1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the machine instruction level if-conversion pass, which
10 // tries to convert conditional branches into predicated instructions.
12 //===----------------------------------------------------------------------===//
14 #include "BranchFolding.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSchedule.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/BranchProbability.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
56 #define DEBUG_TYPE "if-converter"
58 // Hidden options for help debugging.
59 static cl::opt
<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden
);
60 static cl::opt
<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden
);
61 static cl::opt
<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden
);
62 static cl::opt
<bool> DisableSimple("disable-ifcvt-simple",
63 cl::init(false), cl::Hidden
);
64 static cl::opt
<bool> DisableSimpleF("disable-ifcvt-simple-false",
65 cl::init(false), cl::Hidden
);
66 static cl::opt
<bool> DisableTriangle("disable-ifcvt-triangle",
67 cl::init(false), cl::Hidden
);
68 static cl::opt
<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
69 cl::init(false), cl::Hidden
);
70 static cl::opt
<bool> DisableTriangleF("disable-ifcvt-triangle-false",
71 cl::init(false), cl::Hidden
);
72 static cl::opt
<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
73 cl::init(false), cl::Hidden
);
74 static cl::opt
<bool> DisableDiamond("disable-ifcvt-diamond",
75 cl::init(false), cl::Hidden
);
76 static cl::opt
<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
77 cl::init(false), cl::Hidden
);
78 static cl::opt
<bool> IfCvtBranchFold("ifcvt-branch-fold",
79 cl::init(true), cl::Hidden
);
81 STATISTIC(NumSimple
, "Number of simple if-conversions performed");
82 STATISTIC(NumSimpleFalse
, "Number of simple (F) if-conversions performed");
83 STATISTIC(NumTriangle
, "Number of triangle if-conversions performed");
84 STATISTIC(NumTriangleRev
, "Number of triangle (R) if-conversions performed");
85 STATISTIC(NumTriangleFalse
,"Number of triangle (F) if-conversions performed");
86 STATISTIC(NumTriangleFRev
, "Number of triangle (F/R) if-conversions performed");
87 STATISTIC(NumDiamonds
, "Number of diamond if-conversions performed");
88 STATISTIC(NumForkedDiamonds
, "Number of forked-diamond if-conversions performed");
89 STATISTIC(NumIfConvBBs
, "Number of if-converted blocks");
90 STATISTIC(NumDupBBs
, "Number of duplicated blocks");
91 STATISTIC(NumUnpred
, "Number of true blocks of diamonds unpredicated");
95 class IfConverter
: public MachineFunctionPass
{
97 ICNotClassfied
, // BB data valid, but not classified.
98 ICSimpleFalse
, // Same as ICSimple, but on the false path.
99 ICSimple
, // BB is entry of an one split, no rejoin sub-CFG.
100 ICTriangleFRev
, // Same as ICTriangleFalse, but false path rev condition.
101 ICTriangleRev
, // Same as ICTriangle, but true path rev condition.
102 ICTriangleFalse
, // Same as ICTriangle, but on the false path.
103 ICTriangle
, // BB is entry of a triangle sub-CFG.
104 ICDiamond
, // BB is entry of a diamond sub-CFG.
105 ICForkedDiamond
// BB is entry of an almost diamond sub-CFG, with a
106 // common tail that can be shared.
109 /// One per MachineBasicBlock, this is used to cache the result
110 /// if-conversion feasibility analysis. This includes results from
111 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
112 /// classification, and common tail block of its successors (if it's a
113 /// diamond shape), its size, whether it's predicable, and whether any
114 /// instruction can clobber the 'would-be' predicate.
116 /// IsDone - True if BB is not to be considered for ifcvt.
117 /// IsBeingAnalyzed - True if BB is currently being analyzed.
118 /// IsAnalyzed - True if BB has been analyzed (info is still valid).
119 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
120 /// IsBrAnalyzable - True if analyzeBranch() returns false.
121 /// HasFallThrough - True if BB may fallthrough to the following BB.
122 /// IsUnpredicable - True if BB is known to be unpredicable.
123 /// ClobbersPred - True if BB could modify predicates (e.g. has
125 /// NonPredSize - Number of non-predicated instructions.
126 /// ExtraCost - Extra cost for multi-cycle instructions.
127 /// ExtraCost2 - Some instructions are slower when predicated
128 /// BB - Corresponding MachineBasicBlock.
129 /// TrueBB / FalseBB- See analyzeBranch().
130 /// BrCond - Conditions for end of block conditional branches.
131 /// Predicate - Predicate used in the BB.
134 bool IsBeingAnalyzed
: 1;
137 bool IsBrAnalyzable
: 1;
138 bool IsBrReversible
: 1;
139 bool HasFallThrough
: 1;
140 bool IsUnpredicable
: 1;
141 bool CannotBeCopied
: 1;
142 bool ClobbersPred
: 1;
143 unsigned NonPredSize
= 0;
144 unsigned ExtraCost
= 0;
145 unsigned ExtraCost2
= 0;
146 MachineBasicBlock
*BB
= nullptr;
147 MachineBasicBlock
*TrueBB
= nullptr;
148 MachineBasicBlock
*FalseBB
= nullptr;
149 SmallVector
<MachineOperand
, 4> BrCond
;
150 SmallVector
<MachineOperand
, 4> Predicate
;
152 BBInfo() : IsDone(false), IsBeingAnalyzed(false),
153 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
154 IsBrReversible(false), HasFallThrough(false),
155 IsUnpredicable(false), CannotBeCopied(false),
156 ClobbersPred(false) {}
159 /// Record information about pending if-conversions to attempt:
160 /// BBI - Corresponding BBInfo.
161 /// Kind - Type of block. See IfcvtKind.
162 /// NeedSubsumption - True if the to-be-predicated BB has already been
164 /// NumDups - Number of instructions that would be duplicated due
165 /// to this if-conversion. (For diamonds, the number of
166 /// identical instructions at the beginnings of both
168 /// NumDups2 - For diamonds, the number of identical instructions
169 /// at the ends of both paths.
175 bool NeedSubsumption
: 1;
176 bool TClobbersPred
: 1;
177 bool FClobbersPred
: 1;
179 IfcvtToken(BBInfo
&b
, IfcvtKind k
, bool s
, unsigned d
, unsigned d2
= 0,
180 bool tc
= false, bool fc
= false)
181 : BBI(b
), Kind(k
), NumDups(d
), NumDups2(d2
), NeedSubsumption(s
),
182 TClobbersPred(tc
), FClobbersPred(fc
) {}
185 /// Results of if-conversion feasibility analysis indexed by basic block
187 std::vector
<BBInfo
> BBAnalysis
;
188 TargetSchedModel SchedModel
;
190 const TargetLoweringBase
*TLI
;
191 const TargetInstrInfo
*TII
;
192 const TargetRegisterInfo
*TRI
;
193 const MachineBranchProbabilityInfo
*MBPI
;
194 MachineRegisterInfo
*MRI
;
201 std::function
<bool(const MachineFunction
&)> PredicateFtor
;
206 IfConverter(std::function
<bool(const MachineFunction
&)> Ftor
= nullptr)
207 : MachineFunctionPass(ID
), PredicateFtor(std::move(Ftor
)) {
208 initializeIfConverterPass(*PassRegistry::getPassRegistry());
211 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
212 AU
.addRequired
<MachineBlockFrequencyInfo
>();
213 AU
.addRequired
<MachineBranchProbabilityInfo
>();
214 MachineFunctionPass::getAnalysisUsage(AU
);
217 bool runOnMachineFunction(MachineFunction
&MF
) override
;
219 MachineFunctionProperties
getRequiredProperties() const override
{
220 return MachineFunctionProperties().set(
221 MachineFunctionProperties::Property::NoVRegs
);
225 bool reverseBranchCondition(BBInfo
&BBI
) const;
226 bool ValidSimple(BBInfo
&TrueBBI
, unsigned &Dups
,
227 BranchProbability Prediction
) const;
228 bool ValidTriangle(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
229 bool FalseBranch
, unsigned &Dups
,
230 BranchProbability Prediction
) const;
231 bool CountDuplicatedInstructions(
232 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
233 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
234 unsigned &Dups1
, unsigned &Dups2
,
235 MachineBasicBlock
&TBB
, MachineBasicBlock
&FBB
,
236 bool SkipUnconditionalBranches
) const;
237 bool ValidDiamond(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
238 unsigned &Dups1
, unsigned &Dups2
,
239 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const;
240 bool ValidForkedDiamond(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
241 unsigned &Dups1
, unsigned &Dups2
,
242 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const;
243 void AnalyzeBranches(BBInfo
&BBI
);
244 void ScanInstructions(BBInfo
&BBI
,
245 MachineBasicBlock::iterator
&Begin
,
246 MachineBasicBlock::iterator
&End
,
247 bool BranchUnpredicable
= false) const;
248 bool RescanInstructions(
249 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
250 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
251 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
) const;
252 void AnalyzeBlock(MachineBasicBlock
&MBB
,
253 std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
);
254 bool FeasibilityAnalysis(BBInfo
&BBI
, SmallVectorImpl
<MachineOperand
> &Pred
,
255 bool isTriangle
= false, bool RevBranch
= false,
256 bool hasCommonTail
= false);
257 void AnalyzeBlocks(MachineFunction
&MF
,
258 std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
);
259 void InvalidatePreds(MachineBasicBlock
&MBB
);
260 bool IfConvertSimple(BBInfo
&BBI
, IfcvtKind Kind
);
261 bool IfConvertTriangle(BBInfo
&BBI
, IfcvtKind Kind
);
262 bool IfConvertDiamondCommon(BBInfo
&BBI
, BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
263 unsigned NumDups1
, unsigned NumDups2
,
264 bool TClobbersPred
, bool FClobbersPred
,
265 bool RemoveBranch
, bool MergeAddEdges
);
266 bool IfConvertDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
267 unsigned NumDups1
, unsigned NumDups2
,
268 bool TClobbers
, bool FClobbers
);
269 bool IfConvertForkedDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
270 unsigned NumDups1
, unsigned NumDups2
,
271 bool TClobbers
, bool FClobbers
);
272 void PredicateBlock(BBInfo
&BBI
,
273 MachineBasicBlock::iterator E
,
274 SmallVectorImpl
<MachineOperand
> &Cond
,
275 SmallSet
<MCPhysReg
, 4> *LaterRedefs
= nullptr);
276 void CopyAndPredicateBlock(BBInfo
&ToBBI
, BBInfo
&FromBBI
,
277 SmallVectorImpl
<MachineOperand
> &Cond
,
278 bool IgnoreBr
= false);
279 void MergeBlocks(BBInfo
&ToBBI
, BBInfo
&FromBBI
, bool AddEdges
= true);
281 bool MeetIfcvtSizeLimit(MachineBasicBlock
&BB
,
282 unsigned Cycle
, unsigned Extra
,
283 BranchProbability Prediction
) const {
284 return Cycle
> 0 && TII
->isProfitableToIfCvt(BB
, Cycle
, Extra
,
288 bool MeetIfcvtSizeLimit(MachineBasicBlock
&TBB
,
289 unsigned TCycle
, unsigned TExtra
,
290 MachineBasicBlock
&FBB
,
291 unsigned FCycle
, unsigned FExtra
,
292 BranchProbability Prediction
) const {
293 return TCycle
> 0 && FCycle
> 0 &&
294 TII
->isProfitableToIfCvt(TBB
, TCycle
, TExtra
, FBB
, FCycle
, FExtra
,
298 /// Returns true if Block ends without a terminator.
299 bool blockAlwaysFallThrough(BBInfo
&BBI
) const {
300 return BBI
.IsBrAnalyzable
&& BBI
.TrueBB
== nullptr;
303 /// Used to sort if-conversion candidates.
304 static bool IfcvtTokenCmp(const std::unique_ptr
<IfcvtToken
> &C1
,
305 const std::unique_ptr
<IfcvtToken
> &C2
) {
306 int Incr1
= (C1
->Kind
== ICDiamond
)
307 ? -(int)(C1
->NumDups
+ C1
->NumDups2
) : (int)C1
->NumDups
;
308 int Incr2
= (C2
->Kind
== ICDiamond
)
309 ? -(int)(C2
->NumDups
+ C2
->NumDups2
) : (int)C2
->NumDups
;
312 else if (Incr1
== Incr2
) {
313 // Favors subsumption.
314 if (!C1
->NeedSubsumption
&& C2
->NeedSubsumption
)
316 else if (C1
->NeedSubsumption
== C2
->NeedSubsumption
) {
317 // Favors diamond over triangle, etc.
318 if ((unsigned)C1
->Kind
< (unsigned)C2
->Kind
)
320 else if (C1
->Kind
== C2
->Kind
)
321 return C1
->BBI
.BB
->getNumber() < C2
->BBI
.BB
->getNumber();
328 } // end anonymous namespace
330 char IfConverter::ID
= 0;
332 char &llvm::IfConverterID
= IfConverter::ID
;
334 INITIALIZE_PASS_BEGIN(IfConverter
, DEBUG_TYPE
, "If Converter", false, false)
335 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
336 INITIALIZE_PASS_END(IfConverter
, DEBUG_TYPE
, "If Converter", false, false)
338 bool IfConverter::runOnMachineFunction(MachineFunction
&MF
) {
339 if (skipFunction(MF
.getFunction()) || (PredicateFtor
&& !PredicateFtor(MF
)))
342 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
343 TLI
= ST
.getTargetLowering();
344 TII
= ST
.getInstrInfo();
345 TRI
= ST
.getRegisterInfo();
346 BranchFolder::MBFIWrapper
MBFI(getAnalysis
<MachineBlockFrequencyInfo
>());
347 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
348 MRI
= &MF
.getRegInfo();
349 SchedModel
.init(&ST
);
351 if (!TII
) return false;
353 PreRegAlloc
= MRI
->isSSA();
355 bool BFChange
= false;
357 // Tail merge tend to expose more if-conversion opportunities.
358 BranchFolder
BF(true, false, MBFI
, *MBPI
);
359 BFChange
= BF
.OptimizeFunction(MF
, TII
, ST
.getRegisterInfo(),
360 getAnalysisIfAvailable
<MachineModuleInfo
>());
363 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum
<< ") \'"
364 << MF
.getName() << "\'");
366 if (FnNum
< IfCvtFnStart
|| (IfCvtFnStop
!= -1 && FnNum
> IfCvtFnStop
)) {
367 LLVM_DEBUG(dbgs() << " skipped\n");
370 LLVM_DEBUG(dbgs() << "\n");
373 BBAnalysis
.resize(MF
.getNumBlockIDs());
375 std::vector
<std::unique_ptr
<IfcvtToken
>> Tokens
;
377 unsigned NumIfCvts
= NumSimple
+ NumSimpleFalse
+ NumTriangle
+
378 NumTriangleRev
+ NumTriangleFalse
+ NumTriangleFRev
+ NumDiamonds
;
379 while (IfCvtLimit
== -1 || (int)NumIfCvts
< IfCvtLimit
) {
380 // Do an initial analysis for each basic block and find all the potential
381 // candidates to perform if-conversion.
383 AnalyzeBlocks(MF
, Tokens
);
384 while (!Tokens
.empty()) {
385 std::unique_ptr
<IfcvtToken
> Token
= std::move(Tokens
.back());
387 BBInfo
&BBI
= Token
->BBI
;
388 IfcvtKind Kind
= Token
->Kind
;
389 unsigned NumDups
= Token
->NumDups
;
390 unsigned NumDups2
= Token
->NumDups2
;
392 // If the block has been evicted out of the queue or it has already been
393 // marked dead (due to it being predicated), then skip it.
395 BBI
.IsEnqueued
= false;
399 BBI
.IsEnqueued
= false;
403 default: llvm_unreachable("Unexpected!");
405 case ICSimpleFalse
: {
406 bool isFalse
= Kind
== ICSimpleFalse
;
407 if ((isFalse
&& DisableSimpleF
) || (!isFalse
&& DisableSimple
)) break;
408 LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
409 << (Kind
== ICSimpleFalse
? " false" : "")
410 << "): " << printMBBReference(*BBI
.BB
) << " ("
411 << ((Kind
== ICSimpleFalse
) ? BBI
.FalseBB
->getNumber()
412 : BBI
.TrueBB
->getNumber())
414 RetVal
= IfConvertSimple(BBI
, Kind
);
415 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
417 if (isFalse
) ++NumSimpleFalse
;
424 case ICTriangleFalse
:
425 case ICTriangleFRev
: {
426 bool isFalse
= Kind
== ICTriangleFalse
;
427 bool isRev
= (Kind
== ICTriangleRev
|| Kind
== ICTriangleFRev
);
428 if (DisableTriangle
&& !isFalse
&& !isRev
) break;
429 if (DisableTriangleR
&& !isFalse
&& isRev
) break;
430 if (DisableTriangleF
&& isFalse
&& !isRev
) break;
431 if (DisableTriangleFR
&& isFalse
&& isRev
) break;
432 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
434 LLVM_DEBUG(dbgs() << " false");
436 LLVM_DEBUG(dbgs() << " rev");
437 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI
.BB
)
438 << " (T:" << BBI
.TrueBB
->getNumber()
439 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
440 RetVal
= IfConvertTriangle(BBI
, Kind
);
441 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
444 if (isRev
) ++NumTriangleFRev
;
445 else ++NumTriangleFalse
;
447 if (isRev
) ++NumTriangleRev
;
454 if (DisableDiamond
) break;
455 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI
.BB
)
456 << " (T:" << BBI
.TrueBB
->getNumber()
457 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
458 RetVal
= IfConvertDiamond(BBI
, Kind
, NumDups
, NumDups2
,
459 Token
->TClobbersPred
,
460 Token
->FClobbersPred
);
461 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
462 if (RetVal
) ++NumDiamonds
;
464 case ICForkedDiamond
:
465 if (DisableForkedDiamond
) break;
466 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
467 << printMBBReference(*BBI
.BB
)
468 << " (T:" << BBI
.TrueBB
->getNumber()
469 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
470 RetVal
= IfConvertForkedDiamond(BBI
, Kind
, NumDups
, NumDups2
,
471 Token
->TClobbersPred
,
472 Token
->FClobbersPred
);
473 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
474 if (RetVal
) ++NumForkedDiamonds
;
478 if (RetVal
&& MRI
->tracksLiveness())
479 recomputeLivenessFlags(*BBI
.BB
);
483 NumIfCvts
= NumSimple
+ NumSimpleFalse
+ NumTriangle
+ NumTriangleRev
+
484 NumTriangleFalse
+ NumTriangleFRev
+ NumDiamonds
;
485 if (IfCvtLimit
!= -1 && (int)NumIfCvts
>= IfCvtLimit
)
491 MadeChange
|= Change
;
497 if (MadeChange
&& IfCvtBranchFold
) {
498 BranchFolder
BF(false, false, MBFI
, *MBPI
);
499 BF
.OptimizeFunction(MF
, TII
, MF
.getSubtarget().getRegisterInfo(),
500 getAnalysisIfAvailable
<MachineModuleInfo
>());
503 MadeChange
|= BFChange
;
507 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
508 static MachineBasicBlock
*findFalseBlock(MachineBasicBlock
*BB
,
509 MachineBasicBlock
*TrueBB
) {
510 for (MachineBasicBlock
*SuccBB
: BB
->successors()) {
511 if (SuccBB
!= TrueBB
)
517 /// Reverse the condition of the end of the block branch. Swap block's 'true'
518 /// and 'false' successors.
519 bool IfConverter::reverseBranchCondition(BBInfo
&BBI
) const {
520 DebugLoc dl
; // FIXME: this is nowhere
521 if (!TII
->reverseBranchCondition(BBI
.BrCond
)) {
522 TII
->removeBranch(*BBI
.BB
);
523 TII
->insertBranch(*BBI
.BB
, BBI
.FalseBB
, BBI
.TrueBB
, BBI
.BrCond
, dl
);
524 std::swap(BBI
.TrueBB
, BBI
.FalseBB
);
530 /// Returns the next block in the function blocks ordering. If it is the end,
532 static inline MachineBasicBlock
*getNextBlock(MachineBasicBlock
&MBB
) {
533 MachineFunction::iterator I
= MBB
.getIterator();
534 MachineFunction::iterator E
= MBB
.getParent()->end();
540 /// Returns true if the 'true' block (along with its predecessor) forms a valid
541 /// simple shape for ifcvt. It also returns the number of instructions that the
542 /// ifcvt would need to duplicate if performed in Dups.
543 bool IfConverter::ValidSimple(BBInfo
&TrueBBI
, unsigned &Dups
,
544 BranchProbability Prediction
) const {
546 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
)
549 if (TrueBBI
.IsBrAnalyzable
)
552 if (TrueBBI
.BB
->pred_size() > 1) {
553 if (TrueBBI
.CannotBeCopied
||
554 !TII
->isProfitableToDupForIfCvt(*TrueBBI
.BB
, TrueBBI
.NonPredSize
,
557 Dups
= TrueBBI
.NonPredSize
;
563 /// Returns true if the 'true' and 'false' blocks (along with their common
564 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
565 /// true, it checks if 'true' block's false branch branches to the 'false' block
566 /// rather than the other way around. It also returns the number of instructions
567 /// that the ifcvt would need to duplicate if performed in 'Dups'.
568 bool IfConverter::ValidTriangle(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
569 bool FalseBranch
, unsigned &Dups
,
570 BranchProbability Prediction
) const {
572 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
)
575 if (TrueBBI
.BB
->pred_size() > 1) {
576 if (TrueBBI
.CannotBeCopied
)
579 unsigned Size
= TrueBBI
.NonPredSize
;
580 if (TrueBBI
.IsBrAnalyzable
) {
581 if (TrueBBI
.TrueBB
&& TrueBBI
.BrCond
.empty())
582 // Ends with an unconditional branch. It will be removed.
585 MachineBasicBlock
*FExit
= FalseBranch
586 ? TrueBBI
.TrueBB
: TrueBBI
.FalseBB
;
588 // Require a conditional branch
592 if (!TII
->isProfitableToDupForIfCvt(*TrueBBI
.BB
, Size
, Prediction
))
597 MachineBasicBlock
*TExit
= FalseBranch
? TrueBBI
.FalseBB
: TrueBBI
.TrueBB
;
598 if (!TExit
&& blockAlwaysFallThrough(TrueBBI
)) {
599 MachineFunction::iterator I
= TrueBBI
.BB
->getIterator();
600 if (++I
== TrueBBI
.BB
->getParent()->end())
604 return TExit
&& TExit
== FalseBBI
.BB
;
607 /// Count duplicated instructions and move the iterators to show where they
609 /// @param TIB True Iterator Begin
610 /// @param FIB False Iterator Begin
611 /// These two iterators initially point to the first instruction of the two
612 /// blocks, and finally point to the first non-shared instruction.
613 /// @param TIE True Iterator End
614 /// @param FIE False Iterator End
615 /// These two iterators initially point to End() for the two blocks() and
616 /// finally point to the first shared instruction in the tail.
617 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
619 /// @param Dups1 count of duplicated instructions at the beginning of the 2
621 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
622 /// @param SkipUnconditionalBranches if true, Don't make sure that
623 /// unconditional branches at the end of the blocks are the same. True is
624 /// passed when the blocks are analyzable to allow for fallthrough to be
626 /// @return false if the shared portion prevents if conversion.
627 bool IfConverter::CountDuplicatedInstructions(
628 MachineBasicBlock::iterator
&TIB
,
629 MachineBasicBlock::iterator
&FIB
,
630 MachineBasicBlock::iterator
&TIE
,
631 MachineBasicBlock::iterator
&FIE
,
632 unsigned &Dups1
, unsigned &Dups2
,
633 MachineBasicBlock
&TBB
, MachineBasicBlock
&FBB
,
634 bool SkipUnconditionalBranches
) const {
635 while (TIB
!= TIE
&& FIB
!= FIE
) {
636 // Skip dbg_value instructions. These do not count.
637 TIB
= skipDebugInstructionsForward(TIB
, TIE
);
638 FIB
= skipDebugInstructionsForward(FIB
, FIE
);
639 if (TIB
== TIE
|| FIB
== FIE
)
641 if (!TIB
->isIdenticalTo(*FIB
))
643 // A pred-clobbering instruction in the shared portion prevents
645 std::vector
<MachineOperand
> PredDefs
;
646 if (TII
->DefinesPredicate(*TIB
, PredDefs
))
648 // If we get all the way to the branch instructions, don't count them.
649 if (!TIB
->isBranch())
655 // Check for already containing all of the block.
656 if (TIB
== TIE
|| FIB
== FIE
)
658 // Now, in preparation for counting duplicate instructions at the ends of the
659 // blocks, switch to reverse_iterators. Note that getReverse() returns an
660 // iterator that points to the same instruction, unlike std::reverse_iterator.
661 // We have to do our own shifting so that we get the same range.
662 MachineBasicBlock::reverse_iterator RTIE
= std::next(TIE
.getReverse());
663 MachineBasicBlock::reverse_iterator RFIE
= std::next(FIE
.getReverse());
664 const MachineBasicBlock::reverse_iterator RTIB
= std::next(TIB
.getReverse());
665 const MachineBasicBlock::reverse_iterator RFIB
= std::next(FIB
.getReverse());
667 if (!TBB
.succ_empty() || !FBB
.succ_empty()) {
668 if (SkipUnconditionalBranches
) {
669 while (RTIE
!= RTIB
&& RTIE
->isUnconditionalBranch())
671 while (RFIE
!= RFIB
&& RFIE
->isUnconditionalBranch())
676 // Count duplicate instructions at the ends of the blocks.
677 while (RTIE
!= RTIB
&& RFIE
!= RFIB
) {
678 // Skip dbg_value instructions. These do not count.
679 // Note that these are reverse iterators going forward.
680 RTIE
= skipDebugInstructionsForward(RTIE
, RTIB
);
681 RFIE
= skipDebugInstructionsForward(RFIE
, RFIB
);
682 if (RTIE
== RTIB
|| RFIE
== RFIB
)
684 if (!RTIE
->isIdenticalTo(*RFIE
))
686 // We have to verify that any branch instructions are the same, and then we
687 // don't count them toward the # of duplicate instructions.
688 if (!RTIE
->isBranch())
693 TIE
= std::next(RTIE
.getReverse());
694 FIE
= std::next(RFIE
.getReverse());
698 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
699 /// @param TIB - True Iterator Begin, points to first non-shared instruction
700 /// @param FIB - False Iterator Begin, points to first non-shared instruction
701 /// @param TIE - True Iterator End, points past last non-shared instruction
702 /// @param FIE - False Iterator End, points past last non-shared instruction
703 /// @param TrueBBI - BBInfo to update for the true block.
704 /// @param FalseBBI - BBInfo to update for the false block.
705 /// @returns - false if either block cannot be predicated or if both blocks end
706 /// with a predicate-clobbering instruction.
707 bool IfConverter::RescanInstructions(
708 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
709 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
710 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
) const {
711 bool BranchUnpredicable
= true;
712 TrueBBI
.IsUnpredicable
= FalseBBI
.IsUnpredicable
= false;
713 ScanInstructions(TrueBBI
, TIB
, TIE
, BranchUnpredicable
);
714 if (TrueBBI
.IsUnpredicable
)
716 ScanInstructions(FalseBBI
, FIB
, FIE
, BranchUnpredicable
);
717 if (FalseBBI
.IsUnpredicable
)
719 if (TrueBBI
.ClobbersPred
&& FalseBBI
.ClobbersPred
)
725 static void verifySameBranchInstructions(
726 MachineBasicBlock
*MBB1
,
727 MachineBasicBlock
*MBB2
) {
728 const MachineBasicBlock::reverse_iterator B1
= MBB1
->rend();
729 const MachineBasicBlock::reverse_iterator B2
= MBB2
->rend();
730 MachineBasicBlock::reverse_iterator E1
= MBB1
->rbegin();
731 MachineBasicBlock::reverse_iterator E2
= MBB2
->rbegin();
732 while (E1
!= B1
&& E2
!= B2
) {
733 skipDebugInstructionsForward(E1
, B1
);
734 skipDebugInstructionsForward(E2
, B2
);
735 if (E1
== B1
&& E2
== B2
)
739 assert(!E2
->isBranch() && "Branch mis-match, one block is empty.");
743 assert(!E1
->isBranch() && "Branch mis-match, one block is empty.");
747 if (E1
->isBranch() || E2
->isBranch())
748 assert(E1
->isIdenticalTo(*E2
) &&
749 "Branch mis-match, branch instructions don't match.");
758 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
759 /// with their common predecessor) form a diamond if a common tail block is
761 /// While not strictly a diamond, this pattern would form a diamond if
762 /// tail-merging had merged the shared tails.
768 /// FalseBB TrueBB FalseBB
769 /// Currently only handles analyzable branches.
770 /// Specifically excludes actual diamonds to avoid overlap.
771 bool IfConverter::ValidForkedDiamond(
772 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
773 unsigned &Dups1
, unsigned &Dups2
,
774 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const {
776 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
||
777 FalseBBI
.IsBeingAnalyzed
|| FalseBBI
.IsDone
)
780 if (!TrueBBI
.IsBrAnalyzable
|| !FalseBBI
.IsBrAnalyzable
)
782 // Don't IfConvert blocks that can't be folded into their predecessor.
783 if (TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1)
786 // This function is specifically looking for conditional tails, as
787 // unconditional tails are already handled by the standard diamond case.
788 if (TrueBBI
.BrCond
.size() == 0 ||
789 FalseBBI
.BrCond
.size() == 0)
792 MachineBasicBlock
*TT
= TrueBBI
.TrueBB
;
793 MachineBasicBlock
*TF
= TrueBBI
.FalseBB
;
794 MachineBasicBlock
*FT
= FalseBBI
.TrueBB
;
795 MachineBasicBlock
*FF
= FalseBBI
.FalseBB
;
798 TT
= getNextBlock(*TrueBBI
.BB
);
800 TF
= getNextBlock(*TrueBBI
.BB
);
802 FT
= getNextBlock(*FalseBBI
.BB
);
804 FF
= getNextBlock(*FalseBBI
.BB
);
809 // Check successors. If they don't match, bail.
810 if (!((TT
== FT
&& TF
== FF
) || (TF
== FT
&& TT
== FF
)))
813 bool FalseReversed
= false;
814 if (TF
== FT
&& TT
== FF
) {
815 // If the branches are opposing, but we can't reverse, don't do it.
816 if (!FalseBBI
.IsBrReversible
)
818 FalseReversed
= true;
819 reverseBranchCondition(FalseBBI
);
821 auto UnReverseOnExit
= make_scope_exit([&]() {
823 reverseBranchCondition(FalseBBI
);
826 // Count duplicate instructions at the beginning of the true and false blocks.
827 MachineBasicBlock::iterator TIB
= TrueBBI
.BB
->begin();
828 MachineBasicBlock::iterator FIB
= FalseBBI
.BB
->begin();
829 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->end();
830 MachineBasicBlock::iterator FIE
= FalseBBI
.BB
->end();
831 if(!CountDuplicatedInstructions(TIB
, FIB
, TIE
, FIE
, Dups1
, Dups2
,
832 *TrueBBI
.BB
, *FalseBBI
.BB
,
833 /* SkipUnconditionalBranches */ true))
836 TrueBBICalc
.BB
= TrueBBI
.BB
;
837 FalseBBICalc
.BB
= FalseBBI
.BB
;
838 if (!RescanInstructions(TIB
, FIB
, TIE
, FIE
, TrueBBICalc
, FalseBBICalc
))
841 // The size is used to decide whether to if-convert, and the shared portions
842 // are subtracted off. Because of the subtraction, we just use the size that
843 // was calculated by the original ScanInstructions, as it is correct.
844 TrueBBICalc
.NonPredSize
= TrueBBI
.NonPredSize
;
845 FalseBBICalc
.NonPredSize
= FalseBBI
.NonPredSize
;
849 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
850 /// with their common predecessor) forms a valid diamond shape for ifcvt.
851 bool IfConverter::ValidDiamond(
852 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
853 unsigned &Dups1
, unsigned &Dups2
,
854 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const {
856 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
||
857 FalseBBI
.IsBeingAnalyzed
|| FalseBBI
.IsDone
)
860 MachineBasicBlock
*TT
= TrueBBI
.TrueBB
;
861 MachineBasicBlock
*FT
= FalseBBI
.TrueBB
;
863 if (!TT
&& blockAlwaysFallThrough(TrueBBI
))
864 TT
= getNextBlock(*TrueBBI
.BB
);
865 if (!FT
&& blockAlwaysFallThrough(FalseBBI
))
866 FT
= getNextBlock(*FalseBBI
.BB
);
869 if (!TT
&& (TrueBBI
.IsBrAnalyzable
|| FalseBBI
.IsBrAnalyzable
))
871 if (TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1)
874 // FIXME: Allow true block to have an early exit?
875 if (TrueBBI
.FalseBB
|| FalseBBI
.FalseBB
)
878 // Count duplicate instructions at the beginning and end of the true and
880 // Skip unconditional branches only if we are considering an analyzable
881 // diamond. Otherwise the branches must be the same.
882 bool SkipUnconditionalBranches
=
883 TrueBBI
.IsBrAnalyzable
&& FalseBBI
.IsBrAnalyzable
;
884 MachineBasicBlock::iterator TIB
= TrueBBI
.BB
->begin();
885 MachineBasicBlock::iterator FIB
= FalseBBI
.BB
->begin();
886 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->end();
887 MachineBasicBlock::iterator FIE
= FalseBBI
.BB
->end();
888 if(!CountDuplicatedInstructions(TIB
, FIB
, TIE
, FIE
, Dups1
, Dups2
,
889 *TrueBBI
.BB
, *FalseBBI
.BB
,
890 SkipUnconditionalBranches
))
893 TrueBBICalc
.BB
= TrueBBI
.BB
;
894 FalseBBICalc
.BB
= FalseBBI
.BB
;
895 if (!RescanInstructions(TIB
, FIB
, TIE
, FIE
, TrueBBICalc
, FalseBBICalc
))
897 // The size is used to decide whether to if-convert, and the shared portions
898 // are subtracted off. Because of the subtraction, we just use the size that
899 // was calculated by the original ScanInstructions, as it is correct.
900 TrueBBICalc
.NonPredSize
= TrueBBI
.NonPredSize
;
901 FalseBBICalc
.NonPredSize
= FalseBBI
.NonPredSize
;
905 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
906 /// the block is predicable.
907 void IfConverter::AnalyzeBranches(BBInfo
&BBI
) {
911 BBI
.TrueBB
= BBI
.FalseBB
= nullptr;
914 !TII
->analyzeBranch(*BBI
.BB
, BBI
.TrueBB
, BBI
.FalseBB
, BBI
.BrCond
);
915 if (!BBI
.IsBrAnalyzable
) {
916 BBI
.TrueBB
= nullptr;
917 BBI
.FalseBB
= nullptr;
921 SmallVector
<MachineOperand
, 4> RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
922 BBI
.IsBrReversible
= (RevCond
.size() == 0) ||
923 !TII
->reverseBranchCondition(RevCond
);
924 BBI
.HasFallThrough
= BBI
.IsBrAnalyzable
&& BBI
.FalseBB
== nullptr;
926 if (BBI
.BrCond
.size()) {
927 // No false branch. This BB must end with a conditional branch and a
930 BBI
.FalseBB
= findFalseBlock(BBI
.BB
, BBI
.TrueBB
);
932 // Malformed bcc? True and false blocks are the same?
933 BBI
.IsUnpredicable
= true;
938 /// ScanInstructions - Scan all the instructions in the block to determine if
939 /// the block is predicable. In most cases, that means all the instructions
940 /// in the block are isPredicable(). Also checks if the block contains any
941 /// instruction which can clobber a predicate (e.g. condition code register).
942 /// If so, the block is not predicable unless it's the last instruction.
943 void IfConverter::ScanInstructions(BBInfo
&BBI
,
944 MachineBasicBlock::iterator
&Begin
,
945 MachineBasicBlock::iterator
&End
,
946 bool BranchUnpredicable
) const {
947 if (BBI
.IsDone
|| BBI
.IsUnpredicable
)
950 bool AlreadyPredicated
= !BBI
.Predicate
.empty();
955 BBI
.ClobbersPred
= false;
956 for (MachineInstr
&MI
: make_range(Begin
, End
)) {
957 if (MI
.isDebugInstr())
960 // It's unsafe to duplicate convergent instructions in this context, so set
961 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
962 // following CFG, which is subject to our "simple" transformation.
964 // BB0 // if (c1) goto BB1; else goto BB2;
967 // | BB2 // if (c2) goto TBB; else goto FBB;
976 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
977 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
978 // TBB contains a convergent instruction. This is safe iff doing so does
979 // not add a control-flow dependency to the convergent instruction -- i.e.,
980 // it's safe iff the set of control flows that leads us to the convergent
981 // instruction does not get smaller after the transformation.
983 // Originally we executed TBB if c1 || c2. After the transformation, there
984 // are two copies of TBB's instructions. We get to the first if c1, and we
985 // get to the second if !c1 && c2.
987 // There are clearly fewer ways to satisfy the condition "c1" than
988 // "c1 || c2". Since we've shrunk the set of control flows which lead to
989 // our convergent instruction, the transformation is unsafe.
990 if (MI
.isNotDuplicable() || MI
.isConvergent())
991 BBI
.CannotBeCopied
= true;
993 bool isPredicated
= TII
->isPredicated(MI
);
994 bool isCondBr
= BBI
.IsBrAnalyzable
&& MI
.isConditionalBranch();
996 if (BranchUnpredicable
&& MI
.isBranch()) {
997 BBI
.IsUnpredicable
= true;
1001 // A conditional branch is not predicable, but it may be eliminated.
1005 if (!isPredicated
) {
1007 unsigned ExtraPredCost
= TII
->getPredicationCost(MI
);
1008 unsigned NumCycles
= SchedModel
.computeInstrLatency(&MI
, false);
1010 BBI
.ExtraCost
+= NumCycles
-1;
1011 BBI
.ExtraCost2
+= ExtraPredCost
;
1012 } else if (!AlreadyPredicated
) {
1013 // FIXME: This instruction is already predicated before the
1014 // if-conversion pass. It's probably something like a conditional move.
1015 // Mark this block unpredicable for now.
1016 BBI
.IsUnpredicable
= true;
1020 if (BBI
.ClobbersPred
&& !isPredicated
) {
1021 // Predicate modification instruction should end the block (except for
1022 // already predicated instructions and end of block branches).
1023 // Predicate may have been modified, the subsequent (currently)
1024 // unpredicated instructions cannot be correctly predicated.
1025 BBI
.IsUnpredicable
= true;
1029 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1030 // still potentially predicable.
1031 std::vector
<MachineOperand
> PredDefs
;
1032 if (TII
->DefinesPredicate(MI
, PredDefs
))
1033 BBI
.ClobbersPred
= true;
1035 if (!TII
->isPredicable(MI
)) {
1036 BBI
.IsUnpredicable
= true;
1042 /// Determine if the block is a suitable candidate to be predicated by the
1043 /// specified predicate.
1044 /// @param BBI BBInfo for the block to check
1045 /// @param Pred Predicate array for the branch that leads to BBI
1046 /// @param isTriangle true if the Analysis is for a triangle
1047 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1049 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
1050 /// contains any instruction that would make the block unpredicable.
1051 bool IfConverter::FeasibilityAnalysis(BBInfo
&BBI
,
1052 SmallVectorImpl
<MachineOperand
> &Pred
,
1053 bool isTriangle
, bool RevBranch
,
1054 bool hasCommonTail
) {
1055 // If the block is dead or unpredicable, then it cannot be predicated.
1056 // Two blocks may share a common unpredicable tail, but this doesn't prevent
1057 // them from being if-converted. The non-shared portion is assumed to have
1059 if (BBI
.IsDone
|| (BBI
.IsUnpredicable
&& !hasCommonTail
))
1062 // If it is already predicated but we couldn't analyze its terminator, the
1063 // latter might fallthrough, but we can't determine where to.
1064 // Conservatively avoid if-converting again.
1065 if (BBI
.Predicate
.size() && !BBI
.IsBrAnalyzable
)
1068 // If it is already predicated, check if the new predicate subsumes
1070 if (BBI
.Predicate
.size() && !TII
->SubsumesPredicate(Pred
, BBI
.Predicate
))
1073 if (!hasCommonTail
&& BBI
.BrCond
.size()) {
1077 // Test predicate subsumption.
1078 SmallVector
<MachineOperand
, 4> RevPred(Pred
.begin(), Pred
.end());
1079 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1081 if (TII
->reverseBranchCondition(Cond
))
1084 if (TII
->reverseBranchCondition(RevPred
) ||
1085 !TII
->SubsumesPredicate(Cond
, RevPred
))
1092 /// Analyze the structure of the sub-CFG starting from the specified block.
1093 /// Record its successors and whether it looks like an if-conversion candidate.
1094 void IfConverter::AnalyzeBlock(
1095 MachineBasicBlock
&MBB
, std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
) {
1097 BBState(MachineBasicBlock
&MBB
) : MBB(&MBB
), SuccsAnalyzed(false) {}
1098 MachineBasicBlock
*MBB
;
1100 /// This flag is true if MBB's successors have been analyzed.
1104 // Push MBB to the stack.
1105 SmallVector
<BBState
, 16> BBStack(1, MBB
);
1107 while (!BBStack
.empty()) {
1108 BBState
&State
= BBStack
.back();
1109 MachineBasicBlock
*BB
= State
.MBB
;
1110 BBInfo
&BBI
= BBAnalysis
[BB
->getNumber()];
1112 if (!State
.SuccsAnalyzed
) {
1113 if (BBI
.IsAnalyzed
|| BBI
.IsBeingAnalyzed
) {
1119 BBI
.IsBeingAnalyzed
= true;
1121 AnalyzeBranches(BBI
);
1122 MachineBasicBlock::iterator Begin
= BBI
.BB
->begin();
1123 MachineBasicBlock::iterator End
= BBI
.BB
->end();
1124 ScanInstructions(BBI
, Begin
, End
);
1126 // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1127 // not considered for ifcvt anymore.
1128 if (!BBI
.IsBrAnalyzable
|| BBI
.BrCond
.empty() || BBI
.IsDone
) {
1129 BBI
.IsBeingAnalyzed
= false;
1130 BBI
.IsAnalyzed
= true;
1135 // Do not ifcvt if either path is a back edge to the entry block.
1136 if (BBI
.TrueBB
== BB
|| BBI
.FalseBB
== BB
) {
1137 BBI
.IsBeingAnalyzed
= false;
1138 BBI
.IsAnalyzed
= true;
1143 // Do not ifcvt if true and false fallthrough blocks are the same.
1145 BBI
.IsBeingAnalyzed
= false;
1146 BBI
.IsAnalyzed
= true;
1151 // Push the False and True blocks to the stack.
1152 State
.SuccsAnalyzed
= true;
1153 BBStack
.push_back(*BBI
.FalseBB
);
1154 BBStack
.push_back(*BBI
.TrueBB
);
1158 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1159 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1161 if (TrueBBI
.IsDone
&& FalseBBI
.IsDone
) {
1162 BBI
.IsBeingAnalyzed
= false;
1163 BBI
.IsAnalyzed
= true;
1168 SmallVector
<MachineOperand
, 4>
1169 RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1170 bool CanRevCond
= !TII
->reverseBranchCondition(RevCond
);
1174 bool TNeedSub
= !TrueBBI
.Predicate
.empty();
1175 bool FNeedSub
= !FalseBBI
.Predicate
.empty();
1176 bool Enqueued
= false;
1178 BranchProbability Prediction
= MBPI
->getEdgeProbability(BB
, TrueBBI
.BB
);
1181 BBInfo TrueBBICalc
, FalseBBICalc
;
1182 auto feasibleDiamond
= [&]() {
1183 bool MeetsSize
= MeetIfcvtSizeLimit(
1184 *TrueBBI
.BB
, (TrueBBICalc
.NonPredSize
- (Dups
+ Dups2
) +
1185 TrueBBICalc
.ExtraCost
), TrueBBICalc
.ExtraCost2
,
1186 *FalseBBI
.BB
, (FalseBBICalc
.NonPredSize
- (Dups
+ Dups2
) +
1187 FalseBBICalc
.ExtraCost
), FalseBBICalc
.ExtraCost2
,
1189 bool TrueFeasible
= FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
,
1190 /* IsTriangle */ false, /* RevCond */ false,
1191 /* hasCommonTail */ true);
1192 bool FalseFeasible
= FeasibilityAnalysis(FalseBBI
, RevCond
,
1193 /* IsTriangle */ false, /* RevCond */ false,
1194 /* hasCommonTail */ true);
1195 return MeetsSize
&& TrueFeasible
&& FalseFeasible
;
1198 if (ValidDiamond(TrueBBI
, FalseBBI
, Dups
, Dups2
,
1199 TrueBBICalc
, FalseBBICalc
)) {
1200 if (feasibleDiamond()) {
1208 // Note TailBB can be empty.
1209 Tokens
.push_back(std::make_unique
<IfcvtToken
>(
1210 BBI
, ICDiamond
, TNeedSub
| FNeedSub
, Dups
, Dups2
,
1211 (bool) TrueBBICalc
.ClobbersPred
, (bool) FalseBBICalc
.ClobbersPred
));
1214 } else if (ValidForkedDiamond(TrueBBI
, FalseBBI
, Dups
, Dups2
,
1215 TrueBBICalc
, FalseBBICalc
)) {
1216 if (feasibleDiamond()) {
1218 // if TBB and FBB have a common tail that includes their conditional
1219 // branch instructions, then we can If Convert this pattern.
1225 // FalseBB TrueBB FalseBB
1227 Tokens
.push_back(std::make_unique
<IfcvtToken
>(
1228 BBI
, ICForkedDiamond
, TNeedSub
| FNeedSub
, Dups
, Dups2
,
1229 (bool) TrueBBICalc
.ClobbersPred
, (bool) FalseBBICalc
.ClobbersPred
));
1235 if (ValidTriangle(TrueBBI
, FalseBBI
, false, Dups
, Prediction
) &&
1236 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1237 TrueBBI
.ExtraCost2
, Prediction
) &&
1238 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
, true)) {
1247 std::make_unique
<IfcvtToken
>(BBI
, ICTriangle
, TNeedSub
, Dups
));
1251 if (ValidTriangle(TrueBBI
, FalseBBI
, true, Dups
, Prediction
) &&
1252 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1253 TrueBBI
.ExtraCost2
, Prediction
) &&
1254 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
, true, true)) {
1256 std::make_unique
<IfcvtToken
>(BBI
, ICTriangleRev
, TNeedSub
, Dups
));
1260 if (ValidSimple(TrueBBI
, Dups
, Prediction
) &&
1261 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1262 TrueBBI
.ExtraCost2
, Prediction
) &&
1263 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
)) {
1264 // Simple (split, no rejoin):
1272 std::make_unique
<IfcvtToken
>(BBI
, ICSimple
, TNeedSub
, Dups
));
1277 // Try the other path...
1278 if (ValidTriangle(FalseBBI
, TrueBBI
, false, Dups
,
1279 Prediction
.getCompl()) &&
1280 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1281 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1282 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1283 FeasibilityAnalysis(FalseBBI
, RevCond
, true)) {
1284 Tokens
.push_back(std::make_unique
<IfcvtToken
>(BBI
, ICTriangleFalse
,
1289 if (ValidTriangle(FalseBBI
, TrueBBI
, true, Dups
,
1290 Prediction
.getCompl()) &&
1291 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1292 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1293 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1294 FeasibilityAnalysis(FalseBBI
, RevCond
, true, true)) {
1296 std::make_unique
<IfcvtToken
>(BBI
, ICTriangleFRev
, FNeedSub
, Dups
));
1300 if (ValidSimple(FalseBBI
, Dups
, Prediction
.getCompl()) &&
1301 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1302 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1303 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1304 FeasibilityAnalysis(FalseBBI
, RevCond
)) {
1306 std::make_unique
<IfcvtToken
>(BBI
, ICSimpleFalse
, FNeedSub
, Dups
));
1311 BBI
.IsEnqueued
= Enqueued
;
1312 BBI
.IsBeingAnalyzed
= false;
1313 BBI
.IsAnalyzed
= true;
1318 /// Analyze all blocks and find entries for all if-conversion candidates.
1319 void IfConverter::AnalyzeBlocks(
1320 MachineFunction
&MF
, std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
) {
1321 for (MachineBasicBlock
&MBB
: MF
)
1322 AnalyzeBlock(MBB
, Tokens
);
1324 // Sort to favor more complex ifcvt scheme.
1325 llvm::stable_sort(Tokens
, IfcvtTokenCmp
);
1328 /// Returns true either if ToMBB is the next block after MBB or that all the
1329 /// intervening blocks are empty (given MBB can fall through to its next block).
1330 static bool canFallThroughTo(MachineBasicBlock
&MBB
, MachineBasicBlock
&ToMBB
) {
1331 MachineFunction::iterator PI
= MBB
.getIterator();
1332 MachineFunction::iterator I
= std::next(PI
);
1333 MachineFunction::iterator TI
= ToMBB
.getIterator();
1334 MachineFunction::iterator E
= MBB
.getParent()->end();
1336 // Check isSuccessor to avoid case where the next block is empty, but
1337 // it's not a successor.
1338 if (I
== E
|| !I
->empty() || !PI
->isSuccessor(&*I
))
1342 // Finally see if the last I is indeed a successor to PI.
1343 return PI
->isSuccessor(&*I
);
1346 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1347 /// can be if-converted. If predecessor is already enqueued, dequeue it!
1348 void IfConverter::InvalidatePreds(MachineBasicBlock
&MBB
) {
1349 for (const MachineBasicBlock
*Predecessor
: MBB
.predecessors()) {
1350 BBInfo
&PBBI
= BBAnalysis
[Predecessor
->getNumber()];
1351 if (PBBI
.IsDone
|| PBBI
.BB
== &MBB
)
1353 PBBI
.IsAnalyzed
= false;
1354 PBBI
.IsEnqueued
= false;
1358 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
1359 static void InsertUncondBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
&ToMBB
,
1360 const TargetInstrInfo
*TII
) {
1361 DebugLoc dl
; // FIXME: this is nowhere
1362 SmallVector
<MachineOperand
, 0> NoCond
;
1363 TII
->insertBranch(MBB
, &ToMBB
, nullptr, NoCond
, dl
);
1366 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1367 /// values defined in MI which are also live/used by MI.
1368 static void UpdatePredRedefs(MachineInstr
&MI
, LivePhysRegs
&Redefs
) {
1369 const TargetRegisterInfo
*TRI
= MI
.getMF()->getSubtarget().getRegisterInfo();
1371 // Before stepping forward past MI, remember which regs were live
1372 // before MI. This is needed to set the Undef flag only when reg is
1374 SparseSet
<MCPhysReg
, identity
<MCPhysReg
>> LiveBeforeMI
;
1375 LiveBeforeMI
.setUniverse(TRI
->getNumRegs());
1376 for (unsigned Reg
: Redefs
)
1377 LiveBeforeMI
.insert(Reg
);
1379 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>, 4> Clobbers
;
1380 Redefs
.stepForward(MI
, Clobbers
);
1382 // Now add the implicit uses for each of the clobbered values.
1383 for (auto Clobber
: Clobbers
) {
1384 // FIXME: Const cast here is nasty, but better than making StepForward
1385 // take a mutable instruction instead of const.
1386 unsigned Reg
= Clobber
.first
;
1387 MachineOperand
&Op
= const_cast<MachineOperand
&>(*Clobber
.second
);
1388 MachineInstr
*OpMI
= Op
.getParent();
1389 MachineInstrBuilder
MIB(*OpMI
->getMF(), OpMI
);
1390 if (Op
.isRegMask()) {
1391 // First handle regmasks. They clobber any entries in the mask which
1392 // means that we need a def for those registers.
1393 if (LiveBeforeMI
.count(Reg
))
1394 MIB
.addReg(Reg
, RegState::Implicit
);
1396 // We also need to add an implicit def of this register for the later
1397 // use to read from.
1398 // For the register allocator to have allocated a register clobbered
1399 // by the call which is used later, it must be the case that
1400 // the call doesn't return.
1401 MIB
.addReg(Reg
, RegState::Implicit
| RegState::Define
);
1404 if (LiveBeforeMI
.count(Reg
))
1405 MIB
.addReg(Reg
, RegState::Implicit
);
1407 bool HasLiveSubReg
= false;
1408 for (MCSubRegIterator
S(Reg
, TRI
); S
.isValid(); ++S
) {
1409 if (!LiveBeforeMI
.count(*S
))
1411 HasLiveSubReg
= true;
1415 MIB
.addReg(Reg
, RegState::Implicit
);
1420 /// If convert a simple (split, no rejoin) sub-CFG.
1421 bool IfConverter::IfConvertSimple(BBInfo
&BBI
, IfcvtKind Kind
) {
1422 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1423 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1424 BBInfo
*CvtBBI
= &TrueBBI
;
1425 BBInfo
*NextBBI
= &FalseBBI
;
1427 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1428 if (Kind
== ICSimpleFalse
)
1429 std::swap(CvtBBI
, NextBBI
);
1431 MachineBasicBlock
&CvtMBB
= *CvtBBI
->BB
;
1432 MachineBasicBlock
&NextMBB
= *NextBBI
->BB
;
1433 if (CvtBBI
->IsDone
||
1434 (CvtBBI
->CannotBeCopied
&& CvtMBB
.pred_size() > 1)) {
1435 // Something has changed. It's no longer safe to predicate this block.
1436 BBI
.IsAnalyzed
= false;
1437 CvtBBI
->IsAnalyzed
= false;
1441 if (CvtMBB
.hasAddressTaken())
1442 // Conservatively abort if-conversion if BB's address is taken.
1445 if (Kind
== ICSimpleFalse
)
1446 if (TII
->reverseBranchCondition(Cond
))
1447 llvm_unreachable("Unable to reverse branch condition!");
1451 if (MRI
->tracksLiveness()) {
1452 // Initialize liveins to the first BB. These are potentially redefined by
1453 // predicated instructions.
1454 Redefs
.addLiveIns(CvtMBB
);
1455 Redefs
.addLiveIns(NextMBB
);
1458 // Remove the branches from the entry so we can add the contents of the true
1460 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1462 if (CvtMBB
.pred_size() > 1) {
1463 // Copy instructions in the true block, predicate them, and add them to
1465 CopyAndPredicateBlock(BBI
, *CvtBBI
, Cond
);
1467 // Keep the CFG updated.
1468 BBI
.BB
->removeSuccessor(&CvtMBB
, true);
1470 // Predicate the instructions in the true block.
1471 PredicateBlock(*CvtBBI
, CvtMBB
.end(), Cond
);
1473 // Merge converted block into entry block. The BB to Cvt edge is removed
1475 MergeBlocks(BBI
, *CvtBBI
);
1478 bool IterIfcvt
= true;
1479 if (!canFallThroughTo(*BBI
.BB
, NextMBB
)) {
1480 InsertUncondBranch(*BBI
.BB
, NextMBB
, TII
);
1481 BBI
.HasFallThrough
= false;
1482 // Now ifcvt'd block will look like this:
1489 // We cannot further ifcvt this block because the unconditional branch
1490 // will have to be predicated on the new condition, that will not be
1491 // available if cmp executes.
1495 // Update block info. BB can be iteratively if-converted.
1498 InvalidatePreds(*BBI
.BB
);
1499 CvtBBI
->IsDone
= true;
1501 // FIXME: Must maintain LiveIns.
1505 /// If convert a triangle sub-CFG.
1506 bool IfConverter::IfConvertTriangle(BBInfo
&BBI
, IfcvtKind Kind
) {
1507 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1508 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1509 BBInfo
*CvtBBI
= &TrueBBI
;
1510 BBInfo
*NextBBI
= &FalseBBI
;
1511 DebugLoc dl
; // FIXME: this is nowhere
1513 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1514 if (Kind
== ICTriangleFalse
|| Kind
== ICTriangleFRev
)
1515 std::swap(CvtBBI
, NextBBI
);
1517 MachineBasicBlock
&CvtMBB
= *CvtBBI
->BB
;
1518 MachineBasicBlock
&NextMBB
= *NextBBI
->BB
;
1519 if (CvtBBI
->IsDone
||
1520 (CvtBBI
->CannotBeCopied
&& CvtMBB
.pred_size() > 1)) {
1521 // Something has changed. It's no longer safe to predicate this block.
1522 BBI
.IsAnalyzed
= false;
1523 CvtBBI
->IsAnalyzed
= false;
1527 if (CvtMBB
.hasAddressTaken())
1528 // Conservatively abort if-conversion if BB's address is taken.
1531 if (Kind
== ICTriangleFalse
|| Kind
== ICTriangleFRev
)
1532 if (TII
->reverseBranchCondition(Cond
))
1533 llvm_unreachable("Unable to reverse branch condition!");
1535 if (Kind
== ICTriangleRev
|| Kind
== ICTriangleFRev
) {
1536 if (reverseBranchCondition(*CvtBBI
)) {
1537 // BB has been changed, modify its predecessors (except for this
1538 // one) so they don't get ifcvt'ed based on bad intel.
1539 for (MachineBasicBlock
*PBB
: CvtMBB
.predecessors()) {
1542 BBInfo
&PBBI
= BBAnalysis
[PBB
->getNumber()];
1543 if (PBBI
.IsEnqueued
) {
1544 PBBI
.IsAnalyzed
= false;
1545 PBBI
.IsEnqueued
= false;
1551 // Initialize liveins to the first BB. These are potentially redefined by
1552 // predicated instructions.
1554 if (MRI
->tracksLiveness()) {
1555 Redefs
.addLiveIns(CvtMBB
);
1556 Redefs
.addLiveIns(NextMBB
);
1559 bool HasEarlyExit
= CvtBBI
->FalseBB
!= nullptr;
1560 BranchProbability CvtNext
, CvtFalse
, BBNext
, BBCvt
;
1563 // Get probabilities before modifying CvtMBB and BBI.BB.
1564 CvtNext
= MBPI
->getEdgeProbability(&CvtMBB
, &NextMBB
);
1565 CvtFalse
= MBPI
->getEdgeProbability(&CvtMBB
, CvtBBI
->FalseBB
);
1566 BBNext
= MBPI
->getEdgeProbability(BBI
.BB
, &NextMBB
);
1567 BBCvt
= MBPI
->getEdgeProbability(BBI
.BB
, &CvtMBB
);
1570 // Remove the branches from the entry so we can add the contents of the true
1572 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1574 if (CvtMBB
.pred_size() > 1) {
1575 // Copy instructions in the true block, predicate them, and add them to
1577 CopyAndPredicateBlock(BBI
, *CvtBBI
, Cond
, true);
1579 // Predicate the 'true' block after removing its branch.
1580 CvtBBI
->NonPredSize
-= TII
->removeBranch(CvtMBB
);
1581 PredicateBlock(*CvtBBI
, CvtMBB
.end(), Cond
);
1583 // Now merge the entry of the triangle with the true block.
1584 MergeBlocks(BBI
, *CvtBBI
, false);
1587 // Keep the CFG updated.
1588 BBI
.BB
->removeSuccessor(&CvtMBB
, true);
1590 // If 'true' block has a 'false' successor, add an exit branch to it.
1592 SmallVector
<MachineOperand
, 4> RevCond(CvtBBI
->BrCond
.begin(),
1593 CvtBBI
->BrCond
.end());
1594 if (TII
->reverseBranchCondition(RevCond
))
1595 llvm_unreachable("Unable to reverse branch condition!");
1597 // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1598 // NewNext = New_Prob(BBI.BB, NextMBB) =
1599 // Prob(BBI.BB, NextMBB) +
1600 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1601 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1602 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1603 auto NewTrueBB
= getNextBlock(*BBI
.BB
);
1604 auto NewNext
= BBNext
+ BBCvt
* CvtNext
;
1605 auto NewTrueBBIter
= find(BBI
.BB
->successors(), NewTrueBB
);
1606 if (NewTrueBBIter
!= BBI
.BB
->succ_end())
1607 BBI
.BB
->setSuccProbability(NewTrueBBIter
, NewNext
);
1609 auto NewFalse
= BBCvt
* CvtFalse
;
1610 TII
->insertBranch(*BBI
.BB
, CvtBBI
->FalseBB
, nullptr, RevCond
, dl
);
1611 BBI
.BB
->addSuccessor(CvtBBI
->FalseBB
, NewFalse
);
1614 // Merge in the 'false' block if the 'false' block has no other
1615 // predecessors. Otherwise, add an unconditional branch to 'false'.
1616 bool FalseBBDead
= false;
1617 bool IterIfcvt
= true;
1618 bool isFallThrough
= canFallThroughTo(*BBI
.BB
, NextMBB
);
1619 if (!isFallThrough
) {
1620 // Only merge them if the true block does not fallthrough to the false
1621 // block. By not merging them, we make it possible to iteratively
1622 // ifcvt the blocks.
1623 if (!HasEarlyExit
&&
1624 NextMBB
.pred_size() == 1 && !NextBBI
->HasFallThrough
&&
1625 !NextMBB
.hasAddressTaken()) {
1626 MergeBlocks(BBI
, *NextBBI
);
1629 InsertUncondBranch(*BBI
.BB
, NextMBB
, TII
);
1630 BBI
.HasFallThrough
= false;
1632 // Mixed predicated and unpredicated code. This cannot be iteratively
1637 // Update block info. BB can be iteratively if-converted.
1640 InvalidatePreds(*BBI
.BB
);
1641 CvtBBI
->IsDone
= true;
1643 NextBBI
->IsDone
= true;
1645 // FIXME: Must maintain LiveIns.
1649 /// Common code shared between diamond conversions.
1650 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1651 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1653 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1655 /// \p RemoveBranch - Remove the common branch of the two blocks before
1656 /// predicating. Only false for unanalyzable fallthrough
1657 /// cases. The caller will replace the branch if necessary.
1658 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1659 /// unanalyzable fallthrough
1660 bool IfConverter::IfConvertDiamondCommon(
1661 BBInfo
&BBI
, BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
1662 unsigned NumDups1
, unsigned NumDups2
,
1663 bool TClobbersPred
, bool FClobbersPred
,
1664 bool RemoveBranch
, bool MergeAddEdges
) {
1666 if (TrueBBI
.IsDone
|| FalseBBI
.IsDone
||
1667 TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1) {
1668 // Something has changed. It's no longer safe to predicate these blocks.
1669 BBI
.IsAnalyzed
= false;
1670 TrueBBI
.IsAnalyzed
= false;
1671 FalseBBI
.IsAnalyzed
= false;
1675 if (TrueBBI
.BB
->hasAddressTaken() || FalseBBI
.BB
->hasAddressTaken())
1676 // Conservatively abort if-conversion if either BB has its address taken.
1679 // Put the predicated instructions from the 'true' block before the
1680 // instructions from the 'false' block, unless the true block would clobber
1681 // the predicate, in which case, do the opposite.
1682 BBInfo
*BBI1
= &TrueBBI
;
1683 BBInfo
*BBI2
= &FalseBBI
;
1684 SmallVector
<MachineOperand
, 4> RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1685 if (TII
->reverseBranchCondition(RevCond
))
1686 llvm_unreachable("Unable to reverse branch condition!");
1687 SmallVector
<MachineOperand
, 4> *Cond1
= &BBI
.BrCond
;
1688 SmallVector
<MachineOperand
, 4> *Cond2
= &RevCond
;
1690 // Figure out the more profitable ordering.
1691 bool DoSwap
= false;
1692 if (TClobbersPred
&& !FClobbersPred
)
1694 else if (!TClobbersPred
&& !FClobbersPred
) {
1695 if (TrueBBI
.NonPredSize
> FalseBBI
.NonPredSize
)
1697 } else if (TClobbersPred
&& FClobbersPred
)
1698 llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1700 std::swap(BBI1
, BBI2
);
1701 std::swap(Cond1
, Cond2
);
1704 // Remove the conditional branch from entry to the blocks.
1705 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1707 MachineBasicBlock
&MBB1
= *BBI1
->BB
;
1708 MachineBasicBlock
&MBB2
= *BBI2
->BB
;
1710 // Initialize the Redefs:
1711 // - BB2 live-in regs need implicit uses before being redefined by BB1
1713 // - BB1 live-out regs need implicit uses before being redefined by BB2
1714 // instructions. We start with BB1 live-ins so we have the live-out regs
1715 // after tracking the BB1 instructions.
1717 if (MRI
->tracksLiveness()) {
1718 Redefs
.addLiveIns(MBB1
);
1719 Redefs
.addLiveIns(MBB2
);
1722 // Remove the duplicated instructions at the beginnings of both paths.
1723 // Skip dbg_value instructions.
1724 MachineBasicBlock::iterator DI1
= MBB1
.getFirstNonDebugInstr();
1725 MachineBasicBlock::iterator DI2
= MBB2
.getFirstNonDebugInstr();
1726 BBI1
->NonPredSize
-= NumDups1
;
1727 BBI2
->NonPredSize
-= NumDups1
;
1729 // Skip past the dups on each side separately since there may be
1730 // differing dbg_value entries. NumDups1 can include a "return"
1731 // instruction, if it's not marked as "branch".
1732 for (unsigned i
= 0; i
< NumDups1
; ++DI1
) {
1733 if (DI1
== MBB1
.end())
1735 if (!DI1
->isDebugInstr())
1738 while (NumDups1
!= 0) {
1740 if (DI2
== MBB2
.end())
1742 if (!DI2
->isDebugInstr())
1746 if (MRI
->tracksLiveness()) {
1747 for (const MachineInstr
&MI
: make_range(MBB1
.begin(), DI1
)) {
1748 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>, 4> Dummy
;
1749 Redefs
.stepForward(MI
, Dummy
);
1753 BBI
.BB
->splice(BBI
.BB
->end(), &MBB1
, MBB1
.begin(), DI1
);
1754 MBB2
.erase(MBB2
.begin(), DI2
);
1756 // The branches have been checked to match, so it is safe to remove the
1757 // branch in BB1 and rely on the copy in BB2. The complication is that
1758 // the blocks may end with a return instruction, which may or may not
1759 // be marked as "branch". If it's not, then it could be included in
1760 // "dups1", leaving the blocks potentially empty after moving the common
1763 // Unanalyzable branches must match exactly. Check that now.
1764 if (!BBI1
->IsBrAnalyzable
)
1765 verifySameBranchInstructions(&MBB1
, &MBB2
);
1767 // Remove duplicated instructions from the tail of MBB1: any branch
1768 // instructions, and the common instructions counted by NumDups2.
1770 while (DI1
!= MBB1
.begin()) {
1771 MachineBasicBlock::iterator Prev
= std::prev(DI1
);
1772 if (!Prev
->isBranch() && !Prev
->isDebugInstr())
1776 for (unsigned i
= 0; i
!= NumDups2
; ) {
1777 // NumDups2 only counted non-dbg_value instructions, so this won't
1778 // run off the head of the list.
1779 assert(DI1
!= MBB1
.begin());
1781 // skip dbg_value instructions
1782 if (!DI1
->isDebugInstr())
1785 MBB1
.erase(DI1
, MBB1
.end());
1787 DI2
= BBI2
->BB
->end();
1788 // The branches have been checked to match. Skip over the branch in the false
1789 // block so that we don't try to predicate it.
1791 BBI2
->NonPredSize
-= TII
->removeBranch(*BBI2
->BB
);
1793 // Make DI2 point to the end of the range where the common "tail"
1794 // instructions could be found.
1795 while (DI2
!= MBB2
.begin()) {
1796 MachineBasicBlock::iterator Prev
= std::prev(DI2
);
1797 if (!Prev
->isBranch() && !Prev
->isDebugInstr())
1802 while (NumDups2
!= 0) {
1803 // NumDups2 only counted non-dbg_value instructions, so this won't
1804 // run off the head of the list.
1805 assert(DI2
!= MBB2
.begin());
1807 // skip dbg_value instructions
1808 if (!DI2
->isDebugInstr())
1812 // Remember which registers would later be defined by the false block.
1813 // This allows us not to predicate instructions in the true block that would
1814 // later be re-defined. That is, rather than
1820 SmallSet
<MCPhysReg
, 4> RedefsByFalse
;
1821 SmallSet
<MCPhysReg
, 4> ExtUses
;
1822 if (TII
->isProfitableToUnpredicate(MBB1
, MBB2
)) {
1823 for (const MachineInstr
&FI
: make_range(MBB2
.begin(), DI2
)) {
1824 if (FI
.isDebugInstr())
1826 SmallVector
<MCPhysReg
, 4> Defs
;
1827 for (const MachineOperand
&MO
: FI
.operands()) {
1830 Register Reg
= MO
.getReg();
1834 Defs
.push_back(Reg
);
1835 } else if (!RedefsByFalse
.count(Reg
)) {
1836 // These are defined before ctrl flow reach the 'false' instructions.
1837 // They cannot be modified by the 'true' instructions.
1838 for (MCSubRegIterator
SubRegs(Reg
, TRI
, /*IncludeSelf=*/true);
1839 SubRegs
.isValid(); ++SubRegs
)
1840 ExtUses
.insert(*SubRegs
);
1844 for (MCPhysReg Reg
: Defs
) {
1845 if (!ExtUses
.count(Reg
)) {
1846 for (MCSubRegIterator
SubRegs(Reg
, TRI
, /*IncludeSelf=*/true);
1847 SubRegs
.isValid(); ++SubRegs
)
1848 RedefsByFalse
.insert(*SubRegs
);
1854 // Predicate the 'true' block.
1855 PredicateBlock(*BBI1
, MBB1
.end(), *Cond1
, &RedefsByFalse
);
1857 // After predicating BBI1, if there is a predicated terminator in BBI1 and
1858 // a non-predicated in BBI2, then we don't want to predicate the one from
1859 // BBI2. The reason is that if we merged these blocks, we would end up with
1860 // two predicated terminators in the same block.
1861 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1862 // predicate them either. They were checked to be identical, and so the
1863 // same branch would happen regardless of which path was taken.
1864 if (!MBB2
.empty() && (DI2
== MBB2
.end())) {
1865 MachineBasicBlock::iterator BBI1T
= MBB1
.getFirstTerminator();
1866 MachineBasicBlock::iterator BBI2T
= MBB2
.getFirstTerminator();
1867 bool BB1Predicated
= BBI1T
!= MBB1
.end() && TII
->isPredicated(*BBI1T
);
1868 bool BB2NonPredicated
= BBI2T
!= MBB2
.end() && !TII
->isPredicated(*BBI2T
);
1869 if (BB2NonPredicated
&& (BB1Predicated
|| !BBI2
->IsBrAnalyzable
))
1873 // Predicate the 'false' block.
1874 PredicateBlock(*BBI2
, DI2
, *Cond2
);
1876 // Merge the true block into the entry of the diamond.
1877 MergeBlocks(BBI
, *BBI1
, MergeAddEdges
);
1878 MergeBlocks(BBI
, *BBI2
, MergeAddEdges
);
1882 /// If convert an almost-diamond sub-CFG where the true
1883 /// and false blocks share a common tail.
1884 bool IfConverter::IfConvertForkedDiamond(
1885 BBInfo
&BBI
, IfcvtKind Kind
,
1886 unsigned NumDups1
, unsigned NumDups2
,
1887 bool TClobbersPred
, bool FClobbersPred
) {
1888 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1889 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1891 // Save the debug location for later.
1893 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->getFirstTerminator();
1894 if (TIE
!= TrueBBI
.BB
->end())
1895 dl
= TIE
->getDebugLoc();
1896 // Removing branches from both blocks is safe, because we have already
1897 // determined that both blocks have the same branch instructions. The branch
1898 // will be added back at the end, unpredicated.
1899 if (!IfConvertDiamondCommon(
1900 BBI
, TrueBBI
, FalseBBI
,
1902 TClobbersPred
, FClobbersPred
,
1903 /* RemoveBranch */ true, /* MergeAddEdges */ true))
1906 // Add back the branch.
1907 // Debug location saved above when removing the branch from BBI2
1908 TII
->insertBranch(*BBI
.BB
, TrueBBI
.TrueBB
, TrueBBI
.FalseBB
,
1909 TrueBBI
.BrCond
, dl
);
1911 // Update block info.
1912 BBI
.IsDone
= TrueBBI
.IsDone
= FalseBBI
.IsDone
= true;
1913 InvalidatePreds(*BBI
.BB
);
1915 // FIXME: Must maintain LiveIns.
1919 /// If convert a diamond sub-CFG.
1920 bool IfConverter::IfConvertDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
1921 unsigned NumDups1
, unsigned NumDups2
,
1922 bool TClobbersPred
, bool FClobbersPred
) {
1923 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1924 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1925 MachineBasicBlock
*TailBB
= TrueBBI
.TrueBB
;
1927 // True block must fall through or end with an unanalyzable terminator.
1929 if (blockAlwaysFallThrough(TrueBBI
))
1930 TailBB
= FalseBBI
.TrueBB
;
1931 assert((TailBB
|| !TrueBBI
.IsBrAnalyzable
) && "Unexpected!");
1934 if (!IfConvertDiamondCommon(
1935 BBI
, TrueBBI
, FalseBBI
,
1937 TClobbersPred
, FClobbersPred
,
1938 /* RemoveBranch */ TrueBBI
.IsBrAnalyzable
,
1939 /* MergeAddEdges */ TailBB
== nullptr))
1942 // If the if-converted block falls through or unconditionally branches into
1943 // the tail block, and the tail block does not have other predecessors, then
1944 // fold the tail block in as well. Otherwise, unless it falls through to the
1945 // tail, add a unconditional branch to it.
1947 // We need to remove the edges to the true and false blocks manually since
1948 // we didn't let IfConvertDiamondCommon update the CFG.
1949 BBI
.BB
->removeSuccessor(TrueBBI
.BB
);
1950 BBI
.BB
->removeSuccessor(FalseBBI
.BB
, true);
1952 BBInfo
&TailBBI
= BBAnalysis
[TailBB
->getNumber()];
1953 bool CanMergeTail
= !TailBBI
.HasFallThrough
&&
1954 !TailBBI
.BB
->hasAddressTaken();
1955 // The if-converted block can still have a predicated terminator
1956 // (e.g. a predicated return). If that is the case, we cannot merge
1957 // it with the tail block.
1958 MachineBasicBlock::const_iterator TI
= BBI
.BB
->getFirstTerminator();
1959 if (TI
!= BBI
.BB
->end() && TII
->isPredicated(*TI
))
1960 CanMergeTail
= false;
1961 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
1962 // check if there are any other predecessors besides those.
1963 unsigned NumPreds
= TailBB
->pred_size();
1965 CanMergeTail
= false;
1966 else if (NumPreds
== 1 && CanMergeTail
) {
1967 MachineBasicBlock::pred_iterator PI
= TailBB
->pred_begin();
1968 if (*PI
!= TrueBBI
.BB
&& *PI
!= FalseBBI
.BB
)
1969 CanMergeTail
= false;
1972 MergeBlocks(BBI
, TailBBI
);
1973 TailBBI
.IsDone
= true;
1975 BBI
.BB
->addSuccessor(TailBB
, BranchProbability::getOne());
1976 InsertUncondBranch(*BBI
.BB
, *TailBB
, TII
);
1977 BBI
.HasFallThrough
= false;
1981 // Update block info.
1982 BBI
.IsDone
= TrueBBI
.IsDone
= FalseBBI
.IsDone
= true;
1983 InvalidatePreds(*BBI
.BB
);
1985 // FIXME: Must maintain LiveIns.
1989 static bool MaySpeculate(const MachineInstr
&MI
,
1990 SmallSet
<MCPhysReg
, 4> &LaterRedefs
) {
1991 bool SawStore
= true;
1992 if (!MI
.isSafeToMove(nullptr, SawStore
))
1995 for (const MachineOperand
&MO
: MI
.operands()) {
1998 Register Reg
= MO
.getReg();
2001 if (MO
.isDef() && !LaterRedefs
.count(Reg
))
2008 /// Predicate instructions from the start of the block to the specified end with
2009 /// the specified condition.
2010 void IfConverter::PredicateBlock(BBInfo
&BBI
,
2011 MachineBasicBlock::iterator E
,
2012 SmallVectorImpl
<MachineOperand
> &Cond
,
2013 SmallSet
<MCPhysReg
, 4> *LaterRedefs
) {
2014 bool AnyUnpred
= false;
2015 bool MaySpec
= LaterRedefs
!= nullptr;
2016 for (MachineInstr
&I
: make_range(BBI
.BB
->begin(), E
)) {
2017 if (I
.isDebugInstr() || TII
->isPredicated(I
))
2019 // It may be possible not to predicate an instruction if it's the 'true'
2020 // side of a diamond and the 'false' side may re-define the instruction's
2022 if (MaySpec
&& MaySpeculate(I
, *LaterRedefs
)) {
2026 // If any instruction is predicated, then every instruction after it must
2029 if (!TII
->PredicateInstruction(I
, Cond
)) {
2031 dbgs() << "Unable to predicate " << I
<< "!\n";
2033 llvm_unreachable(nullptr);
2036 // If the predicated instruction now redefines a register as the result of
2037 // if-conversion, add an implicit kill.
2038 UpdatePredRedefs(I
, Redefs
);
2041 BBI
.Predicate
.append(Cond
.begin(), Cond
.end());
2043 BBI
.IsAnalyzed
= false;
2044 BBI
.NonPredSize
= 0;
2051 /// Copy and predicate instructions from source BB to the destination block.
2052 /// Skip end of block branches if IgnoreBr is true.
2053 void IfConverter::CopyAndPredicateBlock(BBInfo
&ToBBI
, BBInfo
&FromBBI
,
2054 SmallVectorImpl
<MachineOperand
> &Cond
,
2056 MachineFunction
&MF
= *ToBBI
.BB
->getParent();
2058 MachineBasicBlock
&FromMBB
= *FromBBI
.BB
;
2059 for (MachineInstr
&I
: FromMBB
) {
2060 // Do not copy the end of the block branches.
2061 if (IgnoreBr
&& I
.isBranch())
2064 MachineInstr
*MI
= MF
.CloneMachineInstr(&I
);
2065 ToBBI
.BB
->insert(ToBBI
.BB
->end(), MI
);
2066 ToBBI
.NonPredSize
++;
2067 unsigned ExtraPredCost
= TII
->getPredicationCost(I
);
2068 unsigned NumCycles
= SchedModel
.computeInstrLatency(&I
, false);
2070 ToBBI
.ExtraCost
+= NumCycles
-1;
2071 ToBBI
.ExtraCost2
+= ExtraPredCost
;
2073 if (!TII
->isPredicated(I
) && !MI
->isDebugInstr()) {
2074 if (!TII
->PredicateInstruction(*MI
, Cond
)) {
2076 dbgs() << "Unable to predicate " << I
<< "!\n";
2078 llvm_unreachable(nullptr);
2082 // If the predicated instruction now redefines a register as the result of
2083 // if-conversion, add an implicit kill.
2084 UpdatePredRedefs(*MI
, Redefs
);
2088 std::vector
<MachineBasicBlock
*> Succs(FromMBB
.succ_begin(),
2089 FromMBB
.succ_end());
2090 MachineBasicBlock
*NBB
= getNextBlock(FromMBB
);
2091 MachineBasicBlock
*FallThrough
= FromBBI
.HasFallThrough
? NBB
: nullptr;
2093 for (MachineBasicBlock
*Succ
: Succs
) {
2094 // Fallthrough edge can't be transferred.
2095 if (Succ
== FallThrough
)
2097 ToBBI
.BB
->addSuccessor(Succ
);
2101 ToBBI
.Predicate
.append(FromBBI
.Predicate
.begin(), FromBBI
.Predicate
.end());
2102 ToBBI
.Predicate
.append(Cond
.begin(), Cond
.end());
2104 ToBBI
.ClobbersPred
|= FromBBI
.ClobbersPred
;
2105 ToBBI
.IsAnalyzed
= false;
2110 /// Move all instructions from FromBB to the end of ToBB. This will leave
2111 /// FromBB as an empty block, so remove all of its successor edges except for
2112 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is
2113 /// being moved, add those successor edges to ToBBI and remove the old edge
2114 /// from ToBBI to FromBBI.
2115 void IfConverter::MergeBlocks(BBInfo
&ToBBI
, BBInfo
&FromBBI
, bool AddEdges
) {
2116 MachineBasicBlock
&FromMBB
= *FromBBI
.BB
;
2117 assert(!FromMBB
.hasAddressTaken() &&
2118 "Removing a BB whose address is taken!");
2120 // In case FromMBB contains terminators (e.g. return instruction),
2121 // first move the non-terminator instructions, then the terminators.
2122 MachineBasicBlock::iterator FromTI
= FromMBB
.getFirstTerminator();
2123 MachineBasicBlock::iterator ToTI
= ToBBI
.BB
->getFirstTerminator();
2124 ToBBI
.BB
->splice(ToTI
, &FromMBB
, FromMBB
.begin(), FromTI
);
2126 // If FromBB has non-predicated terminator we should copy it at the end.
2127 if (FromTI
!= FromMBB
.end() && !TII
->isPredicated(*FromTI
))
2128 ToTI
= ToBBI
.BB
->end();
2129 ToBBI
.BB
->splice(ToTI
, &FromMBB
, FromTI
, FromMBB
.end());
2131 // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2132 // unknown probabilities into known ones.
2133 // FIXME: This usage is too tricky and in the future we would like to
2134 // eliminate all unknown probabilities in MBB.
2135 if (ToBBI
.IsBrAnalyzable
)
2136 ToBBI
.BB
->normalizeSuccProbs();
2138 SmallVector
<MachineBasicBlock
*, 4> FromSuccs(FromMBB
.succ_begin(),
2139 FromMBB
.succ_end());
2140 MachineBasicBlock
*NBB
= getNextBlock(FromMBB
);
2141 MachineBasicBlock
*FallThrough
= FromBBI
.HasFallThrough
? NBB
: nullptr;
2142 // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2143 // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2144 auto To2FromProb
= BranchProbability::getZero();
2145 if (AddEdges
&& ToBBI
.BB
->isSuccessor(&FromMBB
)) {
2146 // Remove the old edge but remember the edge probability so we can calculate
2147 // the correct weights on the new edges being added further down.
2148 To2FromProb
= MBPI
->getEdgeProbability(ToBBI
.BB
, &FromMBB
);
2149 ToBBI
.BB
->removeSuccessor(&FromMBB
);
2152 for (MachineBasicBlock
*Succ
: FromSuccs
) {
2153 // Fallthrough edge can't be transferred.
2154 if (Succ
== FallThrough
)
2157 auto NewProb
= BranchProbability::getZero();
2159 // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2160 // which is a portion of the edge probability from FromMBB to Succ. The
2161 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2162 // FromBBI is a successor of ToBBI.BB. See comment below for exception).
2163 NewProb
= MBPI
->getEdgeProbability(&FromMBB
, Succ
);
2165 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2166 // only happens when if-converting a diamond CFG and FromMBB is the
2167 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
2168 // could just use the probabilities on FromMBB's out-edges when adding
2170 if (!To2FromProb
.isZero())
2171 NewProb
*= To2FromProb
;
2174 FromMBB
.removeSuccessor(Succ
);
2177 // If the edge from ToBBI.BB to Succ already exists, update the
2178 // probability of this edge by adding NewProb to it. An example is shown
2179 // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2180 // don't have to set C as A's successor as it already is. We only need to
2181 // update the edge probability on A->C. Note that B will not be
2182 // immediately removed from A's successors. It is possible that B->D is
2183 // not removed either if D is a fallthrough of B. Later the edge A->D
2184 // (generated here) and B->D will be combined into one edge. To maintain
2185 // correct edge probability of this combined edge, we need to set the edge
2186 // probability of A->B to zero, which is already done above. The edge
2187 // probability on A->D is calculated by scaling the original probability
2188 // on A->B by the probability of B->D.
2190 // Before ifcvt: After ifcvt (assume B->D is kept):
2199 if (ToBBI
.BB
->isSuccessor(Succ
))
2200 ToBBI
.BB
->setSuccProbability(
2201 find(ToBBI
.BB
->successors(), Succ
),
2202 MBPI
->getEdgeProbability(ToBBI
.BB
, Succ
) + NewProb
);
2204 ToBBI
.BB
->addSuccessor(Succ
, NewProb
);
2208 // Move the now empty FromMBB out of the way to the end of the function so
2209 // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2210 MachineBasicBlock
*Last
= &*FromMBB
.getParent()->rbegin();
2211 if (Last
!= &FromMBB
)
2212 FromMBB
.moveAfter(Last
);
2214 // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2215 // we've done above.
2216 if (ToBBI
.IsBrAnalyzable
&& FromBBI
.IsBrAnalyzable
)
2217 ToBBI
.BB
->normalizeSuccProbs();
2219 ToBBI
.Predicate
.append(FromBBI
.Predicate
.begin(), FromBBI
.Predicate
.end());
2220 FromBBI
.Predicate
.clear();
2222 ToBBI
.NonPredSize
+= FromBBI
.NonPredSize
;
2223 ToBBI
.ExtraCost
+= FromBBI
.ExtraCost
;
2224 ToBBI
.ExtraCost2
+= FromBBI
.ExtraCost2
;
2225 FromBBI
.NonPredSize
= 0;
2226 FromBBI
.ExtraCost
= 0;
2227 FromBBI
.ExtraCost2
= 0;
2229 ToBBI
.ClobbersPred
|= FromBBI
.ClobbersPred
;
2230 ToBBI
.HasFallThrough
= FromBBI
.HasFallThrough
;
2231 ToBBI
.IsAnalyzed
= false;
2232 FromBBI
.IsAnalyzed
= false;
2236 llvm::createIfConverter(std::function
<bool(const MachineFunction
&)> Ftor
) {
2237 return new IfConverter(std::move(Ftor
));