[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / CodeGen / IfConversion.cpp
blob99f59f2f946af4182c93ab053ca368cc0799cabb
1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the machine instruction level if-conversion pass, which
10 // tries to convert conditional branches into predicated instructions.
12 //===----------------------------------------------------------------------===//
14 #include "BranchFolding.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSchedule.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/BranchProbability.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <functional>
49 #include <iterator>
50 #include <memory>
51 #include <utility>
52 #include <vector>
54 using namespace llvm;
56 #define DEBUG_TYPE "if-converter"
58 // Hidden options for help debugging.
59 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
60 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
61 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
62 static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
63 cl::init(false), cl::Hidden);
64 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
65 cl::init(false), cl::Hidden);
66 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
67 cl::init(false), cl::Hidden);
68 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
69 cl::init(false), cl::Hidden);
70 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
71 cl::init(false), cl::Hidden);
72 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
73 cl::init(false), cl::Hidden);
74 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
75 cl::init(false), cl::Hidden);
76 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
77 cl::init(false), cl::Hidden);
78 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
79 cl::init(true), cl::Hidden);
81 STATISTIC(NumSimple, "Number of simple if-conversions performed");
82 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed");
83 STATISTIC(NumTriangle, "Number of triangle if-conversions performed");
84 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed");
85 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
86 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
87 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed");
88 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
89 STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
90 STATISTIC(NumDupBBs, "Number of duplicated blocks");
91 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated");
93 namespace {
95 class IfConverter : public MachineFunctionPass {
96 enum IfcvtKind {
97 ICNotClassfied, // BB data valid, but not classified.
98 ICSimpleFalse, // Same as ICSimple, but on the false path.
99 ICSimple, // BB is entry of an one split, no rejoin sub-CFG.
100 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition.
101 ICTriangleRev, // Same as ICTriangle, but true path rev condition.
102 ICTriangleFalse, // Same as ICTriangle, but on the false path.
103 ICTriangle, // BB is entry of a triangle sub-CFG.
104 ICDiamond, // BB is entry of a diamond sub-CFG.
105 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a
106 // common tail that can be shared.
109 /// One per MachineBasicBlock, this is used to cache the result
110 /// if-conversion feasibility analysis. This includes results from
111 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
112 /// classification, and common tail block of its successors (if it's a
113 /// diamond shape), its size, whether it's predicable, and whether any
114 /// instruction can clobber the 'would-be' predicate.
116 /// IsDone - True if BB is not to be considered for ifcvt.
117 /// IsBeingAnalyzed - True if BB is currently being analyzed.
118 /// IsAnalyzed - True if BB has been analyzed (info is still valid).
119 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
120 /// IsBrAnalyzable - True if analyzeBranch() returns false.
121 /// HasFallThrough - True if BB may fallthrough to the following BB.
122 /// IsUnpredicable - True if BB is known to be unpredicable.
123 /// ClobbersPred - True if BB could modify predicates (e.g. has
124 /// cmp, call, etc.)
125 /// NonPredSize - Number of non-predicated instructions.
126 /// ExtraCost - Extra cost for multi-cycle instructions.
127 /// ExtraCost2 - Some instructions are slower when predicated
128 /// BB - Corresponding MachineBasicBlock.
129 /// TrueBB / FalseBB- See analyzeBranch().
130 /// BrCond - Conditions for end of block conditional branches.
131 /// Predicate - Predicate used in the BB.
132 struct BBInfo {
133 bool IsDone : 1;
134 bool IsBeingAnalyzed : 1;
135 bool IsAnalyzed : 1;
136 bool IsEnqueued : 1;
137 bool IsBrAnalyzable : 1;
138 bool IsBrReversible : 1;
139 bool HasFallThrough : 1;
140 bool IsUnpredicable : 1;
141 bool CannotBeCopied : 1;
142 bool ClobbersPred : 1;
143 unsigned NonPredSize = 0;
144 unsigned ExtraCost = 0;
145 unsigned ExtraCost2 = 0;
146 MachineBasicBlock *BB = nullptr;
147 MachineBasicBlock *TrueBB = nullptr;
148 MachineBasicBlock *FalseBB = nullptr;
149 SmallVector<MachineOperand, 4> BrCond;
150 SmallVector<MachineOperand, 4> Predicate;
152 BBInfo() : IsDone(false), IsBeingAnalyzed(false),
153 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
154 IsBrReversible(false), HasFallThrough(false),
155 IsUnpredicable(false), CannotBeCopied(false),
156 ClobbersPred(false) {}
159 /// Record information about pending if-conversions to attempt:
160 /// BBI - Corresponding BBInfo.
161 /// Kind - Type of block. See IfcvtKind.
162 /// NeedSubsumption - True if the to-be-predicated BB has already been
163 /// predicated.
164 /// NumDups - Number of instructions that would be duplicated due
165 /// to this if-conversion. (For diamonds, the number of
166 /// identical instructions at the beginnings of both
167 /// paths).
168 /// NumDups2 - For diamonds, the number of identical instructions
169 /// at the ends of both paths.
170 struct IfcvtToken {
171 BBInfo &BBI;
172 IfcvtKind Kind;
173 unsigned NumDups;
174 unsigned NumDups2;
175 bool NeedSubsumption : 1;
176 bool TClobbersPred : 1;
177 bool FClobbersPred : 1;
179 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
180 bool tc = false, bool fc = false)
181 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
182 TClobbersPred(tc), FClobbersPred(fc) {}
185 /// Results of if-conversion feasibility analysis indexed by basic block
186 /// number.
187 std::vector<BBInfo> BBAnalysis;
188 TargetSchedModel SchedModel;
190 const TargetLoweringBase *TLI;
191 const TargetInstrInfo *TII;
192 const TargetRegisterInfo *TRI;
193 const MachineBranchProbabilityInfo *MBPI;
194 MachineRegisterInfo *MRI;
196 LivePhysRegs Redefs;
198 bool PreRegAlloc;
199 bool MadeChange;
200 int FnNum = -1;
201 std::function<bool(const MachineFunction &)> PredicateFtor;
203 public:
204 static char ID;
206 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
207 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
208 initializeIfConverterPass(*PassRegistry::getPassRegistry());
211 void getAnalysisUsage(AnalysisUsage &AU) const override {
212 AU.addRequired<MachineBlockFrequencyInfo>();
213 AU.addRequired<MachineBranchProbabilityInfo>();
214 MachineFunctionPass::getAnalysisUsage(AU);
217 bool runOnMachineFunction(MachineFunction &MF) override;
219 MachineFunctionProperties getRequiredProperties() const override {
220 return MachineFunctionProperties().set(
221 MachineFunctionProperties::Property::NoVRegs);
224 private:
225 bool reverseBranchCondition(BBInfo &BBI) const;
226 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
227 BranchProbability Prediction) const;
228 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
229 bool FalseBranch, unsigned &Dups,
230 BranchProbability Prediction) const;
231 bool CountDuplicatedInstructions(
232 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
233 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
234 unsigned &Dups1, unsigned &Dups2,
235 MachineBasicBlock &TBB, MachineBasicBlock &FBB,
236 bool SkipUnconditionalBranches) const;
237 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
238 unsigned &Dups1, unsigned &Dups2,
239 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
240 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
241 unsigned &Dups1, unsigned &Dups2,
242 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
243 void AnalyzeBranches(BBInfo &BBI);
244 void ScanInstructions(BBInfo &BBI,
245 MachineBasicBlock::iterator &Begin,
246 MachineBasicBlock::iterator &End,
247 bool BranchUnpredicable = false) const;
248 bool RescanInstructions(
249 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
250 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
251 BBInfo &TrueBBI, BBInfo &FalseBBI) const;
252 void AnalyzeBlock(MachineBasicBlock &MBB,
253 std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
254 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
255 bool isTriangle = false, bool RevBranch = false,
256 bool hasCommonTail = false);
257 void AnalyzeBlocks(MachineFunction &MF,
258 std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
259 void InvalidatePreds(MachineBasicBlock &MBB);
260 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
261 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
262 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
263 unsigned NumDups1, unsigned NumDups2,
264 bool TClobbersPred, bool FClobbersPred,
265 bool RemoveBranch, bool MergeAddEdges);
266 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
267 unsigned NumDups1, unsigned NumDups2,
268 bool TClobbers, bool FClobbers);
269 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
270 unsigned NumDups1, unsigned NumDups2,
271 bool TClobbers, bool FClobbers);
272 void PredicateBlock(BBInfo &BBI,
273 MachineBasicBlock::iterator E,
274 SmallVectorImpl<MachineOperand> &Cond,
275 SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
276 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
277 SmallVectorImpl<MachineOperand> &Cond,
278 bool IgnoreBr = false);
279 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
281 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
282 unsigned Cycle, unsigned Extra,
283 BranchProbability Prediction) const {
284 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
285 Prediction);
288 bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
289 unsigned TCycle, unsigned TExtra,
290 MachineBasicBlock &FBB,
291 unsigned FCycle, unsigned FExtra,
292 BranchProbability Prediction) const {
293 return TCycle > 0 && FCycle > 0 &&
294 TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
295 Prediction);
298 /// Returns true if Block ends without a terminator.
299 bool blockAlwaysFallThrough(BBInfo &BBI) const {
300 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
303 /// Used to sort if-conversion candidates.
304 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
305 const std::unique_ptr<IfcvtToken> &C2) {
306 int Incr1 = (C1->Kind == ICDiamond)
307 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
308 int Incr2 = (C2->Kind == ICDiamond)
309 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
310 if (Incr1 > Incr2)
311 return true;
312 else if (Incr1 == Incr2) {
313 // Favors subsumption.
314 if (!C1->NeedSubsumption && C2->NeedSubsumption)
315 return true;
316 else if (C1->NeedSubsumption == C2->NeedSubsumption) {
317 // Favors diamond over triangle, etc.
318 if ((unsigned)C1->Kind < (unsigned)C2->Kind)
319 return true;
320 else if (C1->Kind == C2->Kind)
321 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
324 return false;
328 } // end anonymous namespace
330 char IfConverter::ID = 0;
332 char &llvm::IfConverterID = IfConverter::ID;
334 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
335 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
336 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
338 bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
339 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
340 return false;
342 const TargetSubtargetInfo &ST = MF.getSubtarget();
343 TLI = ST.getTargetLowering();
344 TII = ST.getInstrInfo();
345 TRI = ST.getRegisterInfo();
346 BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
347 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
348 MRI = &MF.getRegInfo();
349 SchedModel.init(&ST);
351 if (!TII) return false;
353 PreRegAlloc = MRI->isSSA();
355 bool BFChange = false;
356 if (!PreRegAlloc) {
357 // Tail merge tend to expose more if-conversion opportunities.
358 BranchFolder BF(true, false, MBFI, *MBPI);
359 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
360 getAnalysisIfAvailable<MachineModuleInfo>());
363 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
364 << MF.getName() << "\'");
366 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
367 LLVM_DEBUG(dbgs() << " skipped\n");
368 return false;
370 LLVM_DEBUG(dbgs() << "\n");
372 MF.RenumberBlocks();
373 BBAnalysis.resize(MF.getNumBlockIDs());
375 std::vector<std::unique_ptr<IfcvtToken>> Tokens;
376 MadeChange = false;
377 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
378 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
379 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
380 // Do an initial analysis for each basic block and find all the potential
381 // candidates to perform if-conversion.
382 bool Change = false;
383 AnalyzeBlocks(MF, Tokens);
384 while (!Tokens.empty()) {
385 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
386 Tokens.pop_back();
387 BBInfo &BBI = Token->BBI;
388 IfcvtKind Kind = Token->Kind;
389 unsigned NumDups = Token->NumDups;
390 unsigned NumDups2 = Token->NumDups2;
392 // If the block has been evicted out of the queue or it has already been
393 // marked dead (due to it being predicated), then skip it.
394 if (BBI.IsDone)
395 BBI.IsEnqueued = false;
396 if (!BBI.IsEnqueued)
397 continue;
399 BBI.IsEnqueued = false;
401 bool RetVal = false;
402 switch (Kind) {
403 default: llvm_unreachable("Unexpected!");
404 case ICSimple:
405 case ICSimpleFalse: {
406 bool isFalse = Kind == ICSimpleFalse;
407 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
408 LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
409 << (Kind == ICSimpleFalse ? " false" : "")
410 << "): " << printMBBReference(*BBI.BB) << " ("
411 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
412 : BBI.TrueBB->getNumber())
413 << ") ");
414 RetVal = IfConvertSimple(BBI, Kind);
415 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
416 if (RetVal) {
417 if (isFalse) ++NumSimpleFalse;
418 else ++NumSimple;
420 break;
422 case ICTriangle:
423 case ICTriangleRev:
424 case ICTriangleFalse:
425 case ICTriangleFRev: {
426 bool isFalse = Kind == ICTriangleFalse;
427 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
428 if (DisableTriangle && !isFalse && !isRev) break;
429 if (DisableTriangleR && !isFalse && isRev) break;
430 if (DisableTriangleF && isFalse && !isRev) break;
431 if (DisableTriangleFR && isFalse && isRev) break;
432 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
433 if (isFalse)
434 LLVM_DEBUG(dbgs() << " false");
435 if (isRev)
436 LLVM_DEBUG(dbgs() << " rev");
437 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
438 << " (T:" << BBI.TrueBB->getNumber()
439 << ",F:" << BBI.FalseBB->getNumber() << ") ");
440 RetVal = IfConvertTriangle(BBI, Kind);
441 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
442 if (RetVal) {
443 if (isFalse) {
444 if (isRev) ++NumTriangleFRev;
445 else ++NumTriangleFalse;
446 } else {
447 if (isRev) ++NumTriangleRev;
448 else ++NumTriangle;
451 break;
453 case ICDiamond:
454 if (DisableDiamond) break;
455 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
456 << " (T:" << BBI.TrueBB->getNumber()
457 << ",F:" << BBI.FalseBB->getNumber() << ") ");
458 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
459 Token->TClobbersPred,
460 Token->FClobbersPred);
461 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
462 if (RetVal) ++NumDiamonds;
463 break;
464 case ICForkedDiamond:
465 if (DisableForkedDiamond) break;
466 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
467 << printMBBReference(*BBI.BB)
468 << " (T:" << BBI.TrueBB->getNumber()
469 << ",F:" << BBI.FalseBB->getNumber() << ") ");
470 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
471 Token->TClobbersPred,
472 Token->FClobbersPred);
473 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
474 if (RetVal) ++NumForkedDiamonds;
475 break;
478 if (RetVal && MRI->tracksLiveness())
479 recomputeLivenessFlags(*BBI.BB);
481 Change |= RetVal;
483 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
484 NumTriangleFalse + NumTriangleFRev + NumDiamonds;
485 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
486 break;
489 if (!Change)
490 break;
491 MadeChange |= Change;
494 Tokens.clear();
495 BBAnalysis.clear();
497 if (MadeChange && IfCvtBranchFold) {
498 BranchFolder BF(false, false, MBFI, *MBPI);
499 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
500 getAnalysisIfAvailable<MachineModuleInfo>());
503 MadeChange |= BFChange;
504 return MadeChange;
507 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
508 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
509 MachineBasicBlock *TrueBB) {
510 for (MachineBasicBlock *SuccBB : BB->successors()) {
511 if (SuccBB != TrueBB)
512 return SuccBB;
514 return nullptr;
517 /// Reverse the condition of the end of the block branch. Swap block's 'true'
518 /// and 'false' successors.
519 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
520 DebugLoc dl; // FIXME: this is nowhere
521 if (!TII->reverseBranchCondition(BBI.BrCond)) {
522 TII->removeBranch(*BBI.BB);
523 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
524 std::swap(BBI.TrueBB, BBI.FalseBB);
525 return true;
527 return false;
530 /// Returns the next block in the function blocks ordering. If it is the end,
531 /// returns NULL.
532 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
533 MachineFunction::iterator I = MBB.getIterator();
534 MachineFunction::iterator E = MBB.getParent()->end();
535 if (++I == E)
536 return nullptr;
537 return &*I;
540 /// Returns true if the 'true' block (along with its predecessor) forms a valid
541 /// simple shape for ifcvt. It also returns the number of instructions that the
542 /// ifcvt would need to duplicate if performed in Dups.
543 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
544 BranchProbability Prediction) const {
545 Dups = 0;
546 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
547 return false;
549 if (TrueBBI.IsBrAnalyzable)
550 return false;
552 if (TrueBBI.BB->pred_size() > 1) {
553 if (TrueBBI.CannotBeCopied ||
554 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
555 Prediction))
556 return false;
557 Dups = TrueBBI.NonPredSize;
560 return true;
563 /// Returns true if the 'true' and 'false' blocks (along with their common
564 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
565 /// true, it checks if 'true' block's false branch branches to the 'false' block
566 /// rather than the other way around. It also returns the number of instructions
567 /// that the ifcvt would need to duplicate if performed in 'Dups'.
568 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
569 bool FalseBranch, unsigned &Dups,
570 BranchProbability Prediction) const {
571 Dups = 0;
572 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
573 return false;
575 if (TrueBBI.BB->pred_size() > 1) {
576 if (TrueBBI.CannotBeCopied)
577 return false;
579 unsigned Size = TrueBBI.NonPredSize;
580 if (TrueBBI.IsBrAnalyzable) {
581 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
582 // Ends with an unconditional branch. It will be removed.
583 --Size;
584 else {
585 MachineBasicBlock *FExit = FalseBranch
586 ? TrueBBI.TrueBB : TrueBBI.FalseBB;
587 if (FExit)
588 // Require a conditional branch
589 ++Size;
592 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
593 return false;
594 Dups = Size;
597 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
598 if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
599 MachineFunction::iterator I = TrueBBI.BB->getIterator();
600 if (++I == TrueBBI.BB->getParent()->end())
601 return false;
602 TExit = &*I;
604 return TExit && TExit == FalseBBI.BB;
607 /// Count duplicated instructions and move the iterators to show where they
608 /// are.
609 /// @param TIB True Iterator Begin
610 /// @param FIB False Iterator Begin
611 /// These two iterators initially point to the first instruction of the two
612 /// blocks, and finally point to the first non-shared instruction.
613 /// @param TIE True Iterator End
614 /// @param FIE False Iterator End
615 /// These two iterators initially point to End() for the two blocks() and
616 /// finally point to the first shared instruction in the tail.
617 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
618 /// two blocks.
619 /// @param Dups1 count of duplicated instructions at the beginning of the 2
620 /// blocks.
621 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
622 /// @param SkipUnconditionalBranches if true, Don't make sure that
623 /// unconditional branches at the end of the blocks are the same. True is
624 /// passed when the blocks are analyzable to allow for fallthrough to be
625 /// handled.
626 /// @return false if the shared portion prevents if conversion.
627 bool IfConverter::CountDuplicatedInstructions(
628 MachineBasicBlock::iterator &TIB,
629 MachineBasicBlock::iterator &FIB,
630 MachineBasicBlock::iterator &TIE,
631 MachineBasicBlock::iterator &FIE,
632 unsigned &Dups1, unsigned &Dups2,
633 MachineBasicBlock &TBB, MachineBasicBlock &FBB,
634 bool SkipUnconditionalBranches) const {
635 while (TIB != TIE && FIB != FIE) {
636 // Skip dbg_value instructions. These do not count.
637 TIB = skipDebugInstructionsForward(TIB, TIE);
638 FIB = skipDebugInstructionsForward(FIB, FIE);
639 if (TIB == TIE || FIB == FIE)
640 break;
641 if (!TIB->isIdenticalTo(*FIB))
642 break;
643 // A pred-clobbering instruction in the shared portion prevents
644 // if-conversion.
645 std::vector<MachineOperand> PredDefs;
646 if (TII->DefinesPredicate(*TIB, PredDefs))
647 return false;
648 // If we get all the way to the branch instructions, don't count them.
649 if (!TIB->isBranch())
650 ++Dups1;
651 ++TIB;
652 ++FIB;
655 // Check for already containing all of the block.
656 if (TIB == TIE || FIB == FIE)
657 return true;
658 // Now, in preparation for counting duplicate instructions at the ends of the
659 // blocks, switch to reverse_iterators. Note that getReverse() returns an
660 // iterator that points to the same instruction, unlike std::reverse_iterator.
661 // We have to do our own shifting so that we get the same range.
662 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
663 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
664 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
665 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
667 if (!TBB.succ_empty() || !FBB.succ_empty()) {
668 if (SkipUnconditionalBranches) {
669 while (RTIE != RTIB && RTIE->isUnconditionalBranch())
670 ++RTIE;
671 while (RFIE != RFIB && RFIE->isUnconditionalBranch())
672 ++RFIE;
676 // Count duplicate instructions at the ends of the blocks.
677 while (RTIE != RTIB && RFIE != RFIB) {
678 // Skip dbg_value instructions. These do not count.
679 // Note that these are reverse iterators going forward.
680 RTIE = skipDebugInstructionsForward(RTIE, RTIB);
681 RFIE = skipDebugInstructionsForward(RFIE, RFIB);
682 if (RTIE == RTIB || RFIE == RFIB)
683 break;
684 if (!RTIE->isIdenticalTo(*RFIE))
685 break;
686 // We have to verify that any branch instructions are the same, and then we
687 // don't count them toward the # of duplicate instructions.
688 if (!RTIE->isBranch())
689 ++Dups2;
690 ++RTIE;
691 ++RFIE;
693 TIE = std::next(RTIE.getReverse());
694 FIE = std::next(RFIE.getReverse());
695 return true;
698 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
699 /// @param TIB - True Iterator Begin, points to first non-shared instruction
700 /// @param FIB - False Iterator Begin, points to first non-shared instruction
701 /// @param TIE - True Iterator End, points past last non-shared instruction
702 /// @param FIE - False Iterator End, points past last non-shared instruction
703 /// @param TrueBBI - BBInfo to update for the true block.
704 /// @param FalseBBI - BBInfo to update for the false block.
705 /// @returns - false if either block cannot be predicated or if both blocks end
706 /// with a predicate-clobbering instruction.
707 bool IfConverter::RescanInstructions(
708 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
709 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
710 BBInfo &TrueBBI, BBInfo &FalseBBI) const {
711 bool BranchUnpredicable = true;
712 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
713 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
714 if (TrueBBI.IsUnpredicable)
715 return false;
716 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
717 if (FalseBBI.IsUnpredicable)
718 return false;
719 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
720 return false;
721 return true;
724 #ifndef NDEBUG
725 static void verifySameBranchInstructions(
726 MachineBasicBlock *MBB1,
727 MachineBasicBlock *MBB2) {
728 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
729 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
730 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
731 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
732 while (E1 != B1 && E2 != B2) {
733 skipDebugInstructionsForward(E1, B1);
734 skipDebugInstructionsForward(E2, B2);
735 if (E1 == B1 && E2 == B2)
736 break;
738 if (E1 == B1) {
739 assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
740 break;
742 if (E2 == B2) {
743 assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
744 break;
747 if (E1->isBranch() || E2->isBranch())
748 assert(E1->isIdenticalTo(*E2) &&
749 "Branch mis-match, branch instructions don't match.");
750 else
751 break;
752 ++E1;
753 ++E2;
756 #endif
758 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
759 /// with their common predecessor) form a diamond if a common tail block is
760 /// extracted.
761 /// While not strictly a diamond, this pattern would form a diamond if
762 /// tail-merging had merged the shared tails.
763 /// EBB
764 /// _/ \_
765 /// | |
766 /// TBB FBB
767 /// / \ / \
768 /// FalseBB TrueBB FalseBB
769 /// Currently only handles analyzable branches.
770 /// Specifically excludes actual diamonds to avoid overlap.
771 bool IfConverter::ValidForkedDiamond(
772 BBInfo &TrueBBI, BBInfo &FalseBBI,
773 unsigned &Dups1, unsigned &Dups2,
774 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
775 Dups1 = Dups2 = 0;
776 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
777 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
778 return false;
780 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
781 return false;
782 // Don't IfConvert blocks that can't be folded into their predecessor.
783 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
784 return false;
786 // This function is specifically looking for conditional tails, as
787 // unconditional tails are already handled by the standard diamond case.
788 if (TrueBBI.BrCond.size() == 0 ||
789 FalseBBI.BrCond.size() == 0)
790 return false;
792 MachineBasicBlock *TT = TrueBBI.TrueBB;
793 MachineBasicBlock *TF = TrueBBI.FalseBB;
794 MachineBasicBlock *FT = FalseBBI.TrueBB;
795 MachineBasicBlock *FF = FalseBBI.FalseBB;
797 if (!TT)
798 TT = getNextBlock(*TrueBBI.BB);
799 if (!TF)
800 TF = getNextBlock(*TrueBBI.BB);
801 if (!FT)
802 FT = getNextBlock(*FalseBBI.BB);
803 if (!FF)
804 FF = getNextBlock(*FalseBBI.BB);
806 if (!TT || !TF)
807 return false;
809 // Check successors. If they don't match, bail.
810 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
811 return false;
813 bool FalseReversed = false;
814 if (TF == FT && TT == FF) {
815 // If the branches are opposing, but we can't reverse, don't do it.
816 if (!FalseBBI.IsBrReversible)
817 return false;
818 FalseReversed = true;
819 reverseBranchCondition(FalseBBI);
821 auto UnReverseOnExit = make_scope_exit([&]() {
822 if (FalseReversed)
823 reverseBranchCondition(FalseBBI);
826 // Count duplicate instructions at the beginning of the true and false blocks.
827 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
828 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
829 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
830 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
831 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
832 *TrueBBI.BB, *FalseBBI.BB,
833 /* SkipUnconditionalBranches */ true))
834 return false;
836 TrueBBICalc.BB = TrueBBI.BB;
837 FalseBBICalc.BB = FalseBBI.BB;
838 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
839 return false;
841 // The size is used to decide whether to if-convert, and the shared portions
842 // are subtracted off. Because of the subtraction, we just use the size that
843 // was calculated by the original ScanInstructions, as it is correct.
844 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
845 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
846 return true;
849 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
850 /// with their common predecessor) forms a valid diamond shape for ifcvt.
851 bool IfConverter::ValidDiamond(
852 BBInfo &TrueBBI, BBInfo &FalseBBI,
853 unsigned &Dups1, unsigned &Dups2,
854 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
855 Dups1 = Dups2 = 0;
856 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
857 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
858 return false;
860 MachineBasicBlock *TT = TrueBBI.TrueBB;
861 MachineBasicBlock *FT = FalseBBI.TrueBB;
863 if (!TT && blockAlwaysFallThrough(TrueBBI))
864 TT = getNextBlock(*TrueBBI.BB);
865 if (!FT && blockAlwaysFallThrough(FalseBBI))
866 FT = getNextBlock(*FalseBBI.BB);
867 if (TT != FT)
868 return false;
869 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
870 return false;
871 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
872 return false;
874 // FIXME: Allow true block to have an early exit?
875 if (TrueBBI.FalseBB || FalseBBI.FalseBB)
876 return false;
878 // Count duplicate instructions at the beginning and end of the true and
879 // false blocks.
880 // Skip unconditional branches only if we are considering an analyzable
881 // diamond. Otherwise the branches must be the same.
882 bool SkipUnconditionalBranches =
883 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
884 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
885 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
886 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
887 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
888 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
889 *TrueBBI.BB, *FalseBBI.BB,
890 SkipUnconditionalBranches))
891 return false;
893 TrueBBICalc.BB = TrueBBI.BB;
894 FalseBBICalc.BB = FalseBBI.BB;
895 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
896 return false;
897 // The size is used to decide whether to if-convert, and the shared portions
898 // are subtracted off. Because of the subtraction, we just use the size that
899 // was calculated by the original ScanInstructions, as it is correct.
900 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
901 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
902 return true;
905 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
906 /// the block is predicable.
907 void IfConverter::AnalyzeBranches(BBInfo &BBI) {
908 if (BBI.IsDone)
909 return;
911 BBI.TrueBB = BBI.FalseBB = nullptr;
912 BBI.BrCond.clear();
913 BBI.IsBrAnalyzable =
914 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
915 if (!BBI.IsBrAnalyzable) {
916 BBI.TrueBB = nullptr;
917 BBI.FalseBB = nullptr;
918 BBI.BrCond.clear();
921 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
922 BBI.IsBrReversible = (RevCond.size() == 0) ||
923 !TII->reverseBranchCondition(RevCond);
924 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
926 if (BBI.BrCond.size()) {
927 // No false branch. This BB must end with a conditional branch and a
928 // fallthrough.
929 if (!BBI.FalseBB)
930 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
931 if (!BBI.FalseBB) {
932 // Malformed bcc? True and false blocks are the same?
933 BBI.IsUnpredicable = true;
938 /// ScanInstructions - Scan all the instructions in the block to determine if
939 /// the block is predicable. In most cases, that means all the instructions
940 /// in the block are isPredicable(). Also checks if the block contains any
941 /// instruction which can clobber a predicate (e.g. condition code register).
942 /// If so, the block is not predicable unless it's the last instruction.
943 void IfConverter::ScanInstructions(BBInfo &BBI,
944 MachineBasicBlock::iterator &Begin,
945 MachineBasicBlock::iterator &End,
946 bool BranchUnpredicable) const {
947 if (BBI.IsDone || BBI.IsUnpredicable)
948 return;
950 bool AlreadyPredicated = !BBI.Predicate.empty();
952 BBI.NonPredSize = 0;
953 BBI.ExtraCost = 0;
954 BBI.ExtraCost2 = 0;
955 BBI.ClobbersPred = false;
956 for (MachineInstr &MI : make_range(Begin, End)) {
957 if (MI.isDebugInstr())
958 continue;
960 // It's unsafe to duplicate convergent instructions in this context, so set
961 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
962 // following CFG, which is subject to our "simple" transformation.
964 // BB0 // if (c1) goto BB1; else goto BB2;
965 // / \
966 // BB1 |
967 // | BB2 // if (c2) goto TBB; else goto FBB;
968 // | / |
969 // | / |
970 // TBB |
971 // | |
972 // | FBB
973 // |
974 // exit
976 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
977 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
978 // TBB contains a convergent instruction. This is safe iff doing so does
979 // not add a control-flow dependency to the convergent instruction -- i.e.,
980 // it's safe iff the set of control flows that leads us to the convergent
981 // instruction does not get smaller after the transformation.
983 // Originally we executed TBB if c1 || c2. After the transformation, there
984 // are two copies of TBB's instructions. We get to the first if c1, and we
985 // get to the second if !c1 && c2.
987 // There are clearly fewer ways to satisfy the condition "c1" than
988 // "c1 || c2". Since we've shrunk the set of control flows which lead to
989 // our convergent instruction, the transformation is unsafe.
990 if (MI.isNotDuplicable() || MI.isConvergent())
991 BBI.CannotBeCopied = true;
993 bool isPredicated = TII->isPredicated(MI);
994 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
996 if (BranchUnpredicable && MI.isBranch()) {
997 BBI.IsUnpredicable = true;
998 return;
1001 // A conditional branch is not predicable, but it may be eliminated.
1002 if (isCondBr)
1003 continue;
1005 if (!isPredicated) {
1006 BBI.NonPredSize++;
1007 unsigned ExtraPredCost = TII->getPredicationCost(MI);
1008 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
1009 if (NumCycles > 1)
1010 BBI.ExtraCost += NumCycles-1;
1011 BBI.ExtraCost2 += ExtraPredCost;
1012 } else if (!AlreadyPredicated) {
1013 // FIXME: This instruction is already predicated before the
1014 // if-conversion pass. It's probably something like a conditional move.
1015 // Mark this block unpredicable for now.
1016 BBI.IsUnpredicable = true;
1017 return;
1020 if (BBI.ClobbersPred && !isPredicated) {
1021 // Predicate modification instruction should end the block (except for
1022 // already predicated instructions and end of block branches).
1023 // Predicate may have been modified, the subsequent (currently)
1024 // unpredicated instructions cannot be correctly predicated.
1025 BBI.IsUnpredicable = true;
1026 return;
1029 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1030 // still potentially predicable.
1031 std::vector<MachineOperand> PredDefs;
1032 if (TII->DefinesPredicate(MI, PredDefs))
1033 BBI.ClobbersPred = true;
1035 if (!TII->isPredicable(MI)) {
1036 BBI.IsUnpredicable = true;
1037 return;
1042 /// Determine if the block is a suitable candidate to be predicated by the
1043 /// specified predicate.
1044 /// @param BBI BBInfo for the block to check
1045 /// @param Pred Predicate array for the branch that leads to BBI
1046 /// @param isTriangle true if the Analysis is for a triangle
1047 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1048 /// case
1049 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
1050 /// contains any instruction that would make the block unpredicable.
1051 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
1052 SmallVectorImpl<MachineOperand> &Pred,
1053 bool isTriangle, bool RevBranch,
1054 bool hasCommonTail) {
1055 // If the block is dead or unpredicable, then it cannot be predicated.
1056 // Two blocks may share a common unpredicable tail, but this doesn't prevent
1057 // them from being if-converted. The non-shared portion is assumed to have
1058 // been checked
1059 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
1060 return false;
1062 // If it is already predicated but we couldn't analyze its terminator, the
1063 // latter might fallthrough, but we can't determine where to.
1064 // Conservatively avoid if-converting again.
1065 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
1066 return false;
1068 // If it is already predicated, check if the new predicate subsumes
1069 // its predicate.
1070 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
1071 return false;
1073 if (!hasCommonTail && BBI.BrCond.size()) {
1074 if (!isTriangle)
1075 return false;
1077 // Test predicate subsumption.
1078 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
1079 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1080 if (RevBranch) {
1081 if (TII->reverseBranchCondition(Cond))
1082 return false;
1084 if (TII->reverseBranchCondition(RevPred) ||
1085 !TII->SubsumesPredicate(Cond, RevPred))
1086 return false;
1089 return true;
1092 /// Analyze the structure of the sub-CFG starting from the specified block.
1093 /// Record its successors and whether it looks like an if-conversion candidate.
1094 void IfConverter::AnalyzeBlock(
1095 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1096 struct BBState {
1097 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
1098 MachineBasicBlock *MBB;
1100 /// This flag is true if MBB's successors have been analyzed.
1101 bool SuccsAnalyzed;
1104 // Push MBB to the stack.
1105 SmallVector<BBState, 16> BBStack(1, MBB);
1107 while (!BBStack.empty()) {
1108 BBState &State = BBStack.back();
1109 MachineBasicBlock *BB = State.MBB;
1110 BBInfo &BBI = BBAnalysis[BB->getNumber()];
1112 if (!State.SuccsAnalyzed) {
1113 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
1114 BBStack.pop_back();
1115 continue;
1118 BBI.BB = BB;
1119 BBI.IsBeingAnalyzed = true;
1121 AnalyzeBranches(BBI);
1122 MachineBasicBlock::iterator Begin = BBI.BB->begin();
1123 MachineBasicBlock::iterator End = BBI.BB->end();
1124 ScanInstructions(BBI, Begin, End);
1126 // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1127 // not considered for ifcvt anymore.
1128 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
1129 BBI.IsBeingAnalyzed = false;
1130 BBI.IsAnalyzed = true;
1131 BBStack.pop_back();
1132 continue;
1135 // Do not ifcvt if either path is a back edge to the entry block.
1136 if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
1137 BBI.IsBeingAnalyzed = false;
1138 BBI.IsAnalyzed = true;
1139 BBStack.pop_back();
1140 continue;
1143 // Do not ifcvt if true and false fallthrough blocks are the same.
1144 if (!BBI.FalseBB) {
1145 BBI.IsBeingAnalyzed = false;
1146 BBI.IsAnalyzed = true;
1147 BBStack.pop_back();
1148 continue;
1151 // Push the False and True blocks to the stack.
1152 State.SuccsAnalyzed = true;
1153 BBStack.push_back(*BBI.FalseBB);
1154 BBStack.push_back(*BBI.TrueBB);
1155 continue;
1158 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1159 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1161 if (TrueBBI.IsDone && FalseBBI.IsDone) {
1162 BBI.IsBeingAnalyzed = false;
1163 BBI.IsAnalyzed = true;
1164 BBStack.pop_back();
1165 continue;
1168 SmallVector<MachineOperand, 4>
1169 RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1170 bool CanRevCond = !TII->reverseBranchCondition(RevCond);
1172 unsigned Dups = 0;
1173 unsigned Dups2 = 0;
1174 bool TNeedSub = !TrueBBI.Predicate.empty();
1175 bool FNeedSub = !FalseBBI.Predicate.empty();
1176 bool Enqueued = false;
1178 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
1180 if (CanRevCond) {
1181 BBInfo TrueBBICalc, FalseBBICalc;
1182 auto feasibleDiamond = [&]() {
1183 bool MeetsSize = MeetIfcvtSizeLimit(
1184 *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) +
1185 TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2,
1186 *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) +
1187 FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2,
1188 Prediction);
1189 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
1190 /* IsTriangle */ false, /* RevCond */ false,
1191 /* hasCommonTail */ true);
1192 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
1193 /* IsTriangle */ false, /* RevCond */ false,
1194 /* hasCommonTail */ true);
1195 return MeetsSize && TrueFeasible && FalseFeasible;
1198 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1199 TrueBBICalc, FalseBBICalc)) {
1200 if (feasibleDiamond()) {
1201 // Diamond:
1202 // EBB
1203 // / \_
1204 // | |
1205 // TBB FBB
1206 // \ /
1207 // TailBB
1208 // Note TailBB can be empty.
1209 Tokens.push_back(std::make_unique<IfcvtToken>(
1210 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1211 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1212 Enqueued = true;
1214 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1215 TrueBBICalc, FalseBBICalc)) {
1216 if (feasibleDiamond()) {
1217 // ForkedDiamond:
1218 // if TBB and FBB have a common tail that includes their conditional
1219 // branch instructions, then we can If Convert this pattern.
1220 // EBB
1221 // _/ \_
1222 // | |
1223 // TBB FBB
1224 // / \ / \
1225 // FalseBB TrueBB FalseBB
1227 Tokens.push_back(std::make_unique<IfcvtToken>(
1228 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1229 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1230 Enqueued = true;
1235 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
1236 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1237 TrueBBI.ExtraCost2, Prediction) &&
1238 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
1239 // Triangle:
1240 // EBB
1241 // | \_
1242 // | |
1243 // | TBB
1244 // | /
1245 // FBB
1246 Tokens.push_back(
1247 std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
1248 Enqueued = true;
1251 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
1252 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1253 TrueBBI.ExtraCost2, Prediction) &&
1254 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
1255 Tokens.push_back(
1256 std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
1257 Enqueued = true;
1260 if (ValidSimple(TrueBBI, Dups, Prediction) &&
1261 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1262 TrueBBI.ExtraCost2, Prediction) &&
1263 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
1264 // Simple (split, no rejoin):
1265 // EBB
1266 // | \_
1267 // | |
1268 // | TBB---> exit
1269 // |
1270 // FBB
1271 Tokens.push_back(
1272 std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
1273 Enqueued = true;
1276 if (CanRevCond) {
1277 // Try the other path...
1278 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
1279 Prediction.getCompl()) &&
1280 MeetIfcvtSizeLimit(*FalseBBI.BB,
1281 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1282 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1283 FeasibilityAnalysis(FalseBBI, RevCond, true)) {
1284 Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
1285 FNeedSub, Dups));
1286 Enqueued = true;
1289 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
1290 Prediction.getCompl()) &&
1291 MeetIfcvtSizeLimit(*FalseBBI.BB,
1292 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1293 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1294 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
1295 Tokens.push_back(
1296 std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
1297 Enqueued = true;
1300 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
1301 MeetIfcvtSizeLimit(*FalseBBI.BB,
1302 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1303 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1304 FeasibilityAnalysis(FalseBBI, RevCond)) {
1305 Tokens.push_back(
1306 std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
1307 Enqueued = true;
1311 BBI.IsEnqueued = Enqueued;
1312 BBI.IsBeingAnalyzed = false;
1313 BBI.IsAnalyzed = true;
1314 BBStack.pop_back();
1318 /// Analyze all blocks and find entries for all if-conversion candidates.
1319 void IfConverter::AnalyzeBlocks(
1320 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1321 for (MachineBasicBlock &MBB : MF)
1322 AnalyzeBlock(MBB, Tokens);
1324 // Sort to favor more complex ifcvt scheme.
1325 llvm::stable_sort(Tokens, IfcvtTokenCmp);
1328 /// Returns true either if ToMBB is the next block after MBB or that all the
1329 /// intervening blocks are empty (given MBB can fall through to its next block).
1330 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
1331 MachineFunction::iterator PI = MBB.getIterator();
1332 MachineFunction::iterator I = std::next(PI);
1333 MachineFunction::iterator TI = ToMBB.getIterator();
1334 MachineFunction::iterator E = MBB.getParent()->end();
1335 while (I != TI) {
1336 // Check isSuccessor to avoid case where the next block is empty, but
1337 // it's not a successor.
1338 if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1339 return false;
1340 PI = I++;
1342 // Finally see if the last I is indeed a successor to PI.
1343 return PI->isSuccessor(&*I);
1346 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1347 /// can be if-converted. If predecessor is already enqueued, dequeue it!
1348 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
1349 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
1350 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1351 if (PBBI.IsDone || PBBI.BB == &MBB)
1352 continue;
1353 PBBI.IsAnalyzed = false;
1354 PBBI.IsEnqueued = false;
1358 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
1359 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
1360 const TargetInstrInfo *TII) {
1361 DebugLoc dl; // FIXME: this is nowhere
1362 SmallVector<MachineOperand, 0> NoCond;
1363 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
1366 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1367 /// values defined in MI which are also live/used by MI.
1368 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1369 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
1371 // Before stepping forward past MI, remember which regs were live
1372 // before MI. This is needed to set the Undef flag only when reg is
1373 // dead.
1374 SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
1375 LiveBeforeMI.setUniverse(TRI->getNumRegs());
1376 for (unsigned Reg : Redefs)
1377 LiveBeforeMI.insert(Reg);
1379 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
1380 Redefs.stepForward(MI, Clobbers);
1382 // Now add the implicit uses for each of the clobbered values.
1383 for (auto Clobber : Clobbers) {
1384 // FIXME: Const cast here is nasty, but better than making StepForward
1385 // take a mutable instruction instead of const.
1386 unsigned Reg = Clobber.first;
1387 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
1388 MachineInstr *OpMI = Op.getParent();
1389 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
1390 if (Op.isRegMask()) {
1391 // First handle regmasks. They clobber any entries in the mask which
1392 // means that we need a def for those registers.
1393 if (LiveBeforeMI.count(Reg))
1394 MIB.addReg(Reg, RegState::Implicit);
1396 // We also need to add an implicit def of this register for the later
1397 // use to read from.
1398 // For the register allocator to have allocated a register clobbered
1399 // by the call which is used later, it must be the case that
1400 // the call doesn't return.
1401 MIB.addReg(Reg, RegState::Implicit | RegState::Define);
1402 continue;
1404 if (LiveBeforeMI.count(Reg))
1405 MIB.addReg(Reg, RegState::Implicit);
1406 else {
1407 bool HasLiveSubReg = false;
1408 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
1409 if (!LiveBeforeMI.count(*S))
1410 continue;
1411 HasLiveSubReg = true;
1412 break;
1414 if (HasLiveSubReg)
1415 MIB.addReg(Reg, RegState::Implicit);
1420 /// If convert a simple (split, no rejoin) sub-CFG.
1421 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1422 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1423 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1424 BBInfo *CvtBBI = &TrueBBI;
1425 BBInfo *NextBBI = &FalseBBI;
1427 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1428 if (Kind == ICSimpleFalse)
1429 std::swap(CvtBBI, NextBBI);
1431 MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1432 MachineBasicBlock &NextMBB = *NextBBI->BB;
1433 if (CvtBBI->IsDone ||
1434 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1435 // Something has changed. It's no longer safe to predicate this block.
1436 BBI.IsAnalyzed = false;
1437 CvtBBI->IsAnalyzed = false;
1438 return false;
1441 if (CvtMBB.hasAddressTaken())
1442 // Conservatively abort if-conversion if BB's address is taken.
1443 return false;
1445 if (Kind == ICSimpleFalse)
1446 if (TII->reverseBranchCondition(Cond))
1447 llvm_unreachable("Unable to reverse branch condition!");
1449 Redefs.init(*TRI);
1451 if (MRI->tracksLiveness()) {
1452 // Initialize liveins to the first BB. These are potentially redefined by
1453 // predicated instructions.
1454 Redefs.addLiveIns(CvtMBB);
1455 Redefs.addLiveIns(NextMBB);
1458 // Remove the branches from the entry so we can add the contents of the true
1459 // block to it.
1460 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1462 if (CvtMBB.pred_size() > 1) {
1463 // Copy instructions in the true block, predicate them, and add them to
1464 // the entry block.
1465 CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1467 // Keep the CFG updated.
1468 BBI.BB->removeSuccessor(&CvtMBB, true);
1469 } else {
1470 // Predicate the instructions in the true block.
1471 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1473 // Merge converted block into entry block. The BB to Cvt edge is removed
1474 // by MergeBlocks.
1475 MergeBlocks(BBI, *CvtBBI);
1478 bool IterIfcvt = true;
1479 if (!canFallThroughTo(*BBI.BB, NextMBB)) {
1480 InsertUncondBranch(*BBI.BB, NextMBB, TII);
1481 BBI.HasFallThrough = false;
1482 // Now ifcvt'd block will look like this:
1483 // BB:
1484 // ...
1485 // t, f = cmp
1486 // if t op
1487 // b BBf
1489 // We cannot further ifcvt this block because the unconditional branch
1490 // will have to be predicated on the new condition, that will not be
1491 // available if cmp executes.
1492 IterIfcvt = false;
1495 // Update block info. BB can be iteratively if-converted.
1496 if (!IterIfcvt)
1497 BBI.IsDone = true;
1498 InvalidatePreds(*BBI.BB);
1499 CvtBBI->IsDone = true;
1501 // FIXME: Must maintain LiveIns.
1502 return true;
1505 /// If convert a triangle sub-CFG.
1506 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1507 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1508 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1509 BBInfo *CvtBBI = &TrueBBI;
1510 BBInfo *NextBBI = &FalseBBI;
1511 DebugLoc dl; // FIXME: this is nowhere
1513 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1514 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1515 std::swap(CvtBBI, NextBBI);
1517 MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1518 MachineBasicBlock &NextMBB = *NextBBI->BB;
1519 if (CvtBBI->IsDone ||
1520 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1521 // Something has changed. It's no longer safe to predicate this block.
1522 BBI.IsAnalyzed = false;
1523 CvtBBI->IsAnalyzed = false;
1524 return false;
1527 if (CvtMBB.hasAddressTaken())
1528 // Conservatively abort if-conversion if BB's address is taken.
1529 return false;
1531 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1532 if (TII->reverseBranchCondition(Cond))
1533 llvm_unreachable("Unable to reverse branch condition!");
1535 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1536 if (reverseBranchCondition(*CvtBBI)) {
1537 // BB has been changed, modify its predecessors (except for this
1538 // one) so they don't get ifcvt'ed based on bad intel.
1539 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
1540 if (PBB == BBI.BB)
1541 continue;
1542 BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1543 if (PBBI.IsEnqueued) {
1544 PBBI.IsAnalyzed = false;
1545 PBBI.IsEnqueued = false;
1551 // Initialize liveins to the first BB. These are potentially redefined by
1552 // predicated instructions.
1553 Redefs.init(*TRI);
1554 if (MRI->tracksLiveness()) {
1555 Redefs.addLiveIns(CvtMBB);
1556 Redefs.addLiveIns(NextMBB);
1559 bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1560 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1562 if (HasEarlyExit) {
1563 // Get probabilities before modifying CvtMBB and BBI.BB.
1564 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
1565 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
1566 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
1567 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
1570 // Remove the branches from the entry so we can add the contents of the true
1571 // block to it.
1572 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1574 if (CvtMBB.pred_size() > 1) {
1575 // Copy instructions in the true block, predicate them, and add them to
1576 // the entry block.
1577 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1578 } else {
1579 // Predicate the 'true' block after removing its branch.
1580 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
1581 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1583 // Now merge the entry of the triangle with the true block.
1584 MergeBlocks(BBI, *CvtBBI, false);
1587 // Keep the CFG updated.
1588 BBI.BB->removeSuccessor(&CvtMBB, true);
1590 // If 'true' block has a 'false' successor, add an exit branch to it.
1591 if (HasEarlyExit) {
1592 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1593 CvtBBI->BrCond.end());
1594 if (TII->reverseBranchCondition(RevCond))
1595 llvm_unreachable("Unable to reverse branch condition!");
1597 // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1598 // NewNext = New_Prob(BBI.BB, NextMBB) =
1599 // Prob(BBI.BB, NextMBB) +
1600 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1601 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1602 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1603 auto NewTrueBB = getNextBlock(*BBI.BB);
1604 auto NewNext = BBNext + BBCvt * CvtNext;
1605 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
1606 if (NewTrueBBIter != BBI.BB->succ_end())
1607 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1609 auto NewFalse = BBCvt * CvtFalse;
1610 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1611 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1614 // Merge in the 'false' block if the 'false' block has no other
1615 // predecessors. Otherwise, add an unconditional branch to 'false'.
1616 bool FalseBBDead = false;
1617 bool IterIfcvt = true;
1618 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
1619 if (!isFallThrough) {
1620 // Only merge them if the true block does not fallthrough to the false
1621 // block. By not merging them, we make it possible to iteratively
1622 // ifcvt the blocks.
1623 if (!HasEarlyExit &&
1624 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
1625 !NextMBB.hasAddressTaken()) {
1626 MergeBlocks(BBI, *NextBBI);
1627 FalseBBDead = true;
1628 } else {
1629 InsertUncondBranch(*BBI.BB, NextMBB, TII);
1630 BBI.HasFallThrough = false;
1632 // Mixed predicated and unpredicated code. This cannot be iteratively
1633 // predicated.
1634 IterIfcvt = false;
1637 // Update block info. BB can be iteratively if-converted.
1638 if (!IterIfcvt)
1639 BBI.IsDone = true;
1640 InvalidatePreds(*BBI.BB);
1641 CvtBBI->IsDone = true;
1642 if (FalseBBDead)
1643 NextBBI->IsDone = true;
1645 // FIXME: Must maintain LiveIns.
1646 return true;
1649 /// Common code shared between diamond conversions.
1650 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1651 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1652 /// and FalseBBI
1653 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1654 /// and \p FalseBBI
1655 /// \p RemoveBranch - Remove the common branch of the two blocks before
1656 /// predicating. Only false for unanalyzable fallthrough
1657 /// cases. The caller will replace the branch if necessary.
1658 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1659 /// unanalyzable fallthrough
1660 bool IfConverter::IfConvertDiamondCommon(
1661 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
1662 unsigned NumDups1, unsigned NumDups2,
1663 bool TClobbersPred, bool FClobbersPred,
1664 bool RemoveBranch, bool MergeAddEdges) {
1666 if (TrueBBI.IsDone || FalseBBI.IsDone ||
1667 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
1668 // Something has changed. It's no longer safe to predicate these blocks.
1669 BBI.IsAnalyzed = false;
1670 TrueBBI.IsAnalyzed = false;
1671 FalseBBI.IsAnalyzed = false;
1672 return false;
1675 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1676 // Conservatively abort if-conversion if either BB has its address taken.
1677 return false;
1679 // Put the predicated instructions from the 'true' block before the
1680 // instructions from the 'false' block, unless the true block would clobber
1681 // the predicate, in which case, do the opposite.
1682 BBInfo *BBI1 = &TrueBBI;
1683 BBInfo *BBI2 = &FalseBBI;
1684 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1685 if (TII->reverseBranchCondition(RevCond))
1686 llvm_unreachable("Unable to reverse branch condition!");
1687 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1688 SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1690 // Figure out the more profitable ordering.
1691 bool DoSwap = false;
1692 if (TClobbersPred && !FClobbersPred)
1693 DoSwap = true;
1694 else if (!TClobbersPred && !FClobbersPred) {
1695 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1696 DoSwap = true;
1697 } else if (TClobbersPred && FClobbersPred)
1698 llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1699 if (DoSwap) {
1700 std::swap(BBI1, BBI2);
1701 std::swap(Cond1, Cond2);
1704 // Remove the conditional branch from entry to the blocks.
1705 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1707 MachineBasicBlock &MBB1 = *BBI1->BB;
1708 MachineBasicBlock &MBB2 = *BBI2->BB;
1710 // Initialize the Redefs:
1711 // - BB2 live-in regs need implicit uses before being redefined by BB1
1712 // instructions.
1713 // - BB1 live-out regs need implicit uses before being redefined by BB2
1714 // instructions. We start with BB1 live-ins so we have the live-out regs
1715 // after tracking the BB1 instructions.
1716 Redefs.init(*TRI);
1717 if (MRI->tracksLiveness()) {
1718 Redefs.addLiveIns(MBB1);
1719 Redefs.addLiveIns(MBB2);
1722 // Remove the duplicated instructions at the beginnings of both paths.
1723 // Skip dbg_value instructions.
1724 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
1725 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
1726 BBI1->NonPredSize -= NumDups1;
1727 BBI2->NonPredSize -= NumDups1;
1729 // Skip past the dups on each side separately since there may be
1730 // differing dbg_value entries. NumDups1 can include a "return"
1731 // instruction, if it's not marked as "branch".
1732 for (unsigned i = 0; i < NumDups1; ++DI1) {
1733 if (DI1 == MBB1.end())
1734 break;
1735 if (!DI1->isDebugInstr())
1736 ++i;
1738 while (NumDups1 != 0) {
1739 ++DI2;
1740 if (DI2 == MBB2.end())
1741 break;
1742 if (!DI2->isDebugInstr())
1743 --NumDups1;
1746 if (MRI->tracksLiveness()) {
1747 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
1748 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
1749 Redefs.stepForward(MI, Dummy);
1753 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
1754 MBB2.erase(MBB2.begin(), DI2);
1756 // The branches have been checked to match, so it is safe to remove the
1757 // branch in BB1 and rely on the copy in BB2. The complication is that
1758 // the blocks may end with a return instruction, which may or may not
1759 // be marked as "branch". If it's not, then it could be included in
1760 // "dups1", leaving the blocks potentially empty after moving the common
1761 // duplicates.
1762 #ifndef NDEBUG
1763 // Unanalyzable branches must match exactly. Check that now.
1764 if (!BBI1->IsBrAnalyzable)
1765 verifySameBranchInstructions(&MBB1, &MBB2);
1766 #endif
1767 // Remove duplicated instructions from the tail of MBB1: any branch
1768 // instructions, and the common instructions counted by NumDups2.
1769 DI1 = MBB1.end();
1770 while (DI1 != MBB1.begin()) {
1771 MachineBasicBlock::iterator Prev = std::prev(DI1);
1772 if (!Prev->isBranch() && !Prev->isDebugInstr())
1773 break;
1774 DI1 = Prev;
1776 for (unsigned i = 0; i != NumDups2; ) {
1777 // NumDups2 only counted non-dbg_value instructions, so this won't
1778 // run off the head of the list.
1779 assert(DI1 != MBB1.begin());
1780 --DI1;
1781 // skip dbg_value instructions
1782 if (!DI1->isDebugInstr())
1783 ++i;
1785 MBB1.erase(DI1, MBB1.end());
1787 DI2 = BBI2->BB->end();
1788 // The branches have been checked to match. Skip over the branch in the false
1789 // block so that we don't try to predicate it.
1790 if (RemoveBranch)
1791 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
1792 else {
1793 // Make DI2 point to the end of the range where the common "tail"
1794 // instructions could be found.
1795 while (DI2 != MBB2.begin()) {
1796 MachineBasicBlock::iterator Prev = std::prev(DI2);
1797 if (!Prev->isBranch() && !Prev->isDebugInstr())
1798 break;
1799 DI2 = Prev;
1802 while (NumDups2 != 0) {
1803 // NumDups2 only counted non-dbg_value instructions, so this won't
1804 // run off the head of the list.
1805 assert(DI2 != MBB2.begin());
1806 --DI2;
1807 // skip dbg_value instructions
1808 if (!DI2->isDebugInstr())
1809 --NumDups2;
1812 // Remember which registers would later be defined by the false block.
1813 // This allows us not to predicate instructions in the true block that would
1814 // later be re-defined. That is, rather than
1815 // subeq r0, r1, #1
1816 // addne r0, r1, #1
1817 // generate:
1818 // sub r0, r1, #1
1819 // addne r0, r1, #1
1820 SmallSet<MCPhysReg, 4> RedefsByFalse;
1821 SmallSet<MCPhysReg, 4> ExtUses;
1822 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
1823 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
1824 if (FI.isDebugInstr())
1825 continue;
1826 SmallVector<MCPhysReg, 4> Defs;
1827 for (const MachineOperand &MO : FI.operands()) {
1828 if (!MO.isReg())
1829 continue;
1830 Register Reg = MO.getReg();
1831 if (!Reg)
1832 continue;
1833 if (MO.isDef()) {
1834 Defs.push_back(Reg);
1835 } else if (!RedefsByFalse.count(Reg)) {
1836 // These are defined before ctrl flow reach the 'false' instructions.
1837 // They cannot be modified by the 'true' instructions.
1838 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1839 SubRegs.isValid(); ++SubRegs)
1840 ExtUses.insert(*SubRegs);
1844 for (MCPhysReg Reg : Defs) {
1845 if (!ExtUses.count(Reg)) {
1846 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1847 SubRegs.isValid(); ++SubRegs)
1848 RedefsByFalse.insert(*SubRegs);
1854 // Predicate the 'true' block.
1855 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
1857 // After predicating BBI1, if there is a predicated terminator in BBI1 and
1858 // a non-predicated in BBI2, then we don't want to predicate the one from
1859 // BBI2. The reason is that if we merged these blocks, we would end up with
1860 // two predicated terminators in the same block.
1861 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1862 // predicate them either. They were checked to be identical, and so the
1863 // same branch would happen regardless of which path was taken.
1864 if (!MBB2.empty() && (DI2 == MBB2.end())) {
1865 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
1866 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
1867 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
1868 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
1869 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
1870 --DI2;
1873 // Predicate the 'false' block.
1874 PredicateBlock(*BBI2, DI2, *Cond2);
1876 // Merge the true block into the entry of the diamond.
1877 MergeBlocks(BBI, *BBI1, MergeAddEdges);
1878 MergeBlocks(BBI, *BBI2, MergeAddEdges);
1879 return true;
1882 /// If convert an almost-diamond sub-CFG where the true
1883 /// and false blocks share a common tail.
1884 bool IfConverter::IfConvertForkedDiamond(
1885 BBInfo &BBI, IfcvtKind Kind,
1886 unsigned NumDups1, unsigned NumDups2,
1887 bool TClobbersPred, bool FClobbersPred) {
1888 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1889 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1891 // Save the debug location for later.
1892 DebugLoc dl;
1893 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
1894 if (TIE != TrueBBI.BB->end())
1895 dl = TIE->getDebugLoc();
1896 // Removing branches from both blocks is safe, because we have already
1897 // determined that both blocks have the same branch instructions. The branch
1898 // will be added back at the end, unpredicated.
1899 if (!IfConvertDiamondCommon(
1900 BBI, TrueBBI, FalseBBI,
1901 NumDups1, NumDups2,
1902 TClobbersPred, FClobbersPred,
1903 /* RemoveBranch */ true, /* MergeAddEdges */ true))
1904 return false;
1906 // Add back the branch.
1907 // Debug location saved above when removing the branch from BBI2
1908 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
1909 TrueBBI.BrCond, dl);
1911 // Update block info.
1912 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1913 InvalidatePreds(*BBI.BB);
1915 // FIXME: Must maintain LiveIns.
1916 return true;
1919 /// If convert a diamond sub-CFG.
1920 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
1921 unsigned NumDups1, unsigned NumDups2,
1922 bool TClobbersPred, bool FClobbersPred) {
1923 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1924 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1925 MachineBasicBlock *TailBB = TrueBBI.TrueBB;
1927 // True block must fall through or end with an unanalyzable terminator.
1928 if (!TailBB) {
1929 if (blockAlwaysFallThrough(TrueBBI))
1930 TailBB = FalseBBI.TrueBB;
1931 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
1934 if (!IfConvertDiamondCommon(
1935 BBI, TrueBBI, FalseBBI,
1936 NumDups1, NumDups2,
1937 TClobbersPred, FClobbersPred,
1938 /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
1939 /* MergeAddEdges */ TailBB == nullptr))
1940 return false;
1942 // If the if-converted block falls through or unconditionally branches into
1943 // the tail block, and the tail block does not have other predecessors, then
1944 // fold the tail block in as well. Otherwise, unless it falls through to the
1945 // tail, add a unconditional branch to it.
1946 if (TailBB) {
1947 // We need to remove the edges to the true and false blocks manually since
1948 // we didn't let IfConvertDiamondCommon update the CFG.
1949 BBI.BB->removeSuccessor(TrueBBI.BB);
1950 BBI.BB->removeSuccessor(FalseBBI.BB, true);
1952 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
1953 bool CanMergeTail = !TailBBI.HasFallThrough &&
1954 !TailBBI.BB->hasAddressTaken();
1955 // The if-converted block can still have a predicated terminator
1956 // (e.g. a predicated return). If that is the case, we cannot merge
1957 // it with the tail block.
1958 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
1959 if (TI != BBI.BB->end() && TII->isPredicated(*TI))
1960 CanMergeTail = false;
1961 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
1962 // check if there are any other predecessors besides those.
1963 unsigned NumPreds = TailBB->pred_size();
1964 if (NumPreds > 1)
1965 CanMergeTail = false;
1966 else if (NumPreds == 1 && CanMergeTail) {
1967 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
1968 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
1969 CanMergeTail = false;
1971 if (CanMergeTail) {
1972 MergeBlocks(BBI, TailBBI);
1973 TailBBI.IsDone = true;
1974 } else {
1975 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
1976 InsertUncondBranch(*BBI.BB, *TailBB, TII);
1977 BBI.HasFallThrough = false;
1981 // Update block info.
1982 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1983 InvalidatePreds(*BBI.BB);
1985 // FIXME: Must maintain LiveIns.
1986 return true;
1989 static bool MaySpeculate(const MachineInstr &MI,
1990 SmallSet<MCPhysReg, 4> &LaterRedefs) {
1991 bool SawStore = true;
1992 if (!MI.isSafeToMove(nullptr, SawStore))
1993 return false;
1995 for (const MachineOperand &MO : MI.operands()) {
1996 if (!MO.isReg())
1997 continue;
1998 Register Reg = MO.getReg();
1999 if (!Reg)
2000 continue;
2001 if (MO.isDef() && !LaterRedefs.count(Reg))
2002 return false;
2005 return true;
2008 /// Predicate instructions from the start of the block to the specified end with
2009 /// the specified condition.
2010 void IfConverter::PredicateBlock(BBInfo &BBI,
2011 MachineBasicBlock::iterator E,
2012 SmallVectorImpl<MachineOperand> &Cond,
2013 SmallSet<MCPhysReg, 4> *LaterRedefs) {
2014 bool AnyUnpred = false;
2015 bool MaySpec = LaterRedefs != nullptr;
2016 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
2017 if (I.isDebugInstr() || TII->isPredicated(I))
2018 continue;
2019 // It may be possible not to predicate an instruction if it's the 'true'
2020 // side of a diamond and the 'false' side may re-define the instruction's
2021 // defs.
2022 if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
2023 AnyUnpred = true;
2024 continue;
2026 // If any instruction is predicated, then every instruction after it must
2027 // be predicated.
2028 MaySpec = false;
2029 if (!TII->PredicateInstruction(I, Cond)) {
2030 #ifndef NDEBUG
2031 dbgs() << "Unable to predicate " << I << "!\n";
2032 #endif
2033 llvm_unreachable(nullptr);
2036 // If the predicated instruction now redefines a register as the result of
2037 // if-conversion, add an implicit kill.
2038 UpdatePredRedefs(I, Redefs);
2041 BBI.Predicate.append(Cond.begin(), Cond.end());
2043 BBI.IsAnalyzed = false;
2044 BBI.NonPredSize = 0;
2046 ++NumIfConvBBs;
2047 if (AnyUnpred)
2048 ++NumUnpred;
2051 /// Copy and predicate instructions from source BB to the destination block.
2052 /// Skip end of block branches if IgnoreBr is true.
2053 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
2054 SmallVectorImpl<MachineOperand> &Cond,
2055 bool IgnoreBr) {
2056 MachineFunction &MF = *ToBBI.BB->getParent();
2058 MachineBasicBlock &FromMBB = *FromBBI.BB;
2059 for (MachineInstr &I : FromMBB) {
2060 // Do not copy the end of the block branches.
2061 if (IgnoreBr && I.isBranch())
2062 break;
2064 MachineInstr *MI = MF.CloneMachineInstr(&I);
2065 ToBBI.BB->insert(ToBBI.BB->end(), MI);
2066 ToBBI.NonPredSize++;
2067 unsigned ExtraPredCost = TII->getPredicationCost(I);
2068 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
2069 if (NumCycles > 1)
2070 ToBBI.ExtraCost += NumCycles-1;
2071 ToBBI.ExtraCost2 += ExtraPredCost;
2073 if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
2074 if (!TII->PredicateInstruction(*MI, Cond)) {
2075 #ifndef NDEBUG
2076 dbgs() << "Unable to predicate " << I << "!\n";
2077 #endif
2078 llvm_unreachable(nullptr);
2082 // If the predicated instruction now redefines a register as the result of
2083 // if-conversion, add an implicit kill.
2084 UpdatePredRedefs(*MI, Redefs);
2087 if (!IgnoreBr) {
2088 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
2089 FromMBB.succ_end());
2090 MachineBasicBlock *NBB = getNextBlock(FromMBB);
2091 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2093 for (MachineBasicBlock *Succ : Succs) {
2094 // Fallthrough edge can't be transferred.
2095 if (Succ == FallThrough)
2096 continue;
2097 ToBBI.BB->addSuccessor(Succ);
2101 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2102 ToBBI.Predicate.append(Cond.begin(), Cond.end());
2104 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2105 ToBBI.IsAnalyzed = false;
2107 ++NumDupBBs;
2110 /// Move all instructions from FromBB to the end of ToBB. This will leave
2111 /// FromBB as an empty block, so remove all of its successor edges except for
2112 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is
2113 /// being moved, add those successor edges to ToBBI and remove the old edge
2114 /// from ToBBI to FromBBI.
2115 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
2116 MachineBasicBlock &FromMBB = *FromBBI.BB;
2117 assert(!FromMBB.hasAddressTaken() &&
2118 "Removing a BB whose address is taken!");
2120 // In case FromMBB contains terminators (e.g. return instruction),
2121 // first move the non-terminator instructions, then the terminators.
2122 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
2123 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
2124 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
2126 // If FromBB has non-predicated terminator we should copy it at the end.
2127 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
2128 ToTI = ToBBI.BB->end();
2129 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
2131 // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2132 // unknown probabilities into known ones.
2133 // FIXME: This usage is too tricky and in the future we would like to
2134 // eliminate all unknown probabilities in MBB.
2135 if (ToBBI.IsBrAnalyzable)
2136 ToBBI.BB->normalizeSuccProbs();
2138 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
2139 FromMBB.succ_end());
2140 MachineBasicBlock *NBB = getNextBlock(FromMBB);
2141 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2142 // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2143 // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2144 auto To2FromProb = BranchProbability::getZero();
2145 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
2146 // Remove the old edge but remember the edge probability so we can calculate
2147 // the correct weights on the new edges being added further down.
2148 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
2149 ToBBI.BB->removeSuccessor(&FromMBB);
2152 for (MachineBasicBlock *Succ : FromSuccs) {
2153 // Fallthrough edge can't be transferred.
2154 if (Succ == FallThrough)
2155 continue;
2157 auto NewProb = BranchProbability::getZero();
2158 if (AddEdges) {
2159 // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2160 // which is a portion of the edge probability from FromMBB to Succ. The
2161 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2162 // FromBBI is a successor of ToBBI.BB. See comment below for exception).
2163 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
2165 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2166 // only happens when if-converting a diamond CFG and FromMBB is the
2167 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
2168 // could just use the probabilities on FromMBB's out-edges when adding
2169 // new successors.
2170 if (!To2FromProb.isZero())
2171 NewProb *= To2FromProb;
2174 FromMBB.removeSuccessor(Succ);
2176 if (AddEdges) {
2177 // If the edge from ToBBI.BB to Succ already exists, update the
2178 // probability of this edge by adding NewProb to it. An example is shown
2179 // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2180 // don't have to set C as A's successor as it already is. We only need to
2181 // update the edge probability on A->C. Note that B will not be
2182 // immediately removed from A's successors. It is possible that B->D is
2183 // not removed either if D is a fallthrough of B. Later the edge A->D
2184 // (generated here) and B->D will be combined into one edge. To maintain
2185 // correct edge probability of this combined edge, we need to set the edge
2186 // probability of A->B to zero, which is already done above. The edge
2187 // probability on A->D is calculated by scaling the original probability
2188 // on A->B by the probability of B->D.
2190 // Before ifcvt: After ifcvt (assume B->D is kept):
2192 // A A
2193 // /| /|\
2194 // / B / B|
2195 // | /| | ||
2196 // |/ | | |/
2197 // C D C D
2199 if (ToBBI.BB->isSuccessor(Succ))
2200 ToBBI.BB->setSuccProbability(
2201 find(ToBBI.BB->successors(), Succ),
2202 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
2203 else
2204 ToBBI.BB->addSuccessor(Succ, NewProb);
2208 // Move the now empty FromMBB out of the way to the end of the function so
2209 // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2210 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
2211 if (Last != &FromMBB)
2212 FromMBB.moveAfter(Last);
2214 // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2215 // we've done above.
2216 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
2217 ToBBI.BB->normalizeSuccProbs();
2219 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2220 FromBBI.Predicate.clear();
2222 ToBBI.NonPredSize += FromBBI.NonPredSize;
2223 ToBBI.ExtraCost += FromBBI.ExtraCost;
2224 ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
2225 FromBBI.NonPredSize = 0;
2226 FromBBI.ExtraCost = 0;
2227 FromBBI.ExtraCost2 = 0;
2229 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2230 ToBBI.HasFallThrough = FromBBI.HasFallThrough;
2231 ToBBI.IsAnalyzed = false;
2232 FromBBI.IsAnalyzed = false;
2235 FunctionPass *
2236 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
2237 return new IfConverter(std::move(Ftor));