[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Analysis / Loads.cpp
blobf689a17cb283de9753095b12a8a81a3a9129b923
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/Analysis/ScalarEvolution.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/GlobalAlias.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/Statepoint.h"
28 using namespace llvm;
30 static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align,
31 const DataLayout &DL) {
32 APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL));
34 if (!BaseAlign) {
35 Type *Ty = Base->getType()->getPointerElementType();
36 if (!Ty->isSized())
37 return false;
38 BaseAlign = DL.getABITypeAlignment(Ty);
41 APInt Alignment(Offset.getBitWidth(), Align);
43 assert(Alignment.isPowerOf2() && "must be a power of 2!");
44 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
47 /// Test if V is always a pointer to allocated and suitably aligned memory for
48 /// a simple load or store.
49 static bool isDereferenceableAndAlignedPointer(
50 const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL,
51 const Instruction *CtxI, const DominatorTree *DT,
52 SmallPtrSetImpl<const Value *> &Visited) {
53 // Already visited? Bail out, we've likely hit unreachable code.
54 if (!Visited.insert(V).second)
55 return false;
57 // Note that it is not safe to speculate into a malloc'd region because
58 // malloc may return null.
60 // bitcast instructions are no-ops as far as dereferenceability is concerned.
61 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
62 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size,
63 DL, CtxI, DT, Visited);
65 bool CheckForNonNull = false;
66 APInt KnownDerefBytes(Size.getBitWidth(),
67 V->getPointerDereferenceableBytes(DL, CheckForNonNull));
68 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size))
69 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
70 // As we recursed through GEPs to get here, we've incrementally checked
71 // that each step advanced by a multiple of the alignment. If our base is
72 // properly aligned, then the original offset accessed must also be.
73 Type *Ty = V->getType();
74 assert(Ty->isSized() && "must be sized");
75 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
76 return isAligned(V, Offset, Align, DL);
79 // For GEPs, determine if the indexing lands within the allocated object.
80 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
81 const Value *Base = GEP->getPointerOperand();
83 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
84 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
85 !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue())
86 return false;
88 // If the base pointer is dereferenceable for Offset+Size bytes, then the
89 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
90 // pointer is aligned to Align bytes, and the Offset is divisible by Align
91 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
92 // aligned to Align bytes.
94 // Offset and Size may have different bit widths if we have visited an
95 // addrspacecast, so we can't do arithmetic directly on the APInt values.
96 return isDereferenceableAndAlignedPointer(
97 Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()),
98 DL, CtxI, DT, Visited);
101 // For gc.relocate, look through relocations
102 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
103 return isDereferenceableAndAlignedPointer(
104 RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited);
106 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
107 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size,
108 DL, CtxI, DT, Visited);
110 if (const auto *Call = dyn_cast<CallBase>(V))
111 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
112 return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT,
113 Visited);
115 // If we don't know, assume the worst.
116 return false;
119 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
120 const APInt &Size,
121 const DataLayout &DL,
122 const Instruction *CtxI,
123 const DominatorTree *DT) {
124 assert(Align != 0 && "expected explicitly set alignment");
125 // Note: At the moment, Size can be zero. This ends up being interpreted as
126 // a query of whether [Base, V] is dereferenceable and V is aligned (since
127 // that's what the implementation happened to do). It's unclear if this is
128 // the desired semantic, but at least SelectionDAG does exercise this case.
130 SmallPtrSet<const Value *, 32> Visited;
131 return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT,
132 Visited);
135 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
136 unsigned Align,
137 const DataLayout &DL,
138 const Instruction *CtxI,
139 const DominatorTree *DT) {
140 // When dereferenceability information is provided by a dereferenceable
141 // attribute, we know exactly how many bytes are dereferenceable. If we can
142 // determine the exact offset to the attributed variable, we can use that
143 // information here.
145 // Require ABI alignment for loads without alignment specification
146 if (Align == 0)
147 Align = DL.getABITypeAlignment(Ty);
149 if (!Ty->isSized())
150 return false;
152 APInt AccessSize(DL.getIndexTypeSizeInBits(V->getType()),
153 DL.getTypeStoreSize(Ty));
154 return isDereferenceableAndAlignedPointer(V, Align, AccessSize,
155 DL, CtxI, DT);
158 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
159 const DataLayout &DL,
160 const Instruction *CtxI,
161 const DominatorTree *DT) {
162 return isDereferenceableAndAlignedPointer(V, Ty, 1, DL, CtxI, DT);
165 /// Test if A and B will obviously have the same value.
167 /// This includes recognizing that %t0 and %t1 will have the same
168 /// value in code like this:
169 /// \code
170 /// %t0 = getelementptr \@a, 0, 3
171 /// store i32 0, i32* %t0
172 /// %t1 = getelementptr \@a, 0, 3
173 /// %t2 = load i32* %t1
174 /// \endcode
176 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
177 // Test if the values are trivially equivalent.
178 if (A == B)
179 return true;
181 // Test if the values come from identical arithmetic instructions.
182 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
183 // this function is only used when one address use dominates the
184 // other, which means that they'll always either have the same
185 // value or one of them will have an undefined value.
186 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
187 isa<GetElementPtrInst>(A))
188 if (const Instruction *BI = dyn_cast<Instruction>(B))
189 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
190 return true;
192 // Otherwise they may not be equivalent.
193 return false;
196 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
197 ScalarEvolution &SE,
198 DominatorTree &DT) {
199 auto &DL = LI->getModule()->getDataLayout();
200 Value *Ptr = LI->getPointerOperand();
202 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
203 DL.getTypeStoreSize(LI->getType()));
204 unsigned Align = LI->getAlignment();
205 if (Align == 0)
206 Align = DL.getABITypeAlignment(LI->getType());
208 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
210 // If given a uniform (i.e. non-varying) address, see if we can prove the
211 // access is safe within the loop w/o needing predication.
212 if (L->isLoopInvariant(Ptr))
213 return isDereferenceableAndAlignedPointer(Ptr, Align, EltSize, DL,
214 HeaderFirstNonPHI, &DT);
216 // Otherwise, check to see if we have a repeating access pattern where we can
217 // prove that all accesses are well aligned and dereferenceable.
218 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
219 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
220 return false;
221 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
222 if (!Step)
223 return false;
224 // TODO: generalize to access patterns which have gaps
225 if (Step->getAPInt() != EltSize)
226 return false;
228 // TODO: If the symbolic trip count has a small bound (max count), we might
229 // be able to prove safety.
230 auto TC = SE.getSmallConstantTripCount(L);
231 if (!TC)
232 return false;
234 const APInt AccessSize = TC * EltSize;
236 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart());
237 if (!StartS)
238 return false;
239 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition");
240 Value *Base = StartS->getValue();
242 // For the moment, restrict ourselves to the case where the access size is a
243 // multiple of the requested alignment and the base is aligned.
244 // TODO: generalize if a case found which warrants
245 if (EltSize.urem(Align) != 0)
246 return false;
247 return isDereferenceableAndAlignedPointer(Base, Align, AccessSize,
248 DL, HeaderFirstNonPHI, &DT);
251 /// Check if executing a load of this pointer value cannot trap.
253 /// If DT and ScanFrom are specified this method performs context-sensitive
254 /// analysis and returns true if it is safe to load immediately before ScanFrom.
256 /// If it is not obviously safe to load from the specified pointer, we do
257 /// a quick local scan of the basic block containing \c ScanFrom, to determine
258 /// if the address is already accessed.
260 /// This uses the pointee type to determine how many bytes need to be safe to
261 /// load from the pointer.
262 bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align, APInt &Size,
263 const DataLayout &DL,
264 Instruction *ScanFrom,
265 const DominatorTree *DT) {
266 // Zero alignment means that the load has the ABI alignment for the target
267 if (Align == 0)
268 Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
269 assert(isPowerOf2_32(Align));
271 // If DT is not specified we can't make context-sensitive query
272 const Instruction* CtxI = DT ? ScanFrom : nullptr;
273 if (isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT))
274 return true;
276 if (!ScanFrom)
277 return false;
279 if (Size.getBitWidth() > 64)
280 return false;
281 const uint64_t LoadSize = Size.getZExtValue();
283 // Otherwise, be a little bit aggressive by scanning the local block where we
284 // want to check to see if the pointer is already being loaded or stored
285 // from/to. If so, the previous load or store would have already trapped,
286 // so there is no harm doing an extra load (also, CSE will later eliminate
287 // the load entirely).
288 BasicBlock::iterator BBI = ScanFrom->getIterator(),
289 E = ScanFrom->getParent()->begin();
291 // We can at least always strip pointer casts even though we can't use the
292 // base here.
293 V = V->stripPointerCasts();
295 while (BBI != E) {
296 --BBI;
298 // If we see a free or a call which may write to memory (i.e. which might do
299 // a free) the pointer could be marked invalid.
300 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
301 !isa<DbgInfoIntrinsic>(BBI))
302 return false;
304 Value *AccessedPtr;
305 unsigned AccessedAlign;
306 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
307 // Ignore volatile loads. The execution of a volatile load cannot
308 // be used to prove an address is backed by regular memory; it can,
309 // for example, point to an MMIO register.
310 if (LI->isVolatile())
311 continue;
312 AccessedPtr = LI->getPointerOperand();
313 AccessedAlign = LI->getAlignment();
314 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
315 // Ignore volatile stores (see comment for loads).
316 if (SI->isVolatile())
317 continue;
318 AccessedPtr = SI->getPointerOperand();
319 AccessedAlign = SI->getAlignment();
320 } else
321 continue;
323 Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
324 if (AccessedAlign == 0)
325 AccessedAlign = DL.getABITypeAlignment(AccessedTy);
326 if (AccessedAlign < Align)
327 continue;
329 // Handle trivial cases.
330 if (AccessedPtr == V &&
331 LoadSize <= DL.getTypeStoreSize(AccessedTy))
332 return true;
334 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
335 LoadSize <= DL.getTypeStoreSize(AccessedTy))
336 return true;
338 return false;
341 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, unsigned Align,
342 const DataLayout &DL,
343 Instruction *ScanFrom,
344 const DominatorTree *DT) {
345 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
346 return isSafeToLoadUnconditionally(V, Align, Size, DL, ScanFrom, DT);
349 /// DefMaxInstsToScan - the default number of maximum instructions
350 /// to scan in the block, used by FindAvailableLoadedValue().
351 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
352 /// threading in part by eliminating partially redundant loads.
353 /// At that point, the value of MaxInstsToScan was already set to '6'
354 /// without documented explanation.
355 cl::opt<unsigned>
356 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
357 cl::desc("Use this to specify the default maximum number of instructions "
358 "to scan backward from a given instruction, when searching for "
359 "available loaded value"));
361 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
362 BasicBlock *ScanBB,
363 BasicBlock::iterator &ScanFrom,
364 unsigned MaxInstsToScan,
365 AliasAnalysis *AA, bool *IsLoad,
366 unsigned *NumScanedInst) {
367 // Don't CSE load that is volatile or anything stronger than unordered.
368 if (!Load->isUnordered())
369 return nullptr;
371 return FindAvailablePtrLoadStore(
372 Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
373 ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
376 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
377 bool AtLeastAtomic, BasicBlock *ScanBB,
378 BasicBlock::iterator &ScanFrom,
379 unsigned MaxInstsToScan,
380 AliasAnalysis *AA, bool *IsLoadCSE,
381 unsigned *NumScanedInst) {
382 if (MaxInstsToScan == 0)
383 MaxInstsToScan = ~0U;
385 const DataLayout &DL = ScanBB->getModule()->getDataLayout();
387 // Try to get the store size for the type.
388 auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
390 Value *StrippedPtr = Ptr->stripPointerCasts();
392 while (ScanFrom != ScanBB->begin()) {
393 // We must ignore debug info directives when counting (otherwise they
394 // would affect codegen).
395 Instruction *Inst = &*--ScanFrom;
396 if (isa<DbgInfoIntrinsic>(Inst))
397 continue;
399 // Restore ScanFrom to expected value in case next test succeeds
400 ScanFrom++;
402 if (NumScanedInst)
403 ++(*NumScanedInst);
405 // Don't scan huge blocks.
406 if (MaxInstsToScan-- == 0)
407 return nullptr;
409 --ScanFrom;
410 // If this is a load of Ptr, the loaded value is available.
411 // (This is true even if the load is volatile or atomic, although
412 // those cases are unlikely.)
413 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
414 if (AreEquivalentAddressValues(
415 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
416 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
418 // We can value forward from an atomic to a non-atomic, but not the
419 // other way around.
420 if (LI->isAtomic() < AtLeastAtomic)
421 return nullptr;
423 if (IsLoadCSE)
424 *IsLoadCSE = true;
425 return LI;
428 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
429 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
430 // If this is a store through Ptr, the value is available!
431 // (This is true even if the store is volatile or atomic, although
432 // those cases are unlikely.)
433 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
434 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
435 AccessTy, DL)) {
437 // We can value forward from an atomic to a non-atomic, but not the
438 // other way around.
439 if (SI->isAtomic() < AtLeastAtomic)
440 return nullptr;
442 if (IsLoadCSE)
443 *IsLoadCSE = false;
444 return SI->getOperand(0);
447 // If both StrippedPtr and StorePtr reach all the way to an alloca or
448 // global and they are different, ignore the store. This is a trivial form
449 // of alias analysis that is important for reg2mem'd code.
450 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
451 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
452 StrippedPtr != StorePtr)
453 continue;
455 // If we have alias analysis and it says the store won't modify the loaded
456 // value, ignore the store.
457 if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
458 continue;
460 // Otherwise the store that may or may not alias the pointer, bail out.
461 ++ScanFrom;
462 return nullptr;
465 // If this is some other instruction that may clobber Ptr, bail out.
466 if (Inst->mayWriteToMemory()) {
467 // If alias analysis claims that it really won't modify the load,
468 // ignore it.
469 if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
470 continue;
472 // May modify the pointer, bail out.
473 ++ScanFrom;
474 return nullptr;
478 // Got to the start of the block, we didn't find it, but are done for this
479 // block.
480 return nullptr;