[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Analysis / MemorySSA.cpp
blobcc3bca1c2318218ea6d759a2531922de853ee785
1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSA class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/Use.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/FormattedStream.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdlib>
53 #include <iterator>
54 #include <memory>
55 #include <utility>
57 using namespace llvm;
59 #define DEBUG_TYPE "memoryssa"
61 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
62 true)
63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
65 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
66 true)
68 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
69 "Memory SSA Printer", false, false)
70 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
71 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
72 "Memory SSA Printer", false, false)
74 static cl::opt<unsigned> MaxCheckLimit(
75 "memssa-check-limit", cl::Hidden, cl::init(100),
76 cl::desc("The maximum number of stores/phis MemorySSA"
77 "will consider trying to walk past (default = 100)"));
79 // Always verify MemorySSA if expensive checking is enabled.
80 #ifdef EXPENSIVE_CHECKS
81 bool llvm::VerifyMemorySSA = true;
82 #else
83 bool llvm::VerifyMemorySSA = false;
84 #endif
85 /// Enables memory ssa as a dependency for loop passes in legacy pass manager.
86 cl::opt<bool> llvm::EnableMSSALoopDependency(
87 "enable-mssa-loop-dependency", cl::Hidden, cl::init(true),
88 cl::desc("Enable MemorySSA dependency for loop pass manager"));
90 static cl::opt<bool, true>
91 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
92 cl::Hidden, cl::desc("Enable verification of MemorySSA."));
94 namespace llvm {
96 /// An assembly annotator class to print Memory SSA information in
97 /// comments.
98 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
99 friend class MemorySSA;
101 const MemorySSA *MSSA;
103 public:
104 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
106 void emitBasicBlockStartAnnot(const BasicBlock *BB,
107 formatted_raw_ostream &OS) override {
108 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
109 OS << "; " << *MA << "\n";
112 void emitInstructionAnnot(const Instruction *I,
113 formatted_raw_ostream &OS) override {
114 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
115 OS << "; " << *MA << "\n";
119 } // end namespace llvm
121 namespace {
123 /// Our current alias analysis API differentiates heavily between calls and
124 /// non-calls, and functions called on one usually assert on the other.
125 /// This class encapsulates the distinction to simplify other code that wants
126 /// "Memory affecting instructions and related data" to use as a key.
127 /// For example, this class is used as a densemap key in the use optimizer.
128 class MemoryLocOrCall {
129 public:
130 bool IsCall = false;
132 MemoryLocOrCall(MemoryUseOrDef *MUD)
133 : MemoryLocOrCall(MUD->getMemoryInst()) {}
134 MemoryLocOrCall(const MemoryUseOrDef *MUD)
135 : MemoryLocOrCall(MUD->getMemoryInst()) {}
137 MemoryLocOrCall(Instruction *Inst) {
138 if (auto *C = dyn_cast<CallBase>(Inst)) {
139 IsCall = true;
140 Call = C;
141 } else {
142 IsCall = false;
143 // There is no such thing as a memorylocation for a fence inst, and it is
144 // unique in that regard.
145 if (!isa<FenceInst>(Inst))
146 Loc = MemoryLocation::get(Inst);
150 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
152 const CallBase *getCall() const {
153 assert(IsCall);
154 return Call;
157 MemoryLocation getLoc() const {
158 assert(!IsCall);
159 return Loc;
162 bool operator==(const MemoryLocOrCall &Other) const {
163 if (IsCall != Other.IsCall)
164 return false;
166 if (!IsCall)
167 return Loc == Other.Loc;
169 if (Call->getCalledValue() != Other.Call->getCalledValue())
170 return false;
172 return Call->arg_size() == Other.Call->arg_size() &&
173 std::equal(Call->arg_begin(), Call->arg_end(),
174 Other.Call->arg_begin());
177 private:
178 union {
179 const CallBase *Call;
180 MemoryLocation Loc;
184 } // end anonymous namespace
186 namespace llvm {
188 template <> struct DenseMapInfo<MemoryLocOrCall> {
189 static inline MemoryLocOrCall getEmptyKey() {
190 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
193 static inline MemoryLocOrCall getTombstoneKey() {
194 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
197 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
198 if (!MLOC.IsCall)
199 return hash_combine(
200 MLOC.IsCall,
201 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
203 hash_code hash =
204 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
205 MLOC.getCall()->getCalledValue()));
207 for (const Value *Arg : MLOC.getCall()->args())
208 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
209 return hash;
212 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
213 return LHS == RHS;
217 } // end namespace llvm
219 /// This does one-way checks to see if Use could theoretically be hoisted above
220 /// MayClobber. This will not check the other way around.
222 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
223 /// MayClobber, with no potentially clobbering operations in between them.
224 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
225 static bool areLoadsReorderable(const LoadInst *Use,
226 const LoadInst *MayClobber) {
227 bool VolatileUse = Use->isVolatile();
228 bool VolatileClobber = MayClobber->isVolatile();
229 // Volatile operations may never be reordered with other volatile operations.
230 if (VolatileUse && VolatileClobber)
231 return false;
232 // Otherwise, volatile doesn't matter here. From the language reference:
233 // 'optimizers may change the order of volatile operations relative to
234 // non-volatile operations.'"
236 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
237 // is weaker, it can be moved above other loads. We just need to be sure that
238 // MayClobber isn't an acquire load, because loads can't be moved above
239 // acquire loads.
241 // Note that this explicitly *does* allow the free reordering of monotonic (or
242 // weaker) loads of the same address.
243 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
244 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
245 AtomicOrdering::Acquire);
246 return !(SeqCstUse || MayClobberIsAcquire);
249 namespace {
251 struct ClobberAlias {
252 bool IsClobber;
253 Optional<AliasResult> AR;
256 } // end anonymous namespace
258 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
259 // ignored if IsClobber = false.
260 template <typename AliasAnalysisType>
261 static ClobberAlias
262 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
263 const Instruction *UseInst, AliasAnalysisType &AA) {
264 Instruction *DefInst = MD->getMemoryInst();
265 assert(DefInst && "Defining instruction not actually an instruction");
266 const auto *UseCall = dyn_cast<CallBase>(UseInst);
267 Optional<AliasResult> AR;
269 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
270 // These intrinsics will show up as affecting memory, but they are just
271 // markers, mostly.
273 // FIXME: We probably don't actually want MemorySSA to model these at all
274 // (including creating MemoryAccesses for them): we just end up inventing
275 // clobbers where they don't really exist at all. Please see D43269 for
276 // context.
277 switch (II->getIntrinsicID()) {
278 case Intrinsic::lifetime_start:
279 if (UseCall)
280 return {false, NoAlias};
281 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
282 return {AR != NoAlias, AR};
283 case Intrinsic::lifetime_end:
284 case Intrinsic::invariant_start:
285 case Intrinsic::invariant_end:
286 case Intrinsic::assume:
287 return {false, NoAlias};
288 case Intrinsic::dbg_addr:
289 case Intrinsic::dbg_declare:
290 case Intrinsic::dbg_label:
291 case Intrinsic::dbg_value:
292 llvm_unreachable("debuginfo shouldn't have associated defs!");
293 default:
294 break;
298 if (UseCall) {
299 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall);
300 AR = isMustSet(I) ? MustAlias : MayAlias;
301 return {isModOrRefSet(I), AR};
304 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
305 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
306 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
308 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
309 AR = isMustSet(I) ? MustAlias : MayAlias;
310 return {isModSet(I), AR};
313 template <typename AliasAnalysisType>
314 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
315 const MemoryUseOrDef *MU,
316 const MemoryLocOrCall &UseMLOC,
317 AliasAnalysisType &AA) {
318 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
319 // to exist while MemoryLocOrCall is pushed through places.
320 if (UseMLOC.IsCall)
321 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
322 AA);
323 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
324 AA);
327 // Return true when MD may alias MU, return false otherwise.
328 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
329 AliasAnalysis &AA) {
330 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
333 namespace {
335 struct UpwardsMemoryQuery {
336 // True if our original query started off as a call
337 bool IsCall = false;
338 // The pointer location we started the query with. This will be empty if
339 // IsCall is true.
340 MemoryLocation StartingLoc;
341 // This is the instruction we were querying about.
342 const Instruction *Inst = nullptr;
343 // The MemoryAccess we actually got called with, used to test local domination
344 const MemoryAccess *OriginalAccess = nullptr;
345 Optional<AliasResult> AR = MayAlias;
346 bool SkipSelfAccess = false;
348 UpwardsMemoryQuery() = default;
350 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
351 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
352 if (!IsCall)
353 StartingLoc = MemoryLocation::get(Inst);
357 } // end anonymous namespace
359 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
360 BatchAAResults &AA) {
361 Instruction *Inst = MD->getMemoryInst();
362 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
363 switch (II->getIntrinsicID()) {
364 case Intrinsic::lifetime_end:
365 return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias;
366 default:
367 return false;
370 return false;
373 template <typename AliasAnalysisType>
374 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
375 const Instruction *I) {
376 // If the memory can't be changed, then loads of the memory can't be
377 // clobbered.
378 return isa<LoadInst>(I) && (I->hasMetadata(LLVMContext::MD_invariant_load) ||
379 AA.pointsToConstantMemory(MemoryLocation(
380 cast<LoadInst>(I)->getPointerOperand())));
383 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
384 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
386 /// This is meant to be as simple and self-contained as possible. Because it
387 /// uses no cache, etc., it can be relatively expensive.
389 /// \param Start The MemoryAccess that we want to walk from.
390 /// \param ClobberAt A clobber for Start.
391 /// \param StartLoc The MemoryLocation for Start.
392 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
393 /// \param Query The UpwardsMemoryQuery we used for our search.
394 /// \param AA The AliasAnalysis we used for our search.
395 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
397 template <typename AliasAnalysisType>
398 LLVM_ATTRIBUTE_UNUSED static void
399 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
400 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
401 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA,
402 bool AllowImpreciseClobber = false) {
403 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
405 if (MSSA.isLiveOnEntryDef(Start)) {
406 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
407 "liveOnEntry must clobber itself");
408 return;
411 bool FoundClobber = false;
412 DenseSet<ConstMemoryAccessPair> VisitedPhis;
413 SmallVector<ConstMemoryAccessPair, 8> Worklist;
414 Worklist.emplace_back(Start, StartLoc);
415 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
416 // is found, complain.
417 while (!Worklist.empty()) {
418 auto MAP = Worklist.pop_back_val();
419 // All we care about is that nothing from Start to ClobberAt clobbers Start.
420 // We learn nothing from revisiting nodes.
421 if (!VisitedPhis.insert(MAP).second)
422 continue;
424 for (const auto *MA : def_chain(MAP.first)) {
425 if (MA == ClobberAt) {
426 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
427 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
428 // since it won't let us short-circuit.
430 // Also, note that this can't be hoisted out of the `Worklist` loop,
431 // since MD may only act as a clobber for 1 of N MemoryLocations.
432 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
433 if (!FoundClobber) {
434 ClobberAlias CA =
435 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
436 if (CA.IsClobber) {
437 FoundClobber = true;
438 // Not used: CA.AR;
442 break;
445 // We should never hit liveOnEntry, unless it's the clobber.
446 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
448 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
449 // If Start is a Def, skip self.
450 if (MD == Start)
451 continue;
453 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
454 .IsClobber &&
455 "Found clobber before reaching ClobberAt!");
456 continue;
459 if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
460 (void)MU;
461 assert (MU == Start &&
462 "Can only find use in def chain if Start is a use");
463 continue;
466 assert(isa<MemoryPhi>(MA));
467 Worklist.append(
468 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
469 upward_defs_end());
473 // If the verify is done following an optimization, it's possible that
474 // ClobberAt was a conservative clobbering, that we can now infer is not a
475 // true clobbering access. Don't fail the verify if that's the case.
476 // We do have accesses that claim they're optimized, but could be optimized
477 // further. Updating all these can be expensive, so allow it for now (FIXME).
478 if (AllowImpreciseClobber)
479 return;
481 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
482 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
483 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
484 "ClobberAt never acted as a clobber");
487 namespace {
489 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
490 /// in one class.
491 template <class AliasAnalysisType> class ClobberWalker {
492 /// Save a few bytes by using unsigned instead of size_t.
493 using ListIndex = unsigned;
495 /// Represents a span of contiguous MemoryDefs, potentially ending in a
496 /// MemoryPhi.
497 struct DefPath {
498 MemoryLocation Loc;
499 // Note that, because we always walk in reverse, Last will always dominate
500 // First. Also note that First and Last are inclusive.
501 MemoryAccess *First;
502 MemoryAccess *Last;
503 Optional<ListIndex> Previous;
505 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
506 Optional<ListIndex> Previous)
507 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
509 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
510 Optional<ListIndex> Previous)
511 : DefPath(Loc, Init, Init, Previous) {}
514 const MemorySSA &MSSA;
515 AliasAnalysisType &AA;
516 DominatorTree &DT;
517 UpwardsMemoryQuery *Query;
518 unsigned *UpwardWalkLimit;
520 // Phi optimization bookkeeping
521 SmallVector<DefPath, 32> Paths;
522 DenseSet<ConstMemoryAccessPair> VisitedPhis;
524 /// Find the nearest def or phi that `From` can legally be optimized to.
525 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
526 assert(From->getNumOperands() && "Phi with no operands?");
528 BasicBlock *BB = From->getBlock();
529 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
530 DomTreeNode *Node = DT.getNode(BB);
531 while ((Node = Node->getIDom())) {
532 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
533 if (Defs)
534 return &*Defs->rbegin();
536 return Result;
539 /// Result of calling walkToPhiOrClobber.
540 struct UpwardsWalkResult {
541 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
542 /// both. Include alias info when clobber found.
543 MemoryAccess *Result;
544 bool IsKnownClobber;
545 Optional<AliasResult> AR;
548 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
549 /// This will update Desc.Last as it walks. It will (optionally) also stop at
550 /// StopAt.
552 /// This does not test for whether StopAt is a clobber
553 UpwardsWalkResult
554 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
555 const MemoryAccess *SkipStopAt = nullptr) const {
556 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
557 assert(UpwardWalkLimit && "Need a valid walk limit");
558 bool LimitAlreadyReached = false;
559 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
560 // it to 1. This will not do any alias() calls. It either returns in the
561 // first iteration in the loop below, or is set back to 0 if all def chains
562 // are free of MemoryDefs.
563 if (!*UpwardWalkLimit) {
564 *UpwardWalkLimit = 1;
565 LimitAlreadyReached = true;
568 for (MemoryAccess *Current : def_chain(Desc.Last)) {
569 Desc.Last = Current;
570 if (Current == StopAt || Current == SkipStopAt)
571 return {Current, false, MayAlias};
573 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
574 if (MSSA.isLiveOnEntryDef(MD))
575 return {MD, true, MustAlias};
577 if (!--*UpwardWalkLimit)
578 return {Current, true, MayAlias};
580 ClobberAlias CA =
581 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
582 if (CA.IsClobber)
583 return {MD, true, CA.AR};
587 if (LimitAlreadyReached)
588 *UpwardWalkLimit = 0;
590 assert(isa<MemoryPhi>(Desc.Last) &&
591 "Ended at a non-clobber that's not a phi?");
592 return {Desc.Last, false, MayAlias};
595 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
596 ListIndex PriorNode) {
597 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
598 upward_defs_end());
599 for (const MemoryAccessPair &P : UpwardDefs) {
600 PausedSearches.push_back(Paths.size());
601 Paths.emplace_back(P.second, P.first, PriorNode);
605 /// Represents a search that terminated after finding a clobber. This clobber
606 /// may or may not be present in the path of defs from LastNode..SearchStart,
607 /// since it may have been retrieved from cache.
608 struct TerminatedPath {
609 MemoryAccess *Clobber;
610 ListIndex LastNode;
613 /// Get an access that keeps us from optimizing to the given phi.
615 /// PausedSearches is an array of indices into the Paths array. Its incoming
616 /// value is the indices of searches that stopped at the last phi optimization
617 /// target. It's left in an unspecified state.
619 /// If this returns None, NewPaused is a vector of searches that terminated
620 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
621 Optional<TerminatedPath>
622 getBlockingAccess(const MemoryAccess *StopWhere,
623 SmallVectorImpl<ListIndex> &PausedSearches,
624 SmallVectorImpl<ListIndex> &NewPaused,
625 SmallVectorImpl<TerminatedPath> &Terminated) {
626 assert(!PausedSearches.empty() && "No searches to continue?");
628 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
629 // PausedSearches as our stack.
630 while (!PausedSearches.empty()) {
631 ListIndex PathIndex = PausedSearches.pop_back_val();
632 DefPath &Node = Paths[PathIndex];
634 // If we've already visited this path with this MemoryLocation, we don't
635 // need to do so again.
637 // NOTE: That we just drop these paths on the ground makes caching
638 // behavior sporadic. e.g. given a diamond:
639 // A
640 // B C
641 // D
643 // ...If we walk D, B, A, C, we'll only cache the result of phi
644 // optimization for A, B, and D; C will be skipped because it dies here.
645 // This arguably isn't the worst thing ever, since:
646 // - We generally query things in a top-down order, so if we got below D
647 // without needing cache entries for {C, MemLoc}, then chances are
648 // that those cache entries would end up ultimately unused.
649 // - We still cache things for A, so C only needs to walk up a bit.
650 // If this behavior becomes problematic, we can fix without a ton of extra
651 // work.
652 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
653 continue;
655 const MemoryAccess *SkipStopWhere = nullptr;
656 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
657 assert(isa<MemoryDef>(Query->OriginalAccess));
658 SkipStopWhere = Query->OriginalAccess;
661 UpwardsWalkResult Res = walkToPhiOrClobber(Node,
662 /*StopAt=*/StopWhere,
663 /*SkipStopAt=*/SkipStopWhere);
664 if (Res.IsKnownClobber) {
665 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
667 // If this wasn't a cache hit, we hit a clobber when walking. That's a
668 // failure.
669 TerminatedPath Term{Res.Result, PathIndex};
670 if (!MSSA.dominates(Res.Result, StopWhere))
671 return Term;
673 // Otherwise, it's a valid thing to potentially optimize to.
674 Terminated.push_back(Term);
675 continue;
678 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
679 // We've hit our target. Save this path off for if we want to continue
680 // walking. If we are in the mode of skipping the OriginalAccess, and
681 // we've reached back to the OriginalAccess, do not save path, we've
682 // just looped back to self.
683 if (Res.Result != SkipStopWhere)
684 NewPaused.push_back(PathIndex);
685 continue;
688 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
689 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
692 return None;
695 template <typename T, typename Walker>
696 struct generic_def_path_iterator
697 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
698 std::forward_iterator_tag, T *> {
699 generic_def_path_iterator() {}
700 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
702 T &operator*() const { return curNode(); }
704 generic_def_path_iterator &operator++() {
705 N = curNode().Previous;
706 return *this;
709 bool operator==(const generic_def_path_iterator &O) const {
710 if (N.hasValue() != O.N.hasValue())
711 return false;
712 return !N.hasValue() || *N == *O.N;
715 private:
716 T &curNode() const { return W->Paths[*N]; }
718 Walker *W = nullptr;
719 Optional<ListIndex> N = None;
722 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
723 using const_def_path_iterator =
724 generic_def_path_iterator<const DefPath, const ClobberWalker>;
726 iterator_range<def_path_iterator> def_path(ListIndex From) {
727 return make_range(def_path_iterator(this, From), def_path_iterator());
730 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
731 return make_range(const_def_path_iterator(this, From),
732 const_def_path_iterator());
735 struct OptznResult {
736 /// The path that contains our result.
737 TerminatedPath PrimaryClobber;
738 /// The paths that we can legally cache back from, but that aren't
739 /// necessarily the result of the Phi optimization.
740 SmallVector<TerminatedPath, 4> OtherClobbers;
743 ListIndex defPathIndex(const DefPath &N) const {
744 // The assert looks nicer if we don't need to do &N
745 const DefPath *NP = &N;
746 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
747 "Out of bounds DefPath!");
748 return NP - &Paths.front();
751 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
752 /// that act as legal clobbers. Note that this won't return *all* clobbers.
754 /// Phi optimization algorithm tl;dr:
755 /// - Find the earliest def/phi, A, we can optimize to
756 /// - Find if all paths from the starting memory access ultimately reach A
757 /// - If not, optimization isn't possible.
758 /// - Otherwise, walk from A to another clobber or phi, A'.
759 /// - If A' is a def, we're done.
760 /// - If A' is a phi, try to optimize it.
762 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
763 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
764 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
765 const MemoryLocation &Loc) {
766 assert(Paths.empty() && VisitedPhis.empty() &&
767 "Reset the optimization state.");
769 Paths.emplace_back(Loc, Start, Phi, None);
770 // Stores how many "valid" optimization nodes we had prior to calling
771 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
772 auto PriorPathsSize = Paths.size();
774 SmallVector<ListIndex, 16> PausedSearches;
775 SmallVector<ListIndex, 8> NewPaused;
776 SmallVector<TerminatedPath, 4> TerminatedPaths;
778 addSearches(Phi, PausedSearches, 0);
780 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
781 // Paths.
782 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
783 assert(!Paths.empty() && "Need a path to move");
784 auto Dom = Paths.begin();
785 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
786 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
787 Dom = I;
788 auto Last = Paths.end() - 1;
789 if (Last != Dom)
790 std::iter_swap(Last, Dom);
793 MemoryPhi *Current = Phi;
794 while (true) {
795 assert(!MSSA.isLiveOnEntryDef(Current) &&
796 "liveOnEntry wasn't treated as a clobber?");
798 const auto *Target = getWalkTarget(Current);
799 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
800 // optimization for the prior phi.
801 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
802 return MSSA.dominates(P.Clobber, Target);
803 }));
805 // FIXME: This is broken, because the Blocker may be reported to be
806 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
807 // For the moment, this is fine, since we do nothing with blocker info.
808 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
809 Target, PausedSearches, NewPaused, TerminatedPaths)) {
811 // Find the node we started at. We can't search based on N->Last, since
812 // we may have gone around a loop with a different MemoryLocation.
813 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
814 return defPathIndex(N) < PriorPathsSize;
816 assert(Iter != def_path_iterator());
818 DefPath &CurNode = *Iter;
819 assert(CurNode.Last == Current);
821 // Two things:
822 // A. We can't reliably cache all of NewPaused back. Consider a case
823 // where we have two paths in NewPaused; one of which can't optimize
824 // above this phi, whereas the other can. If we cache the second path
825 // back, we'll end up with suboptimal cache entries. We can handle
826 // cases like this a bit better when we either try to find all
827 // clobbers that block phi optimization, or when our cache starts
828 // supporting unfinished searches.
829 // B. We can't reliably cache TerminatedPaths back here without doing
830 // extra checks; consider a case like:
831 // T
832 // / \
833 // D C
834 // \ /
835 // S
836 // Where T is our target, C is a node with a clobber on it, D is a
837 // diamond (with a clobber *only* on the left or right node, N), and
838 // S is our start. Say we walk to D, through the node opposite N
839 // (read: ignoring the clobber), and see a cache entry in the top
840 // node of D. That cache entry gets put into TerminatedPaths. We then
841 // walk up to C (N is later in our worklist), find the clobber, and
842 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
843 // the bottom part of D to the cached clobber, ignoring the clobber
844 // in N. Again, this problem goes away if we start tracking all
845 // blockers for a given phi optimization.
846 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
847 return {Result, {}};
850 // If there's nothing left to search, then all paths led to valid clobbers
851 // that we got from our cache; pick the nearest to the start, and allow
852 // the rest to be cached back.
853 if (NewPaused.empty()) {
854 MoveDominatedPathToEnd(TerminatedPaths);
855 TerminatedPath Result = TerminatedPaths.pop_back_val();
856 return {Result, std::move(TerminatedPaths)};
859 MemoryAccess *DefChainEnd = nullptr;
860 SmallVector<TerminatedPath, 4> Clobbers;
861 for (ListIndex Paused : NewPaused) {
862 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
863 if (WR.IsKnownClobber)
864 Clobbers.push_back({WR.Result, Paused});
865 else
866 // Micro-opt: If we hit the end of the chain, save it.
867 DefChainEnd = WR.Result;
870 if (!TerminatedPaths.empty()) {
871 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
872 // do it now.
873 if (!DefChainEnd)
874 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
875 DefChainEnd = MA;
877 // If any of the terminated paths don't dominate the phi we'll try to
878 // optimize, we need to figure out what they are and quit.
879 const BasicBlock *ChainBB = DefChainEnd->getBlock();
880 for (const TerminatedPath &TP : TerminatedPaths) {
881 // Because we know that DefChainEnd is as "high" as we can go, we
882 // don't need local dominance checks; BB dominance is sufficient.
883 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
884 Clobbers.push_back(TP);
888 // If we have clobbers in the def chain, find the one closest to Current
889 // and quit.
890 if (!Clobbers.empty()) {
891 MoveDominatedPathToEnd(Clobbers);
892 TerminatedPath Result = Clobbers.pop_back_val();
893 return {Result, std::move(Clobbers)};
896 assert(all_of(NewPaused,
897 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
899 // Because liveOnEntry is a clobber, this must be a phi.
900 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
902 PriorPathsSize = Paths.size();
903 PausedSearches.clear();
904 for (ListIndex I : NewPaused)
905 addSearches(DefChainPhi, PausedSearches, I);
906 NewPaused.clear();
908 Current = DefChainPhi;
912 void verifyOptResult(const OptznResult &R) const {
913 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
914 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
915 }));
918 void resetPhiOptznState() {
919 Paths.clear();
920 VisitedPhis.clear();
923 public:
924 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT)
925 : MSSA(MSSA), AA(AA), DT(DT) {}
927 AliasAnalysisType *getAA() { return &AA; }
928 /// Finds the nearest clobber for the given query, optimizing phis if
929 /// possible.
930 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q,
931 unsigned &UpWalkLimit) {
932 Query = &Q;
933 UpwardWalkLimit = &UpWalkLimit;
934 // Starting limit must be > 0.
935 if (!UpWalkLimit)
936 UpWalkLimit++;
938 MemoryAccess *Current = Start;
939 // This walker pretends uses don't exist. If we're handed one, silently grab
940 // its def. (This has the nice side-effect of ensuring we never cache uses)
941 if (auto *MU = dyn_cast<MemoryUse>(Start))
942 Current = MU->getDefiningAccess();
944 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
945 // Fast path for the overly-common case (no crazy phi optimization
946 // necessary)
947 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
948 MemoryAccess *Result;
949 if (WalkResult.IsKnownClobber) {
950 Result = WalkResult.Result;
951 Q.AR = WalkResult.AR;
952 } else {
953 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
954 Current, Q.StartingLoc);
955 verifyOptResult(OptRes);
956 resetPhiOptznState();
957 Result = OptRes.PrimaryClobber.Clobber;
960 #ifdef EXPENSIVE_CHECKS
961 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
962 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
963 #endif
964 return Result;
968 struct RenamePassData {
969 DomTreeNode *DTN;
970 DomTreeNode::const_iterator ChildIt;
971 MemoryAccess *IncomingVal;
973 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
974 MemoryAccess *M)
975 : DTN(D), ChildIt(It), IncomingVal(M) {}
977 void swap(RenamePassData &RHS) {
978 std::swap(DTN, RHS.DTN);
979 std::swap(ChildIt, RHS.ChildIt);
980 std::swap(IncomingVal, RHS.IncomingVal);
984 } // end anonymous namespace
986 namespace llvm {
988 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase {
989 ClobberWalker<AliasAnalysisType> Walker;
990 MemorySSA *MSSA;
992 public:
993 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D)
994 : Walker(*M, *A, *D), MSSA(M) {}
996 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
997 const MemoryLocation &,
998 unsigned &);
999 // Third argument (bool), defines whether the clobber search should skip the
1000 // original queried access. If true, there will be a follow-up query searching
1001 // for a clobber access past "self". Note that the Optimized access is not
1002 // updated if a new clobber is found by this SkipSelf search. If this
1003 // additional query becomes heavily used we may decide to cache the result.
1004 // Walker instantiations will decide how to set the SkipSelf bool.
1005 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool);
1008 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
1009 /// longer does caching on its own, but the name has been retained for the
1010 /// moment.
1011 template <class AliasAnalysisType>
1012 class MemorySSA::CachingWalker final : public MemorySSAWalker {
1013 ClobberWalkerBase<AliasAnalysisType> *Walker;
1015 public:
1016 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1017 : MemorySSAWalker(M), Walker(W) {}
1018 ~CachingWalker() override = default;
1020 using MemorySSAWalker::getClobberingMemoryAccess;
1022 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1023 return Walker->getClobberingMemoryAccessBase(MA, UWL, false);
1025 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1026 const MemoryLocation &Loc,
1027 unsigned &UWL) {
1028 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1031 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1032 unsigned UpwardWalkLimit = MaxCheckLimit;
1033 return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1035 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1036 const MemoryLocation &Loc) override {
1037 unsigned UpwardWalkLimit = MaxCheckLimit;
1038 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1041 void invalidateInfo(MemoryAccess *MA) override {
1042 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1043 MUD->resetOptimized();
1047 template <class AliasAnalysisType>
1048 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
1049 ClobberWalkerBase<AliasAnalysisType> *Walker;
1051 public:
1052 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1053 : MemorySSAWalker(M), Walker(W) {}
1054 ~SkipSelfWalker() override = default;
1056 using MemorySSAWalker::getClobberingMemoryAccess;
1058 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1059 return Walker->getClobberingMemoryAccessBase(MA, UWL, true);
1061 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1062 const MemoryLocation &Loc,
1063 unsigned &UWL) {
1064 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1067 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1068 unsigned UpwardWalkLimit = MaxCheckLimit;
1069 return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1071 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1072 const MemoryLocation &Loc) override {
1073 unsigned UpwardWalkLimit = MaxCheckLimit;
1074 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1077 void invalidateInfo(MemoryAccess *MA) override {
1078 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1079 MUD->resetOptimized();
1083 } // end namespace llvm
1085 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1086 bool RenameAllUses) {
1087 // Pass through values to our successors
1088 for (const BasicBlock *S : successors(BB)) {
1089 auto It = PerBlockAccesses.find(S);
1090 // Rename the phi nodes in our successor block
1091 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1092 continue;
1093 AccessList *Accesses = It->second.get();
1094 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1095 if (RenameAllUses) {
1096 bool ReplacementDone = false;
1097 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1098 if (Phi->getIncomingBlock(I) == BB) {
1099 Phi->setIncomingValue(I, IncomingVal);
1100 ReplacementDone = true;
1102 (void) ReplacementDone;
1103 assert(ReplacementDone && "Incomplete phi during partial rename");
1104 } else
1105 Phi->addIncoming(IncomingVal, BB);
1109 /// Rename a single basic block into MemorySSA form.
1110 /// Uses the standard SSA renaming algorithm.
1111 /// \returns The new incoming value.
1112 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1113 bool RenameAllUses) {
1114 auto It = PerBlockAccesses.find(BB);
1115 // Skip most processing if the list is empty.
1116 if (It != PerBlockAccesses.end()) {
1117 AccessList *Accesses = It->second.get();
1118 for (MemoryAccess &L : *Accesses) {
1119 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1120 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1121 MUD->setDefiningAccess(IncomingVal);
1122 if (isa<MemoryDef>(&L))
1123 IncomingVal = &L;
1124 } else {
1125 IncomingVal = &L;
1129 return IncomingVal;
1132 /// This is the standard SSA renaming algorithm.
1134 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1135 /// in phi nodes in our successors.
1136 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1137 SmallPtrSetImpl<BasicBlock *> &Visited,
1138 bool SkipVisited, bool RenameAllUses) {
1139 assert(Root && "Trying to rename accesses in an unreachable block");
1141 SmallVector<RenamePassData, 32> WorkStack;
1142 // Skip everything if we already renamed this block and we are skipping.
1143 // Note: You can't sink this into the if, because we need it to occur
1144 // regardless of whether we skip blocks or not.
1145 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1146 if (SkipVisited && AlreadyVisited)
1147 return;
1149 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1150 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1151 WorkStack.push_back({Root, Root->begin(), IncomingVal});
1153 while (!WorkStack.empty()) {
1154 DomTreeNode *Node = WorkStack.back().DTN;
1155 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1156 IncomingVal = WorkStack.back().IncomingVal;
1158 if (ChildIt == Node->end()) {
1159 WorkStack.pop_back();
1160 } else {
1161 DomTreeNode *Child = *ChildIt;
1162 ++WorkStack.back().ChildIt;
1163 BasicBlock *BB = Child->getBlock();
1164 // Note: You can't sink this into the if, because we need it to occur
1165 // regardless of whether we skip blocks or not.
1166 AlreadyVisited = !Visited.insert(BB).second;
1167 if (SkipVisited && AlreadyVisited) {
1168 // We already visited this during our renaming, which can happen when
1169 // being asked to rename multiple blocks. Figure out the incoming val,
1170 // which is the last def.
1171 // Incoming value can only change if there is a block def, and in that
1172 // case, it's the last block def in the list.
1173 if (auto *BlockDefs = getWritableBlockDefs(BB))
1174 IncomingVal = &*BlockDefs->rbegin();
1175 } else
1176 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1177 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1178 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1183 /// This handles unreachable block accesses by deleting phi nodes in
1184 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1185 /// being uses of the live on entry definition.
1186 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1187 assert(!DT->isReachableFromEntry(BB) &&
1188 "Reachable block found while handling unreachable blocks");
1190 // Make sure phi nodes in our reachable successors end up with a
1191 // LiveOnEntryDef for our incoming edge, even though our block is forward
1192 // unreachable. We could just disconnect these blocks from the CFG fully,
1193 // but we do not right now.
1194 for (const BasicBlock *S : successors(BB)) {
1195 if (!DT->isReachableFromEntry(S))
1196 continue;
1197 auto It = PerBlockAccesses.find(S);
1198 // Rename the phi nodes in our successor block
1199 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1200 continue;
1201 AccessList *Accesses = It->second.get();
1202 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1203 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1206 auto It = PerBlockAccesses.find(BB);
1207 if (It == PerBlockAccesses.end())
1208 return;
1210 auto &Accesses = It->second;
1211 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1212 auto Next = std::next(AI);
1213 // If we have a phi, just remove it. We are going to replace all
1214 // users with live on entry.
1215 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1216 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1217 else
1218 Accesses->erase(AI);
1219 AI = Next;
1223 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1224 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1225 SkipWalker(nullptr), NextID(0) {
1226 // Build MemorySSA using a batch alias analysis. This reuses the internal
1227 // state that AA collects during an alias()/getModRefInfo() call. This is
1228 // safe because there are no CFG changes while building MemorySSA and can
1229 // significantly reduce the time spent by the compiler in AA, because we will
1230 // make queries about all the instructions in the Function.
1231 BatchAAResults BatchAA(*AA);
1232 buildMemorySSA(BatchAA);
1233 // Intentionally leave AA to nullptr while building so we don't accidently
1234 // use non-batch AliasAnalysis.
1235 this->AA = AA;
1236 // Also create the walker here.
1237 getWalker();
1240 MemorySSA::~MemorySSA() {
1241 // Drop all our references
1242 for (const auto &Pair : PerBlockAccesses)
1243 for (MemoryAccess &MA : *Pair.second)
1244 MA.dropAllReferences();
1247 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1248 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1250 if (Res.second)
1251 Res.first->second = std::make_unique<AccessList>();
1252 return Res.first->second.get();
1255 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1256 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1258 if (Res.second)
1259 Res.first->second = std::make_unique<DefsList>();
1260 return Res.first->second.get();
1263 namespace llvm {
1265 /// This class is a batch walker of all MemoryUse's in the program, and points
1266 /// their defining access at the thing that actually clobbers them. Because it
1267 /// is a batch walker that touches everything, it does not operate like the
1268 /// other walkers. This walker is basically performing a top-down SSA renaming
1269 /// pass, where the version stack is used as the cache. This enables it to be
1270 /// significantly more time and memory efficient than using the regular walker,
1271 /// which is walking bottom-up.
1272 class MemorySSA::OptimizeUses {
1273 public:
1274 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker,
1275 BatchAAResults *BAA, DominatorTree *DT)
1276 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
1278 void optimizeUses();
1280 private:
1281 /// This represents where a given memorylocation is in the stack.
1282 struct MemlocStackInfo {
1283 // This essentially is keeping track of versions of the stack. Whenever
1284 // the stack changes due to pushes or pops, these versions increase.
1285 unsigned long StackEpoch;
1286 unsigned long PopEpoch;
1287 // This is the lower bound of places on the stack to check. It is equal to
1288 // the place the last stack walk ended.
1289 // Note: Correctness depends on this being initialized to 0, which densemap
1290 // does
1291 unsigned long LowerBound;
1292 const BasicBlock *LowerBoundBlock;
1293 // This is where the last walk for this memory location ended.
1294 unsigned long LastKill;
1295 bool LastKillValid;
1296 Optional<AliasResult> AR;
1299 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1300 SmallVectorImpl<MemoryAccess *> &,
1301 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1303 MemorySSA *MSSA;
1304 CachingWalker<BatchAAResults> *Walker;
1305 BatchAAResults *AA;
1306 DominatorTree *DT;
1309 } // end namespace llvm
1311 /// Optimize the uses in a given block This is basically the SSA renaming
1312 /// algorithm, with one caveat: We are able to use a single stack for all
1313 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1314 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1315 /// going to be some position in that stack of possible ones.
1317 /// We track the stack positions that each MemoryLocation needs
1318 /// to check, and last ended at. This is because we only want to check the
1319 /// things that changed since last time. The same MemoryLocation should
1320 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1321 /// things like this, and if they start, we can modify MemoryLocOrCall to
1322 /// include relevant data)
1323 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1324 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1325 SmallVectorImpl<MemoryAccess *> &VersionStack,
1326 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1328 /// If no accesses, nothing to do.
1329 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1330 if (Accesses == nullptr)
1331 return;
1333 // Pop everything that doesn't dominate the current block off the stack,
1334 // increment the PopEpoch to account for this.
1335 while (true) {
1336 assert(
1337 !VersionStack.empty() &&
1338 "Version stack should have liveOnEntry sentinel dominating everything");
1339 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1340 if (DT->dominates(BackBlock, BB))
1341 break;
1342 while (VersionStack.back()->getBlock() == BackBlock)
1343 VersionStack.pop_back();
1344 ++PopEpoch;
1347 for (MemoryAccess &MA : *Accesses) {
1348 auto *MU = dyn_cast<MemoryUse>(&MA);
1349 if (!MU) {
1350 VersionStack.push_back(&MA);
1351 ++StackEpoch;
1352 continue;
1355 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1356 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1357 continue;
1360 MemoryLocOrCall UseMLOC(MU);
1361 auto &LocInfo = LocStackInfo[UseMLOC];
1362 // If the pop epoch changed, it means we've removed stuff from top of
1363 // stack due to changing blocks. We may have to reset the lower bound or
1364 // last kill info.
1365 if (LocInfo.PopEpoch != PopEpoch) {
1366 LocInfo.PopEpoch = PopEpoch;
1367 LocInfo.StackEpoch = StackEpoch;
1368 // If the lower bound was in something that no longer dominates us, we
1369 // have to reset it.
1370 // We can't simply track stack size, because the stack may have had
1371 // pushes/pops in the meantime.
1372 // XXX: This is non-optimal, but only is slower cases with heavily
1373 // branching dominator trees. To get the optimal number of queries would
1374 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1375 // the top of that stack dominates us. This does not seem worth it ATM.
1376 // A much cheaper optimization would be to always explore the deepest
1377 // branch of the dominator tree first. This will guarantee this resets on
1378 // the smallest set of blocks.
1379 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1380 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1381 // Reset the lower bound of things to check.
1382 // TODO: Some day we should be able to reset to last kill, rather than
1383 // 0.
1384 LocInfo.LowerBound = 0;
1385 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1386 LocInfo.LastKillValid = false;
1388 } else if (LocInfo.StackEpoch != StackEpoch) {
1389 // If all that has changed is the StackEpoch, we only have to check the
1390 // new things on the stack, because we've checked everything before. In
1391 // this case, the lower bound of things to check remains the same.
1392 LocInfo.PopEpoch = PopEpoch;
1393 LocInfo.StackEpoch = StackEpoch;
1395 if (!LocInfo.LastKillValid) {
1396 LocInfo.LastKill = VersionStack.size() - 1;
1397 LocInfo.LastKillValid = true;
1398 LocInfo.AR = MayAlias;
1401 // At this point, we should have corrected last kill and LowerBound to be
1402 // in bounds.
1403 assert(LocInfo.LowerBound < VersionStack.size() &&
1404 "Lower bound out of range");
1405 assert(LocInfo.LastKill < VersionStack.size() &&
1406 "Last kill info out of range");
1407 // In any case, the new upper bound is the top of the stack.
1408 unsigned long UpperBound = VersionStack.size() - 1;
1410 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1411 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1412 << *(MU->getMemoryInst()) << ")"
1413 << " because there are "
1414 << UpperBound - LocInfo.LowerBound
1415 << " stores to disambiguate\n");
1416 // Because we did not walk, LastKill is no longer valid, as this may
1417 // have been a kill.
1418 LocInfo.LastKillValid = false;
1419 continue;
1421 bool FoundClobberResult = false;
1422 unsigned UpwardWalkLimit = MaxCheckLimit;
1423 while (UpperBound > LocInfo.LowerBound) {
1424 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1425 // For phis, use the walker, see where we ended up, go there
1426 MemoryAccess *Result =
1427 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit);
1428 // We are guaranteed to find it or something is wrong
1429 while (VersionStack[UpperBound] != Result) {
1430 assert(UpperBound != 0);
1431 --UpperBound;
1433 FoundClobberResult = true;
1434 break;
1437 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1438 // If the lifetime of the pointer ends at this instruction, it's live on
1439 // entry.
1440 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1441 // Reset UpperBound to liveOnEntryDef's place in the stack
1442 UpperBound = 0;
1443 FoundClobberResult = true;
1444 LocInfo.AR = MustAlias;
1445 break;
1447 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1448 if (CA.IsClobber) {
1449 FoundClobberResult = true;
1450 LocInfo.AR = CA.AR;
1451 break;
1453 --UpperBound;
1456 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1458 // At the end of this loop, UpperBound is either a clobber, or lower bound
1459 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1460 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1461 // We were last killed now by where we got to
1462 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1463 LocInfo.AR = None;
1464 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1465 LocInfo.LastKill = UpperBound;
1466 } else {
1467 // Otherwise, we checked all the new ones, and now we know we can get to
1468 // LastKill.
1469 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1471 LocInfo.LowerBound = VersionStack.size() - 1;
1472 LocInfo.LowerBoundBlock = BB;
1476 /// Optimize uses to point to their actual clobbering definitions.
1477 void MemorySSA::OptimizeUses::optimizeUses() {
1478 SmallVector<MemoryAccess *, 16> VersionStack;
1479 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1480 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1482 unsigned long StackEpoch = 1;
1483 unsigned long PopEpoch = 1;
1484 // We perform a non-recursive top-down dominator tree walk.
1485 for (const auto *DomNode : depth_first(DT->getRootNode()))
1486 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1487 LocStackInfo);
1490 void MemorySSA::placePHINodes(
1491 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1492 // Determine where our MemoryPhi's should go
1493 ForwardIDFCalculator IDFs(*DT);
1494 IDFs.setDefiningBlocks(DefiningBlocks);
1495 SmallVector<BasicBlock *, 32> IDFBlocks;
1496 IDFs.calculate(IDFBlocks);
1498 // Now place MemoryPhi nodes.
1499 for (auto &BB : IDFBlocks)
1500 createMemoryPhi(BB);
1503 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
1504 // We create an access to represent "live on entry", for things like
1505 // arguments or users of globals, where the memory they use is defined before
1506 // the beginning of the function. We do not actually insert it into the IR.
1507 // We do not define a live on exit for the immediate uses, and thus our
1508 // semantics do *not* imply that something with no immediate uses can simply
1509 // be removed.
1510 BasicBlock &StartingPoint = F.getEntryBlock();
1511 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1512 &StartingPoint, NextID++));
1514 // We maintain lists of memory accesses per-block, trading memory for time. We
1515 // could just look up the memory access for every possible instruction in the
1516 // stream.
1517 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1518 // Go through each block, figure out where defs occur, and chain together all
1519 // the accesses.
1520 for (BasicBlock &B : F) {
1521 bool InsertIntoDef = false;
1522 AccessList *Accesses = nullptr;
1523 DefsList *Defs = nullptr;
1524 for (Instruction &I : B) {
1525 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
1526 if (!MUD)
1527 continue;
1529 if (!Accesses)
1530 Accesses = getOrCreateAccessList(&B);
1531 Accesses->push_back(MUD);
1532 if (isa<MemoryDef>(MUD)) {
1533 InsertIntoDef = true;
1534 if (!Defs)
1535 Defs = getOrCreateDefsList(&B);
1536 Defs->push_back(*MUD);
1539 if (InsertIntoDef)
1540 DefiningBlocks.insert(&B);
1542 placePHINodes(DefiningBlocks);
1544 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1545 // filled in with all blocks.
1546 SmallPtrSet<BasicBlock *, 16> Visited;
1547 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1549 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT);
1550 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase);
1551 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses();
1553 // Mark the uses in unreachable blocks as live on entry, so that they go
1554 // somewhere.
1555 for (auto &BB : F)
1556 if (!Visited.count(&BB))
1557 markUnreachableAsLiveOnEntry(&BB);
1560 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1562 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() {
1563 if (Walker)
1564 return Walker.get();
1566 if (!WalkerBase)
1567 WalkerBase =
1568 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1570 Walker =
1571 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get());
1572 return Walker.get();
1575 MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1576 if (SkipWalker)
1577 return SkipWalker.get();
1579 if (!WalkerBase)
1580 WalkerBase =
1581 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1583 SkipWalker =
1584 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get());
1585 return SkipWalker.get();
1589 // This is a helper function used by the creation routines. It places NewAccess
1590 // into the access and defs lists for a given basic block, at the given
1591 // insertion point.
1592 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1593 const BasicBlock *BB,
1594 InsertionPlace Point) {
1595 auto *Accesses = getOrCreateAccessList(BB);
1596 if (Point == Beginning) {
1597 // If it's a phi node, it goes first, otherwise, it goes after any phi
1598 // nodes.
1599 if (isa<MemoryPhi>(NewAccess)) {
1600 Accesses->push_front(NewAccess);
1601 auto *Defs = getOrCreateDefsList(BB);
1602 Defs->push_front(*NewAccess);
1603 } else {
1604 auto AI = find_if_not(
1605 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1606 Accesses->insert(AI, NewAccess);
1607 if (!isa<MemoryUse>(NewAccess)) {
1608 auto *Defs = getOrCreateDefsList(BB);
1609 auto DI = find_if_not(
1610 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1611 Defs->insert(DI, *NewAccess);
1614 } else {
1615 Accesses->push_back(NewAccess);
1616 if (!isa<MemoryUse>(NewAccess)) {
1617 auto *Defs = getOrCreateDefsList(BB);
1618 Defs->push_back(*NewAccess);
1621 BlockNumberingValid.erase(BB);
1624 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1625 AccessList::iterator InsertPt) {
1626 auto *Accesses = getWritableBlockAccesses(BB);
1627 bool WasEnd = InsertPt == Accesses->end();
1628 Accesses->insert(AccessList::iterator(InsertPt), What);
1629 if (!isa<MemoryUse>(What)) {
1630 auto *Defs = getOrCreateDefsList(BB);
1631 // If we got asked to insert at the end, we have an easy job, just shove it
1632 // at the end. If we got asked to insert before an existing def, we also get
1633 // an iterator. If we got asked to insert before a use, we have to hunt for
1634 // the next def.
1635 if (WasEnd) {
1636 Defs->push_back(*What);
1637 } else if (isa<MemoryDef>(InsertPt)) {
1638 Defs->insert(InsertPt->getDefsIterator(), *What);
1639 } else {
1640 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1641 ++InsertPt;
1642 // Either we found a def, or we are inserting at the end
1643 if (InsertPt == Accesses->end())
1644 Defs->push_back(*What);
1645 else
1646 Defs->insert(InsertPt->getDefsIterator(), *What);
1649 BlockNumberingValid.erase(BB);
1652 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1653 // Keep it in the lookup tables, remove from the lists
1654 removeFromLists(What, false);
1656 // Note that moving should implicitly invalidate the optimized state of a
1657 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1658 // MemoryDef.
1659 if (auto *MD = dyn_cast<MemoryDef>(What))
1660 MD->resetOptimized();
1661 What->setBlock(BB);
1664 // Move What before Where in the IR. The end result is that What will belong to
1665 // the right lists and have the right Block set, but will not otherwise be
1666 // correct. It will not have the right defining access, and if it is a def,
1667 // things below it will not properly be updated.
1668 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1669 AccessList::iterator Where) {
1670 prepareForMoveTo(What, BB);
1671 insertIntoListsBefore(What, BB, Where);
1674 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1675 InsertionPlace Point) {
1676 if (isa<MemoryPhi>(What)) {
1677 assert(Point == Beginning &&
1678 "Can only move a Phi at the beginning of the block");
1679 // Update lookup table entry
1680 ValueToMemoryAccess.erase(What->getBlock());
1681 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1682 (void)Inserted;
1683 assert(Inserted && "Cannot move a Phi to a block that already has one");
1686 prepareForMoveTo(What, BB);
1687 insertIntoListsForBlock(What, BB, Point);
1690 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1691 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1692 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1693 // Phi's always are placed at the front of the block.
1694 insertIntoListsForBlock(Phi, BB, Beginning);
1695 ValueToMemoryAccess[BB] = Phi;
1696 return Phi;
1699 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1700 MemoryAccess *Definition,
1701 const MemoryUseOrDef *Template,
1702 bool CreationMustSucceed) {
1703 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1704 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
1705 if (CreationMustSucceed)
1706 assert(NewAccess != nullptr && "Tried to create a memory access for a "
1707 "non-memory touching instruction");
1708 if (NewAccess)
1709 NewAccess->setDefiningAccess(Definition);
1710 return NewAccess;
1713 // Return true if the instruction has ordering constraints.
1714 // Note specifically that this only considers stores and loads
1715 // because others are still considered ModRef by getModRefInfo.
1716 static inline bool isOrdered(const Instruction *I) {
1717 if (auto *SI = dyn_cast<StoreInst>(I)) {
1718 if (!SI->isUnordered())
1719 return true;
1720 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1721 if (!LI->isUnordered())
1722 return true;
1724 return false;
1727 /// Helper function to create new memory accesses
1728 template <typename AliasAnalysisType>
1729 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1730 AliasAnalysisType *AAP,
1731 const MemoryUseOrDef *Template) {
1732 // The assume intrinsic has a control dependency which we model by claiming
1733 // that it writes arbitrarily. Debuginfo intrinsics may be considered
1734 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1735 // dependencies here.
1736 // FIXME: Replace this special casing with a more accurate modelling of
1737 // assume's control dependency.
1738 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1739 if (II->getIntrinsicID() == Intrinsic::assume)
1740 return nullptr;
1742 // Using a nonstandard AA pipelines might leave us with unexpected modref
1743 // results for I, so add a check to not model instructions that may not read
1744 // from or write to memory. This is necessary for correctness.
1745 if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
1746 return nullptr;
1748 bool Def, Use;
1749 if (Template) {
1750 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
1751 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
1752 #if !defined(NDEBUG)
1753 ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1754 bool DefCheck, UseCheck;
1755 DefCheck = isModSet(ModRef) || isOrdered(I);
1756 UseCheck = isRefSet(ModRef);
1757 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1758 #endif
1759 } else {
1760 // Find out what affect this instruction has on memory.
1761 ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1762 // The isOrdered check is used to ensure that volatiles end up as defs
1763 // (atomics end up as ModRef right now anyway). Until we separate the
1764 // ordering chain from the memory chain, this enables people to see at least
1765 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1766 // will still give an answer that bypasses other volatile loads. TODO:
1767 // Separate memory aliasing and ordering into two different chains so that
1768 // we can precisely represent both "what memory will this read/write/is
1769 // clobbered by" and "what instructions can I move this past".
1770 Def = isModSet(ModRef) || isOrdered(I);
1771 Use = isRefSet(ModRef);
1774 // It's possible for an instruction to not modify memory at all. During
1775 // construction, we ignore them.
1776 if (!Def && !Use)
1777 return nullptr;
1779 MemoryUseOrDef *MUD;
1780 if (Def)
1781 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1782 else
1783 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1784 ValueToMemoryAccess[I] = MUD;
1785 return MUD;
1788 /// Returns true if \p Replacer dominates \p Replacee .
1789 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1790 const MemoryAccess *Replacee) const {
1791 if (isa<MemoryUseOrDef>(Replacee))
1792 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1793 const auto *MP = cast<MemoryPhi>(Replacee);
1794 // For a phi node, the use occurs in the predecessor block of the phi node.
1795 // Since we may occur multiple times in the phi node, we have to check each
1796 // operand to ensure Replacer dominates each operand where Replacee occurs.
1797 for (const Use &Arg : MP->operands()) {
1798 if (Arg.get() != Replacee &&
1799 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1800 return false;
1802 return true;
1805 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1806 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1807 assert(MA->use_empty() &&
1808 "Trying to remove memory access that still has uses");
1809 BlockNumbering.erase(MA);
1810 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1811 MUD->setDefiningAccess(nullptr);
1812 // Invalidate our walker's cache if necessary
1813 if (!isa<MemoryUse>(MA))
1814 getWalker()->invalidateInfo(MA);
1816 Value *MemoryInst;
1817 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1818 MemoryInst = MUD->getMemoryInst();
1819 else
1820 MemoryInst = MA->getBlock();
1822 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1823 if (VMA->second == MA)
1824 ValueToMemoryAccess.erase(VMA);
1827 /// Properly remove \p MA from all of MemorySSA's lists.
1829 /// Because of the way the intrusive list and use lists work, it is important to
1830 /// do removal in the right order.
1831 /// ShouldDelete defaults to true, and will cause the memory access to also be
1832 /// deleted, not just removed.
1833 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1834 BasicBlock *BB = MA->getBlock();
1835 // The access list owns the reference, so we erase it from the non-owning list
1836 // first.
1837 if (!isa<MemoryUse>(MA)) {
1838 auto DefsIt = PerBlockDefs.find(BB);
1839 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1840 Defs->remove(*MA);
1841 if (Defs->empty())
1842 PerBlockDefs.erase(DefsIt);
1845 // The erase call here will delete it. If we don't want it deleted, we call
1846 // remove instead.
1847 auto AccessIt = PerBlockAccesses.find(BB);
1848 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1849 if (ShouldDelete)
1850 Accesses->erase(MA);
1851 else
1852 Accesses->remove(MA);
1854 if (Accesses->empty()) {
1855 PerBlockAccesses.erase(AccessIt);
1856 BlockNumberingValid.erase(BB);
1860 void MemorySSA::print(raw_ostream &OS) const {
1861 MemorySSAAnnotatedWriter Writer(this);
1862 F.print(OS, &Writer);
1865 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1866 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1867 #endif
1869 void MemorySSA::verifyMemorySSA() const {
1870 verifyDefUses(F);
1871 verifyDomination(F);
1872 verifyOrdering(F);
1873 verifyDominationNumbers(F);
1874 verifyPrevDefInPhis(F);
1875 // Previously, the verification used to also verify that the clobberingAccess
1876 // cached by MemorySSA is the same as the clobberingAccess found at a later
1877 // query to AA. This does not hold true in general due to the current fragility
1878 // of BasicAA which has arbitrary caps on the things it analyzes before giving
1879 // up. As a result, transformations that are correct, will lead to BasicAA
1880 // returning different Alias answers before and after that transformation.
1881 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1882 // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1883 // every transformation, which defeats the purpose of using it. For such an
1884 // example, see test4 added in D51960.
1887 void MemorySSA::verifyPrevDefInPhis(Function &F) const {
1888 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1889 for (const BasicBlock &BB : F) {
1890 if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
1891 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1892 auto *Pred = Phi->getIncomingBlock(I);
1893 auto *IncAcc = Phi->getIncomingValue(I);
1894 // If Pred has no unreachable predecessors, get last def looking at
1895 // IDoms. If, while walkings IDoms, any of these has an unreachable
1896 // predecessor, then the incoming def can be any access.
1897 if (auto *DTNode = DT->getNode(Pred)) {
1898 while (DTNode) {
1899 if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
1900 auto *LastAcc = &*(--DefList->end());
1901 assert(LastAcc == IncAcc &&
1902 "Incorrect incoming access into phi.");
1903 break;
1905 DTNode = DTNode->getIDom();
1907 } else {
1908 // If Pred has unreachable predecessors, but has at least a Def, the
1909 // incoming access can be the last Def in Pred, or it could have been
1910 // optimized to LoE. After an update, though, the LoE may have been
1911 // replaced by another access, so IncAcc may be any access.
1912 // If Pred has unreachable predecessors and no Defs, incoming access
1913 // should be LoE; However, after an update, it may be any access.
1918 #endif
1921 /// Verify that all of the blocks we believe to have valid domination numbers
1922 /// actually have valid domination numbers.
1923 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1924 #ifndef NDEBUG
1925 if (BlockNumberingValid.empty())
1926 return;
1928 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1929 for (const BasicBlock &BB : F) {
1930 if (!ValidBlocks.count(&BB))
1931 continue;
1933 ValidBlocks.erase(&BB);
1935 const AccessList *Accesses = getBlockAccesses(&BB);
1936 // It's correct to say an empty block has valid numbering.
1937 if (!Accesses)
1938 continue;
1940 // Block numbering starts at 1.
1941 unsigned long LastNumber = 0;
1942 for (const MemoryAccess &MA : *Accesses) {
1943 auto ThisNumberIter = BlockNumbering.find(&MA);
1944 assert(ThisNumberIter != BlockNumbering.end() &&
1945 "MemoryAccess has no domination number in a valid block!");
1947 unsigned long ThisNumber = ThisNumberIter->second;
1948 assert(ThisNumber > LastNumber &&
1949 "Domination numbers should be strictly increasing!");
1950 LastNumber = ThisNumber;
1954 assert(ValidBlocks.empty() &&
1955 "All valid BasicBlocks should exist in F -- dangling pointers?");
1956 #endif
1959 /// Verify that the order and existence of MemoryAccesses matches the
1960 /// order and existence of memory affecting instructions.
1961 void MemorySSA::verifyOrdering(Function &F) const {
1962 #ifndef NDEBUG
1963 // Walk all the blocks, comparing what the lookups think and what the access
1964 // lists think, as well as the order in the blocks vs the order in the access
1965 // lists.
1966 SmallVector<MemoryAccess *, 32> ActualAccesses;
1967 SmallVector<MemoryAccess *, 32> ActualDefs;
1968 for (BasicBlock &B : F) {
1969 const AccessList *AL = getBlockAccesses(&B);
1970 const auto *DL = getBlockDefs(&B);
1971 MemoryAccess *Phi = getMemoryAccess(&B);
1972 if (Phi) {
1973 ActualAccesses.push_back(Phi);
1974 ActualDefs.push_back(Phi);
1977 for (Instruction &I : B) {
1978 MemoryAccess *MA = getMemoryAccess(&I);
1979 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1980 "We have memory affecting instructions "
1981 "in this block but they are not in the "
1982 "access list or defs list");
1983 if (MA) {
1984 ActualAccesses.push_back(MA);
1985 if (isa<MemoryDef>(MA))
1986 ActualDefs.push_back(MA);
1989 // Either we hit the assert, really have no accesses, or we have both
1990 // accesses and an access list.
1991 // Same with defs.
1992 if (!AL && !DL)
1993 continue;
1994 assert(AL->size() == ActualAccesses.size() &&
1995 "We don't have the same number of accesses in the block as on the "
1996 "access list");
1997 assert((DL || ActualDefs.size() == 0) &&
1998 "Either we should have a defs list, or we should have no defs");
1999 assert((!DL || DL->size() == ActualDefs.size()) &&
2000 "We don't have the same number of defs in the block as on the "
2001 "def list");
2002 auto ALI = AL->begin();
2003 auto AAI = ActualAccesses.begin();
2004 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
2005 assert(&*ALI == *AAI && "Not the same accesses in the same order");
2006 ++ALI;
2007 ++AAI;
2009 ActualAccesses.clear();
2010 if (DL) {
2011 auto DLI = DL->begin();
2012 auto ADI = ActualDefs.begin();
2013 while (DLI != DL->end() && ADI != ActualDefs.end()) {
2014 assert(&*DLI == *ADI && "Not the same defs in the same order");
2015 ++DLI;
2016 ++ADI;
2019 ActualDefs.clear();
2021 #endif
2024 /// Verify the domination properties of MemorySSA by checking that each
2025 /// definition dominates all of its uses.
2026 void MemorySSA::verifyDomination(Function &F) const {
2027 #ifndef NDEBUG
2028 for (BasicBlock &B : F) {
2029 // Phi nodes are attached to basic blocks
2030 if (MemoryPhi *MP = getMemoryAccess(&B))
2031 for (const Use &U : MP->uses())
2032 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
2034 for (Instruction &I : B) {
2035 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
2036 if (!MD)
2037 continue;
2039 for (const Use &U : MD->uses())
2040 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
2043 #endif
2046 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2047 /// appears in the use list of \p Def.
2048 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
2049 #ifndef NDEBUG
2050 // The live on entry use may cause us to get a NULL def here
2051 if (!Def)
2052 assert(isLiveOnEntryDef(Use) &&
2053 "Null def but use not point to live on entry def");
2054 else
2055 assert(is_contained(Def->users(), Use) &&
2056 "Did not find use in def's use list");
2057 #endif
2060 /// Verify the immediate use information, by walking all the memory
2061 /// accesses and verifying that, for each use, it appears in the
2062 /// appropriate def's use list
2063 void MemorySSA::verifyDefUses(Function &F) const {
2064 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
2065 for (BasicBlock &B : F) {
2066 // Phi nodes are attached to basic blocks
2067 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
2068 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
2069 pred_begin(&B), pred_end(&B))) &&
2070 "Incomplete MemoryPhi Node");
2071 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
2072 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
2073 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
2074 pred_end(&B) &&
2075 "Incoming phi block not a block predecessor");
2079 for (Instruction &I : B) {
2080 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
2081 verifyUseInDefs(MA->getDefiningAccess(), MA);
2085 #endif
2088 /// Perform a local numbering on blocks so that instruction ordering can be
2089 /// determined in constant time.
2090 /// TODO: We currently just number in order. If we numbered by N, we could
2091 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2092 /// log2(N) sequences of mixed before and after) without needing to invalidate
2093 /// the numbering.
2094 void MemorySSA::renumberBlock(const BasicBlock *B) const {
2095 // The pre-increment ensures the numbers really start at 1.
2096 unsigned long CurrentNumber = 0;
2097 const AccessList *AL = getBlockAccesses(B);
2098 assert(AL != nullptr && "Asking to renumber an empty block");
2099 for (const auto &I : *AL)
2100 BlockNumbering[&I] = ++CurrentNumber;
2101 BlockNumberingValid.insert(B);
2104 /// Determine, for two memory accesses in the same block,
2105 /// whether \p Dominator dominates \p Dominatee.
2106 /// \returns True if \p Dominator dominates \p Dominatee.
2107 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
2108 const MemoryAccess *Dominatee) const {
2109 const BasicBlock *DominatorBlock = Dominator->getBlock();
2111 assert((DominatorBlock == Dominatee->getBlock()) &&
2112 "Asking for local domination when accesses are in different blocks!");
2113 // A node dominates itself.
2114 if (Dominatee == Dominator)
2115 return true;
2117 // When Dominatee is defined on function entry, it is not dominated by another
2118 // memory access.
2119 if (isLiveOnEntryDef(Dominatee))
2120 return false;
2122 // When Dominator is defined on function entry, it dominates the other memory
2123 // access.
2124 if (isLiveOnEntryDef(Dominator))
2125 return true;
2127 if (!BlockNumberingValid.count(DominatorBlock))
2128 renumberBlock(DominatorBlock);
2130 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2131 // All numbers start with 1
2132 assert(DominatorNum != 0 && "Block was not numbered properly");
2133 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2134 assert(DominateeNum != 0 && "Block was not numbered properly");
2135 return DominatorNum < DominateeNum;
2138 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2139 const MemoryAccess *Dominatee) const {
2140 if (Dominator == Dominatee)
2141 return true;
2143 if (isLiveOnEntryDef(Dominatee))
2144 return false;
2146 if (Dominator->getBlock() != Dominatee->getBlock())
2147 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2148 return locallyDominates(Dominator, Dominatee);
2151 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2152 const Use &Dominatee) const {
2153 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2154 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2155 // The def must dominate the incoming block of the phi.
2156 if (UseBB != Dominator->getBlock())
2157 return DT->dominates(Dominator->getBlock(), UseBB);
2158 // If the UseBB and the DefBB are the same, compare locally.
2159 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2161 // If it's not a PHI node use, the normal dominates can already handle it.
2162 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2165 const static char LiveOnEntryStr[] = "liveOnEntry";
2167 void MemoryAccess::print(raw_ostream &OS) const {
2168 switch (getValueID()) {
2169 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2170 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2171 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2173 llvm_unreachable("invalid value id");
2176 void MemoryDef::print(raw_ostream &OS) const {
2177 MemoryAccess *UO = getDefiningAccess();
2179 auto printID = [&OS](MemoryAccess *A) {
2180 if (A && A->getID())
2181 OS << A->getID();
2182 else
2183 OS << LiveOnEntryStr;
2186 OS << getID() << " = MemoryDef(";
2187 printID(UO);
2188 OS << ")";
2190 if (isOptimized()) {
2191 OS << "->";
2192 printID(getOptimized());
2194 if (Optional<AliasResult> AR = getOptimizedAccessType())
2195 OS << " " << *AR;
2199 void MemoryPhi::print(raw_ostream &OS) const {
2200 bool First = true;
2201 OS << getID() << " = MemoryPhi(";
2202 for (const auto &Op : operands()) {
2203 BasicBlock *BB = getIncomingBlock(Op);
2204 MemoryAccess *MA = cast<MemoryAccess>(Op);
2205 if (!First)
2206 OS << ',';
2207 else
2208 First = false;
2210 OS << '{';
2211 if (BB->hasName())
2212 OS << BB->getName();
2213 else
2214 BB->printAsOperand(OS, false);
2215 OS << ',';
2216 if (unsigned ID = MA->getID())
2217 OS << ID;
2218 else
2219 OS << LiveOnEntryStr;
2220 OS << '}';
2222 OS << ')';
2225 void MemoryUse::print(raw_ostream &OS) const {
2226 MemoryAccess *UO = getDefiningAccess();
2227 OS << "MemoryUse(";
2228 if (UO && UO->getID())
2229 OS << UO->getID();
2230 else
2231 OS << LiveOnEntryStr;
2232 OS << ')';
2234 if (Optional<AliasResult> AR = getOptimizedAccessType())
2235 OS << " " << *AR;
2238 void MemoryAccess::dump() const {
2239 // Cannot completely remove virtual function even in release mode.
2240 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2241 print(dbgs());
2242 dbgs() << "\n";
2243 #endif
2246 char MemorySSAPrinterLegacyPass::ID = 0;
2248 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2249 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2252 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2253 AU.setPreservesAll();
2254 AU.addRequired<MemorySSAWrapperPass>();
2257 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2258 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2259 MSSA.print(dbgs());
2260 if (VerifyMemorySSA)
2261 MSSA.verifyMemorySSA();
2262 return false;
2265 AnalysisKey MemorySSAAnalysis::Key;
2267 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2268 FunctionAnalysisManager &AM) {
2269 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2270 auto &AA = AM.getResult<AAManager>(F);
2271 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
2274 bool MemorySSAAnalysis::Result::invalidate(
2275 Function &F, const PreservedAnalyses &PA,
2276 FunctionAnalysisManager::Invalidator &Inv) {
2277 auto PAC = PA.getChecker<MemorySSAAnalysis>();
2278 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
2279 Inv.invalidate<AAManager>(F, PA) ||
2280 Inv.invalidate<DominatorTreeAnalysis>(F, PA);
2283 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2284 FunctionAnalysisManager &AM) {
2285 OS << "MemorySSA for function: " << F.getName() << "\n";
2286 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
2288 return PreservedAnalyses::all();
2291 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2292 FunctionAnalysisManager &AM) {
2293 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2295 return PreservedAnalyses::all();
2298 char MemorySSAWrapperPass::ID = 0;
2300 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2301 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2304 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2306 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2307 AU.setPreservesAll();
2308 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2309 AU.addRequiredTransitive<AAResultsWrapperPass>();
2312 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2313 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2314 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2315 MSSA.reset(new MemorySSA(F, &AA, &DT));
2316 return false;
2319 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
2321 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2322 MSSA->print(OS);
2325 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2327 /// Walk the use-def chains starting at \p StartingAccess and find
2328 /// the MemoryAccess that actually clobbers Loc.
2330 /// \returns our clobbering memory access
2331 template <typename AliasAnalysisType>
2332 MemoryAccess *
2333 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2334 MemoryAccess *StartingAccess, const MemoryLocation &Loc,
2335 unsigned &UpwardWalkLimit) {
2336 if (isa<MemoryPhi>(StartingAccess))
2337 return StartingAccess;
2339 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2340 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2341 return StartingUseOrDef;
2343 Instruction *I = StartingUseOrDef->getMemoryInst();
2345 // Conservatively, fences are always clobbers, so don't perform the walk if we
2346 // hit a fence.
2347 if (!isa<CallBase>(I) && I->isFenceLike())
2348 return StartingUseOrDef;
2350 UpwardsMemoryQuery Q;
2351 Q.OriginalAccess = StartingUseOrDef;
2352 Q.StartingLoc = Loc;
2353 Q.Inst = I;
2354 Q.IsCall = false;
2356 // Unlike the other function, do not walk to the def of a def, because we are
2357 // handed something we already believe is the clobbering access.
2358 // We never set SkipSelf to true in Q in this method.
2359 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2360 ? StartingUseOrDef->getDefiningAccess()
2361 : StartingUseOrDef;
2363 MemoryAccess *Clobber =
2364 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
2365 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2366 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2367 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2368 LLVM_DEBUG(dbgs() << *Clobber << "\n");
2369 return Clobber;
2372 template <typename AliasAnalysisType>
2373 MemoryAccess *
2374 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2375 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) {
2376 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2377 // If this is a MemoryPhi, we can't do anything.
2378 if (!StartingAccess)
2379 return MA;
2381 bool IsOptimized = false;
2383 // If this is an already optimized use or def, return the optimized result.
2384 // Note: Currently, we store the optimized def result in a separate field,
2385 // since we can't use the defining access.
2386 if (StartingAccess->isOptimized()) {
2387 if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2388 return StartingAccess->getOptimized();
2389 IsOptimized = true;
2392 const Instruction *I = StartingAccess->getMemoryInst();
2393 // We can't sanely do anything with a fence, since they conservatively clobber
2394 // all memory, and have no locations to get pointers from to try to
2395 // disambiguate.
2396 if (!isa<CallBase>(I) && I->isFenceLike())
2397 return StartingAccess;
2399 UpwardsMemoryQuery Q(I, StartingAccess);
2401 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) {
2402 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2403 StartingAccess->setOptimized(LiveOnEntry);
2404 StartingAccess->setOptimizedAccessType(None);
2405 return LiveOnEntry;
2408 MemoryAccess *OptimizedAccess;
2409 if (!IsOptimized) {
2410 // Start with the thing we already think clobbers this location
2411 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2413 // At this point, DefiningAccess may be the live on entry def.
2414 // If it is, we will not get a better result.
2415 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2416 StartingAccess->setOptimized(DefiningAccess);
2417 StartingAccess->setOptimizedAccessType(None);
2418 return DefiningAccess;
2421 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
2422 StartingAccess->setOptimized(OptimizedAccess);
2423 if (MSSA->isLiveOnEntryDef(OptimizedAccess))
2424 StartingAccess->setOptimizedAccessType(None);
2425 else if (Q.AR == MustAlias)
2426 StartingAccess->setOptimizedAccessType(MustAlias);
2427 } else
2428 OptimizedAccess = StartingAccess->getOptimized();
2430 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2431 LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2432 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2433 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2435 MemoryAccess *Result;
2436 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2437 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
2438 assert(isa<MemoryDef>(Q.OriginalAccess));
2439 Q.SkipSelfAccess = true;
2440 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit);
2441 } else
2442 Result = OptimizedAccess;
2444 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2445 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2447 return Result;
2450 MemoryAccess *
2451 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2452 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2453 return Use->getDefiningAccess();
2454 return MA;
2457 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2458 MemoryAccess *StartingAccess, const MemoryLocation &) {
2459 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2460 return Use->getDefiningAccess();
2461 return StartingAccess;
2464 void MemoryPhi::deleteMe(DerivedUser *Self) {
2465 delete static_cast<MemoryPhi *>(Self);
2468 void MemoryDef::deleteMe(DerivedUser *Self) {
2469 delete static_cast<MemoryDef *>(Self);
2472 void MemoryUse::deleteMe(DerivedUser *Self) {
2473 delete static_cast<MemoryUse *>(Self);