[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Analysis / MemoryDependenceAnalysis.cpp
blob884587e020bb6d0a86d571d1eebec01f99151026
1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on. It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/OrderedBasicBlock.h"
27 #include "llvm/Analysis/PHITransAddr.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/PredIteratorCache.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Use.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <utility>
63 using namespace llvm;
65 #define DEBUG_TYPE "memdep"
67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
71 STATISTIC(NumCacheNonLocalPtr,
72 "Number of fully cached non-local ptr responses");
73 STATISTIC(NumCacheDirtyNonLocalPtr,
74 "Number of cached, but dirty, non-local ptr responses");
75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
76 STATISTIC(NumCacheCompleteNonLocalPtr,
77 "Number of block queries that were completely cached");
79 // Limit for the number of instructions to scan in a block.
81 static cl::opt<unsigned> BlockScanLimit(
82 "memdep-block-scan-limit", cl::Hidden, cl::init(100),
83 cl::desc("The number of instructions to scan in a block in memory "
84 "dependency analysis (default = 100)"));
86 static cl::opt<unsigned>
87 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
88 cl::desc("The number of blocks to scan during memory "
89 "dependency analysis (default = 1000)"));
91 // Limit on the number of memdep results to process.
92 static const unsigned int NumResultsLimit = 100;
94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
95 ///
96 /// If the set becomes empty, remove Inst's entry.
97 template <typename KeyTy>
98 static void
99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
100 Instruction *Inst, KeyTy Val) {
101 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
102 ReverseMap.find(Inst);
103 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
104 bool Found = InstIt->second.erase(Val);
105 assert(Found && "Invalid reverse map!");
106 (void)Found;
107 if (InstIt->second.empty())
108 ReverseMap.erase(InstIt);
111 /// If the given instruction references a specific memory location, fill in Loc
112 /// with the details, otherwise set Loc.Ptr to null.
114 /// Returns a ModRefInfo value describing the general behavior of the
115 /// instruction.
116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
117 const TargetLibraryInfo &TLI) {
118 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
119 if (LI->isUnordered()) {
120 Loc = MemoryLocation::get(LI);
121 return ModRefInfo::Ref;
123 if (LI->getOrdering() == AtomicOrdering::Monotonic) {
124 Loc = MemoryLocation::get(LI);
125 return ModRefInfo::ModRef;
127 Loc = MemoryLocation();
128 return ModRefInfo::ModRef;
131 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132 if (SI->isUnordered()) {
133 Loc = MemoryLocation::get(SI);
134 return ModRefInfo::Mod;
136 if (SI->getOrdering() == AtomicOrdering::Monotonic) {
137 Loc = MemoryLocation::get(SI);
138 return ModRefInfo::ModRef;
140 Loc = MemoryLocation();
141 return ModRefInfo::ModRef;
144 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
145 Loc = MemoryLocation::get(V);
146 return ModRefInfo::ModRef;
149 if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
150 // calls to free() deallocate the entire structure
151 Loc = MemoryLocation(CI->getArgOperand(0));
152 return ModRefInfo::Mod;
155 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
156 switch (II->getIntrinsicID()) {
157 case Intrinsic::lifetime_start:
158 case Intrinsic::lifetime_end:
159 case Intrinsic::invariant_start:
160 Loc = MemoryLocation::getForArgument(II, 1, TLI);
161 // These intrinsics don't really modify the memory, but returning Mod
162 // will allow them to be handled conservatively.
163 return ModRefInfo::Mod;
164 case Intrinsic::invariant_end:
165 Loc = MemoryLocation::getForArgument(II, 2, TLI);
166 // These intrinsics don't really modify the memory, but returning Mod
167 // will allow them to be handled conservatively.
168 return ModRefInfo::Mod;
169 default:
170 break;
174 // Otherwise, just do the coarse-grained thing that always works.
175 if (Inst->mayWriteToMemory())
176 return ModRefInfo::ModRef;
177 if (Inst->mayReadFromMemory())
178 return ModRefInfo::Ref;
179 return ModRefInfo::NoModRef;
182 /// Private helper for finding the local dependencies of a call site.
183 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
184 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
185 BasicBlock *BB) {
186 unsigned Limit = getDefaultBlockScanLimit();
188 // Walk backwards through the block, looking for dependencies.
189 while (ScanIt != BB->begin()) {
190 Instruction *Inst = &*--ScanIt;
191 // Debug intrinsics don't cause dependences and should not affect Limit
192 if (isa<DbgInfoIntrinsic>(Inst))
193 continue;
195 // Limit the amount of scanning we do so we don't end up with quadratic
196 // running time on extreme testcases.
197 --Limit;
198 if (!Limit)
199 return MemDepResult::getUnknown();
201 // If this inst is a memory op, get the pointer it accessed
202 MemoryLocation Loc;
203 ModRefInfo MR = GetLocation(Inst, Loc, TLI);
204 if (Loc.Ptr) {
205 // A simple instruction.
206 if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
207 return MemDepResult::getClobber(Inst);
208 continue;
211 if (auto *CallB = dyn_cast<CallBase>(Inst)) {
212 // If these two calls do not interfere, look past it.
213 if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
214 // If the two calls are the same, return Inst as a Def, so that
215 // Call can be found redundant and eliminated.
216 if (isReadOnlyCall && !isModSet(MR) &&
217 Call->isIdenticalToWhenDefined(CallB))
218 return MemDepResult::getDef(Inst);
220 // Otherwise if the two calls don't interact (e.g. CallB is readnone)
221 // keep scanning.
222 continue;
223 } else
224 return MemDepResult::getClobber(Inst);
227 // If we could not obtain a pointer for the instruction and the instruction
228 // touches memory then assume that this is a dependency.
229 if (isModOrRefSet(MR))
230 return MemDepResult::getClobber(Inst);
233 // No dependence found. If this is the entry block of the function, it is
234 // unknown, otherwise it is non-local.
235 if (BB != &BB->getParent()->getEntryBlock())
236 return MemDepResult::getNonLocal();
237 return MemDepResult::getNonFuncLocal();
240 unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
241 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
242 const LoadInst *LI) {
243 // We can only extend simple integer loads.
244 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
245 return 0;
247 // Load widening is hostile to ThreadSanitizer: it may cause false positives
248 // or make the reports more cryptic (access sizes are wrong).
249 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
250 return 0;
252 const DataLayout &DL = LI->getModule()->getDataLayout();
254 // Get the base of this load.
255 int64_t LIOffs = 0;
256 const Value *LIBase =
257 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
259 // If the two pointers are not based on the same pointer, we can't tell that
260 // they are related.
261 if (LIBase != MemLocBase)
262 return 0;
264 // Okay, the two values are based on the same pointer, but returned as
265 // no-alias. This happens when we have things like two byte loads at "P+1"
266 // and "P+3". Check to see if increasing the size of the "LI" load up to its
267 // alignment (or the largest native integer type) will allow us to load all
268 // the bits required by MemLoc.
270 // If MemLoc is before LI, then no widening of LI will help us out.
271 if (MemLocOffs < LIOffs)
272 return 0;
274 // Get the alignment of the load in bytes. We assume that it is safe to load
275 // any legal integer up to this size without a problem. For example, if we're
276 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
277 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
278 // to i16.
279 unsigned LoadAlign = LI->getAlignment();
281 int64_t MemLocEnd = MemLocOffs + MemLocSize;
283 // If no amount of rounding up will let MemLoc fit into LI, then bail out.
284 if (LIOffs + LoadAlign < MemLocEnd)
285 return 0;
287 // This is the size of the load to try. Start with the next larger power of
288 // two.
289 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
290 NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
292 while (true) {
293 // If this load size is bigger than our known alignment or would not fit
294 // into a native integer register, then we fail.
295 if (NewLoadByteSize > LoadAlign ||
296 !DL.fitsInLegalInteger(NewLoadByteSize * 8))
297 return 0;
299 if (LIOffs + NewLoadByteSize > MemLocEnd &&
300 (LI->getParent()->getParent()->hasFnAttribute(
301 Attribute::SanitizeAddress) ||
302 LI->getParent()->getParent()->hasFnAttribute(
303 Attribute::SanitizeHWAddress)))
304 // We will be reading past the location accessed by the original program.
305 // While this is safe in a regular build, Address Safety analysis tools
306 // may start reporting false warnings. So, don't do widening.
307 return 0;
309 // If a load of this width would include all of MemLoc, then we succeed.
310 if (LIOffs + NewLoadByteSize >= MemLocEnd)
311 return NewLoadByteSize;
313 NewLoadByteSize <<= 1;
317 static bool isVolatile(Instruction *Inst) {
318 if (auto *LI = dyn_cast<LoadInst>(Inst))
319 return LI->isVolatile();
320 if (auto *SI = dyn_cast<StoreInst>(Inst))
321 return SI->isVolatile();
322 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
323 return AI->isVolatile();
324 return false;
327 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
328 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
329 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
330 OrderedBasicBlock *OBB) {
331 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
332 if (QueryInst != nullptr) {
333 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
334 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
336 if (InvariantGroupDependency.isDef())
337 return InvariantGroupDependency;
340 MemDepResult SimpleDep = getSimplePointerDependencyFrom(
341 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, OBB);
342 if (SimpleDep.isDef())
343 return SimpleDep;
344 // Non-local invariant group dependency indicates there is non local Def
345 // (it only returns nonLocal if it finds nonLocal def), which is better than
346 // local clobber and everything else.
347 if (InvariantGroupDependency.isNonLocal())
348 return InvariantGroupDependency;
350 assert(InvariantGroupDependency.isUnknown() &&
351 "InvariantGroupDependency should be only unknown at this point");
352 return SimpleDep;
355 MemDepResult
356 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
357 BasicBlock *BB) {
359 if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
360 return MemDepResult::getUnknown();
362 // Take the ptr operand after all casts and geps 0. This way we can search
363 // cast graph down only.
364 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
366 // It's is not safe to walk the use list of global value, because function
367 // passes aren't allowed to look outside their functions.
368 // FIXME: this could be fixed by filtering instructions from outside
369 // of current function.
370 if (isa<GlobalValue>(LoadOperand))
371 return MemDepResult::getUnknown();
373 // Queue to process all pointers that are equivalent to load operand.
374 SmallVector<const Value *, 8> LoadOperandsQueue;
375 LoadOperandsQueue.push_back(LoadOperand);
377 Instruction *ClosestDependency = nullptr;
378 // Order of instructions in uses list is unpredictible. In order to always
379 // get the same result, we will look for the closest dominance.
380 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
381 assert(Other && "Must call it with not null instruction");
382 if (Best == nullptr || DT.dominates(Best, Other))
383 return Other;
384 return Best;
387 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
388 // we will see all the instructions. This should be fixed in MSSA.
389 while (!LoadOperandsQueue.empty()) {
390 const Value *Ptr = LoadOperandsQueue.pop_back_val();
391 assert(Ptr && !isa<GlobalValue>(Ptr) &&
392 "Null or GlobalValue should not be inserted");
394 for (const Use &Us : Ptr->uses()) {
395 auto *U = dyn_cast<Instruction>(Us.getUser());
396 if (!U || U == LI || !DT.dominates(U, LI))
397 continue;
399 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
400 // users. U = bitcast Ptr
401 if (isa<BitCastInst>(U)) {
402 LoadOperandsQueue.push_back(U);
403 continue;
405 // Gep with zeros is equivalent to bitcast.
406 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
407 // or gep 0 to bitcast because of SROA, so there are 2 forms. When
408 // typeless pointers will be ready then both cases will be gone
409 // (and this BFS also won't be needed).
410 if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
411 if (GEP->hasAllZeroIndices()) {
412 LoadOperandsQueue.push_back(U);
413 continue;
416 // If we hit load/store with the same invariant.group metadata (and the
417 // same pointer operand) we can assume that value pointed by pointer
418 // operand didn't change.
419 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
420 U->hasMetadata(LLVMContext::MD_invariant_group))
421 ClosestDependency = GetClosestDependency(ClosestDependency, U);
425 if (!ClosestDependency)
426 return MemDepResult::getUnknown();
427 if (ClosestDependency->getParent() == BB)
428 return MemDepResult::getDef(ClosestDependency);
429 // Def(U) can't be returned here because it is non-local. If local
430 // dependency won't be found then return nonLocal counting that the
431 // user will call getNonLocalPointerDependency, which will return cached
432 // result.
433 NonLocalDefsCache.try_emplace(
434 LI, NonLocalDepResult(ClosestDependency->getParent(),
435 MemDepResult::getDef(ClosestDependency), nullptr));
436 ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
437 return MemDepResult::getNonLocal();
440 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
441 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
442 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
443 OrderedBasicBlock *OBB) {
444 bool isInvariantLoad = false;
446 unsigned DefaultLimit = getDefaultBlockScanLimit();
447 if (!Limit)
448 Limit = &DefaultLimit;
450 // We must be careful with atomic accesses, as they may allow another thread
451 // to touch this location, clobbering it. We are conservative: if the
452 // QueryInst is not a simple (non-atomic) memory access, we automatically
453 // return getClobber.
454 // If it is simple, we know based on the results of
455 // "Compiler testing via a theory of sound optimisations in the C11/C++11
456 // memory model" in PLDI 2013, that a non-atomic location can only be
457 // clobbered between a pair of a release and an acquire action, with no
458 // access to the location in between.
459 // Here is an example for giving the general intuition behind this rule.
460 // In the following code:
461 // store x 0;
462 // release action; [1]
463 // acquire action; [4]
464 // %val = load x;
465 // It is unsafe to replace %val by 0 because another thread may be running:
466 // acquire action; [2]
467 // store x 42;
468 // release action; [3]
469 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
470 // being 42. A key property of this program however is that if either
471 // 1 or 4 were missing, there would be a race between the store of 42
472 // either the store of 0 or the load (making the whole program racy).
473 // The paper mentioned above shows that the same property is respected
474 // by every program that can detect any optimization of that kind: either
475 // it is racy (undefined) or there is a release followed by an acquire
476 // between the pair of accesses under consideration.
478 // If the load is invariant, we "know" that it doesn't alias *any* write. We
479 // do want to respect mustalias results since defs are useful for value
480 // forwarding, but any mayalias write can be assumed to be noalias.
481 // Arguably, this logic should be pushed inside AliasAnalysis itself.
482 if (isLoad && QueryInst) {
483 LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
484 if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
485 isInvariantLoad = true;
488 const DataLayout &DL = BB->getModule()->getDataLayout();
490 // If the caller did not provide an ordered basic block,
491 // create one to lazily compute and cache instruction
492 // positions inside a BB. This is used to provide fast queries for relative
493 // position between two instructions in a BB and can be used by
494 // AliasAnalysis::callCapturesBefore.
495 OrderedBasicBlock OBBTmp(BB);
496 if (!OBB)
497 OBB = &OBBTmp;
499 // Return "true" if and only if the instruction I is either a non-simple
500 // load or a non-simple store.
501 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
502 if (auto *LI = dyn_cast<LoadInst>(I))
503 return !LI->isSimple();
504 if (auto *SI = dyn_cast<StoreInst>(I))
505 return !SI->isSimple();
506 return false;
509 // Return "true" if I is not a load and not a store, but it does access
510 // memory.
511 auto isOtherMemAccess = [](Instruction *I) -> bool {
512 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
515 // Walk backwards through the basic block, looking for dependencies.
516 while (ScanIt != BB->begin()) {
517 Instruction *Inst = &*--ScanIt;
519 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
520 // Debug intrinsics don't (and can't) cause dependencies.
521 if (isa<DbgInfoIntrinsic>(II))
522 continue;
524 // Limit the amount of scanning we do so we don't end up with quadratic
525 // running time on extreme testcases.
526 --*Limit;
527 if (!*Limit)
528 return MemDepResult::getUnknown();
530 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
531 // If we reach a lifetime begin or end marker, then the query ends here
532 // because the value is undefined.
533 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
534 // FIXME: This only considers queries directly on the invariant-tagged
535 // pointer, not on query pointers that are indexed off of them. It'd
536 // be nice to handle that at some point (the right approach is to use
537 // GetPointerBaseWithConstantOffset).
538 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
539 return MemDepResult::getDef(II);
540 continue;
544 // Values depend on loads if the pointers are must aliased. This means
545 // that a load depends on another must aliased load from the same value.
546 // One exception is atomic loads: a value can depend on an atomic load that
547 // it does not alias with when this atomic load indicates that another
548 // thread may be accessing the location.
549 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
550 // While volatile access cannot be eliminated, they do not have to clobber
551 // non-aliasing locations, as normal accesses, for example, can be safely
552 // reordered with volatile accesses.
553 if (LI->isVolatile()) {
554 if (!QueryInst)
555 // Original QueryInst *may* be volatile
556 return MemDepResult::getClobber(LI);
557 if (isVolatile(QueryInst))
558 // Ordering required if QueryInst is itself volatile
559 return MemDepResult::getClobber(LI);
560 // Otherwise, volatile doesn't imply any special ordering
563 // Atomic loads have complications involved.
564 // A Monotonic (or higher) load is OK if the query inst is itself not
565 // atomic.
566 // FIXME: This is overly conservative.
567 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
568 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
569 isOtherMemAccess(QueryInst))
570 return MemDepResult::getClobber(LI);
571 if (LI->getOrdering() != AtomicOrdering::Monotonic)
572 return MemDepResult::getClobber(LI);
575 MemoryLocation LoadLoc = MemoryLocation::get(LI);
577 // If we found a pointer, check if it could be the same as our pointer.
578 AliasResult R = AA.alias(LoadLoc, MemLoc);
580 if (isLoad) {
581 if (R == NoAlias)
582 continue;
584 // Must aliased loads are defs of each other.
585 if (R == MustAlias)
586 return MemDepResult::getDef(Inst);
588 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
589 // in terms of clobbering loads, but since it does this by looking
590 // at the clobbering load directly, it doesn't know about any
591 // phi translation that may have happened along the way.
593 // If we have a partial alias, then return this as a clobber for the
594 // client to handle.
595 if (R == PartialAlias)
596 return MemDepResult::getClobber(Inst);
597 #endif
599 // Random may-alias loads don't depend on each other without a
600 // dependence.
601 continue;
604 // Stores don't depend on other no-aliased accesses.
605 if (R == NoAlias)
606 continue;
608 // Stores don't alias loads from read-only memory.
609 if (AA.pointsToConstantMemory(LoadLoc))
610 continue;
612 // Stores depend on may/must aliased loads.
613 return MemDepResult::getDef(Inst);
616 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
617 // Atomic stores have complications involved.
618 // A Monotonic store is OK if the query inst is itself not atomic.
619 // FIXME: This is overly conservative.
620 if (!SI->isUnordered() && SI->isAtomic()) {
621 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
622 isOtherMemAccess(QueryInst))
623 return MemDepResult::getClobber(SI);
624 if (SI->getOrdering() != AtomicOrdering::Monotonic)
625 return MemDepResult::getClobber(SI);
628 // FIXME: this is overly conservative.
629 // While volatile access cannot be eliminated, they do not have to clobber
630 // non-aliasing locations, as normal accesses can for example be reordered
631 // with volatile accesses.
632 if (SI->isVolatile())
633 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
634 isOtherMemAccess(QueryInst))
635 return MemDepResult::getClobber(SI);
637 // If alias analysis can tell that this store is guaranteed to not modify
638 // the query pointer, ignore it. Use getModRefInfo to handle cases where
639 // the query pointer points to constant memory etc.
640 if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc)))
641 continue;
643 // Ok, this store might clobber the query pointer. Check to see if it is
644 // a must alias: in this case, we want to return this as a def.
645 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
646 MemoryLocation StoreLoc = MemoryLocation::get(SI);
648 // If we found a pointer, check if it could be the same as our pointer.
649 AliasResult R = AA.alias(StoreLoc, MemLoc);
651 if (R == NoAlias)
652 continue;
653 if (R == MustAlias)
654 return MemDepResult::getDef(Inst);
655 if (isInvariantLoad)
656 continue;
657 return MemDepResult::getClobber(Inst);
660 // If this is an allocation, and if we know that the accessed pointer is to
661 // the allocation, return Def. This means that there is no dependence and
662 // the access can be optimized based on that. For example, a load could
663 // turn into undef. Note that we can bypass the allocation itself when
664 // looking for a clobber in many cases; that's an alias property and is
665 // handled by BasicAA.
666 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
667 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
668 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr))
669 return MemDepResult::getDef(Inst);
672 if (isInvariantLoad)
673 continue;
675 // A release fence requires that all stores complete before it, but does
676 // not prevent the reordering of following loads or stores 'before' the
677 // fence. As a result, we look past it when finding a dependency for
678 // loads. DSE uses this to find preceding stores to delete and thus we
679 // can't bypass the fence if the query instruction is a store.
680 if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
681 if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
682 continue;
684 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
685 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc);
686 // If necessary, perform additional analysis.
687 if (isModAndRefSet(MR))
688 MR = AA.callCapturesBefore(Inst, MemLoc, &DT, OBB);
689 switch (clearMust(MR)) {
690 case ModRefInfo::NoModRef:
691 // If the call has no effect on the queried pointer, just ignore it.
692 continue;
693 case ModRefInfo::Mod:
694 return MemDepResult::getClobber(Inst);
695 case ModRefInfo::Ref:
696 // If the call is known to never store to the pointer, and if this is a
697 // load query, we can safely ignore it (scan past it).
698 if (isLoad)
699 continue;
700 LLVM_FALLTHROUGH;
701 default:
702 // Otherwise, there is a potential dependence. Return a clobber.
703 return MemDepResult::getClobber(Inst);
707 // No dependence found. If this is the entry block of the function, it is
708 // unknown, otherwise it is non-local.
709 if (BB != &BB->getParent()->getEntryBlock())
710 return MemDepResult::getNonLocal();
711 return MemDepResult::getNonFuncLocal();
714 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst,
715 OrderedBasicBlock *OBB) {
716 Instruction *ScanPos = QueryInst;
718 // Check for a cached result
719 MemDepResult &LocalCache = LocalDeps[QueryInst];
721 // If the cached entry is non-dirty, just return it. Note that this depends
722 // on MemDepResult's default constructing to 'dirty'.
723 if (!LocalCache.isDirty())
724 return LocalCache;
726 // Otherwise, if we have a dirty entry, we know we can start the scan at that
727 // instruction, which may save us some work.
728 if (Instruction *Inst = LocalCache.getInst()) {
729 ScanPos = Inst;
731 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
734 BasicBlock *QueryParent = QueryInst->getParent();
736 // Do the scan.
737 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
738 // No dependence found. If this is the entry block of the function, it is
739 // unknown, otherwise it is non-local.
740 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
741 LocalCache = MemDepResult::getNonLocal();
742 else
743 LocalCache = MemDepResult::getNonFuncLocal();
744 } else {
745 MemoryLocation MemLoc;
746 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
747 if (MemLoc.Ptr) {
748 // If we can do a pointer scan, make it happen.
749 bool isLoad = !isModSet(MR);
750 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
751 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
753 LocalCache =
754 getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
755 QueryParent, QueryInst, nullptr, OBB);
756 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
757 bool isReadOnly = AA.onlyReadsMemory(QueryCall);
758 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
759 ScanPos->getIterator(), QueryParent);
760 } else
761 // Non-memory instruction.
762 LocalCache = MemDepResult::getUnknown();
765 // Remember the result!
766 if (Instruction *I = LocalCache.getInst())
767 ReverseLocalDeps[I].insert(QueryInst);
769 return LocalCache;
772 #ifndef NDEBUG
773 /// This method is used when -debug is specified to verify that cache arrays
774 /// are properly kept sorted.
775 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
776 int Count = -1) {
777 if (Count == -1)
778 Count = Cache.size();
779 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
780 "Cache isn't sorted!");
782 #endif
784 const MemoryDependenceResults::NonLocalDepInfo &
785 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
786 assert(getDependency(QueryCall).isNonLocal() &&
787 "getNonLocalCallDependency should only be used on calls with "
788 "non-local deps!");
789 PerInstNLInfo &CacheP = NonLocalDeps[QueryCall];
790 NonLocalDepInfo &Cache = CacheP.first;
792 // This is the set of blocks that need to be recomputed. In the cached case,
793 // this can happen due to instructions being deleted etc. In the uncached
794 // case, this starts out as the set of predecessors we care about.
795 SmallVector<BasicBlock *, 32> DirtyBlocks;
797 if (!Cache.empty()) {
798 // Okay, we have a cache entry. If we know it is not dirty, just return it
799 // with no computation.
800 if (!CacheP.second) {
801 ++NumCacheNonLocal;
802 return Cache;
805 // If we already have a partially computed set of results, scan them to
806 // determine what is dirty, seeding our initial DirtyBlocks worklist.
807 for (auto &Entry : Cache)
808 if (Entry.getResult().isDirty())
809 DirtyBlocks.push_back(Entry.getBB());
811 // Sort the cache so that we can do fast binary search lookups below.
812 llvm::sort(Cache);
814 ++NumCacheDirtyNonLocal;
815 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
816 // << Cache.size() << " cached: " << *QueryInst;
817 } else {
818 // Seed DirtyBlocks with each of the preds of QueryInst's block.
819 BasicBlock *QueryBB = QueryCall->getParent();
820 for (BasicBlock *Pred : PredCache.get(QueryBB))
821 DirtyBlocks.push_back(Pred);
822 ++NumUncacheNonLocal;
825 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
826 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
828 SmallPtrSet<BasicBlock *, 32> Visited;
830 unsigned NumSortedEntries = Cache.size();
831 LLVM_DEBUG(AssertSorted(Cache));
833 // Iterate while we still have blocks to update.
834 while (!DirtyBlocks.empty()) {
835 BasicBlock *DirtyBB = DirtyBlocks.back();
836 DirtyBlocks.pop_back();
838 // Already processed this block?
839 if (!Visited.insert(DirtyBB).second)
840 continue;
842 // Do a binary search to see if we already have an entry for this block in
843 // the cache set. If so, find it.
844 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
845 NonLocalDepInfo::iterator Entry =
846 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
847 NonLocalDepEntry(DirtyBB));
848 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
849 --Entry;
851 NonLocalDepEntry *ExistingResult = nullptr;
852 if (Entry != Cache.begin() + NumSortedEntries &&
853 Entry->getBB() == DirtyBB) {
854 // If we already have an entry, and if it isn't already dirty, the block
855 // is done.
856 if (!Entry->getResult().isDirty())
857 continue;
859 // Otherwise, remember this slot so we can update the value.
860 ExistingResult = &*Entry;
863 // If the dirty entry has a pointer, start scanning from it so we don't have
864 // to rescan the entire block.
865 BasicBlock::iterator ScanPos = DirtyBB->end();
866 if (ExistingResult) {
867 if (Instruction *Inst = ExistingResult->getResult().getInst()) {
868 ScanPos = Inst->getIterator();
869 // We're removing QueryInst's use of Inst.
870 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
871 QueryCall);
875 // Find out if this block has a local dependency for QueryInst.
876 MemDepResult Dep;
878 if (ScanPos != DirtyBB->begin()) {
879 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
880 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
881 // No dependence found. If this is the entry block of the function, it is
882 // a clobber, otherwise it is unknown.
883 Dep = MemDepResult::getNonLocal();
884 } else {
885 Dep = MemDepResult::getNonFuncLocal();
888 // If we had a dirty entry for the block, update it. Otherwise, just add
889 // a new entry.
890 if (ExistingResult)
891 ExistingResult->setResult(Dep);
892 else
893 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
895 // If the block has a dependency (i.e. it isn't completely transparent to
896 // the value), remember the association!
897 if (!Dep.isNonLocal()) {
898 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
899 // update this when we remove instructions.
900 if (Instruction *Inst = Dep.getInst())
901 ReverseNonLocalDeps[Inst].insert(QueryCall);
902 } else {
904 // If the block *is* completely transparent to the load, we need to check
905 // the predecessors of this block. Add them to our worklist.
906 for (BasicBlock *Pred : PredCache.get(DirtyBB))
907 DirtyBlocks.push_back(Pred);
911 return Cache;
914 void MemoryDependenceResults::getNonLocalPointerDependency(
915 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
916 const MemoryLocation Loc = MemoryLocation::get(QueryInst);
917 bool isLoad = isa<LoadInst>(QueryInst);
918 BasicBlock *FromBB = QueryInst->getParent();
919 assert(FromBB);
921 assert(Loc.Ptr->getType()->isPointerTy() &&
922 "Can't get pointer deps of a non-pointer!");
923 Result.clear();
925 // Check if there is cached Def with invariant.group.
926 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
927 if (NonLocalDefIt != NonLocalDefsCache.end()) {
928 Result.push_back(NonLocalDefIt->second);
929 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
930 .erase(QueryInst);
931 NonLocalDefsCache.erase(NonLocalDefIt);
932 return;
935 // This routine does not expect to deal with volatile instructions.
936 // Doing so would require piping through the QueryInst all the way through.
937 // TODO: volatiles can't be elided, but they can be reordered with other
938 // non-volatile accesses.
940 // We currently give up on any instruction which is ordered, but we do handle
941 // atomic instructions which are unordered.
942 // TODO: Handle ordered instructions
943 auto isOrdered = [](Instruction *Inst) {
944 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
945 return !LI->isUnordered();
946 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
947 return !SI->isUnordered();
949 return false;
951 if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
952 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
953 const_cast<Value *>(Loc.Ptr)));
954 return;
956 const DataLayout &DL = FromBB->getModule()->getDataLayout();
957 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
959 // This is the set of blocks we've inspected, and the pointer we consider in
960 // each block. Because of critical edges, we currently bail out if querying
961 // a block with multiple different pointers. This can happen during PHI
962 // translation.
963 DenseMap<BasicBlock *, Value *> Visited;
964 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
965 Result, Visited, true))
966 return;
967 Result.clear();
968 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
969 const_cast<Value *>(Loc.Ptr)));
972 /// Compute the memdep value for BB with Pointer/PointeeSize using either
973 /// cached information in Cache or by doing a lookup (which may use dirty cache
974 /// info if available).
976 /// If we do a lookup, add the result to the cache.
977 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
978 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
979 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
981 // Do a binary search to see if we already have an entry for this block in
982 // the cache set. If so, find it.
983 NonLocalDepInfo::iterator Entry = std::upper_bound(
984 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
985 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
986 --Entry;
988 NonLocalDepEntry *ExistingResult = nullptr;
989 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
990 ExistingResult = &*Entry;
992 // If we have a cached entry, and it is non-dirty, use it as the value for
993 // this dependency.
994 if (ExistingResult && !ExistingResult->getResult().isDirty()) {
995 ++NumCacheNonLocalPtr;
996 return ExistingResult->getResult();
999 // Otherwise, we have to scan for the value. If we have a dirty cache
1000 // entry, start scanning from its position, otherwise we scan from the end
1001 // of the block.
1002 BasicBlock::iterator ScanPos = BB->end();
1003 if (ExistingResult && ExistingResult->getResult().getInst()) {
1004 assert(ExistingResult->getResult().getInst()->getParent() == BB &&
1005 "Instruction invalidated?");
1006 ++NumCacheDirtyNonLocalPtr;
1007 ScanPos = ExistingResult->getResult().getInst()->getIterator();
1009 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1010 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1011 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
1012 } else {
1013 ++NumUncacheNonLocalPtr;
1016 // Scan the block for the dependency.
1017 MemDepResult Dep =
1018 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
1020 // If we had a dirty entry for the block, update it. Otherwise, just add
1021 // a new entry.
1022 if (ExistingResult)
1023 ExistingResult->setResult(Dep);
1024 else
1025 Cache->push_back(NonLocalDepEntry(BB, Dep));
1027 // If the block has a dependency (i.e. it isn't completely transparent to
1028 // the value), remember the reverse association because we just added it
1029 // to Cache!
1030 if (!Dep.isDef() && !Dep.isClobber())
1031 return Dep;
1033 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
1034 // update MemDep when we remove instructions.
1035 Instruction *Inst = Dep.getInst();
1036 assert(Inst && "Didn't depend on anything?");
1037 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1038 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
1039 return Dep;
1042 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
1043 /// array that are already properly ordered.
1045 /// This is optimized for the case when only a few entries are added.
1046 static void
1047 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
1048 unsigned NumSortedEntries) {
1049 switch (Cache.size() - NumSortedEntries) {
1050 case 0:
1051 // done, no new entries.
1052 break;
1053 case 2: {
1054 // Two new entries, insert the last one into place.
1055 NonLocalDepEntry Val = Cache.back();
1056 Cache.pop_back();
1057 MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1058 std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
1059 Cache.insert(Entry, Val);
1060 LLVM_FALLTHROUGH;
1062 case 1:
1063 // One new entry, Just insert the new value at the appropriate position.
1064 if (Cache.size() != 1) {
1065 NonLocalDepEntry Val = Cache.back();
1066 Cache.pop_back();
1067 MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1068 std::upper_bound(Cache.begin(), Cache.end(), Val);
1069 Cache.insert(Entry, Val);
1071 break;
1072 default:
1073 // Added many values, do a full scale sort.
1074 llvm::sort(Cache);
1075 break;
1079 /// Perform a dependency query based on pointer/pointeesize starting at the end
1080 /// of StartBB.
1082 /// Add any clobber/def results to the results vector and keep track of which
1083 /// blocks are visited in 'Visited'.
1085 /// This has special behavior for the first block queries (when SkipFirstBlock
1086 /// is true). In this special case, it ignores the contents of the specified
1087 /// block and starts returning dependence info for its predecessors.
1089 /// This function returns true on success, or false to indicate that it could
1090 /// not compute dependence information for some reason. This should be treated
1091 /// as a clobber dependence on the first instruction in the predecessor block.
1092 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1093 Instruction *QueryInst, const PHITransAddr &Pointer,
1094 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1095 SmallVectorImpl<NonLocalDepResult> &Result,
1096 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
1097 // Look up the cached info for Pointer.
1098 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1100 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1101 // CacheKey, this value will be inserted as the associated value. Otherwise,
1102 // it'll be ignored, and we'll have to check to see if the cached size and
1103 // aa tags are consistent with the current query.
1104 NonLocalPointerInfo InitialNLPI;
1105 InitialNLPI.Size = Loc.Size;
1106 InitialNLPI.AATags = Loc.AATags;
1108 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1109 // already have one.
1110 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1111 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1112 NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1114 // If we already have a cache entry for this CacheKey, we may need to do some
1115 // work to reconcile the cache entry and the current query.
1116 if (!Pair.second) {
1117 if (CacheInfo->Size != Loc.Size) {
1118 bool ThrowOutEverything;
1119 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1120 // FIXME: We may be able to do better in the face of results with mixed
1121 // precision. We don't appear to get them in practice, though, so just
1122 // be conservative.
1123 ThrowOutEverything =
1124 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1125 CacheInfo->Size.getValue() < Loc.Size.getValue();
1126 } else {
1127 // For our purposes, unknown size > all others.
1128 ThrowOutEverything = !Loc.Size.hasValue();
1131 if (ThrowOutEverything) {
1132 // The query's Size is greater than the cached one. Throw out the
1133 // cached data and proceed with the query at the greater size.
1134 CacheInfo->Pair = BBSkipFirstBlockPair();
1135 CacheInfo->Size = Loc.Size;
1136 for (auto &Entry : CacheInfo->NonLocalDeps)
1137 if (Instruction *Inst = Entry.getResult().getInst())
1138 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1139 CacheInfo->NonLocalDeps.clear();
1140 } else {
1141 // This query's Size is less than the cached one. Conservatively restart
1142 // the query using the greater size.
1143 return getNonLocalPointerDepFromBB(
1144 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1145 StartBB, Result, Visited, SkipFirstBlock);
1149 // If the query's AATags are inconsistent with the cached one,
1150 // conservatively throw out the cached data and restart the query with
1151 // no tag if needed.
1152 if (CacheInfo->AATags != Loc.AATags) {
1153 if (CacheInfo->AATags) {
1154 CacheInfo->Pair = BBSkipFirstBlockPair();
1155 CacheInfo->AATags = AAMDNodes();
1156 for (auto &Entry : CacheInfo->NonLocalDeps)
1157 if (Instruction *Inst = Entry.getResult().getInst())
1158 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1159 CacheInfo->NonLocalDeps.clear();
1161 if (Loc.AATags)
1162 return getNonLocalPointerDepFromBB(
1163 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1164 Visited, SkipFirstBlock);
1168 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1170 // If we have valid cached information for exactly the block we are
1171 // investigating, just return it with no recomputation.
1172 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1173 // We have a fully cached result for this query then we can just return the
1174 // cached results and populate the visited set. However, we have to verify
1175 // that we don't already have conflicting results for these blocks. Check
1176 // to ensure that if a block in the results set is in the visited set that
1177 // it was for the same pointer query.
1178 if (!Visited.empty()) {
1179 for (auto &Entry : *Cache) {
1180 DenseMap<BasicBlock *, Value *>::iterator VI =
1181 Visited.find(Entry.getBB());
1182 if (VI == Visited.end() || VI->second == Pointer.getAddr())
1183 continue;
1185 // We have a pointer mismatch in a block. Just return false, saying
1186 // that something was clobbered in this result. We could also do a
1187 // non-fully cached query, but there is little point in doing this.
1188 return false;
1192 Value *Addr = Pointer.getAddr();
1193 for (auto &Entry : *Cache) {
1194 Visited.insert(std::make_pair(Entry.getBB(), Addr));
1195 if (Entry.getResult().isNonLocal()) {
1196 continue;
1199 if (DT.isReachableFromEntry(Entry.getBB())) {
1200 Result.push_back(
1201 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1204 ++NumCacheCompleteNonLocalPtr;
1205 return true;
1208 // Otherwise, either this is a new block, a block with an invalid cache
1209 // pointer or one that we're about to invalidate by putting more info into it
1210 // than its valid cache info. If empty, the result will be valid cache info,
1211 // otherwise it isn't.
1212 if (Cache->empty())
1213 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1214 else
1215 CacheInfo->Pair = BBSkipFirstBlockPair();
1217 SmallVector<BasicBlock *, 32> Worklist;
1218 Worklist.push_back(StartBB);
1220 // PredList used inside loop.
1221 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1223 // Keep track of the entries that we know are sorted. Previously cached
1224 // entries will all be sorted. The entries we add we only sort on demand (we
1225 // don't insert every element into its sorted position). We know that we
1226 // won't get any reuse from currently inserted values, because we don't
1227 // revisit blocks after we insert info for them.
1228 unsigned NumSortedEntries = Cache->size();
1229 unsigned WorklistEntries = BlockNumberLimit;
1230 bool GotWorklistLimit = false;
1231 LLVM_DEBUG(AssertSorted(*Cache));
1233 while (!Worklist.empty()) {
1234 BasicBlock *BB = Worklist.pop_back_val();
1236 // If we do process a large number of blocks it becomes very expensive and
1237 // likely it isn't worth worrying about
1238 if (Result.size() > NumResultsLimit) {
1239 Worklist.clear();
1240 // Sort it now (if needed) so that recursive invocations of
1241 // getNonLocalPointerDepFromBB and other routines that could reuse the
1242 // cache value will only see properly sorted cache arrays.
1243 if (Cache && NumSortedEntries != Cache->size()) {
1244 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1246 // Since we bail out, the "Cache" set won't contain all of the
1247 // results for the query. This is ok (we can still use it to accelerate
1248 // specific block queries) but we can't do the fastpath "return all
1249 // results from the set". Clear out the indicator for this.
1250 CacheInfo->Pair = BBSkipFirstBlockPair();
1251 return false;
1254 // Skip the first block if we have it.
1255 if (!SkipFirstBlock) {
1256 // Analyze the dependency of *Pointer in FromBB. See if we already have
1257 // been here.
1258 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1260 // Get the dependency info for Pointer in BB. If we have cached
1261 // information, we will use it, otherwise we compute it.
1262 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1263 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1264 Cache, NumSortedEntries);
1266 // If we got a Def or Clobber, add this to the list of results.
1267 if (!Dep.isNonLocal()) {
1268 if (DT.isReachableFromEntry(BB)) {
1269 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1270 continue;
1275 // If 'Pointer' is an instruction defined in this block, then we need to do
1276 // phi translation to change it into a value live in the predecessor block.
1277 // If not, we just add the predecessors to the worklist and scan them with
1278 // the same Pointer.
1279 if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1280 SkipFirstBlock = false;
1281 SmallVector<BasicBlock *, 16> NewBlocks;
1282 for (BasicBlock *Pred : PredCache.get(BB)) {
1283 // Verify that we haven't looked at this block yet.
1284 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1285 Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1286 if (InsertRes.second) {
1287 // First time we've looked at *PI.
1288 NewBlocks.push_back(Pred);
1289 continue;
1292 // If we have seen this block before, but it was with a different
1293 // pointer then we have a phi translation failure and we have to treat
1294 // this as a clobber.
1295 if (InsertRes.first->second != Pointer.getAddr()) {
1296 // Make sure to clean up the Visited map before continuing on to
1297 // PredTranslationFailure.
1298 for (unsigned i = 0; i < NewBlocks.size(); i++)
1299 Visited.erase(NewBlocks[i]);
1300 goto PredTranslationFailure;
1303 if (NewBlocks.size() > WorklistEntries) {
1304 // Make sure to clean up the Visited map before continuing on to
1305 // PredTranslationFailure.
1306 for (unsigned i = 0; i < NewBlocks.size(); i++)
1307 Visited.erase(NewBlocks[i]);
1308 GotWorklistLimit = true;
1309 goto PredTranslationFailure;
1311 WorklistEntries -= NewBlocks.size();
1312 Worklist.append(NewBlocks.begin(), NewBlocks.end());
1313 continue;
1316 // We do need to do phi translation, if we know ahead of time we can't phi
1317 // translate this value, don't even try.
1318 if (!Pointer.IsPotentiallyPHITranslatable())
1319 goto PredTranslationFailure;
1321 // We may have added values to the cache list before this PHI translation.
1322 // If so, we haven't done anything to ensure that the cache remains sorted.
1323 // Sort it now (if needed) so that recursive invocations of
1324 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1325 // value will only see properly sorted cache arrays.
1326 if (Cache && NumSortedEntries != Cache->size()) {
1327 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1328 NumSortedEntries = Cache->size();
1330 Cache = nullptr;
1332 PredList.clear();
1333 for (BasicBlock *Pred : PredCache.get(BB)) {
1334 PredList.push_back(std::make_pair(Pred, Pointer));
1336 // Get the PHI translated pointer in this predecessor. This can fail if
1337 // not translatable, in which case the getAddr() returns null.
1338 PHITransAddr &PredPointer = PredList.back().second;
1339 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1340 Value *PredPtrVal = PredPointer.getAddr();
1342 // Check to see if we have already visited this pred block with another
1343 // pointer. If so, we can't do this lookup. This failure can occur
1344 // with PHI translation when a critical edge exists and the PHI node in
1345 // the successor translates to a pointer value different than the
1346 // pointer the block was first analyzed with.
1347 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1348 Visited.insert(std::make_pair(Pred, PredPtrVal));
1350 if (!InsertRes.second) {
1351 // We found the pred; take it off the list of preds to visit.
1352 PredList.pop_back();
1354 // If the predecessor was visited with PredPtr, then we already did
1355 // the analysis and can ignore it.
1356 if (InsertRes.first->second == PredPtrVal)
1357 continue;
1359 // Otherwise, the block was previously analyzed with a different
1360 // pointer. We can't represent the result of this case, so we just
1361 // treat this as a phi translation failure.
1363 // Make sure to clean up the Visited map before continuing on to
1364 // PredTranslationFailure.
1365 for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1366 Visited.erase(PredList[i].first);
1368 goto PredTranslationFailure;
1372 // Actually process results here; this need to be a separate loop to avoid
1373 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1374 // any results for. (getNonLocalPointerDepFromBB will modify our
1375 // datastructures in ways the code after the PredTranslationFailure label
1376 // doesn't expect.)
1377 for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1378 BasicBlock *Pred = PredList[i].first;
1379 PHITransAddr &PredPointer = PredList[i].second;
1380 Value *PredPtrVal = PredPointer.getAddr();
1382 bool CanTranslate = true;
1383 // If PHI translation was unable to find an available pointer in this
1384 // predecessor, then we have to assume that the pointer is clobbered in
1385 // that predecessor. We can still do PRE of the load, which would insert
1386 // a computation of the pointer in this predecessor.
1387 if (!PredPtrVal)
1388 CanTranslate = false;
1390 // FIXME: it is entirely possible that PHI translating will end up with
1391 // the same value. Consider PHI translating something like:
1392 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1393 // to recurse here, pedantically speaking.
1395 // If getNonLocalPointerDepFromBB fails here, that means the cached
1396 // result conflicted with the Visited list; we have to conservatively
1397 // assume it is unknown, but this also does not block PRE of the load.
1398 if (!CanTranslate ||
1399 !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1400 Loc.getWithNewPtr(PredPtrVal), isLoad,
1401 Pred, Result, Visited)) {
1402 // Add the entry to the Result list.
1403 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1404 Result.push_back(Entry);
1406 // Since we had a phi translation failure, the cache for CacheKey won't
1407 // include all of the entries that we need to immediately satisfy future
1408 // queries. Mark this in NonLocalPointerDeps by setting the
1409 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1410 // cached value to do more work but not miss the phi trans failure.
1411 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1412 NLPI.Pair = BBSkipFirstBlockPair();
1413 continue;
1417 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1418 CacheInfo = &NonLocalPointerDeps[CacheKey];
1419 Cache = &CacheInfo->NonLocalDeps;
1420 NumSortedEntries = Cache->size();
1422 // Since we did phi translation, the "Cache" set won't contain all of the
1423 // results for the query. This is ok (we can still use it to accelerate
1424 // specific block queries) but we can't do the fastpath "return all
1425 // results from the set" Clear out the indicator for this.
1426 CacheInfo->Pair = BBSkipFirstBlockPair();
1427 SkipFirstBlock = false;
1428 continue;
1430 PredTranslationFailure:
1431 // The following code is "failure"; we can't produce a sane translation
1432 // for the given block. It assumes that we haven't modified any of
1433 // our datastructures while processing the current block.
1435 if (!Cache) {
1436 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1437 CacheInfo = &NonLocalPointerDeps[CacheKey];
1438 Cache = &CacheInfo->NonLocalDeps;
1439 NumSortedEntries = Cache->size();
1442 // Since we failed phi translation, the "Cache" set won't contain all of the
1443 // results for the query. This is ok (we can still use it to accelerate
1444 // specific block queries) but we can't do the fastpath "return all
1445 // results from the set". Clear out the indicator for this.
1446 CacheInfo->Pair = BBSkipFirstBlockPair();
1448 // If *nothing* works, mark the pointer as unknown.
1450 // If this is the magic first block, return this as a clobber of the whole
1451 // incoming value. Since we can't phi translate to one of the predecessors,
1452 // we have to bail out.
1453 if (SkipFirstBlock)
1454 return false;
1456 bool foundBlock = false;
1457 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1458 if (I.getBB() != BB)
1459 continue;
1461 assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1462 !DT.isReachableFromEntry(BB)) &&
1463 "Should only be here with transparent block");
1464 foundBlock = true;
1465 I.setResult(MemDepResult::getUnknown());
1466 Result.push_back(
1467 NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr()));
1468 break;
1470 (void)foundBlock; (void)GotWorklistLimit;
1471 assert((foundBlock || GotWorklistLimit) && "Current block not in cache?");
1474 // Okay, we're done now. If we added new values to the cache, re-sort it.
1475 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1476 LLVM_DEBUG(AssertSorted(*Cache));
1477 return true;
1480 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1481 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1482 ValueIsLoadPair P) {
1484 // Most of the time this cache is empty.
1485 if (!NonLocalDefsCache.empty()) {
1486 auto it = NonLocalDefsCache.find(P.getPointer());
1487 if (it != NonLocalDefsCache.end()) {
1488 RemoveFromReverseMap(ReverseNonLocalDefsCache,
1489 it->second.getResult().getInst(), P.getPointer());
1490 NonLocalDefsCache.erase(it);
1493 if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1494 auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1495 if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1496 for (const auto &entry : toRemoveIt->second)
1497 NonLocalDefsCache.erase(entry);
1498 ReverseNonLocalDefsCache.erase(toRemoveIt);
1503 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1504 if (It == NonLocalPointerDeps.end())
1505 return;
1507 // Remove all of the entries in the BB->val map. This involves removing
1508 // instructions from the reverse map.
1509 NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1511 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1512 Instruction *Target = PInfo[i].getResult().getInst();
1513 if (!Target)
1514 continue; // Ignore non-local dep results.
1515 assert(Target->getParent() == PInfo[i].getBB());
1517 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1518 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1521 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1522 NonLocalPointerDeps.erase(It);
1525 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1526 // If Ptr isn't really a pointer, just ignore it.
1527 if (!Ptr->getType()->isPointerTy())
1528 return;
1529 // Flush store info for the pointer.
1530 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1531 // Flush load info for the pointer.
1532 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1533 // Invalidate phis that use the pointer.
1534 PV.invalidateValue(Ptr);
1537 void MemoryDependenceResults::invalidateCachedPredecessors() {
1538 PredCache.clear();
1541 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1542 // Walk through the Non-local dependencies, removing this one as the value
1543 // for any cached queries.
1544 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1545 if (NLDI != NonLocalDeps.end()) {
1546 NonLocalDepInfo &BlockMap = NLDI->second.first;
1547 for (auto &Entry : BlockMap)
1548 if (Instruction *Inst = Entry.getResult().getInst())
1549 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1550 NonLocalDeps.erase(NLDI);
1553 // If we have a cached local dependence query for this instruction, remove it.
1554 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1555 if (LocalDepEntry != LocalDeps.end()) {
1556 // Remove us from DepInst's reverse set now that the local dep info is gone.
1557 if (Instruction *Inst = LocalDepEntry->second.getInst())
1558 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1560 // Remove this local dependency info.
1561 LocalDeps.erase(LocalDepEntry);
1564 // If we have any cached pointer dependencies on this instruction, remove
1565 // them. If the instruction has non-pointer type, then it can't be a pointer
1566 // base.
1568 // Remove it from both the load info and the store info. The instruction
1569 // can't be in either of these maps if it is non-pointer.
1570 if (RemInst->getType()->isPointerTy()) {
1571 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1572 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1575 // Loop over all of the things that depend on the instruction we're removing.
1576 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1578 // If we find RemInst as a clobber or Def in any of the maps for other values,
1579 // we need to replace its entry with a dirty version of the instruction after
1580 // it. If RemInst is a terminator, we use a null dirty value.
1582 // Using a dirty version of the instruction after RemInst saves having to scan
1583 // the entire block to get to this point.
1584 MemDepResult NewDirtyVal;
1585 if (!RemInst->isTerminator())
1586 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1588 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1589 if (ReverseDepIt != ReverseLocalDeps.end()) {
1590 // RemInst can't be the terminator if it has local stuff depending on it.
1591 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1592 "Nothing can locally depend on a terminator");
1594 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1595 assert(InstDependingOnRemInst != RemInst &&
1596 "Already removed our local dep info");
1598 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1600 // Make sure to remember that new things depend on NewDepInst.
1601 assert(NewDirtyVal.getInst() &&
1602 "There is no way something else can have "
1603 "a local dep on this if it is a terminator!");
1604 ReverseDepsToAdd.push_back(
1605 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1608 ReverseLocalDeps.erase(ReverseDepIt);
1610 // Add new reverse deps after scanning the set, to avoid invalidating the
1611 // 'ReverseDeps' reference.
1612 while (!ReverseDepsToAdd.empty()) {
1613 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1614 ReverseDepsToAdd.back().second);
1615 ReverseDepsToAdd.pop_back();
1619 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1620 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1621 for (Instruction *I : ReverseDepIt->second) {
1622 assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1624 PerInstNLInfo &INLD = NonLocalDeps[I];
1625 // The information is now dirty!
1626 INLD.second = true;
1628 for (auto &Entry : INLD.first) {
1629 if (Entry.getResult().getInst() != RemInst)
1630 continue;
1632 // Convert to a dirty entry for the subsequent instruction.
1633 Entry.setResult(NewDirtyVal);
1635 if (Instruction *NextI = NewDirtyVal.getInst())
1636 ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1640 ReverseNonLocalDeps.erase(ReverseDepIt);
1642 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1643 while (!ReverseDepsToAdd.empty()) {
1644 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1645 ReverseDepsToAdd.back().second);
1646 ReverseDepsToAdd.pop_back();
1650 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1651 // value in the NonLocalPointerDeps info.
1652 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1653 ReverseNonLocalPtrDeps.find(RemInst);
1654 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1655 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1656 ReversePtrDepsToAdd;
1658 for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1659 assert(P.getPointer() != RemInst &&
1660 "Already removed NonLocalPointerDeps info for RemInst");
1662 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1664 // The cache is not valid for any specific block anymore.
1665 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1667 // Update any entries for RemInst to use the instruction after it.
1668 for (auto &Entry : NLPDI) {
1669 if (Entry.getResult().getInst() != RemInst)
1670 continue;
1672 // Convert to a dirty entry for the subsequent instruction.
1673 Entry.setResult(NewDirtyVal);
1675 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1676 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1679 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1680 // subsequent value may invalidate the sortedness.
1681 llvm::sort(NLPDI);
1684 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1686 while (!ReversePtrDepsToAdd.empty()) {
1687 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1688 ReversePtrDepsToAdd.back().second);
1689 ReversePtrDepsToAdd.pop_back();
1693 // Invalidate phis that use the removed instruction.
1694 PV.invalidateValue(RemInst);
1696 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1697 LLVM_DEBUG(verifyRemoved(RemInst));
1700 /// Verify that the specified instruction does not occur in our internal data
1701 /// structures.
1703 /// This function verifies by asserting in debug builds.
1704 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1705 #ifndef NDEBUG
1706 for (const auto &DepKV : LocalDeps) {
1707 assert(DepKV.first != D && "Inst occurs in data structures");
1708 assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1711 for (const auto &DepKV : NonLocalPointerDeps) {
1712 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1713 for (const auto &Entry : DepKV.second.NonLocalDeps)
1714 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1717 for (const auto &DepKV : NonLocalDeps) {
1718 assert(DepKV.first != D && "Inst occurs in data structures");
1719 const PerInstNLInfo &INLD = DepKV.second;
1720 for (const auto &Entry : INLD.first)
1721 assert(Entry.getResult().getInst() != D &&
1722 "Inst occurs in data structures");
1725 for (const auto &DepKV : ReverseLocalDeps) {
1726 assert(DepKV.first != D && "Inst occurs in data structures");
1727 for (Instruction *Inst : DepKV.second)
1728 assert(Inst != D && "Inst occurs in data structures");
1731 for (const auto &DepKV : ReverseNonLocalDeps) {
1732 assert(DepKV.first != D && "Inst occurs in data structures");
1733 for (Instruction *Inst : DepKV.second)
1734 assert(Inst != D && "Inst occurs in data structures");
1737 for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1738 assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1740 for (ValueIsLoadPair P : DepKV.second)
1741 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1742 "Inst occurs in ReverseNonLocalPtrDeps map");
1744 #endif
1747 AnalysisKey MemoryDependenceAnalysis::Key;
1749 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1750 : DefaultBlockScanLimit(BlockScanLimit) {}
1752 MemoryDependenceResults
1753 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1754 auto &AA = AM.getResult<AAManager>(F);
1755 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1756 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1757 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1758 auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1759 return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1762 char MemoryDependenceWrapperPass::ID = 0;
1764 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1765 "Memory Dependence Analysis", false, true)
1766 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1767 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1768 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1769 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1770 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1771 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1772 "Memory Dependence Analysis", false, true)
1774 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1775 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1778 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1780 void MemoryDependenceWrapperPass::releaseMemory() {
1781 MemDep.reset();
1784 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1785 AU.setPreservesAll();
1786 AU.addRequired<AssumptionCacheTracker>();
1787 AU.addRequired<DominatorTreeWrapperPass>();
1788 AU.addRequired<PhiValuesWrapperPass>();
1789 AU.addRequiredTransitive<AAResultsWrapperPass>();
1790 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1793 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1794 FunctionAnalysisManager::Invalidator &Inv) {
1795 // Check whether our analysis is preserved.
1796 auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1797 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1798 // If not, give up now.
1799 return true;
1801 // Check whether the analyses we depend on became invalid for any reason.
1802 if (Inv.invalidate<AAManager>(F, PA) ||
1803 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1804 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1805 Inv.invalidate<PhiValuesAnalysis>(F, PA))
1806 return true;
1808 // Otherwise this analysis result remains valid.
1809 return false;
1812 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1813 return DefaultBlockScanLimit;
1816 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1817 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1818 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1819 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1820 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1821 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1822 MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1823 return false;