappedPredicate(Pred);
3183 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3185 Type *ITy = GetCompareTy(LHS); // The return type.
3187 // For EQ and NE, we can always pick a value for the undef to make the
3188 // predicate pass or fail, so we can return undef.
3189 // Matches behavior in llvm::ConstantFoldCompareInstruction.
3190 if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred))
3191 return UndefValue::get(ITy);
3193 // icmp X, X -> true/false
3194 // icmp X, undef -> true/false because undef could be X.
3195 if (LHS == RHS || isa<UndefValue>(RHS))
3196 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3198 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3199 return V;
3201 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3202 return V;
3204 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3205 return V;
3207 // If both operands have range metadata, use the metadata
3208 // to simplify the comparison.
3209 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3210 auto RHS_Instr = cast<Instruction>(RHS);
3211 auto LHS_Instr = cast<Instruction>(LHS);
3213 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3214 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3215 auto RHS_CR = getConstantRangeFromMetadata(
3216 *RHS_Instr->getMetadata(LLVMContext::MD_range));
3217 auto LHS_CR = getConstantRangeFromMetadata(
3218 *LHS_Instr->getMetadata(LLVMContext::MD_range));
3220 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3221 if (Satisfied_CR.contains(LHS_CR))
3222 return ConstantInt::getTrue(RHS->getContext());
3224 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3225 CmpInst::getInversePredicate(Pred), RHS_CR);
3226 if (InversedSatisfied_CR.contains(LHS_CR))
3227 return ConstantInt::getFalse(RHS->getContext());
3231 // Compare of cast, for example (zext X) != 0 -> X != 0
3232 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3233 Instruction *LI = cast<CastInst>(LHS);
3234 Value *SrcOp = LI->getOperand(0);
3235 Type *SrcTy = SrcOp->getType();
3236 Type *DstTy = LI->getType();
3238 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3239 // if the integer type is the same size as the pointer type.
3240 if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3241 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3242 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3243 // Transfer the cast to the constant.
3244 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3245 ConstantExpr::getIntToPtr(RHSC, SrcTy),
3246 Q, MaxRecurse-1))
3247 return V;
3248 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3249 if (RI->getOperand(0)->getType() == SrcTy)
3250 // Compare without the cast.
3251 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3252 Q, MaxRecurse-1))
3253 return V;
3257 if (isa<ZExtInst>(LHS)) {
3258 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3259 // same type.
3260 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3261 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3262 // Compare X and Y. Note that signed predicates become unsigned.
3263 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3264 SrcOp, RI->getOperand(0), Q,
3265 MaxRecurse-1))
3266 return V;
3268 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3269 // too. If not, then try to deduce the result of the comparison.
3270 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3271 // Compute the constant that would happen if we truncated to SrcTy then
3272 // reextended to DstTy.
3273 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3274 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3276 // If the re-extended constant didn't change then this is effectively
3277 // also a case of comparing two zero-extended values.
3278 if (RExt == CI && MaxRecurse)
3279 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3280 SrcOp, Trunc, Q, MaxRecurse-1))
3281 return V;
3283 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3284 // there. Use this to work out the result of the comparison.
3285 if (RExt != CI) {
3286 switch (Pred) {
3287 default: llvm_unreachable("Unknown ICmp predicate!");
3288 // LHS <u RHS.
3289 case ICmpInst::ICMP_EQ:
3290 case ICmpInst::ICMP_UGT:
3291 case ICmpInst::ICMP_UGE:
3292 return ConstantInt::getFalse(CI->getContext());
3294 case ICmpInst::ICMP_NE:
3295 case ICmpInst::ICMP_ULT:
3296 case ICmpInst::ICMP_ULE:
3297 return ConstantInt::getTrue(CI->getContext());
3299 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
3300 // is non-negative then LHS <s RHS.
3301 case ICmpInst::ICMP_SGT:
3302 case ICmpInst::ICMP_SGE:
3303 return CI->getValue().isNegative() ?
3304 ConstantInt::getTrue(CI->getContext()) :
3305 ConstantInt::getFalse(CI->getContext());
3307 case ICmpInst::ICMP_SLT:
3308 case ICmpInst::ICMP_SLE:
3309 return CI->getValue().isNegative() ?
3310 ConstantInt::getFalse(CI->getContext()) :
3311 ConstantInt::getTrue(CI->getContext());
3317 if (isa<SExtInst>(LHS)) {
3318 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3319 // same type.
3320 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3321 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3322 // Compare X and Y. Note that the predicate does not change.
3323 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3324 Q, MaxRecurse-1))
3325 return V;
3327 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3328 // too. If not, then try to deduce the result of the comparison.
3329 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3330 // Compute the constant that would happen if we truncated to SrcTy then
3331 // reextended to DstTy.
3332 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3333 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3335 // If the re-extended constant didn't change then this is effectively
3336 // also a case of comparing two sign-extended values.
3337 if (RExt == CI && MaxRecurse)
3338 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3339 return V;
3341 // Otherwise the upper bits of LHS are all equal, while RHS has varying
3342 // bits there. Use this to work out the result of the comparison.
3343 if (RExt != CI) {
3344 switch (Pred) {
3345 default: llvm_unreachable("Unknown ICmp predicate!");
3346 case ICmpInst::ICMP_EQ:
3347 return ConstantInt::getFalse(CI->getContext());
3348 case ICmpInst::ICMP_NE:
3349 return ConstantInt::getTrue(CI->getContext());
3351 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
3352 // LHS >s RHS.
3353 case ICmpInst::ICMP_SGT:
3354 case ICmpInst::ICMP_SGE:
3355 return CI->getValue().isNegative() ?
3356 ConstantInt::getTrue(CI->getContext()) :
3357 ConstantInt::getFalse(CI->getContext());
3358 case ICmpInst::ICMP_SLT:
3359 case ICmpInst::ICMP_SLE:
3360 return CI->getValue().isNegative() ?
3361 ConstantInt::getFalse(CI->getContext()) :
3362 ConstantInt::getTrue(CI->getContext());
3364 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
3365 // LHS >u RHS.
3366 case ICmpInst::ICMP_UGT:
3367 case ICmpInst::ICMP_UGE:
3368 // Comparison is true iff the LHS <s 0.
3369 if (MaxRecurse)
3370 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3371 Constant::getNullValue(SrcTy),
3372 Q, MaxRecurse-1))
3373 return V;
3374 break;
3375 case ICmpInst::ICMP_ULT:
3376 case ICmpInst::ICMP_ULE:
3377 // Comparison is true iff the LHS >=s 0.
3378 if (MaxRecurse)
3379 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3380 Constant::getNullValue(SrcTy),
3381 Q, MaxRecurse-1))
3382 return V;
3383 break;
3390 // icmp eq|ne X, Y -> false|true if X != Y
3391 if (ICmpInst::isEquality(Pred) &&
3392 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3393 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3396 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3397 return V;
3399 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3400 return V;
3402 // Simplify comparisons of related pointers using a powerful, recursive
3403 // GEP-walk when we have target data available..
3404 if (LHS->getType()->isPointerTy())
3405 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3406 Q.IIQ, LHS, RHS))
3407 return C;
3408 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3409 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3410 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3411 Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3412 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3413 Q.DL.getTypeSizeInBits(CRHS->getType()))
3414 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3415 Q.IIQ, CLHS->getPointerOperand(),
3416 CRHS->getPointerOperand()))
3417 return C;
3419 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3420 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3421 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3422 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3423 (ICmpInst::isEquality(Pred) ||
3424 (GLHS->isInBounds() && GRHS->isInBounds() &&
3425 Pred == ICmpInst::getSignedPredicate(Pred)))) {
3426 // The bases are equal and the indices are constant. Build a constant
3427 // expression GEP with the same indices and a null base pointer to see
3428 // what constant folding can make out of it.
3429 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3430 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3431 Constant *NewLHS = ConstantExpr::getGetElementPtr(
3432 GLHS->getSourceElementType(), Null, IndicesLHS);
3434 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3435 Constant *NewRHS = ConstantExpr::getGetElementPtr(
3436 GLHS->getSourceElementType(), Null, IndicesRHS);
3437 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3442 // If the comparison is with the result of a select instruction, check whether
3443 // comparing with either branch of the select always yields the same value.
3444 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3445 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3446 return V;
3448 // If the comparison is with the result of a phi instruction, check whether
3449 // doing the compare with each incoming phi value yields a common result.
3450 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3451 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3452 return V;
3454 return nullptr;
3457 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3458 const SimplifyQuery &Q) {
3459 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3462 /// Given operands for an FCmpInst, see if we can fold the result.
3463 /// If not, this returns null.
3464 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3465 FastMathFlags FMF, const SimplifyQuery &Q,
3466 unsigned MaxRecurse) {
3467 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3468 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3470 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3471 if (Constant *CRHS = dyn_cast<Constant>(RHS))
3472 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3474 // If we have a constant, make sure it is on the RHS.
3475 std::swap(LHS, RHS);
3476 Pred = CmpInst::getSwappedPredicate(Pred);
3479 // Fold trivial predicates.
3480 Type *RetTy = GetCompareTy(LHS);
3481 if (Pred == FCmpInst::FCMP_FALSE)
3482 return getFalse(RetTy);
3483 if (Pred == FCmpInst::FCMP_TRUE)
3484 return getTrue(RetTy);
3486 // Fold (un)ordered comparison if we can determine there are no NaNs.
3487 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3488 if (FMF.noNaNs() ||
3489 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3490 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3492 // NaN is unordered; NaN is not ordered.
3493 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3494 "Comparison must be either ordered or unordered");
3495 if (match(RHS, m_NaN()))
3496 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3498 // fcmp pred x, undef and fcmp pred undef, x
3499 // fold to true if unordered, false if ordered
3500 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3501 // Choosing NaN for the undef will always make unordered comparison succeed
3502 // and ordered comparison fail.
3503 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3506 // fcmp x,x -> true/false. Not all compares are foldable.
3507 if (LHS == RHS) {
3508 if (CmpInst::isTrueWhenEqual(Pred))
3509 return getTrue(RetTy);
3510 if (CmpInst::isFalseWhenEqual(Pred))
3511 return getFalse(RetTy);
3514 // Handle fcmp with constant RHS.
3515 // TODO: Use match with a specific FP value, so these work with vectors with
3516 // undef lanes.
3517 const APFloat *C;
3518 if (match(RHS, m_APFloat(C))) {
3519 // Check whether the constant is an infinity.
3520 if (C->isInfinity()) {
3521 if (C->isNegative()) {
3522 switch (Pred) {
3523 case FCmpInst::FCMP_OLT:
3524 // No value is ordered and less than negative infinity.
3525 return getFalse(RetTy);
3526 case FCmpInst::FCMP_UGE:
3527 // All values are unordered with or at least negative infinity.
3528 return getTrue(RetTy);
3529 default:
3530 break;
3532 } else {
3533 switch (Pred) {
3534 case FCmpInst::FCMP_OGT:
3535 // No value is ordered and greater than infinity.
3536 return getFalse(RetTy);
3537 case FCmpInst::FCMP_ULE:
3538 // All values are unordered with and at most infinity.
3539 return getTrue(RetTy);
3540 default:
3541 break;
3545 if (C->isNegative() && !C->isNegZero()) {
3546 assert(!C->isNaN() && "Unexpected NaN constant!");
3547 // TODO: We can catch more cases by using a range check rather than
3548 // relying on CannotBeOrderedLessThanZero.
3549 switch (Pred) {
3550 case FCmpInst::FCMP_UGE:
3551 case FCmpInst::FCMP_UGT:
3552 case FCmpInst::FCMP_UNE:
3553 // (X >= 0) implies (X > C) when (C < 0)
3554 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3555 return getTrue(RetTy);
3556 break;
3557 case FCmpInst::FCMP_OEQ:
3558 case FCmpInst::FCMP_OLE:
3559 case FCmpInst::FCMP_OLT:
3560 // (X >= 0) implies !(X < C) when (C < 0)
3561 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3562 return getFalse(RetTy);
3563 break;
3564 default:
3565 break;
3569 // Check comparison of [minnum/maxnum with constant] with other constant.
3570 const APFloat *C2;
3571 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3572 C2->compare(*C) == APFloat::cmpLessThan) ||
3573 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3574 C2->compare(*C) == APFloat::cmpGreaterThan)) {
3575 bool IsMaxNum =
3576 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3577 // The ordered relationship and minnum/maxnum guarantee that we do not
3578 // have NaN constants, so ordered/unordered preds are handled the same.
3579 switch (Pred) {
3580 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3581 // minnum(X, LesserC) == C --> false
3582 // maxnum(X, GreaterC) == C --> false
3583 return getFalse(RetTy);
3584 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3585 // minnum(X, LesserC) != C --> true
3586 // maxnum(X, GreaterC) != C --> true
3587 return getTrue(RetTy);
3588 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3589 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3590 // minnum(X, LesserC) >= C --> false
3591 // minnum(X, LesserC) > C --> false
3592 // maxnum(X, GreaterC) >= C --> true
3593 // maxnum(X, GreaterC) > C --> true
3594 return ConstantInt::get(RetTy, IsMaxNum);
3595 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3596 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3597 // minnum(X, LesserC) <= C --> true
3598 // minnum(X, LesserC) < C --> true
3599 // maxnum(X, GreaterC) <= C --> false
3600 // maxnum(X, GreaterC) < C --> false
3601 return ConstantInt::get(RetTy, !IsMaxNum);
3602 default:
3603 // TRUE/FALSE/ORD/UNO should be handled before this.
3604 llvm_unreachable("Unexpected fcmp predicate");
3609 if (match(RHS, m_AnyZeroFP())) {
3610 switch (Pred) {
3611 case FCmpInst::FCMP_OGE:
3612 case FCmpInst::FCMP_ULT:
3613 // Positive or zero X >= 0.0 --> true
3614 // Positive or zero X < 0.0 --> false
3615 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3616 CannotBeOrderedLessThanZero(LHS, Q.TLI))
3617 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3618 break;
3619 case FCmpInst::FCMP_UGE:
3620 case FCmpInst::FCMP_OLT:
3621 // Positive or zero or nan X >= 0.0 --> true
3622 // Positive or zero or nan X < 0.0 --> false
3623 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3624 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3625 break;
3626 default:
3627 break;
3631 // If the comparison is with the result of a select instruction, check whether
3632 // comparing with either branch of the select always yields the same value.
3633 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3634 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3635 return V;
3637 // If the comparison is with the result of a phi instruction, check whether
3638 // doing the compare with each incoming phi value yields a common result.
3639 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3640 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3641 return V;
3643 return nullptr;
3646 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3647 FastMathFlags FMF, const SimplifyQuery &Q) {
3648 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3651 /// See if V simplifies when its operand Op is replaced with RepOp.
3652 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3653 const SimplifyQuery &Q,
3654 unsigned MaxRecurse) {
3655 // Trivial replacement.
3656 if (V == Op)
3657 return RepOp;
3659 // We cannot replace a constant, and shouldn't even try.
3660 if (isa<Constant>(Op))
3661 return nullptr;
3663 auto *I = dyn_cast<Instruction>(V);
3664 if (!I)
3665 return nullptr;
3667 // If this is a binary operator, try to simplify it with the replaced op.
3668 if (auto *B = dyn_cast<BinaryOperator>(I)) {
3669 // Consider:
3670 // %cmp = icmp eq i32 %x, 2147483647
3671 // %add = add nsw i32 %x, 1
3672 // %sel = select i1 %cmp, i32 -2147483648, i32 %add
3674 // We can't replace %sel with %add unless we strip away the flags.
3675 // TODO: This is an unusual limitation because better analysis results in
3676 // worse simplification. InstCombine can do this fold more generally
3677 // by dropping the flags. Remove this fold to save compile-time?
3678 if (isa<OverflowingBinaryOperator>(B))
3679 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B))
3680 return nullptr;
3681 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B))
3682 return nullptr;
3684 if (MaxRecurse) {
3685 if (B->getOperand(0) == Op)
3686 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3687 MaxRecurse - 1);
3688 if (B->getOperand(1) == Op)
3689 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3690 MaxRecurse - 1);
3694 // Same for CmpInsts.
3695 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3696 if (MaxRecurse) {
3697 if (C->getOperand(0) == Op)
3698 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3699 MaxRecurse - 1);
3700 if (C->getOperand(1) == Op)
3701 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3702 MaxRecurse - 1);
3706 // Same for GEPs.
3707 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3708 if (MaxRecurse) {
3709 SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
3710 transform(GEP->operands(), NewOps.begin(),
3711 [&](Value *V) { return V == Op ? RepOp : V; });
3712 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q,
3713 MaxRecurse - 1);
3717 // TODO: We could hand off more cases to instsimplify here.
3719 // If all operands are constant after substituting Op for RepOp then we can
3720 // constant fold the instruction.
3721 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3722 // Build a list of all constant operands.
3723 SmallVector<Constant *, 8> ConstOps;
3724 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3725 if (I->getOperand(i) == Op)
3726 ConstOps.push_back(CRepOp);
3727 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3728 ConstOps.push_back(COp);
3729 else
3730 break;
3733 // All operands were constants, fold it.
3734 if (ConstOps.size() == I->getNumOperands()) {
3735 if (CmpInst *C = dyn_cast<CmpInst>(I))
3736 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3737 ConstOps[1], Q.DL, Q.TLI);
3739 if (LoadInst *LI = dyn_cast<LoadInst>(I))
3740 if (!LI->isVolatile())
3741 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3743 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3747 return nullptr;
3750 /// Try to simplify a select instruction when its condition operand is an
3751 /// integer comparison where one operand of the compare is a constant.
3752 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3753 const APInt *Y, bool TrueWhenUnset) {
3754 const APInt *C;
3756 // (X & Y) == 0 ? X & ~Y : X --> X
3757 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
3758 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3759 *Y == ~*C)
3760 return TrueWhenUnset ? FalseVal : TrueVal;
3762 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
3763 // (X & Y) != 0 ? X : X & ~Y --> X
3764 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3765 *Y == ~*C)
3766 return TrueWhenUnset ? FalseVal : TrueVal;
3768 if (Y->isPowerOf2()) {
3769 // (X & Y) == 0 ? X | Y : X --> X | Y
3770 // (X & Y) != 0 ? X | Y : X --> X
3771 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3772 *Y == *C)
3773 return TrueWhenUnset ? TrueVal : FalseVal;
3775 // (X & Y) == 0 ? X : X | Y --> X
3776 // (X & Y) != 0 ? X : X | Y --> X | Y
3777 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3778 *Y == *C)
3779 return TrueWhenUnset ? TrueVal : FalseVal;
3782 return nullptr;
3785 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3786 /// eq/ne.
3787 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3788 ICmpInst::Predicate Pred,
3789 Value *TrueVal, Value *FalseVal) {
3790 Value *X;
3791 APInt Mask;
3792 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3793 return nullptr;
3795 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3796 Pred == ICmpInst::ICMP_EQ);
3799 /// Try to simplify a select instruction when its condition operand is an
3800 /// integer comparison.
3801 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3802 Value *FalseVal, const SimplifyQuery &Q,
3803 unsigned MaxRecurse) {
3804 ICmpInst::Predicate Pred;
3805 Value *CmpLHS, *CmpRHS;
3806 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3807 return nullptr;
3809 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3810 Value *X;
3811 const APInt *Y;
3812 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3813 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3814 Pred == ICmpInst::ICMP_EQ))
3815 return V;
3817 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
3818 Value *ShAmt;
3819 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(),
3820 m_Value(ShAmt)),
3821 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X),
3822 m_Value(ShAmt)));
3823 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
3824 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
3825 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt &&
3826 Pred == ICmpInst::ICMP_EQ)
3827 return X;
3828 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X
3829 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X
3830 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt &&
3831 Pred == ICmpInst::ICMP_NE)
3832 return X;
3834 // Test for a zero-shift-guard-op around rotates. These are used to
3835 // avoid UB from oversized shifts in raw IR rotate patterns, but the
3836 // intrinsics do not have that problem.
3837 // We do not allow this transform for the general funnel shift case because
3838 // that would not preserve the poison safety of the original code.
3839 auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X),
3840 m_Deferred(X),
3841 m_Value(ShAmt)),
3842 m_Intrinsic<Intrinsic::fshr>(m_Value(X),
3843 m_Deferred(X),
3844 m_Value(ShAmt)));
3845 // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt)
3846 // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt)
3847 if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt &&
3848 Pred == ICmpInst::ICMP_NE)
3849 return TrueVal;
3850 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
3851 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
3852 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
3853 Pred == ICmpInst::ICMP_EQ)
3854 return FalseVal;
3857 // Check for other compares that behave like bit test.
3858 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
3859 TrueVal, FalseVal))
3860 return V;
3862 // If we have an equality comparison, then we know the value in one of the
3863 // arms of the select. See if substituting this value into the arm and
3864 // simplifying the result yields the same value as the other arm.
3865 if (Pred == ICmpInst::ICMP_EQ) {
3866 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3867 TrueVal ||
3868 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3869 TrueVal)
3870 return FalseVal;
3871 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3872 FalseVal ||
3873 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3874 FalseVal)
3875 return FalseVal;
3876 } else if (Pred == ICmpInst::ICMP_NE) {
3877 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3878 FalseVal ||
3879 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3880 FalseVal)
3881 return TrueVal;
3882 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3883 TrueVal ||
3884 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3885 TrueVal)
3886 return TrueVal;
3889 return nullptr;
3892 /// Try to simplify a select instruction when its condition operand is a
3893 /// floating-point comparison.
3894 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) {
3895 FCmpInst::Predicate Pred;
3896 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
3897 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
3898 return nullptr;
3900 // TODO: The transform may not be valid with -0.0. An incomplete way of
3901 // testing for that possibility is to check if at least one operand is a
3902 // non-zero constant.
3903 const APFloat *C;
3904 if ((match(T, m_APFloat(C)) && C->isNonZero()) ||
3905 (match(F, m_APFloat(C)) && C->isNonZero())) {
3906 // (T == F) ? T : F --> F
3907 // (F == T) ? T : F --> F
3908 if (Pred == FCmpInst::FCMP_OEQ)
3909 return F;
3911 // (T != F) ? T : F --> T
3912 // (F != T) ? T : F --> T
3913 if (Pred == FCmpInst::FCMP_UNE)
3914 return T;
3917 return nullptr;
3920 /// Given operands for a SelectInst, see if we can fold the result.
3921 /// If not, this returns null.
3922 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3923 const SimplifyQuery &Q, unsigned MaxRecurse) {
3924 if (auto *CondC = dyn_cast<Constant>(Cond)) {
3925 if (auto *TrueC = dyn_cast<Constant>(TrueVal))
3926 if (auto *FalseC = dyn_cast<Constant>(FalseVal))
3927 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
3929 // select undef, X, Y -> X or Y
3930 if (isa<UndefValue>(CondC))
3931 return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
3933 // TODO: Vector constants with undef elements don't simplify.
3935 // select true, X, Y -> X
3936 if (CondC->isAllOnesValue())
3937 return TrueVal;
3938 // select false, X, Y -> Y
3939 if (CondC->isNullValue())
3940 return FalseVal;
3943 // select ?, X, X -> X
3944 if (TrueVal == FalseVal)
3945 return TrueVal;
3947 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X
3948 return FalseVal;
3949 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X
3950 return TrueVal;
3952 if (Value *V =
3953 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
3954 return V;
3956 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal))
3957 return V;
3959 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
3960 return V;
3962 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
3963 if (Imp)
3964 return *Imp ? TrueVal : FalseVal;
3966 return nullptr;
3969 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3970 const SimplifyQuery &Q) {
3971 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
3974 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3975 /// If not, this returns null.
3976 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3977 const SimplifyQuery &Q, unsigned) {
3978 // The type of the GEP pointer operand.
3979 unsigned AS =
3980 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3982 // getelementptr P -> P.
3983 if (Ops.size() == 1)
3984 return Ops[0];
3986 // Compute the (pointer) type returned by the GEP instruction.
3987 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3988 Type *GEPTy = PointerType::get(LastType, AS);
3989 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3990 GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3991 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
3992 GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3994 if (isa<UndefValue>(Ops[0]))
3995 return UndefValue::get(GEPTy);
3997 if (Ops.size() == 2) {
3998 // getelementptr P, 0 -> P.
3999 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4000 return Ops[0];
4002 Type *Ty = SrcTy;
4003 if (Ty->isSized()) {
4004 Value *P;
4005 uint64_t C;
4006 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4007 // getelementptr P, N -> P if P points to a type of zero size.
4008 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4009 return Ops[0];
4011 // The following transforms are only safe if the ptrtoint cast
4012 // doesn't truncate the pointers.
4013 if (Ops[1]->getType()->getScalarSizeInBits() ==
4014 Q.DL.getIndexSizeInBits(AS)) {
4015 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
4016 if (match(P, m_Zero()))
4017 return Constant::getNullValue(GEPTy);
4018 Value *Temp;
4019 if (match(P, m_PtrToInt(m_Value(Temp))))
4020 if (Temp->getType() == GEPTy)
4021 return Temp;
4022 return nullptr;
4025 // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4026 if (TyAllocSize == 1 &&
4027 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
4028 if (Value *R = PtrToIntOrZero(P))
4029 return R;
4031 // getelementptr V, (ashr (sub P, V), C) -> Q
4032 // if P points to a type of size 1 << C.
4033 if (match(Ops[1],
4034 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4035 m_ConstantInt(C))) &&
4036 TyAllocSize == 1ULL << C)
4037 if (Value *R = PtrToIntOrZero(P))
4038 return R;
4040 // getelementptr V, (sdiv (sub P, V), C) -> Q
4041 // if P points to a type of size C.
4042 if (match(Ops[1],
4043 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4044 m_SpecificInt(TyAllocSize))))
4045 if (Value *R = PtrToIntOrZero(P))
4046 return R;
4051 if (Q.DL.getTypeAllocSize(LastType) == 1 &&
4052 all_of(Ops.slice(1).drop_back(1),
4053 [](Value *Idx) { return match(Idx, m_Zero()); })) {
4054 unsigned IdxWidth =
4055 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4056 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4057 APInt BasePtrOffset(IdxWidth, 0);
4058 Value *StrippedBasePtr =
4059 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4060 BasePtrOffset);
4062 // gep (gep V, C), (sub 0, V) -> C
4063 if (match(Ops.back(),
4064 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
4065 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4066 return ConstantExpr::getIntToPtr(CI, GEPTy);
4068 // gep (gep V, C), (xor V, -1) -> C-1
4069 if (match(Ops.back(),
4070 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
4071 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4072 return ConstantExpr::getIntToPtr(CI, GEPTy);
4077 // Check to see if this is constant foldable.
4078 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4079 return nullptr;
4081 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4082 Ops.slice(1));
4083 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
4084 return CEFolded;
4085 return CE;
4088 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4089 const SimplifyQuery &Q) {
4090 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
4093 /// Given operands for an InsertValueInst, see if we can fold the result.
4094 /// If not, this returns null.
4095 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4096 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4097 unsigned) {
4098 if (Constant *CAgg = dyn_cast<Constant>(Agg))
4099 if (Constant *CVal = dyn_cast<Constant>(Val))
4100 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4102 // insertvalue x, undef, n -> x
4103 if (match(Val, m_Undef()))
4104 return Agg;
4106 // insertvalue x, (extractvalue y, n), n
4107 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4108 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4109 EV->getIndices() == Idxs) {
4110 // insertvalue undef, (extractvalue y, n), n -> y
4111 if (match(Agg, m_Undef()))
4112 return EV->getAggregateOperand();
4114 // insertvalue y, (extractvalue y, n), n -> y
4115 if (Agg == EV->getAggregateOperand())
4116 return Agg;
4119 return nullptr;
4122 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4123 ArrayRef<unsigned> Idxs,
4124 const SimplifyQuery &Q) {
4125 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4128 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4129 const SimplifyQuery &Q) {
4130 // Try to constant fold.
4131 auto *VecC = dyn_cast<Constant>(Vec);
4132 auto *ValC = dyn_cast<Constant>(Val);
4133 auto *IdxC = dyn_cast<Constant>(Idx);
4134 if (VecC && ValC && IdxC)
4135 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
4137 // Fold into undef if index is out of bounds.
4138 if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4139 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
4140 if (CI->uge(NumElements))
4141 return UndefValue::get(Vec->getType());
4144 // If index is undef, it might be out of bounds (see above case)
4145 if (isa<UndefValue>(Idx))
4146 return UndefValue::get(Vec->getType());
4148 // Inserting an undef scalar? Assume it is the same value as the existing
4149 // vector element.
4150 if (isa<UndefValue>(Val))
4151 return Vec;
4153 // If we are extracting a value from a vector, then inserting it into the same
4154 // place, that's the input vector:
4155 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4156 if (match(Val, m_ExtractElement(m_Specific(Vec), m_Specific(Idx))))
4157 return Vec;
4159 return nullptr;
4162 /// Given operands for an ExtractValueInst, see if we can fold the result.
4163 /// If not, this returns null.
4164 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4165 const SimplifyQuery &, unsigned) {
4166 if (auto *CAgg = dyn_cast<Constant>(Agg))
4167 return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4169 // extractvalue x, (insertvalue y, elt, n), n -> elt
4170 unsigned NumIdxs = Idxs.size();
4171 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4172 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4173 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4174 unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4175 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4176 if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4177 Idxs.slice(0, NumCommonIdxs)) {
4178 if (NumIdxs == NumInsertValueIdxs)
4179 return IVI->getInsertedValueOperand();
4180 break;
4184 return nullptr;
4187 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4188 const SimplifyQuery &Q) {
4189 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4192 /// Given operands for an ExtractElementInst, see if we can fold the result.
4193 /// If not, this returns null.
4194 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
4195 unsigned) {
4196 if (auto *CVec = dyn_cast<Constant>(Vec)) {
4197 if (auto *CIdx = dyn_cast<Constant>(Idx))
4198 return ConstantFoldExtractElementInstruction(CVec, CIdx);
4200 // The index is not relevant if our vector is a splat.
4201 if (auto *Splat = CVec->getSplatValue())
4202 return Splat;
4204 if (isa<UndefValue>(Vec))
4205 return UndefValue::get(Vec->getType()->getVectorElementType());
4208 // If extracting a specified index from the vector, see if we can recursively
4209 // find a previously computed scalar that was inserted into the vector.
4210 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4211 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
4212 // definitely out of bounds, thus undefined result
4213 return UndefValue::get(Vec->getType()->getVectorElementType());
4214 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4215 return Elt;
4218 // An undef extract index can be arbitrarily chosen to be an out-of-range
4219 // index value, which would result in the instruction being undef.
4220 if (isa<UndefValue>(Idx))
4221 return UndefValue::get(Vec->getType()->getVectorElementType());
4223 return nullptr;
4226 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4227 const SimplifyQuery &Q) {
4228 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4231 /// See if we can fold the given phi. If not, returns null.
4232 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4233 // If all of the PHI's incoming values are the same then replace the PHI node
4234 // with the common value.
4235 Value *CommonValue = nullptr;
4236 bool HasUndefInput = false;
4237 for (Value *Incoming : PN->incoming_values()) {
4238 // If the incoming value is the phi node itself, it can safely be skipped.
4239 if (Incoming == PN) continue;
4240 if (isa<UndefValue>(Incoming)) {
4241 // Remember that we saw an undef value, but otherwise ignore them.
4242 HasUndefInput = true;
4243 continue;
4245 if (CommonValue && Incoming != CommonValue)
4246 return nullptr; // Not the same, bail out.
4247 CommonValue = Incoming;
4250 // If CommonValue is null then all of the incoming values were either undef or
4251 // equal to the phi node itself.
4252 if (!CommonValue)
4253 return UndefValue::get(PN->getType());
4255 // If we have a PHI node like phi(X, undef, X), where X is defined by some
4256 // instruction, we cannot return X as the result of the PHI node unless it
4257 // dominates the PHI block.
4258 if (HasUndefInput)
4259 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4261 return CommonValue;
4264 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4265 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4266 if (auto *C = dyn_cast<Constant>(Op))
4267 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4269 if (auto *CI = dyn_cast<CastInst>(Op)) {
4270 auto *Src = CI->getOperand(0);
4271 Type *SrcTy = Src->getType();
4272 Type *MidTy = CI->getType();
4273 Type *DstTy = Ty;
4274 if (Src->getType() == Ty) {
4275 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4276 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4277 Type *SrcIntPtrTy =
4278 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4279 Type *MidIntPtrTy =
4280 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4281 Type *DstIntPtrTy =
4282 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4283 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4284 SrcIntPtrTy, MidIntPtrTy,
4285 DstIntPtrTy) == Instruction::BitCast)
4286 return Src;
4290 // bitcast x -> x
4291 if (CastOpc == Instruction::BitCast)
4292 if (Op->getType() == Ty)
4293 return Op;
4295 return nullptr;
4298 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4299 const SimplifyQuery &Q) {
4300 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4303 /// For the given destination element of a shuffle, peek through shuffles to
4304 /// match a root vector source operand that contains that element in the same
4305 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4306 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4307 int MaskVal, Value *RootVec,
4308 unsigned MaxRecurse) {
4309 if (!MaxRecurse--)
4310 return nullptr;
4312 // Bail out if any mask value is undefined. That kind of shuffle may be
4313 // simplified further based on demanded bits or other folds.
4314 if (MaskVal == -1)
4315 return nullptr;
4317 // The mask value chooses which source operand we need to look at next.
4318 int InVecNumElts = Op0->getType()->getVectorNumElements();
4319 int RootElt = MaskVal;
4320 Value *SourceOp = Op0;
4321 if (MaskVal >= InVecNumElts) {
4322 RootElt = MaskVal - InVecNumElts;
4323 SourceOp = Op1;
4326 // If the source operand is a shuffle itself, look through it to find the
4327 // matching root vector.
4328 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4329 return foldIdentityShuffles(
4330 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4331 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4334 // TODO: Look through bitcasts? What if the bitcast changes the vector element
4335 // size?
4337 // The source operand is not a shuffle. Initialize the root vector value for
4338 // this shuffle if that has not been done yet.
4339 if (!RootVec)
4340 RootVec = SourceOp;
4342 // Give up as soon as a source operand does not match the existing root value.
4343 if (RootVec != SourceOp)
4344 return nullptr;
4346 // The element must be coming from the same lane in the source vector
4347 // (although it may have crossed lanes in intermediate shuffles).
4348 if (RootElt != DestElt)
4349 return nullptr;
4351 return RootVec;
4354 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4355 Type *RetTy, const SimplifyQuery &Q,
4356 unsigned MaxRecurse) {
4357 if (isa<UndefValue>(Mask))
4358 return UndefValue::get(RetTy);
4360 Type *InVecTy = Op0->getType();
4361 unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
4362 unsigned InVecNumElts = InVecTy->getVectorNumElements();
4364 SmallVector<int, 32> Indices;
4365 ShuffleVectorInst::getShuffleMask(Mask, Indices);
4366 assert(MaskNumElts == Indices.size() &&
4367 "Size of Indices not same as number of mask elements?");
4369 // Canonicalization: If mask does not select elements from an input vector,
4370 // replace that input vector with undef.
4371 bool MaskSelects0 = false, MaskSelects1 = false;
4372 for (unsigned i = 0; i != MaskNumElts; ++i) {
4373 if (Indices[i] == -1)
4374 continue;
4375 if ((unsigned)Indices[i] < InVecNumElts)
4376 MaskSelects0 = true;
4377 else
4378 MaskSelects1 = true;
4380 if (!MaskSelects0)
4381 Op0 = UndefValue::get(InVecTy);
4382 if (!MaskSelects1)
4383 Op1 = UndefValue::get(InVecTy);
4385 auto *Op0Const = dyn_cast<Constant>(Op0);
4386 auto *Op1Const = dyn_cast<Constant>(Op1);
4388 // If all operands are constant, constant fold the shuffle.
4389 if (Op0Const && Op1Const)
4390 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
4392 // Canonicalization: if only one input vector is constant, it shall be the
4393 // second one.
4394 if (Op0Const && !Op1Const) {
4395 std::swap(Op0, Op1);
4396 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
4399 // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4400 // value type is same as the input vectors' type.
4401 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4402 if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
4403 OpShuf->getMask()->getSplatValue())
4404 return Op0;
4406 // Don't fold a shuffle with undef mask elements. This may get folded in a
4407 // better way using demanded bits or other analysis.
4408 // TODO: Should we allow this?
4409 if (find(Indices, -1) != Indices.end())
4410 return nullptr;
4412 // Check if every element of this shuffle can be mapped back to the
4413 // corresponding element of a single root vector. If so, we don't need this
4414 // shuffle. This handles simple identity shuffles as well as chains of
4415 // shuffles that may widen/narrow and/or move elements across lanes and back.
4416 Value *RootVec = nullptr;
4417 for (unsigned i = 0; i != MaskNumElts; ++i) {
4418 // Note that recursion is limited for each vector element, so if any element
4419 // exceeds the limit, this will fail to simplify.
4420 RootVec =
4421 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4423 // We can't replace a widening/narrowing shuffle with one of its operands.
4424 if (!RootVec || RootVec->getType() != RetTy)
4425 return nullptr;
4427 return RootVec;
4430 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4431 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4432 Type *RetTy, const SimplifyQuery &Q) {
4433 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4436 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4437 Value *&Op, const SimplifyQuery &Q) {
4438 if (auto *C = dyn_cast<Constant>(Op))
4439 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4440 return nullptr;
4443 /// Given the operand for an FNeg, see if we can fold the result. If not, this
4444 /// returns null.
4445 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4446 const SimplifyQuery &Q, unsigned MaxRecurse) {
4447 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4448 return C;
4450 Value *X;
4451 // fneg (fneg X) ==> X
4452 if (match(Op, m_FNeg(m_Value(X))))
4453 return X;
4455 return nullptr;
4458 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4459 const SimplifyQuery &Q) {
4460 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4463 static Constant *propagateNaN(Constant *In) {
4464 // If the input is a vector with undef elements, just return a default NaN.
4465 if (!In->isNaN())
4466 return ConstantFP::getNaN(In->getType());
4468 // Propagate the existing NaN constant when possible.
4469 // TODO: Should we quiet a signaling NaN?
4470 return In;
4473 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) {
4474 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4475 return ConstantFP::getNaN(Op0->getType());
4477 if (match(Op0, m_NaN()))
4478 return propagateNaN(cast<Constant>(Op0));
4479 if (match(Op1, m_NaN()))
4480 return propagateNaN(cast<Constant>(Op1));
4482 return nullptr;
4485 /// Given operands for an FAdd, see if we can fold the result. If not, this
4486 /// returns null.
4487 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4488 const SimplifyQuery &Q, unsigned MaxRecurse) {
4489 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4490 return C;
4492 if (Constant *C = simplifyFPBinop(Op0, Op1))
4493 return C;
4495 // fadd X, -0 ==> X
4496 if (match(Op1, m_NegZeroFP()))
4497 return Op0;
4499 // fadd X, 0 ==> X, when we know X is not -0
4500 if (match(Op1, m_PosZeroFP()) &&
4501 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4502 return Op0;
4504 // With nnan: -X + X --> 0.0 (and commuted variant)
4505 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4506 // Negative zeros are allowed because we always end up with positive zero:
4507 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4508 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4509 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4510 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4511 if (FMF.noNaNs()) {
4512 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4513 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4514 return ConstantFP::getNullValue(Op0->getType());
4516 if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4517 match(Op1, m_FNeg(m_Specific(Op0))))
4518 return ConstantFP::getNullValue(Op0->getType());
4521 // (X - Y) + Y --> X
4522 // Y + (X - Y) --> X
4523 Value *X;
4524 if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4525 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4526 match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4527 return X;
4529 return nullptr;
4532 /// Given operands for an FSub, see if we can fold the result. If not, this
4533 /// returns null.
4534 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4535 const SimplifyQuery &Q, unsigned MaxRecurse) {
4536 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4537 return C;
4539 if (Constant *C = simplifyFPBinop(Op0, Op1))
4540 return C;
4542 // fsub X, +0 ==> X
4543 if (match(Op1, m_PosZeroFP()))
4544 return Op0;
4546 // fsub X, -0 ==> X, when we know X is not -0
4547 if (match(Op1, m_NegZeroFP()) &&
4548 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4549 return Op0;
4551 // fsub -0.0, (fsub -0.0, X) ==> X
4552 // fsub -0.0, (fneg X) ==> X
4553 Value *X;
4554 if (match(Op0, m_NegZeroFP()) &&
4555 match(Op1, m_FNeg(m_Value(X))))
4556 return X;
4558 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4559 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
4560 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4561 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
4562 match(Op1, m_FNeg(m_Value(X)))))
4563 return X;
4565 // fsub nnan x, x ==> 0.0
4566 if (FMF.noNaNs() && Op0 == Op1)
4567 return Constant::getNullValue(Op0->getType());
4569 // Y - (Y - X) --> X
4570 // (X + Y) - Y --> X
4571 if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4572 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
4573 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
4574 return X;
4576 return nullptr;
4579 /// Given the operands for an FMul, see if we can fold the result
4580 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4581 const SimplifyQuery &Q, unsigned MaxRecurse) {
4582 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4583 return C;
4585 if (Constant *C = simplifyFPBinop(Op0, Op1))
4586 return C;
4588 // fmul X, 1.0 ==> X
4589 if (match(Op1, m_FPOne()))
4590 return Op0;
4592 // fmul nnan nsz X, 0 ==> 0
4593 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4594 return ConstantFP::getNullValue(Op0->getType());
4596 // sqrt(X) * sqrt(X) --> X, if we can:
4597 // 1. Remove the intermediate rounding (reassociate).
4598 // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4599 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4600 Value *X;
4601 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
4602 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
4603 return X;
4605 return nullptr;
4608 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4609 const SimplifyQuery &Q) {
4610 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4614 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4615 const SimplifyQuery &Q) {
4616 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4619 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4620 const SimplifyQuery &Q) {
4621 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4624 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4625 const SimplifyQuery &Q, unsigned) {
4626 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4627 return C;
4629 if (Constant *C = simplifyFPBinop(Op0, Op1))
4630 return C;
4632 // X / 1.0 -> X
4633 if (match(Op1, m_FPOne()))
4634 return Op0;
4636 // 0 / X -> 0
4637 // Requires that NaNs are off (X could be zero) and signed zeroes are
4638 // ignored (X could be positive or negative, so the output sign is unknown).
4639 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4640 return ConstantFP::getNullValue(Op0->getType());
4642 if (FMF.noNaNs()) {
4643 // X / X -> 1.0 is legal when NaNs are ignored.
4644 // We can ignore infinities because INF/INF is NaN.
4645 if (Op0 == Op1)
4646 return ConstantFP::get(Op0->getType(), 1.0);
4648 // (X * Y) / Y --> X if we can reassociate to the above form.
4649 Value *X;
4650 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
4651 return X;
4653 // -X / X -> -1.0 and
4654 // X / -X -> -1.0 are legal when NaNs are ignored.
4655 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4656 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
4657 match(Op1, m_FNegNSZ(m_Specific(Op0))))
4658 return ConstantFP::get(Op0->getType(), -1.0);
4661 return nullptr;
4664 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4665 const SimplifyQuery &Q) {
4666 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
4669 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4670 const SimplifyQuery &Q, unsigned) {
4671 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
4672 return C;
4674 if (Constant *C = simplifyFPBinop(Op0, Op1))
4675 return C;
4677 // Unlike fdiv, the result of frem always matches the sign of the dividend.
4678 // The constant match may include undef elements in a vector, so return a full
4679 // zero constant as the result.
4680 if (FMF.noNaNs()) {
4681 // +0 % X -> 0
4682 if (match(Op0, m_PosZeroFP()))
4683 return ConstantFP::getNullValue(Op0->getType());
4684 // -0 % X -> -0
4685 if (match(Op0, m_NegZeroFP()))
4686 return ConstantFP::getNegativeZero(Op0->getType());
4689 return nullptr;
4692 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4693 const SimplifyQuery &Q) {
4694 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
4697 //=== Helper functions for higher up the class hierarchy.
4699 /// Given the operand for a UnaryOperator, see if we can fold the result.
4700 /// If not, this returns null.
4701 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
4702 unsigned MaxRecurse) {
4703 switch (Opcode) {
4704 case Instruction::FNeg:
4705 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
4706 default:
4707 llvm_unreachable("Unexpected opcode");
4711 /// Given the operand for a UnaryOperator, see if we can fold the result.
4712 /// If not, this returns null.
4713 /// Try to use FastMathFlags when folding the result.
4714 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
4715 const FastMathFlags &FMF,
4716 const SimplifyQuery &Q, unsigned MaxRecurse) {
4717 switch (Opcode) {
4718 case Instruction::FNeg:
4719 return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
4720 default:
4721 return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
4725 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
4726 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
4729 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
4730 const SimplifyQuery &Q) {
4731 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
4734 /// Given operands for a BinaryOperator, see if we can fold the result.
4735 /// If not, this returns null.
4736 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4737 const SimplifyQuery &Q, unsigned MaxRecurse) {
4738 switch (Opcode) {
4739 case Instruction::Add:
4740 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4741 case Instruction::Sub:
4742 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4743 case Instruction::Mul:
4744 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4745 case Instruction::SDiv:
4746 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4747 case Instruction::UDiv:
4748 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4749 case Instruction::SRem:
4750 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4751 case Instruction::URem:
4752 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4753 case Instruction::Shl:
4754 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4755 case Instruction::LShr:
4756 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4757 case Instruction::AShr:
4758 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4759 case Instruction::And:
4760 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4761 case Instruction::Or:
4762 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4763 case Instruction::Xor:
4764 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4765 case Instruction::FAdd:
4766 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4767 case Instruction::FSub:
4768 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4769 case Instruction::FMul:
4770 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4771 case Instruction::FDiv:
4772 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4773 case Instruction::FRem:
4774 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4775 default:
4776 llvm_unreachable("Unexpected opcode");
4780 /// Given operands for a BinaryOperator, see if we can fold the result.
4781 /// If not, this returns null.
4782 /// Try to use FastMathFlags when folding the result.
4783 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4784 const FastMathFlags &FMF, const SimplifyQuery &Q,
4785 unsigned MaxRecurse) {
4786 switch (Opcode) {
4787 case Instruction::FAdd:
4788 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4789 case Instruction::FSub:
4790 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4791 case Instruction::FMul:
4792 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4793 case Instruction::FDiv:
4794 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4795 default:
4796 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4800 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4801 const SimplifyQuery &Q) {
4802 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
4805 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4806 FastMathFlags FMF, const SimplifyQuery &Q) {
4807 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
4810 /// Given operands for a CmpInst, see if we can fold the result.
4811 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4812 const SimplifyQuery &Q, unsigned MaxRecurse) {
4813 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4814 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4815 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4818 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4819 const SimplifyQuery &Q) {
4820 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4823 static bool IsIdempotent(Intrinsic::ID ID) {
4824 switch (ID) {
4825 default: return false;
4827 // Unary idempotent: f(f(x)) = f(x)
4828 case Intrinsic::fabs:
4829 case Intrinsic::floor:
4830 case Intrinsic::ceil:
4831 case Intrinsic::trunc:
4832 case Intrinsic::rint:
4833 case Intrinsic::nearbyint:
4834 case Intrinsic::round:
4835 case Intrinsic::canonicalize:
4836 return true;
4840 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4841 const DataLayout &DL) {
4842 GlobalValue *PtrSym;
4843 APInt PtrOffset;
4844 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4845 return nullptr;
4847 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4848 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4849 Type *Int32PtrTy = Int32Ty->getPointerTo();
4850 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4852 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4853 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4854 return nullptr;
4856 uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4857 if (OffsetInt % 4 != 0)
4858 return nullptr;
4860 Constant *C = ConstantExpr::getGetElementPtr(
4861 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4862 ConstantInt::get(Int64Ty, OffsetInt / 4));
4863 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4864 if (!Loaded)
4865 return nullptr;
4867 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4868 if (!LoadedCE)
4869 return nullptr;
4871 if (LoadedCE->getOpcode() == Instruction::Trunc) {
4872 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4873 if (!LoadedCE)
4874 return nullptr;
4877 if (LoadedCE->getOpcode() != Instruction::Sub)
4878 return nullptr;
4880 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4881 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4882 return nullptr;
4883 auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4885 Constant *LoadedRHS = LoadedCE->getOperand(1);
4886 GlobalValue *LoadedRHSSym;
4887 APInt LoadedRHSOffset;
4888 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4889 DL) ||
4890 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4891 return nullptr;
4893 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4896 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
4897 const SimplifyQuery &Q) {
4898 // Idempotent functions return the same result when called repeatedly.
4899 Intrinsic::ID IID = F->getIntrinsicID();
4900 if (IsIdempotent(IID))
4901 if (auto *II = dyn_cast<IntrinsicInst>(Op0))
4902 if (II->getIntrinsicID() == IID)
4903 return II;
4905 Value *X;
4906 switch (IID) {
4907 case Intrinsic::fabs:
4908 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
4909 break;
4910 case Intrinsic::bswap:
4911 // bswap(bswap(x)) -> x
4912 if (match(Op0, m_BSwap(m_Value(X)))) return X;
4913 break;
4914 case Intrinsic::bitreverse:
4915 // bitreverse(bitreverse(x)) -> x
4916 if (match(Op0, m_BitReverse(m_Value(X)))) return X;
4917 break;
4918 case Intrinsic::exp:
4919 // exp(log(x)) -> x
4920 if (Q.CxtI->hasAllowReassoc() &&
4921 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
4922 break;
4923 case Intrinsic::exp2:
4924 // exp2(log2(x)) -> x
4925 if (Q.CxtI->hasAllowReassoc() &&
4926 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
4927 break;
4928 case Intrinsic::log:
4929 // log(exp(x)) -> x
4930 if (Q.CxtI->hasAllowReassoc() &&
4931 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
4932 break;
4933 case Intrinsic::log2:
4934 // log2(exp2(x)) -> x
4935 if (Q.CxtI->hasAllowReassoc() &&
4936 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
4937 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
4938 m_Value(X))))) return X;
4939 break;
4940 case Intrinsic::log10:
4941 // log10(pow(10.0, x)) -> x
4942 if (Q.CxtI->hasAllowReassoc() &&
4943 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
4944 m_Value(X)))) return X;
4945 break;
4946 case Intrinsic::floor:
4947 case Intrinsic::trunc:
4948 case Intrinsic::ceil:
4949 case Intrinsic::round:
4950 case Intrinsic::nearbyint:
4951 case Intrinsic::rint: {
4952 // floor (sitofp x) -> sitofp x
4953 // floor (uitofp x) -> uitofp x
4955 // Converting from int always results in a finite integral number or
4956 // infinity. For either of those inputs, these rounding functions always
4957 // return the same value, so the rounding can be eliminated.
4958 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
4959 return Op0;
4960 break;
4962 default:
4963 break;
4966 return nullptr;
4969 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
4970 const SimplifyQuery &Q) {
4971 Intrinsic::ID IID = F->getIntrinsicID();
4972 Type *ReturnType = F->getReturnType();
4973 switch (IID) {
4974 case Intrinsic::usub_with_overflow:
4975 case Intrinsic::ssub_with_overflow:
4976 // X - X -> { 0, false }
4977 if (Op0 == Op1)
4978 return Constant::getNullValue(ReturnType);
4979 LLVM_FALLTHROUGH;
4980 case Intrinsic::uadd_with_overflow:
4981 case Intrinsic::sadd_with_overflow:
4982 // X - undef -> { undef, false }
4983 // undef - X -> { undef, false }
4984 // X + undef -> { undef, false }
4985 // undef + x -> { undef, false }
4986 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) {
4987 return ConstantStruct::get(
4988 cast<StructType>(ReturnType),
4989 {UndefValue::get(ReturnType->getStructElementType(0)),
4990 Constant::getNullValue(ReturnType->getStructElementType(1))});
4992 break;
4993 case Intrinsic::umul_with_overflow:
4994 case Intrinsic::smul_with_overflow:
4995 // 0 * X -> { 0, false }
4996 // X * 0 -> { 0, false }
4997 if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
4998 return Constant::getNullValue(ReturnType);
4999 // undef * X -> { 0, false }
5000 // X * undef -> { 0, false }
5001 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
5002 return Constant::getNullValue(ReturnType);
5003 break;
5004 case Intrinsic::uadd_sat:
5005 // sat(MAX + X) -> MAX
5006 // sat(X + MAX) -> MAX
5007 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5008 return Constant::getAllOnesValue(ReturnType);
5009 LLVM_FALLTHROUGH;
5010 case Intrinsic::sadd_sat:
5011 // sat(X + undef) -> -1
5012 // sat(undef + X) -> -1
5013 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5014 // For signed: Assume undef is ~X, in which case X + ~X = -1.
5015 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
5016 return Constant::getAllOnesValue(ReturnType);
5018 // X + 0 -> X
5019 if (match(Op1, m_Zero()))
5020 return Op0;
5021 // 0 + X -> X
5022 if (match(Op0, m_Zero()))
5023 return Op1;
5024 break;
5025 case Intrinsic::usub_sat:
5026 // sat(0 - X) -> 0, sat(X - MAX) -> 0
5027 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5028 return Constant::getNullValue(ReturnType);
5029 LLVM_FALLTHROUGH;
5030 case Intrinsic::ssub_sat:
5031 // X - X -> 0, X - undef -> 0, undef - X -> 0
5032 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef()))
5033 return Constant::getNullValue(ReturnType);
5034 // X - 0 -> X
5035 if (match(Op1, m_Zero()))
5036 return Op0;
5037 break;
5038 case Intrinsic::load_relative:
5039 if (auto *C0 = dyn_cast<Constant>(Op0))
5040 if (auto *C1 = dyn_cast<Constant>(Op1))
5041 return SimplifyRelativeLoad(C0, C1, Q.DL);
5042 break;
5043 case Intrinsic::powi:
5044 if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5045 // powi(x, 0) -> 1.0
5046 if (Power->isZero())
5047 return ConstantFP::get(Op0->getType(), 1.0);
5048 // powi(x, 1) -> x
5049 if (Power->isOne())
5050 return Op0;
5052 break;
5053 case Intrinsic::maxnum:
5054 case Intrinsic::minnum:
5055 case Intrinsic::maximum:
5056 case Intrinsic::minimum: {
5057 // If the arguments are the same, this is a no-op.
5058 if (Op0 == Op1) return Op0;
5060 // If one argument is undef, return the other argument.
5061 if (match(Op0, m_Undef()))
5062 return Op1;
5063 if (match(Op1, m_Undef()))
5064 return Op0;
5066 // If one argument is NaN, return other or NaN appropriately.
5067 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5068 if (match(Op0, m_NaN()))
5069 return PropagateNaN ? Op0 : Op1;
5070 if (match(Op1, m_NaN()))
5071 return PropagateNaN ? Op1 : Op0;
5073 // Min/max of the same operation with common operand:
5074 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5075 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5076 if (M0->getIntrinsicID() == IID &&
5077 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5078 return Op0;
5079 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5080 if (M1->getIntrinsicID() == IID &&
5081 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5082 return Op1;
5084 // min(X, -Inf) --> -Inf (and commuted variant)
5085 // max(X, +Inf) --> +Inf (and commuted variant)
5086 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum;
5087 const APFloat *C;
5088 if ((match(Op0, m_APFloat(C)) && C->isInfinity() &&
5089 C->isNegative() == UseNegInf) ||
5090 (match(Op1, m_APFloat(C)) && C->isInfinity() &&
5091 C->isNegative() == UseNegInf))
5092 return ConstantFP::getInfinity(ReturnType, UseNegInf);
5094 // TODO: minnum(nnan x, inf) -> x
5095 // TODO: minnum(nnan ninf x, flt_max) -> x
5096 // TODO: maxnum(nnan x, -inf) -> x
5097 // TODO: maxnum(nnan ninf x, -flt_max) -> x
5098 break;
5100 default:
5101 break;
5104 return nullptr;
5107 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5109 // Intrinsics with no operands have some kind of side effect. Don't simplify.
5110 unsigned NumOperands = Call->getNumArgOperands();
5111 if (!NumOperands)
5112 return nullptr;
5114 Function *F = cast<Function>(Call->getCalledFunction());
5115 Intrinsic::ID IID = F->getIntrinsicID();
5116 if (NumOperands == 1)
5117 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5119 if (NumOperands == 2)
5120 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5121 Call->getArgOperand(1), Q);
5123 // Handle intrinsics with 3 or more arguments.
5124 switch (IID) {
5125 case Intrinsic::masked_load:
5126 case Intrinsic::masked_gather: {
5127 Value *MaskArg = Call->getArgOperand(2);
5128 Value *PassthruArg = Call->getArgOperand(3);
5129 // If the mask is all zeros or undef, the "passthru" argument is the result.
5130 if (maskIsAllZeroOrUndef(MaskArg))
5131 return PassthruArg;
5132 return nullptr;
5134 case Intrinsic::fshl:
5135 case Intrinsic::fshr: {
5136 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5137 *ShAmtArg = Call->getArgOperand(2);
5139 // If both operands are undef, the result is undef.
5140 if (match(Op0, m_Undef()) && match(Op1, m_Undef()))
5141 return UndefValue::get(F->getReturnType());
5143 // If shift amount is undef, assume it is zero.
5144 if (match(ShAmtArg, m_Undef()))
5145 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5147 const APInt *ShAmtC;
5148 if (match(ShAmtArg, m_APInt(ShAmtC))) {
5149 // If there's effectively no shift, return the 1st arg or 2nd arg.
5150 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5151 if (ShAmtC->urem(BitWidth).isNullValue())
5152 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5154 return nullptr;
5156 default:
5157 return nullptr;
5161 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
5162 Value *Callee = Call->getCalledValue();
5164 // call undef -> undef
5165 // call null -> undef
5166 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
5167 return UndefValue::get(Call->getType());
5169 Function *F = dyn_cast<Function>(Callee);
5170 if (!F)
5171 return nullptr;
5173 if (F->isIntrinsic())
5174 if (Value *Ret = simplifyIntrinsic(Call, Q))
5175 return Ret;
5177 if (!canConstantFoldCallTo(Call, F))
5178 return nullptr;
5180 SmallVector<Constant *, 4> ConstantArgs;
5181 unsigned NumArgs = Call->getNumArgOperands();
5182 ConstantArgs.reserve(NumArgs);
5183 for (auto &Arg : Call->args()) {
5184 Constant *C = dyn_cast<Constant>(&Arg);
5185 if (!C)
5186 return nullptr;
5187 ConstantArgs.push_back(C);
5190 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
5193 /// See if we can compute a simplified version of this instruction.
5194 /// If not, this returns null.
5196 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
5197 OptimizationRemarkEmitter *ORE) {
5198 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
5199 Value *Result;
5201 switch (I->getOpcode()) {
5202 default:
5203 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
5204 break;
5205 case Instruction::FNeg:
5206 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
5207 break;
5208 case Instruction::FAdd:
5209 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
5210 I->getFastMathFlags(), Q);
5211 break;
5212 case Instruction::Add:
5213 Result =
5214 SimplifyAddInst(I->getOperand(0), I->getOperand(1),
5215 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5216 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5217 break;
5218 case Instruction::FSub:
5219 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
5220 I->getFastMathFlags(), Q);
5221 break;
5222 case Instruction::Sub:
5223 Result =
5224 SimplifySubInst(I->getOperand(0), I->getOperand(1),
5225 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5226 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5227 break;
5228 case Instruction::FMul:
5229 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
5230 I->getFastMathFlags(), Q);
5231 break;
5232 case Instruction::Mul:
5233 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
5234 break;
5235 case Instruction::SDiv:
5236 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
5237 break;
5238 case Instruction::UDiv:
5239 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
5240 break;
5241 case Instruction::FDiv:
5242 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
5243 I->getFastMathFlags(), Q);
5244 break;
5245 case Instruction::SRem:
5246 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
5247 break;
5248 case Instruction::URem:
5249 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
5250 break;
5251 case Instruction::FRem:
5252 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
5253 I->getFastMathFlags(), Q);
5254 break;
5255 case Instruction::Shl:
5256 Result =
5257 SimplifyShlInst(I->getOperand(0), I->getOperand(1),
5258 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5259 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5260 break;
5261 case Instruction::LShr:
5262 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
5263 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5264 break;
5265 case Instruction::AShr:
5266 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
5267 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5268 break;
5269 case Instruction::And:
5270 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
5271 break;
5272 case Instruction::Or:
5273 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
5274 break;
5275 case Instruction::Xor:
5276 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
5277 break;
5278 case Instruction::ICmp:
5279 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
5280 I->getOperand(0), I->getOperand(1), Q);
5281 break;
5282 case Instruction::FCmp:
5283 Result =
5284 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
5285 I->getOperand(1), I->getFastMathFlags(), Q);
5286 break;
5287 case Instruction::Select:
5288 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
5289 I->getOperand(2), Q);
5290 break;
5291 case Instruction::GetElementPtr: {
5292 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
5293 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
5294 Ops, Q);
5295 break;
5297 case Instruction::InsertValue: {
5298 InsertValueInst *IV = cast<InsertValueInst>(I);
5299 Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
5300 IV->getInsertedValueOperand(),
5301 IV->getIndices(), Q);
5302 break;
5304 case Instruction::InsertElement: {
5305 auto *IE = cast<InsertElementInst>(I);
5306 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
5307 IE->getOperand(2), Q);
5308 break;
5310 case Instruction::ExtractValue: {
5311 auto *EVI = cast<ExtractValueInst>(I);
5312 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
5313 EVI->getIndices(), Q);
5314 break;
5316 case Instruction::ExtractElement: {
5317 auto *EEI = cast<ExtractElementInst>(I);
5318 Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
5319 EEI->getIndexOperand(), Q);
5320 break;
5322 case Instruction::ShuffleVector: {
5323 auto *SVI = cast<ShuffleVectorInst>(I);
5324 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5325 SVI->getMask(), SVI->getType(), Q);
5326 break;
5328 case Instruction::PHI:
5329 Result = SimplifyPHINode(cast<PHINode>(I), Q);
5330 break;
5331 case Instruction::Call: {
5332 Result = SimplifyCall(cast<CallInst>(I), Q);
5333 break;
5335 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5336 #include "llvm/IR/Instruction.def"
5337 #undef HANDLE_CAST_INST
5338 Result =
5339 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
5340 break;
5341 case Instruction::Alloca:
5342 // No simplifications for Alloca and it can't be constant folded.
5343 Result = nullptr;
5344 break;
5347 // In general, it is possible for computeKnownBits to determine all bits in a
5348 // value even when the operands are not all constants.
5349 if (!Result && I->getType()->isIntOrIntVectorTy()) {
5350 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
5351 if (Known.isConstant())
5352 Result = ConstantInt::get(I->getType(), Known.getConstant());
5355 /// If called on unreachable code, the above logic may report that the
5356 /// instruction simplified to itself. Make life easier for users by
5357 /// detecting that case here, returning a safe value instead.
5358 return Result == I ? UndefValue::get(I->getType()) : Result;
5361 /// Implementation of recursive simplification through an instruction's
5362 /// uses.
5364 /// This is the common implementation of the recursive simplification routines.
5365 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5366 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5367 /// instructions to process and attempt to simplify it using
5368 /// InstructionSimplify. Recursively visited users which could not be
5369 /// simplified themselves are to the optional UnsimplifiedUsers set for
5370 /// further processing by the caller.
5372 /// This routine returns 'true' only when *it* simplifies something. The passed
5373 /// in simplified value does not count toward this.
5374 static bool replaceAndRecursivelySimplifyImpl(
5375 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5376 const DominatorTree *DT, AssumptionCache *AC,
5377 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
5378 bool Simplified = false;
5379 SmallSetVector<Instruction *, 8> Worklist;
5380 const DataLayout &DL = I->getModule()->getDataLayout();
5382 // If we have an explicit value to collapse to, do that round of the
5383 // simplification loop by hand initially.
5384 if (SimpleV) {
5385 for (User *U : I->users())
5386 if (U != I)
5387 Worklist.insert(cast<Instruction>(U));
5389 // Replace the instruction with its simplified value.
5390 I->replaceAllUsesWith(SimpleV);
5392 // Gracefully handle edge cases where the instruction is not wired into any
5393 // parent block.
5394 if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5395 !I->mayHaveSideEffects())
5396 I->eraseFromParent();
5397 } else {
5398 Worklist.insert(I);
5401 // Note that we must test the size on each iteration, the worklist can grow.
5402 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
5403 I = Worklist[Idx];
5405 // See if this instruction simplifies.
5406 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
5407 if (!SimpleV) {
5408 if (UnsimplifiedUsers)
5409 UnsimplifiedUsers->insert(I);
5410 continue;
5413 Simplified = true;
5415 // Stash away all the uses of the old instruction so we can check them for
5416 // recursive simplifications after a RAUW. This is cheaper than checking all
5417 // uses of To on the recursive step in most cases.
5418 for (User *U : I->users())
5419 Worklist.insert(cast<Instruction>(U));
5421 // Replace the instruction with its simplified value.
5422 I->replaceAllUsesWith(SimpleV);
5424 // Gracefully handle edge cases where the instruction is not wired into any
5425 // parent block.
5426 if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5427 !I->mayHaveSideEffects())
5428 I->eraseFromParent();
5430 return Simplified;
5433 bool llvm::recursivelySimplifyInstruction(Instruction *I,
5434 const TargetLibraryInfo *TLI,
5435 const DominatorTree *DT,
5436 AssumptionCache *AC) {
5437 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr);
5440 bool llvm::replaceAndRecursivelySimplify(
5441 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5442 const DominatorTree *DT, AssumptionCache *AC,
5443 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
5444 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
5445 assert(SimpleV && "Must provide a simplified value.");
5446 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
5447 UnsimplifiedUsers);
5450 namespace llvm {
5451 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
5452 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
5453 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
5454 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5455 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
5456 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
5457 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
5458 return {F.getParent()->getDataLayout(), TLI, DT, AC};
5461 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
5462 const DataLayout &DL) {
5463 return {DL, &AR.TLI, &AR.DT, &AR.AC};
5466 template <class T, class... TArgs>
5467 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
5468 Function &F) {
5469 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
5470 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
5471 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
5472 return {F.getParent()->getDataLayout(), TLI, DT, AC};
5474 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
5475 Function &);