[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Analysis / TargetTransformInfo.cpp
blob0d58234630b2eb7a16e8a2daaa724ec469eeaa42
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/TargetTransformInfoImpl.h"
11 #include "llvm/IR/CallSite.h"
12 #include "llvm/IR/DataLayout.h"
13 #include "llvm/IR/Instruction.h"
14 #include "llvm/IR/Instructions.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/IR/Module.h"
17 #include "llvm/IR/Operator.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include <utility>
25 using namespace llvm;
26 using namespace PatternMatch;
28 #define DEBUG_TYPE "tti"
30 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
31 cl::Hidden,
32 cl::desc("Recognize reduction patterns."));
34 namespace {
35 /// No-op implementation of the TTI interface using the utility base
36 /// classes.
37 ///
38 /// This is used when no target specific information is available.
39 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
40 explicit NoTTIImpl(const DataLayout &DL)
41 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
45 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
46 // If the loop has irreducible control flow, it can not be converted to
47 // Hardware loop.
48 LoopBlocksRPO RPOT(L);
49 RPOT.perform(&LI);
50 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
51 return false;
52 return true;
55 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
56 LoopInfo &LI, DominatorTree &DT,
57 bool ForceNestedLoop,
58 bool ForceHardwareLoopPHI) {
59 SmallVector<BasicBlock *, 4> ExitingBlocks;
60 L->getExitingBlocks(ExitingBlocks);
62 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
63 IE = ExitingBlocks.end();
64 I != IE; ++I) {
65 BasicBlock *BB = *I;
67 // If we pass the updated counter back through a phi, we need to know
68 // which latch the updated value will be coming from.
69 if (!L->isLoopLatch(BB)) {
70 if (ForceHardwareLoopPHI || CounterInReg)
71 continue;
74 const SCEV *EC = SE.getExitCount(L, BB);
75 if (isa<SCEVCouldNotCompute>(EC))
76 continue;
77 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
78 if (ConstEC->getValue()->isZero())
79 continue;
80 } else if (!SE.isLoopInvariant(EC, L))
81 continue;
83 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
84 continue;
86 // If this exiting block is contained in a nested loop, it is not eligible
87 // for insertion of the branch-and-decrement since the inner loop would
88 // end up messing up the value in the CTR.
89 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
90 continue;
92 // We now have a loop-invariant count of loop iterations (which is not the
93 // constant zero) for which we know that this loop will not exit via this
94 // existing block.
96 // We need to make sure that this block will run on every loop iteration.
97 // For this to be true, we must dominate all blocks with backedges. Such
98 // blocks are in-loop predecessors to the header block.
99 bool NotAlways = false;
100 for (pred_iterator PI = pred_begin(L->getHeader()),
101 PIE = pred_end(L->getHeader());
102 PI != PIE; ++PI) {
103 if (!L->contains(*PI))
104 continue;
106 if (!DT.dominates(*I, *PI)) {
107 NotAlways = true;
108 break;
112 if (NotAlways)
113 continue;
115 // Make sure this blocks ends with a conditional branch.
116 Instruction *TI = BB->getTerminator();
117 if (!TI)
118 continue;
120 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
121 if (!BI->isConditional())
122 continue;
124 ExitBranch = BI;
125 } else
126 continue;
128 // Note that this block may not be the loop latch block, even if the loop
129 // has a latch block.
130 ExitBlock = *I;
131 ExitCount = EC;
132 break;
135 if (!ExitBlock)
136 return false;
137 return true;
140 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
141 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
143 TargetTransformInfo::~TargetTransformInfo() {}
145 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
146 : TTIImpl(std::move(Arg.TTIImpl)) {}
148 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
149 TTIImpl = std::move(RHS.TTIImpl);
150 return *this;
153 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
154 Type *OpTy) const {
155 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
156 assert(Cost >= 0 && "TTI should not produce negative costs!");
157 return Cost;
160 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs,
161 const User *U) const {
162 int Cost = TTIImpl->getCallCost(FTy, NumArgs, U);
163 assert(Cost >= 0 && "TTI should not produce negative costs!");
164 return Cost;
167 int TargetTransformInfo::getCallCost(const Function *F,
168 ArrayRef<const Value *> Arguments,
169 const User *U) const {
170 int Cost = TTIImpl->getCallCost(F, Arguments, U);
171 assert(Cost >= 0 && "TTI should not produce negative costs!");
172 return Cost;
175 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
176 return TTIImpl->getInliningThresholdMultiplier();
179 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
180 return TTIImpl->getInlinerVectorBonusPercent();
183 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
184 ArrayRef<const Value *> Operands) const {
185 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
188 int TargetTransformInfo::getExtCost(const Instruction *I,
189 const Value *Src) const {
190 return TTIImpl->getExtCost(I, Src);
193 int TargetTransformInfo::getIntrinsicCost(
194 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments,
195 const User *U) const {
196 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U);
197 assert(Cost >= 0 && "TTI should not produce negative costs!");
198 return Cost;
201 unsigned
202 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
203 unsigned &JTSize) const {
204 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize);
207 int TargetTransformInfo::getUserCost(const User *U,
208 ArrayRef<const Value *> Operands) const {
209 int Cost = TTIImpl->getUserCost(U, Operands);
210 assert(Cost >= 0 && "TTI should not produce negative costs!");
211 return Cost;
214 bool TargetTransformInfo::hasBranchDivergence() const {
215 return TTIImpl->hasBranchDivergence();
218 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
219 return TTIImpl->isSourceOfDivergence(V);
222 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
223 return TTIImpl->isAlwaysUniform(V);
226 unsigned TargetTransformInfo::getFlatAddressSpace() const {
227 return TTIImpl->getFlatAddressSpace();
230 bool TargetTransformInfo::collectFlatAddressOperands(
231 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
232 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
235 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
236 IntrinsicInst *II, Value *OldV, Value *NewV) const {
237 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
240 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
241 return TTIImpl->isLoweredToCall(F);
244 bool TargetTransformInfo::isHardwareLoopProfitable(
245 Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
246 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
247 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
250 void TargetTransformInfo::getUnrollingPreferences(
251 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
252 return TTIImpl->getUnrollingPreferences(L, SE, UP);
255 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
256 return TTIImpl->isLegalAddImmediate(Imm);
259 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
260 return TTIImpl->isLegalICmpImmediate(Imm);
263 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
264 int64_t BaseOffset,
265 bool HasBaseReg,
266 int64_t Scale,
267 unsigned AddrSpace,
268 Instruction *I) const {
269 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
270 Scale, AddrSpace, I);
273 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
274 return TTIImpl->isLSRCostLess(C1, C2);
277 bool TargetTransformInfo::canMacroFuseCmp() const {
278 return TTIImpl->canMacroFuseCmp();
281 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
282 ScalarEvolution *SE, LoopInfo *LI,
283 DominatorTree *DT, AssumptionCache *AC,
284 TargetLibraryInfo *LibInfo) const {
285 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
288 bool TargetTransformInfo::shouldFavorPostInc() const {
289 return TTIImpl->shouldFavorPostInc();
292 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
293 return TTIImpl->shouldFavorBackedgeIndex(L);
296 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const {
297 return TTIImpl->isLegalMaskedStore(DataType);
300 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const {
301 return TTIImpl->isLegalMaskedLoad(DataType);
304 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
305 llvm::Align Alignment) const {
306 return TTIImpl->isLegalNTStore(DataType, Alignment);
309 bool TargetTransformInfo::isLegalNTLoad(Type *DataType,
310 llvm::Align Alignment) const {
311 return TTIImpl->isLegalNTLoad(DataType, Alignment);
314 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
315 return TTIImpl->isLegalMaskedGather(DataType);
318 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
319 return TTIImpl->isLegalMaskedScatter(DataType);
322 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
323 return TTIImpl->isLegalMaskedCompressStore(DataType);
326 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
327 return TTIImpl->isLegalMaskedExpandLoad(DataType);
330 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
331 return TTIImpl->hasDivRemOp(DataType, IsSigned);
334 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
335 unsigned AddrSpace) const {
336 return TTIImpl->hasVolatileVariant(I, AddrSpace);
339 bool TargetTransformInfo::prefersVectorizedAddressing() const {
340 return TTIImpl->prefersVectorizedAddressing();
343 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
344 int64_t BaseOffset,
345 bool HasBaseReg,
346 int64_t Scale,
347 unsigned AddrSpace) const {
348 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
349 Scale, AddrSpace);
350 assert(Cost >= 0 && "TTI should not produce negative costs!");
351 return Cost;
354 bool TargetTransformInfo::LSRWithInstrQueries() const {
355 return TTIImpl->LSRWithInstrQueries();
358 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
359 return TTIImpl->isTruncateFree(Ty1, Ty2);
362 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
363 return TTIImpl->isProfitableToHoist(I);
366 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
368 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
369 return TTIImpl->isTypeLegal(Ty);
372 bool TargetTransformInfo::shouldBuildLookupTables() const {
373 return TTIImpl->shouldBuildLookupTables();
375 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
376 return TTIImpl->shouldBuildLookupTablesForConstant(C);
379 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
380 return TTIImpl->useColdCCForColdCall(F);
383 unsigned TargetTransformInfo::
384 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
385 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
388 unsigned TargetTransformInfo::
389 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
390 unsigned VF) const {
391 return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
394 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
395 return TTIImpl->supportsEfficientVectorElementLoadStore();
398 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
399 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
402 TargetTransformInfo::MemCmpExpansionOptions
403 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
404 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
407 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
408 return TTIImpl->enableInterleavedAccessVectorization();
411 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
412 return TTIImpl->enableMaskedInterleavedAccessVectorization();
415 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
416 return TTIImpl->isFPVectorizationPotentiallyUnsafe();
419 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
420 unsigned BitWidth,
421 unsigned AddressSpace,
422 unsigned Alignment,
423 bool *Fast) const {
424 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
425 Alignment, Fast);
428 TargetTransformInfo::PopcntSupportKind
429 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
430 return TTIImpl->getPopcntSupport(IntTyWidthInBit);
433 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
434 return TTIImpl->haveFastSqrt(Ty);
437 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
438 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
441 int TargetTransformInfo::getFPOpCost(Type *Ty) const {
442 int Cost = TTIImpl->getFPOpCost(Ty);
443 assert(Cost >= 0 && "TTI should not produce negative costs!");
444 return Cost;
447 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
448 const APInt &Imm,
449 Type *Ty) const {
450 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
451 assert(Cost >= 0 && "TTI should not produce negative costs!");
452 return Cost;
455 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
456 int Cost = TTIImpl->getIntImmCost(Imm, Ty);
457 assert(Cost >= 0 && "TTI should not produce negative costs!");
458 return Cost;
461 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
462 const APInt &Imm, Type *Ty) const {
463 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
464 assert(Cost >= 0 && "TTI should not produce negative costs!");
465 return Cost;
468 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
469 const APInt &Imm, Type *Ty) const {
470 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
471 assert(Cost >= 0 && "TTI should not produce negative costs!");
472 return Cost;
475 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
476 return TTIImpl->getNumberOfRegisters(Vector);
479 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
480 return TTIImpl->getRegisterBitWidth(Vector);
483 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
484 return TTIImpl->getMinVectorRegisterBitWidth();
487 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
488 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
491 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
492 return TTIImpl->getMinimumVF(ElemWidth);
495 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
496 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
497 return TTIImpl->shouldConsiderAddressTypePromotion(
498 I, AllowPromotionWithoutCommonHeader);
501 unsigned TargetTransformInfo::getCacheLineSize() const {
502 return TTIImpl->getCacheLineSize();
505 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level)
506 const {
507 return TTIImpl->getCacheSize(Level);
510 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity(
511 CacheLevel Level) const {
512 return TTIImpl->getCacheAssociativity(Level);
515 unsigned TargetTransformInfo::getPrefetchDistance() const {
516 return TTIImpl->getPrefetchDistance();
519 unsigned TargetTransformInfo::getMinPrefetchStride() const {
520 return TTIImpl->getMinPrefetchStride();
523 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
524 return TTIImpl->getMaxPrefetchIterationsAhead();
527 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
528 return TTIImpl->getMaxInterleaveFactor(VF);
531 TargetTransformInfo::OperandValueKind
532 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) {
533 OperandValueKind OpInfo = OK_AnyValue;
534 OpProps = OP_None;
536 if (auto *CI = dyn_cast<ConstantInt>(V)) {
537 if (CI->getValue().isPowerOf2())
538 OpProps = OP_PowerOf2;
539 return OK_UniformConstantValue;
542 // A broadcast shuffle creates a uniform value.
543 // TODO: Add support for non-zero index broadcasts.
544 // TODO: Add support for different source vector width.
545 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
546 if (ShuffleInst->isZeroEltSplat())
547 OpInfo = OK_UniformValue;
549 const Value *Splat = getSplatValue(V);
551 // Check for a splat of a constant or for a non uniform vector of constants
552 // and check if the constant(s) are all powers of two.
553 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
554 OpInfo = OK_NonUniformConstantValue;
555 if (Splat) {
556 OpInfo = OK_UniformConstantValue;
557 if (auto *CI = dyn_cast<ConstantInt>(Splat))
558 if (CI->getValue().isPowerOf2())
559 OpProps = OP_PowerOf2;
560 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
561 OpProps = OP_PowerOf2;
562 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
563 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
564 if (CI->getValue().isPowerOf2())
565 continue;
566 OpProps = OP_None;
567 break;
572 // Check for a splat of a uniform value. This is not loop aware, so return
573 // true only for the obviously uniform cases (argument, globalvalue)
574 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
575 OpInfo = OK_UniformValue;
577 return OpInfo;
580 int TargetTransformInfo::getArithmeticInstrCost(
581 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
582 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
583 OperandValueProperties Opd2PropInfo,
584 ArrayRef<const Value *> Args) const {
585 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
586 Opd1PropInfo, Opd2PropInfo, Args);
587 assert(Cost >= 0 && "TTI should not produce negative costs!");
588 return Cost;
591 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
592 Type *SubTp) const {
593 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
594 assert(Cost >= 0 && "TTI should not produce negative costs!");
595 return Cost;
598 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
599 Type *Src, const Instruction *I) const {
600 assert ((I == nullptr || I->getOpcode() == Opcode) &&
601 "Opcode should reflect passed instruction.");
602 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I);
603 assert(Cost >= 0 && "TTI should not produce negative costs!");
604 return Cost;
607 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
608 VectorType *VecTy,
609 unsigned Index) const {
610 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
611 assert(Cost >= 0 && "TTI should not produce negative costs!");
612 return Cost;
615 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
616 int Cost = TTIImpl->getCFInstrCost(Opcode);
617 assert(Cost >= 0 && "TTI should not produce negative costs!");
618 return Cost;
621 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
622 Type *CondTy, const Instruction *I) const {
623 assert ((I == nullptr || I->getOpcode() == Opcode) &&
624 "Opcode should reflect passed instruction.");
625 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
626 assert(Cost >= 0 && "TTI should not produce negative costs!");
627 return Cost;
630 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
631 unsigned Index) const {
632 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
633 assert(Cost >= 0 && "TTI should not produce negative costs!");
634 return Cost;
637 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
638 unsigned Alignment,
639 unsigned AddressSpace,
640 const Instruction *I) const {
641 assert ((I == nullptr || I->getOpcode() == Opcode) &&
642 "Opcode should reflect passed instruction.");
643 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
644 assert(Cost >= 0 && "TTI should not produce negative costs!");
645 return Cost;
648 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
649 unsigned Alignment,
650 unsigned AddressSpace) const {
651 int Cost =
652 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
653 assert(Cost >= 0 && "TTI should not produce negative costs!");
654 return Cost;
657 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
658 Value *Ptr, bool VariableMask,
659 unsigned Alignment) const {
660 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
661 Alignment);
662 assert(Cost >= 0 && "TTI should not produce negative costs!");
663 return Cost;
666 int TargetTransformInfo::getInterleavedMemoryOpCost(
667 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
668 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
669 bool UseMaskForGaps) const {
670 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
671 Alignment, AddressSpace,
672 UseMaskForCond,
673 UseMaskForGaps);
674 assert(Cost >= 0 && "TTI should not produce negative costs!");
675 return Cost;
678 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
679 ArrayRef<Type *> Tys, FastMathFlags FMF,
680 unsigned ScalarizationCostPassed) const {
681 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
682 ScalarizationCostPassed);
683 assert(Cost >= 0 && "TTI should not produce negative costs!");
684 return Cost;
687 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
688 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const {
689 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
690 assert(Cost >= 0 && "TTI should not produce negative costs!");
691 return Cost;
694 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
695 ArrayRef<Type *> Tys) const {
696 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
697 assert(Cost >= 0 && "TTI should not produce negative costs!");
698 return Cost;
701 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
702 return TTIImpl->getNumberOfParts(Tp);
705 int TargetTransformInfo::getAddressComputationCost(Type *Tp,
706 ScalarEvolution *SE,
707 const SCEV *Ptr) const {
708 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
709 assert(Cost >= 0 && "TTI should not produce negative costs!");
710 return Cost;
713 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
714 int Cost = TTIImpl->getMemcpyCost(I);
715 assert(Cost >= 0 && "TTI should not produce negative costs!");
716 return Cost;
719 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
720 bool IsPairwiseForm) const {
721 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
722 assert(Cost >= 0 && "TTI should not produce negative costs!");
723 return Cost;
726 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy,
727 bool IsPairwiseForm,
728 bool IsUnsigned) const {
729 int Cost =
730 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
731 assert(Cost >= 0 && "TTI should not produce negative costs!");
732 return Cost;
735 unsigned
736 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
737 return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
740 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
741 MemIntrinsicInfo &Info) const {
742 return TTIImpl->getTgtMemIntrinsic(Inst, Info);
745 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
746 return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
749 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
750 IntrinsicInst *Inst, Type *ExpectedType) const {
751 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
754 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context,
755 Value *Length,
756 unsigned SrcAlign,
757 unsigned DestAlign) const {
758 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign,
759 DestAlign);
762 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
763 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
764 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const {
765 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
766 SrcAlign, DestAlign);
769 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
770 const Function *Callee) const {
771 return TTIImpl->areInlineCompatible(Caller, Callee);
774 bool TargetTransformInfo::areFunctionArgsABICompatible(
775 const Function *Caller, const Function *Callee,
776 SmallPtrSetImpl<Argument *> &Args) const {
777 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
780 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
781 Type *Ty) const {
782 return TTIImpl->isIndexedLoadLegal(Mode, Ty);
785 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
786 Type *Ty) const {
787 return TTIImpl->isIndexedStoreLegal(Mode, Ty);
790 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
791 return TTIImpl->getLoadStoreVecRegBitWidth(AS);
794 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
795 return TTIImpl->isLegalToVectorizeLoad(LI);
798 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
799 return TTIImpl->isLegalToVectorizeStore(SI);
802 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
803 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
804 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
805 AddrSpace);
808 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
809 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
810 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
811 AddrSpace);
814 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
815 unsigned LoadSize,
816 unsigned ChainSizeInBytes,
817 VectorType *VecTy) const {
818 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
821 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
822 unsigned StoreSize,
823 unsigned ChainSizeInBytes,
824 VectorType *VecTy) const {
825 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
828 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode,
829 Type *Ty, ReductionFlags Flags) const {
830 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
833 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
834 return TTIImpl->shouldExpandReduction(II);
837 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
838 return TTIImpl->getGISelRematGlobalCost();
841 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
842 return TTIImpl->getInstructionLatency(I);
845 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
846 unsigned Level) {
847 // We don't need a shuffle if we just want to have element 0 in position 0 of
848 // the vector.
849 if (!SI && Level == 0 && IsLeft)
850 return true;
851 else if (!SI)
852 return false;
854 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
856 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
857 // we look at the left or right side.
858 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
859 Mask[i] = val;
861 SmallVector<int, 16> ActualMask = SI->getShuffleMask();
862 return Mask == ActualMask;
865 namespace {
866 /// Kind of the reduction data.
867 enum ReductionKind {
868 RK_None, /// Not a reduction.
869 RK_Arithmetic, /// Binary reduction data.
870 RK_MinMax, /// Min/max reduction data.
871 RK_UnsignedMinMax, /// Unsigned min/max reduction data.
873 /// Contains opcode + LHS/RHS parts of the reduction operations.
874 struct ReductionData {
875 ReductionData() = delete;
876 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
877 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
878 assert(Kind != RK_None && "expected binary or min/max reduction only.");
880 unsigned Opcode = 0;
881 Value *LHS = nullptr;
882 Value *RHS = nullptr;
883 ReductionKind Kind = RK_None;
884 bool hasSameData(ReductionData &RD) const {
885 return Kind == RD.Kind && Opcode == RD.Opcode;
888 } // namespace
890 static Optional<ReductionData> getReductionData(Instruction *I) {
891 Value *L, *R;
892 if (m_BinOp(m_Value(L), m_Value(R)).match(I))
893 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
894 if (auto *SI = dyn_cast<SelectInst>(I)) {
895 if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
896 m_SMax(m_Value(L), m_Value(R)).match(SI) ||
897 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
898 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
899 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
900 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
901 auto *CI = cast<CmpInst>(SI->getCondition());
902 return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
904 if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
905 m_UMax(m_Value(L), m_Value(R)).match(SI)) {
906 auto *CI = cast<CmpInst>(SI->getCondition());
907 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
910 return llvm::None;
913 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
914 unsigned Level,
915 unsigned NumLevels) {
916 // Match one level of pairwise operations.
917 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
918 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
919 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
920 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
921 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
922 if (!I)
923 return RK_None;
925 assert(I->getType()->isVectorTy() && "Expecting a vector type");
927 Optional<ReductionData> RD = getReductionData(I);
928 if (!RD)
929 return RK_None;
931 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
932 if (!LS && Level)
933 return RK_None;
934 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
935 if (!RS && Level)
936 return RK_None;
938 // On level 0 we can omit one shufflevector instruction.
939 if (!Level && !RS && !LS)
940 return RK_None;
942 // Shuffle inputs must match.
943 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
944 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
945 Value *NextLevelOp = nullptr;
946 if (NextLevelOpR && NextLevelOpL) {
947 // If we have two shuffles their operands must match.
948 if (NextLevelOpL != NextLevelOpR)
949 return RK_None;
951 NextLevelOp = NextLevelOpL;
952 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
953 // On the first level we can omit the shufflevector <0, undef,...>. So the
954 // input to the other shufflevector <1, undef> must match with one of the
955 // inputs to the current binary operation.
956 // Example:
957 // %NextLevelOpL = shufflevector %R, <1, undef ...>
958 // %BinOp = fadd %NextLevelOpL, %R
959 if (NextLevelOpL && NextLevelOpL != RD->RHS)
960 return RK_None;
961 else if (NextLevelOpR && NextLevelOpR != RD->LHS)
962 return RK_None;
964 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
965 } else
966 return RK_None;
968 // Check that the next levels binary operation exists and matches with the
969 // current one.
970 if (Level + 1 != NumLevels) {
971 Optional<ReductionData> NextLevelRD =
972 getReductionData(cast<Instruction>(NextLevelOp));
973 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
974 return RK_None;
977 // Shuffle mask for pairwise operation must match.
978 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
979 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
980 return RK_None;
981 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
982 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
983 return RK_None;
984 } else {
985 return RK_None;
988 if (++Level == NumLevels)
989 return RD->Kind;
991 // Match next level.
992 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
993 NumLevels);
996 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
997 unsigned &Opcode, Type *&Ty) {
998 if (!EnableReduxCost)
999 return RK_None;
1001 // Need to extract the first element.
1002 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1003 unsigned Idx = ~0u;
1004 if (CI)
1005 Idx = CI->getZExtValue();
1006 if (Idx != 0)
1007 return RK_None;
1009 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1010 if (!RdxStart)
1011 return RK_None;
1012 Optional<ReductionData> RD = getReductionData(RdxStart);
1013 if (!RD)
1014 return RK_None;
1016 Type *VecTy = RdxStart->getType();
1017 unsigned NumVecElems = VecTy->getVectorNumElements();
1018 if (!isPowerOf2_32(NumVecElems))
1019 return RK_None;
1021 // We look for a sequence of shuffle,shuffle,add triples like the following
1022 // that builds a pairwise reduction tree.
1024 // (X0, X1, X2, X3)
1025 // (X0 + X1, X2 + X3, undef, undef)
1026 // ((X0 + X1) + (X2 + X3), undef, undef, undef)
1028 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
1029 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
1030 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
1031 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
1032 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
1033 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1034 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
1035 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1036 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1037 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
1038 // %r = extractelement <4 x float> %bin.rdx8, i32 0
1039 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
1040 RK_None)
1041 return RK_None;
1043 Opcode = RD->Opcode;
1044 Ty = VecTy;
1046 return RD->Kind;
1049 static std::pair<Value *, ShuffleVectorInst *>
1050 getShuffleAndOtherOprd(Value *L, Value *R) {
1051 ShuffleVectorInst *S = nullptr;
1053 if ((S = dyn_cast<ShuffleVectorInst>(L)))
1054 return std::make_pair(R, S);
1056 S = dyn_cast<ShuffleVectorInst>(R);
1057 return std::make_pair(L, S);
1060 static ReductionKind
1061 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
1062 unsigned &Opcode, Type *&Ty) {
1063 if (!EnableReduxCost)
1064 return RK_None;
1066 // Need to extract the first element.
1067 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1068 unsigned Idx = ~0u;
1069 if (CI)
1070 Idx = CI->getZExtValue();
1071 if (Idx != 0)
1072 return RK_None;
1074 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1075 if (!RdxStart)
1076 return RK_None;
1077 Optional<ReductionData> RD = getReductionData(RdxStart);
1078 if (!RD)
1079 return RK_None;
1081 Type *VecTy = ReduxRoot->getOperand(0)->getType();
1082 unsigned NumVecElems = VecTy->getVectorNumElements();
1083 if (!isPowerOf2_32(NumVecElems))
1084 return RK_None;
1086 // We look for a sequence of shuffles and adds like the following matching one
1087 // fadd, shuffle vector pair at a time.
1089 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
1090 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
1091 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
1092 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
1093 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1094 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
1095 // %r = extractelement <4 x float> %bin.rdx8, i32 0
1097 unsigned MaskStart = 1;
1098 Instruction *RdxOp = RdxStart;
1099 SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
1100 unsigned NumVecElemsRemain = NumVecElems;
1101 while (NumVecElemsRemain - 1) {
1102 // Check for the right reduction operation.
1103 if (!RdxOp)
1104 return RK_None;
1105 Optional<ReductionData> RDLevel = getReductionData(RdxOp);
1106 if (!RDLevel || !RDLevel->hasSameData(*RD))
1107 return RK_None;
1109 Value *NextRdxOp;
1110 ShuffleVectorInst *Shuffle;
1111 std::tie(NextRdxOp, Shuffle) =
1112 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
1114 // Check the current reduction operation and the shuffle use the same value.
1115 if (Shuffle == nullptr)
1116 return RK_None;
1117 if (Shuffle->getOperand(0) != NextRdxOp)
1118 return RK_None;
1120 // Check that shuffle masks matches.
1121 for (unsigned j = 0; j != MaskStart; ++j)
1122 ShuffleMask[j] = MaskStart + j;
1123 // Fill the rest of the mask with -1 for undef.
1124 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
1126 SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
1127 if (ShuffleMask != Mask)
1128 return RK_None;
1130 RdxOp = dyn_cast<Instruction>(NextRdxOp);
1131 NumVecElemsRemain /= 2;
1132 MaskStart *= 2;
1135 Opcode = RD->Opcode;
1136 Ty = VecTy;
1137 return RD->Kind;
1140 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1141 switch (I->getOpcode()) {
1142 case Instruction::GetElementPtr:
1143 return getUserCost(I);
1145 case Instruction::Ret:
1146 case Instruction::PHI:
1147 case Instruction::Br: {
1148 return getCFInstrCost(I->getOpcode());
1150 case Instruction::Add:
1151 case Instruction::FAdd:
1152 case Instruction::Sub:
1153 case Instruction::FSub:
1154 case Instruction::Mul:
1155 case Instruction::FMul:
1156 case Instruction::UDiv:
1157 case Instruction::SDiv:
1158 case Instruction::FDiv:
1159 case Instruction::URem:
1160 case Instruction::SRem:
1161 case Instruction::FRem:
1162 case Instruction::Shl:
1163 case Instruction::LShr:
1164 case Instruction::AShr:
1165 case Instruction::And:
1166 case Instruction::Or:
1167 case Instruction::Xor: {
1168 TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1169 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1170 Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1171 Op2VK = getOperandInfo(I->getOperand(1), Op2VP);
1172 SmallVector<const Value *, 2> Operands(I->operand_values());
1173 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1174 Op1VP, Op2VP, Operands);
1176 case Instruction::FNeg: {
1177 TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1178 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1179 Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1180 Op2VK = OK_AnyValue;
1181 Op2VP = OP_None;
1182 SmallVector<const Value *, 2> Operands(I->operand_values());
1183 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1184 Op1VP, Op2VP, Operands);
1186 case Instruction::Select: {
1187 const SelectInst *SI = cast<SelectInst>(I);
1188 Type *CondTy = SI->getCondition()->getType();
1189 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
1191 case Instruction::ICmp:
1192 case Instruction::FCmp: {
1193 Type *ValTy = I->getOperand(0)->getType();
1194 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
1196 case Instruction::Store: {
1197 const StoreInst *SI = cast<StoreInst>(I);
1198 Type *ValTy = SI->getValueOperand()->getType();
1199 return getMemoryOpCost(I->getOpcode(), ValTy,
1200 SI->getAlignment(),
1201 SI->getPointerAddressSpace(), I);
1203 case Instruction::Load: {
1204 const LoadInst *LI = cast<LoadInst>(I);
1205 return getMemoryOpCost(I->getOpcode(), I->getType(),
1206 LI->getAlignment(),
1207 LI->getPointerAddressSpace(), I);
1209 case Instruction::ZExt:
1210 case Instruction::SExt:
1211 case Instruction::FPToUI:
1212 case Instruction::FPToSI:
1213 case Instruction::FPExt:
1214 case Instruction::PtrToInt:
1215 case Instruction::IntToPtr:
1216 case Instruction::SIToFP:
1217 case Instruction::UIToFP:
1218 case Instruction::Trunc:
1219 case Instruction::FPTrunc:
1220 case Instruction::BitCast:
1221 case Instruction::AddrSpaceCast: {
1222 Type *SrcTy = I->getOperand(0)->getType();
1223 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
1225 case Instruction::ExtractElement: {
1226 const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
1227 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1228 unsigned Idx = -1;
1229 if (CI)
1230 Idx = CI->getZExtValue();
1232 // Try to match a reduction sequence (series of shufflevector and vector
1233 // adds followed by a extractelement).
1234 unsigned ReduxOpCode;
1235 Type *ReduxType;
1237 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
1238 case RK_Arithmetic:
1239 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1240 /*IsPairwiseForm=*/false);
1241 case RK_MinMax:
1242 return getMinMaxReductionCost(
1243 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1244 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
1245 case RK_UnsignedMinMax:
1246 return getMinMaxReductionCost(
1247 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1248 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
1249 case RK_None:
1250 break;
1253 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
1254 case RK_Arithmetic:
1255 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1256 /*IsPairwiseForm=*/true);
1257 case RK_MinMax:
1258 return getMinMaxReductionCost(
1259 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1260 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
1261 case RK_UnsignedMinMax:
1262 return getMinMaxReductionCost(
1263 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1264 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
1265 case RK_None:
1266 break;
1269 return getVectorInstrCost(I->getOpcode(),
1270 EEI->getOperand(0)->getType(), Idx);
1272 case Instruction::InsertElement: {
1273 const InsertElementInst * IE = cast<InsertElementInst>(I);
1274 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
1275 unsigned Idx = -1;
1276 if (CI)
1277 Idx = CI->getZExtValue();
1278 return getVectorInstrCost(I->getOpcode(),
1279 IE->getType(), Idx);
1281 case Instruction::ExtractValue:
1282 return 0; // Model all ExtractValue nodes as free.
1283 case Instruction::ShuffleVector: {
1284 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1285 Type *Ty = Shuffle->getType();
1286 Type *SrcTy = Shuffle->getOperand(0)->getType();
1288 // TODO: Identify and add costs for insert subvector, etc.
1289 int SubIndex;
1290 if (Shuffle->isExtractSubvectorMask(SubIndex))
1291 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty);
1293 if (Shuffle->changesLength())
1294 return -1;
1296 if (Shuffle->isIdentity())
1297 return 0;
1299 if (Shuffle->isReverse())
1300 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr);
1302 if (Shuffle->isSelect())
1303 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr);
1305 if (Shuffle->isTranspose())
1306 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr);
1308 if (Shuffle->isZeroEltSplat())
1309 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr);
1311 if (Shuffle->isSingleSource())
1312 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr);
1314 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr);
1316 case Instruction::Call:
1317 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1318 SmallVector<Value *, 4> Args(II->arg_operands());
1320 FastMathFlags FMF;
1321 if (auto *FPMO = dyn_cast<FPMathOperator>(II))
1322 FMF = FPMO->getFastMathFlags();
1324 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
1325 Args, FMF);
1327 return -1;
1328 default:
1329 // We don't have any information on this instruction.
1330 return -1;
1334 TargetTransformInfo::Concept::~Concept() {}
1336 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1338 TargetIRAnalysis::TargetIRAnalysis(
1339 std::function<Result(const Function &)> TTICallback)
1340 : TTICallback(std::move(TTICallback)) {}
1342 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1343 FunctionAnalysisManager &) {
1344 return TTICallback(F);
1347 AnalysisKey TargetIRAnalysis::Key;
1349 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1350 return Result(F.getParent()->getDataLayout());
1353 // Register the basic pass.
1354 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1355 "Target Transform Information", false, true)
1356 char TargetTransformInfoWrapperPass::ID = 0;
1358 void TargetTransformInfoWrapperPass::anchor() {}
1360 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1361 : ImmutablePass(ID) {
1362 initializeTargetTransformInfoWrapperPassPass(
1363 *PassRegistry::getPassRegistry());
1366 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1367 TargetIRAnalysis TIRA)
1368 : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1369 initializeTargetTransformInfoWrapperPassPass(
1370 *PassRegistry::getPassRegistry());
1373 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1374 FunctionAnalysisManager DummyFAM;
1375 TTI = TIRA.run(F, DummyFAM);
1376 return *TTI;
1379 ImmutablePass *
1380 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1381 return new TargetTransformInfoWrapperPass(std::move(TIRA));