[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Analysis / LazyValueInfo.cpp
blob96722f32e3550a39e7edbc503edacbdd4ec38a04
1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for lazy computation of value constraint
10 // information.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/LazyValueInfo.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Analysis/ValueLattice.h"
24 #include "llvm/IR/AssemblyAnnotationWriter.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <map>
40 using namespace llvm;
41 using namespace PatternMatch;
43 #define DEBUG_TYPE "lazy-value-info"
45 // This is the number of worklist items we will process to try to discover an
46 // answer for a given value.
47 static const unsigned MaxProcessedPerValue = 500;
49 char LazyValueInfoWrapperPass::ID = 0;
50 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
51 "Lazy Value Information Analysis", false, true)
52 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
53 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
54 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
55 "Lazy Value Information Analysis", false, true)
57 namespace llvm {
58 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
61 AnalysisKey LazyValueAnalysis::Key;
63 /// Returns true if this lattice value represents at most one possible value.
64 /// This is as precise as any lattice value can get while still representing
65 /// reachable code.
66 static bool hasSingleValue(const ValueLatticeElement &Val) {
67 if (Val.isConstantRange() &&
68 Val.getConstantRange().isSingleElement())
69 // Integer constants are single element ranges
70 return true;
71 if (Val.isConstant())
72 // Non integer constants
73 return true;
74 return false;
77 /// Combine two sets of facts about the same value into a single set of
78 /// facts. Note that this method is not suitable for merging facts along
79 /// different paths in a CFG; that's what the mergeIn function is for. This
80 /// is for merging facts gathered about the same value at the same location
81 /// through two independent means.
82 /// Notes:
83 /// * This method does not promise to return the most precise possible lattice
84 /// value implied by A and B. It is allowed to return any lattice element
85 /// which is at least as strong as *either* A or B (unless our facts
86 /// conflict, see below).
87 /// * Due to unreachable code, the intersection of two lattice values could be
88 /// contradictory. If this happens, we return some valid lattice value so as
89 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
90 /// we do not make this guarantee. TODO: This would be a useful enhancement.
91 static ValueLatticeElement intersect(const ValueLatticeElement &A,
92 const ValueLatticeElement &B) {
93 // Undefined is the strongest state. It means the value is known to be along
94 // an unreachable path.
95 if (A.isUndefined())
96 return A;
97 if (B.isUndefined())
98 return B;
100 // If we gave up for one, but got a useable fact from the other, use it.
101 if (A.isOverdefined())
102 return B;
103 if (B.isOverdefined())
104 return A;
106 // Can't get any more precise than constants.
107 if (hasSingleValue(A))
108 return A;
109 if (hasSingleValue(B))
110 return B;
112 // Could be either constant range or not constant here.
113 if (!A.isConstantRange() || !B.isConstantRange()) {
114 // TODO: Arbitrary choice, could be improved
115 return A;
118 // Intersect two constant ranges
119 ConstantRange Range =
120 A.getConstantRange().intersectWith(B.getConstantRange());
121 // Note: An empty range is implicitly converted to overdefined internally.
122 // TODO: We could instead use Undefined here since we've proven a conflict
123 // and thus know this path must be unreachable.
124 return ValueLatticeElement::getRange(std::move(Range));
127 //===----------------------------------------------------------------------===//
128 // LazyValueInfoCache Decl
129 //===----------------------------------------------------------------------===//
131 namespace {
132 /// A callback value handle updates the cache when values are erased.
133 class LazyValueInfoCache;
134 struct LVIValueHandle final : public CallbackVH {
135 // Needs to access getValPtr(), which is protected.
136 friend struct DenseMapInfo<LVIValueHandle>;
138 LazyValueInfoCache *Parent;
140 LVIValueHandle(Value *V, LazyValueInfoCache *P)
141 : CallbackVH(V), Parent(P) { }
143 void deleted() override;
144 void allUsesReplacedWith(Value *V) override {
145 deleted();
148 } // end anonymous namespace
150 namespace {
151 /// This is the cache kept by LazyValueInfo which
152 /// maintains information about queries across the clients' queries.
153 class LazyValueInfoCache {
154 /// This is all of the cached block information for exactly one Value*.
155 /// The entries are sorted by the BasicBlock* of the
156 /// entries, allowing us to do a lookup with a binary search.
157 /// Over-defined lattice values are recorded in OverDefinedCache to reduce
158 /// memory overhead.
159 struct ValueCacheEntryTy {
160 ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {}
161 LVIValueHandle Handle;
162 SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals;
165 /// This tracks, on a per-block basis, the set of values that are
166 /// over-defined at the end of that block.
167 typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>>
168 OverDefinedCacheTy;
169 /// Keep track of all blocks that we have ever seen, so we
170 /// don't spend time removing unused blocks from our caches.
171 DenseSet<PoisoningVH<BasicBlock> > SeenBlocks;
173 /// This is all of the cached information for all values,
174 /// mapped from Value* to key information.
175 DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache;
176 OverDefinedCacheTy OverDefinedCache;
179 public:
180 void insertResult(Value *Val, BasicBlock *BB,
181 const ValueLatticeElement &Result) {
182 SeenBlocks.insert(BB);
184 // Insert over-defined values into their own cache to reduce memory
185 // overhead.
186 if (Result.isOverdefined())
187 OverDefinedCache[BB].insert(Val);
188 else {
189 auto It = ValueCache.find_as(Val);
190 if (It == ValueCache.end()) {
191 ValueCache[Val] = std::make_unique<ValueCacheEntryTy>(Val, this);
192 It = ValueCache.find_as(Val);
193 assert(It != ValueCache.end() && "Val was just added to the map!");
195 It->second->BlockVals[BB] = Result;
199 bool isOverdefined(Value *V, BasicBlock *BB) const {
200 auto ODI = OverDefinedCache.find(BB);
202 if (ODI == OverDefinedCache.end())
203 return false;
205 return ODI->second.count(V);
208 bool hasCachedValueInfo(Value *V, BasicBlock *BB) const {
209 if (isOverdefined(V, BB))
210 return true;
212 auto I = ValueCache.find_as(V);
213 if (I == ValueCache.end())
214 return false;
216 return I->second->BlockVals.count(BB);
219 ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const {
220 if (isOverdefined(V, BB))
221 return ValueLatticeElement::getOverdefined();
223 auto I = ValueCache.find_as(V);
224 if (I == ValueCache.end())
225 return ValueLatticeElement();
226 auto BBI = I->second->BlockVals.find(BB);
227 if (BBI == I->second->BlockVals.end())
228 return ValueLatticeElement();
229 return BBI->second;
232 /// clear - Empty the cache.
233 void clear() {
234 SeenBlocks.clear();
235 ValueCache.clear();
236 OverDefinedCache.clear();
239 /// Inform the cache that a given value has been deleted.
240 void eraseValue(Value *V);
242 /// This is part of the update interface to inform the cache
243 /// that a block has been deleted.
244 void eraseBlock(BasicBlock *BB);
246 /// Updates the cache to remove any influence an overdefined value in
247 /// OldSucc might have (unless also overdefined in NewSucc). This just
248 /// flushes elements from the cache and does not add any.
249 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
251 friend struct LVIValueHandle;
255 void LazyValueInfoCache::eraseValue(Value *V) {
256 for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) {
257 // Copy and increment the iterator immediately so we can erase behind
258 // ourselves.
259 auto Iter = I++;
260 SmallPtrSetImpl<Value *> &ValueSet = Iter->second;
261 ValueSet.erase(V);
262 if (ValueSet.empty())
263 OverDefinedCache.erase(Iter);
266 ValueCache.erase(V);
269 void LVIValueHandle::deleted() {
270 // This erasure deallocates *this, so it MUST happen after we're done
271 // using any and all members of *this.
272 Parent->eraseValue(*this);
275 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
276 // Shortcut if we have never seen this block.
277 DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
278 if (I == SeenBlocks.end())
279 return;
280 SeenBlocks.erase(I);
282 auto ODI = OverDefinedCache.find(BB);
283 if (ODI != OverDefinedCache.end())
284 OverDefinedCache.erase(ODI);
286 for (auto &I : ValueCache)
287 I.second->BlockVals.erase(BB);
290 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
291 BasicBlock *NewSucc) {
292 // When an edge in the graph has been threaded, values that we could not
293 // determine a value for before (i.e. were marked overdefined) may be
294 // possible to solve now. We do NOT try to proactively update these values.
295 // Instead, we clear their entries from the cache, and allow lazy updating to
296 // recompute them when needed.
298 // The updating process is fairly simple: we need to drop cached info
299 // for all values that were marked overdefined in OldSucc, and for those same
300 // values in any successor of OldSucc (except NewSucc) in which they were
301 // also marked overdefined.
302 std::vector<BasicBlock*> worklist;
303 worklist.push_back(OldSucc);
305 auto I = OverDefinedCache.find(OldSucc);
306 if (I == OverDefinedCache.end())
307 return; // Nothing to process here.
308 SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end());
310 // Use a worklist to perform a depth-first search of OldSucc's successors.
311 // NOTE: We do not need a visited list since any blocks we have already
312 // visited will have had their overdefined markers cleared already, and we
313 // thus won't loop to their successors.
314 while (!worklist.empty()) {
315 BasicBlock *ToUpdate = worklist.back();
316 worklist.pop_back();
318 // Skip blocks only accessible through NewSucc.
319 if (ToUpdate == NewSucc) continue;
321 // If a value was marked overdefined in OldSucc, and is here too...
322 auto OI = OverDefinedCache.find(ToUpdate);
323 if (OI == OverDefinedCache.end())
324 continue;
325 SmallPtrSetImpl<Value *> &ValueSet = OI->second;
327 bool changed = false;
328 for (Value *V : ValsToClear) {
329 if (!ValueSet.erase(V))
330 continue;
332 // If we removed anything, then we potentially need to update
333 // blocks successors too.
334 changed = true;
336 if (ValueSet.empty()) {
337 OverDefinedCache.erase(OI);
338 break;
342 if (!changed) continue;
344 worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
349 namespace {
350 /// An assembly annotator class to print LazyValueCache information in
351 /// comments.
352 class LazyValueInfoImpl;
353 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
354 LazyValueInfoImpl *LVIImpl;
355 // While analyzing which blocks we can solve values for, we need the dominator
356 // information. Since this is an optional parameter in LVI, we require this
357 // DomTreeAnalysis pass in the printer pass, and pass the dominator
358 // tree to the LazyValueInfoAnnotatedWriter.
359 DominatorTree &DT;
361 public:
362 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
363 : LVIImpl(L), DT(DTree) {}
365 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
366 formatted_raw_ostream &OS);
368 virtual void emitInstructionAnnot(const Instruction *I,
369 formatted_raw_ostream &OS);
372 namespace {
373 // The actual implementation of the lazy analysis and update. Note that the
374 // inheritance from LazyValueInfoCache is intended to be temporary while
375 // splitting the code and then transitioning to a has-a relationship.
376 class LazyValueInfoImpl {
378 /// Cached results from previous queries
379 LazyValueInfoCache TheCache;
381 /// This stack holds the state of the value solver during a query.
382 /// It basically emulates the callstack of the naive
383 /// recursive value lookup process.
384 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
386 /// Keeps track of which block-value pairs are in BlockValueStack.
387 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
389 /// Push BV onto BlockValueStack unless it's already in there.
390 /// Returns true on success.
391 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
392 if (!BlockValueSet.insert(BV).second)
393 return false; // It's already in the stack.
395 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
396 << BV.first->getName() << "\n");
397 BlockValueStack.push_back(BV);
398 return true;
401 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls.
402 const DataLayout &DL; ///< A mandatory DataLayout
403 DominatorTree *DT; ///< An optional DT pointer.
404 DominatorTree *DisabledDT; ///< Stores DT if it's disabled.
406 ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB);
407 bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
408 ValueLatticeElement &Result, Instruction *CxtI = nullptr);
409 bool hasBlockValue(Value *Val, BasicBlock *BB);
411 // These methods process one work item and may add more. A false value
412 // returned means that the work item was not completely processed and must
413 // be revisited after going through the new items.
414 bool solveBlockValue(Value *Val, BasicBlock *BB);
415 bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val,
416 BasicBlock *BB);
417 bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val,
418 BasicBlock *BB);
419 bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN,
420 BasicBlock *BB);
421 bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S,
422 BasicBlock *BB);
423 Optional<ConstantRange> getRangeForOperand(unsigned Op, Instruction *I,
424 BasicBlock *BB);
425 bool solveBlockValueBinaryOpImpl(
426 ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB,
427 std::function<ConstantRange(const ConstantRange &,
428 const ConstantRange &)> OpFn);
429 bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI,
430 BasicBlock *BB);
431 bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI,
432 BasicBlock *BB);
433 bool solveBlockValueOverflowIntrinsic(
434 ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB);
435 bool solveBlockValueIntrinsic(ValueLatticeElement &BBLV, IntrinsicInst *II,
436 BasicBlock *BB);
437 bool solveBlockValueExtractValue(ValueLatticeElement &BBLV,
438 ExtractValueInst *EVI, BasicBlock *BB);
439 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
440 ValueLatticeElement &BBLV,
441 Instruction *BBI);
443 void solve();
445 public:
446 /// This is the query interface to determine the lattice
447 /// value for the specified Value* at the end of the specified block.
448 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
449 Instruction *CxtI = nullptr);
451 /// This is the query interface to determine the lattice
452 /// value for the specified Value* at the specified instruction (generally
453 /// from an assume intrinsic).
454 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
456 /// This is the query interface to determine the lattice
457 /// value for the specified Value* that is true on the specified edge.
458 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
459 BasicBlock *ToBB,
460 Instruction *CxtI = nullptr);
462 /// Complete flush all previously computed values
463 void clear() {
464 TheCache.clear();
467 /// Printing the LazyValueInfo Analysis.
468 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
469 LazyValueInfoAnnotatedWriter Writer(this, DTree);
470 F.print(OS, &Writer);
473 /// This is part of the update interface to inform the cache
474 /// that a block has been deleted.
475 void eraseBlock(BasicBlock *BB) {
476 TheCache.eraseBlock(BB);
479 /// Disables use of the DominatorTree within LVI.
480 void disableDT() {
481 if (DT) {
482 assert(!DisabledDT && "Both DT and DisabledDT are not nullptr!");
483 std::swap(DT, DisabledDT);
487 /// Enables use of the DominatorTree within LVI. Does nothing if the class
488 /// instance was initialized without a DT pointer.
489 void enableDT() {
490 if (DisabledDT) {
491 assert(!DT && "Both DT and DisabledDT are not nullptr!");
492 std::swap(DT, DisabledDT);
496 /// This is the update interface to inform the cache that an edge from
497 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
498 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
500 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
501 DominatorTree *DT = nullptr)
502 : AC(AC), DL(DL), DT(DT), DisabledDT(nullptr) {}
504 } // end anonymous namespace
507 void LazyValueInfoImpl::solve() {
508 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
509 BlockValueStack.begin(), BlockValueStack.end());
511 unsigned processedCount = 0;
512 while (!BlockValueStack.empty()) {
513 processedCount++;
514 // Abort if we have to process too many values to get a result for this one.
515 // Because of the design of the overdefined cache currently being per-block
516 // to avoid naming-related issues (IE it wants to try to give different
517 // results for the same name in different blocks), overdefined results don't
518 // get cached globally, which in turn means we will often try to rediscover
519 // the same overdefined result again and again. Once something like
520 // PredicateInfo is used in LVI or CVP, we should be able to make the
521 // overdefined cache global, and remove this throttle.
522 if (processedCount > MaxProcessedPerValue) {
523 LLVM_DEBUG(
524 dbgs() << "Giving up on stack because we are getting too deep\n");
525 // Fill in the original values
526 while (!StartingStack.empty()) {
527 std::pair<BasicBlock *, Value *> &e = StartingStack.back();
528 TheCache.insertResult(e.second, e.first,
529 ValueLatticeElement::getOverdefined());
530 StartingStack.pop_back();
532 BlockValueSet.clear();
533 BlockValueStack.clear();
534 return;
536 std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
537 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
539 if (solveBlockValue(e.second, e.first)) {
540 // The work item was completely processed.
541 assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
542 assert(TheCache.hasCachedValueInfo(e.second, e.first) &&
543 "Result should be in cache!");
545 LLVM_DEBUG(
546 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
547 << TheCache.getCachedValueInfo(e.second, e.first) << "\n");
549 BlockValueStack.pop_back();
550 BlockValueSet.erase(e);
551 } else {
552 // More work needs to be done before revisiting.
553 assert(BlockValueStack.back() != e && "Stack should have been pushed!");
558 bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) {
559 // If already a constant, there is nothing to compute.
560 if (isa<Constant>(Val))
561 return true;
563 return TheCache.hasCachedValueInfo(Val, BB);
566 ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val,
567 BasicBlock *BB) {
568 // If already a constant, there is nothing to compute.
569 if (Constant *VC = dyn_cast<Constant>(Val))
570 return ValueLatticeElement::get(VC);
572 return TheCache.getCachedValueInfo(Val, BB);
575 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
576 switch (BBI->getOpcode()) {
577 default: break;
578 case Instruction::Load:
579 case Instruction::Call:
580 case Instruction::Invoke:
581 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
582 if (isa<IntegerType>(BBI->getType())) {
583 return ValueLatticeElement::getRange(
584 getConstantRangeFromMetadata(*Ranges));
586 break;
588 // Nothing known - will be intersected with other facts
589 return ValueLatticeElement::getOverdefined();
592 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
593 if (isa<Constant>(Val))
594 return true;
596 if (TheCache.hasCachedValueInfo(Val, BB)) {
597 // If we have a cached value, use that.
598 LLVM_DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val="
599 << TheCache.getCachedValueInfo(Val, BB) << '\n');
601 // Since we're reusing a cached value, we don't need to update the
602 // OverDefinedCache. The cache will have been properly updated whenever the
603 // cached value was inserted.
604 return true;
607 // Hold off inserting this value into the Cache in case we have to return
608 // false and come back later.
609 ValueLatticeElement Res;
610 if (!solveBlockValueImpl(Res, Val, BB))
611 // Work pushed, will revisit
612 return false;
614 TheCache.insertResult(Val, BB, Res);
615 return true;
618 bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res,
619 Value *Val, BasicBlock *BB) {
621 Instruction *BBI = dyn_cast<Instruction>(Val);
622 if (!BBI || BBI->getParent() != BB)
623 return solveBlockValueNonLocal(Res, Val, BB);
625 if (PHINode *PN = dyn_cast<PHINode>(BBI))
626 return solveBlockValuePHINode(Res, PN, BB);
628 if (auto *SI = dyn_cast<SelectInst>(BBI))
629 return solveBlockValueSelect(Res, SI, BB);
631 // If this value is a nonnull pointer, record it's range and bailout. Note
632 // that for all other pointer typed values, we terminate the search at the
633 // definition. We could easily extend this to look through geps, bitcasts,
634 // and the like to prove non-nullness, but it's not clear that's worth it
635 // compile time wise. The context-insensitive value walk done inside
636 // isKnownNonZero gets most of the profitable cases at much less expense.
637 // This does mean that we have a sensitivity to where the defining
638 // instruction is placed, even if it could legally be hoisted much higher.
639 // That is unfortunate.
640 PointerType *PT = dyn_cast<PointerType>(BBI->getType());
641 if (PT && isKnownNonZero(BBI, DL)) {
642 Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
643 return true;
645 if (BBI->getType()->isIntegerTy()) {
646 if (auto *CI = dyn_cast<CastInst>(BBI))
647 return solveBlockValueCast(Res, CI, BB);
649 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
650 return solveBlockValueBinaryOp(Res, BO, BB);
652 if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
653 return solveBlockValueExtractValue(Res, EVI, BB);
655 if (auto *II = dyn_cast<IntrinsicInst>(BBI))
656 return solveBlockValueIntrinsic(Res, II, BB);
659 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
660 << "' - unknown inst def found.\n");
661 Res = getFromRangeMetadata(BBI);
662 return true;
665 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
666 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
667 return L->getPointerAddressSpace() == 0 &&
668 GetUnderlyingObject(L->getPointerOperand(),
669 L->getModule()->getDataLayout()) == Ptr;
671 if (StoreInst *S = dyn_cast<StoreInst>(I)) {
672 return S->getPointerAddressSpace() == 0 &&
673 GetUnderlyingObject(S->getPointerOperand(),
674 S->getModule()->getDataLayout()) == Ptr;
676 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
677 if (MI->isVolatile()) return false;
679 // FIXME: check whether it has a valuerange that excludes zero?
680 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
681 if (!Len || Len->isZero()) return false;
683 if (MI->getDestAddressSpace() == 0)
684 if (GetUnderlyingObject(MI->getRawDest(),
685 MI->getModule()->getDataLayout()) == Ptr)
686 return true;
687 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
688 if (MTI->getSourceAddressSpace() == 0)
689 if (GetUnderlyingObject(MTI->getRawSource(),
690 MTI->getModule()->getDataLayout()) == Ptr)
691 return true;
693 return false;
696 /// Return true if the allocation associated with Val is ever dereferenced
697 /// within the given basic block. This establishes the fact Val is not null,
698 /// but does not imply that the memory at Val is dereferenceable. (Val may
699 /// point off the end of the dereferenceable part of the object.)
700 static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) {
701 assert(Val->getType()->isPointerTy());
703 const DataLayout &DL = BB->getModule()->getDataLayout();
704 Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
705 // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
706 // inside InstructionDereferencesPointer either.
707 if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1))
708 for (Instruction &I : *BB)
709 if (InstructionDereferencesPointer(&I, UnderlyingVal))
710 return true;
711 return false;
714 bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV,
715 Value *Val, BasicBlock *BB) {
716 ValueLatticeElement Result; // Start Undefined.
718 // If this is the entry block, we must be asking about an argument. The
719 // value is overdefined.
720 if (BB == &BB->getParent()->getEntryBlock()) {
721 assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
722 // Before giving up, see if we can prove the pointer non-null local to
723 // this particular block.
724 PointerType *PTy = dyn_cast<PointerType>(Val->getType());
725 if (PTy &&
726 (isKnownNonZero(Val, DL) ||
727 (isObjectDereferencedInBlock(Val, BB) &&
728 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())))) {
729 Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
730 } else {
731 Result = ValueLatticeElement::getOverdefined();
733 BBLV = Result;
734 return true;
737 // Loop over all of our predecessors, merging what we know from them into
738 // result. If we encounter an unexplored predecessor, we eagerly explore it
739 // in a depth first manner. In practice, this has the effect of discovering
740 // paths we can't analyze eagerly without spending compile times analyzing
741 // other paths. This heuristic benefits from the fact that predecessors are
742 // frequently arranged such that dominating ones come first and we quickly
743 // find a path to function entry. TODO: We should consider explicitly
744 // canonicalizing to make this true rather than relying on this happy
745 // accident.
746 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
747 ValueLatticeElement EdgeResult;
748 if (!getEdgeValue(Val, *PI, BB, EdgeResult))
749 // Explore that input, then return here
750 return false;
752 Result.mergeIn(EdgeResult, DL);
754 // If we hit overdefined, exit early. The BlockVals entry is already set
755 // to overdefined.
756 if (Result.isOverdefined()) {
757 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
758 << "' - overdefined because of pred (non local).\n");
759 // Before giving up, see if we can prove the pointer non-null local to
760 // this particular block.
761 PointerType *PTy = dyn_cast<PointerType>(Val->getType());
762 if (PTy && isObjectDereferencedInBlock(Val, BB) &&
763 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) {
764 Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
767 BBLV = Result;
768 return true;
772 // Return the merged value, which is more precise than 'overdefined'.
773 assert(!Result.isOverdefined());
774 BBLV = Result;
775 return true;
778 bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV,
779 PHINode *PN, BasicBlock *BB) {
780 ValueLatticeElement Result; // Start Undefined.
782 // Loop over all of our predecessors, merging what we know from them into
783 // result. See the comment about the chosen traversal order in
784 // solveBlockValueNonLocal; the same reasoning applies here.
785 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
786 BasicBlock *PhiBB = PN->getIncomingBlock(i);
787 Value *PhiVal = PN->getIncomingValue(i);
788 ValueLatticeElement EdgeResult;
789 // Note that we can provide PN as the context value to getEdgeValue, even
790 // though the results will be cached, because PN is the value being used as
791 // the cache key in the caller.
792 if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN))
793 // Explore that input, then return here
794 return false;
796 Result.mergeIn(EdgeResult, DL);
798 // If we hit overdefined, exit early. The BlockVals entry is already set
799 // to overdefined.
800 if (Result.isOverdefined()) {
801 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
802 << "' - overdefined because of pred (local).\n");
804 BBLV = Result;
805 return true;
809 // Return the merged value, which is more precise than 'overdefined'.
810 assert(!Result.isOverdefined() && "Possible PHI in entry block?");
811 BBLV = Result;
812 return true;
815 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
816 bool isTrueDest = true);
818 // If we can determine a constraint on the value given conditions assumed by
819 // the program, intersect those constraints with BBLV
820 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
821 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
822 BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
823 if (!BBI)
824 return;
826 for (auto &AssumeVH : AC->assumptionsFor(Val)) {
827 if (!AssumeVH)
828 continue;
829 auto *I = cast<CallInst>(AssumeVH);
830 if (!isValidAssumeForContext(I, BBI, DT))
831 continue;
833 BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
836 // If guards are not used in the module, don't spend time looking for them
837 auto *GuardDecl = BBI->getModule()->getFunction(
838 Intrinsic::getName(Intrinsic::experimental_guard));
839 if (!GuardDecl || GuardDecl->use_empty())
840 return;
842 if (BBI->getIterator() == BBI->getParent()->begin())
843 return;
844 for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()),
845 BBI->getParent()->rend())) {
846 Value *Cond = nullptr;
847 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
848 BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
852 bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV,
853 SelectInst *SI, BasicBlock *BB) {
855 // Recurse on our inputs if needed
856 if (!hasBlockValue(SI->getTrueValue(), BB)) {
857 if (pushBlockValue(std::make_pair(BB, SI->getTrueValue())))
858 return false;
859 BBLV = ValueLatticeElement::getOverdefined();
860 return true;
862 ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB);
863 // If we hit overdefined, don't ask more queries. We want to avoid poisoning
864 // extra slots in the table if we can.
865 if (TrueVal.isOverdefined()) {
866 BBLV = ValueLatticeElement::getOverdefined();
867 return true;
870 if (!hasBlockValue(SI->getFalseValue(), BB)) {
871 if (pushBlockValue(std::make_pair(BB, SI->getFalseValue())))
872 return false;
873 BBLV = ValueLatticeElement::getOverdefined();
874 return true;
876 ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB);
877 // If we hit overdefined, don't ask more queries. We want to avoid poisoning
878 // extra slots in the table if we can.
879 if (FalseVal.isOverdefined()) {
880 BBLV = ValueLatticeElement::getOverdefined();
881 return true;
884 if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
885 const ConstantRange &TrueCR = TrueVal.getConstantRange();
886 const ConstantRange &FalseCR = FalseVal.getConstantRange();
887 Value *LHS = nullptr;
888 Value *RHS = nullptr;
889 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
890 // Is this a min specifically of our two inputs? (Avoid the risk of
891 // ValueTracking getting smarter looking back past our immediate inputs.)
892 if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
893 LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) {
894 ConstantRange ResultCR = [&]() {
895 switch (SPR.Flavor) {
896 default:
897 llvm_unreachable("unexpected minmax type!");
898 case SPF_SMIN: /// Signed minimum
899 return TrueCR.smin(FalseCR);
900 case SPF_UMIN: /// Unsigned minimum
901 return TrueCR.umin(FalseCR);
902 case SPF_SMAX: /// Signed maximum
903 return TrueCR.smax(FalseCR);
904 case SPF_UMAX: /// Unsigned maximum
905 return TrueCR.umax(FalseCR);
907 }();
908 BBLV = ValueLatticeElement::getRange(ResultCR);
909 return true;
912 if (SPR.Flavor == SPF_ABS) {
913 if (LHS == SI->getTrueValue()) {
914 BBLV = ValueLatticeElement::getRange(TrueCR.abs());
915 return true;
917 if (LHS == SI->getFalseValue()) {
918 BBLV = ValueLatticeElement::getRange(FalseCR.abs());
919 return true;
923 if (SPR.Flavor == SPF_NABS) {
924 ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth()));
925 if (LHS == SI->getTrueValue()) {
926 BBLV = ValueLatticeElement::getRange(Zero.sub(TrueCR.abs()));
927 return true;
929 if (LHS == SI->getFalseValue()) {
930 BBLV = ValueLatticeElement::getRange(Zero.sub(FalseCR.abs()));
931 return true;
936 // Can we constrain the facts about the true and false values by using the
937 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5).
938 // TODO: We could potentially refine an overdefined true value above.
939 Value *Cond = SI->getCondition();
940 TrueVal = intersect(TrueVal,
941 getValueFromCondition(SI->getTrueValue(), Cond, true));
942 FalseVal = intersect(FalseVal,
943 getValueFromCondition(SI->getFalseValue(), Cond, false));
945 // Handle clamp idioms such as:
946 // %24 = constantrange<0, 17>
947 // %39 = icmp eq i32 %24, 0
948 // %40 = add i32 %24, -1
949 // %siv.next = select i1 %39, i32 16, i32 %40
950 // %siv.next = constantrange<0, 17> not <-1, 17>
951 // In general, this can handle any clamp idiom which tests the edge
952 // condition via an equality or inequality.
953 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
954 ICmpInst::Predicate Pred = ICI->getPredicate();
955 Value *A = ICI->getOperand(0);
956 if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
957 auto addConstants = [](ConstantInt *A, ConstantInt *B) {
958 assert(A->getType() == B->getType());
959 return ConstantInt::get(A->getType(), A->getValue() + B->getValue());
961 // See if either input is A + C2, subject to the constraint from the
962 // condition that A != C when that input is used. We can assume that
963 // that input doesn't include C + C2.
964 ConstantInt *CIAdded;
965 switch (Pred) {
966 default: break;
967 case ICmpInst::ICMP_EQ:
968 if (match(SI->getFalseValue(), m_Add(m_Specific(A),
969 m_ConstantInt(CIAdded)))) {
970 auto ResNot = addConstants(CIBase, CIAdded);
971 FalseVal = intersect(FalseVal,
972 ValueLatticeElement::getNot(ResNot));
974 break;
975 case ICmpInst::ICMP_NE:
976 if (match(SI->getTrueValue(), m_Add(m_Specific(A),
977 m_ConstantInt(CIAdded)))) {
978 auto ResNot = addConstants(CIBase, CIAdded);
979 TrueVal = intersect(TrueVal,
980 ValueLatticeElement::getNot(ResNot));
982 break;
987 ValueLatticeElement Result; // Start Undefined.
988 Result.mergeIn(TrueVal, DL);
989 Result.mergeIn(FalseVal, DL);
990 BBLV = Result;
991 return true;
994 Optional<ConstantRange> LazyValueInfoImpl::getRangeForOperand(unsigned Op,
995 Instruction *I,
996 BasicBlock *BB) {
997 if (!hasBlockValue(I->getOperand(Op), BB))
998 if (pushBlockValue(std::make_pair(BB, I->getOperand(Op))))
999 return None;
1001 const unsigned OperandBitWidth =
1002 DL.getTypeSizeInBits(I->getOperand(Op)->getType());
1003 ConstantRange Range = ConstantRange::getFull(OperandBitWidth);
1004 if (hasBlockValue(I->getOperand(Op), BB)) {
1005 ValueLatticeElement Val = getBlockValue(I->getOperand(Op), BB);
1006 intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I);
1007 if (Val.isConstantRange())
1008 Range = Val.getConstantRange();
1010 return Range;
1013 bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV,
1014 CastInst *CI,
1015 BasicBlock *BB) {
1016 if (!CI->getOperand(0)->getType()->isSized()) {
1017 // Without knowing how wide the input is, we can't analyze it in any useful
1018 // way.
1019 BBLV = ValueLatticeElement::getOverdefined();
1020 return true;
1023 // Filter out casts we don't know how to reason about before attempting to
1024 // recurse on our operand. This can cut a long search short if we know we're
1025 // not going to be able to get any useful information anways.
1026 switch (CI->getOpcode()) {
1027 case Instruction::Trunc:
1028 case Instruction::SExt:
1029 case Instruction::ZExt:
1030 case Instruction::BitCast:
1031 break;
1032 default:
1033 // Unhandled instructions are overdefined.
1034 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1035 << "' - overdefined (unknown cast).\n");
1036 BBLV = ValueLatticeElement::getOverdefined();
1037 return true;
1040 // Figure out the range of the LHS. If that fails, we still apply the
1041 // transfer rule on the full set since we may be able to locally infer
1042 // interesting facts.
1043 Optional<ConstantRange> LHSRes = getRangeForOperand(0, CI, BB);
1044 if (!LHSRes.hasValue())
1045 // More work to do before applying this transfer rule.
1046 return false;
1047 ConstantRange LHSRange = LHSRes.getValue();
1049 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
1051 // NOTE: We're currently limited by the set of operations that ConstantRange
1052 // can evaluate symbolically. Enhancing that set will allows us to analyze
1053 // more definitions.
1054 BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
1055 ResultBitWidth));
1056 return true;
1059 bool LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
1060 ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB,
1061 std::function<ConstantRange(const ConstantRange &,
1062 const ConstantRange &)> OpFn) {
1063 // Figure out the ranges of the operands. If that fails, use a
1064 // conservative range, but apply the transfer rule anyways. This
1065 // lets us pick up facts from expressions like "and i32 (call i32
1066 // @foo()), 32"
1067 Optional<ConstantRange> LHSRes = getRangeForOperand(0, I, BB);
1068 Optional<ConstantRange> RHSRes = getRangeForOperand(1, I, BB);
1069 if (!LHSRes.hasValue() || !RHSRes.hasValue())
1070 // More work to do before applying this transfer rule.
1071 return false;
1073 ConstantRange LHSRange = LHSRes.getValue();
1074 ConstantRange RHSRange = RHSRes.getValue();
1075 BBLV = ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
1076 return true;
1079 bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV,
1080 BinaryOperator *BO,
1081 BasicBlock *BB) {
1083 assert(BO->getOperand(0)->getType()->isSized() &&
1084 "all operands to binary operators are sized");
1085 if (BO->getOpcode() == Instruction::Xor) {
1086 // Xor is the only operation not supported by ConstantRange::binaryOp().
1087 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1088 << "' - overdefined (unknown binary operator).\n");
1089 BBLV = ValueLatticeElement::getOverdefined();
1090 return true;
1093 return solveBlockValueBinaryOpImpl(BBLV, BO, BB,
1094 [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
1095 return CR1.binaryOp(BO->getOpcode(), CR2);
1099 bool LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(
1100 ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB) {
1101 return solveBlockValueBinaryOpImpl(BBLV, WO, BB,
1102 [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
1103 return CR1.binaryOp(WO->getBinaryOp(), CR2);
1107 bool LazyValueInfoImpl::solveBlockValueIntrinsic(
1108 ValueLatticeElement &BBLV, IntrinsicInst *II, BasicBlock *BB) {
1109 switch (II->getIntrinsicID()) {
1110 case Intrinsic::uadd_sat:
1111 return solveBlockValueBinaryOpImpl(BBLV, II, BB,
1112 [](const ConstantRange &CR1, const ConstantRange &CR2) {
1113 return CR1.uadd_sat(CR2);
1115 case Intrinsic::usub_sat:
1116 return solveBlockValueBinaryOpImpl(BBLV, II, BB,
1117 [](const ConstantRange &CR1, const ConstantRange &CR2) {
1118 return CR1.usub_sat(CR2);
1120 case Intrinsic::sadd_sat:
1121 return solveBlockValueBinaryOpImpl(BBLV, II, BB,
1122 [](const ConstantRange &CR1, const ConstantRange &CR2) {
1123 return CR1.sadd_sat(CR2);
1125 case Intrinsic::ssub_sat:
1126 return solveBlockValueBinaryOpImpl(BBLV, II, BB,
1127 [](const ConstantRange &CR1, const ConstantRange &CR2) {
1128 return CR1.ssub_sat(CR2);
1130 default:
1131 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1132 << "' - overdefined (unknown intrinsic).\n");
1133 BBLV = ValueLatticeElement::getOverdefined();
1134 return true;
1138 bool LazyValueInfoImpl::solveBlockValueExtractValue(
1139 ValueLatticeElement &BBLV, ExtractValueInst *EVI, BasicBlock *BB) {
1140 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1141 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
1142 return solveBlockValueOverflowIntrinsic(BBLV, WO, BB);
1144 // Handle extractvalue of insertvalue to allow further simplification
1145 // based on replaced with.overflow intrinsics.
1146 if (Value *V = SimplifyExtractValueInst(
1147 EVI->getAggregateOperand(), EVI->getIndices(),
1148 EVI->getModule()->getDataLayout())) {
1149 if (!hasBlockValue(V, BB)) {
1150 if (pushBlockValue({ BB, V }))
1151 return false;
1152 BBLV = ValueLatticeElement::getOverdefined();
1153 return true;
1155 BBLV = getBlockValue(V, BB);
1156 return true;
1159 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1160 << "' - overdefined (unknown extractvalue).\n");
1161 BBLV = ValueLatticeElement::getOverdefined();
1162 return true;
1165 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
1166 bool isTrueDest) {
1167 Value *LHS = ICI->getOperand(0);
1168 Value *RHS = ICI->getOperand(1);
1169 CmpInst::Predicate Predicate = ICI->getPredicate();
1171 if (isa<Constant>(RHS)) {
1172 if (ICI->isEquality() && LHS == Val) {
1173 // We know that V has the RHS constant if this is a true SETEQ or
1174 // false SETNE.
1175 if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ))
1176 return ValueLatticeElement::get(cast<Constant>(RHS));
1177 else
1178 return ValueLatticeElement::getNot(cast<Constant>(RHS));
1182 if (!Val->getType()->isIntegerTy())
1183 return ValueLatticeElement::getOverdefined();
1185 // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible
1186 // range of Val guaranteed by the condition. Recognize comparisons in the from
1187 // of:
1188 // icmp <pred> Val, ...
1189 // icmp <pred> (add Val, Offset), ...
1190 // The latter is the range checking idiom that InstCombine produces. Subtract
1191 // the offset from the allowed range for RHS in this case.
1193 // Val or (add Val, Offset) can be on either hand of the comparison
1194 if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) {
1195 std::swap(LHS, RHS);
1196 Predicate = CmpInst::getSwappedPredicate(Predicate);
1199 ConstantInt *Offset = nullptr;
1200 if (LHS != Val)
1201 match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset)));
1203 if (LHS == Val || Offset) {
1204 // Calculate the range of values that are allowed by the comparison
1205 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
1206 /*isFullSet=*/true);
1207 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
1208 RHSRange = ConstantRange(CI->getValue());
1209 else if (Instruction *I = dyn_cast<Instruction>(RHS))
1210 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
1211 RHSRange = getConstantRangeFromMetadata(*Ranges);
1213 // If we're interested in the false dest, invert the condition
1214 CmpInst::Predicate Pred =
1215 isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate);
1216 ConstantRange TrueValues =
1217 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
1219 if (Offset) // Apply the offset from above.
1220 TrueValues = TrueValues.subtract(Offset->getValue());
1222 return ValueLatticeElement::getRange(std::move(TrueValues));
1225 return ValueLatticeElement::getOverdefined();
1228 // Handle conditions of the form
1229 // extractvalue(op.with.overflow(%x, C), 1).
1230 static ValueLatticeElement getValueFromOverflowCondition(
1231 Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
1232 // TODO: This only works with a constant RHS for now. We could also compute
1233 // the range of the RHS, but this doesn't fit into the current structure of
1234 // the edge value calculation.
1235 const APInt *C;
1236 if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
1237 return ValueLatticeElement::getOverdefined();
1239 // Calculate the possible values of %x for which no overflow occurs.
1240 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
1241 WO->getBinaryOp(), *C, WO->getNoWrapKind());
1243 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
1244 // constrained to it's inverse (all values that might cause overflow).
1245 if (IsTrueDest)
1246 NWR = NWR.inverse();
1247 return ValueLatticeElement::getRange(NWR);
1250 static ValueLatticeElement
1251 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
1252 DenseMap<Value*, ValueLatticeElement> &Visited);
1254 static ValueLatticeElement
1255 getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
1256 DenseMap<Value*, ValueLatticeElement> &Visited) {
1257 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
1258 return getValueFromICmpCondition(Val, ICI, isTrueDest);
1260 if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
1261 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1262 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
1263 return getValueFromOverflowCondition(Val, WO, isTrueDest);
1265 // Handle conditions in the form of (cond1 && cond2), we know that on the
1266 // true dest path both of the conditions hold. Similarly for conditions of
1267 // the form (cond1 || cond2), we know that on the false dest path neither
1268 // condition holds.
1269 BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond);
1270 if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) ||
1271 (!isTrueDest && BO->getOpcode() != BinaryOperator::Or))
1272 return ValueLatticeElement::getOverdefined();
1274 // Prevent infinite recursion if Cond references itself as in this example:
1275 // Cond: "%tmp4 = and i1 %tmp4, undef"
1276 // BL: "%tmp4 = and i1 %tmp4, undef"
1277 // BR: "i1 undef"
1278 Value *BL = BO->getOperand(0);
1279 Value *BR = BO->getOperand(1);
1280 if (BL == Cond || BR == Cond)
1281 return ValueLatticeElement::getOverdefined();
1283 return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited),
1284 getValueFromCondition(Val, BR, isTrueDest, Visited));
1287 static ValueLatticeElement
1288 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
1289 DenseMap<Value*, ValueLatticeElement> &Visited) {
1290 auto I = Visited.find(Cond);
1291 if (I != Visited.end())
1292 return I->second;
1294 auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited);
1295 Visited[Cond] = Result;
1296 return Result;
1299 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
1300 bool isTrueDest) {
1301 assert(Cond && "precondition");
1302 DenseMap<Value*, ValueLatticeElement> Visited;
1303 return getValueFromCondition(Val, Cond, isTrueDest, Visited);
1306 // Return true if Usr has Op as an operand, otherwise false.
1307 static bool usesOperand(User *Usr, Value *Op) {
1308 return find(Usr->operands(), Op) != Usr->op_end();
1311 // Return true if the instruction type of Val is supported by
1312 // constantFoldUser(). Currently CastInst and BinaryOperator only. Call this
1313 // before calling constantFoldUser() to find out if it's even worth attempting
1314 // to call it.
1315 static bool isOperationFoldable(User *Usr) {
1316 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr);
1319 // Check if Usr can be simplified to an integer constant when the value of one
1320 // of its operands Op is an integer constant OpConstVal. If so, return it as an
1321 // lattice value range with a single element or otherwise return an overdefined
1322 // lattice value.
1323 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
1324 const APInt &OpConstVal,
1325 const DataLayout &DL) {
1326 assert(isOperationFoldable(Usr) && "Precondition");
1327 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
1328 // Check if Usr can be simplified to a constant.
1329 if (auto *CI = dyn_cast<CastInst>(Usr)) {
1330 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
1331 if (auto *C = dyn_cast_or_null<ConstantInt>(
1332 SimplifyCastInst(CI->getOpcode(), OpConst,
1333 CI->getDestTy(), DL))) {
1334 return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1336 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
1337 bool Op0Match = BO->getOperand(0) == Op;
1338 bool Op1Match = BO->getOperand(1) == Op;
1339 assert((Op0Match || Op1Match) &&
1340 "Operand 0 nor Operand 1 isn't a match");
1341 Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
1342 Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
1343 if (auto *C = dyn_cast_or_null<ConstantInt>(
1344 SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
1345 return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1348 return ValueLatticeElement::getOverdefined();
1351 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
1352 /// Val is not constrained on the edge. Result is unspecified if return value
1353 /// is false.
1354 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
1355 BasicBlock *BBTo, ValueLatticeElement &Result) {
1356 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1357 // know that v != 0.
1358 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
1359 // If this is a conditional branch and only one successor goes to BBTo, then
1360 // we may be able to infer something from the condition.
1361 if (BI->isConditional() &&
1362 BI->getSuccessor(0) != BI->getSuccessor(1)) {
1363 bool isTrueDest = BI->getSuccessor(0) == BBTo;
1364 assert(BI->getSuccessor(!isTrueDest) == BBTo &&
1365 "BBTo isn't a successor of BBFrom");
1366 Value *Condition = BI->getCondition();
1368 // If V is the condition of the branch itself, then we know exactly what
1369 // it is.
1370 if (Condition == Val) {
1371 Result = ValueLatticeElement::get(ConstantInt::get(
1372 Type::getInt1Ty(Val->getContext()), isTrueDest));
1373 return true;
1376 // If the condition of the branch is an equality comparison, we may be
1377 // able to infer the value.
1378 Result = getValueFromCondition(Val, Condition, isTrueDest);
1379 if (!Result.isOverdefined())
1380 return true;
1382 if (User *Usr = dyn_cast<User>(Val)) {
1383 assert(Result.isOverdefined() && "Result isn't overdefined");
1384 // Check with isOperationFoldable() first to avoid linearly iterating
1385 // over the operands unnecessarily which can be expensive for
1386 // instructions with many operands.
1387 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
1388 const DataLayout &DL = BBTo->getModule()->getDataLayout();
1389 if (usesOperand(Usr, Condition)) {
1390 // If Val has Condition as an operand and Val can be folded into a
1391 // constant with either Condition == true or Condition == false,
1392 // propagate the constant.
1393 // eg.
1394 // ; %Val is true on the edge to %then.
1395 // %Val = and i1 %Condition, true.
1396 // br %Condition, label %then, label %else
1397 APInt ConditionVal(1, isTrueDest ? 1 : 0);
1398 Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
1399 } else {
1400 // If one of Val's operand has an inferred value, we may be able to
1401 // infer the value of Val.
1402 // eg.
1403 // ; %Val is 94 on the edge to %then.
1404 // %Val = add i8 %Op, 1
1405 // %Condition = icmp eq i8 %Op, 93
1406 // br i1 %Condition, label %then, label %else
1407 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
1408 Value *Op = Usr->getOperand(i);
1409 ValueLatticeElement OpLatticeVal =
1410 getValueFromCondition(Op, Condition, isTrueDest);
1411 if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) {
1412 Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL);
1413 break;
1419 if (!Result.isOverdefined())
1420 return true;
1424 // If the edge was formed by a switch on the value, then we may know exactly
1425 // what it is.
1426 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
1427 Value *Condition = SI->getCondition();
1428 if (!isa<IntegerType>(Val->getType()))
1429 return false;
1430 bool ValUsesConditionAndMayBeFoldable = false;
1431 if (Condition != Val) {
1432 // Check if Val has Condition as an operand.
1433 if (User *Usr = dyn_cast<User>(Val))
1434 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
1435 usesOperand(Usr, Condition);
1436 if (!ValUsesConditionAndMayBeFoldable)
1437 return false;
1439 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
1440 "Condition != Val nor Val doesn't use Condition");
1442 bool DefaultCase = SI->getDefaultDest() == BBTo;
1443 unsigned BitWidth = Val->getType()->getIntegerBitWidth();
1444 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
1446 for (auto Case : SI->cases()) {
1447 APInt CaseValue = Case.getCaseValue()->getValue();
1448 ConstantRange EdgeVal(CaseValue);
1449 if (ValUsesConditionAndMayBeFoldable) {
1450 User *Usr = cast<User>(Val);
1451 const DataLayout &DL = BBTo->getModule()->getDataLayout();
1452 ValueLatticeElement EdgeLatticeVal =
1453 constantFoldUser(Usr, Condition, CaseValue, DL);
1454 if (EdgeLatticeVal.isOverdefined())
1455 return false;
1456 EdgeVal = EdgeLatticeVal.getConstantRange();
1458 if (DefaultCase) {
1459 // It is possible that the default destination is the destination of
1460 // some cases. We cannot perform difference for those cases.
1461 // We know Condition != CaseValue in BBTo. In some cases we can use
1462 // this to infer Val == f(Condition) is != f(CaseValue). For now, we
1463 // only do this when f is identity (i.e. Val == Condition), but we
1464 // should be able to do this for any injective f.
1465 if (Case.getCaseSuccessor() != BBTo && Condition == Val)
1466 EdgesVals = EdgesVals.difference(EdgeVal);
1467 } else if (Case.getCaseSuccessor() == BBTo)
1468 EdgesVals = EdgesVals.unionWith(EdgeVal);
1470 Result = ValueLatticeElement::getRange(std::move(EdgesVals));
1471 return true;
1473 return false;
1476 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1477 /// the basic block if the edge does not constrain Val.
1478 bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
1479 BasicBlock *BBTo,
1480 ValueLatticeElement &Result,
1481 Instruction *CxtI) {
1482 // If already a constant, there is nothing to compute.
1483 if (Constant *VC = dyn_cast<Constant>(Val)) {
1484 Result = ValueLatticeElement::get(VC);
1485 return true;
1488 ValueLatticeElement LocalResult;
1489 if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult))
1490 // If we couldn't constrain the value on the edge, LocalResult doesn't
1491 // provide any information.
1492 LocalResult = ValueLatticeElement::getOverdefined();
1494 if (hasSingleValue(LocalResult)) {
1495 // Can't get any more precise here
1496 Result = LocalResult;
1497 return true;
1500 if (!hasBlockValue(Val, BBFrom)) {
1501 if (pushBlockValue(std::make_pair(BBFrom, Val)))
1502 return false;
1503 // No new information.
1504 Result = LocalResult;
1505 return true;
1508 // Try to intersect ranges of the BB and the constraint on the edge.
1509 ValueLatticeElement InBlock = getBlockValue(Val, BBFrom);
1510 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
1511 BBFrom->getTerminator());
1512 // We can use the context instruction (generically the ultimate instruction
1513 // the calling pass is trying to simplify) here, even though the result of
1514 // this function is generally cached when called from the solve* functions
1515 // (and that cached result might be used with queries using a different
1516 // context instruction), because when this function is called from the solve*
1517 // functions, the context instruction is not provided. When called from
1518 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1519 // but then the result is not cached.
1520 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
1522 Result = intersect(LocalResult, InBlock);
1523 return true;
1526 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
1527 Instruction *CxtI) {
1528 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
1529 << BB->getName() << "'\n");
1531 assert(BlockValueStack.empty() && BlockValueSet.empty());
1532 if (!hasBlockValue(V, BB)) {
1533 pushBlockValue(std::make_pair(BB, V));
1534 solve();
1536 ValueLatticeElement Result = getBlockValue(V, BB);
1537 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1539 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
1540 return Result;
1543 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
1544 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
1545 << "'\n");
1547 if (auto *C = dyn_cast<Constant>(V))
1548 return ValueLatticeElement::get(C);
1550 ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
1551 if (auto *I = dyn_cast<Instruction>(V))
1552 Result = getFromRangeMetadata(I);
1553 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1555 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
1556 return Result;
1559 ValueLatticeElement LazyValueInfoImpl::
1560 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1561 Instruction *CxtI) {
1562 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1563 << FromBB->getName() << "' to '" << ToBB->getName()
1564 << "'\n");
1566 ValueLatticeElement Result;
1567 if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
1568 solve();
1569 bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
1570 (void)WasFastQuery;
1571 assert(WasFastQuery && "More work to do after problem solved?");
1574 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
1575 return Result;
1578 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1579 BasicBlock *NewSucc) {
1580 TheCache.threadEdgeImpl(OldSucc, NewSucc);
1583 //===----------------------------------------------------------------------===//
1584 // LazyValueInfo Impl
1585 //===----------------------------------------------------------------------===//
1587 /// This lazily constructs the LazyValueInfoImpl.
1588 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
1589 const DataLayout *DL,
1590 DominatorTree *DT = nullptr) {
1591 if (!PImpl) {
1592 assert(DL && "getCache() called with a null DataLayout");
1593 PImpl = new LazyValueInfoImpl(AC, *DL, DT);
1595 return *static_cast<LazyValueInfoImpl*>(PImpl);
1598 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
1599 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1600 const DataLayout &DL = F.getParent()->getDataLayout();
1602 DominatorTreeWrapperPass *DTWP =
1603 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1604 Info.DT = DTWP ? &DTWP->getDomTree() : nullptr;
1605 Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1607 if (Info.PImpl)
1608 getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear();
1610 // Fully lazy.
1611 return false;
1614 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1615 AU.setPreservesAll();
1616 AU.addRequired<AssumptionCacheTracker>();
1617 AU.addRequired<TargetLibraryInfoWrapperPass>();
1620 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
1622 LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1624 void LazyValueInfo::releaseMemory() {
1625 // If the cache was allocated, free it.
1626 if (PImpl) {
1627 delete &getImpl(PImpl, AC, nullptr);
1628 PImpl = nullptr;
1632 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
1633 FunctionAnalysisManager::Invalidator &Inv) {
1634 // We need to invalidate if we have either failed to preserve this analyses
1635 // result directly or if any of its dependencies have been invalidated.
1636 auto PAC = PA.getChecker<LazyValueAnalysis>();
1637 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
1638 (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)))
1639 return true;
1641 return false;
1644 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
1646 LazyValueInfo LazyValueAnalysis::run(Function &F,
1647 FunctionAnalysisManager &FAM) {
1648 auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1649 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1650 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
1652 return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT);
1655 /// Returns true if we can statically tell that this value will never be a
1656 /// "useful" constant. In practice, this means we've got something like an
1657 /// alloca or a malloc call for which a comparison against a constant can
1658 /// only be guarding dead code. Note that we are potentially giving up some
1659 /// precision in dead code (a constant result) in favour of avoiding a
1660 /// expensive search for a easily answered common query.
1661 static bool isKnownNonConstant(Value *V) {
1662 V = V->stripPointerCasts();
1663 // The return val of alloc cannot be a Constant.
1664 if (isa<AllocaInst>(V))
1665 return true;
1666 return false;
1669 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
1670 Instruction *CxtI) {
1671 // Bail out early if V is known not to be a Constant.
1672 if (isKnownNonConstant(V))
1673 return nullptr;
1675 const DataLayout &DL = BB->getModule()->getDataLayout();
1676 ValueLatticeElement Result =
1677 getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1679 if (Result.isConstant())
1680 return Result.getConstant();
1681 if (Result.isConstantRange()) {
1682 const ConstantRange &CR = Result.getConstantRange();
1683 if (const APInt *SingleVal = CR.getSingleElement())
1684 return ConstantInt::get(V->getContext(), *SingleVal);
1686 return nullptr;
1689 ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB,
1690 Instruction *CxtI) {
1691 assert(V->getType()->isIntegerTy());
1692 unsigned Width = V->getType()->getIntegerBitWidth();
1693 const DataLayout &DL = BB->getModule()->getDataLayout();
1694 ValueLatticeElement Result =
1695 getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1696 if (Result.isUndefined())
1697 return ConstantRange::getEmpty(Width);
1698 if (Result.isConstantRange())
1699 return Result.getConstantRange();
1700 // We represent ConstantInt constants as constant ranges but other kinds
1701 // of integer constants, i.e. ConstantExpr will be tagged as constants
1702 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1703 "ConstantInt value must be represented as constantrange");
1704 return ConstantRange::getFull(Width);
1707 /// Determine whether the specified value is known to be a
1708 /// constant on the specified edge. Return null if not.
1709 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1710 BasicBlock *ToBB,
1711 Instruction *CxtI) {
1712 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1713 ValueLatticeElement Result =
1714 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1716 if (Result.isConstant())
1717 return Result.getConstant();
1718 if (Result.isConstantRange()) {
1719 const ConstantRange &CR = Result.getConstantRange();
1720 if (const APInt *SingleVal = CR.getSingleElement())
1721 return ConstantInt::get(V->getContext(), *SingleVal);
1723 return nullptr;
1726 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
1727 BasicBlock *FromBB,
1728 BasicBlock *ToBB,
1729 Instruction *CxtI) {
1730 unsigned Width = V->getType()->getIntegerBitWidth();
1731 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1732 ValueLatticeElement Result =
1733 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1735 if (Result.isUndefined())
1736 return ConstantRange::getEmpty(Width);
1737 if (Result.isConstantRange())
1738 return Result.getConstantRange();
1739 // We represent ConstantInt constants as constant ranges but other kinds
1740 // of integer constants, i.e. ConstantExpr will be tagged as constants
1741 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1742 "ConstantInt value must be represented as constantrange");
1743 return ConstantRange::getFull(Width);
1746 static LazyValueInfo::Tristate
1747 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
1748 const DataLayout &DL, TargetLibraryInfo *TLI) {
1749 // If we know the value is a constant, evaluate the conditional.
1750 Constant *Res = nullptr;
1751 if (Val.isConstant()) {
1752 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
1753 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1754 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1755 return LazyValueInfo::Unknown;
1758 if (Val.isConstantRange()) {
1759 ConstantInt *CI = dyn_cast<ConstantInt>(C);
1760 if (!CI) return LazyValueInfo::Unknown;
1762 const ConstantRange &CR = Val.getConstantRange();
1763 if (Pred == ICmpInst::ICMP_EQ) {
1764 if (!CR.contains(CI->getValue()))
1765 return LazyValueInfo::False;
1767 if (CR.isSingleElement())
1768 return LazyValueInfo::True;
1769 } else if (Pred == ICmpInst::ICMP_NE) {
1770 if (!CR.contains(CI->getValue()))
1771 return LazyValueInfo::True;
1773 if (CR.isSingleElement())
1774 return LazyValueInfo::False;
1775 } else {
1776 // Handle more complex predicates.
1777 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
1778 (ICmpInst::Predicate)Pred, CI->getValue());
1779 if (TrueValues.contains(CR))
1780 return LazyValueInfo::True;
1781 if (TrueValues.inverse().contains(CR))
1782 return LazyValueInfo::False;
1784 return LazyValueInfo::Unknown;
1787 if (Val.isNotConstant()) {
1788 // If this is an equality comparison, we can try to fold it knowing that
1789 // "V != C1".
1790 if (Pred == ICmpInst::ICMP_EQ) {
1791 // !C1 == C -> false iff C1 == C.
1792 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1793 Val.getNotConstant(), C, DL,
1794 TLI);
1795 if (Res->isNullValue())
1796 return LazyValueInfo::False;
1797 } else if (Pred == ICmpInst::ICMP_NE) {
1798 // !C1 != C -> true iff C1 == C.
1799 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1800 Val.getNotConstant(), C, DL,
1801 TLI);
1802 if (Res->isNullValue())
1803 return LazyValueInfo::True;
1805 return LazyValueInfo::Unknown;
1808 return LazyValueInfo::Unknown;
1811 /// Determine whether the specified value comparison with a constant is known to
1812 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1813 LazyValueInfo::Tristate
1814 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1815 BasicBlock *FromBB, BasicBlock *ToBB,
1816 Instruction *CxtI) {
1817 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1818 ValueLatticeElement Result =
1819 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1821 return getPredicateResult(Pred, C, Result, DL, TLI);
1824 LazyValueInfo::Tristate
1825 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1826 Instruction *CxtI) {
1827 // Is or is not NonNull are common predicates being queried. If
1828 // isKnownNonZero can tell us the result of the predicate, we can
1829 // return it quickly. But this is only a fastpath, and falling
1830 // through would still be correct.
1831 const DataLayout &DL = CxtI->getModule()->getDataLayout();
1832 if (V->getType()->isPointerTy() && C->isNullValue() &&
1833 isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
1834 if (Pred == ICmpInst::ICMP_EQ)
1835 return LazyValueInfo::False;
1836 else if (Pred == ICmpInst::ICMP_NE)
1837 return LazyValueInfo::True;
1839 ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
1840 Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
1841 if (Ret != Unknown)
1842 return Ret;
1844 // Note: The following bit of code is somewhat distinct from the rest of LVI;
1845 // LVI as a whole tries to compute a lattice value which is conservatively
1846 // correct at a given location. In this case, we have a predicate which we
1847 // weren't able to prove about the merged result, and we're pushing that
1848 // predicate back along each incoming edge to see if we can prove it
1849 // separately for each input. As a motivating example, consider:
1850 // bb1:
1851 // %v1 = ... ; constantrange<1, 5>
1852 // br label %merge
1853 // bb2:
1854 // %v2 = ... ; constantrange<10, 20>
1855 // br label %merge
1856 // merge:
1857 // %phi = phi [%v1, %v2] ; constantrange<1,20>
1858 // %pred = icmp eq i32 %phi, 8
1859 // We can't tell from the lattice value for '%phi' that '%pred' is false
1860 // along each path, but by checking the predicate over each input separately,
1861 // we can.
1862 // We limit the search to one step backwards from the current BB and value.
1863 // We could consider extending this to search further backwards through the
1864 // CFG and/or value graph, but there are non-obvious compile time vs quality
1865 // tradeoffs.
1866 if (CxtI) {
1867 BasicBlock *BB = CxtI->getParent();
1869 // Function entry or an unreachable block. Bail to avoid confusing
1870 // analysis below.
1871 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1872 if (PI == PE)
1873 return Unknown;
1875 // If V is a PHI node in the same block as the context, we need to ask
1876 // questions about the predicate as applied to the incoming value along
1877 // each edge. This is useful for eliminating cases where the predicate is
1878 // known along all incoming edges.
1879 if (auto *PHI = dyn_cast<PHINode>(V))
1880 if (PHI->getParent() == BB) {
1881 Tristate Baseline = Unknown;
1882 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
1883 Value *Incoming = PHI->getIncomingValue(i);
1884 BasicBlock *PredBB = PHI->getIncomingBlock(i);
1885 // Note that PredBB may be BB itself.
1886 Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
1887 CxtI);
1889 // Keep going as long as we've seen a consistent known result for
1890 // all inputs.
1891 Baseline = (i == 0) ? Result /* First iteration */
1892 : (Baseline == Result ? Baseline : Unknown); /* All others */
1893 if (Baseline == Unknown)
1894 break;
1896 if (Baseline != Unknown)
1897 return Baseline;
1900 // For a comparison where the V is outside this block, it's possible
1901 // that we've branched on it before. Look to see if the value is known
1902 // on all incoming edges.
1903 if (!isa<Instruction>(V) ||
1904 cast<Instruction>(V)->getParent() != BB) {
1905 // For predecessor edge, determine if the comparison is true or false
1906 // on that edge. If they're all true or all false, we can conclude
1907 // the value of the comparison in this block.
1908 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1909 if (Baseline != Unknown) {
1910 // Check that all remaining incoming values match the first one.
1911 while (++PI != PE) {
1912 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1913 if (Ret != Baseline) break;
1915 // If we terminated early, then one of the values didn't match.
1916 if (PI == PE) {
1917 return Baseline;
1922 return Unknown;
1925 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1926 BasicBlock *NewSucc) {
1927 if (PImpl) {
1928 const DataLayout &DL = PredBB->getModule()->getDataLayout();
1929 getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
1933 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1934 if (PImpl) {
1935 const DataLayout &DL = BB->getModule()->getDataLayout();
1936 getImpl(PImpl, AC, &DL, DT).eraseBlock(BB);
1941 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
1942 if (PImpl) {
1943 getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS);
1947 void LazyValueInfo::disableDT() {
1948 if (PImpl)
1949 getImpl(PImpl, AC, DL, DT).disableDT();
1952 void LazyValueInfo::enableDT() {
1953 if (PImpl)
1954 getImpl(PImpl, AC, DL, DT).enableDT();
1957 // Print the LVI for the function arguments at the start of each basic block.
1958 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
1959 const BasicBlock *BB, formatted_raw_ostream &OS) {
1960 // Find if there are latticevalues defined for arguments of the function.
1961 auto *F = BB->getParent();
1962 for (auto &Arg : F->args()) {
1963 ValueLatticeElement Result = LVIImpl->getValueInBlock(
1964 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
1965 if (Result.isUndefined())
1966 continue;
1967 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
1971 // This function prints the LVI analysis for the instruction I at the beginning
1972 // of various basic blocks. It relies on calculated values that are stored in
1973 // the LazyValueInfoCache, and in the absence of cached values, recalculate the
1974 // LazyValueInfo for `I`, and print that info.
1975 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
1976 const Instruction *I, formatted_raw_ostream &OS) {
1978 auto *ParentBB = I->getParent();
1979 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
1980 // We can generate (solve) LVI values only for blocks that are dominated by
1981 // the I's parent. However, to avoid generating LVI for all dominating blocks,
1982 // that contain redundant/uninteresting information, we print LVI for
1983 // blocks that may use this LVI information (such as immediate successor
1984 // blocks, and blocks that contain uses of `I`).
1985 auto printResult = [&](const BasicBlock *BB) {
1986 if (!BlocksContainingLVI.insert(BB).second)
1987 return;
1988 ValueLatticeElement Result = LVIImpl->getValueInBlock(
1989 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
1990 OS << "; LatticeVal for: '" << *I << "' in BB: '";
1991 BB->printAsOperand(OS, false);
1992 OS << "' is: " << Result << "\n";
1995 printResult(ParentBB);
1996 // Print the LVI analysis results for the immediate successor blocks, that
1997 // are dominated by `ParentBB`.
1998 for (auto *BBSucc : successors(ParentBB))
1999 if (DT.dominates(ParentBB, BBSucc))
2000 printResult(BBSucc);
2002 // Print LVI in blocks where `I` is used.
2003 for (auto *U : I->users())
2004 if (auto *UseI = dyn_cast<Instruction>(U))
2005 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
2006 printResult(UseI->getParent());
2010 namespace {
2011 // Printer class for LazyValueInfo results.
2012 class LazyValueInfoPrinter : public FunctionPass {
2013 public:
2014 static char ID; // Pass identification, replacement for typeid
2015 LazyValueInfoPrinter() : FunctionPass(ID) {
2016 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
2019 void getAnalysisUsage(AnalysisUsage &AU) const override {
2020 AU.setPreservesAll();
2021 AU.addRequired<LazyValueInfoWrapperPass>();
2022 AU.addRequired<DominatorTreeWrapperPass>();
2025 // Get the mandatory dominator tree analysis and pass this in to the
2026 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
2027 bool runOnFunction(Function &F) override {
2028 dbgs() << "LVI for function '" << F.getName() << "':\n";
2029 auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
2030 auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2031 LVI.printLVI(F, DTree, dbgs());
2032 return false;
2037 char LazyValueInfoPrinter::ID = 0;
2038 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
2039 "Lazy Value Info Printer Pass", false, false)
2040 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
2041 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
2042 "Lazy Value Info Printer Pass", false, false)