1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block. This pass often results in dead MBB's, which
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
17 //===----------------------------------------------------------------------===//
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/LivePhysRegs.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineModuleInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetOpcodes.h"
43 #include "llvm/CodeGen/TargetPassConfig.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/MC/LaneBitmask.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BlockFrequency.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
67 #define DEBUG_TYPE "branch-folder"
69 STATISTIC(NumDeadBlocks
, "Number of dead blocks removed");
70 STATISTIC(NumBranchOpts
, "Number of branches optimized");
71 STATISTIC(NumTailMerge
, "Number of block tails merged");
72 STATISTIC(NumHoist
, "Number of times common instructions are hoisted");
73 STATISTIC(NumTailCalls
, "Number of tail calls optimized");
75 static cl::opt
<cl::boolOrDefault
> FlagEnableTailMerge("enable-tail-merge",
76 cl::init(cl::BOU_UNSET
), cl::Hidden
);
78 // Throttle for huge numbers of predecessors (compile speed problems)
79 static cl::opt
<unsigned>
80 TailMergeThreshold("tail-merge-threshold",
81 cl::desc("Max number of predecessors to consider tail merging"),
82 cl::init(150), cl::Hidden
);
84 // Heuristic for tail merging (and, inversely, tail duplication).
85 // TODO: This should be replaced with a target query.
86 static cl::opt
<unsigned>
87 TailMergeSize("tail-merge-size",
88 cl::desc("Min number of instructions to consider tail merging"),
89 cl::init(3), cl::Hidden
);
93 /// BranchFolderPass - Wrap branch folder in a machine function pass.
94 class BranchFolderPass
: public MachineFunctionPass
{
98 explicit BranchFolderPass(): MachineFunctionPass(ID
) {}
100 bool runOnMachineFunction(MachineFunction
&MF
) override
;
102 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
103 AU
.addRequired
<MachineBlockFrequencyInfo
>();
104 AU
.addRequired
<MachineBranchProbabilityInfo
>();
105 AU
.addRequired
<TargetPassConfig
>();
106 MachineFunctionPass::getAnalysisUsage(AU
);
110 } // end anonymous namespace
112 char BranchFolderPass::ID
= 0;
114 char &llvm::BranchFolderPassID
= BranchFolderPass::ID
;
116 INITIALIZE_PASS(BranchFolderPass
, DEBUG_TYPE
,
117 "Control Flow Optimizer", false, false)
119 bool BranchFolderPass::runOnMachineFunction(MachineFunction
&MF
) {
120 if (skipFunction(MF
.getFunction()))
123 TargetPassConfig
*PassConfig
= &getAnalysis
<TargetPassConfig
>();
124 // TailMerge can create jump into if branches that make CFG irreducible for
125 // HW that requires structurized CFG.
126 bool EnableTailMerge
= !MF
.getTarget().requiresStructuredCFG() &&
127 PassConfig
->getEnableTailMerge();
128 BranchFolder::MBFIWrapper
MBBFreqInfo(
129 getAnalysis
<MachineBlockFrequencyInfo
>());
130 BranchFolder
Folder(EnableTailMerge
, /*CommonHoist=*/true, MBBFreqInfo
,
131 getAnalysis
<MachineBranchProbabilityInfo
>());
132 return Folder
.OptimizeFunction(MF
, MF
.getSubtarget().getInstrInfo(),
133 MF
.getSubtarget().getRegisterInfo(),
134 getAnalysisIfAvailable
<MachineModuleInfo
>());
137 BranchFolder::BranchFolder(bool defaultEnableTailMerge
, bool CommonHoist
,
138 MBFIWrapper
&FreqInfo
,
139 const MachineBranchProbabilityInfo
&ProbInfo
,
140 unsigned MinTailLength
)
141 : EnableHoistCommonCode(CommonHoist
), MinCommonTailLength(MinTailLength
),
142 MBBFreqInfo(FreqInfo
), MBPI(ProbInfo
) {
143 if (MinCommonTailLength
== 0)
144 MinCommonTailLength
= TailMergeSize
;
145 switch (FlagEnableTailMerge
) {
146 case cl::BOU_UNSET
: EnableTailMerge
= defaultEnableTailMerge
; break;
147 case cl::BOU_TRUE
: EnableTailMerge
= true; break;
148 case cl::BOU_FALSE
: EnableTailMerge
= false; break;
152 void BranchFolder::RemoveDeadBlock(MachineBasicBlock
*MBB
) {
153 assert(MBB
->pred_empty() && "MBB must be dead!");
154 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB
);
156 MachineFunction
*MF
= MBB
->getParent();
157 // drop all successors.
158 while (!MBB
->succ_empty())
159 MBB
->removeSuccessor(MBB
->succ_end()-1);
161 // Avoid matching if this pointer gets reused.
162 TriedMerging
.erase(MBB
);
166 EHScopeMembership
.erase(MBB
);
168 MLI
->removeBlock(MBB
);
171 bool BranchFolder::OptimizeFunction(MachineFunction
&MF
,
172 const TargetInstrInfo
*tii
,
173 const TargetRegisterInfo
*tri
,
174 MachineModuleInfo
*mmi
,
175 MachineLoopInfo
*mli
, bool AfterPlacement
) {
176 if (!tii
) return false;
178 TriedMerging
.clear();
180 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
181 AfterBlockPlacement
= AfterPlacement
;
188 UpdateLiveIns
= MRI
.tracksLiveness() && TRI
->trackLivenessAfterRegAlloc(MF
);
190 MRI
.invalidateLiveness();
192 // Fix CFG. The later algorithms expect it to be right.
193 bool MadeChange
= false;
194 for (MachineBasicBlock
&MBB
: MF
) {
195 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
196 SmallVector
<MachineOperand
, 4> Cond
;
197 if (!TII
->analyzeBranch(MBB
, TBB
, FBB
, Cond
, true))
198 MadeChange
|= MBB
.CorrectExtraCFGEdges(TBB
, FBB
, !Cond
.empty());
201 // Recalculate EH scope membership.
202 EHScopeMembership
= getEHScopeMembership(MF
);
204 bool MadeChangeThisIteration
= true;
205 while (MadeChangeThisIteration
) {
206 MadeChangeThisIteration
= TailMergeBlocks(MF
);
207 // No need to clean up if tail merging does not change anything after the
209 if (!AfterBlockPlacement
|| MadeChangeThisIteration
)
210 MadeChangeThisIteration
|= OptimizeBranches(MF
);
211 if (EnableHoistCommonCode
)
212 MadeChangeThisIteration
|= HoistCommonCode(MF
);
213 MadeChange
|= MadeChangeThisIteration
;
216 // See if any jump tables have become dead as the code generator
218 MachineJumpTableInfo
*JTI
= MF
.getJumpTableInfo();
222 // Walk the function to find jump tables that are live.
223 BitVector
JTIsLive(JTI
->getJumpTables().size());
224 for (const MachineBasicBlock
&BB
: MF
) {
225 for (const MachineInstr
&I
: BB
)
226 for (const MachineOperand
&Op
: I
.operands()) {
227 if (!Op
.isJTI()) continue;
229 // Remember that this JT is live.
230 JTIsLive
.set(Op
.getIndex());
234 // Finally, remove dead jump tables. This happens when the
235 // indirect jump was unreachable (and thus deleted).
236 for (unsigned i
= 0, e
= JTIsLive
.size(); i
!= e
; ++i
)
237 if (!JTIsLive
.test(i
)) {
238 JTI
->RemoveJumpTable(i
);
245 //===----------------------------------------------------------------------===//
246 // Tail Merging of Blocks
247 //===----------------------------------------------------------------------===//
249 /// HashMachineInstr - Compute a hash value for MI and its operands.
250 static unsigned HashMachineInstr(const MachineInstr
&MI
) {
251 unsigned Hash
= MI
.getOpcode();
252 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
253 const MachineOperand
&Op
= MI
.getOperand(i
);
255 // Merge in bits from the operand if easy. We can't use MachineOperand's
256 // hash_code here because it's not deterministic and we sort by hash value
258 unsigned OperandHash
= 0;
259 switch (Op
.getType()) {
260 case MachineOperand::MO_Register
:
261 OperandHash
= Op
.getReg();
263 case MachineOperand::MO_Immediate
:
264 OperandHash
= Op
.getImm();
266 case MachineOperand::MO_MachineBasicBlock
:
267 OperandHash
= Op
.getMBB()->getNumber();
269 case MachineOperand::MO_FrameIndex
:
270 case MachineOperand::MO_ConstantPoolIndex
:
271 case MachineOperand::MO_JumpTableIndex
:
272 OperandHash
= Op
.getIndex();
274 case MachineOperand::MO_GlobalAddress
:
275 case MachineOperand::MO_ExternalSymbol
:
276 // Global address / external symbol are too hard, don't bother, but do
277 // pull in the offset.
278 OperandHash
= Op
.getOffset();
284 Hash
+= ((OperandHash
<< 3) | Op
.getType()) << (i
& 31);
289 /// HashEndOfMBB - Hash the last instruction in the MBB.
290 static unsigned HashEndOfMBB(const MachineBasicBlock
&MBB
) {
291 MachineBasicBlock::const_iterator I
= MBB
.getLastNonDebugInstr();
295 return HashMachineInstr(*I
);
298 /// Whether MI should be counted as an instruction when calculating common tail.
299 static bool countsAsInstruction(const MachineInstr
&MI
) {
300 return !(MI
.isDebugInstr() || MI
.isCFIInstruction());
303 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number
304 /// of instructions they actually have in common together at their end. Return
305 /// iterators for the first shared instruction in each block.
306 static unsigned ComputeCommonTailLength(MachineBasicBlock
*MBB1
,
307 MachineBasicBlock
*MBB2
,
308 MachineBasicBlock::iterator
&I1
,
309 MachineBasicBlock::iterator
&I2
) {
313 unsigned TailLen
= 0;
314 while (I1
!= MBB1
->begin() && I2
!= MBB2
->begin()) {
316 // Skip debugging pseudos; necessary to avoid changing the code.
317 while (!countsAsInstruction(*I1
)) {
318 if (I1
==MBB1
->begin()) {
319 while (!countsAsInstruction(*I2
)) {
320 if (I2
==MBB2
->begin()) {
321 // I1==DBG at begin; I2==DBG at begin
322 goto SkipTopCFIAndReturn
;
327 // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin
328 goto SkipTopCFIAndReturn
;
332 // I1==first (untested) non-DBG preceding known match
333 while (!countsAsInstruction(*I2
)) {
334 if (I2
==MBB2
->begin()) {
336 // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin
337 goto SkipTopCFIAndReturn
;
341 // I1, I2==first (untested) non-DBGs preceding known match
342 if (!I1
->isIdenticalTo(*I2
) ||
343 // FIXME: This check is dubious. It's used to get around a problem where
344 // people incorrectly expect inline asm directives to remain in the same
345 // relative order. This is untenable because normal compiler
346 // optimizations (like this one) may reorder and/or merge these
354 // Back past possible debugging pseudos at beginning of block. This matters
355 // when one block differs from the other only by whether debugging pseudos
356 // are present at the beginning. (This way, the various checks later for
357 // I1==MBB1->begin() work as expected.)
358 if (I1
== MBB1
->begin() && I2
!= MBB2
->begin()) {
360 while (I2
->isDebugInstr()) {
361 if (I2
== MBB2
->begin())
367 if (I2
== MBB2
->begin() && I1
!= MBB1
->begin()) {
369 while (I1
->isDebugInstr()) {
370 if (I1
== MBB1
->begin())
378 // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if
379 // I1 and I2 are non-identical when compared and then one or both of them ends
380 // up pointing to a CFI instruction after being incremented. For example:
385 ADD32ri8 <- last common instruction
391 ADD32ri8 <- last common instruction
394 // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after
395 // incrementing the iterators, I1 will point to ADD, however I2 will point to
396 // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the
397 // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI
399 while (I1
!= MBB1
->end() && I1
->isCFIInstruction()) {
403 while (I2
!= MBB2
->end() && I2
->isCFIInstruction()) {
410 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst
,
411 MachineBasicBlock
&NewDest
) {
413 // OldInst should always point to an instruction.
414 MachineBasicBlock
&OldMBB
= *OldInst
->getParent();
416 LiveRegs
.addLiveOuts(OldMBB
);
417 // Move backward to the place where will insert the jump.
418 MachineBasicBlock::iterator I
= OldMBB
.end();
421 LiveRegs
.stepBackward(*I
);
422 } while (I
!= OldInst
);
424 // Merging the tails may have switched some undef operand to non-undef ones.
425 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
427 for (MachineBasicBlock::RegisterMaskPair P
: NewDest
.liveins()) {
428 // We computed the liveins with computeLiveIn earlier and should only see
430 assert(P
.LaneMask
== LaneBitmask::getAll() &&
431 "Can only handle full register.");
432 MCPhysReg Reg
= P
.PhysReg
;
433 if (!LiveRegs
.available(*MRI
, Reg
))
436 BuildMI(OldMBB
, OldInst
, DL
, TII
->get(TargetOpcode::IMPLICIT_DEF
), Reg
);
440 TII
->ReplaceTailWithBranchTo(OldInst
, &NewDest
);
444 MachineBasicBlock
*BranchFolder::SplitMBBAt(MachineBasicBlock
&CurMBB
,
445 MachineBasicBlock::iterator BBI1
,
446 const BasicBlock
*BB
) {
447 if (!TII
->isLegalToSplitMBBAt(CurMBB
, BBI1
))
450 MachineFunction
&MF
= *CurMBB
.getParent();
452 // Create the fall-through block.
453 MachineFunction::iterator MBBI
= CurMBB
.getIterator();
454 MachineBasicBlock
*NewMBB
= MF
.CreateMachineBasicBlock(BB
);
455 CurMBB
.getParent()->insert(++MBBI
, NewMBB
);
457 // Move all the successors of this block to the specified block.
458 NewMBB
->transferSuccessors(&CurMBB
);
460 // Add an edge from CurMBB to NewMBB for the fall-through.
461 CurMBB
.addSuccessor(NewMBB
);
463 // Splice the code over.
464 NewMBB
->splice(NewMBB
->end(), &CurMBB
, BBI1
, CurMBB
.end());
466 // NewMBB belongs to the same loop as CurMBB.
468 if (MachineLoop
*ML
= MLI
->getLoopFor(&CurMBB
))
469 ML
->addBasicBlockToLoop(NewMBB
, MLI
->getBase());
471 // NewMBB inherits CurMBB's block frequency.
472 MBBFreqInfo
.setBlockFreq(NewMBB
, MBBFreqInfo
.getBlockFreq(&CurMBB
));
475 computeAndAddLiveIns(LiveRegs
, *NewMBB
);
477 // Add the new block to the EH scope.
478 const auto &EHScopeI
= EHScopeMembership
.find(&CurMBB
);
479 if (EHScopeI
!= EHScopeMembership
.end()) {
480 auto n
= EHScopeI
->second
;
481 EHScopeMembership
[NewMBB
] = n
;
487 /// EstimateRuntime - Make a rough estimate for how long it will take to run
488 /// the specified code.
489 static unsigned EstimateRuntime(MachineBasicBlock::iterator I
,
490 MachineBasicBlock::iterator E
) {
492 for (; I
!= E
; ++I
) {
493 if (!countsAsInstruction(*I
))
497 else if (I
->mayLoad() || I
->mayStore())
505 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
506 // branches temporarily for tail merging). In the case where CurMBB ends
507 // with a conditional branch to the next block, optimize by reversing the
508 // test and conditionally branching to SuccMBB instead.
509 static void FixTail(MachineBasicBlock
*CurMBB
, MachineBasicBlock
*SuccBB
,
510 const TargetInstrInfo
*TII
) {
511 MachineFunction
*MF
= CurMBB
->getParent();
512 MachineFunction::iterator I
= std::next(MachineFunction::iterator(CurMBB
));
513 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
514 SmallVector
<MachineOperand
, 4> Cond
;
515 DebugLoc dl
= CurMBB
->findBranchDebugLoc();
516 if (I
!= MF
->end() && !TII
->analyzeBranch(*CurMBB
, TBB
, FBB
, Cond
, true)) {
517 MachineBasicBlock
*NextBB
= &*I
;
518 if (TBB
== NextBB
&& !Cond
.empty() && !FBB
) {
519 if (!TII
->reverseBranchCondition(Cond
)) {
520 TII
->removeBranch(*CurMBB
);
521 TII
->insertBranch(*CurMBB
, SuccBB
, nullptr, Cond
, dl
);
526 TII
->insertBranch(*CurMBB
, SuccBB
, nullptr,
527 SmallVector
<MachineOperand
, 0>(), dl
);
531 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt
&o
) const {
532 if (getHash() < o
.getHash())
534 if (getHash() > o
.getHash())
536 if (getBlock()->getNumber() < o
.getBlock()->getNumber())
538 if (getBlock()->getNumber() > o
.getBlock()->getNumber())
540 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
541 // an object with itself.
542 #ifndef _GLIBCXX_DEBUG
543 llvm_unreachable("Predecessor appears twice");
550 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock
*MBB
) const {
551 auto I
= MergedBBFreq
.find(MBB
);
553 if (I
!= MergedBBFreq
.end())
556 return MBFI
.getBlockFreq(MBB
);
559 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock
*MBB
,
561 MergedBBFreq
[MBB
] = F
;
565 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream
&OS
,
566 const MachineBasicBlock
*MBB
) const {
567 return MBFI
.printBlockFreq(OS
, getBlockFreq(MBB
));
571 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream
&OS
,
572 const BlockFrequency Freq
) const {
573 return MBFI
.printBlockFreq(OS
, Freq
);
576 void BranchFolder::MBFIWrapper::view(const Twine
&Name
, bool isSimple
) {
577 MBFI
.view(Name
, isSimple
);
581 BranchFolder::MBFIWrapper::getEntryFreq() const {
582 return MBFI
.getEntryFreq();
585 /// CountTerminators - Count the number of terminators in the given
586 /// block and set I to the position of the first non-terminator, if there
587 /// is one, or MBB->end() otherwise.
588 static unsigned CountTerminators(MachineBasicBlock
*MBB
,
589 MachineBasicBlock::iterator
&I
) {
591 unsigned NumTerms
= 0;
593 if (I
== MBB
->begin()) {
598 if (!I
->isTerminator()) break;
604 /// A no successor, non-return block probably ends in unreachable and is cold.
605 /// Also consider a block that ends in an indirect branch to be a return block,
606 /// since many targets use plain indirect branches to return.
607 static bool blockEndsInUnreachable(const MachineBasicBlock
*MBB
) {
608 if (!MBB
->succ_empty())
612 return !(MBB
->back().isReturn() || MBB
->back().isIndirectBranch());
615 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
616 /// and decide if it would be profitable to merge those tails. Return the
617 /// length of the common tail and iterators to the first common instruction
619 /// MBB1, MBB2 The blocks to check
620 /// MinCommonTailLength Minimum size of tail block to be merged.
621 /// CommonTailLen Out parameter to record the size of the shared tail between
623 /// I1, I2 Iterator references that will be changed to point to the first
624 /// instruction in the common tail shared by MBB1,MBB2
625 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form
626 /// relative to SuccBB
627 /// PredBB The layout predecessor of SuccBB, if any.
628 /// EHScopeMembership map from block to EH scope #.
629 /// AfterPlacement True if we are merging blocks after layout. Stricter
630 /// thresholds apply to prevent undoing tail-duplication.
632 ProfitableToMerge(MachineBasicBlock
*MBB1
, MachineBasicBlock
*MBB2
,
633 unsigned MinCommonTailLength
, unsigned &CommonTailLen
,
634 MachineBasicBlock::iterator
&I1
,
635 MachineBasicBlock::iterator
&I2
, MachineBasicBlock
*SuccBB
,
636 MachineBasicBlock
*PredBB
,
637 DenseMap
<const MachineBasicBlock
*, int> &EHScopeMembership
,
638 bool AfterPlacement
) {
639 // It is never profitable to tail-merge blocks from two different EH scopes.
640 if (!EHScopeMembership
.empty()) {
641 auto EHScope1
= EHScopeMembership
.find(MBB1
);
642 assert(EHScope1
!= EHScopeMembership
.end());
643 auto EHScope2
= EHScopeMembership
.find(MBB2
);
644 assert(EHScope2
!= EHScopeMembership
.end());
645 if (EHScope1
->second
!= EHScope2
->second
)
649 CommonTailLen
= ComputeCommonTailLength(MBB1
, MBB2
, I1
, I2
);
650 if (CommonTailLen
== 0)
652 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1
)
653 << " and " << printMBBReference(*MBB2
) << " is "
654 << CommonTailLen
<< '\n');
656 // It's almost always profitable to merge any number of non-terminator
657 // instructions with the block that falls through into the common successor.
658 // This is true only for a single successor. For multiple successors, we are
659 // trading a conditional branch for an unconditional one.
660 // TODO: Re-visit successor size for non-layout tail merging.
661 if ((MBB1
== PredBB
|| MBB2
== PredBB
) &&
662 (!AfterPlacement
|| MBB1
->succ_size() == 1)) {
663 MachineBasicBlock::iterator I
;
664 unsigned NumTerms
= CountTerminators(MBB1
== PredBB
? MBB2
: MBB1
, I
);
665 if (CommonTailLen
> NumTerms
)
669 // If these are identical non-return blocks with no successors, merge them.
670 // Such blocks are typically cold calls to noreturn functions like abort, and
671 // are unlikely to become a fallthrough target after machine block placement.
672 // Tail merging these blocks is unlikely to create additional unconditional
673 // branches, and will reduce the size of this cold code.
674 if (I1
== MBB1
->begin() && I2
== MBB2
->begin() &&
675 blockEndsInUnreachable(MBB1
) && blockEndsInUnreachable(MBB2
))
678 // If one of the blocks can be completely merged and happens to be in
679 // a position where the other could fall through into it, merge any number
680 // of instructions, because it can be done without a branch.
681 // TODO: If the blocks are not adjacent, move one of them so that they are?
682 if (MBB1
->isLayoutSuccessor(MBB2
) && I2
== MBB2
->begin())
684 if (MBB2
->isLayoutSuccessor(MBB1
) && I1
== MBB1
->begin())
687 // If both blocks are identical and end in a branch, merge them unless they
688 // both have a fallthrough predecessor and successor.
689 // We can only do this after block placement because it depends on whether
690 // there are fallthroughs, and we don't know until after layout.
691 if (AfterPlacement
&& I1
== MBB1
->begin() && I2
== MBB2
->begin()) {
692 auto BothFallThrough
= [](MachineBasicBlock
*MBB
) {
693 if (MBB
->succ_size() != 0 && !MBB
->canFallThrough())
695 MachineFunction::iterator
I(MBB
);
696 MachineFunction
*MF
= MBB
->getParent();
697 return (MBB
!= &*MF
->begin()) && std::prev(I
)->canFallThrough();
699 if (!BothFallThrough(MBB1
) || !BothFallThrough(MBB2
))
703 // If both blocks have an unconditional branch temporarily stripped out,
704 // count that as an additional common instruction for the following
705 // heuristics. This heuristic is only accurate for single-succ blocks, so to
706 // make sure that during layout merging and duplicating don't crash, we check
707 // for that when merging during layout.
708 unsigned EffectiveTailLen
= CommonTailLen
;
709 if (SuccBB
&& MBB1
!= PredBB
&& MBB2
!= PredBB
&&
710 (MBB1
->succ_size() == 1 || !AfterPlacement
) &&
711 !MBB1
->back().isBarrier() &&
712 !MBB2
->back().isBarrier())
715 // Check if the common tail is long enough to be worthwhile.
716 if (EffectiveTailLen
>= MinCommonTailLength
)
719 // If we are optimizing for code size, 2 instructions in common is enough if
720 // we don't have to split a block. At worst we will be introducing 1 new
721 // branch instruction, which is likely to be smaller than the 2
722 // instructions that would be deleted in the merge.
723 MachineFunction
*MF
= MBB1
->getParent();
724 return EffectiveTailLen
>= 2 && MF
->getFunction().hasOptSize() &&
725 (I1
== MBB1
->begin() || I2
== MBB2
->begin());
728 unsigned BranchFolder::ComputeSameTails(unsigned CurHash
,
729 unsigned MinCommonTailLength
,
730 MachineBasicBlock
*SuccBB
,
731 MachineBasicBlock
*PredBB
) {
732 unsigned maxCommonTailLength
= 0U;
734 MachineBasicBlock::iterator TrialBBI1
, TrialBBI2
;
735 MPIterator HighestMPIter
= std::prev(MergePotentials
.end());
736 for (MPIterator CurMPIter
= std::prev(MergePotentials
.end()),
737 B
= MergePotentials
.begin();
738 CurMPIter
!= B
&& CurMPIter
->getHash() == CurHash
; --CurMPIter
) {
739 for (MPIterator I
= std::prev(CurMPIter
); I
->getHash() == CurHash
; --I
) {
740 unsigned CommonTailLen
;
741 if (ProfitableToMerge(CurMPIter
->getBlock(), I
->getBlock(),
743 CommonTailLen
, TrialBBI1
, TrialBBI2
,
746 AfterBlockPlacement
)) {
747 if (CommonTailLen
> maxCommonTailLength
) {
749 maxCommonTailLength
= CommonTailLen
;
750 HighestMPIter
= CurMPIter
;
751 SameTails
.push_back(SameTailElt(CurMPIter
, TrialBBI1
));
753 if (HighestMPIter
== CurMPIter
&&
754 CommonTailLen
== maxCommonTailLength
)
755 SameTails
.push_back(SameTailElt(I
, TrialBBI2
));
761 return maxCommonTailLength
;
764 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash
,
765 MachineBasicBlock
*SuccBB
,
766 MachineBasicBlock
*PredBB
) {
767 MPIterator CurMPIter
, B
;
768 for (CurMPIter
= std::prev(MergePotentials
.end()),
769 B
= MergePotentials
.begin();
770 CurMPIter
->getHash() == CurHash
; --CurMPIter
) {
771 // Put the unconditional branch back, if we need one.
772 MachineBasicBlock
*CurMBB
= CurMPIter
->getBlock();
773 if (SuccBB
&& CurMBB
!= PredBB
)
774 FixTail(CurMBB
, SuccBB
, TII
);
778 if (CurMPIter
->getHash() != CurHash
)
780 MergePotentials
.erase(CurMPIter
, MergePotentials
.end());
783 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock
*&PredBB
,
784 MachineBasicBlock
*SuccBB
,
785 unsigned maxCommonTailLength
,
786 unsigned &commonTailIndex
) {
788 unsigned TimeEstimate
= ~0U;
789 for (unsigned i
= 0, e
= SameTails
.size(); i
!= e
; ++i
) {
790 // Use PredBB if possible; that doesn't require a new branch.
791 if (SameTails
[i
].getBlock() == PredBB
) {
795 // Otherwise, make a (fairly bogus) choice based on estimate of
796 // how long it will take the various blocks to execute.
797 unsigned t
= EstimateRuntime(SameTails
[i
].getBlock()->begin(),
798 SameTails
[i
].getTailStartPos());
799 if (t
<= TimeEstimate
) {
805 MachineBasicBlock::iterator BBI
=
806 SameTails
[commonTailIndex
].getTailStartPos();
807 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].getBlock();
809 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB
) << ", size "
810 << maxCommonTailLength
);
812 // If the split block unconditionally falls-thru to SuccBB, it will be
813 // merged. In control flow terms it should then take SuccBB's name. e.g. If
814 // SuccBB is an inner loop, the common tail is still part of the inner loop.
815 const BasicBlock
*BB
= (SuccBB
&& MBB
->succ_size() == 1) ?
816 SuccBB
->getBasicBlock() : MBB
->getBasicBlock();
817 MachineBasicBlock
*newMBB
= SplitMBBAt(*MBB
, BBI
, BB
);
819 LLVM_DEBUG(dbgs() << "... failed!");
823 SameTails
[commonTailIndex
].setBlock(newMBB
);
824 SameTails
[commonTailIndex
].setTailStartPos(newMBB
->begin());
826 // If we split PredBB, newMBB is the new predecessor.
834 mergeOperations(MachineBasicBlock::iterator MBBIStartPos
,
835 MachineBasicBlock
&MBBCommon
) {
836 MachineBasicBlock
*MBB
= MBBIStartPos
->getParent();
837 // Note CommonTailLen does not necessarily matches the size of
838 // the common BB nor all its instructions because of debug
839 // instructions differences.
840 unsigned CommonTailLen
= 0;
841 for (auto E
= MBB
->end(); MBBIStartPos
!= E
; ++MBBIStartPos
)
844 MachineBasicBlock::reverse_iterator MBBI
= MBB
->rbegin();
845 MachineBasicBlock::reverse_iterator MBBIE
= MBB
->rend();
846 MachineBasicBlock::reverse_iterator MBBICommon
= MBBCommon
.rbegin();
847 MachineBasicBlock::reverse_iterator MBBIECommon
= MBBCommon
.rend();
849 while (CommonTailLen
--) {
850 assert(MBBI
!= MBBIE
&& "Reached BB end within common tail length!");
853 if (!countsAsInstruction(*MBBI
)) {
858 while ((MBBICommon
!= MBBIECommon
) && !countsAsInstruction(*MBBICommon
))
861 assert(MBBICommon
!= MBBIECommon
&&
862 "Reached BB end within common tail length!");
863 assert(MBBICommon
->isIdenticalTo(*MBBI
) && "Expected matching MIIs!");
865 // Merge MMOs from memory operations in the common block.
866 if (MBBICommon
->mayLoad() || MBBICommon
->mayStore())
867 MBBICommon
->cloneMergedMemRefs(*MBB
->getParent(), {&*MBBICommon
, &*MBBI
});
868 // Drop undef flags if they aren't present in all merged instructions.
869 for (unsigned I
= 0, E
= MBBICommon
->getNumOperands(); I
!= E
; ++I
) {
870 MachineOperand
&MO
= MBBICommon
->getOperand(I
);
871 if (MO
.isReg() && MO
.isUndef()) {
872 const MachineOperand
&OtherMO
= MBBI
->getOperand(I
);
873 if (!OtherMO
.isUndef())
874 MO
.setIsUndef(false);
883 void BranchFolder::mergeCommonTails(unsigned commonTailIndex
) {
884 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].getBlock();
886 std::vector
<MachineBasicBlock::iterator
> NextCommonInsts(SameTails
.size());
887 for (unsigned int i
= 0 ; i
!= SameTails
.size() ; ++i
) {
888 if (i
!= commonTailIndex
) {
889 NextCommonInsts
[i
] = SameTails
[i
].getTailStartPos();
890 mergeOperations(SameTails
[i
].getTailStartPos(), *MBB
);
892 assert(SameTails
[i
].getTailStartPos() == MBB
->begin() &&
893 "MBB is not a common tail only block");
897 for (auto &MI
: *MBB
) {
898 if (!countsAsInstruction(MI
))
900 DebugLoc DL
= MI
.getDebugLoc();
901 for (unsigned int i
= 0 ; i
< NextCommonInsts
.size() ; i
++) {
902 if (i
== commonTailIndex
)
905 auto &Pos
= NextCommonInsts
[i
];
906 assert(Pos
!= SameTails
[i
].getBlock()->end() &&
907 "Reached BB end within common tail");
908 while (!countsAsInstruction(*Pos
)) {
910 assert(Pos
!= SameTails
[i
].getBlock()->end() &&
911 "Reached BB end within common tail");
913 assert(MI
.isIdenticalTo(*Pos
) && "Expected matching MIIs!");
914 DL
= DILocation::getMergedLocation(DL
, Pos
->getDebugLoc());
915 NextCommonInsts
[i
] = ++Pos
;
921 LivePhysRegs
NewLiveIns(*TRI
);
922 computeLiveIns(NewLiveIns
, *MBB
);
925 // The flag merging may lead to some register uses no longer using the
926 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
927 for (MachineBasicBlock
*Pred
: MBB
->predecessors()) {
929 LiveRegs
.addLiveOuts(*Pred
);
930 MachineBasicBlock::iterator InsertBefore
= Pred
->getFirstTerminator();
931 for (unsigned Reg
: NewLiveIns
) {
932 if (!LiveRegs
.available(*MRI
, Reg
))
935 BuildMI(*Pred
, InsertBefore
, DL
, TII
->get(TargetOpcode::IMPLICIT_DEF
),
941 addLiveIns(*MBB
, NewLiveIns
);
945 // See if any of the blocks in MergePotentials (which all have SuccBB as a
946 // successor, or all have no successor if it is null) can be tail-merged.
947 // If there is a successor, any blocks in MergePotentials that are not
948 // tail-merged and are not immediately before Succ must have an unconditional
949 // branch to Succ added (but the predecessor/successor lists need no
950 // adjustment). The lone predecessor of Succ that falls through into Succ,
951 // if any, is given in PredBB.
952 // MinCommonTailLength - Except for the special cases below, tail-merge if
953 // there are at least this many instructions in common.
954 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock
*SuccBB
,
955 MachineBasicBlock
*PredBB
,
956 unsigned MinCommonTailLength
) {
957 bool MadeChange
= false;
960 dbgs() << "\nTryTailMergeBlocks: ";
961 for (unsigned i
= 0, e
= MergePotentials
.size(); i
!= e
; ++i
) dbgs()
962 << printMBBReference(*MergePotentials
[i
].getBlock())
963 << (i
== e
- 1 ? "" : ", ");
964 dbgs() << "\n"; if (SuccBB
) {
965 dbgs() << " with successor " << printMBBReference(*SuccBB
) << '\n';
967 dbgs() << " which has fall-through from "
968 << printMBBReference(*PredBB
) << "\n";
969 } dbgs() << "Looking for common tails of at least "
970 << MinCommonTailLength
<< " instruction"
971 << (MinCommonTailLength
== 1 ? "" : "s") << '\n';);
973 // Sort by hash value so that blocks with identical end sequences sort
975 array_pod_sort(MergePotentials
.begin(), MergePotentials
.end());
977 // Walk through equivalence sets looking for actual exact matches.
978 while (MergePotentials
.size() > 1) {
979 unsigned CurHash
= MergePotentials
.back().getHash();
981 // Build SameTails, identifying the set of blocks with this hash code
982 // and with the maximum number of instructions in common.
983 unsigned maxCommonTailLength
= ComputeSameTails(CurHash
,
987 // If we didn't find any pair that has at least MinCommonTailLength
988 // instructions in common, remove all blocks with this hash code and retry.
989 if (SameTails
.empty()) {
990 RemoveBlocksWithHash(CurHash
, SuccBB
, PredBB
);
994 // If one of the blocks is the entire common tail (and not the entry
995 // block, which we can't jump to), we can treat all blocks with this same
996 // tail at once. Use PredBB if that is one of the possibilities, as that
997 // will not introduce any extra branches.
998 MachineBasicBlock
*EntryBB
=
999 &MergePotentials
.front().getBlock()->getParent()->front();
1000 unsigned commonTailIndex
= SameTails
.size();
1001 // If there are two blocks, check to see if one can be made to fall through
1003 if (SameTails
.size() == 2 &&
1004 SameTails
[0].getBlock()->isLayoutSuccessor(SameTails
[1].getBlock()) &&
1005 SameTails
[1].tailIsWholeBlock())
1006 commonTailIndex
= 1;
1007 else if (SameTails
.size() == 2 &&
1008 SameTails
[1].getBlock()->isLayoutSuccessor(
1009 SameTails
[0].getBlock()) &&
1010 SameTails
[0].tailIsWholeBlock())
1011 commonTailIndex
= 0;
1013 // Otherwise just pick one, favoring the fall-through predecessor if
1015 for (unsigned i
= 0, e
= SameTails
.size(); i
!= e
; ++i
) {
1016 MachineBasicBlock
*MBB
= SameTails
[i
].getBlock();
1017 if (MBB
== EntryBB
&& SameTails
[i
].tailIsWholeBlock())
1019 if (MBB
== PredBB
) {
1020 commonTailIndex
= i
;
1023 if (SameTails
[i
].tailIsWholeBlock())
1024 commonTailIndex
= i
;
1028 if (commonTailIndex
== SameTails
.size() ||
1029 (SameTails
[commonTailIndex
].getBlock() == PredBB
&&
1030 !SameTails
[commonTailIndex
].tailIsWholeBlock())) {
1031 // None of the blocks consist entirely of the common tail.
1032 // Split a block so that one does.
1033 if (!CreateCommonTailOnlyBlock(PredBB
, SuccBB
,
1034 maxCommonTailLength
, commonTailIndex
)) {
1035 RemoveBlocksWithHash(CurHash
, SuccBB
, PredBB
);
1040 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].getBlock();
1042 // Recompute common tail MBB's edge weights and block frequency.
1043 setCommonTailEdgeWeights(*MBB
);
1045 // Merge debug locations, MMOs and undef flags across identical instructions
1047 mergeCommonTails(commonTailIndex
);
1049 // MBB is common tail. Adjust all other BB's to jump to this one.
1050 // Traversal must be forwards so erases work.
1051 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB
)
1053 for (unsigned int i
=0, e
= SameTails
.size(); i
!= e
; ++i
) {
1054 if (commonTailIndex
== i
)
1056 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails
[i
].getBlock())
1057 << (i
== e
- 1 ? "" : ", "));
1058 // Hack the end off BB i, making it jump to BB commonTailIndex instead.
1059 replaceTailWithBranchTo(SameTails
[i
].getTailStartPos(), *MBB
);
1060 // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
1061 MergePotentials
.erase(SameTails
[i
].getMPIter());
1063 LLVM_DEBUG(dbgs() << "\n");
1064 // We leave commonTailIndex in the worklist in case there are other blocks
1065 // that match it with a smaller number of instructions.
1071 bool BranchFolder::TailMergeBlocks(MachineFunction
&MF
) {
1072 bool MadeChange
= false;
1073 if (!EnableTailMerge
)
1076 // First find blocks with no successors.
1077 // Block placement may create new tail merging opportunities for these blocks.
1078 MergePotentials
.clear();
1079 for (MachineBasicBlock
&MBB
: MF
) {
1080 if (MergePotentials
.size() == TailMergeThreshold
)
1082 if (!TriedMerging
.count(&MBB
) && MBB
.succ_empty())
1083 MergePotentials
.push_back(MergePotentialsElt(HashEndOfMBB(MBB
), &MBB
));
1086 // If this is a large problem, avoid visiting the same basic blocks
1088 if (MergePotentials
.size() == TailMergeThreshold
)
1089 for (unsigned i
= 0, e
= MergePotentials
.size(); i
!= e
; ++i
)
1090 TriedMerging
.insert(MergePotentials
[i
].getBlock());
1092 // See if we can do any tail merging on those.
1093 if (MergePotentials
.size() >= 2)
1094 MadeChange
|= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength
);
1096 // Look at blocks (IBB) with multiple predecessors (PBB).
1097 // We change each predecessor to a canonical form, by
1098 // (1) temporarily removing any unconditional branch from the predecessor
1100 // (2) alter conditional branches so they branch to the other block
1101 // not IBB; this may require adding back an unconditional branch to IBB
1102 // later, where there wasn't one coming in. E.g.
1104 // fallthrough to QBB
1107 // with a conceptual B to IBB after that, which never actually exists.
1108 // With those changes, we see whether the predecessors' tails match,
1109 // and merge them if so. We change things out of canonical form and
1110 // back to the way they were later in the process. (OptimizeBranches
1111 // would undo some of this, but we can't use it, because we'd get into
1112 // a compile-time infinite loop repeatedly doing and undoing the same
1113 // transformations.)
1115 for (MachineFunction::iterator I
= std::next(MF
.begin()), E
= MF
.end();
1117 if (I
->pred_size() < 2) continue;
1118 SmallPtrSet
<MachineBasicBlock
*, 8> UniquePreds
;
1119 MachineBasicBlock
*IBB
= &*I
;
1120 MachineBasicBlock
*PredBB
= &*std::prev(I
);
1121 MergePotentials
.clear();
1124 // Bail if merging after placement and IBB is the loop header because
1125 // -- If merging predecessors that belong to the same loop as IBB, the
1126 // common tail of merged predecessors may become the loop top if block
1127 // placement is called again and the predecessors may branch to this common
1128 // tail and require more branches. This can be relaxed if
1129 // MachineBlockPlacement::findBestLoopTop is more flexible.
1130 // --If merging predecessors that do not belong to the same loop as IBB, the
1131 // loop info of IBB's loop and the other loops may be affected. Calling the
1132 // block placement again may make big change to the layout and eliminate the
1133 // reason to do tail merging here.
1134 if (AfterBlockPlacement
&& MLI
) {
1135 ML
= MLI
->getLoopFor(IBB
);
1136 if (ML
&& IBB
== ML
->getHeader())
1140 for (MachineBasicBlock
*PBB
: I
->predecessors()) {
1141 if (MergePotentials
.size() == TailMergeThreshold
)
1144 if (TriedMerging
.count(PBB
))
1147 // Skip blocks that loop to themselves, can't tail merge these.
1151 // Visit each predecessor only once.
1152 if (!UniquePreds
.insert(PBB
).second
)
1155 // Skip blocks which may jump to a landing pad. Can't tail merge these.
1156 if (PBB
->hasEHPadSuccessor())
1159 // After block placement, only consider predecessors that belong to the
1160 // same loop as IBB. The reason is the same as above when skipping loop
1162 if (AfterBlockPlacement
&& MLI
)
1163 if (ML
!= MLI
->getLoopFor(PBB
))
1166 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
1167 SmallVector
<MachineOperand
, 4> Cond
;
1168 if (!TII
->analyzeBranch(*PBB
, TBB
, FBB
, Cond
, true)) {
1169 // Failing case: IBB is the target of a cbr, and we cannot reverse the
1171 SmallVector
<MachineOperand
, 4> NewCond(Cond
);
1172 if (!Cond
.empty() && TBB
== IBB
) {
1173 if (TII
->reverseBranchCondition(NewCond
))
1175 // This is the QBB case described above
1177 auto Next
= ++PBB
->getIterator();
1178 if (Next
!= MF
.end())
1183 // Remove the unconditional branch at the end, if any.
1184 if (TBB
&& (Cond
.empty() || FBB
)) {
1185 DebugLoc dl
= PBB
->findBranchDebugLoc();
1186 TII
->removeBranch(*PBB
);
1188 // reinsert conditional branch only, for now
1189 TII
->insertBranch(*PBB
, (TBB
== IBB
) ? FBB
: TBB
, nullptr,
1193 MergePotentials
.push_back(MergePotentialsElt(HashEndOfMBB(*PBB
), PBB
));
1197 // If this is a large problem, avoid visiting the same basic blocks multiple
1199 if (MergePotentials
.size() == TailMergeThreshold
)
1200 for (unsigned i
= 0, e
= MergePotentials
.size(); i
!= e
; ++i
)
1201 TriedMerging
.insert(MergePotentials
[i
].getBlock());
1203 if (MergePotentials
.size() >= 2)
1204 MadeChange
|= TryTailMergeBlocks(IBB
, PredBB
, MinCommonTailLength
);
1206 // Reinsert an unconditional branch if needed. The 1 below can occur as a
1207 // result of removing blocks in TryTailMergeBlocks.
1208 PredBB
= &*std::prev(I
); // this may have been changed in TryTailMergeBlocks
1209 if (MergePotentials
.size() == 1 &&
1210 MergePotentials
.begin()->getBlock() != PredBB
)
1211 FixTail(MergePotentials
.begin()->getBlock(), IBB
, TII
);
1217 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock
&TailMBB
) {
1218 SmallVector
<BlockFrequency
, 2> EdgeFreqLs(TailMBB
.succ_size());
1219 BlockFrequency AccumulatedMBBFreq
;
1221 // Aggregate edge frequency of successor edge j:
1222 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1223 // where bb is a basic block that is in SameTails.
1224 for (const auto &Src
: SameTails
) {
1225 const MachineBasicBlock
*SrcMBB
= Src
.getBlock();
1226 BlockFrequency BlockFreq
= MBBFreqInfo
.getBlockFreq(SrcMBB
);
1227 AccumulatedMBBFreq
+= BlockFreq
;
1229 // It is not necessary to recompute edge weights if TailBB has less than two
1231 if (TailMBB
.succ_size() <= 1)
1234 auto EdgeFreq
= EdgeFreqLs
.begin();
1236 for (auto SuccI
= TailMBB
.succ_begin(), SuccE
= TailMBB
.succ_end();
1237 SuccI
!= SuccE
; ++SuccI
, ++EdgeFreq
)
1238 *EdgeFreq
+= BlockFreq
* MBPI
.getEdgeProbability(SrcMBB
, *SuccI
);
1241 MBBFreqInfo
.setBlockFreq(&TailMBB
, AccumulatedMBBFreq
);
1243 if (TailMBB
.succ_size() <= 1)
1247 std::accumulate(EdgeFreqLs
.begin(), EdgeFreqLs
.end(), BlockFrequency(0))
1249 auto EdgeFreq
= EdgeFreqLs
.begin();
1251 if (SumEdgeFreq
> 0) {
1252 for (auto SuccI
= TailMBB
.succ_begin(), SuccE
= TailMBB
.succ_end();
1253 SuccI
!= SuccE
; ++SuccI
, ++EdgeFreq
) {
1254 auto Prob
= BranchProbability::getBranchProbability(
1255 EdgeFreq
->getFrequency(), SumEdgeFreq
);
1256 TailMBB
.setSuccProbability(SuccI
, Prob
);
1261 //===----------------------------------------------------------------------===//
1262 // Branch Optimization
1263 //===----------------------------------------------------------------------===//
1265 bool BranchFolder::OptimizeBranches(MachineFunction
&MF
) {
1266 bool MadeChange
= false;
1268 // Make sure blocks are numbered in order
1269 MF
.RenumberBlocks();
1270 // Renumbering blocks alters EH scope membership, recalculate it.
1271 EHScopeMembership
= getEHScopeMembership(MF
);
1273 for (MachineFunction::iterator I
= std::next(MF
.begin()), E
= MF
.end();
1275 MachineBasicBlock
*MBB
= &*I
++;
1276 MadeChange
|= OptimizeBlock(MBB
);
1278 // If it is dead, remove it.
1279 if (MBB
->pred_empty()) {
1280 RemoveDeadBlock(MBB
);
1289 // Blocks should be considered empty if they contain only debug info;
1290 // else the debug info would affect codegen.
1291 static bool IsEmptyBlock(MachineBasicBlock
*MBB
) {
1292 return MBB
->getFirstNonDebugInstr() == MBB
->end();
1295 // Blocks with only debug info and branches should be considered the same
1296 // as blocks with only branches.
1297 static bool IsBranchOnlyBlock(MachineBasicBlock
*MBB
) {
1298 MachineBasicBlock::iterator I
= MBB
->getFirstNonDebugInstr();
1299 assert(I
!= MBB
->end() && "empty block!");
1300 return I
->isBranch();
1303 /// IsBetterFallthrough - Return true if it would be clearly better to
1304 /// fall-through to MBB1 than to fall through into MBB2. This has to return
1305 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1306 /// result in infinite loops.
1307 static bool IsBetterFallthrough(MachineBasicBlock
*MBB1
,
1308 MachineBasicBlock
*MBB2
) {
1309 // Right now, we use a simple heuristic. If MBB2 ends with a call, and
1310 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to
1311 // optimize branches that branch to either a return block or an assert block
1312 // into a fallthrough to the return.
1313 MachineBasicBlock::iterator MBB1I
= MBB1
->getLastNonDebugInstr();
1314 MachineBasicBlock::iterator MBB2I
= MBB2
->getLastNonDebugInstr();
1315 if (MBB1I
== MBB1
->end() || MBB2I
== MBB2
->end())
1318 // If there is a clear successor ordering we make sure that one block
1319 // will fall through to the next
1320 if (MBB1
->isSuccessor(MBB2
)) return true;
1321 if (MBB2
->isSuccessor(MBB1
)) return false;
1323 return MBB2I
->isCall() && !MBB1I
->isCall();
1326 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1327 /// instructions on the block.
1328 static DebugLoc
getBranchDebugLoc(MachineBasicBlock
&MBB
) {
1329 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
1330 if (I
!= MBB
.end() && I
->isBranch())
1331 return I
->getDebugLoc();
1335 static void copyDebugInfoToPredecessor(const TargetInstrInfo
*TII
,
1336 MachineBasicBlock
&MBB
,
1337 MachineBasicBlock
&PredMBB
) {
1338 auto InsertBefore
= PredMBB
.getFirstTerminator();
1339 for (MachineInstr
&MI
: MBB
.instrs())
1340 if (MI
.isDebugInstr()) {
1341 TII
->duplicate(PredMBB
, InsertBefore
, MI
);
1342 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1347 static void copyDebugInfoToSuccessor(const TargetInstrInfo
*TII
,
1348 MachineBasicBlock
&MBB
,
1349 MachineBasicBlock
&SuccMBB
) {
1350 auto InsertBefore
= SuccMBB
.SkipPHIsAndLabels(SuccMBB
.begin());
1351 for (MachineInstr
&MI
: MBB
.instrs())
1352 if (MI
.isDebugInstr()) {
1353 TII
->duplicate(SuccMBB
, InsertBefore
, MI
);
1354 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1359 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1360 // a basic block is removed we would lose the debug information unless we have
1361 // copied the information to a predecessor/successor.
1363 // TODO: This function only handles some simple cases. An alternative would be
1364 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1366 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo
*TII
,
1367 MachineBasicBlock
&MBB
) {
1368 assert(IsEmptyBlock(&MBB
) && "Expected an empty block (except debug info).");
1369 // If this MBB is the only predecessor of a successor it is legal to copy
1370 // DBG_VALUE instructions to the beginning of the successor.
1371 for (MachineBasicBlock
*SuccBB
: MBB
.successors())
1372 if (SuccBB
->pred_size() == 1)
1373 copyDebugInfoToSuccessor(TII
, MBB
, *SuccBB
);
1374 // If this MBB is the only successor of a predecessor it is legal to copy the
1375 // DBG_VALUE instructions to the end of the predecessor (just before the
1376 // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1377 for (MachineBasicBlock
*PredBB
: MBB
.predecessors())
1378 if (PredBB
->succ_size() == 1)
1379 copyDebugInfoToPredecessor(TII
, MBB
, *PredBB
);
1382 bool BranchFolder::OptimizeBlock(MachineBasicBlock
*MBB
) {
1383 bool MadeChange
= false;
1384 MachineFunction
&MF
= *MBB
->getParent();
1387 MachineFunction::iterator FallThrough
= MBB
->getIterator();
1390 // Make sure MBB and FallThrough belong to the same EH scope.
1391 bool SameEHScope
= true;
1392 if (!EHScopeMembership
.empty() && FallThrough
!= MF
.end()) {
1393 auto MBBEHScope
= EHScopeMembership
.find(MBB
);
1394 assert(MBBEHScope
!= EHScopeMembership
.end());
1395 auto FallThroughEHScope
= EHScopeMembership
.find(&*FallThrough
);
1396 assert(FallThroughEHScope
!= EHScopeMembership
.end());
1397 SameEHScope
= MBBEHScope
->second
== FallThroughEHScope
->second
;
1400 // If this block is empty, make everyone use its fall-through, not the block
1401 // explicitly. Landing pads should not do this since the landing-pad table
1402 // points to this block. Blocks with their addresses taken shouldn't be
1404 if (IsEmptyBlock(MBB
) && !MBB
->isEHPad() && !MBB
->hasAddressTaken() &&
1406 salvageDebugInfoFromEmptyBlock(TII
, *MBB
);
1407 // Dead block? Leave for cleanup later.
1408 if (MBB
->pred_empty()) return MadeChange
;
1410 if (FallThrough
== MF
.end()) {
1411 // TODO: Simplify preds to not branch here if possible!
1412 } else if (FallThrough
->isEHPad()) {
1413 // Don't rewrite to a landing pad fallthough. That could lead to the case
1414 // where a BB jumps to more than one landing pad.
1415 // TODO: Is it ever worth rewriting predecessors which don't already
1416 // jump to a landing pad, and so can safely jump to the fallthrough?
1417 } else if (MBB
->isSuccessor(&*FallThrough
)) {
1418 // Rewrite all predecessors of the old block to go to the fallthrough
1420 while (!MBB
->pred_empty()) {
1421 MachineBasicBlock
*Pred
= *(MBB
->pred_end()-1);
1422 Pred
->ReplaceUsesOfBlockWith(MBB
, &*FallThrough
);
1424 // If MBB was the target of a jump table, update jump tables to go to the
1425 // fallthrough instead.
1426 if (MachineJumpTableInfo
*MJTI
= MF
.getJumpTableInfo())
1427 MJTI
->ReplaceMBBInJumpTables(MBB
, &*FallThrough
);
1433 // Check to see if we can simplify the terminator of the block before this
1435 MachineBasicBlock
&PrevBB
= *std::prev(MachineFunction::iterator(MBB
));
1437 MachineBasicBlock
*PriorTBB
= nullptr, *PriorFBB
= nullptr;
1438 SmallVector
<MachineOperand
, 4> PriorCond
;
1439 bool PriorUnAnalyzable
=
1440 TII
->analyzeBranch(PrevBB
, PriorTBB
, PriorFBB
, PriorCond
, true);
1441 if (!PriorUnAnalyzable
) {
1442 // If the CFG for the prior block has extra edges, remove them.
1443 MadeChange
|= PrevBB
.CorrectExtraCFGEdges(PriorTBB
, PriorFBB
,
1444 !PriorCond
.empty());
1446 // If the previous branch is conditional and both conditions go to the same
1447 // destination, remove the branch, replacing it with an unconditional one or
1449 if (PriorTBB
&& PriorTBB
== PriorFBB
) {
1450 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1451 TII
->removeBranch(PrevBB
);
1453 if (PriorTBB
!= MBB
)
1454 TII
->insertBranch(PrevBB
, PriorTBB
, nullptr, PriorCond
, dl
);
1457 goto ReoptimizeBlock
;
1460 // If the previous block unconditionally falls through to this block and
1461 // this block has no other predecessors, move the contents of this block
1462 // into the prior block. This doesn't usually happen when SimplifyCFG
1463 // has been used, but it can happen if tail merging splits a fall-through
1464 // predecessor of a block.
1465 // This has to check PrevBB->succ_size() because EH edges are ignored by
1467 if (PriorCond
.empty() && !PriorTBB
&& MBB
->pred_size() == 1 &&
1468 PrevBB
.succ_size() == 1 &&
1469 !MBB
->hasAddressTaken() && !MBB
->isEHPad()) {
1470 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1471 << "From MBB: " << *MBB
);
1472 // Remove redundant DBG_VALUEs first.
1473 if (PrevBB
.begin() != PrevBB
.end()) {
1474 MachineBasicBlock::iterator PrevBBIter
= PrevBB
.end();
1476 MachineBasicBlock::iterator MBBIter
= MBB
->begin();
1477 // Check if DBG_VALUE at the end of PrevBB is identical to the
1478 // DBG_VALUE at the beginning of MBB.
1479 while (PrevBBIter
!= PrevBB
.begin() && MBBIter
!= MBB
->end()
1480 && PrevBBIter
->isDebugInstr() && MBBIter
->isDebugInstr()) {
1481 if (!MBBIter
->isIdenticalTo(*PrevBBIter
))
1483 MachineInstr
&DuplicateDbg
= *MBBIter
;
1484 ++MBBIter
; -- PrevBBIter
;
1485 DuplicateDbg
.eraseFromParent();
1488 PrevBB
.splice(PrevBB
.end(), MBB
, MBB
->begin(), MBB
->end());
1489 PrevBB
.removeSuccessor(PrevBB
.succ_begin());
1490 assert(PrevBB
.succ_empty());
1491 PrevBB
.transferSuccessors(MBB
);
1496 // If the previous branch *only* branches to *this* block (conditional or
1497 // not) remove the branch.
1498 if (PriorTBB
== MBB
&& !PriorFBB
) {
1499 TII
->removeBranch(PrevBB
);
1502 goto ReoptimizeBlock
;
1505 // If the prior block branches somewhere else on the condition and here if
1506 // the condition is false, remove the uncond second branch.
1507 if (PriorFBB
== MBB
) {
1508 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1509 TII
->removeBranch(PrevBB
);
1510 TII
->insertBranch(PrevBB
, PriorTBB
, nullptr, PriorCond
, dl
);
1513 goto ReoptimizeBlock
;
1516 // If the prior block branches here on true and somewhere else on false, and
1517 // if the branch condition is reversible, reverse the branch to create a
1519 if (PriorTBB
== MBB
) {
1520 SmallVector
<MachineOperand
, 4> NewPriorCond(PriorCond
);
1521 if (!TII
->reverseBranchCondition(NewPriorCond
)) {
1522 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1523 TII
->removeBranch(PrevBB
);
1524 TII
->insertBranch(PrevBB
, PriorFBB
, nullptr, NewPriorCond
, dl
);
1527 goto ReoptimizeBlock
;
1531 // If this block has no successors (e.g. it is a return block or ends with
1532 // a call to a no-return function like abort or __cxa_throw) and if the pred
1533 // falls through into this block, and if it would otherwise fall through
1534 // into the block after this, move this block to the end of the function.
1536 // We consider it more likely that execution will stay in the function (e.g.
1537 // due to loops) than it is to exit it. This asserts in loops etc, moving
1538 // the assert condition out of the loop body.
1539 if (MBB
->succ_empty() && !PriorCond
.empty() && !PriorFBB
&&
1540 MachineFunction::iterator(PriorTBB
) == FallThrough
&&
1541 !MBB
->canFallThrough()) {
1542 bool DoTransform
= true;
1544 // We have to be careful that the succs of PredBB aren't both no-successor
1545 // blocks. If neither have successors and if PredBB is the second from
1546 // last block in the function, we'd just keep swapping the two blocks for
1547 // last. Only do the swap if one is clearly better to fall through than
1549 if (FallThrough
== --MF
.end() &&
1550 !IsBetterFallthrough(PriorTBB
, MBB
))
1551 DoTransform
= false;
1554 // Reverse the branch so we will fall through on the previous true cond.
1555 SmallVector
<MachineOperand
, 4> NewPriorCond(PriorCond
);
1556 if (!TII
->reverseBranchCondition(NewPriorCond
)) {
1557 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1558 << "To make fallthrough to: " << *PriorTBB
<< "\n");
1560 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1561 TII
->removeBranch(PrevBB
);
1562 TII
->insertBranch(PrevBB
, MBB
, nullptr, NewPriorCond
, dl
);
1564 // Move this block to the end of the function.
1565 MBB
->moveAfter(&MF
.back());
1574 if (!IsEmptyBlock(MBB
) && MBB
->pred_size() == 1 &&
1575 MF
.getFunction().hasOptSize()) {
1576 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1577 // direction, thereby defeating careful block placement and regressing
1578 // performance. Therefore, only consider this for optsize functions.
1579 MachineInstr
&TailCall
= *MBB
->getFirstNonDebugInstr();
1580 if (TII
->isUnconditionalTailCall(TailCall
)) {
1581 MachineBasicBlock
*Pred
= *MBB
->pred_begin();
1582 MachineBasicBlock
*PredTBB
= nullptr, *PredFBB
= nullptr;
1583 SmallVector
<MachineOperand
, 4> PredCond
;
1584 bool PredAnalyzable
=
1585 !TII
->analyzeBranch(*Pred
, PredTBB
, PredFBB
, PredCond
, true);
1587 if (PredAnalyzable
&& !PredCond
.empty() && PredTBB
== MBB
&&
1588 PredTBB
!= PredFBB
) {
1589 // The predecessor has a conditional branch to this block which consists
1590 // of only a tail call. Try to fold the tail call into the conditional
1592 if (TII
->canMakeTailCallConditional(PredCond
, TailCall
)) {
1593 // TODO: It would be nice if analyzeBranch() could provide a pointer
1594 // to the branch instruction so replaceBranchWithTailCall() doesn't
1595 // have to search for it.
1596 TII
->replaceBranchWithTailCall(*Pred
, PredCond
, TailCall
);
1598 Pred
->removeSuccessor(MBB
);
1603 // If the predecessor is falling through to this block, we could reverse
1604 // the branch condition and fold the tail call into that. However, after
1605 // that we might have to re-arrange the CFG to fall through to the other
1606 // block and there is a high risk of regressing code size rather than
1611 // Analyze the branch in the current block.
1612 MachineBasicBlock
*CurTBB
= nullptr, *CurFBB
= nullptr;
1613 SmallVector
<MachineOperand
, 4> CurCond
;
1614 bool CurUnAnalyzable
=
1615 TII
->analyzeBranch(*MBB
, CurTBB
, CurFBB
, CurCond
, true);
1616 if (!CurUnAnalyzable
) {
1617 // If the CFG for the prior block has extra edges, remove them.
1618 MadeChange
|= MBB
->CorrectExtraCFGEdges(CurTBB
, CurFBB
, !CurCond
.empty());
1620 // If this is a two-way branch, and the FBB branches to this block, reverse
1621 // the condition so the single-basic-block loop is faster. Instead of:
1622 // Loop: xxx; jcc Out; jmp Loop
1624 // Loop: xxx; jncc Loop; jmp Out
1625 if (CurTBB
&& CurFBB
&& CurFBB
== MBB
&& CurTBB
!= MBB
) {
1626 SmallVector
<MachineOperand
, 4> NewCond(CurCond
);
1627 if (!TII
->reverseBranchCondition(NewCond
)) {
1628 DebugLoc dl
= getBranchDebugLoc(*MBB
);
1629 TII
->removeBranch(*MBB
);
1630 TII
->insertBranch(*MBB
, CurFBB
, CurTBB
, NewCond
, dl
);
1633 goto ReoptimizeBlock
;
1637 // If this branch is the only thing in its block, see if we can forward
1638 // other blocks across it.
1639 if (CurTBB
&& CurCond
.empty() && !CurFBB
&&
1640 IsBranchOnlyBlock(MBB
) && CurTBB
!= MBB
&&
1641 !MBB
->hasAddressTaken() && !MBB
->isEHPad()) {
1642 DebugLoc dl
= getBranchDebugLoc(*MBB
);
1643 // This block may contain just an unconditional branch. Because there can
1644 // be 'non-branch terminators' in the block, try removing the branch and
1645 // then seeing if the block is empty.
1646 TII
->removeBranch(*MBB
);
1647 // If the only things remaining in the block are debug info, remove these
1648 // as well, so this will behave the same as an empty block in non-debug
1650 if (IsEmptyBlock(MBB
)) {
1651 // Make the block empty, losing the debug info (we could probably
1652 // improve this in some cases.)
1653 MBB
->erase(MBB
->begin(), MBB
->end());
1655 // If this block is just an unconditional branch to CurTBB, we can
1656 // usually completely eliminate the block. The only case we cannot
1657 // completely eliminate the block is when the block before this one
1658 // falls through into MBB and we can't understand the prior block's branch
1661 bool PredHasNoFallThrough
= !PrevBB
.canFallThrough();
1662 if (PredHasNoFallThrough
|| !PriorUnAnalyzable
||
1663 !PrevBB
.isSuccessor(MBB
)) {
1664 // If the prior block falls through into us, turn it into an
1665 // explicit branch to us to make updates simpler.
1666 if (!PredHasNoFallThrough
&& PrevBB
.isSuccessor(MBB
) &&
1667 PriorTBB
!= MBB
&& PriorFBB
!= MBB
) {
1669 assert(PriorCond
.empty() && !PriorFBB
&&
1670 "Bad branch analysis");
1673 assert(!PriorFBB
&& "Machine CFG out of date!");
1676 DebugLoc pdl
= getBranchDebugLoc(PrevBB
);
1677 TII
->removeBranch(PrevBB
);
1678 TII
->insertBranch(PrevBB
, PriorTBB
, PriorFBB
, PriorCond
, pdl
);
1681 // Iterate through all the predecessors, revectoring each in-turn.
1683 bool DidChange
= false;
1684 bool HasBranchToSelf
= false;
1685 while(PI
!= MBB
->pred_size()) {
1686 MachineBasicBlock
*PMBB
= *(MBB
->pred_begin() + PI
);
1688 // If this block has an uncond branch to itself, leave it.
1690 HasBranchToSelf
= true;
1693 PMBB
->ReplaceUsesOfBlockWith(MBB
, CurTBB
);
1694 // If this change resulted in PMBB ending in a conditional
1695 // branch where both conditions go to the same destination,
1696 // change this to an unconditional branch (and fix the CFG).
1697 MachineBasicBlock
*NewCurTBB
= nullptr, *NewCurFBB
= nullptr;
1698 SmallVector
<MachineOperand
, 4> NewCurCond
;
1699 bool NewCurUnAnalyzable
= TII
->analyzeBranch(
1700 *PMBB
, NewCurTBB
, NewCurFBB
, NewCurCond
, true);
1701 if (!NewCurUnAnalyzable
&& NewCurTBB
&& NewCurTBB
== NewCurFBB
) {
1702 DebugLoc pdl
= getBranchDebugLoc(*PMBB
);
1703 TII
->removeBranch(*PMBB
);
1705 TII
->insertBranch(*PMBB
, NewCurTBB
, nullptr, NewCurCond
, pdl
);
1708 PMBB
->CorrectExtraCFGEdges(NewCurTBB
, nullptr, false);
1713 // Change any jumptables to go to the new MBB.
1714 if (MachineJumpTableInfo
*MJTI
= MF
.getJumpTableInfo())
1715 MJTI
->ReplaceMBBInJumpTables(MBB
, CurTBB
);
1719 if (!HasBranchToSelf
) return MadeChange
;
1724 // Add the branch back if the block is more than just an uncond branch.
1725 TII
->insertBranch(*MBB
, CurTBB
, nullptr, CurCond
, dl
);
1729 // If the prior block doesn't fall through into this block, and if this
1730 // block doesn't fall through into some other block, see if we can find a
1731 // place to move this block where a fall-through will happen.
1732 if (!PrevBB
.canFallThrough()) {
1733 // Now we know that there was no fall-through into this block, check to
1734 // see if it has a fall-through into its successor.
1735 bool CurFallsThru
= MBB
->canFallThrough();
1737 if (!MBB
->isEHPad()) {
1738 // Check all the predecessors of this block. If one of them has no fall
1739 // throughs, move this block right after it.
1740 for (MachineBasicBlock
*PredBB
: MBB
->predecessors()) {
1741 // Analyze the branch at the end of the pred.
1742 MachineBasicBlock
*PredTBB
= nullptr, *PredFBB
= nullptr;
1743 SmallVector
<MachineOperand
, 4> PredCond
;
1744 if (PredBB
!= MBB
&& !PredBB
->canFallThrough() &&
1745 !TII
->analyzeBranch(*PredBB
, PredTBB
, PredFBB
, PredCond
, true) &&
1746 (!CurFallsThru
|| !CurTBB
|| !CurFBB
) &&
1747 (!CurFallsThru
|| MBB
->getNumber() >= PredBB
->getNumber())) {
1748 // If the current block doesn't fall through, just move it.
1749 // If the current block can fall through and does not end with a
1750 // conditional branch, we need to append an unconditional jump to
1751 // the (current) next block. To avoid a possible compile-time
1752 // infinite loop, move blocks only backward in this case.
1753 // Also, if there are already 2 branches here, we cannot add a third;
1754 // this means we have the case
1759 MachineBasicBlock
*NextBB
= &*std::next(MBB
->getIterator());
1761 TII
->insertBranch(*MBB
, NextBB
, nullptr, CurCond
, DebugLoc());
1763 MBB
->moveAfter(PredBB
);
1765 goto ReoptimizeBlock
;
1770 if (!CurFallsThru
) {
1771 // Check all successors to see if we can move this block before it.
1772 for (MachineBasicBlock
*SuccBB
: MBB
->successors()) {
1773 // Analyze the branch at the end of the block before the succ.
1774 MachineFunction::iterator SuccPrev
= --SuccBB
->getIterator();
1776 // If this block doesn't already fall-through to that successor, and if
1777 // the succ doesn't already have a block that can fall through into it,
1778 // and if the successor isn't an EH destination, we can arrange for the
1779 // fallthrough to happen.
1780 if (SuccBB
!= MBB
&& &*SuccPrev
!= MBB
&&
1781 !SuccPrev
->canFallThrough() && !CurUnAnalyzable
&&
1782 !SuccBB
->isEHPad()) {
1783 MBB
->moveBefore(SuccBB
);
1785 goto ReoptimizeBlock
;
1789 // Okay, there is no really great place to put this block. If, however,
1790 // the block before this one would be a fall-through if this block were
1791 // removed, move this block to the end of the function. There is no real
1792 // advantage in "falling through" to an EH block, so we don't want to
1793 // perform this transformation for that case.
1795 // Also, Windows EH introduced the possibility of an arbitrary number of
1796 // successors to a given block. The analyzeBranch call does not consider
1797 // exception handling and so we can get in a state where a block
1798 // containing a call is followed by multiple EH blocks that would be
1799 // rotated infinitely at the end of the function if the transformation
1800 // below were performed for EH "FallThrough" blocks. Therefore, even if
1801 // that appears not to be happening anymore, we should assume that it is
1802 // possible and not remove the "!FallThrough()->isEHPad" condition below.
1803 MachineBasicBlock
*PrevTBB
= nullptr, *PrevFBB
= nullptr;
1804 SmallVector
<MachineOperand
, 4> PrevCond
;
1805 if (FallThrough
!= MF
.end() &&
1806 !FallThrough
->isEHPad() &&
1807 !TII
->analyzeBranch(PrevBB
, PrevTBB
, PrevFBB
, PrevCond
, true) &&
1808 PrevBB
.isSuccessor(&*FallThrough
)) {
1809 MBB
->moveAfter(&MF
.back());
1819 //===----------------------------------------------------------------------===//
1820 // Hoist Common Code
1821 //===----------------------------------------------------------------------===//
1823 bool BranchFolder::HoistCommonCode(MachineFunction
&MF
) {
1824 bool MadeChange
= false;
1825 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ) {
1826 MachineBasicBlock
*MBB
= &*I
++;
1827 MadeChange
|= HoistCommonCodeInSuccs(MBB
);
1833 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1834 /// its 'true' successor.
1835 static MachineBasicBlock
*findFalseBlock(MachineBasicBlock
*BB
,
1836 MachineBasicBlock
*TrueBB
) {
1837 for (MachineBasicBlock
*SuccBB
: BB
->successors())
1838 if (SuccBB
!= TrueBB
)
1843 template <class Container
>
1844 static void addRegAndItsAliases(unsigned Reg
, const TargetRegisterInfo
*TRI
,
1846 if (Register::isPhysicalRegister(Reg
)) {
1847 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
1854 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1855 /// in successors to. The location is usually just before the terminator,
1856 /// however if the terminator is a conditional branch and its previous
1857 /// instruction is the flag setting instruction, the previous instruction is
1858 /// the preferred location. This function also gathers uses and defs of the
1859 /// instructions from the insertion point to the end of the block. The data is
1860 /// used by HoistCommonCodeInSuccs to ensure safety.
1862 MachineBasicBlock::iterator
findHoistingInsertPosAndDeps(MachineBasicBlock
*MBB
,
1863 const TargetInstrInfo
*TII
,
1864 const TargetRegisterInfo
*TRI
,
1865 SmallSet
<unsigned,4> &Uses
,
1866 SmallSet
<unsigned,4> &Defs
) {
1867 MachineBasicBlock::iterator Loc
= MBB
->getFirstTerminator();
1868 if (!TII
->isUnpredicatedTerminator(*Loc
))
1871 for (const MachineOperand
&MO
: Loc
->operands()) {
1874 Register Reg
= MO
.getReg();
1878 addRegAndItsAliases(Reg
, TRI
, Uses
);
1881 // Don't try to hoist code in the rare case the terminator defines a
1882 // register that is later used.
1885 // If the terminator defines a register, make sure we don't hoist
1886 // the instruction whose def might be clobbered by the terminator.
1887 addRegAndItsAliases(Reg
, TRI
, Defs
);
1893 // If the terminator is the only instruction in the block and Uses is not
1894 // empty (or we would have returned above), we can still safely hoist
1895 // instructions just before the terminator as long as the Defs/Uses are not
1896 // violated (which is checked in HoistCommonCodeInSuccs).
1897 if (Loc
== MBB
->begin())
1900 // The terminator is probably a conditional branch, try not to separate the
1901 // branch from condition setting instruction.
1902 MachineBasicBlock::iterator PI
=
1903 skipDebugInstructionsBackward(std::prev(Loc
), MBB
->begin());
1906 for (const MachineOperand
&MO
: PI
->operands()) {
1907 // If PI has a regmask operand, it is probably a call. Separate away.
1910 if (!MO
.isReg() || MO
.isUse())
1912 Register Reg
= MO
.getReg();
1915 if (Uses
.count(Reg
)) {
1921 // The condition setting instruction is not just before the conditional
1925 // Be conservative, don't insert instruction above something that may have
1926 // side-effects. And since it's potentially bad to separate flag setting
1927 // instruction from the conditional branch, just abort the optimization
1929 // Also avoid moving code above predicated instruction since it's hard to
1930 // reason about register liveness with predicated instruction.
1931 bool DontMoveAcrossStore
= true;
1932 if (!PI
->isSafeToMove(nullptr, DontMoveAcrossStore
) || TII
->isPredicated(*PI
))
1935 // Find out what registers are live. Note this routine is ignoring other live
1936 // registers which are only used by instructions in successor blocks.
1937 for (const MachineOperand
&MO
: PI
->operands()) {
1940 Register Reg
= MO
.getReg();
1944 addRegAndItsAliases(Reg
, TRI
, Uses
);
1946 if (Uses
.erase(Reg
)) {
1947 if (Register::isPhysicalRegister(Reg
)) {
1948 for (MCSubRegIterator
SubRegs(Reg
, TRI
); SubRegs
.isValid(); ++SubRegs
)
1949 Uses
.erase(*SubRegs
); // Use sub-registers to be conservative
1952 addRegAndItsAliases(Reg
, TRI
, Defs
);
1959 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock
*MBB
) {
1960 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
1961 SmallVector
<MachineOperand
, 4> Cond
;
1962 if (TII
->analyzeBranch(*MBB
, TBB
, FBB
, Cond
, true) || !TBB
|| Cond
.empty())
1965 if (!FBB
) FBB
= findFalseBlock(MBB
, TBB
);
1967 // Malformed bcc? True and false blocks are the same?
1970 // Restrict the optimization to cases where MBB is the only predecessor,
1971 // it is an obvious win.
1972 if (TBB
->pred_size() > 1 || FBB
->pred_size() > 1)
1975 // Find a suitable position to hoist the common instructions to. Also figure
1976 // out which registers are used or defined by instructions from the insertion
1977 // point to the end of the block.
1978 SmallSet
<unsigned, 4> Uses
, Defs
;
1979 MachineBasicBlock::iterator Loc
=
1980 findHoistingInsertPosAndDeps(MBB
, TII
, TRI
, Uses
, Defs
);
1981 if (Loc
== MBB
->end())
1984 bool HasDups
= false;
1985 SmallSet
<unsigned, 4> ActiveDefsSet
, AllDefsSet
;
1986 MachineBasicBlock::iterator TIB
= TBB
->begin();
1987 MachineBasicBlock::iterator FIB
= FBB
->begin();
1988 MachineBasicBlock::iterator TIE
= TBB
->end();
1989 MachineBasicBlock::iterator FIE
= FBB
->end();
1990 while (TIB
!= TIE
&& FIB
!= FIE
) {
1991 // Skip dbg_value instructions. These do not count.
1992 TIB
= skipDebugInstructionsForward(TIB
, TIE
);
1993 FIB
= skipDebugInstructionsForward(FIB
, FIE
);
1994 if (TIB
== TIE
|| FIB
== FIE
)
1997 if (!TIB
->isIdenticalTo(*FIB
, MachineInstr::CheckKillDead
))
2000 if (TII
->isPredicated(*TIB
))
2001 // Hard to reason about register liveness with predicated instruction.
2005 for (MachineOperand
&MO
: TIB
->operands()) {
2006 // Don't attempt to hoist instructions with register masks.
2007 if (MO
.isRegMask()) {
2013 Register Reg
= MO
.getReg();
2017 if (Uses
.count(Reg
)) {
2018 // Avoid clobbering a register that's used by the instruction at
2019 // the point of insertion.
2024 if (Defs
.count(Reg
) && !MO
.isDead()) {
2025 // Don't hoist the instruction if the def would be clobber by the
2026 // instruction at the point insertion. FIXME: This is overly
2027 // conservative. It should be possible to hoist the instructions
2028 // in BB2 in the following example:
2030 // r1, eflag = op1 r2, r3
2039 } else if (!ActiveDefsSet
.count(Reg
)) {
2040 if (Defs
.count(Reg
)) {
2041 // Use is defined by the instruction at the point of insertion.
2046 if (MO
.isKill() && Uses
.count(Reg
))
2047 // Kills a register that's read by the instruction at the point of
2048 // insertion. Remove the kill marker.
2049 MO
.setIsKill(false);
2055 bool DontMoveAcrossStore
= true;
2056 if (!TIB
->isSafeToMove(nullptr, DontMoveAcrossStore
))
2059 // Remove kills from ActiveDefsSet, these registers had short live ranges.
2060 for (const MachineOperand
&MO
: TIB
->operands()) {
2061 if (!MO
.isReg() || !MO
.isUse() || !MO
.isKill())
2063 Register Reg
= MO
.getReg();
2066 if (!AllDefsSet
.count(Reg
)) {
2069 if (Register::isPhysicalRegister(Reg
)) {
2070 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
2071 ActiveDefsSet
.erase(*AI
);
2073 ActiveDefsSet
.erase(Reg
);
2077 // Track local defs so we can update liveins.
2078 for (const MachineOperand
&MO
: TIB
->operands()) {
2079 if (!MO
.isReg() || !MO
.isDef() || MO
.isDead())
2081 Register Reg
= MO
.getReg();
2082 if (!Reg
|| Register::isVirtualRegister(Reg
))
2084 addRegAndItsAliases(Reg
, TRI
, ActiveDefsSet
);
2085 addRegAndItsAliases(Reg
, TRI
, AllDefsSet
);
2096 MBB
->splice(Loc
, TBB
, TBB
->begin(), TIB
);
2097 FBB
->erase(FBB
->begin(), FIB
);
2099 if (UpdateLiveIns
) {
2100 recomputeLiveIns(*TBB
);
2101 recomputeLiveIns(*FBB
);