[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Analysis / VectorUtils.cpp
blobf54794c59e3fef309af186f1b340c19e5036111a
1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
28 #define DEBUG_TYPE "vectorutils"
30 using namespace llvm;
31 using namespace llvm::PatternMatch;
33 /// Maximum factor for an interleaved memory access.
34 static cl::opt<unsigned> MaxInterleaveGroupFactor(
35 "max-interleave-group-factor", cl::Hidden,
36 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
37 cl::init(8));
39 /// Return true if all of the intrinsic's arguments and return type are scalars
40 /// for the scalar form of the intrinsic, and vectors for the vector form of the
41 /// intrinsic (except operands that are marked as always being scalar by
42 /// hasVectorInstrinsicScalarOpd).
43 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
44 switch (ID) {
45 case Intrinsic::bswap: // Begin integer bit-manipulation.
46 case Intrinsic::bitreverse:
47 case Intrinsic::ctpop:
48 case Intrinsic::ctlz:
49 case Intrinsic::cttz:
50 case Intrinsic::fshl:
51 case Intrinsic::fshr:
52 case Intrinsic::sadd_sat:
53 case Intrinsic::ssub_sat:
54 case Intrinsic::uadd_sat:
55 case Intrinsic::usub_sat:
56 case Intrinsic::smul_fix:
57 case Intrinsic::smul_fix_sat:
58 case Intrinsic::umul_fix:
59 case Intrinsic::umul_fix_sat:
60 case Intrinsic::sqrt: // Begin floating-point.
61 case Intrinsic::sin:
62 case Intrinsic::cos:
63 case Intrinsic::exp:
64 case Intrinsic::exp2:
65 case Intrinsic::log:
66 case Intrinsic::log10:
67 case Intrinsic::log2:
68 case Intrinsic::fabs:
69 case Intrinsic::minnum:
70 case Intrinsic::maxnum:
71 case Intrinsic::minimum:
72 case Intrinsic::maximum:
73 case Intrinsic::copysign:
74 case Intrinsic::floor:
75 case Intrinsic::ceil:
76 case Intrinsic::trunc:
77 case Intrinsic::rint:
78 case Intrinsic::nearbyint:
79 case Intrinsic::round:
80 case Intrinsic::pow:
81 case Intrinsic::fma:
82 case Intrinsic::fmuladd:
83 case Intrinsic::powi:
84 case Intrinsic::canonicalize:
85 return true;
86 default:
87 return false;
91 /// Identifies if the vector form of the intrinsic has a scalar operand.
92 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
93 unsigned ScalarOpdIdx) {
94 switch (ID) {
95 case Intrinsic::ctlz:
96 case Intrinsic::cttz:
97 case Intrinsic::powi:
98 return (ScalarOpdIdx == 1);
99 case Intrinsic::smul_fix:
100 case Intrinsic::smul_fix_sat:
101 case Intrinsic::umul_fix:
102 case Intrinsic::umul_fix_sat:
103 return (ScalarOpdIdx == 2);
104 default:
105 return false;
109 /// Returns intrinsic ID for call.
110 /// For the input call instruction it finds mapping intrinsic and returns
111 /// its ID, in case it does not found it return not_intrinsic.
112 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
113 const TargetLibraryInfo *TLI) {
114 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
115 if (ID == Intrinsic::not_intrinsic)
116 return Intrinsic::not_intrinsic;
118 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
119 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
120 ID == Intrinsic::sideeffect)
121 return ID;
122 return Intrinsic::not_intrinsic;
125 /// Find the operand of the GEP that should be checked for consecutive
126 /// stores. This ignores trailing indices that have no effect on the final
127 /// pointer.
128 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
129 const DataLayout &DL = Gep->getModule()->getDataLayout();
130 unsigned LastOperand = Gep->getNumOperands() - 1;
131 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
133 // Walk backwards and try to peel off zeros.
134 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
135 // Find the type we're currently indexing into.
136 gep_type_iterator GEPTI = gep_type_begin(Gep);
137 std::advance(GEPTI, LastOperand - 2);
139 // If it's a type with the same allocation size as the result of the GEP we
140 // can peel off the zero index.
141 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
142 break;
143 --LastOperand;
146 return LastOperand;
149 /// If the argument is a GEP, then returns the operand identified by
150 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
151 /// operand, it returns that instead.
152 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
153 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
154 if (!GEP)
155 return Ptr;
157 unsigned InductionOperand = getGEPInductionOperand(GEP);
159 // Check that all of the gep indices are uniform except for our induction
160 // operand.
161 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
162 if (i != InductionOperand &&
163 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
164 return Ptr;
165 return GEP->getOperand(InductionOperand);
168 /// If a value has only one user that is a CastInst, return it.
169 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
170 Value *UniqueCast = nullptr;
171 for (User *U : Ptr->users()) {
172 CastInst *CI = dyn_cast<CastInst>(U);
173 if (CI && CI->getType() == Ty) {
174 if (!UniqueCast)
175 UniqueCast = CI;
176 else
177 return nullptr;
180 return UniqueCast;
183 /// Get the stride of a pointer access in a loop. Looks for symbolic
184 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
185 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
186 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
187 if (!PtrTy || PtrTy->isAggregateType())
188 return nullptr;
190 // Try to remove a gep instruction to make the pointer (actually index at this
191 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
192 // pointer, otherwise, we are analyzing the index.
193 Value *OrigPtr = Ptr;
195 // The size of the pointer access.
196 int64_t PtrAccessSize = 1;
198 Ptr = stripGetElementPtr(Ptr, SE, Lp);
199 const SCEV *V = SE->getSCEV(Ptr);
201 if (Ptr != OrigPtr)
202 // Strip off casts.
203 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
204 V = C->getOperand();
206 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
207 if (!S)
208 return nullptr;
210 V = S->getStepRecurrence(*SE);
211 if (!V)
212 return nullptr;
214 // Strip off the size of access multiplication if we are still analyzing the
215 // pointer.
216 if (OrigPtr == Ptr) {
217 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
218 if (M->getOperand(0)->getSCEVType() != scConstant)
219 return nullptr;
221 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
223 // Huge step value - give up.
224 if (APStepVal.getBitWidth() > 64)
225 return nullptr;
227 int64_t StepVal = APStepVal.getSExtValue();
228 if (PtrAccessSize != StepVal)
229 return nullptr;
230 V = M->getOperand(1);
234 // Strip off casts.
235 Type *StripedOffRecurrenceCast = nullptr;
236 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
237 StripedOffRecurrenceCast = C->getType();
238 V = C->getOperand();
241 // Look for the loop invariant symbolic value.
242 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
243 if (!U)
244 return nullptr;
246 Value *Stride = U->getValue();
247 if (!Lp->isLoopInvariant(Stride))
248 return nullptr;
250 // If we have stripped off the recurrence cast we have to make sure that we
251 // return the value that is used in this loop so that we can replace it later.
252 if (StripedOffRecurrenceCast)
253 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
255 return Stride;
258 /// Given a vector and an element number, see if the scalar value is
259 /// already around as a register, for example if it were inserted then extracted
260 /// from the vector.
261 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
262 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
263 VectorType *VTy = cast<VectorType>(V->getType());
264 unsigned Width = VTy->getNumElements();
265 if (EltNo >= Width) // Out of range access.
266 return UndefValue::get(VTy->getElementType());
268 if (Constant *C = dyn_cast<Constant>(V))
269 return C->getAggregateElement(EltNo);
271 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
272 // If this is an insert to a variable element, we don't know what it is.
273 if (!isa<ConstantInt>(III->getOperand(2)))
274 return nullptr;
275 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
277 // If this is an insert to the element we are looking for, return the
278 // inserted value.
279 if (EltNo == IIElt)
280 return III->getOperand(1);
282 // Otherwise, the insertelement doesn't modify the value, recurse on its
283 // vector input.
284 return findScalarElement(III->getOperand(0), EltNo);
287 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
288 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
289 int InEl = SVI->getMaskValue(EltNo);
290 if (InEl < 0)
291 return UndefValue::get(VTy->getElementType());
292 if (InEl < (int)LHSWidth)
293 return findScalarElement(SVI->getOperand(0), InEl);
294 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
297 // Extract a value from a vector add operation with a constant zero.
298 // TODO: Use getBinOpIdentity() to generalize this.
299 Value *Val; Constant *C;
300 if (match(V, m_Add(m_Value(Val), m_Constant(C))))
301 if (Constant *Elt = C->getAggregateElement(EltNo))
302 if (Elt->isNullValue())
303 return findScalarElement(Val, EltNo);
305 // Otherwise, we don't know.
306 return nullptr;
309 /// Get splat value if the input is a splat vector or return nullptr.
310 /// This function is not fully general. It checks only 2 cases:
311 /// the input value is (1) a splat constant vector or (2) a sequence
312 /// of instructions that broadcasts a scalar at element 0.
313 const llvm::Value *llvm::getSplatValue(const Value *V) {
314 if (isa<VectorType>(V->getType()))
315 if (auto *C = dyn_cast<Constant>(V))
316 return C->getSplatValue();
318 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
319 Value *Splat;
320 if (match(V, m_ShuffleVector(m_InsertElement(m_Value(), m_Value(Splat),
321 m_ZeroInt()),
322 m_Value(), m_ZeroInt())))
323 return Splat;
325 return nullptr;
328 // This setting is based on its counterpart in value tracking, but it could be
329 // adjusted if needed.
330 const unsigned MaxDepth = 6;
332 bool llvm::isSplatValue(const Value *V, unsigned Depth) {
333 assert(Depth <= MaxDepth && "Limit Search Depth");
335 if (isa<VectorType>(V->getType())) {
336 if (isa<UndefValue>(V))
337 return true;
338 // FIXME: Constant splat analysis does not allow undef elements.
339 if (auto *C = dyn_cast<Constant>(V))
340 return C->getSplatValue() != nullptr;
343 // FIXME: Constant splat analysis does not allow undef elements.
344 Constant *Mask;
345 if (match(V, m_ShuffleVector(m_Value(), m_Value(), m_Constant(Mask))))
346 return Mask->getSplatValue() != nullptr;
348 // The remaining tests are all recursive, so bail out if we hit the limit.
349 if (Depth++ == MaxDepth)
350 return false;
352 // If both operands of a binop are splats, the result is a splat.
353 Value *X, *Y, *Z;
354 if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
355 return isSplatValue(X, Depth) && isSplatValue(Y, Depth);
357 // If all operands of a select are splats, the result is a splat.
358 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
359 return isSplatValue(X, Depth) && isSplatValue(Y, Depth) &&
360 isSplatValue(Z, Depth);
362 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
364 return false;
367 MapVector<Instruction *, uint64_t>
368 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
369 const TargetTransformInfo *TTI) {
371 // DemandedBits will give us every value's live-out bits. But we want
372 // to ensure no extra casts would need to be inserted, so every DAG
373 // of connected values must have the same minimum bitwidth.
374 EquivalenceClasses<Value *> ECs;
375 SmallVector<Value *, 16> Worklist;
376 SmallPtrSet<Value *, 4> Roots;
377 SmallPtrSet<Value *, 16> Visited;
378 DenseMap<Value *, uint64_t> DBits;
379 SmallPtrSet<Instruction *, 4> InstructionSet;
380 MapVector<Instruction *, uint64_t> MinBWs;
382 // Determine the roots. We work bottom-up, from truncs or icmps.
383 bool SeenExtFromIllegalType = false;
384 for (auto *BB : Blocks)
385 for (auto &I : *BB) {
386 InstructionSet.insert(&I);
388 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
389 !TTI->isTypeLegal(I.getOperand(0)->getType()))
390 SeenExtFromIllegalType = true;
392 // Only deal with non-vector integers up to 64-bits wide.
393 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
394 !I.getType()->isVectorTy() &&
395 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
396 // Don't make work for ourselves. If we know the loaded type is legal,
397 // don't add it to the worklist.
398 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
399 continue;
401 Worklist.push_back(&I);
402 Roots.insert(&I);
405 // Early exit.
406 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
407 return MinBWs;
409 // Now proceed breadth-first, unioning values together.
410 while (!Worklist.empty()) {
411 Value *Val = Worklist.pop_back_val();
412 Value *Leader = ECs.getOrInsertLeaderValue(Val);
414 if (Visited.count(Val))
415 continue;
416 Visited.insert(Val);
418 // Non-instructions terminate a chain successfully.
419 if (!isa<Instruction>(Val))
420 continue;
421 Instruction *I = cast<Instruction>(Val);
423 // If we encounter a type that is larger than 64 bits, we can't represent
424 // it so bail out.
425 if (DB.getDemandedBits(I).getBitWidth() > 64)
426 return MapVector<Instruction *, uint64_t>();
428 uint64_t V = DB.getDemandedBits(I).getZExtValue();
429 DBits[Leader] |= V;
430 DBits[I] = V;
432 // Casts, loads and instructions outside of our range terminate a chain
433 // successfully.
434 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
435 !InstructionSet.count(I))
436 continue;
438 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
439 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
440 // transform anything that relies on them.
441 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
442 !I->getType()->isIntegerTy()) {
443 DBits[Leader] |= ~0ULL;
444 continue;
447 // We don't modify the types of PHIs. Reductions will already have been
448 // truncated if possible, and inductions' sizes will have been chosen by
449 // indvars.
450 if (isa<PHINode>(I))
451 continue;
453 if (DBits[Leader] == ~0ULL)
454 // All bits demanded, no point continuing.
455 continue;
457 for (Value *O : cast<User>(I)->operands()) {
458 ECs.unionSets(Leader, O);
459 Worklist.push_back(O);
463 // Now we've discovered all values, walk them to see if there are
464 // any users we didn't see. If there are, we can't optimize that
465 // chain.
466 for (auto &I : DBits)
467 for (auto *U : I.first->users())
468 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
469 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
471 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
472 uint64_t LeaderDemandedBits = 0;
473 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
474 LeaderDemandedBits |= DBits[*MI];
476 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
477 llvm::countLeadingZeros(LeaderDemandedBits);
478 // Round up to a power of 2
479 if (!isPowerOf2_64((uint64_t)MinBW))
480 MinBW = NextPowerOf2(MinBW);
482 // We don't modify the types of PHIs. Reductions will already have been
483 // truncated if possible, and inductions' sizes will have been chosen by
484 // indvars.
485 // If we are required to shrink a PHI, abandon this entire equivalence class.
486 bool Abort = false;
487 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
488 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
489 Abort = true;
490 break;
492 if (Abort)
493 continue;
495 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
496 if (!isa<Instruction>(*MI))
497 continue;
498 Type *Ty = (*MI)->getType();
499 if (Roots.count(*MI))
500 Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
501 if (MinBW < Ty->getScalarSizeInBits())
502 MinBWs[cast<Instruction>(*MI)] = MinBW;
506 return MinBWs;
509 /// Add all access groups in @p AccGroups to @p List.
510 template <typename ListT>
511 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
512 // Interpret an access group as a list containing itself.
513 if (AccGroups->getNumOperands() == 0) {
514 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
515 List.insert(AccGroups);
516 return;
519 for (auto &AccGroupListOp : AccGroups->operands()) {
520 auto *Item = cast<MDNode>(AccGroupListOp.get());
521 assert(isValidAsAccessGroup(Item) && "List item must be an access group");
522 List.insert(Item);
526 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
527 if (!AccGroups1)
528 return AccGroups2;
529 if (!AccGroups2)
530 return AccGroups1;
531 if (AccGroups1 == AccGroups2)
532 return AccGroups1;
534 SmallSetVector<Metadata *, 4> Union;
535 addToAccessGroupList(Union, AccGroups1);
536 addToAccessGroupList(Union, AccGroups2);
538 if (Union.size() == 0)
539 return nullptr;
540 if (Union.size() == 1)
541 return cast<MDNode>(Union.front());
543 LLVMContext &Ctx = AccGroups1->getContext();
544 return MDNode::get(Ctx, Union.getArrayRef());
547 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
548 const Instruction *Inst2) {
549 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
550 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
552 if (!MayAccessMem1 && !MayAccessMem2)
553 return nullptr;
554 if (!MayAccessMem1)
555 return Inst2->getMetadata(LLVMContext::MD_access_group);
556 if (!MayAccessMem2)
557 return Inst1->getMetadata(LLVMContext::MD_access_group);
559 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
560 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
561 if (!MD1 || !MD2)
562 return nullptr;
563 if (MD1 == MD2)
564 return MD1;
566 // Use set for scalable 'contains' check.
567 SmallPtrSet<Metadata *, 4> AccGroupSet2;
568 addToAccessGroupList(AccGroupSet2, MD2);
570 SmallVector<Metadata *, 4> Intersection;
571 if (MD1->getNumOperands() == 0) {
572 assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
573 if (AccGroupSet2.count(MD1))
574 Intersection.push_back(MD1);
575 } else {
576 for (const MDOperand &Node : MD1->operands()) {
577 auto *Item = cast<MDNode>(Node.get());
578 assert(isValidAsAccessGroup(Item) && "List item must be an access group");
579 if (AccGroupSet2.count(Item))
580 Intersection.push_back(Item);
584 if (Intersection.size() == 0)
585 return nullptr;
586 if (Intersection.size() == 1)
587 return cast<MDNode>(Intersection.front());
589 LLVMContext &Ctx = Inst1->getContext();
590 return MDNode::get(Ctx, Intersection);
593 /// \returns \p I after propagating metadata from \p VL.
594 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
595 Instruction *I0 = cast<Instruction>(VL[0]);
596 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
597 I0->getAllMetadataOtherThanDebugLoc(Metadata);
599 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
600 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
601 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
602 LLVMContext::MD_access_group}) {
603 MDNode *MD = I0->getMetadata(Kind);
605 for (int J = 1, E = VL.size(); MD && J != E; ++J) {
606 const Instruction *IJ = cast<Instruction>(VL[J]);
607 MDNode *IMD = IJ->getMetadata(Kind);
608 switch (Kind) {
609 case LLVMContext::MD_tbaa:
610 MD = MDNode::getMostGenericTBAA(MD, IMD);
611 break;
612 case LLVMContext::MD_alias_scope:
613 MD = MDNode::getMostGenericAliasScope(MD, IMD);
614 break;
615 case LLVMContext::MD_fpmath:
616 MD = MDNode::getMostGenericFPMath(MD, IMD);
617 break;
618 case LLVMContext::MD_noalias:
619 case LLVMContext::MD_nontemporal:
620 case LLVMContext::MD_invariant_load:
621 MD = MDNode::intersect(MD, IMD);
622 break;
623 case LLVMContext::MD_access_group:
624 MD = intersectAccessGroups(Inst, IJ);
625 break;
626 default:
627 llvm_unreachable("unhandled metadata");
631 Inst->setMetadata(Kind, MD);
634 return Inst;
637 Constant *
638 llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF,
639 const InterleaveGroup<Instruction> &Group) {
640 // All 1's means mask is not needed.
641 if (Group.getNumMembers() == Group.getFactor())
642 return nullptr;
644 // TODO: support reversed access.
645 assert(!Group.isReverse() && "Reversed group not supported.");
647 SmallVector<Constant *, 16> Mask;
648 for (unsigned i = 0; i < VF; i++)
649 for (unsigned j = 0; j < Group.getFactor(); ++j) {
650 unsigned HasMember = Group.getMember(j) ? 1 : 0;
651 Mask.push_back(Builder.getInt1(HasMember));
654 return ConstantVector::get(Mask);
657 Constant *llvm::createReplicatedMask(IRBuilder<> &Builder,
658 unsigned ReplicationFactor, unsigned VF) {
659 SmallVector<Constant *, 16> MaskVec;
660 for (unsigned i = 0; i < VF; i++)
661 for (unsigned j = 0; j < ReplicationFactor; j++)
662 MaskVec.push_back(Builder.getInt32(i));
664 return ConstantVector::get(MaskVec);
667 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
668 unsigned NumVecs) {
669 SmallVector<Constant *, 16> Mask;
670 for (unsigned i = 0; i < VF; i++)
671 for (unsigned j = 0; j < NumVecs; j++)
672 Mask.push_back(Builder.getInt32(j * VF + i));
674 return ConstantVector::get(Mask);
677 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
678 unsigned Stride, unsigned VF) {
679 SmallVector<Constant *, 16> Mask;
680 for (unsigned i = 0; i < VF; i++)
681 Mask.push_back(Builder.getInt32(Start + i * Stride));
683 return ConstantVector::get(Mask);
686 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
687 unsigned NumInts, unsigned NumUndefs) {
688 SmallVector<Constant *, 16> Mask;
689 for (unsigned i = 0; i < NumInts; i++)
690 Mask.push_back(Builder.getInt32(Start + i));
692 Constant *Undef = UndefValue::get(Builder.getInt32Ty());
693 for (unsigned i = 0; i < NumUndefs; i++)
694 Mask.push_back(Undef);
696 return ConstantVector::get(Mask);
699 /// A helper function for concatenating vectors. This function concatenates two
700 /// vectors having the same element type. If the second vector has fewer
701 /// elements than the first, it is padded with undefs.
702 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
703 Value *V2) {
704 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
705 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
706 assert(VecTy1 && VecTy2 &&
707 VecTy1->getScalarType() == VecTy2->getScalarType() &&
708 "Expect two vectors with the same element type");
710 unsigned NumElts1 = VecTy1->getNumElements();
711 unsigned NumElts2 = VecTy2->getNumElements();
712 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
714 if (NumElts1 > NumElts2) {
715 // Extend with UNDEFs.
716 Constant *ExtMask =
717 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
718 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
721 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
722 return Builder.CreateShuffleVector(V1, V2, Mask);
725 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
726 unsigned NumVecs = Vecs.size();
727 assert(NumVecs > 1 && "Should be at least two vectors");
729 SmallVector<Value *, 8> ResList;
730 ResList.append(Vecs.begin(), Vecs.end());
731 do {
732 SmallVector<Value *, 8> TmpList;
733 for (unsigned i = 0; i < NumVecs - 1; i += 2) {
734 Value *V0 = ResList[i], *V1 = ResList[i + 1];
735 assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
736 "Only the last vector may have a different type");
738 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
741 // Push the last vector if the total number of vectors is odd.
742 if (NumVecs % 2 != 0)
743 TmpList.push_back(ResList[NumVecs - 1]);
745 ResList = TmpList;
746 NumVecs = ResList.size();
747 } while (NumVecs > 1);
749 return ResList[0];
752 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
753 auto *ConstMask = dyn_cast<Constant>(Mask);
754 if (!ConstMask)
755 return false;
756 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
757 return true;
758 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
759 ++I) {
760 if (auto *MaskElt = ConstMask->getAggregateElement(I))
761 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
762 continue;
763 return false;
765 return true;
769 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
770 auto *ConstMask = dyn_cast<Constant>(Mask);
771 if (!ConstMask)
772 return false;
773 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
774 return true;
775 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
776 ++I) {
777 if (auto *MaskElt = ConstMask->getAggregateElement(I))
778 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
779 continue;
780 return false;
782 return true;
785 /// TODO: This is a lot like known bits, but for
786 /// vectors. Is there something we can common this with?
787 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
789 const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
790 APInt DemandedElts = APInt::getAllOnesValue(VWidth);
791 if (auto *CV = dyn_cast<ConstantVector>(Mask))
792 for (unsigned i = 0; i < VWidth; i++)
793 if (CV->getAggregateElement(i)->isNullValue())
794 DemandedElts.clearBit(i);
795 return DemandedElts;
798 bool InterleavedAccessInfo::isStrided(int Stride) {
799 unsigned Factor = std::abs(Stride);
800 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
803 void InterleavedAccessInfo::collectConstStrideAccesses(
804 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
805 const ValueToValueMap &Strides) {
806 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
808 // Since it's desired that the load/store instructions be maintained in
809 // "program order" for the interleaved access analysis, we have to visit the
810 // blocks in the loop in reverse postorder (i.e., in a topological order).
811 // Such an ordering will ensure that any load/store that may be executed
812 // before a second load/store will precede the second load/store in
813 // AccessStrideInfo.
814 LoopBlocksDFS DFS(TheLoop);
815 DFS.perform(LI);
816 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
817 for (auto &I : *BB) {
818 auto *LI = dyn_cast<LoadInst>(&I);
819 auto *SI = dyn_cast<StoreInst>(&I);
820 if (!LI && !SI)
821 continue;
823 Value *Ptr = getLoadStorePointerOperand(&I);
824 // We don't check wrapping here because we don't know yet if Ptr will be
825 // part of a full group or a group with gaps. Checking wrapping for all
826 // pointers (even those that end up in groups with no gaps) will be overly
827 // conservative. For full groups, wrapping should be ok since if we would
828 // wrap around the address space we would do a memory access at nullptr
829 // even without the transformation. The wrapping checks are therefore
830 // deferred until after we've formed the interleaved groups.
831 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
832 /*Assume=*/true, /*ShouldCheckWrap=*/false);
834 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
835 PointerType *PtrTy = cast<PointerType>(Ptr->getType());
836 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
838 // An alignment of 0 means target ABI alignment.
839 unsigned Align = getLoadStoreAlignment(&I);
840 if (!Align)
841 Align = DL.getABITypeAlignment(PtrTy->getElementType());
843 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
847 // Analyze interleaved accesses and collect them into interleaved load and
848 // store groups.
850 // When generating code for an interleaved load group, we effectively hoist all
851 // loads in the group to the location of the first load in program order. When
852 // generating code for an interleaved store group, we sink all stores to the
853 // location of the last store. This code motion can change the order of load
854 // and store instructions and may break dependences.
856 // The code generation strategy mentioned above ensures that we won't violate
857 // any write-after-read (WAR) dependences.
859 // E.g., for the WAR dependence: a = A[i]; // (1)
860 // A[i] = b; // (2)
862 // The store group of (2) is always inserted at or below (2), and the load
863 // group of (1) is always inserted at or above (1). Thus, the instructions will
864 // never be reordered. All other dependences are checked to ensure the
865 // correctness of the instruction reordering.
867 // The algorithm visits all memory accesses in the loop in bottom-up program
868 // order. Program order is established by traversing the blocks in the loop in
869 // reverse postorder when collecting the accesses.
871 // We visit the memory accesses in bottom-up order because it can simplify the
872 // construction of store groups in the presence of write-after-write (WAW)
873 // dependences.
875 // E.g., for the WAW dependence: A[i] = a; // (1)
876 // A[i] = b; // (2)
877 // A[i + 1] = c; // (3)
879 // We will first create a store group with (3) and (2). (1) can't be added to
880 // this group because it and (2) are dependent. However, (1) can be grouped
881 // with other accesses that may precede it in program order. Note that a
882 // bottom-up order does not imply that WAW dependences should not be checked.
883 void InterleavedAccessInfo::analyzeInterleaving(
884 bool EnablePredicatedInterleavedMemAccesses) {
885 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
886 const ValueToValueMap &Strides = LAI->getSymbolicStrides();
888 // Holds all accesses with a constant stride.
889 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
890 collectConstStrideAccesses(AccessStrideInfo, Strides);
892 if (AccessStrideInfo.empty())
893 return;
895 // Collect the dependences in the loop.
896 collectDependences();
898 // Holds all interleaved store groups temporarily.
899 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
900 // Holds all interleaved load groups temporarily.
901 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
903 // Search in bottom-up program order for pairs of accesses (A and B) that can
904 // form interleaved load or store groups. In the algorithm below, access A
905 // precedes access B in program order. We initialize a group for B in the
906 // outer loop of the algorithm, and then in the inner loop, we attempt to
907 // insert each A into B's group if:
909 // 1. A and B have the same stride,
910 // 2. A and B have the same memory object size, and
911 // 3. A belongs in B's group according to its distance from B.
913 // Special care is taken to ensure group formation will not break any
914 // dependences.
915 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
916 BI != E; ++BI) {
917 Instruction *B = BI->first;
918 StrideDescriptor DesB = BI->second;
920 // Initialize a group for B if it has an allowable stride. Even if we don't
921 // create a group for B, we continue with the bottom-up algorithm to ensure
922 // we don't break any of B's dependences.
923 InterleaveGroup<Instruction> *Group = nullptr;
924 if (isStrided(DesB.Stride) &&
925 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
926 Group = getInterleaveGroup(B);
927 if (!Group) {
928 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
929 << '\n');
930 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
932 if (B->mayWriteToMemory())
933 StoreGroups.insert(Group);
934 else
935 LoadGroups.insert(Group);
938 for (auto AI = std::next(BI); AI != E; ++AI) {
939 Instruction *A = AI->first;
940 StrideDescriptor DesA = AI->second;
942 // Our code motion strategy implies that we can't have dependences
943 // between accesses in an interleaved group and other accesses located
944 // between the first and last member of the group. Note that this also
945 // means that a group can't have more than one member at a given offset.
946 // The accesses in a group can have dependences with other accesses, but
947 // we must ensure we don't extend the boundaries of the group such that
948 // we encompass those dependent accesses.
950 // For example, assume we have the sequence of accesses shown below in a
951 // stride-2 loop:
953 // (1, 2) is a group | A[i] = a; // (1)
954 // | A[i-1] = b; // (2) |
955 // A[i-3] = c; // (3)
956 // A[i] = d; // (4) | (2, 4) is not a group
958 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
959 // but not with (4). If we did, the dependent access (3) would be within
960 // the boundaries of the (2, 4) group.
961 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
962 // If a dependence exists and A is already in a group, we know that A
963 // must be a store since A precedes B and WAR dependences are allowed.
964 // Thus, A would be sunk below B. We release A's group to prevent this
965 // illegal code motion. A will then be free to form another group with
966 // instructions that precede it.
967 if (isInterleaved(A)) {
968 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
970 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
971 "dependence between " << *A << " and "<< *B << '\n');
973 StoreGroups.remove(StoreGroup);
974 releaseGroup(StoreGroup);
977 // If a dependence exists and A is not already in a group (or it was
978 // and we just released it), B might be hoisted above A (if B is a
979 // load) or another store might be sunk below A (if B is a store). In
980 // either case, we can't add additional instructions to B's group. B
981 // will only form a group with instructions that it precedes.
982 break;
985 // At this point, we've checked for illegal code motion. If either A or B
986 // isn't strided, there's nothing left to do.
987 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
988 continue;
990 // Ignore A if it's already in a group or isn't the same kind of memory
991 // operation as B.
992 // Note that mayReadFromMemory() isn't mutually exclusive to
993 // mayWriteToMemory in the case of atomic loads. We shouldn't see those
994 // here, canVectorizeMemory() should have returned false - except for the
995 // case we asked for optimization remarks.
996 if (isInterleaved(A) ||
997 (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
998 (A->mayWriteToMemory() != B->mayWriteToMemory()))
999 continue;
1001 // Check rules 1 and 2. Ignore A if its stride or size is different from
1002 // that of B.
1003 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1004 continue;
1006 // Ignore A if the memory object of A and B don't belong to the same
1007 // address space
1008 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1009 continue;
1011 // Calculate the distance from A to B.
1012 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1013 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1014 if (!DistToB)
1015 continue;
1016 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1018 // Check rule 3. Ignore A if its distance to B is not a multiple of the
1019 // size.
1020 if (DistanceToB % static_cast<int64_t>(DesB.Size))
1021 continue;
1023 // All members of a predicated interleave-group must have the same predicate,
1024 // and currently must reside in the same BB.
1025 BasicBlock *BlockA = A->getParent();
1026 BasicBlock *BlockB = B->getParent();
1027 if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1028 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1029 continue;
1031 // The index of A is the index of B plus A's distance to B in multiples
1032 // of the size.
1033 int IndexA =
1034 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1036 // Try to insert A into B's group.
1037 if (Group->insertMember(A, IndexA, DesA.Align)) {
1038 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1039 << " into the interleave group with" << *B
1040 << '\n');
1041 InterleaveGroupMap[A] = Group;
1043 // Set the first load in program order as the insert position.
1044 if (A->mayReadFromMemory())
1045 Group->setInsertPos(A);
1047 } // Iteration over A accesses.
1048 } // Iteration over B accesses.
1050 // Remove interleaved store groups with gaps.
1051 for (auto *Group : StoreGroups)
1052 if (Group->getNumMembers() != Group->getFactor()) {
1053 LLVM_DEBUG(
1054 dbgs() << "LV: Invalidate candidate interleaved store group due "
1055 "to gaps.\n");
1056 releaseGroup(Group);
1058 // Remove interleaved groups with gaps (currently only loads) whose memory
1059 // accesses may wrap around. We have to revisit the getPtrStride analysis,
1060 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1061 // not check wrapping (see documentation there).
1062 // FORNOW we use Assume=false;
1063 // TODO: Change to Assume=true but making sure we don't exceed the threshold
1064 // of runtime SCEV assumptions checks (thereby potentially failing to
1065 // vectorize altogether).
1066 // Additional optional optimizations:
1067 // TODO: If we are peeling the loop and we know that the first pointer doesn't
1068 // wrap then we can deduce that all pointers in the group don't wrap.
1069 // This means that we can forcefully peel the loop in order to only have to
1070 // check the first pointer for no-wrap. When we'll change to use Assume=true
1071 // we'll only need at most one runtime check per interleaved group.
1072 for (auto *Group : LoadGroups) {
1073 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1074 // load would wrap around the address space we would do a memory access at
1075 // nullptr even without the transformation.
1076 if (Group->getNumMembers() == Group->getFactor())
1077 continue;
1079 // Case 2: If first and last members of the group don't wrap this implies
1080 // that all the pointers in the group don't wrap.
1081 // So we check only group member 0 (which is always guaranteed to exist),
1082 // and group member Factor - 1; If the latter doesn't exist we rely on
1083 // peeling (if it is a non-reversed accsess -- see Case 3).
1084 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1085 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1086 /*ShouldCheckWrap=*/true)) {
1087 LLVM_DEBUG(
1088 dbgs() << "LV: Invalidate candidate interleaved group due to "
1089 "first group member potentially pointer-wrapping.\n");
1090 releaseGroup(Group);
1091 continue;
1093 Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1094 if (LastMember) {
1095 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1096 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1097 /*ShouldCheckWrap=*/true)) {
1098 LLVM_DEBUG(
1099 dbgs() << "LV: Invalidate candidate interleaved group due to "
1100 "last group member potentially pointer-wrapping.\n");
1101 releaseGroup(Group);
1103 } else {
1104 // Case 3: A non-reversed interleaved load group with gaps: We need
1105 // to execute at least one scalar epilogue iteration. This will ensure
1106 // we don't speculatively access memory out-of-bounds. We only need
1107 // to look for a member at index factor - 1, since every group must have
1108 // a member at index zero.
1109 if (Group->isReverse()) {
1110 LLVM_DEBUG(
1111 dbgs() << "LV: Invalidate candidate interleaved group due to "
1112 "a reverse access with gaps.\n");
1113 releaseGroup(Group);
1114 continue;
1116 LLVM_DEBUG(
1117 dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1118 RequiresScalarEpilogue = true;
1123 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1124 // If no group had triggered the requirement to create an epilogue loop,
1125 // there is nothing to do.
1126 if (!requiresScalarEpilogue())
1127 return;
1129 // Avoid releasing a Group twice.
1130 SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
1131 for (auto &I : InterleaveGroupMap) {
1132 InterleaveGroup<Instruction> *Group = I.second;
1133 if (Group->requiresScalarEpilogue())
1134 DelSet.insert(Group);
1136 for (auto *Ptr : DelSet) {
1137 LLVM_DEBUG(
1138 dbgs()
1139 << "LV: Invalidate candidate interleaved group due to gaps that "
1140 "require a scalar epilogue (not allowed under optsize) and cannot "
1141 "be masked (not enabled). \n");
1142 releaseGroup(Ptr);
1145 RequiresScalarEpilogue = false;
1148 template <typename InstT>
1149 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1150 llvm_unreachable("addMetadata can only be used for Instruction");
1153 namespace llvm {
1154 template <>
1155 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1156 SmallVector<Value *, 4> VL;
1157 std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1158 [](std::pair<int, Instruction *> p) { return p.second; });
1159 propagateMetadata(NewInst, VL);