[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / CodeGen / InterleavedLoadCombinePass.cpp
blob770c4952d169dd1fe1f2cf6af5b2442ea99a125e
1 //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
11 // This file defines the interleaved-load-combine pass. The pass searches for
12 // ShuffleVectorInstruction that execute interleaving loads. If a matching
13 // pattern is found, it adds a combined load and further instructions in a
14 // pattern that is detectable by InterleavedAccesPass. The old instructions are
15 // left dead to be removed later. The pass is specifically designed to be
16 // executed just before InterleavedAccesPass to find any left-over instances
17 // that are not detected within former passes.
19 //===----------------------------------------------------------------------===//
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/MemoryLocation.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/LegacyPassManager.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetMachine.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <list>
47 using namespace llvm;
49 #define DEBUG_TYPE "interleaved-load-combine"
51 namespace {
53 /// Statistic counter
54 STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");
56 /// Option to disable the pass
57 static cl::opt<bool> DisableInterleavedLoadCombine(
58 "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden,
59 cl::desc("Disable combining of interleaved loads"));
61 struct VectorInfo;
63 struct InterleavedLoadCombineImpl {
64 public:
65 InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
66 TargetMachine &TM)
67 : F(F), DT(DT), MSSA(MSSA),
68 TLI(*TM.getSubtargetImpl(F)->getTargetLowering()),
69 TTI(TM.getTargetTransformInfo(F)) {}
71 /// Scan the function for interleaved load candidates and execute the
72 /// replacement if applicable.
73 bool run();
75 private:
76 /// Function this pass is working on
77 Function &F;
79 /// Dominator Tree Analysis
80 DominatorTree &DT;
82 /// Memory Alias Analyses
83 MemorySSA &MSSA;
85 /// Target Lowering Information
86 const TargetLowering &TLI;
88 /// Target Transform Information
89 const TargetTransformInfo TTI;
91 /// Find the instruction in sets LIs that dominates all others, return nullptr
92 /// if there is none.
93 LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);
95 /// Replace interleaved load candidates. It does additional
96 /// analyses if this makes sense. Returns true on success and false
97 /// of nothing has been changed.
98 bool combine(std::list<VectorInfo> &InterleavedLoad,
99 OptimizationRemarkEmitter &ORE);
101 /// Given a set of VectorInfo containing candidates for a given interleave
102 /// factor, find a set that represents a 'factor' interleaved load.
103 bool findPattern(std::list<VectorInfo> &Candidates,
104 std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
105 const DataLayout &DL);
106 }; // InterleavedLoadCombine
108 /// First Order Polynomial on an n-Bit Integer Value
110 /// Polynomial(Value) = Value * B + A + E*2^(n-e)
112 /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
113 /// significant bits. It is introduced if an exact computation cannot be proven
114 /// (e.q. division by 2).
116 /// As part of this optimization multiple loads will be combined. It necessary
117 /// to prove that loads are within some relative offset to each other. This
118 /// class is used to prove relative offsets of values loaded from memory.
120 /// Representing an integer in this form is sound since addition in two's
121 /// complement is associative (trivial) and multiplication distributes over the
122 /// addition (see Proof(1) in Polynomial::mul). Further, both operations
123 /// commute.
125 // Example:
126 // declare @fn(i64 %IDX, <4 x float>* %PTR) {
127 // %Pa1 = add i64 %IDX, 2
128 // %Pa2 = lshr i64 %Pa1, 1
129 // %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
130 // %Va = load <4 x float>, <4 x float>* %Pa3
132 // %Pb1 = add i64 %IDX, 4
133 // %Pb2 = lshr i64 %Pb1, 1
134 // %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
135 // %Vb = load <4 x float>, <4 x float>* %Pb3
136 // ... }
138 // The goal is to prove that two loads load consecutive addresses.
140 // In this case the polynomials are constructed by the following
141 // steps.
143 // The number tag #e specifies the error bits.
145 // Pa_0 = %IDX #0
146 // Pa_1 = %IDX + 2 #0 | add 2
147 // Pa_2 = %IDX/2 + 1 #1 | lshr 1
148 // Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64
149 // Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats
150 // Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components
152 // Pb_0 = %IDX #0
153 // Pb_1 = %IDX + 4 #0 | add 2
154 // Pb_2 = %IDX/2 + 2 #1 | lshr 1
155 // Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64
156 // Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats
157 // Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components
159 // Pb_5 - Pa_5 = 16 #0 | subtract to get the offset
161 // Remark: %PTR is not maintained within this class. So in this instance the
162 // offset of 16 can only be assumed if the pointers are equal.
164 class Polynomial {
165 /// Operations on B
166 enum BOps {
167 LShr,
168 Mul,
169 SExt,
170 Trunc,
173 /// Number of Error Bits e
174 unsigned ErrorMSBs;
176 /// Value
177 Value *V;
179 /// Coefficient B
180 SmallVector<std::pair<BOps, APInt>, 4> B;
182 /// Coefficient A
183 APInt A;
185 public:
186 Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V), B(), A() {
187 IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
188 if (Ty) {
189 ErrorMSBs = 0;
190 this->V = V;
191 A = APInt(Ty->getBitWidth(), 0);
195 Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
196 : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(A) {}
198 Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
199 : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(BitWidth, A) {}
201 Polynomial() : ErrorMSBs((unsigned)-1), V(NULL), B(), A() {}
203 /// Increment and clamp the number of undefined bits.
204 void incErrorMSBs(unsigned amt) {
205 if (ErrorMSBs == (unsigned)-1)
206 return;
208 ErrorMSBs += amt;
209 if (ErrorMSBs > A.getBitWidth())
210 ErrorMSBs = A.getBitWidth();
213 /// Decrement and clamp the number of undefined bits.
214 void decErrorMSBs(unsigned amt) {
215 if (ErrorMSBs == (unsigned)-1)
216 return;
218 if (ErrorMSBs > amt)
219 ErrorMSBs -= amt;
220 else
221 ErrorMSBs = 0;
224 /// Apply an add on the polynomial
225 Polynomial &add(const APInt &C) {
226 // Note: Addition is associative in two's complement even when in case of
227 // signed overflow.
229 // Error bits can only propagate into higher significant bits. As these are
230 // already regarded as undefined, there is no change.
232 // Theorem: Adding a constant to a polynomial does not change the error
233 // term.
235 // Proof:
237 // Since the addition is associative and commutes:
239 // (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
240 // [qed]
242 if (C.getBitWidth() != A.getBitWidth()) {
243 ErrorMSBs = (unsigned)-1;
244 return *this;
247 A += C;
248 return *this;
251 /// Apply a multiplication onto the polynomial.
252 Polynomial &mul(const APInt &C) {
253 // Note: Multiplication distributes over the addition
255 // Theorem: Multiplication distributes over the addition
257 // Proof(1):
259 // (B+A)*C =-
260 // = (B + A) + (B + A) + .. {C Times}
261 // addition is associative and commutes, hence
262 // = B + B + .. {C Times} .. + A + A + .. {C times}
263 // = B*C + A*C
264 // (see (function add) for signed values and overflows)
265 // [qed]
267 // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
268 // to the left.
270 // Proof(2):
272 // Let B' and A' be the n-Bit inputs with some unknown errors EA,
273 // EB at e leading bits. B' and A' can be written down as:
275 // B' = B + 2^(n-e)*EB
276 // A' = A + 2^(n-e)*EA
278 // Let C' be an input with c trailing zero bits. C' can be written as
280 // C' = C*2^c
282 // Therefore we can compute the result by using distributivity and
283 // commutativity.
285 // (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
286 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
287 // = (B'+A') * C' =
288 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
289 // = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
290 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
291 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
292 // = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
294 // Let EC be the final error with EC = C*(EB + EA)
296 // = (B + A)*C' + EC*2^(n-e)*2^c =
297 // = (B + A)*C' + EC*2^(n-(e-c))
299 // Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
300 // less error bits than the input. c bits are shifted out to the left.
301 // [qed]
303 if (C.getBitWidth() != A.getBitWidth()) {
304 ErrorMSBs = (unsigned)-1;
305 return *this;
308 // Multiplying by one is a no-op.
309 if (C.isOneValue()) {
310 return *this;
313 // Multiplying by zero removes the coefficient B and defines all bits.
314 if (C.isNullValue()) {
315 ErrorMSBs = 0;
316 deleteB();
319 // See Proof(2): Trailing zero bits indicate a left shift. This removes
320 // leading bits from the result even if they are undefined.
321 decErrorMSBs(C.countTrailingZeros());
323 A *= C;
324 pushBOperation(Mul, C);
325 return *this;
328 /// Apply a logical shift right on the polynomial
329 Polynomial &lshr(const APInt &C) {
330 // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
331 // where
332 // e' = e + 1,
333 // E is a e-bit number,
334 // E' is a e'-bit number,
335 // holds under the following precondition:
336 // pre(1): A % 2 = 0
337 // pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
338 // where >> expresses a logical shift to the right, with adding zeros.
340 // We need to show that for every, E there is a E'
342 // B = b_h * 2^(n-1) + b_m * 2 + b_l
343 // A = a_h * 2^(n-1) + a_m * 2 (pre(1))
345 // where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
347 // Let X = (B + A + E*2^(n-e)) >> 1
348 // Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
350 // X = [B + A + E*2^(n-e)] >> 1 =
351 // = [ b_h * 2^(n-1) + b_m * 2 + b_l +
352 // + a_h * 2^(n-1) + a_m * 2 +
353 // + E * 2^(n-e) ] >> 1 =
355 // The sum is built by putting the overflow of [a_m + b+n] into the term
356 // 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
357 // this bit is discarded. This is expressed by % 2.
359 // The bit in position 0 cannot overflow into the term (b_m + a_m).
361 // = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
362 // + ((b_m + a_m) % 2^(n-2)) * 2 +
363 // + b_l + E * 2^(n-e) ] >> 1 =
365 // The shift is computed by dividing the terms by 2 and by cutting off
366 // b_l.
368 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
369 // + ((b_m + a_m) % 2^(n-2)) +
370 // + E * 2^(n-(e+1)) =
372 // by the definition in the Theorem e+1 = e'
374 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
375 // + ((b_m + a_m) % 2^(n-2)) +
376 // + E * 2^(n-e') =
378 // Compute Y by applying distributivity first
380 // Y = (B >> 1) + (A >> 1) + E*2^(n-e') =
381 // = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
382 // + (a_h * 2^(n-1) + a_m * 2) >> 1 +
383 // + E * 2^(n-e) >> 1 =
385 // Again, the shift is computed by dividing the terms by 2 and by cutting
386 // off b_l.
388 // = b_h * 2^(n-2) + b_m +
389 // + a_h * 2^(n-2) + a_m +
390 // + E * 2^(n-(e+1)) =
392 // Again, the sum is built by putting the overflow of [a_m + b+n] into
393 // the term 2^(n-1). But this time there is room for a second bit in the
394 // term 2^(n-2) we add this bit to a new term and denote it o_h in a
395 // second step.
397 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
398 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
399 // + ((b_m + a_m) % 2^(n-2)) +
400 // + E * 2^(n-(e+1)) =
402 // Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
403 // Further replace e+1 by e'.
405 // = o_h * 2^(n-1) +
406 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
407 // + ((b_m + a_m) % 2^(n-2)) +
408 // + E * 2^(n-e') =
410 // Move o_h into the error term and construct E'. To ensure that there is
411 // no 2^x with negative x, this step requires pre(2) (e < n).
413 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
414 // + ((b_m + a_m) % 2^(n-2)) +
415 // + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1)
416 // | out of the old exponent
417 // + E * 2^(n-e') =
418 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
419 // + ((b_m + a_m) % 2^(n-2)) +
420 // + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of
421 // | the old exponent
423 // Let E' = o_h * 2^(e'-1) + E
425 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
426 // + ((b_m + a_m) % 2^(n-2)) +
427 // + E' * 2^(n-e')
429 // Because X and Y are distinct only in there error terms and E' can be
430 // constructed as shown the theorem holds.
431 // [qed]
433 // For completeness in case of the case e=n it is also required to show that
434 // distributivity can be applied.
436 // In this case Theorem(1) transforms to (the pre-condition on A can also be
437 // dropped)
439 // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
440 // where
441 // A, B, E, E' are two's complement numbers with the same bit
442 // width
444 // Let A + B + E = X
445 // Let (B >> 1) + (A >> 1) = Y
447 // Therefore we need to show that for every X and Y there is an E' which
448 // makes the equation
450 // X = Y + E'
452 // hold. This is trivially the case for E' = X - Y.
454 // [qed]
456 // Remark: Distributing lshr with and arbitrary number n can be expressed as
457 // ((((B + A) lshr 1) lshr 1) ... ) {n times}.
458 // This construction induces n additional error bits at the left.
460 if (C.getBitWidth() != A.getBitWidth()) {
461 ErrorMSBs = (unsigned)-1;
462 return *this;
465 if (C.isNullValue())
466 return *this;
468 // Test if the result will be zero
469 unsigned shiftAmt = C.getZExtValue();
470 if (shiftAmt >= C.getBitWidth())
471 return mul(APInt(C.getBitWidth(), 0));
473 // The proof that shiftAmt LSBs are zero for at least one summand is only
474 // possible for the constant number.
476 // If this can be proven add shiftAmt to the error counter
477 // `ErrorMSBs`. Otherwise set all bits as undefined.
478 if (A.countTrailingZeros() < shiftAmt)
479 ErrorMSBs = A.getBitWidth();
480 else
481 incErrorMSBs(shiftAmt);
483 // Apply the operation.
484 pushBOperation(LShr, C);
485 A = A.lshr(shiftAmt);
487 return *this;
490 /// Apply a sign-extend or truncate operation on the polynomial.
491 Polynomial &sextOrTrunc(unsigned n) {
492 if (n < A.getBitWidth()) {
493 // Truncate: Clearly undefined Bits on the MSB side are removed
494 // if there are any.
495 decErrorMSBs(A.getBitWidth() - n);
496 A = A.trunc(n);
497 pushBOperation(Trunc, APInt(sizeof(n) * 8, n));
499 if (n > A.getBitWidth()) {
500 // Extend: Clearly extending first and adding later is different
501 // to adding first and extending later in all extended bits.
502 incErrorMSBs(n - A.getBitWidth());
503 A = A.sext(n);
504 pushBOperation(SExt, APInt(sizeof(n) * 8, n));
507 return *this;
510 /// Test if there is a coefficient B.
511 bool isFirstOrder() const { return V != nullptr; }
513 /// Test coefficient B of two Polynomials are equal.
514 bool isCompatibleTo(const Polynomial &o) const {
515 // The polynomial use different bit width.
516 if (A.getBitWidth() != o.A.getBitWidth())
517 return false;
519 // If neither Polynomial has the Coefficient B.
520 if (!isFirstOrder() && !o.isFirstOrder())
521 return true;
523 // The index variable is different.
524 if (V != o.V)
525 return false;
527 // Check the operations.
528 if (B.size() != o.B.size())
529 return false;
531 auto ob = o.B.begin();
532 for (auto &b : B) {
533 if (b != *ob)
534 return false;
535 ob++;
538 return true;
541 /// Subtract two polynomials, return an undefined polynomial if
542 /// subtraction is not possible.
543 Polynomial operator-(const Polynomial &o) const {
544 // Return an undefined polynomial if incompatible.
545 if (!isCompatibleTo(o))
546 return Polynomial();
548 // If the polynomials are compatible (meaning they have the same
549 // coefficient on B), B is eliminated. Thus a polynomial solely
550 // containing A is returned
551 return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs));
554 /// Subtract a constant from a polynomial,
555 Polynomial operator-(uint64_t C) const {
556 Polynomial Result(*this);
557 Result.A -= C;
558 return Result;
561 /// Add a constant to a polynomial,
562 Polynomial operator+(uint64_t C) const {
563 Polynomial Result(*this);
564 Result.A += C;
565 return Result;
568 /// Returns true if it can be proven that two Polynomials are equal.
569 bool isProvenEqualTo(const Polynomial &o) {
570 // Subtract both polynomials and test if it is fully defined and zero.
571 Polynomial r = *this - o;
572 return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isNullValue());
575 /// Print the polynomial into a stream.
576 void print(raw_ostream &OS) const {
577 OS << "[{#ErrBits:" << ErrorMSBs << "} ";
579 if (V) {
580 for (auto b : B)
581 OS << "(";
582 OS << "(" << *V << ") ";
584 for (auto b : B) {
585 switch (b.first) {
586 case LShr:
587 OS << "LShr ";
588 break;
589 case Mul:
590 OS << "Mul ";
591 break;
592 case SExt:
593 OS << "SExt ";
594 break;
595 case Trunc:
596 OS << "Trunc ";
597 break;
600 OS << b.second << ") ";
604 OS << "+ " << A << "]";
607 private:
608 void deleteB() {
609 V = nullptr;
610 B.clear();
613 void pushBOperation(const BOps Op, const APInt &C) {
614 if (isFirstOrder()) {
615 B.push_back(std::make_pair(Op, C));
616 return;
621 #ifndef NDEBUG
622 static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
623 S.print(OS);
624 return OS;
626 #endif
628 /// VectorInfo stores abstract the following information for each vector
629 /// element:
631 /// 1) The the memory address loaded into the element as Polynomial
632 /// 2) a set of load instruction necessary to construct the vector,
633 /// 3) a set of all other instructions that are necessary to create the vector and
634 /// 4) a pointer value that can be used as relative base for all elements.
635 struct VectorInfo {
636 private:
637 VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
638 llvm_unreachable(
639 "Copying VectorInfo is neither implemented nor necessary,");
642 public:
643 /// Information of a Vector Element
644 struct ElementInfo {
645 /// Offset Polynomial.
646 Polynomial Ofs;
648 /// The Load Instruction used to Load the entry. LI is null if the pointer
649 /// of the load instruction does not point on to the entry
650 LoadInst *LI;
652 ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
653 : Ofs(Offset), LI(LI) {}
656 /// Basic-block the load instructions are within
657 BasicBlock *BB;
659 /// Pointer value of all participation load instructions
660 Value *PV;
662 /// Participating load instructions
663 std::set<LoadInst *> LIs;
665 /// Participating instructions
666 std::set<Instruction *> Is;
668 /// Final shuffle-vector instruction
669 ShuffleVectorInst *SVI;
671 /// Information of the offset for each vector element
672 ElementInfo *EI;
674 /// Vector Type
675 VectorType *const VTy;
677 VectorInfo(VectorType *VTy)
678 : BB(nullptr), PV(nullptr), LIs(), Is(), SVI(nullptr), VTy(VTy) {
679 EI = new ElementInfo[VTy->getNumElements()];
682 virtual ~VectorInfo() { delete[] EI; }
684 unsigned getDimension() const { return VTy->getNumElements(); }
686 /// Test if the VectorInfo can be part of an interleaved load with the
687 /// specified factor.
689 /// \param Factor of the interleave
690 /// \param DL Targets Datalayout
692 /// \returns true if this is possible and false if not
693 bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
694 unsigned Size = DL.getTypeAllocSize(VTy->getElementType());
695 for (unsigned i = 1; i < getDimension(); i++) {
696 if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) {
697 return false;
700 return true;
703 /// Recursively computes the vector information stored in V.
705 /// This function delegates the work to specialized implementations
707 /// \param V Value to operate on
708 /// \param Result Result of the computation
710 /// \returns false if no sensible information can be gathered.
711 static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
712 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
713 if (SVI)
714 return computeFromSVI(SVI, Result, DL);
715 LoadInst *LI = dyn_cast<LoadInst>(V);
716 if (LI)
717 return computeFromLI(LI, Result, DL);
718 BitCastInst *BCI = dyn_cast<BitCastInst>(V);
719 if (BCI)
720 return computeFromBCI(BCI, Result, DL);
721 return false;
724 /// BitCastInst specialization to compute the vector information.
726 /// \param BCI BitCastInst to operate on
727 /// \param Result Result of the computation
729 /// \returns false if no sensible information can be gathered.
730 static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
731 const DataLayout &DL) {
732 Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0));
734 if (!Op)
735 return false;
737 VectorType *VTy = dyn_cast<VectorType>(Op->getType());
738 if (!VTy)
739 return false;
741 // We can only cast from large to smaller vectors
742 if (Result.VTy->getNumElements() % VTy->getNumElements())
743 return false;
745 unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
746 unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType());
747 unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType());
749 if (NewSize * Factor != OldSize)
750 return false;
752 VectorInfo Old(VTy);
753 if (!compute(Op, Old, DL))
754 return false;
756 for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
757 for (unsigned j = 0; j < Factor; j++) {
758 Result.EI[i + j] =
759 ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
760 j == 0 ? Old.EI[i / Factor].LI : nullptr);
764 Result.BB = Old.BB;
765 Result.PV = Old.PV;
766 Result.LIs.insert(Old.LIs.begin(), Old.LIs.end());
767 Result.Is.insert(Old.Is.begin(), Old.Is.end());
768 Result.Is.insert(BCI);
769 Result.SVI = nullptr;
771 return true;
774 /// ShuffleVectorInst specialization to compute vector information.
776 /// \param SVI ShuffleVectorInst to operate on
777 /// \param Result Result of the computation
779 /// Compute the left and the right side vector information and merge them by
780 /// applying the shuffle operation. This function also ensures that the left
781 /// and right side have compatible loads. This means that all loads are with
782 /// in the same basic block and are based on the same pointer.
784 /// \returns false if no sensible information can be gathered.
785 static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
786 const DataLayout &DL) {
787 VectorType *ArgTy = dyn_cast<VectorType>(SVI->getOperand(0)->getType());
788 assert(ArgTy && "ShuffleVector Operand is not a VectorType");
790 // Compute the left hand vector information.
791 VectorInfo LHS(ArgTy);
792 if (!compute(SVI->getOperand(0), LHS, DL))
793 LHS.BB = nullptr;
795 // Compute the right hand vector information.
796 VectorInfo RHS(ArgTy);
797 if (!compute(SVI->getOperand(1), RHS, DL))
798 RHS.BB = nullptr;
800 // Neither operand produced sensible results?
801 if (!LHS.BB && !RHS.BB)
802 return false;
803 // Only RHS produced sensible results?
804 else if (!LHS.BB) {
805 Result.BB = RHS.BB;
806 Result.PV = RHS.PV;
808 // Only LHS produced sensible results?
809 else if (!RHS.BB) {
810 Result.BB = LHS.BB;
811 Result.PV = LHS.PV;
813 // Both operands produced sensible results?
814 else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
815 Result.BB = LHS.BB;
816 Result.PV = LHS.PV;
818 // Both operands produced sensible results but they are incompatible.
819 else {
820 return false;
823 // Merge and apply the operation on the offset information.
824 if (LHS.BB) {
825 Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end());
826 Result.Is.insert(LHS.Is.begin(), LHS.Is.end());
828 if (RHS.BB) {
829 Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end());
830 Result.Is.insert(RHS.Is.begin(), RHS.Is.end());
832 Result.Is.insert(SVI);
833 Result.SVI = SVI;
835 int j = 0;
836 for (int i : SVI->getShuffleMask()) {
837 assert((i < 2 * (signed)ArgTy->getNumElements()) &&
838 "Invalid ShuffleVectorInst (index out of bounds)");
840 if (i < 0)
841 Result.EI[j] = ElementInfo();
842 else if (i < (signed)ArgTy->getNumElements()) {
843 if (LHS.BB)
844 Result.EI[j] = LHS.EI[i];
845 else
846 Result.EI[j] = ElementInfo();
847 } else {
848 if (RHS.BB)
849 Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
850 else
851 Result.EI[j] = ElementInfo();
853 j++;
856 return true;
859 /// LoadInst specialization to compute vector information.
861 /// This function also acts as abort condition to the recursion.
863 /// \param LI LoadInst to operate on
864 /// \param Result Result of the computation
866 /// \returns false if no sensible information can be gathered.
867 static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
868 const DataLayout &DL) {
869 Value *BasePtr;
870 Polynomial Offset;
872 if (LI->isVolatile())
873 return false;
875 if (LI->isAtomic())
876 return false;
878 // Get the base polynomial
879 computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL);
881 Result.BB = LI->getParent();
882 Result.PV = BasePtr;
883 Result.LIs.insert(LI);
884 Result.Is.insert(LI);
886 for (unsigned i = 0; i < Result.getDimension(); i++) {
887 Value *Idx[2] = {
888 ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0),
889 ConstantInt::get(Type::getInt32Ty(LI->getContext()), i),
891 int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2));
892 Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
895 return true;
898 /// Recursively compute polynomial of a value.
900 /// \param BO Input binary operation
901 /// \param Result Result polynomial
902 static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
903 Value *LHS = BO.getOperand(0);
904 Value *RHS = BO.getOperand(1);
906 // Find the RHS Constant if any
907 ConstantInt *C = dyn_cast<ConstantInt>(RHS);
908 if ((!C) && BO.isCommutative()) {
909 C = dyn_cast<ConstantInt>(LHS);
910 if (C)
911 std::swap(LHS, RHS);
914 switch (BO.getOpcode()) {
915 case Instruction::Add:
916 if (!C)
917 break;
919 computePolynomial(*LHS, Result);
920 Result.add(C->getValue());
921 return;
923 case Instruction::LShr:
924 if (!C)
925 break;
927 computePolynomial(*LHS, Result);
928 Result.lshr(C->getValue());
929 return;
931 default:
932 break;
935 Result = Polynomial(&BO);
938 /// Recursively compute polynomial of a value
940 /// \param V input value
941 /// \param Result result polynomial
942 static void computePolynomial(Value &V, Polynomial &Result) {
943 if (auto *BO = dyn_cast<BinaryOperator>(&V))
944 computePolynomialBinOp(*BO, Result);
945 else
946 Result = Polynomial(&V);
949 /// Compute the Polynomial representation of a Pointer type.
951 /// \param Ptr input pointer value
952 /// \param Result result polynomial
953 /// \param BasePtr pointer the polynomial is based on
954 /// \param DL Datalayout of the target machine
955 static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
956 Value *&BasePtr,
957 const DataLayout &DL) {
958 // Not a pointer type? Return an undefined polynomial
959 PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType());
960 if (!PtrTy) {
961 Result = Polynomial();
962 BasePtr = nullptr;
963 return;
965 unsigned PointerBits =
966 DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace());
968 /// Skip pointer casts. Return Zero polynomial otherwise
969 if (isa<CastInst>(&Ptr)) {
970 CastInst &CI = *cast<CastInst>(&Ptr);
971 switch (CI.getOpcode()) {
972 case Instruction::BitCast:
973 computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL);
974 break;
975 default:
976 BasePtr = &Ptr;
977 Polynomial(PointerBits, 0);
978 break;
981 /// Resolve GetElementPtrInst.
982 else if (isa<GetElementPtrInst>(&Ptr)) {
983 GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr);
985 APInt BaseOffset(PointerBits, 0);
987 // Check if we can compute the Offset with accumulateConstantOffset
988 if (GEP.accumulateConstantOffset(DL, BaseOffset)) {
989 Result = Polynomial(BaseOffset);
990 BasePtr = GEP.getPointerOperand();
991 return;
992 } else {
993 // Otherwise we allow that the last index operand of the GEP is
994 // non-constant.
995 unsigned idxOperand, e;
996 SmallVector<Value *, 4> Indices;
997 for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
998 idxOperand++) {
999 ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand));
1000 if (!IDX)
1001 break;
1002 Indices.push_back(IDX);
1005 // It must also be the last operand.
1006 if (idxOperand + 1 != e) {
1007 Result = Polynomial();
1008 BasePtr = nullptr;
1009 return;
1012 // Compute the polynomial of the index operand.
1013 computePolynomial(*GEP.getOperand(idxOperand), Result);
1015 // Compute base offset from zero based index, excluding the last
1016 // variable operand.
1017 BaseOffset =
1018 DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices);
1020 // Apply the operations of GEP to the polynomial.
1021 unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType());
1022 Result.sextOrTrunc(PointerBits);
1023 Result.mul(APInt(PointerBits, ResultSize));
1024 Result.add(BaseOffset);
1025 BasePtr = GEP.getPointerOperand();
1028 // All other instructions are handled by using the value as base pointer and
1029 // a zero polynomial.
1030 else {
1031 BasePtr = &Ptr;
1032 Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0);
1036 #ifndef NDEBUG
1037 void print(raw_ostream &OS) const {
1038 if (PV)
1039 OS << *PV;
1040 else
1041 OS << "(none)";
1042 OS << " + ";
1043 for (unsigned i = 0; i < getDimension(); i++)
1044 OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
1045 OS << "]";
1047 #endif
1050 } // anonymous namespace
1052 bool InterleavedLoadCombineImpl::findPattern(
1053 std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
1054 unsigned Factor, const DataLayout &DL) {
1055 for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
1056 unsigned i;
1057 // Try to find an interleaved load using the front of Worklist as first line
1058 unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType());
1060 // List containing iterators pointing to the VectorInfos of the candidates
1061 std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());
1063 for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
1064 if (C->VTy != C0->VTy)
1065 continue;
1066 if (C->BB != C0->BB)
1067 continue;
1068 if (C->PV != C0->PV)
1069 continue;
1071 // Check the current value matches any of factor - 1 remaining lines
1072 for (i = 1; i < Factor; i++) {
1073 if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) {
1074 Res[i] = C;
1078 for (i = 1; i < Factor; i++) {
1079 if (Res[i] == Candidates.end())
1080 break;
1082 if (i == Factor) {
1083 Res[0] = C0;
1084 break;
1088 if (Res[0] != Candidates.end()) {
1089 // Move the result into the output
1090 for (unsigned i = 0; i < Factor; i++) {
1091 InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]);
1094 return true;
1097 return false;
1100 LoadInst *
1101 InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
1102 assert(!LIs.empty() && "No load instructions given.");
1104 // All LIs are within the same BB. Select the first for a reference.
1105 BasicBlock *BB = (*LIs.begin())->getParent();
1106 BasicBlock::iterator FLI =
1107 std::find_if(BB->begin(), BB->end(), [&LIs](Instruction &I) -> bool {
1108 return is_contained(LIs, &I);
1110 assert(FLI != BB->end());
1112 return cast<LoadInst>(FLI);
1115 bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
1116 OptimizationRemarkEmitter &ORE) {
1117 LLVM_DEBUG(dbgs() << "Checking interleaved load\n");
1119 // The insertion point is the LoadInst which loads the first values. The
1120 // following tests are used to proof that the combined load can be inserted
1121 // just before InsertionPoint.
1122 LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;
1124 // Test if the offset is computed
1125 if (!InsertionPoint)
1126 return false;
1128 std::set<LoadInst *> LIs;
1129 std::set<Instruction *> Is;
1130 std::set<Instruction *> SVIs;
1132 unsigned InterleavedCost;
1133 unsigned InstructionCost = 0;
1135 // Get the interleave factor
1136 unsigned Factor = InterleavedLoad.size();
1138 // Merge all input sets used in analysis
1139 for (auto &VI : InterleavedLoad) {
1140 // Generate a set of all load instructions to be combined
1141 LIs.insert(VI.LIs.begin(), VI.LIs.end());
1143 // Generate a set of all instructions taking part in load
1144 // interleaved. This list excludes the instructions necessary for the
1145 // polynomial construction.
1146 Is.insert(VI.Is.begin(), VI.Is.end());
1148 // Generate the set of the final ShuffleVectorInst.
1149 SVIs.insert(VI.SVI);
1152 // There is nothing to combine.
1153 if (LIs.size() < 2)
1154 return false;
1156 // Test if all participating instruction will be dead after the
1157 // transformation. If intermediate results are used, no performance gain can
1158 // be expected. Also sum the cost of the Instructions beeing left dead.
1159 for (auto &I : Is) {
1160 // Compute the old cost
1161 InstructionCost +=
1162 TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency);
1164 // The final SVIs are allowed not to be dead, all uses will be replaced
1165 if (SVIs.find(I) != SVIs.end())
1166 continue;
1168 // If there are users outside the set to be eliminated, we abort the
1169 // transformation. No gain can be expected.
1170 for (const auto &U : I->users()) {
1171 if (Is.find(dyn_cast<Instruction>(U)) == Is.end())
1172 return false;
1176 // We know that all LoadInst are within the same BB. This guarantees that
1177 // either everything or nothing is loaded.
1178 LoadInst *First = findFirstLoad(LIs);
1180 // To be safe that the loads can be combined, iterate over all loads and test
1181 // that the corresponding defining access dominates first LI. This guarantees
1182 // that there are no aliasing stores in between the loads.
1183 auto FMA = MSSA.getMemoryAccess(First);
1184 for (auto LI : LIs) {
1185 auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess();
1186 if (!MSSA.dominates(MADef, FMA))
1187 return false;
1189 assert(!LIs.empty() && "There are no LoadInst to combine");
1191 // It is necessary that insertion point dominates all final ShuffleVectorInst.
1192 for (auto &VI : InterleavedLoad) {
1193 if (!DT.dominates(InsertionPoint, VI.SVI))
1194 return false;
1197 // All checks are done. Add instructions detectable by InterleavedAccessPass
1198 // The old instruction will are left dead.
1199 IRBuilder<> Builder(InsertionPoint);
1200 Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
1201 unsigned ElementsPerSVI =
1202 InterleavedLoad.front().SVI->getType()->getNumElements();
1203 VectorType *ILTy = VectorType::get(ETy, Factor * ElementsPerSVI);
1205 SmallVector<unsigned, 4> Indices;
1206 for (unsigned i = 0; i < Factor; i++)
1207 Indices.push_back(i);
1208 InterleavedCost = TTI.getInterleavedMemoryOpCost(
1209 Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlignment(),
1210 InsertionPoint->getPointerAddressSpace());
1212 if (InterleavedCost >= InstructionCost) {
1213 return false;
1216 // Create a pointer cast for the wide load.
1217 auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0),
1218 ILTy->getPointerTo(),
1219 "interleaved.wide.ptrcast");
1221 // Create the wide load and update the MemorySSA.
1222 auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlignment(),
1223 "interleaved.wide.load");
1224 auto MSSAU = MemorySSAUpdater(&MSSA);
1225 MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore(
1226 LI, nullptr, MSSA.getMemoryAccess(InsertionPoint)));
1227 MSSAU.insertUse(MSSALoad);
1229 // Create the final SVIs and replace all uses.
1230 int i = 0;
1231 for (auto &VI : InterleavedLoad) {
1232 SmallVector<uint32_t, 4> Mask;
1233 for (unsigned j = 0; j < ElementsPerSVI; j++)
1234 Mask.push_back(i + j * Factor);
1236 Builder.SetInsertPoint(VI.SVI);
1237 auto SVI = Builder.CreateShuffleVector(LI, UndefValue::get(LI->getType()),
1238 Mask, "interleaved.shuffle");
1239 VI.SVI->replaceAllUsesWith(SVI);
1240 i++;
1243 NumInterleavedLoadCombine++;
1244 ORE.emit([&]() {
1245 return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
1246 << "Load interleaved combined with factor "
1247 << ore::NV("Factor", Factor);
1250 return true;
1253 bool InterleavedLoadCombineImpl::run() {
1254 OptimizationRemarkEmitter ORE(&F);
1255 bool changed = false;
1256 unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();
1258 auto &DL = F.getParent()->getDataLayout();
1260 // Start with the highest factor to avoid combining and recombining.
1261 for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
1262 std::list<VectorInfo> Candidates;
1264 for (BasicBlock &BB : F) {
1265 for (Instruction &I : BB) {
1266 if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) {
1268 Candidates.emplace_back(SVI->getType());
1270 if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) {
1271 Candidates.pop_back();
1272 continue;
1275 if (!Candidates.back().isInterleaved(Factor, DL)) {
1276 Candidates.pop_back();
1282 std::list<VectorInfo> InterleavedLoad;
1283 while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
1284 if (combine(InterleavedLoad, ORE)) {
1285 changed = true;
1286 } else {
1287 // Remove the first element of the Interleaved Load but put the others
1288 // back on the list and continue searching
1289 Candidates.splice(Candidates.begin(), InterleavedLoad,
1290 std::next(InterleavedLoad.begin()),
1291 InterleavedLoad.end());
1293 InterleavedLoad.clear();
1297 return changed;
1300 namespace {
1301 /// This pass combines interleaved loads into a pattern detectable by
1302 /// InterleavedAccessPass.
1303 struct InterleavedLoadCombine : public FunctionPass {
1304 static char ID;
1306 InterleavedLoadCombine() : FunctionPass(ID) {
1307 initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
1310 StringRef getPassName() const override {
1311 return "Interleaved Load Combine Pass";
1314 bool runOnFunction(Function &F) override {
1315 if (DisableInterleavedLoadCombine)
1316 return false;
1318 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1319 if (!TPC)
1320 return false;
1322 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
1323 << "\n");
1325 return InterleavedLoadCombineImpl(
1326 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
1327 getAnalysis<MemorySSAWrapperPass>().getMSSA(),
1328 TPC->getTM<TargetMachine>())
1329 .run();
1332 void getAnalysisUsage(AnalysisUsage &AU) const override {
1333 AU.addRequired<MemorySSAWrapperPass>();
1334 AU.addRequired<DominatorTreeWrapperPass>();
1335 FunctionPass::getAnalysisUsage(AU);
1338 private:
1340 } // anonymous namespace
1342 char InterleavedLoadCombine::ID = 0;
1344 INITIALIZE_PASS_BEGIN(
1345 InterleavedLoadCombine, DEBUG_TYPE,
1346 "Combine interleaved loads into wide loads and shufflevector instructions",
1347 false, false)
1348 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1349 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1350 INITIALIZE_PASS_END(
1351 InterleavedLoadCombine, DEBUG_TYPE,
1352 "Combine interleaved loads into wide loads and shufflevector instructions",
1353 false, false)
1355 FunctionPass *
1356 llvm::createInterleavedLoadCombinePass() {
1357 auto P = new InterleavedLoadCombine();
1358 return P;