[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Analysis / MemorySSAUpdater.cpp
blobbec811d17e2829cec594ebec669981beb60b9de0
1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/IteratedDominanceFrontier.h"
17 #include "llvm/Analysis/MemorySSA.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/FormattedStream.h"
27 #include <algorithm>
29 #define DEBUG_TYPE "memoryssa"
30 using namespace llvm;
32 // This is the marker algorithm from "Simple and Efficient Construction of
33 // Static Single Assignment Form"
34 // The simple, non-marker algorithm places phi nodes at any join
35 // Here, we place markers, and only place phi nodes if they end up necessary.
36 // They are only necessary if they break a cycle (IE we recursively visit
37 // ourselves again), or we discover, while getting the value of the operands,
38 // that there are two or more definitions needing to be merged.
39 // This still will leave non-minimal form in the case of irreducible control
40 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
42 BasicBlock *BB,
43 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
44 // First, do a cache lookup. Without this cache, certain CFG structures
45 // (like a series of if statements) take exponential time to visit.
46 auto Cached = CachedPreviousDef.find(BB);
47 if (Cached != CachedPreviousDef.end()) {
48 return Cached->second;
51 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
52 // Single predecessor case, just recurse, we can only have one definition.
53 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
54 CachedPreviousDef.insert({BB, Result});
55 return Result;
58 if (VisitedBlocks.count(BB)) {
59 // We hit our node again, meaning we had a cycle, we must insert a phi
60 // node to break it so we have an operand. The only case this will
61 // insert useless phis is if we have irreducible control flow.
62 MemoryAccess *Result = MSSA->createMemoryPhi(BB);
63 CachedPreviousDef.insert({BB, Result});
64 return Result;
67 if (VisitedBlocks.insert(BB).second) {
68 // Mark us visited so we can detect a cycle
69 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
71 // Recurse to get the values in our predecessors for placement of a
72 // potential phi node. This will insert phi nodes if we cycle in order to
73 // break the cycle and have an operand.
74 for (auto *Pred : predecessors(BB))
75 if (MSSA->DT->isReachableFromEntry(Pred))
76 PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
77 else
78 PhiOps.push_back(MSSA->getLiveOnEntryDef());
80 // Now try to simplify the ops to avoid placing a phi.
81 // This may return null if we never created a phi yet, that's okay
82 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
84 // See if we can avoid the phi by simplifying it.
85 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
86 // If we couldn't simplify, we may have to create a phi
87 if (Result == Phi) {
88 if (!Phi)
89 Phi = MSSA->createMemoryPhi(BB);
91 // See if the existing phi operands match what we need.
92 // Unlike normal SSA, we only allow one phi node per block, so we can't just
93 // create a new one.
94 if (Phi->getNumOperands() != 0) {
95 // FIXME: Figure out whether this is dead code and if so remove it.
96 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
97 // These will have been filled in by the recursive read we did above.
98 llvm::copy(PhiOps, Phi->op_begin());
99 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
101 } else {
102 unsigned i = 0;
103 for (auto *Pred : predecessors(BB))
104 Phi->addIncoming(&*PhiOps[i++], Pred);
105 InsertedPHIs.push_back(Phi);
107 Result = Phi;
110 // Set ourselves up for the next variable by resetting visited state.
111 VisitedBlocks.erase(BB);
112 CachedPreviousDef.insert({BB, Result});
113 return Result;
115 llvm_unreachable("Should have hit one of the three cases above");
118 // This starts at the memory access, and goes backwards in the block to find the
119 // previous definition. If a definition is not found the block of the access,
120 // it continues globally, creating phi nodes to ensure we have a single
121 // definition.
122 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
123 if (auto *LocalResult = getPreviousDefInBlock(MA))
124 return LocalResult;
125 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
126 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
129 // This starts at the memory access, and goes backwards in the block to the find
130 // the previous definition. If the definition is not found in the block of the
131 // access, it returns nullptr.
132 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
133 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
135 // It's possible there are no defs, or we got handed the first def to start.
136 if (Defs) {
137 // If this is a def, we can just use the def iterators.
138 if (!isa<MemoryUse>(MA)) {
139 auto Iter = MA->getReverseDefsIterator();
140 ++Iter;
141 if (Iter != Defs->rend())
142 return &*Iter;
143 } else {
144 // Otherwise, have to walk the all access iterator.
145 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
146 for (auto &U : make_range(++MA->getReverseIterator(), End))
147 if (!isa<MemoryUse>(U))
148 return cast<MemoryAccess>(&U);
149 // Note that if MA comes before Defs->begin(), we won't hit a def.
150 return nullptr;
153 return nullptr;
156 // This starts at the end of block
157 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
158 BasicBlock *BB,
159 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
160 auto *Defs = MSSA->getWritableBlockDefs(BB);
162 if (Defs) {
163 CachedPreviousDef.insert({BB, &*Defs->rbegin()});
164 return &*Defs->rbegin();
167 return getPreviousDefRecursive(BB, CachedPreviousDef);
169 // Recurse over a set of phi uses to eliminate the trivial ones
170 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
171 if (!Phi)
172 return nullptr;
173 TrackingVH<MemoryAccess> Res(Phi);
174 SmallVector<TrackingVH<Value>, 8> Uses;
175 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
176 for (auto &U : Uses)
177 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
178 tryRemoveTrivialPhi(UsePhi);
179 return Res;
182 // Eliminate trivial phis
183 // Phis are trivial if they are defined either by themselves, or all the same
184 // argument.
185 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
186 // We recursively try to remove them.
187 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
188 assert(Phi && "Can only remove concrete Phi.");
189 auto OperRange = Phi->operands();
190 return tryRemoveTrivialPhi(Phi, OperRange);
192 template <class RangeType>
193 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
194 RangeType &Operands) {
195 // Bail out on non-opt Phis.
196 if (NonOptPhis.count(Phi))
197 return Phi;
199 // Detect equal or self arguments
200 MemoryAccess *Same = nullptr;
201 for (auto &Op : Operands) {
202 // If the same or self, good so far
203 if (Op == Phi || Op == Same)
204 continue;
205 // not the same, return the phi since it's not eliminatable by us
206 if (Same)
207 return Phi;
208 Same = cast<MemoryAccess>(&*Op);
210 // Never found a non-self reference, the phi is undef
211 if (Same == nullptr)
212 return MSSA->getLiveOnEntryDef();
213 if (Phi) {
214 Phi->replaceAllUsesWith(Same);
215 removeMemoryAccess(Phi);
218 // We should only end up recursing in case we replaced something, in which
219 // case, we may have made other Phis trivial.
220 return recursePhi(Same);
223 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
224 InsertedPHIs.clear();
225 MU->setDefiningAccess(getPreviousDef(MU));
226 // In cases without unreachable blocks, because uses do not create new
227 // may-defs, there are only two cases:
228 // 1. There was a def already below us, and therefore, we should not have
229 // created a phi node because it was already needed for the def.
231 // 2. There is no def below us, and therefore, there is no extra renaming work
232 // to do.
234 // In cases with unreachable blocks, where the unnecessary Phis were
235 // optimized out, adding the Use may re-insert those Phis. Hence, when
236 // inserting Uses outside of the MSSA creation process, and new Phis were
237 // added, rename all uses if we are asked.
239 if (!RenameUses && !InsertedPHIs.empty()) {
240 auto *Defs = MSSA->getBlockDefs(MU->getBlock());
241 (void)Defs;
242 assert((!Defs || (++Defs->begin() == Defs->end())) &&
243 "Block may have only a Phi or no defs");
246 if (RenameUses && InsertedPHIs.size()) {
247 SmallPtrSet<BasicBlock *, 16> Visited;
248 BasicBlock *StartBlock = MU->getBlock();
250 if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
251 MemoryAccess *FirstDef = &*Defs->begin();
252 // Convert to incoming value if it's a memorydef. A phi *is* already an
253 // incoming value.
254 if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
255 FirstDef = MD->getDefiningAccess();
257 MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
259 // We just inserted a phi into this block, so the incoming value will
260 // become the phi anyway, so it does not matter what we pass.
261 for (auto &MP : InsertedPHIs)
262 if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
263 MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
267 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
268 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
269 MemoryAccess *NewDef) {
270 // Replace any operand with us an incoming block with the new defining
271 // access.
272 int i = MP->getBasicBlockIndex(BB);
273 assert(i != -1 && "Should have found the basic block in the phi");
274 // We can't just compare i against getNumOperands since one is signed and the
275 // other not. So use it to index into the block iterator.
276 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
277 ++BBIter) {
278 if (*BBIter != BB)
279 break;
280 MP->setIncomingValue(i, NewDef);
281 ++i;
285 // A brief description of the algorithm:
286 // First, we compute what should define the new def, using the SSA
287 // construction algorithm.
288 // Then, we update the defs below us (and any new phi nodes) in the graph to
289 // point to the correct new defs, to ensure we only have one variable, and no
290 // disconnected stores.
291 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
292 InsertedPHIs.clear();
294 // See if we had a local def, and if not, go hunting.
295 MemoryAccess *DefBefore = getPreviousDef(MD);
296 bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();
298 // There is a def before us, which means we can replace any store/phi uses
299 // of that thing with us, since we are in the way of whatever was there
300 // before.
301 // We now define that def's memorydefs and memoryphis
302 if (DefBeforeSameBlock) {
303 DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
304 // Leave the MemoryUses alone.
305 // Also make sure we skip ourselves to avoid self references.
306 User *Usr = U.getUser();
307 return !isa<MemoryUse>(Usr) && Usr != MD;
308 // Defs are automatically unoptimized when the user is set to MD below,
309 // because the isOptimized() call will fail to find the same ID.
313 // and that def is now our defining access.
314 MD->setDefiningAccess(DefBefore);
316 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
318 SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
320 if (!DefBeforeSameBlock) {
321 // If there was a local def before us, we must have the same effect it
322 // did. Because every may-def is the same, any phis/etc we would create, it
323 // would also have created. If there was no local def before us, we
324 // performed a global update, and have to search all successors and make
325 // sure we update the first def in each of them (following all paths until
326 // we hit the first def along each path). This may also insert phi nodes.
327 // TODO: There are other cases we can skip this work, such as when we have a
328 // single successor, and only used a straight line of single pred blocks
329 // backwards to find the def. To make that work, we'd have to track whether
330 // getDefRecursive only ever used the single predecessor case. These types
331 // of paths also only exist in between CFG simplifications.
333 // If this is the first def in the block and this insert is in an arbitrary
334 // place, compute IDF and place phis.
335 auto Iter = MD->getDefsIterator();
336 ++Iter;
337 auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
338 if (Iter == IterEnd)
339 DefiningBlocks.insert(MD->getBlock());
341 FixupList.push_back(MD);
344 ForwardIDFCalculator IDFs(*MSSA->DT);
345 SmallVector<BasicBlock *, 32> IDFBlocks;
346 for (const auto &VH : InsertedPHIs)
347 if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH))
348 DefiningBlocks.insert(RealPHI->getBlock());
349 IDFs.setDefiningBlocks(DefiningBlocks);
350 IDFs.calculate(IDFBlocks);
351 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
352 for (auto *BBIDF : IDFBlocks) {
353 auto *MPhi = MSSA->getMemoryAccess(BBIDF);
354 if (!MPhi) {
355 MPhi = MSSA->createMemoryPhi(BBIDF);
356 NewInsertedPHIs.push_back(MPhi);
358 // Add the phis created into the IDF blocks to NonOptPhis, so they are not
359 // optimized out as trivial by the call to getPreviousDefFromEnd below. Once
360 // they are complete, all these Phis are added to the FixupList, and removed
361 // from NonOptPhis inside fixupDefs(). Existing Phis in IDF may need fixing
362 // as well, and potentially be trivial before this insertion, hence add all
363 // IDF Phis. See PR43044.
364 NonOptPhis.insert(MPhi);
367 for (auto &MPhi : NewInsertedPHIs) {
368 auto *BBIDF = MPhi->getBlock();
369 for (auto *Pred : predecessors(BBIDF)) {
370 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
371 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred);
375 // Remember the index where we may insert new phis.
376 unsigned NewPhiIndex = InsertedPHIs.size();
377 for (auto &MPhi : NewInsertedPHIs) {
378 InsertedPHIs.push_back(&*MPhi);
379 FixupList.push_back(&*MPhi);
381 // Remember the index where we stopped inserting new phis above, since the
382 // fixupDefs call in the loop below may insert more, that are already minimal.
383 unsigned NewPhiIndexEnd = InsertedPHIs.size();
385 while (!FixupList.empty()) {
386 unsigned StartingPHISize = InsertedPHIs.size();
387 fixupDefs(FixupList);
388 FixupList.clear();
389 // Put any new phis on the fixup list, and process them
390 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
393 // Optimize potentially non-minimal phis added in this method.
394 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
395 if (NewPhiSize)
396 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
398 // Now that all fixups are done, rename all uses if we are asked.
399 if (RenameUses) {
400 SmallPtrSet<BasicBlock *, 16> Visited;
401 BasicBlock *StartBlock = MD->getBlock();
402 // We are guaranteed there is a def in the block, because we just got it
403 // handed to us in this function.
404 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
405 // Convert to incoming value if it's a memorydef. A phi *is* already an
406 // incoming value.
407 if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
408 FirstDef = MD->getDefiningAccess();
410 MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
411 // We just inserted a phi into this block, so the incoming value will become
412 // the phi anyway, so it does not matter what we pass.
413 for (auto &MP : InsertedPHIs) {
414 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
415 if (Phi)
416 MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
421 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
422 SmallPtrSet<const BasicBlock *, 8> Seen;
423 SmallVector<const BasicBlock *, 16> Worklist;
424 for (auto &Var : Vars) {
425 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
426 if (!NewDef)
427 continue;
428 // First, see if there is a local def after the operand.
429 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
430 auto DefIter = NewDef->getDefsIterator();
432 // The temporary Phi is being fixed, unmark it for not to optimize.
433 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
434 NonOptPhis.erase(Phi);
436 // If there is a local def after us, we only have to rename that.
437 if (++DefIter != Defs->end()) {
438 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
439 continue;
442 // Otherwise, we need to search down through the CFG.
443 // For each of our successors, handle it directly if their is a phi, or
444 // place on the fixup worklist.
445 for (const auto *S : successors(NewDef->getBlock())) {
446 if (auto *MP = MSSA->getMemoryAccess(S))
447 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
448 else
449 Worklist.push_back(S);
452 while (!Worklist.empty()) {
453 const BasicBlock *FixupBlock = Worklist.back();
454 Worklist.pop_back();
456 // Get the first def in the block that isn't a phi node.
457 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
458 auto *FirstDef = &*Defs->begin();
459 // The loop above and below should have taken care of phi nodes
460 assert(!isa<MemoryPhi>(FirstDef) &&
461 "Should have already handled phi nodes!");
462 // We are now this def's defining access, make sure we actually dominate
463 // it
464 assert(MSSA->dominates(NewDef, FirstDef) &&
465 "Should have dominated the new access");
467 // This may insert new phi nodes, because we are not guaranteed the
468 // block we are processing has a single pred, and depending where the
469 // store was inserted, it may require phi nodes below it.
470 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
471 return;
473 // We didn't find a def, so we must continue.
474 for (const auto *S : successors(FixupBlock)) {
475 // If there is a phi node, handle it.
476 // Otherwise, put the block on the worklist
477 if (auto *MP = MSSA->getMemoryAccess(S))
478 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
479 else {
480 // If we cycle, we should have ended up at a phi node that we already
481 // processed. FIXME: Double check this
482 if (!Seen.insert(S).second)
483 continue;
484 Worklist.push_back(S);
491 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
492 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
493 MPhi->unorderedDeleteIncomingBlock(From);
494 tryRemoveTrivialPhi(MPhi);
498 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
499 const BasicBlock *To) {
500 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
501 bool Found = false;
502 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
503 if (From != B)
504 return false;
505 if (Found)
506 return true;
507 Found = true;
508 return false;
510 tryRemoveTrivialPhi(MPhi);
514 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
515 const ValueToValueMapTy &VMap,
516 PhiToDefMap &MPhiMap,
517 bool CloneWasSimplified,
518 MemorySSA *MSSA) {
519 MemoryAccess *InsnDefining = MA;
520 if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
521 if (!MSSA->isLiveOnEntryDef(DefMUD)) {
522 Instruction *DefMUDI = DefMUD->getMemoryInst();
523 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
524 if (Instruction *NewDefMUDI =
525 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
526 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
527 if (!CloneWasSimplified)
528 assert(InsnDefining && "Defining instruction cannot be nullptr.");
529 else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
530 // The clone was simplified, it's no longer a MemoryDef, look up.
531 auto DefIt = DefMUD->getDefsIterator();
532 // Since simplified clones only occur in single block cloning, a
533 // previous definition must exist, otherwise NewDefMUDI would not
534 // have been found in VMap.
535 assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
536 "Previous def must exist");
537 InsnDefining = getNewDefiningAccessForClone(
538 &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
542 } else {
543 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
544 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
545 InsnDefining = NewDefPhi;
547 assert(InsnDefining && "Defining instruction cannot be nullptr.");
548 return InsnDefining;
551 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
552 const ValueToValueMapTy &VMap,
553 PhiToDefMap &MPhiMap,
554 bool CloneWasSimplified) {
555 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
556 if (!Acc)
557 return;
558 for (const MemoryAccess &MA : *Acc) {
559 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
560 Instruction *Insn = MUD->getMemoryInst();
561 // Entry does not exist if the clone of the block did not clone all
562 // instructions. This occurs in LoopRotate when cloning instructions
563 // from the old header to the old preheader. The cloned instruction may
564 // also be a simplified Value, not an Instruction (see LoopRotate).
565 // Also in LoopRotate, even when it's an instruction, due to it being
566 // simplified, it may be a Use rather than a Def, so we cannot use MUD as
567 // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
568 if (Instruction *NewInsn =
569 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
570 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
571 NewInsn,
572 getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
573 MPhiMap, CloneWasSimplified, MSSA),
574 /*Template=*/CloneWasSimplified ? nullptr : MUD,
575 /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
576 if (NewUseOrDef)
577 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
583 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
584 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
585 auto *MPhi = MSSA->getMemoryAccess(Header);
586 if (!MPhi)
587 return;
589 // Create phi node in the backedge block and populate it with the same
590 // incoming values as MPhi. Skip incoming values coming from Preheader.
591 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
592 bool HasUniqueIncomingValue = true;
593 MemoryAccess *UniqueValue = nullptr;
594 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
595 BasicBlock *IBB = MPhi->getIncomingBlock(I);
596 MemoryAccess *IV = MPhi->getIncomingValue(I);
597 if (IBB != Preheader) {
598 NewMPhi->addIncoming(IV, IBB);
599 if (HasUniqueIncomingValue) {
600 if (!UniqueValue)
601 UniqueValue = IV;
602 else if (UniqueValue != IV)
603 HasUniqueIncomingValue = false;
608 // Update incoming edges into MPhi. Remove all but the incoming edge from
609 // Preheader. Add an edge from NewMPhi
610 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
611 MPhi->setIncomingValue(0, AccFromPreheader);
612 MPhi->setIncomingBlock(0, Preheader);
613 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
614 MPhi->unorderedDeleteIncoming(I);
615 MPhi->addIncoming(NewMPhi, BEBlock);
617 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
618 // replaced with the unique value.
619 tryRemoveTrivialPhi(MPhi);
622 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
623 ArrayRef<BasicBlock *> ExitBlocks,
624 const ValueToValueMapTy &VMap,
625 bool IgnoreIncomingWithNoClones) {
626 PhiToDefMap MPhiMap;
628 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
629 assert(Phi && NewPhi && "Invalid Phi nodes.");
630 BasicBlock *NewPhiBB = NewPhi->getBlock();
631 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
632 pred_end(NewPhiBB));
633 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
634 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
635 BasicBlock *IncBB = Phi->getIncomingBlock(It);
637 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
638 IncBB = NewIncBB;
639 else if (IgnoreIncomingWithNoClones)
640 continue;
642 // Now we have IncBB, and will need to add incoming from it to NewPhi.
644 // If IncBB is not a predecessor of NewPhiBB, then do not add it.
645 // NewPhiBB was cloned without that edge.
646 if (!NewPhiBBPreds.count(IncBB))
647 continue;
649 // Determine incoming value and add it as incoming from IncBB.
650 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
651 if (!MSSA->isLiveOnEntryDef(IncMUD)) {
652 Instruction *IncI = IncMUD->getMemoryInst();
653 assert(IncI && "Found MemoryUseOrDef with no Instruction.");
654 if (Instruction *NewIncI =
655 cast_or_null<Instruction>(VMap.lookup(IncI))) {
656 IncMUD = MSSA->getMemoryAccess(NewIncI);
657 assert(IncMUD &&
658 "MemoryUseOrDef cannot be null, all preds processed.");
661 NewPhi->addIncoming(IncMUD, IncBB);
662 } else {
663 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
664 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
665 NewPhi->addIncoming(NewDefPhi, IncBB);
666 else
667 NewPhi->addIncoming(IncPhi, IncBB);
672 auto ProcessBlock = [&](BasicBlock *BB) {
673 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
674 if (!NewBlock)
675 return;
677 assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
678 "Cloned block should have no accesses");
680 // Add MemoryPhi.
681 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
682 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
683 MPhiMap[MPhi] = NewPhi;
685 // Update Uses and Defs.
686 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
689 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
690 ProcessBlock(BB);
692 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
693 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
694 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
695 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
698 void MemorySSAUpdater::updateForClonedBlockIntoPred(
699 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
700 // All defs/phis from outside BB that are used in BB, are valid uses in P1.
701 // Since those defs/phis must have dominated BB, and also dominate P1.
702 // Defs from BB being used in BB will be replaced with the cloned defs from
703 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
704 // incoming def into the Phi from P1.
705 // Instructions cloned into the predecessor are in practice sometimes
706 // simplified, so disable the use of the template, and create an access from
707 // scratch.
708 PhiToDefMap MPhiMap;
709 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
710 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
711 cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
714 template <typename Iter>
715 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
716 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
717 DominatorTree &DT) {
718 SmallVector<CFGUpdate, 4> Updates;
719 // Update/insert phis in all successors of exit blocks.
720 for (auto *Exit : ExitBlocks)
721 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
722 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
723 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
724 Updates.push_back({DT.Insert, NewExit, ExitSucc});
726 applyInsertUpdates(Updates, DT);
729 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
730 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
731 DominatorTree &DT) {
732 const ValueToValueMapTy *const Arr[] = {&VMap};
733 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
734 std::end(Arr), DT);
737 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
738 ArrayRef<BasicBlock *> ExitBlocks,
739 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
740 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
741 return I.get();
743 using MappedIteratorType =
744 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
745 decltype(GetPtr)>;
746 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
747 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
748 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
751 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
752 DominatorTree &DT) {
753 SmallVector<CFGUpdate, 4> RevDeleteUpdates;
754 SmallVector<CFGUpdate, 4> InsertUpdates;
755 for (auto &Update : Updates) {
756 if (Update.getKind() == DT.Insert)
757 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
758 else
759 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
762 if (!RevDeleteUpdates.empty()) {
763 // Update for inserted edges: use newDT and snapshot CFG as if deletes had
764 // not occurred.
765 // FIXME: This creates a new DT, so it's more expensive to do mix
766 // delete/inserts vs just inserts. We can do an incremental update on the DT
767 // to revert deletes, than re-delete the edges. Teaching DT to do this, is
768 // part of a pending cleanup.
769 DominatorTree NewDT(DT, RevDeleteUpdates);
770 GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
771 applyInsertUpdates(InsertUpdates, NewDT, &GD);
772 } else {
773 GraphDiff<BasicBlock *> GD;
774 applyInsertUpdates(InsertUpdates, DT, &GD);
777 // Update for deleted edges
778 for (auto &Update : RevDeleteUpdates)
779 removeEdge(Update.getFrom(), Update.getTo());
782 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
783 DominatorTree &DT) {
784 GraphDiff<BasicBlock *> GD;
785 applyInsertUpdates(Updates, DT, &GD);
788 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
789 DominatorTree &DT,
790 const GraphDiff<BasicBlock *> *GD) {
791 // Get recursive last Def, assuming well formed MSSA and updated DT.
792 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
793 while (true) {
794 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
795 // Return last Def or Phi in BB, if it exists.
796 if (Defs)
797 return &*(--Defs->end());
799 // Check number of predecessors, we only care if there's more than one.
800 unsigned Count = 0;
801 BasicBlock *Pred = nullptr;
802 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
803 Pred = Pair.second;
804 Count++;
805 if (Count == 2)
806 break;
809 // If BB has multiple predecessors, get last definition from IDom.
810 if (Count != 1) {
811 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
812 // DT is invalidated. Return LoE as its last def. This will be added to
813 // MemoryPhi node, and later deleted when the block is deleted.
814 if (!DT.getNode(BB))
815 return MSSA->getLiveOnEntryDef();
816 if (auto *IDom = DT.getNode(BB)->getIDom())
817 if (IDom->getBlock() != BB) {
818 BB = IDom->getBlock();
819 continue;
821 return MSSA->getLiveOnEntryDef();
822 } else {
823 // Single predecessor, BB cannot be dead. GetLastDef of Pred.
824 assert(Count == 1 && Pred && "Single predecessor expected.");
825 BB = Pred;
828 llvm_unreachable("Unable to get last definition.");
831 // Get nearest IDom given a set of blocks.
832 // TODO: this can be optimized by starting the search at the node with the
833 // lowest level (highest in the tree).
834 auto FindNearestCommonDominator =
835 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
836 BasicBlock *PrevIDom = *BBSet.begin();
837 for (auto *BB : BBSet)
838 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
839 return PrevIDom;
842 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
843 // include CurrIDom.
844 auto GetNoLongerDomBlocks =
845 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
846 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
847 if (PrevIDom == CurrIDom)
848 return;
849 BlocksPrevDom.push_back(PrevIDom);
850 BasicBlock *NextIDom = PrevIDom;
851 while (BasicBlock *UpIDom =
852 DT.getNode(NextIDom)->getIDom()->getBlock()) {
853 if (UpIDom == CurrIDom)
854 break;
855 BlocksPrevDom.push_back(UpIDom);
856 NextIDom = UpIDom;
860 // Map a BB to its predecessors: added + previously existing. To get a
861 // deterministic order, store predecessors as SetVectors. The order in each
862 // will be defined by the order in Updates (fixed) and the order given by
863 // children<> (also fixed). Since we further iterate over these ordered sets,
864 // we lose the information of multiple edges possibly existing between two
865 // blocks, so we'll keep and EdgeCount map for that.
866 // An alternate implementation could keep unordered set for the predecessors,
867 // traverse either Updates or children<> each time to get the deterministic
868 // order, and drop the usage of EdgeCount. This alternate approach would still
869 // require querying the maps for each predecessor, and children<> call has
870 // additional computation inside for creating the snapshot-graph predecessors.
871 // As such, we favor using a little additional storage and less compute time.
872 // This decision can be revisited if we find the alternative more favorable.
874 struct PredInfo {
875 SmallSetVector<BasicBlock *, 2> Added;
876 SmallSetVector<BasicBlock *, 2> Prev;
878 SmallDenseMap<BasicBlock *, PredInfo> PredMap;
880 for (auto &Edge : Updates) {
881 BasicBlock *BB = Edge.getTo();
882 auto &AddedBlockSet = PredMap[BB].Added;
883 AddedBlockSet.insert(Edge.getFrom());
886 // Store all existing predecessor for each BB, at least one must exist.
887 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
888 SmallPtrSet<BasicBlock *, 2> NewBlocks;
889 for (auto &BBPredPair : PredMap) {
890 auto *BB = BBPredPair.first;
891 const auto &AddedBlockSet = BBPredPair.second.Added;
892 auto &PrevBlockSet = BBPredPair.second.Prev;
893 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
894 BasicBlock *Pi = Pair.second;
895 if (!AddedBlockSet.count(Pi))
896 PrevBlockSet.insert(Pi);
897 EdgeCountMap[{Pi, BB}]++;
900 if (PrevBlockSet.empty()) {
901 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
902 LLVM_DEBUG(
903 dbgs()
904 << "Adding a predecessor to a block with no predecessors. "
905 "This must be an edge added to a new, likely cloned, block. "
906 "Its memory accesses must be already correct, assuming completed "
907 "via the updateExitBlocksForClonedLoop API. "
908 "Assert a single such edge is added so no phi addition or "
909 "additional processing is required.\n");
910 assert(AddedBlockSet.size() == 1 &&
911 "Can only handle adding one predecessor to a new block.");
912 // Need to remove new blocks from PredMap. Remove below to not invalidate
913 // iterator here.
914 NewBlocks.insert(BB);
917 // Nothing to process for new/cloned blocks.
918 for (auto *BB : NewBlocks)
919 PredMap.erase(BB);
921 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
922 SmallVector<WeakVH, 8> InsertedPhis;
924 // First create MemoryPhis in all blocks that don't have one. Create in the
925 // order found in Updates, not in PredMap, to get deterministic numbering.
926 for (auto &Edge : Updates) {
927 BasicBlock *BB = Edge.getTo();
928 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
929 InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
932 // Now we'll fill in the MemoryPhis with the right incoming values.
933 for (auto &BBPredPair : PredMap) {
934 auto *BB = BBPredPair.first;
935 const auto &PrevBlockSet = BBPredPair.second.Prev;
936 const auto &AddedBlockSet = BBPredPair.second.Added;
937 assert(!PrevBlockSet.empty() &&
938 "At least one previous predecessor must exist.");
940 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
941 // keeping this map before the loop. We can reuse already populated entries
942 // if an edge is added from the same predecessor to two different blocks,
943 // and this does happen in rotate. Note that the map needs to be updated
944 // when deleting non-necessary phis below, if the phi is in the map by
945 // replacing the value with DefP1.
946 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
947 for (auto *AddedPred : AddedBlockSet) {
948 auto *DefPn = GetLastDef(AddedPred);
949 assert(DefPn != nullptr && "Unable to find last definition.");
950 LastDefAddedPred[AddedPred] = DefPn;
953 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
954 // If Phi is not empty, add an incoming edge from each added pred. Must
955 // still compute blocks with defs to replace for this block below.
956 if (NewPhi->getNumOperands()) {
957 for (auto *Pred : AddedBlockSet) {
958 auto *LastDefForPred = LastDefAddedPred[Pred];
959 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
960 NewPhi->addIncoming(LastDefForPred, Pred);
962 } else {
963 // Pick any existing predecessor and get its definition. All other
964 // existing predecessors should have the same one, since no phi existed.
965 auto *P1 = *PrevBlockSet.begin();
966 MemoryAccess *DefP1 = GetLastDef(P1);
968 // Check DefP1 against all Defs in LastDefPredPair. If all the same,
969 // nothing to add.
970 bool InsertPhi = false;
971 for (auto LastDefPredPair : LastDefAddedPred)
972 if (DefP1 != LastDefPredPair.second) {
973 InsertPhi = true;
974 break;
976 if (!InsertPhi) {
977 // Since NewPhi may be used in other newly added Phis, replace all uses
978 // of NewPhi with the definition coming from all predecessors (DefP1),
979 // before deleting it.
980 NewPhi->replaceAllUsesWith(DefP1);
981 removeMemoryAccess(NewPhi);
982 continue;
985 // Update Phi with new values for new predecessors and old value for all
986 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
987 // sets, the order of entries in NewPhi is deterministic.
988 for (auto *Pred : AddedBlockSet) {
989 auto *LastDefForPred = LastDefAddedPred[Pred];
990 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
991 NewPhi->addIncoming(LastDefForPred, Pred);
993 for (auto *Pred : PrevBlockSet)
994 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
995 NewPhi->addIncoming(DefP1, Pred);
998 // Get all blocks that used to dominate BB and no longer do after adding
999 // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
1000 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
1001 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
1002 assert(PrevIDom && "Previous IDom should exists");
1003 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
1004 assert(NewIDom && "BB should have a new valid idom");
1005 assert(DT.dominates(NewIDom, PrevIDom) &&
1006 "New idom should dominate old idom");
1007 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
1010 tryRemoveTrivialPhis(InsertedPhis);
1011 // Create the set of blocks that now have a definition. We'll use this to
1012 // compute IDF and add Phis there next.
1013 SmallVector<BasicBlock *, 8> BlocksToProcess;
1014 for (auto &VH : InsertedPhis)
1015 if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1016 BlocksToProcess.push_back(MPhi->getBlock());
1018 // Compute IDF and add Phis in all IDF blocks that do not have one.
1019 SmallVector<BasicBlock *, 32> IDFBlocks;
1020 if (!BlocksToProcess.empty()) {
1021 ForwardIDFCalculator IDFs(DT, GD);
1022 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
1023 BlocksToProcess.end());
1024 IDFs.setDefiningBlocks(DefiningBlocks);
1025 IDFs.calculate(IDFBlocks);
1027 SmallSetVector<MemoryPhi *, 4> PhisToFill;
1028 // First create all needed Phis.
1029 for (auto *BBIDF : IDFBlocks)
1030 if (!MSSA->getMemoryAccess(BBIDF)) {
1031 auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
1032 InsertedPhis.push_back(IDFPhi);
1033 PhisToFill.insert(IDFPhi);
1035 // Then update or insert their correct incoming values.
1036 for (auto *BBIDF : IDFBlocks) {
1037 auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
1038 assert(IDFPhi && "Phi must exist");
1039 if (!PhisToFill.count(IDFPhi)) {
1040 // Update existing Phi.
1041 // FIXME: some updates may be redundant, try to optimize and skip some.
1042 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
1043 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
1044 } else {
1045 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
1046 BasicBlock *Pi = Pair.second;
1047 IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1053 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1054 // longer dominate, replace those with the closest dominating def.
1055 // This will also update optimized accesses, as they're also uses.
1056 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1057 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1058 for (auto &DefToReplaceUses : *DefsList) {
1059 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1060 Value::use_iterator UI = DefToReplaceUses.use_begin(),
1061 E = DefToReplaceUses.use_end();
1062 for (; UI != E;) {
1063 Use &U = *UI;
1064 ++UI;
1065 MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser());
1066 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1067 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1068 if (!DT.dominates(DominatingBlock, DominatedBlock))
1069 U.set(GetLastDef(DominatedBlock));
1070 } else {
1071 BasicBlock *DominatedBlock = Usr->getBlock();
1072 if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1073 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1074 U.set(DomBlPhi);
1075 else {
1076 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1077 assert(IDom && "Block must have a valid IDom.");
1078 U.set(GetLastDef(IDom->getBlock()));
1080 cast<MemoryUseOrDef>(Usr)->resetOptimized();
1087 tryRemoveTrivialPhis(InsertedPhis);
1090 // Move What before Where in the MemorySSA IR.
1091 template <class WhereType>
1092 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1093 WhereType Where) {
1094 // Mark MemoryPhi users of What not to be optimized.
1095 for (auto *U : What->users())
1096 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1097 NonOptPhis.insert(PhiUser);
1099 // Replace all our users with our defining access.
1100 What->replaceAllUsesWith(What->getDefiningAccess());
1102 // Let MemorySSA take care of moving it around in the lists.
1103 MSSA->moveTo(What, BB, Where);
1105 // Now reinsert it into the IR and do whatever fixups needed.
1106 if (auto *MD = dyn_cast<MemoryDef>(What))
1107 insertDef(MD, /*RenameUses=*/true);
1108 else
1109 insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);
1111 // Clear dangling pointers. We added all MemoryPhi users, but not all
1112 // of them are removed by fixupDefs().
1113 NonOptPhis.clear();
1116 // Move What before Where in the MemorySSA IR.
1117 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1118 moveTo(What, Where->getBlock(), Where->getIterator());
1121 // Move What after Where in the MemorySSA IR.
1122 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1123 moveTo(What, Where->getBlock(), ++Where->getIterator());
1126 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1127 MemorySSA::InsertionPlace Where) {
1128 return moveTo(What, BB, Where);
1131 // All accesses in To used to be in From. Move to end and update access lists.
1132 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1133 Instruction *Start) {
1135 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1136 if (!Accs)
1137 return;
1139 MemoryAccess *FirstInNew = nullptr;
1140 for (Instruction &I : make_range(Start->getIterator(), To->end()))
1141 if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1142 break;
1143 if (!FirstInNew)
1144 return;
1146 auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1147 do {
1148 auto NextIt = ++MUD->getIterator();
1149 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1150 ? nullptr
1151 : cast<MemoryUseOrDef>(&*NextIt);
1152 MSSA->moveTo(MUD, To, MemorySSA::End);
1153 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to
1154 // retrieve it again.
1155 Accs = MSSA->getWritableBlockAccesses(From);
1156 MUD = NextMUD;
1157 } while (MUD);
1160 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1161 BasicBlock *To,
1162 Instruction *Start) {
1163 assert(MSSA->getBlockAccesses(To) == nullptr &&
1164 "To block is expected to be free of MemoryAccesses.");
1165 moveAllAccesses(From, To, Start);
1166 for (BasicBlock *Succ : successors(To))
1167 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1168 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1171 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1172 Instruction *Start) {
1173 assert(From->getSinglePredecessor() == To &&
1174 "From block is expected to have a single predecessor (To).");
1175 moveAllAccesses(From, To, Start);
1176 for (BasicBlock *Succ : successors(From))
1177 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1178 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1181 /// If all arguments of a MemoryPHI are defined by the same incoming
1182 /// argument, return that argument.
1183 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
1184 MemoryAccess *MA = nullptr;
1186 for (auto &Arg : MP->operands()) {
1187 if (!MA)
1188 MA = cast<MemoryAccess>(Arg);
1189 else if (MA != Arg)
1190 return nullptr;
1192 return MA;
1195 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1196 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1197 bool IdenticalEdgesWereMerged) {
1198 assert(!MSSA->getWritableBlockAccesses(New) &&
1199 "Access list should be null for a new block.");
1200 MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1201 if (!Phi)
1202 return;
1203 if (Old->hasNPredecessors(1)) {
1204 assert(pred_size(New) == Preds.size() &&
1205 "Should have moved all predecessors.");
1206 MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1207 } else {
1208 assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1209 "new immediate predecessor.");
1210 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1211 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1212 // Currently only support the case of removing a single incoming edge when
1213 // identical edges were not merged.
1214 if (!IdenticalEdgesWereMerged)
1215 assert(PredsSet.size() == Preds.size() &&
1216 "If identical edges were not merged, we cannot have duplicate "
1217 "blocks in the predecessors");
1218 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1219 if (PredsSet.count(B)) {
1220 NewPhi->addIncoming(MA, B);
1221 if (!IdenticalEdgesWereMerged)
1222 PredsSet.erase(B);
1223 return true;
1225 return false;
1227 Phi->addIncoming(NewPhi, New);
1228 tryRemoveTrivialPhi(NewPhi);
1232 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1233 assert(!MSSA->isLiveOnEntryDef(MA) &&
1234 "Trying to remove the live on entry def");
1235 // We can only delete phi nodes if they have no uses, or we can replace all
1236 // uses with a single definition.
1237 MemoryAccess *NewDefTarget = nullptr;
1238 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1239 // Note that it is sufficient to know that all edges of the phi node have
1240 // the same argument. If they do, by the definition of dominance frontiers
1241 // (which we used to place this phi), that argument must dominate this phi,
1242 // and thus, must dominate the phi's uses, and so we will not hit the assert
1243 // below.
1244 NewDefTarget = onlySingleValue(MP);
1245 assert((NewDefTarget || MP->use_empty()) &&
1246 "We can't delete this memory phi");
1247 } else {
1248 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1251 SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1253 // Re-point the uses at our defining access
1254 if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1255 // Reset optimized on users of this store, and reset the uses.
1256 // A few notes:
1257 // 1. This is a slightly modified version of RAUW to avoid walking the
1258 // uses twice here.
1259 // 2. If we wanted to be complete, we would have to reset the optimized
1260 // flags on users of phi nodes if doing the below makes a phi node have all
1261 // the same arguments. Instead, we prefer users to removeMemoryAccess those
1262 // phi nodes, because doing it here would be N^3.
1263 if (MA->hasValueHandle())
1264 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1265 // Note: We assume MemorySSA is not used in metadata since it's not really
1266 // part of the IR.
1268 while (!MA->use_empty()) {
1269 Use &U = *MA->use_begin();
1270 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1271 MUD->resetOptimized();
1272 if (OptimizePhis)
1273 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1274 PhisToCheck.insert(MP);
1275 U.set(NewDefTarget);
1279 // The call below to erase will destroy MA, so we can't change the order we
1280 // are doing things here
1281 MSSA->removeFromLookups(MA);
1282 MSSA->removeFromLists(MA);
1284 // Optionally optimize Phi uses. This will recursively remove trivial phis.
1285 if (!PhisToCheck.empty()) {
1286 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1287 PhisToCheck.end()};
1288 PhisToCheck.clear();
1290 unsigned PhisSize = PhisToOptimize.size();
1291 while (PhisSize-- > 0)
1292 if (MemoryPhi *MP =
1293 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
1294 tryRemoveTrivialPhi(MP);
1298 void MemorySSAUpdater::removeBlocks(
1299 const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1300 // First delete all uses of BB in MemoryPhis.
1301 for (BasicBlock *BB : DeadBlocks) {
1302 Instruction *TI = BB->getTerminator();
1303 assert(TI && "Basic block expected to have a terminator instruction");
1304 for (BasicBlock *Succ : successors(TI))
1305 if (!DeadBlocks.count(Succ))
1306 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1307 MP->unorderedDeleteIncomingBlock(BB);
1308 tryRemoveTrivialPhi(MP);
1310 // Drop all references of all accesses in BB
1311 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1312 for (MemoryAccess &MA : *Acc)
1313 MA.dropAllReferences();
1316 // Next, delete all memory accesses in each block
1317 for (BasicBlock *BB : DeadBlocks) {
1318 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1319 if (!Acc)
1320 continue;
1321 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1322 MemoryAccess *MA = &*AB;
1323 ++AB;
1324 MSSA->removeFromLookups(MA);
1325 MSSA->removeFromLists(MA);
1330 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1331 for (auto &VH : UpdatedPHIs)
1332 if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1333 tryRemoveTrivialPhi(MPhi);
1336 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1337 const BasicBlock *BB = I->getParent();
1338 // Remove memory accesses in BB for I and all following instructions.
1339 auto BBI = I->getIterator(), BBE = BB->end();
1340 // FIXME: If this becomes too expensive, iterate until the first instruction
1341 // with a memory access, then iterate over MemoryAccesses.
1342 while (BBI != BBE)
1343 removeMemoryAccess(&*(BBI++));
1344 // Update phis in BB's successors to remove BB.
1345 SmallVector<WeakVH, 16> UpdatedPHIs;
1346 for (const BasicBlock *Successor : successors(BB)) {
1347 removeDuplicatePhiEdgesBetween(BB, Successor);
1348 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1349 MPhi->unorderedDeleteIncomingBlock(BB);
1350 UpdatedPHIs.push_back(MPhi);
1353 // Optimize trivial phis.
1354 tryRemoveTrivialPhis(UpdatedPHIs);
1357 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
1358 const BasicBlock *To) {
1359 const BasicBlock *BB = BI->getParent();
1360 SmallVector<WeakVH, 16> UpdatedPHIs;
1361 for (const BasicBlock *Succ : successors(BB)) {
1362 removeDuplicatePhiEdgesBetween(BB, Succ);
1363 if (Succ != To)
1364 if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
1365 MPhi->unorderedDeleteIncomingBlock(BB);
1366 UpdatedPHIs.push_back(MPhi);
1369 // Optimize trivial phis.
1370 tryRemoveTrivialPhis(UpdatedPHIs);
1373 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1374 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1375 MemorySSA::InsertionPlace Point) {
1376 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1377 MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1378 return NewAccess;
1381 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1382 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1383 assert(I->getParent() == InsertPt->getBlock() &&
1384 "New and old access must be in the same block");
1385 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1386 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1387 InsertPt->getIterator());
1388 return NewAccess;
1391 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1392 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1393 assert(I->getParent() == InsertPt->getBlock() &&
1394 "New and old access must be in the same block");
1395 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1396 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1397 ++InsertPt->getIterator());
1398 return NewAccess;