[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / CodeGen / MachinePipeliner.cpp
blobb3d97c61fdaf60ad7745d2673ca0c1bcd7eb3323
1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
30 //===----------------------------------------------------------------------===//
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/PriorityQueue.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/Analysis/ValueTracking.h"
46 #include "llvm/CodeGen/DFAPacketizer.h"
47 #include "llvm/CodeGen/LiveIntervals.h"
48 #include "llvm/CodeGen/MachineBasicBlock.h"
49 #include "llvm/CodeGen/MachineDominators.h"
50 #include "llvm/CodeGen/MachineFunction.h"
51 #include "llvm/CodeGen/MachineFunctionPass.h"
52 #include "llvm/CodeGen/MachineInstr.h"
53 #include "llvm/CodeGen/MachineInstrBuilder.h"
54 #include "llvm/CodeGen/MachineLoopInfo.h"
55 #include "llvm/CodeGen/MachineMemOperand.h"
56 #include "llvm/CodeGen/MachineOperand.h"
57 #include "llvm/CodeGen/MachinePipeliner.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/CodeGen/ModuloSchedule.h"
60 #include "llvm/CodeGen/RegisterPressure.h"
61 #include "llvm/CodeGen/ScheduleDAG.h"
62 #include "llvm/CodeGen/ScheduleDAGMutation.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/Config/llvm-config.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/MC/LaneBitmask.h"
71 #include "llvm/MC/MCInstrDesc.h"
72 #include "llvm/MC/MCInstrItineraries.h"
73 #include "llvm/MC/MCRegisterInfo.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Compiler.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <deque>
85 #include <functional>
86 #include <iterator>
87 #include <map>
88 #include <memory>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
93 using namespace llvm;
95 #define DEBUG_TYPE "pipeliner"
97 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
98 STATISTIC(NumPipelined, "Number of loops software pipelined");
99 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
100 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
101 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
102 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
103 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
104 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
105 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
106 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
107 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
109 /// A command line option to turn software pipelining on or off.
110 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
111 cl::ZeroOrMore,
112 cl::desc("Enable Software Pipelining"));
114 /// A command line option to enable SWP at -Os.
115 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
116 cl::desc("Enable SWP at Os."), cl::Hidden,
117 cl::init(false));
119 /// A command line argument to limit minimum initial interval for pipelining.
120 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
121 cl::desc("Size limit for the MII."),
122 cl::Hidden, cl::init(27));
124 /// A command line argument to limit the number of stages in the pipeline.
125 static cl::opt<int>
126 SwpMaxStages("pipeliner-max-stages",
127 cl::desc("Maximum stages allowed in the generated scheduled."),
128 cl::Hidden, cl::init(3));
130 /// A command line option to disable the pruning of chain dependences due to
131 /// an unrelated Phi.
132 static cl::opt<bool>
133 SwpPruneDeps("pipeliner-prune-deps",
134 cl::desc("Prune dependences between unrelated Phi nodes."),
135 cl::Hidden, cl::init(true));
137 /// A command line option to disable the pruning of loop carried order
138 /// dependences.
139 static cl::opt<bool>
140 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
141 cl::desc("Prune loop carried order dependences."),
142 cl::Hidden, cl::init(true));
144 #ifndef NDEBUG
145 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
146 #endif
148 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
149 cl::ReallyHidden, cl::init(false),
150 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
152 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
153 cl::init(false));
154 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
155 cl::init(false));
157 static cl::opt<bool> EmitTestAnnotations(
158 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
159 cl::desc("Instead of emitting the pipelined code, annotate instructions "
160 "with the generated schedule for feeding into the "
161 "-modulo-schedule-test pass"));
163 static cl::opt<bool> ExperimentalCodeGen(
164 "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
165 cl::desc(
166 "Use the experimental peeling code generator for software pipelining"));
168 namespace llvm {
170 // A command line option to enable the CopyToPhi DAG mutation.
171 cl::opt<bool>
172 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
173 cl::init(true), cl::ZeroOrMore,
174 cl::desc("Enable CopyToPhi DAG Mutation"));
176 } // end namespace llvm
178 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
179 char MachinePipeliner::ID = 0;
180 #ifndef NDEBUG
181 int MachinePipeliner::NumTries = 0;
182 #endif
183 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
185 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
186 "Modulo Software Pipelining", false, false)
187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
189 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
190 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
191 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
192 "Modulo Software Pipelining", false, false)
194 /// The "main" function for implementing Swing Modulo Scheduling.
195 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
196 if (skipFunction(mf.getFunction()))
197 return false;
199 if (!EnableSWP)
200 return false;
202 if (mf.getFunction().getAttributes().hasAttribute(
203 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
204 !EnableSWPOptSize.getPosition())
205 return false;
207 if (!mf.getSubtarget().enableMachinePipeliner())
208 return false;
210 // Cannot pipeline loops without instruction itineraries if we are using
211 // DFA for the pipeliner.
212 if (mf.getSubtarget().useDFAforSMS() &&
213 (!mf.getSubtarget().getInstrItineraryData() ||
214 mf.getSubtarget().getInstrItineraryData()->isEmpty()))
215 return false;
217 MF = &mf;
218 MLI = &getAnalysis<MachineLoopInfo>();
219 MDT = &getAnalysis<MachineDominatorTree>();
220 TII = MF->getSubtarget().getInstrInfo();
221 RegClassInfo.runOnMachineFunction(*MF);
223 for (auto &L : *MLI)
224 scheduleLoop(*L);
226 return false;
229 /// Attempt to perform the SMS algorithm on the specified loop. This function is
230 /// the main entry point for the algorithm. The function identifies candidate
231 /// loops, calculates the minimum initiation interval, and attempts to schedule
232 /// the loop.
233 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
234 bool Changed = false;
235 for (auto &InnerLoop : L)
236 Changed |= scheduleLoop(*InnerLoop);
238 #ifndef NDEBUG
239 // Stop trying after reaching the limit (if any).
240 int Limit = SwpLoopLimit;
241 if (Limit >= 0) {
242 if (NumTries >= SwpLoopLimit)
243 return Changed;
244 NumTries++;
246 #endif
248 setPragmaPipelineOptions(L);
249 if (!canPipelineLoop(L)) {
250 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
251 return Changed;
254 ++NumTrytoPipeline;
256 Changed = swingModuloScheduler(L);
258 return Changed;
261 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
262 MachineBasicBlock *LBLK = L.getTopBlock();
264 if (LBLK == nullptr)
265 return;
267 const BasicBlock *BBLK = LBLK->getBasicBlock();
268 if (BBLK == nullptr)
269 return;
271 const Instruction *TI = BBLK->getTerminator();
272 if (TI == nullptr)
273 return;
275 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
276 if (LoopID == nullptr)
277 return;
279 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
280 assert(LoopID->getOperand(0) == LoopID && "invalid loop");
282 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
283 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
285 if (MD == nullptr)
286 continue;
288 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
290 if (S == nullptr)
291 continue;
293 if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
294 assert(MD->getNumOperands() == 2 &&
295 "Pipeline initiation interval hint metadata should have two operands.");
296 II_setByPragma =
297 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
298 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
299 } else if (S->getString() == "llvm.loop.pipeline.disable") {
300 disabledByPragma = true;
305 /// Return true if the loop can be software pipelined. The algorithm is
306 /// restricted to loops with a single basic block. Make sure that the
307 /// branch in the loop can be analyzed.
308 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
309 if (L.getNumBlocks() != 1)
310 return false;
312 if (disabledByPragma)
313 return false;
315 // Check if the branch can't be understood because we can't do pipelining
316 // if that's the case.
317 LI.TBB = nullptr;
318 LI.FBB = nullptr;
319 LI.BrCond.clear();
320 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
321 LLVM_DEBUG(
322 dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n");
323 NumFailBranch++;
324 return false;
327 LI.LoopInductionVar = nullptr;
328 LI.LoopCompare = nullptr;
329 if (!TII->analyzeLoopForPipelining(L.getTopBlock())) {
330 LLVM_DEBUG(
331 dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n");
332 NumFailLoop++;
333 return false;
336 if (!L.getLoopPreheader()) {
337 LLVM_DEBUG(
338 dbgs() << "Preheader not found, can NOT pipeline current Loop\n");
339 NumFailPreheader++;
340 return false;
343 // Remove any subregisters from inputs to phi nodes.
344 preprocessPhiNodes(*L.getHeader());
345 return true;
348 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
349 MachineRegisterInfo &MRI = MF->getRegInfo();
350 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
352 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
353 MachineOperand &DefOp = PI.getOperand(0);
354 assert(DefOp.getSubReg() == 0);
355 auto *RC = MRI.getRegClass(DefOp.getReg());
357 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
358 MachineOperand &RegOp = PI.getOperand(i);
359 if (RegOp.getSubReg() == 0)
360 continue;
362 // If the operand uses a subregister, replace it with a new register
363 // without subregisters, and generate a copy to the new register.
364 Register NewReg = MRI.createVirtualRegister(RC);
365 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
366 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
367 const DebugLoc &DL = PredB.findDebugLoc(At);
368 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
369 .addReg(RegOp.getReg(), getRegState(RegOp),
370 RegOp.getSubReg());
371 Slots.insertMachineInstrInMaps(*Copy);
372 RegOp.setReg(NewReg);
373 RegOp.setSubReg(0);
378 /// The SMS algorithm consists of the following main steps:
379 /// 1. Computation and analysis of the dependence graph.
380 /// 2. Ordering of the nodes (instructions).
381 /// 3. Attempt to Schedule the loop.
382 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
383 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
385 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
386 II_setByPragma);
388 MachineBasicBlock *MBB = L.getHeader();
389 // The kernel should not include any terminator instructions. These
390 // will be added back later.
391 SMS.startBlock(MBB);
393 // Compute the number of 'real' instructions in the basic block by
394 // ignoring terminators.
395 unsigned size = MBB->size();
396 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
397 E = MBB->instr_end();
398 I != E; ++I, --size)
401 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
402 SMS.schedule();
403 SMS.exitRegion();
405 SMS.finishBlock();
406 return SMS.hasNewSchedule();
409 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
410 if (II_setByPragma > 0)
411 MII = II_setByPragma;
412 else
413 MII = std::max(ResMII, RecMII);
416 void SwingSchedulerDAG::setMAX_II() {
417 if (II_setByPragma > 0)
418 MAX_II = II_setByPragma;
419 else
420 MAX_II = MII + 10;
423 /// We override the schedule function in ScheduleDAGInstrs to implement the
424 /// scheduling part of the Swing Modulo Scheduling algorithm.
425 void SwingSchedulerDAG::schedule() {
426 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
427 buildSchedGraph(AA);
428 addLoopCarriedDependences(AA);
429 updatePhiDependences();
430 Topo.InitDAGTopologicalSorting();
431 changeDependences();
432 postprocessDAG();
433 LLVM_DEBUG(dump());
435 NodeSetType NodeSets;
436 findCircuits(NodeSets);
437 NodeSetType Circuits = NodeSets;
439 // Calculate the MII.
440 unsigned ResMII = calculateResMII();
441 unsigned RecMII = calculateRecMII(NodeSets);
443 fuseRecs(NodeSets);
445 // This flag is used for testing and can cause correctness problems.
446 if (SwpIgnoreRecMII)
447 RecMII = 0;
449 setMII(ResMII, RecMII);
450 setMAX_II();
452 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
453 << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
455 // Can't schedule a loop without a valid MII.
456 if (MII == 0) {
457 LLVM_DEBUG(
458 dbgs()
459 << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n");
460 NumFailZeroMII++;
461 return;
464 // Don't pipeline large loops.
465 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
466 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
467 << ", we don't pipleline large loops\n");
468 NumFailLargeMaxMII++;
469 return;
472 computeNodeFunctions(NodeSets);
474 registerPressureFilter(NodeSets);
476 colocateNodeSets(NodeSets);
478 checkNodeSets(NodeSets);
480 LLVM_DEBUG({
481 for (auto &I : NodeSets) {
482 dbgs() << " Rec NodeSet ";
483 I.dump();
487 llvm::stable_sort(NodeSets, std::greater<NodeSet>());
489 groupRemainingNodes(NodeSets);
491 removeDuplicateNodes(NodeSets);
493 LLVM_DEBUG({
494 for (auto &I : NodeSets) {
495 dbgs() << " NodeSet ";
496 I.dump();
500 computeNodeOrder(NodeSets);
502 // check for node order issues
503 checkValidNodeOrder(Circuits);
505 SMSchedule Schedule(Pass.MF);
506 Scheduled = schedulePipeline(Schedule);
508 if (!Scheduled){
509 LLVM_DEBUG(dbgs() << "No schedule found, return\n");
510 NumFailNoSchedule++;
511 return;
514 unsigned numStages = Schedule.getMaxStageCount();
515 // No need to generate pipeline if there are no overlapped iterations.
516 if (numStages == 0) {
517 LLVM_DEBUG(
518 dbgs() << "No overlapped iterations, no need to generate pipeline\n");
519 NumFailZeroStage++;
520 return;
522 // Check that the maximum stage count is less than user-defined limit.
523 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
524 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
525 << " : too many stages, abort\n");
526 NumFailLargeMaxStage++;
527 return;
530 // Generate the schedule as a ModuloSchedule.
531 DenseMap<MachineInstr *, int> Cycles, Stages;
532 std::vector<MachineInstr *> OrderedInsts;
533 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
534 ++Cycle) {
535 for (SUnit *SU : Schedule.getInstructions(Cycle)) {
536 OrderedInsts.push_back(SU->getInstr());
537 Cycles[SU->getInstr()] = Cycle;
538 Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
541 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
542 for (auto &KV : NewMIs) {
543 Cycles[KV.first] = Cycles[KV.second];
544 Stages[KV.first] = Stages[KV.second];
545 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
548 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
549 std::move(Stages));
550 if (EmitTestAnnotations) {
551 assert(NewInstrChanges.empty() &&
552 "Cannot serialize a schedule with InstrChanges!");
553 ModuloScheduleTestAnnotater MSTI(MF, MS);
554 MSTI.annotate();
555 return;
557 // The experimental code generator can't work if there are InstChanges.
558 if (ExperimentalCodeGen && NewInstrChanges.empty()) {
559 PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
560 // Experimental code generation isn't complete yet, but it can partially
561 // validate the code it generates against the original
562 // ModuloScheduleExpander.
563 MSE.validateAgainstModuloScheduleExpander();
564 } else {
565 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
566 MSE.expand();
567 MSE.cleanup();
569 ++NumPipelined;
572 /// Clean up after the software pipeliner runs.
573 void SwingSchedulerDAG::finishBlock() {
574 for (auto &KV : NewMIs)
575 MF.DeleteMachineInstr(KV.second);
576 NewMIs.clear();
578 // Call the superclass.
579 ScheduleDAGInstrs::finishBlock();
582 /// Return the register values for the operands of a Phi instruction.
583 /// This function assume the instruction is a Phi.
584 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
585 unsigned &InitVal, unsigned &LoopVal) {
586 assert(Phi.isPHI() && "Expecting a Phi.");
588 InitVal = 0;
589 LoopVal = 0;
590 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
591 if (Phi.getOperand(i + 1).getMBB() != Loop)
592 InitVal = Phi.getOperand(i).getReg();
593 else
594 LoopVal = Phi.getOperand(i).getReg();
596 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
599 /// Return the Phi register value that comes the loop block.
600 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
601 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
602 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
603 return Phi.getOperand(i).getReg();
604 return 0;
607 /// Return true if SUb can be reached from SUa following the chain edges.
608 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
609 SmallPtrSet<SUnit *, 8> Visited;
610 SmallVector<SUnit *, 8> Worklist;
611 Worklist.push_back(SUa);
612 while (!Worklist.empty()) {
613 const SUnit *SU = Worklist.pop_back_val();
614 for (auto &SI : SU->Succs) {
615 SUnit *SuccSU = SI.getSUnit();
616 if (SI.getKind() == SDep::Order) {
617 if (Visited.count(SuccSU))
618 continue;
619 if (SuccSU == SUb)
620 return true;
621 Worklist.push_back(SuccSU);
622 Visited.insert(SuccSU);
626 return false;
629 /// Return true if the instruction causes a chain between memory
630 /// references before and after it.
631 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
632 return MI.isCall() || MI.mayRaiseFPException() ||
633 MI.hasUnmodeledSideEffects() ||
634 (MI.hasOrderedMemoryRef() &&
635 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
638 /// Return the underlying objects for the memory references of an instruction.
639 /// This function calls the code in ValueTracking, but first checks that the
640 /// instruction has a memory operand.
641 static void getUnderlyingObjects(const MachineInstr *MI,
642 SmallVectorImpl<const Value *> &Objs,
643 const DataLayout &DL) {
644 if (!MI->hasOneMemOperand())
645 return;
646 MachineMemOperand *MM = *MI->memoperands_begin();
647 if (!MM->getValue())
648 return;
649 GetUnderlyingObjects(MM->getValue(), Objs, DL);
650 for (const Value *V : Objs) {
651 if (!isIdentifiedObject(V)) {
652 Objs.clear();
653 return;
655 Objs.push_back(V);
659 /// Add a chain edge between a load and store if the store can be an
660 /// alias of the load on a subsequent iteration, i.e., a loop carried
661 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
662 /// but that code doesn't create loop carried dependences.
663 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
664 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
665 Value *UnknownValue =
666 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
667 for (auto &SU : SUnits) {
668 MachineInstr &MI = *SU.getInstr();
669 if (isDependenceBarrier(MI, AA))
670 PendingLoads.clear();
671 else if (MI.mayLoad()) {
672 SmallVector<const Value *, 4> Objs;
673 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
674 if (Objs.empty())
675 Objs.push_back(UnknownValue);
676 for (auto V : Objs) {
677 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
678 SUs.push_back(&SU);
680 } else if (MI.mayStore()) {
681 SmallVector<const Value *, 4> Objs;
682 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
683 if (Objs.empty())
684 Objs.push_back(UnknownValue);
685 for (auto V : Objs) {
686 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
687 PendingLoads.find(V);
688 if (I == PendingLoads.end())
689 continue;
690 for (auto Load : I->second) {
691 if (isSuccOrder(Load, &SU))
692 continue;
693 MachineInstr &LdMI = *Load->getInstr();
694 // First, perform the cheaper check that compares the base register.
695 // If they are the same and the load offset is less than the store
696 // offset, then mark the dependence as loop carried potentially.
697 const MachineOperand *BaseOp1, *BaseOp2;
698 int64_t Offset1, Offset2;
699 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) &&
700 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) {
701 if (BaseOp1->isIdenticalTo(*BaseOp2) &&
702 (int)Offset1 < (int)Offset2) {
703 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
704 "What happened to the chain edge?");
705 SDep Dep(Load, SDep::Barrier);
706 Dep.setLatency(1);
707 SU.addPred(Dep);
708 continue;
711 // Second, the more expensive check that uses alias analysis on the
712 // base registers. If they alias, and the load offset is less than
713 // the store offset, the mark the dependence as loop carried.
714 if (!AA) {
715 SDep Dep(Load, SDep::Barrier);
716 Dep.setLatency(1);
717 SU.addPred(Dep);
718 continue;
720 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
721 MachineMemOperand *MMO2 = *MI.memoperands_begin();
722 if (!MMO1->getValue() || !MMO2->getValue()) {
723 SDep Dep(Load, SDep::Barrier);
724 Dep.setLatency(1);
725 SU.addPred(Dep);
726 continue;
728 if (MMO1->getValue() == MMO2->getValue() &&
729 MMO1->getOffset() <= MMO2->getOffset()) {
730 SDep Dep(Load, SDep::Barrier);
731 Dep.setLatency(1);
732 SU.addPred(Dep);
733 continue;
735 AliasResult AAResult = AA->alias(
736 MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
737 MMO1->getAAInfo()),
738 MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
739 MMO2->getAAInfo()));
741 if (AAResult != NoAlias) {
742 SDep Dep(Load, SDep::Barrier);
743 Dep.setLatency(1);
744 SU.addPred(Dep);
752 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
753 /// processes dependences for PHIs. This function adds true dependences
754 /// from a PHI to a use, and a loop carried dependence from the use to the
755 /// PHI. The loop carried dependence is represented as an anti dependence
756 /// edge. This function also removes chain dependences between unrelated
757 /// PHIs.
758 void SwingSchedulerDAG::updatePhiDependences() {
759 SmallVector<SDep, 4> RemoveDeps;
760 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
762 // Iterate over each DAG node.
763 for (SUnit &I : SUnits) {
764 RemoveDeps.clear();
765 // Set to true if the instruction has an operand defined by a Phi.
766 unsigned HasPhiUse = 0;
767 unsigned HasPhiDef = 0;
768 MachineInstr *MI = I.getInstr();
769 // Iterate over each operand, and we process the definitions.
770 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
771 MOE = MI->operands_end();
772 MOI != MOE; ++MOI) {
773 if (!MOI->isReg())
774 continue;
775 Register Reg = MOI->getReg();
776 if (MOI->isDef()) {
777 // If the register is used by a Phi, then create an anti dependence.
778 for (MachineRegisterInfo::use_instr_iterator
779 UI = MRI.use_instr_begin(Reg),
780 UE = MRI.use_instr_end();
781 UI != UE; ++UI) {
782 MachineInstr *UseMI = &*UI;
783 SUnit *SU = getSUnit(UseMI);
784 if (SU != nullptr && UseMI->isPHI()) {
785 if (!MI->isPHI()) {
786 SDep Dep(SU, SDep::Anti, Reg);
787 Dep.setLatency(1);
788 I.addPred(Dep);
789 } else {
790 HasPhiDef = Reg;
791 // Add a chain edge to a dependent Phi that isn't an existing
792 // predecessor.
793 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
794 I.addPred(SDep(SU, SDep::Barrier));
798 } else if (MOI->isUse()) {
799 // If the register is defined by a Phi, then create a true dependence.
800 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
801 if (DefMI == nullptr)
802 continue;
803 SUnit *SU = getSUnit(DefMI);
804 if (SU != nullptr && DefMI->isPHI()) {
805 if (!MI->isPHI()) {
806 SDep Dep(SU, SDep::Data, Reg);
807 Dep.setLatency(0);
808 ST.adjustSchedDependency(SU, &I, Dep);
809 I.addPred(Dep);
810 } else {
811 HasPhiUse = Reg;
812 // Add a chain edge to a dependent Phi that isn't an existing
813 // predecessor.
814 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
815 I.addPred(SDep(SU, SDep::Barrier));
820 // Remove order dependences from an unrelated Phi.
821 if (!SwpPruneDeps)
822 continue;
823 for (auto &PI : I.Preds) {
824 MachineInstr *PMI = PI.getSUnit()->getInstr();
825 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
826 if (I.getInstr()->isPHI()) {
827 if (PMI->getOperand(0).getReg() == HasPhiUse)
828 continue;
829 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
830 continue;
832 RemoveDeps.push_back(PI);
835 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
836 I.removePred(RemoveDeps[i]);
840 /// Iterate over each DAG node and see if we can change any dependences
841 /// in order to reduce the recurrence MII.
842 void SwingSchedulerDAG::changeDependences() {
843 // See if an instruction can use a value from the previous iteration.
844 // If so, we update the base and offset of the instruction and change
845 // the dependences.
846 for (SUnit &I : SUnits) {
847 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
848 int64_t NewOffset = 0;
849 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
850 NewOffset))
851 continue;
853 // Get the MI and SUnit for the instruction that defines the original base.
854 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
855 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
856 if (!DefMI)
857 continue;
858 SUnit *DefSU = getSUnit(DefMI);
859 if (!DefSU)
860 continue;
861 // Get the MI and SUnit for the instruction that defins the new base.
862 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
863 if (!LastMI)
864 continue;
865 SUnit *LastSU = getSUnit(LastMI);
866 if (!LastSU)
867 continue;
869 if (Topo.IsReachable(&I, LastSU))
870 continue;
872 // Remove the dependence. The value now depends on a prior iteration.
873 SmallVector<SDep, 4> Deps;
874 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
875 ++P)
876 if (P->getSUnit() == DefSU)
877 Deps.push_back(*P);
878 for (int i = 0, e = Deps.size(); i != e; i++) {
879 Topo.RemovePred(&I, Deps[i].getSUnit());
880 I.removePred(Deps[i]);
882 // Remove the chain dependence between the instructions.
883 Deps.clear();
884 for (auto &P : LastSU->Preds)
885 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
886 Deps.push_back(P);
887 for (int i = 0, e = Deps.size(); i != e; i++) {
888 Topo.RemovePred(LastSU, Deps[i].getSUnit());
889 LastSU->removePred(Deps[i]);
892 // Add a dependence between the new instruction and the instruction
893 // that defines the new base.
894 SDep Dep(&I, SDep::Anti, NewBase);
895 Topo.AddPred(LastSU, &I);
896 LastSU->addPred(Dep);
898 // Remember the base and offset information so that we can update the
899 // instruction during code generation.
900 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
904 namespace {
906 // FuncUnitSorter - Comparison operator used to sort instructions by
907 // the number of functional unit choices.
908 struct FuncUnitSorter {
909 const InstrItineraryData *InstrItins;
910 const MCSubtargetInfo *STI;
911 DenseMap<unsigned, unsigned> Resources;
913 FuncUnitSorter(const TargetSubtargetInfo &TSI)
914 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
916 // Compute the number of functional unit alternatives needed
917 // at each stage, and take the minimum value. We prioritize the
918 // instructions by the least number of choices first.
919 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
920 unsigned SchedClass = Inst->getDesc().getSchedClass();
921 unsigned min = UINT_MAX;
922 if (InstrItins && !InstrItins->isEmpty()) {
923 for (const InstrStage &IS :
924 make_range(InstrItins->beginStage(SchedClass),
925 InstrItins->endStage(SchedClass))) {
926 unsigned funcUnits = IS.getUnits();
927 unsigned numAlternatives = countPopulation(funcUnits);
928 if (numAlternatives < min) {
929 min = numAlternatives;
930 F = funcUnits;
933 return min;
935 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
936 const MCSchedClassDesc *SCDesc =
937 STI->getSchedModel().getSchedClassDesc(SchedClass);
938 if (!SCDesc->isValid())
939 // No valid Schedule Class Desc for schedClass, should be
940 // Pseudo/PostRAPseudo
941 return min;
943 for (const MCWriteProcResEntry &PRE :
944 make_range(STI->getWriteProcResBegin(SCDesc),
945 STI->getWriteProcResEnd(SCDesc))) {
946 if (!PRE.Cycles)
947 continue;
948 const MCProcResourceDesc *ProcResource =
949 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
950 unsigned NumUnits = ProcResource->NumUnits;
951 if (NumUnits < min) {
952 min = NumUnits;
953 F = PRE.ProcResourceIdx;
956 return min;
958 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
961 // Compute the critical resources needed by the instruction. This
962 // function records the functional units needed by instructions that
963 // must use only one functional unit. We use this as a tie breaker
964 // for computing the resource MII. The instrutions that require
965 // the same, highly used, functional unit have high priority.
966 void calcCriticalResources(MachineInstr &MI) {
967 unsigned SchedClass = MI.getDesc().getSchedClass();
968 if (InstrItins && !InstrItins->isEmpty()) {
969 for (const InstrStage &IS :
970 make_range(InstrItins->beginStage(SchedClass),
971 InstrItins->endStage(SchedClass))) {
972 unsigned FuncUnits = IS.getUnits();
973 if (countPopulation(FuncUnits) == 1)
974 Resources[FuncUnits]++;
976 return;
978 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
979 const MCSchedClassDesc *SCDesc =
980 STI->getSchedModel().getSchedClassDesc(SchedClass);
981 if (!SCDesc->isValid())
982 // No valid Schedule Class Desc for schedClass, should be
983 // Pseudo/PostRAPseudo
984 return;
986 for (const MCWriteProcResEntry &PRE :
987 make_range(STI->getWriteProcResBegin(SCDesc),
988 STI->getWriteProcResEnd(SCDesc))) {
989 if (!PRE.Cycles)
990 continue;
991 Resources[PRE.ProcResourceIdx]++;
993 return;
995 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
998 /// Return true if IS1 has less priority than IS2.
999 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1000 unsigned F1 = 0, F2 = 0;
1001 unsigned MFUs1 = minFuncUnits(IS1, F1);
1002 unsigned MFUs2 = minFuncUnits(IS2, F2);
1003 if (MFUs1 == MFUs2)
1004 return Resources.lookup(F1) < Resources.lookup(F2);
1005 return MFUs1 > MFUs2;
1009 } // end anonymous namespace
1011 /// Calculate the resource constrained minimum initiation interval for the
1012 /// specified loop. We use the DFA to model the resources needed for
1013 /// each instruction, and we ignore dependences. A different DFA is created
1014 /// for each cycle that is required. When adding a new instruction, we attempt
1015 /// to add it to each existing DFA, until a legal space is found. If the
1016 /// instruction cannot be reserved in an existing DFA, we create a new one.
1017 unsigned SwingSchedulerDAG::calculateResMII() {
1019 LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1020 SmallVector<ResourceManager*, 8> Resources;
1021 MachineBasicBlock *MBB = Loop.getHeader();
1022 Resources.push_back(new ResourceManager(&MF.getSubtarget()));
1024 // Sort the instructions by the number of available choices for scheduling,
1025 // least to most. Use the number of critical resources as the tie breaker.
1026 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
1027 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1028 E = MBB->getFirstTerminator();
1029 I != E; ++I)
1030 FUS.calcCriticalResources(*I);
1031 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1032 FuncUnitOrder(FUS);
1034 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1035 E = MBB->getFirstTerminator();
1036 I != E; ++I)
1037 FuncUnitOrder.push(&*I);
1039 while (!FuncUnitOrder.empty()) {
1040 MachineInstr *MI = FuncUnitOrder.top();
1041 FuncUnitOrder.pop();
1042 if (TII->isZeroCost(MI->getOpcode()))
1043 continue;
1044 // Attempt to reserve the instruction in an existing DFA. At least one
1045 // DFA is needed for each cycle.
1046 unsigned NumCycles = getSUnit(MI)->Latency;
1047 unsigned ReservedCycles = 0;
1048 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
1049 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
1050 LLVM_DEBUG({
1051 dbgs() << "Trying to reserve resource for " << NumCycles
1052 << " cycles for \n";
1053 MI->dump();
1055 for (unsigned C = 0; C < NumCycles; ++C)
1056 while (RI != RE) {
1057 if ((*RI)->canReserveResources(*MI)) {
1058 (*RI)->reserveResources(*MI);
1059 ++ReservedCycles;
1060 break;
1062 RI++;
1064 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
1065 << ", NumCycles:" << NumCycles << "\n");
1066 // Add new DFAs, if needed, to reserve resources.
1067 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1068 LLVM_DEBUG(if (SwpDebugResource) dbgs()
1069 << "NewResource created to reserve resources"
1070 << "\n");
1071 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
1072 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1073 NewResource->reserveResources(*MI);
1074 Resources.push_back(NewResource);
1077 int Resmii = Resources.size();
1078 LLVM_DEBUG(dbgs() << "Retrun Res MII:" << Resmii << "\n");
1079 // Delete the memory for each of the DFAs that were created earlier.
1080 for (ResourceManager *RI : Resources) {
1081 ResourceManager *D = RI;
1082 delete D;
1084 Resources.clear();
1085 return Resmii;
1088 /// Calculate the recurrence-constrainted minimum initiation interval.
1089 /// Iterate over each circuit. Compute the delay(c) and distance(c)
1090 /// for each circuit. The II needs to satisfy the inequality
1091 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1092 /// II that satisfies the inequality, and the RecMII is the maximum
1093 /// of those values.
1094 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1095 unsigned RecMII = 0;
1097 for (NodeSet &Nodes : NodeSets) {
1098 if (Nodes.empty())
1099 continue;
1101 unsigned Delay = Nodes.getLatency();
1102 unsigned Distance = 1;
1104 // ii = ceil(delay / distance)
1105 unsigned CurMII = (Delay + Distance - 1) / Distance;
1106 Nodes.setRecMII(CurMII);
1107 if (CurMII > RecMII)
1108 RecMII = CurMII;
1111 return RecMII;
1114 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1115 /// but we do this to find the circuits, and then change them back.
1116 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1117 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1118 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1119 SUnit *SU = &SUnits[i];
1120 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1121 IP != EP; ++IP) {
1122 if (IP->getKind() != SDep::Anti)
1123 continue;
1124 DepsAdded.push_back(std::make_pair(SU, *IP));
1127 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1128 E = DepsAdded.end();
1129 I != E; ++I) {
1130 // Remove this anti dependency and add one in the reverse direction.
1131 SUnit *SU = I->first;
1132 SDep &D = I->second;
1133 SUnit *TargetSU = D.getSUnit();
1134 unsigned Reg = D.getReg();
1135 unsigned Lat = D.getLatency();
1136 SU->removePred(D);
1137 SDep Dep(SU, SDep::Anti, Reg);
1138 Dep.setLatency(Lat);
1139 TargetSU->addPred(Dep);
1143 /// Create the adjacency structure of the nodes in the graph.
1144 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1145 SwingSchedulerDAG *DAG) {
1146 BitVector Added(SUnits.size());
1147 DenseMap<int, int> OutputDeps;
1148 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1149 Added.reset();
1150 // Add any successor to the adjacency matrix and exclude duplicates.
1151 for (auto &SI : SUnits[i].Succs) {
1152 // Only create a back-edge on the first and last nodes of a dependence
1153 // chain. This records any chains and adds them later.
1154 if (SI.getKind() == SDep::Output) {
1155 int N = SI.getSUnit()->NodeNum;
1156 int BackEdge = i;
1157 auto Dep = OutputDeps.find(BackEdge);
1158 if (Dep != OutputDeps.end()) {
1159 BackEdge = Dep->second;
1160 OutputDeps.erase(Dep);
1162 OutputDeps[N] = BackEdge;
1164 // Do not process a boundary node, an artificial node.
1165 // A back-edge is processed only if it goes to a Phi.
1166 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1167 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1168 continue;
1169 int N = SI.getSUnit()->NodeNum;
1170 if (!Added.test(N)) {
1171 AdjK[i].push_back(N);
1172 Added.set(N);
1175 // A chain edge between a store and a load is treated as a back-edge in the
1176 // adjacency matrix.
1177 for (auto &PI : SUnits[i].Preds) {
1178 if (!SUnits[i].getInstr()->mayStore() ||
1179 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1180 continue;
1181 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1182 int N = PI.getSUnit()->NodeNum;
1183 if (!Added.test(N)) {
1184 AdjK[i].push_back(N);
1185 Added.set(N);
1190 // Add back-edges in the adjacency matrix for the output dependences.
1191 for (auto &OD : OutputDeps)
1192 if (!Added.test(OD.second)) {
1193 AdjK[OD.first].push_back(OD.second);
1194 Added.set(OD.second);
1198 /// Identify an elementary circuit in the dependence graph starting at the
1199 /// specified node.
1200 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1201 bool HasBackedge) {
1202 SUnit *SV = &SUnits[V];
1203 bool F = false;
1204 Stack.insert(SV);
1205 Blocked.set(V);
1207 for (auto W : AdjK[V]) {
1208 if (NumPaths > MaxPaths)
1209 break;
1210 if (W < S)
1211 continue;
1212 if (W == S) {
1213 if (!HasBackedge)
1214 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1215 F = true;
1216 ++NumPaths;
1217 break;
1218 } else if (!Blocked.test(W)) {
1219 if (circuit(W, S, NodeSets,
1220 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1221 F = true;
1225 if (F)
1226 unblock(V);
1227 else {
1228 for (auto W : AdjK[V]) {
1229 if (W < S)
1230 continue;
1231 if (B[W].count(SV) == 0)
1232 B[W].insert(SV);
1235 Stack.pop_back();
1236 return F;
1239 /// Unblock a node in the circuit finding algorithm.
1240 void SwingSchedulerDAG::Circuits::unblock(int U) {
1241 Blocked.reset(U);
1242 SmallPtrSet<SUnit *, 4> &BU = B[U];
1243 while (!BU.empty()) {
1244 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1245 assert(SI != BU.end() && "Invalid B set.");
1246 SUnit *W = *SI;
1247 BU.erase(W);
1248 if (Blocked.test(W->NodeNum))
1249 unblock(W->NodeNum);
1253 /// Identify all the elementary circuits in the dependence graph using
1254 /// Johnson's circuit algorithm.
1255 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1256 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1257 // but we do this to find the circuits, and then change them back.
1258 swapAntiDependences(SUnits);
1260 Circuits Cir(SUnits, Topo);
1261 // Create the adjacency structure.
1262 Cir.createAdjacencyStructure(this);
1263 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1264 Cir.reset();
1265 Cir.circuit(i, i, NodeSets);
1268 // Change the dependences back so that we've created a DAG again.
1269 swapAntiDependences(SUnits);
1272 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1273 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1274 // additional copies that are needed across iterations. An artificial dependence
1275 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1277 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1278 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1279 // PHI-------True-Dep------> USEOfPhi
1281 // The mutation creates
1282 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1284 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1285 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1286 // late to avoid additional copies across iterations. The possible scheduling
1287 // order would be
1288 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1290 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1291 for (SUnit &SU : DAG->SUnits) {
1292 // Find the COPY/REG_SEQUENCE instruction.
1293 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1294 continue;
1296 // Record the loop carried PHIs.
1297 SmallVector<SUnit *, 4> PHISUs;
1298 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1299 SmallVector<SUnit *, 4> SrcSUs;
1301 for (auto &Dep : SU.Preds) {
1302 SUnit *TmpSU = Dep.getSUnit();
1303 MachineInstr *TmpMI = TmpSU->getInstr();
1304 SDep::Kind DepKind = Dep.getKind();
1305 // Save the loop carried PHI.
1306 if (DepKind == SDep::Anti && TmpMI->isPHI())
1307 PHISUs.push_back(TmpSU);
1308 // Save the source of COPY/REG_SEQUENCE.
1309 // If the source has no pre-decessors, we will end up creating cycles.
1310 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1311 SrcSUs.push_back(TmpSU);
1314 if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1315 continue;
1317 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1318 // SUnit to the container.
1319 SmallVector<SUnit *, 8> UseSUs;
1320 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) {
1321 for (auto &Dep : (*I)->Succs) {
1322 if (Dep.getKind() != SDep::Data)
1323 continue;
1325 SUnit *TmpSU = Dep.getSUnit();
1326 MachineInstr *TmpMI = TmpSU->getInstr();
1327 if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1328 PHISUs.push_back(TmpSU);
1329 continue;
1331 UseSUs.push_back(TmpSU);
1335 if (UseSUs.size() == 0)
1336 continue;
1338 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1339 // Add the artificial dependencies if it does not form a cycle.
1340 for (auto I : UseSUs) {
1341 for (auto Src : SrcSUs) {
1342 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1343 Src->addPred(SDep(I, SDep::Artificial));
1344 SDAG->Topo.AddPred(Src, I);
1351 /// Return true for DAG nodes that we ignore when computing the cost functions.
1352 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1353 /// in the calculation of the ASAP, ALAP, etc functions.
1354 static bool ignoreDependence(const SDep &D, bool isPred) {
1355 if (D.isArtificial())
1356 return true;
1357 return D.getKind() == SDep::Anti && isPred;
1360 /// Compute several functions need to order the nodes for scheduling.
1361 /// ASAP - Earliest time to schedule a node.
1362 /// ALAP - Latest time to schedule a node.
1363 /// MOV - Mobility function, difference between ALAP and ASAP.
1364 /// D - Depth of each node.
1365 /// H - Height of each node.
1366 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1367 ScheduleInfo.resize(SUnits.size());
1369 LLVM_DEBUG({
1370 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1371 E = Topo.end();
1372 I != E; ++I) {
1373 const SUnit &SU = SUnits[*I];
1374 dumpNode(SU);
1378 int maxASAP = 0;
1379 // Compute ASAP and ZeroLatencyDepth.
1380 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1381 E = Topo.end();
1382 I != E; ++I) {
1383 int asap = 0;
1384 int zeroLatencyDepth = 0;
1385 SUnit *SU = &SUnits[*I];
1386 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1387 EP = SU->Preds.end();
1388 IP != EP; ++IP) {
1389 SUnit *pred = IP->getSUnit();
1390 if (IP->getLatency() == 0)
1391 zeroLatencyDepth =
1392 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1393 if (ignoreDependence(*IP, true))
1394 continue;
1395 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
1396 getDistance(pred, SU, *IP) * MII));
1398 maxASAP = std::max(maxASAP, asap);
1399 ScheduleInfo[*I].ASAP = asap;
1400 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
1403 // Compute ALAP, ZeroLatencyHeight, and MOV.
1404 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1405 E = Topo.rend();
1406 I != E; ++I) {
1407 int alap = maxASAP;
1408 int zeroLatencyHeight = 0;
1409 SUnit *SU = &SUnits[*I];
1410 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1411 ES = SU->Succs.end();
1412 IS != ES; ++IS) {
1413 SUnit *succ = IS->getSUnit();
1414 if (IS->getLatency() == 0)
1415 zeroLatencyHeight =
1416 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1417 if (ignoreDependence(*IS, true))
1418 continue;
1419 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
1420 getDistance(SU, succ, *IS) * MII));
1423 ScheduleInfo[*I].ALAP = alap;
1424 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
1427 // After computing the node functions, compute the summary for each node set.
1428 for (NodeSet &I : NodeSets)
1429 I.computeNodeSetInfo(this);
1431 LLVM_DEBUG({
1432 for (unsigned i = 0; i < SUnits.size(); i++) {
1433 dbgs() << "\tNode " << i << ":\n";
1434 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1435 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1436 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1437 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1438 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1439 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1440 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1445 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1446 /// as the predecessors of the elements of NodeOrder that are not also in
1447 /// NodeOrder.
1448 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1449 SmallSetVector<SUnit *, 8> &Preds,
1450 const NodeSet *S = nullptr) {
1451 Preds.clear();
1452 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1453 I != E; ++I) {
1454 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1455 PI != PE; ++PI) {
1456 if (S && S->count(PI->getSUnit()) == 0)
1457 continue;
1458 if (ignoreDependence(*PI, true))
1459 continue;
1460 if (NodeOrder.count(PI->getSUnit()) == 0)
1461 Preds.insert(PI->getSUnit());
1463 // Back-edges are predecessors with an anti-dependence.
1464 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1465 ES = (*I)->Succs.end();
1466 IS != ES; ++IS) {
1467 if (IS->getKind() != SDep::Anti)
1468 continue;
1469 if (S && S->count(IS->getSUnit()) == 0)
1470 continue;
1471 if (NodeOrder.count(IS->getSUnit()) == 0)
1472 Preds.insert(IS->getSUnit());
1475 return !Preds.empty();
1478 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1479 /// as the successors of the elements of NodeOrder that are not also in
1480 /// NodeOrder.
1481 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1482 SmallSetVector<SUnit *, 8> &Succs,
1483 const NodeSet *S = nullptr) {
1484 Succs.clear();
1485 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1486 I != E; ++I) {
1487 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1488 SI != SE; ++SI) {
1489 if (S && S->count(SI->getSUnit()) == 0)
1490 continue;
1491 if (ignoreDependence(*SI, false))
1492 continue;
1493 if (NodeOrder.count(SI->getSUnit()) == 0)
1494 Succs.insert(SI->getSUnit());
1496 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1497 PE = (*I)->Preds.end();
1498 PI != PE; ++PI) {
1499 if (PI->getKind() != SDep::Anti)
1500 continue;
1501 if (S && S->count(PI->getSUnit()) == 0)
1502 continue;
1503 if (NodeOrder.count(PI->getSUnit()) == 0)
1504 Succs.insert(PI->getSUnit());
1507 return !Succs.empty();
1510 /// Return true if there is a path from the specified node to any of the nodes
1511 /// in DestNodes. Keep track and return the nodes in any path.
1512 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1513 SetVector<SUnit *> &DestNodes,
1514 SetVector<SUnit *> &Exclude,
1515 SmallPtrSet<SUnit *, 8> &Visited) {
1516 if (Cur->isBoundaryNode())
1517 return false;
1518 if (Exclude.count(Cur) != 0)
1519 return false;
1520 if (DestNodes.count(Cur) != 0)
1521 return true;
1522 if (!Visited.insert(Cur).second)
1523 return Path.count(Cur) != 0;
1524 bool FoundPath = false;
1525 for (auto &SI : Cur->Succs)
1526 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1527 for (auto &PI : Cur->Preds)
1528 if (PI.getKind() == SDep::Anti)
1529 FoundPath |=
1530 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1531 if (FoundPath)
1532 Path.insert(Cur);
1533 return FoundPath;
1536 /// Return true if Set1 is a subset of Set2.
1537 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1538 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1539 if (Set2.count(*I) == 0)
1540 return false;
1541 return true;
1544 /// Compute the live-out registers for the instructions in a node-set.
1545 /// The live-out registers are those that are defined in the node-set,
1546 /// but not used. Except for use operands of Phis.
1547 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1548 NodeSet &NS) {
1549 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1550 MachineRegisterInfo &MRI = MF.getRegInfo();
1551 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1552 SmallSet<unsigned, 4> Uses;
1553 for (SUnit *SU : NS) {
1554 const MachineInstr *MI = SU->getInstr();
1555 if (MI->isPHI())
1556 continue;
1557 for (const MachineOperand &MO : MI->operands())
1558 if (MO.isReg() && MO.isUse()) {
1559 Register Reg = MO.getReg();
1560 if (Register::isVirtualRegister(Reg))
1561 Uses.insert(Reg);
1562 else if (MRI.isAllocatable(Reg))
1563 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1564 Uses.insert(*Units);
1567 for (SUnit *SU : NS)
1568 for (const MachineOperand &MO : SU->getInstr()->operands())
1569 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1570 Register Reg = MO.getReg();
1571 if (Register::isVirtualRegister(Reg)) {
1572 if (!Uses.count(Reg))
1573 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1574 LaneBitmask::getNone()));
1575 } else if (MRI.isAllocatable(Reg)) {
1576 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1577 if (!Uses.count(*Units))
1578 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1579 LaneBitmask::getNone()));
1582 RPTracker.addLiveRegs(LiveOutRegs);
1585 /// A heuristic to filter nodes in recurrent node-sets if the register
1586 /// pressure of a set is too high.
1587 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1588 for (auto &NS : NodeSets) {
1589 // Skip small node-sets since they won't cause register pressure problems.
1590 if (NS.size() <= 2)
1591 continue;
1592 IntervalPressure RecRegPressure;
1593 RegPressureTracker RecRPTracker(RecRegPressure);
1594 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1595 computeLiveOuts(MF, RecRPTracker, NS);
1596 RecRPTracker.closeBottom();
1598 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1599 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1600 return A->NodeNum > B->NodeNum;
1603 for (auto &SU : SUnits) {
1604 // Since we're computing the register pressure for a subset of the
1605 // instructions in a block, we need to set the tracker for each
1606 // instruction in the node-set. The tracker is set to the instruction
1607 // just after the one we're interested in.
1608 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1609 RecRPTracker.setPos(std::next(CurInstI));
1611 RegPressureDelta RPDelta;
1612 ArrayRef<PressureChange> CriticalPSets;
1613 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1614 CriticalPSets,
1615 RecRegPressure.MaxSetPressure);
1616 if (RPDelta.Excess.isValid()) {
1617 LLVM_DEBUG(
1618 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1619 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1620 << ":" << RPDelta.Excess.getUnitInc());
1621 NS.setExceedPressure(SU);
1622 break;
1624 RecRPTracker.recede();
1629 /// A heuristic to colocate node sets that have the same set of
1630 /// successors.
1631 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1632 unsigned Colocate = 0;
1633 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1634 NodeSet &N1 = NodeSets[i];
1635 SmallSetVector<SUnit *, 8> S1;
1636 if (N1.empty() || !succ_L(N1, S1))
1637 continue;
1638 for (int j = i + 1; j < e; ++j) {
1639 NodeSet &N2 = NodeSets[j];
1640 if (N1.compareRecMII(N2) != 0)
1641 continue;
1642 SmallSetVector<SUnit *, 8> S2;
1643 if (N2.empty() || !succ_L(N2, S2))
1644 continue;
1645 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1646 N1.setColocate(++Colocate);
1647 N2.setColocate(Colocate);
1648 break;
1654 /// Check if the existing node-sets are profitable. If not, then ignore the
1655 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1656 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1657 /// then it's best to try to schedule all instructions together instead of
1658 /// starting with the recurrent node-sets.
1659 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1660 // Look for loops with a large MII.
1661 if (MII < 17)
1662 return;
1663 // Check if the node-set contains only a simple add recurrence.
1664 for (auto &NS : NodeSets) {
1665 if (NS.getRecMII() > 2)
1666 return;
1667 if (NS.getMaxDepth() > MII)
1668 return;
1670 NodeSets.clear();
1671 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1672 return;
1675 /// Add the nodes that do not belong to a recurrence set into groups
1676 /// based upon connected componenets.
1677 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1678 SetVector<SUnit *> NodesAdded;
1679 SmallPtrSet<SUnit *, 8> Visited;
1680 // Add the nodes that are on a path between the previous node sets and
1681 // the current node set.
1682 for (NodeSet &I : NodeSets) {
1683 SmallSetVector<SUnit *, 8> N;
1684 // Add the nodes from the current node set to the previous node set.
1685 if (succ_L(I, N)) {
1686 SetVector<SUnit *> Path;
1687 for (SUnit *NI : N) {
1688 Visited.clear();
1689 computePath(NI, Path, NodesAdded, I, Visited);
1691 if (!Path.empty())
1692 I.insert(Path.begin(), Path.end());
1694 // Add the nodes from the previous node set to the current node set.
1695 N.clear();
1696 if (succ_L(NodesAdded, N)) {
1697 SetVector<SUnit *> Path;
1698 for (SUnit *NI : N) {
1699 Visited.clear();
1700 computePath(NI, Path, I, NodesAdded, Visited);
1702 if (!Path.empty())
1703 I.insert(Path.begin(), Path.end());
1705 NodesAdded.insert(I.begin(), I.end());
1708 // Create a new node set with the connected nodes of any successor of a node
1709 // in a recurrent set.
1710 NodeSet NewSet;
1711 SmallSetVector<SUnit *, 8> N;
1712 if (succ_L(NodesAdded, N))
1713 for (SUnit *I : N)
1714 addConnectedNodes(I, NewSet, NodesAdded);
1715 if (!NewSet.empty())
1716 NodeSets.push_back(NewSet);
1718 // Create a new node set with the connected nodes of any predecessor of a node
1719 // in a recurrent set.
1720 NewSet.clear();
1721 if (pred_L(NodesAdded, N))
1722 for (SUnit *I : N)
1723 addConnectedNodes(I, NewSet, NodesAdded);
1724 if (!NewSet.empty())
1725 NodeSets.push_back(NewSet);
1727 // Create new nodes sets with the connected nodes any remaining node that
1728 // has no predecessor.
1729 for (unsigned i = 0; i < SUnits.size(); ++i) {
1730 SUnit *SU = &SUnits[i];
1731 if (NodesAdded.count(SU) == 0) {
1732 NewSet.clear();
1733 addConnectedNodes(SU, NewSet, NodesAdded);
1734 if (!NewSet.empty())
1735 NodeSets.push_back(NewSet);
1740 /// Add the node to the set, and add all of its connected nodes to the set.
1741 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1742 SetVector<SUnit *> &NodesAdded) {
1743 NewSet.insert(SU);
1744 NodesAdded.insert(SU);
1745 for (auto &SI : SU->Succs) {
1746 SUnit *Successor = SI.getSUnit();
1747 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1748 addConnectedNodes(Successor, NewSet, NodesAdded);
1750 for (auto &PI : SU->Preds) {
1751 SUnit *Predecessor = PI.getSUnit();
1752 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1753 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1757 /// Return true if Set1 contains elements in Set2. The elements in common
1758 /// are returned in a different container.
1759 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1760 SmallSetVector<SUnit *, 8> &Result) {
1761 Result.clear();
1762 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1763 SUnit *SU = Set1[i];
1764 if (Set2.count(SU) != 0)
1765 Result.insert(SU);
1767 return !Result.empty();
1770 /// Merge the recurrence node sets that have the same initial node.
1771 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1772 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1773 ++I) {
1774 NodeSet &NI = *I;
1775 for (NodeSetType::iterator J = I + 1; J != E;) {
1776 NodeSet &NJ = *J;
1777 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1778 if (NJ.compareRecMII(NI) > 0)
1779 NI.setRecMII(NJ.getRecMII());
1780 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1781 ++NII)
1782 I->insert(*NII);
1783 NodeSets.erase(J);
1784 E = NodeSets.end();
1785 } else {
1786 ++J;
1792 /// Remove nodes that have been scheduled in previous NodeSets.
1793 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1794 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1795 ++I)
1796 for (NodeSetType::iterator J = I + 1; J != E;) {
1797 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1799 if (J->empty()) {
1800 NodeSets.erase(J);
1801 E = NodeSets.end();
1802 } else {
1803 ++J;
1808 /// Compute an ordered list of the dependence graph nodes, which
1809 /// indicates the order that the nodes will be scheduled. This is a
1810 /// two-level algorithm. First, a partial order is created, which
1811 /// consists of a list of sets ordered from highest to lowest priority.
1812 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1813 SmallSetVector<SUnit *, 8> R;
1814 NodeOrder.clear();
1816 for (auto &Nodes : NodeSets) {
1817 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1818 OrderKind Order;
1819 SmallSetVector<SUnit *, 8> N;
1820 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
1821 R.insert(N.begin(), N.end());
1822 Order = BottomUp;
1823 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
1824 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
1825 R.insert(N.begin(), N.end());
1826 Order = TopDown;
1827 LLVM_DEBUG(dbgs() << " Top down (succs) ");
1828 } else if (isIntersect(N, Nodes, R)) {
1829 // If some of the successors are in the existing node-set, then use the
1830 // top-down ordering.
1831 Order = TopDown;
1832 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
1833 } else if (NodeSets.size() == 1) {
1834 for (auto &N : Nodes)
1835 if (N->Succs.size() == 0)
1836 R.insert(N);
1837 Order = BottomUp;
1838 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
1839 } else {
1840 // Find the node with the highest ASAP.
1841 SUnit *maxASAP = nullptr;
1842 for (SUnit *SU : Nodes) {
1843 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1844 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1845 maxASAP = SU;
1847 R.insert(maxASAP);
1848 Order = BottomUp;
1849 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
1852 while (!R.empty()) {
1853 if (Order == TopDown) {
1854 // Choose the node with the maximum height. If more than one, choose
1855 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1856 // choose the node with the lowest MOV.
1857 while (!R.empty()) {
1858 SUnit *maxHeight = nullptr;
1859 for (SUnit *I : R) {
1860 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1861 maxHeight = I;
1862 else if (getHeight(I) == getHeight(maxHeight) &&
1863 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1864 maxHeight = I;
1865 else if (getHeight(I) == getHeight(maxHeight) &&
1866 getZeroLatencyHeight(I) ==
1867 getZeroLatencyHeight(maxHeight) &&
1868 getMOV(I) < getMOV(maxHeight))
1869 maxHeight = I;
1871 NodeOrder.insert(maxHeight);
1872 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1873 R.remove(maxHeight);
1874 for (const auto &I : maxHeight->Succs) {
1875 if (Nodes.count(I.getSUnit()) == 0)
1876 continue;
1877 if (NodeOrder.count(I.getSUnit()) != 0)
1878 continue;
1879 if (ignoreDependence(I, false))
1880 continue;
1881 R.insert(I.getSUnit());
1883 // Back-edges are predecessors with an anti-dependence.
1884 for (const auto &I : maxHeight->Preds) {
1885 if (I.getKind() != SDep::Anti)
1886 continue;
1887 if (Nodes.count(I.getSUnit()) == 0)
1888 continue;
1889 if (NodeOrder.count(I.getSUnit()) != 0)
1890 continue;
1891 R.insert(I.getSUnit());
1894 Order = BottomUp;
1895 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
1896 SmallSetVector<SUnit *, 8> N;
1897 if (pred_L(NodeOrder, N, &Nodes))
1898 R.insert(N.begin(), N.end());
1899 } else {
1900 // Choose the node with the maximum depth. If more than one, choose
1901 // the node with the maximum ZeroLatencyDepth. If still more than one,
1902 // choose the node with the lowest MOV.
1903 while (!R.empty()) {
1904 SUnit *maxDepth = nullptr;
1905 for (SUnit *I : R) {
1906 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1907 maxDepth = I;
1908 else if (getDepth(I) == getDepth(maxDepth) &&
1909 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1910 maxDepth = I;
1911 else if (getDepth(I) == getDepth(maxDepth) &&
1912 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1913 getMOV(I) < getMOV(maxDepth))
1914 maxDepth = I;
1916 NodeOrder.insert(maxDepth);
1917 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1918 R.remove(maxDepth);
1919 if (Nodes.isExceedSU(maxDepth)) {
1920 Order = TopDown;
1921 R.clear();
1922 R.insert(Nodes.getNode(0));
1923 break;
1925 for (const auto &I : maxDepth->Preds) {
1926 if (Nodes.count(I.getSUnit()) == 0)
1927 continue;
1928 if (NodeOrder.count(I.getSUnit()) != 0)
1929 continue;
1930 R.insert(I.getSUnit());
1932 // Back-edges are predecessors with an anti-dependence.
1933 for (const auto &I : maxDepth->Succs) {
1934 if (I.getKind() != SDep::Anti)
1935 continue;
1936 if (Nodes.count(I.getSUnit()) == 0)
1937 continue;
1938 if (NodeOrder.count(I.getSUnit()) != 0)
1939 continue;
1940 R.insert(I.getSUnit());
1943 Order = TopDown;
1944 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
1945 SmallSetVector<SUnit *, 8> N;
1946 if (succ_L(NodeOrder, N, &Nodes))
1947 R.insert(N.begin(), N.end());
1950 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
1953 LLVM_DEBUG({
1954 dbgs() << "Node order: ";
1955 for (SUnit *I : NodeOrder)
1956 dbgs() << " " << I->NodeNum << " ";
1957 dbgs() << "\n";
1961 /// Process the nodes in the computed order and create the pipelined schedule
1962 /// of the instructions, if possible. Return true if a schedule is found.
1963 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
1965 if (NodeOrder.empty()){
1966 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
1967 return false;
1970 bool scheduleFound = false;
1971 unsigned II = 0;
1972 // Keep increasing II until a valid schedule is found.
1973 for (II = MII; II <= MAX_II && !scheduleFound; ++II) {
1974 Schedule.reset();
1975 Schedule.setInitiationInterval(II);
1976 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
1978 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
1979 SetVector<SUnit *>::iterator NE = NodeOrder.end();
1980 do {
1981 SUnit *SU = *NI;
1983 // Compute the schedule time for the instruction, which is based
1984 // upon the scheduled time for any predecessors/successors.
1985 int EarlyStart = INT_MIN;
1986 int LateStart = INT_MAX;
1987 // These values are set when the size of the schedule window is limited
1988 // due to chain dependences.
1989 int SchedEnd = INT_MAX;
1990 int SchedStart = INT_MIN;
1991 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
1992 II, this);
1993 LLVM_DEBUG({
1994 dbgs() << "\n";
1995 dbgs() << "Inst (" << SU->NodeNum << ") ";
1996 SU->getInstr()->dump();
1997 dbgs() << "\n";
1999 LLVM_DEBUG({
2000 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
2001 LateStart, SchedEnd, SchedStart);
2004 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2005 SchedStart > LateStart)
2006 scheduleFound = false;
2007 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2008 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2009 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2010 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2011 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2012 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2013 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2014 SchedEnd =
2015 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2016 // When scheduling a Phi it is better to start at the late cycle and go
2017 // backwards. The default order may insert the Phi too far away from
2018 // its first dependence.
2019 if (SU->getInstr()->isPHI())
2020 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2021 else
2022 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2023 } else {
2024 int FirstCycle = Schedule.getFirstCycle();
2025 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2026 FirstCycle + getASAP(SU) + II - 1, II);
2028 // Even if we find a schedule, make sure the schedule doesn't exceed the
2029 // allowable number of stages. We keep trying if this happens.
2030 if (scheduleFound)
2031 if (SwpMaxStages > -1 &&
2032 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2033 scheduleFound = false;
2035 LLVM_DEBUG({
2036 if (!scheduleFound)
2037 dbgs() << "\tCan't schedule\n";
2039 } while (++NI != NE && scheduleFound);
2041 // If a schedule is found, check if it is a valid schedule too.
2042 if (scheduleFound)
2043 scheduleFound = Schedule.isValidSchedule(this);
2046 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II
2047 << ")\n");
2049 if (scheduleFound)
2050 Schedule.finalizeSchedule(this);
2051 else
2052 Schedule.reset();
2054 return scheduleFound && Schedule.getMaxStageCount() > 0;
2057 /// Return true if we can compute the amount the instruction changes
2058 /// during each iteration. Set Delta to the amount of the change.
2059 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2060 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2061 const MachineOperand *BaseOp;
2062 int64_t Offset;
2063 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
2064 return false;
2066 if (!BaseOp->isReg())
2067 return false;
2069 Register BaseReg = BaseOp->getReg();
2071 MachineRegisterInfo &MRI = MF.getRegInfo();
2072 // Check if there is a Phi. If so, get the definition in the loop.
2073 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2074 if (BaseDef && BaseDef->isPHI()) {
2075 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2076 BaseDef = MRI.getVRegDef(BaseReg);
2078 if (!BaseDef)
2079 return false;
2081 int D = 0;
2082 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2083 return false;
2085 Delta = D;
2086 return true;
2089 /// Check if we can change the instruction to use an offset value from the
2090 /// previous iteration. If so, return true and set the base and offset values
2091 /// so that we can rewrite the load, if necessary.
2092 /// v1 = Phi(v0, v3)
2093 /// v2 = load v1, 0
2094 /// v3 = post_store v1, 4, x
2095 /// This function enables the load to be rewritten as v2 = load v3, 4.
2096 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2097 unsigned &BasePos,
2098 unsigned &OffsetPos,
2099 unsigned &NewBase,
2100 int64_t &Offset) {
2101 // Get the load instruction.
2102 if (TII->isPostIncrement(*MI))
2103 return false;
2104 unsigned BasePosLd, OffsetPosLd;
2105 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2106 return false;
2107 Register BaseReg = MI->getOperand(BasePosLd).getReg();
2109 // Look for the Phi instruction.
2110 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2111 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2112 if (!Phi || !Phi->isPHI())
2113 return false;
2114 // Get the register defined in the loop block.
2115 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2116 if (!PrevReg)
2117 return false;
2119 // Check for the post-increment load/store instruction.
2120 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2121 if (!PrevDef || PrevDef == MI)
2122 return false;
2124 if (!TII->isPostIncrement(*PrevDef))
2125 return false;
2127 unsigned BasePos1 = 0, OffsetPos1 = 0;
2128 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2129 return false;
2131 // Make sure that the instructions do not access the same memory location in
2132 // the next iteration.
2133 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2134 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2135 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2136 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2137 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2138 MF.DeleteMachineInstr(NewMI);
2139 if (!Disjoint)
2140 return false;
2142 // Set the return value once we determine that we return true.
2143 BasePos = BasePosLd;
2144 OffsetPos = OffsetPosLd;
2145 NewBase = PrevReg;
2146 Offset = StoreOffset;
2147 return true;
2150 /// Apply changes to the instruction if needed. The changes are need
2151 /// to improve the scheduling and depend up on the final schedule.
2152 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2153 SMSchedule &Schedule) {
2154 SUnit *SU = getSUnit(MI);
2155 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2156 InstrChanges.find(SU);
2157 if (It != InstrChanges.end()) {
2158 std::pair<unsigned, int64_t> RegAndOffset = It->second;
2159 unsigned BasePos, OffsetPos;
2160 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2161 return;
2162 Register BaseReg = MI->getOperand(BasePos).getReg();
2163 MachineInstr *LoopDef = findDefInLoop(BaseReg);
2164 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2165 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2166 int BaseStageNum = Schedule.stageScheduled(SU);
2167 int BaseCycleNum = Schedule.cycleScheduled(SU);
2168 if (BaseStageNum < DefStageNum) {
2169 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2170 int OffsetDiff = DefStageNum - BaseStageNum;
2171 if (DefCycleNum < BaseCycleNum) {
2172 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2173 if (OffsetDiff > 0)
2174 --OffsetDiff;
2176 int64_t NewOffset =
2177 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2178 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2179 SU->setInstr(NewMI);
2180 MISUnitMap[NewMI] = SU;
2181 NewMIs[MI] = NewMI;
2186 /// Return the instruction in the loop that defines the register.
2187 /// If the definition is a Phi, then follow the Phi operand to
2188 /// the instruction in the loop.
2189 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
2190 SmallPtrSet<MachineInstr *, 8> Visited;
2191 MachineInstr *Def = MRI.getVRegDef(Reg);
2192 while (Def->isPHI()) {
2193 if (!Visited.insert(Def).second)
2194 break;
2195 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2196 if (Def->getOperand(i + 1).getMBB() == BB) {
2197 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2198 break;
2201 return Def;
2204 /// Return true for an order or output dependence that is loop carried
2205 /// potentially. A dependence is loop carried if the destination defines a valu
2206 /// that may be used or defined by the source in a subsequent iteration.
2207 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2208 bool isSucc) {
2209 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2210 Dep.isArtificial())
2211 return false;
2213 if (!SwpPruneLoopCarried)
2214 return true;
2216 if (Dep.getKind() == SDep::Output)
2217 return true;
2219 MachineInstr *SI = Source->getInstr();
2220 MachineInstr *DI = Dep.getSUnit()->getInstr();
2221 if (!isSucc)
2222 std::swap(SI, DI);
2223 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2225 // Assume ordered loads and stores may have a loop carried dependence.
2226 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2227 SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2228 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2229 return true;
2231 // Only chain dependences between a load and store can be loop carried.
2232 if (!DI->mayStore() || !SI->mayLoad())
2233 return false;
2235 unsigned DeltaS, DeltaD;
2236 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2237 return true;
2239 const MachineOperand *BaseOpS, *BaseOpD;
2240 int64_t OffsetS, OffsetD;
2241 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2242 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) ||
2243 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI))
2244 return true;
2246 if (!BaseOpS->isIdenticalTo(*BaseOpD))
2247 return true;
2249 // Check that the base register is incremented by a constant value for each
2250 // iteration.
2251 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
2252 if (!Def || !Def->isPHI())
2253 return true;
2254 unsigned InitVal = 0;
2255 unsigned LoopVal = 0;
2256 getPhiRegs(*Def, BB, InitVal, LoopVal);
2257 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
2258 int D = 0;
2259 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
2260 return true;
2262 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2263 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2265 // This is the main test, which checks the offset values and the loop
2266 // increment value to determine if the accesses may be loop carried.
2267 if (AccessSizeS == MemoryLocation::UnknownSize ||
2268 AccessSizeD == MemoryLocation::UnknownSize)
2269 return true;
2271 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2272 return true;
2274 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2277 void SwingSchedulerDAG::postprocessDAG() {
2278 for (auto &M : Mutations)
2279 M->apply(this);
2282 /// Try to schedule the node at the specified StartCycle and continue
2283 /// until the node is schedule or the EndCycle is reached. This function
2284 /// returns true if the node is scheduled. This routine may search either
2285 /// forward or backward for a place to insert the instruction based upon
2286 /// the relative values of StartCycle and EndCycle.
2287 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2288 bool forward = true;
2289 LLVM_DEBUG({
2290 dbgs() << "Trying to insert node between " << StartCycle << " and "
2291 << EndCycle << " II: " << II << "\n";
2293 if (StartCycle > EndCycle)
2294 forward = false;
2296 // The terminating condition depends on the direction.
2297 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2298 for (int curCycle = StartCycle; curCycle != termCycle;
2299 forward ? ++curCycle : --curCycle) {
2301 // Add the already scheduled instructions at the specified cycle to the
2302 // DFA.
2303 ProcItinResources.clearResources();
2304 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
2305 checkCycle <= LastCycle; checkCycle += II) {
2306 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
2308 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
2309 E = cycleInstrs.end();
2310 I != E; ++I) {
2311 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
2312 continue;
2313 assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) &&
2314 "These instructions have already been scheduled.");
2315 ProcItinResources.reserveResources(*(*I)->getInstr());
2318 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2319 ProcItinResources.canReserveResources(*SU->getInstr())) {
2320 LLVM_DEBUG({
2321 dbgs() << "\tinsert at cycle " << curCycle << " ";
2322 SU->getInstr()->dump();
2325 ScheduledInstrs[curCycle].push_back(SU);
2326 InstrToCycle.insert(std::make_pair(SU, curCycle));
2327 if (curCycle > LastCycle)
2328 LastCycle = curCycle;
2329 if (curCycle < FirstCycle)
2330 FirstCycle = curCycle;
2331 return true;
2333 LLVM_DEBUG({
2334 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2335 SU->getInstr()->dump();
2338 return false;
2341 // Return the cycle of the earliest scheduled instruction in the chain.
2342 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2343 SmallPtrSet<SUnit *, 8> Visited;
2344 SmallVector<SDep, 8> Worklist;
2345 Worklist.push_back(Dep);
2346 int EarlyCycle = INT_MAX;
2347 while (!Worklist.empty()) {
2348 const SDep &Cur = Worklist.pop_back_val();
2349 SUnit *PrevSU = Cur.getSUnit();
2350 if (Visited.count(PrevSU))
2351 continue;
2352 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2353 if (it == InstrToCycle.end())
2354 continue;
2355 EarlyCycle = std::min(EarlyCycle, it->second);
2356 for (const auto &PI : PrevSU->Preds)
2357 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
2358 Worklist.push_back(PI);
2359 Visited.insert(PrevSU);
2361 return EarlyCycle;
2364 // Return the cycle of the latest scheduled instruction in the chain.
2365 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2366 SmallPtrSet<SUnit *, 8> Visited;
2367 SmallVector<SDep, 8> Worklist;
2368 Worklist.push_back(Dep);
2369 int LateCycle = INT_MIN;
2370 while (!Worklist.empty()) {
2371 const SDep &Cur = Worklist.pop_back_val();
2372 SUnit *SuccSU = Cur.getSUnit();
2373 if (Visited.count(SuccSU))
2374 continue;
2375 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2376 if (it == InstrToCycle.end())
2377 continue;
2378 LateCycle = std::max(LateCycle, it->second);
2379 for (const auto &SI : SuccSU->Succs)
2380 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
2381 Worklist.push_back(SI);
2382 Visited.insert(SuccSU);
2384 return LateCycle;
2387 /// If an instruction has a use that spans multiple iterations, then
2388 /// return true. These instructions are characterized by having a back-ege
2389 /// to a Phi, which contains a reference to another Phi.
2390 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2391 for (auto &P : SU->Preds)
2392 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2393 for (auto &S : P.getSUnit()->Succs)
2394 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2395 return P.getSUnit();
2396 return nullptr;
2399 /// Compute the scheduling start slot for the instruction. The start slot
2400 /// depends on any predecessor or successor nodes scheduled already.
2401 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2402 int *MinEnd, int *MaxStart, int II,
2403 SwingSchedulerDAG *DAG) {
2404 // Iterate over each instruction that has been scheduled already. The start
2405 // slot computation depends on whether the previously scheduled instruction
2406 // is a predecessor or successor of the specified instruction.
2407 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2409 // Iterate over each instruction in the current cycle.
2410 for (SUnit *I : getInstructions(cycle)) {
2411 // Because we're processing a DAG for the dependences, we recognize
2412 // the back-edge in recurrences by anti dependences.
2413 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2414 const SDep &Dep = SU->Preds[i];
2415 if (Dep.getSUnit() == I) {
2416 if (!DAG->isBackedge(SU, Dep)) {
2417 int EarlyStart = cycle + Dep.getLatency() -
2418 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2419 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2420 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2421 int End = earliestCycleInChain(Dep) + (II - 1);
2422 *MinEnd = std::min(*MinEnd, End);
2424 } else {
2425 int LateStart = cycle - Dep.getLatency() +
2426 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2427 *MinLateStart = std::min(*MinLateStart, LateStart);
2430 // For instruction that requires multiple iterations, make sure that
2431 // the dependent instruction is not scheduled past the definition.
2432 SUnit *BE = multipleIterations(I, DAG);
2433 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2434 !SU->isPred(I))
2435 *MinLateStart = std::min(*MinLateStart, cycle);
2437 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2438 if (SU->Succs[i].getSUnit() == I) {
2439 const SDep &Dep = SU->Succs[i];
2440 if (!DAG->isBackedge(SU, Dep)) {
2441 int LateStart = cycle - Dep.getLatency() +
2442 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2443 *MinLateStart = std::min(*MinLateStart, LateStart);
2444 if (DAG->isLoopCarriedDep(SU, Dep)) {
2445 int Start = latestCycleInChain(Dep) + 1 - II;
2446 *MaxStart = std::max(*MaxStart, Start);
2448 } else {
2449 int EarlyStart = cycle + Dep.getLatency() -
2450 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2451 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2459 /// Order the instructions within a cycle so that the definitions occur
2460 /// before the uses. Returns true if the instruction is added to the start
2461 /// of the list, or false if added to the end.
2462 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2463 std::deque<SUnit *> &Insts) {
2464 MachineInstr *MI = SU->getInstr();
2465 bool OrderBeforeUse = false;
2466 bool OrderAfterDef = false;
2467 bool OrderBeforeDef = false;
2468 unsigned MoveDef = 0;
2469 unsigned MoveUse = 0;
2470 int StageInst1 = stageScheduled(SU);
2472 unsigned Pos = 0;
2473 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2474 ++I, ++Pos) {
2475 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2476 MachineOperand &MO = MI->getOperand(i);
2477 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
2478 continue;
2480 Register Reg = MO.getReg();
2481 unsigned BasePos, OffsetPos;
2482 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2483 if (MI->getOperand(BasePos).getReg() == Reg)
2484 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2485 Reg = NewReg;
2486 bool Reads, Writes;
2487 std::tie(Reads, Writes) =
2488 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2489 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2490 OrderBeforeUse = true;
2491 if (MoveUse == 0)
2492 MoveUse = Pos;
2493 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2494 // Add the instruction after the scheduled instruction.
2495 OrderAfterDef = true;
2496 MoveDef = Pos;
2497 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2498 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2499 OrderBeforeUse = true;
2500 if (MoveUse == 0)
2501 MoveUse = Pos;
2502 } else {
2503 OrderAfterDef = true;
2504 MoveDef = Pos;
2506 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2507 OrderBeforeUse = true;
2508 if (MoveUse == 0)
2509 MoveUse = Pos;
2510 if (MoveUse != 0) {
2511 OrderAfterDef = true;
2512 MoveDef = Pos - 1;
2514 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2515 // Add the instruction before the scheduled instruction.
2516 OrderBeforeUse = true;
2517 if (MoveUse == 0)
2518 MoveUse = Pos;
2519 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2520 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2521 if (MoveUse == 0) {
2522 OrderBeforeDef = true;
2523 MoveUse = Pos;
2527 // Check for order dependences between instructions. Make sure the source
2528 // is ordered before the destination.
2529 for (auto &S : SU->Succs) {
2530 if (S.getSUnit() != *I)
2531 continue;
2532 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2533 OrderBeforeUse = true;
2534 if (Pos < MoveUse)
2535 MoveUse = Pos;
2537 // We did not handle HW dependences in previous for loop,
2538 // and we normally set Latency = 0 for Anti deps,
2539 // so may have nodes in same cycle with Anti denpendent on HW regs.
2540 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2541 OrderBeforeUse = true;
2542 if ((MoveUse == 0) || (Pos < MoveUse))
2543 MoveUse = Pos;
2546 for (auto &P : SU->Preds) {
2547 if (P.getSUnit() != *I)
2548 continue;
2549 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2550 OrderAfterDef = true;
2551 MoveDef = Pos;
2556 // A circular dependence.
2557 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2558 OrderBeforeUse = false;
2560 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2561 // to a loop-carried dependence.
2562 if (OrderBeforeDef)
2563 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2565 // The uncommon case when the instruction order needs to be updated because
2566 // there is both a use and def.
2567 if (OrderBeforeUse && OrderAfterDef) {
2568 SUnit *UseSU = Insts.at(MoveUse);
2569 SUnit *DefSU = Insts.at(MoveDef);
2570 if (MoveUse > MoveDef) {
2571 Insts.erase(Insts.begin() + MoveUse);
2572 Insts.erase(Insts.begin() + MoveDef);
2573 } else {
2574 Insts.erase(Insts.begin() + MoveDef);
2575 Insts.erase(Insts.begin() + MoveUse);
2577 orderDependence(SSD, UseSU, Insts);
2578 orderDependence(SSD, SU, Insts);
2579 orderDependence(SSD, DefSU, Insts);
2580 return;
2582 // Put the new instruction first if there is a use in the list. Otherwise,
2583 // put it at the end of the list.
2584 if (OrderBeforeUse)
2585 Insts.push_front(SU);
2586 else
2587 Insts.push_back(SU);
2590 /// Return true if the scheduled Phi has a loop carried operand.
2591 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2592 if (!Phi.isPHI())
2593 return false;
2594 assert(Phi.isPHI() && "Expecting a Phi.");
2595 SUnit *DefSU = SSD->getSUnit(&Phi);
2596 unsigned DefCycle = cycleScheduled(DefSU);
2597 int DefStage = stageScheduled(DefSU);
2599 unsigned InitVal = 0;
2600 unsigned LoopVal = 0;
2601 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2602 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2603 if (!UseSU)
2604 return true;
2605 if (UseSU->getInstr()->isPHI())
2606 return true;
2607 unsigned LoopCycle = cycleScheduled(UseSU);
2608 int LoopStage = stageScheduled(UseSU);
2609 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2612 /// Return true if the instruction is a definition that is loop carried
2613 /// and defines the use on the next iteration.
2614 /// v1 = phi(v2, v3)
2615 /// (Def) v3 = op v1
2616 /// (MO) = v1
2617 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2618 /// register.
2619 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2620 MachineInstr *Def, MachineOperand &MO) {
2621 if (!MO.isReg())
2622 return false;
2623 if (Def->isPHI())
2624 return false;
2625 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2626 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2627 return false;
2628 if (!isLoopCarried(SSD, *Phi))
2629 return false;
2630 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2631 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
2632 MachineOperand &DMO = Def->getOperand(i);
2633 if (!DMO.isReg() || !DMO.isDef())
2634 continue;
2635 if (DMO.getReg() == LoopReg)
2636 return true;
2638 return false;
2641 // Check if the generated schedule is valid. This function checks if
2642 // an instruction that uses a physical register is scheduled in a
2643 // different stage than the definition. The pipeliner does not handle
2644 // physical register values that may cross a basic block boundary.
2645 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2646 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
2647 SUnit &SU = SSD->SUnits[i];
2648 if (!SU.hasPhysRegDefs)
2649 continue;
2650 int StageDef = stageScheduled(&SU);
2651 assert(StageDef != -1 && "Instruction should have been scheduled.");
2652 for (auto &SI : SU.Succs)
2653 if (SI.isAssignedRegDep())
2654 if (Register::isPhysicalRegister(SI.getReg()))
2655 if (stageScheduled(SI.getSUnit()) != StageDef)
2656 return false;
2658 return true;
2661 /// A property of the node order in swing-modulo-scheduling is
2662 /// that for nodes outside circuits the following holds:
2663 /// none of them is scheduled after both a successor and a
2664 /// predecessor.
2665 /// The method below checks whether the property is met.
2666 /// If not, debug information is printed and statistics information updated.
2667 /// Note that we do not use an assert statement.
2668 /// The reason is that although an invalid node oder may prevent
2669 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2670 /// it does not lead to the generation of incorrect code.
2671 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2673 // a sorted vector that maps each SUnit to its index in the NodeOrder
2674 typedef std::pair<SUnit *, unsigned> UnitIndex;
2675 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2677 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2678 Indices.push_back(std::make_pair(NodeOrder[i], i));
2680 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2681 return std::get<0>(i1) < std::get<0>(i2);
2684 // sort, so that we can perform a binary search
2685 llvm::sort(Indices, CompareKey);
2687 bool Valid = true;
2688 (void)Valid;
2689 // for each SUnit in the NodeOrder, check whether
2690 // it appears after both a successor and a predecessor
2691 // of the SUnit. If this is the case, and the SUnit
2692 // is not part of circuit, then the NodeOrder is not
2693 // valid.
2694 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2695 SUnit *SU = NodeOrder[i];
2696 unsigned Index = i;
2698 bool PredBefore = false;
2699 bool SuccBefore = false;
2701 SUnit *Succ;
2702 SUnit *Pred;
2703 (void)Succ;
2704 (void)Pred;
2706 for (SDep &PredEdge : SU->Preds) {
2707 SUnit *PredSU = PredEdge.getSUnit();
2708 unsigned PredIndex = std::get<1>(
2709 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2710 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2711 PredBefore = true;
2712 Pred = PredSU;
2713 break;
2717 for (SDep &SuccEdge : SU->Succs) {
2718 SUnit *SuccSU = SuccEdge.getSUnit();
2719 // Do not process a boundary node, it was not included in NodeOrder,
2720 // hence not in Indices either, call to std::lower_bound() below will
2721 // return Indices.end().
2722 if (SuccSU->isBoundaryNode())
2723 continue;
2724 unsigned SuccIndex = std::get<1>(
2725 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2726 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2727 SuccBefore = true;
2728 Succ = SuccSU;
2729 break;
2733 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2734 // instructions in circuits are allowed to be scheduled
2735 // after both a successor and predecessor.
2736 bool InCircuit = llvm::any_of(
2737 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2738 if (InCircuit)
2739 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2740 else {
2741 Valid = false;
2742 NumNodeOrderIssues++;
2743 LLVM_DEBUG(dbgs() << "Predecessor ";);
2745 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
2746 << " are scheduled before node " << SU->NodeNum
2747 << "\n";);
2751 LLVM_DEBUG({
2752 if (!Valid)
2753 dbgs() << "Invalid node order found!\n";
2757 /// Attempt to fix the degenerate cases when the instruction serialization
2758 /// causes the register lifetimes to overlap. For example,
2759 /// p' = store_pi(p, b)
2760 /// = load p, offset
2761 /// In this case p and p' overlap, which means that two registers are needed.
2762 /// Instead, this function changes the load to use p' and updates the offset.
2763 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2764 unsigned OverlapReg = 0;
2765 unsigned NewBaseReg = 0;
2766 for (SUnit *SU : Instrs) {
2767 MachineInstr *MI = SU->getInstr();
2768 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2769 const MachineOperand &MO = MI->getOperand(i);
2770 // Look for an instruction that uses p. The instruction occurs in the
2771 // same cycle but occurs later in the serialized order.
2772 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2773 // Check that the instruction appears in the InstrChanges structure,
2774 // which contains instructions that can have the offset updated.
2775 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2776 InstrChanges.find(SU);
2777 if (It != InstrChanges.end()) {
2778 unsigned BasePos, OffsetPos;
2779 // Update the base register and adjust the offset.
2780 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2781 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2782 NewMI->getOperand(BasePos).setReg(NewBaseReg);
2783 int64_t NewOffset =
2784 MI->getOperand(OffsetPos).getImm() - It->second.second;
2785 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2786 SU->setInstr(NewMI);
2787 MISUnitMap[NewMI] = SU;
2788 NewMIs[MI] = NewMI;
2791 OverlapReg = 0;
2792 NewBaseReg = 0;
2793 break;
2795 // Look for an instruction of the form p' = op(p), which uses and defines
2796 // two virtual registers that get allocated to the same physical register.
2797 unsigned TiedUseIdx = 0;
2798 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2799 // OverlapReg is p in the example above.
2800 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2801 // NewBaseReg is p' in the example above.
2802 NewBaseReg = MI->getOperand(i).getReg();
2803 break;
2809 /// After the schedule has been formed, call this function to combine
2810 /// the instructions from the different stages/cycles. That is, this
2811 /// function creates a schedule that represents a single iteration.
2812 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2813 // Move all instructions to the first stage from later stages.
2814 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2815 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2816 ++stage) {
2817 std::deque<SUnit *> &cycleInstrs =
2818 ScheduledInstrs[cycle + (stage * InitiationInterval)];
2819 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
2820 E = cycleInstrs.rend();
2821 I != E; ++I)
2822 ScheduledInstrs[cycle].push_front(*I);
2826 // Erase all the elements in the later stages. Only one iteration should
2827 // remain in the scheduled list, and it contains all the instructions.
2828 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2829 ScheduledInstrs.erase(cycle);
2831 // Change the registers in instruction as specified in the InstrChanges
2832 // map. We need to use the new registers to create the correct order.
2833 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
2834 SUnit *SU = &SSD->SUnits[i];
2835 SSD->applyInstrChange(SU->getInstr(), *this);
2838 // Reorder the instructions in each cycle to fix and improve the
2839 // generated code.
2840 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2841 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2842 std::deque<SUnit *> newOrderPhi;
2843 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
2844 SUnit *SU = cycleInstrs[i];
2845 if (SU->getInstr()->isPHI())
2846 newOrderPhi.push_back(SU);
2848 std::deque<SUnit *> newOrderI;
2849 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
2850 SUnit *SU = cycleInstrs[i];
2851 if (!SU->getInstr()->isPHI())
2852 orderDependence(SSD, SU, newOrderI);
2854 // Replace the old order with the new order.
2855 cycleInstrs.swap(newOrderPhi);
2856 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
2857 SSD->fixupRegisterOverlaps(cycleInstrs);
2860 LLVM_DEBUG(dump(););
2863 void NodeSet::print(raw_ostream &os) const {
2864 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
2865 << " depth " << MaxDepth << " col " << Colocate << "\n";
2866 for (const auto &I : Nodes)
2867 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
2868 os << "\n";
2871 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2872 /// Print the schedule information to the given output.
2873 void SMSchedule::print(raw_ostream &os) const {
2874 // Iterate over each cycle.
2875 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2876 // Iterate over each instruction in the cycle.
2877 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
2878 for (SUnit *CI : cycleInstrs->second) {
2879 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
2880 os << "(" << CI->NodeNum << ") ";
2881 CI->getInstr()->print(os);
2882 os << "\n";
2887 /// Utility function used for debugging to print the schedule.
2888 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
2889 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
2891 #endif
2893 void ResourceManager::initProcResourceVectors(
2894 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
2895 unsigned ProcResourceID = 0;
2897 // We currently limit the resource kinds to 64 and below so that we can use
2898 // uint64_t for Masks
2899 assert(SM.getNumProcResourceKinds() < 64 &&
2900 "Too many kinds of resources, unsupported");
2901 // Create a unique bitmask for every processor resource unit.
2902 // Skip resource at index 0, since it always references 'InvalidUnit'.
2903 Masks.resize(SM.getNumProcResourceKinds());
2904 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2905 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
2906 if (Desc.SubUnitsIdxBegin)
2907 continue;
2908 Masks[I] = 1ULL << ProcResourceID;
2909 ProcResourceID++;
2911 // Create a unique bitmask for every processor resource group.
2912 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2913 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
2914 if (!Desc.SubUnitsIdxBegin)
2915 continue;
2916 Masks[I] = 1ULL << ProcResourceID;
2917 for (unsigned U = 0; U < Desc.NumUnits; ++U)
2918 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
2919 ProcResourceID++;
2921 LLVM_DEBUG({
2922 if (SwpShowResMask) {
2923 dbgs() << "ProcResourceDesc:\n";
2924 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2925 const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
2926 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
2927 ProcResource->Name, I, Masks[I],
2928 ProcResource->NumUnits);
2930 dbgs() << " -----------------\n";
2935 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
2937 LLVM_DEBUG({
2938 if (SwpDebugResource)
2939 dbgs() << "canReserveResources:\n";
2941 if (UseDFA)
2942 return DFAResources->canReserveResources(MID);
2944 unsigned InsnClass = MID->getSchedClass();
2945 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
2946 if (!SCDesc->isValid()) {
2947 LLVM_DEBUG({
2948 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
2949 dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
2951 return true;
2954 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
2955 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
2956 for (; I != E; ++I) {
2957 if (!I->Cycles)
2958 continue;
2959 const MCProcResourceDesc *ProcResource =
2960 SM.getProcResource(I->ProcResourceIdx);
2961 unsigned NumUnits = ProcResource->NumUnits;
2962 LLVM_DEBUG({
2963 if (SwpDebugResource)
2964 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
2965 ProcResource->Name, I->ProcResourceIdx,
2966 ProcResourceCount[I->ProcResourceIdx], NumUnits,
2967 I->Cycles);
2969 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
2970 return false;
2972 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
2973 return true;
2976 void ResourceManager::reserveResources(const MCInstrDesc *MID) {
2977 LLVM_DEBUG({
2978 if (SwpDebugResource)
2979 dbgs() << "reserveResources:\n";
2981 if (UseDFA)
2982 return DFAResources->reserveResources(MID);
2984 unsigned InsnClass = MID->getSchedClass();
2985 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
2986 if (!SCDesc->isValid()) {
2987 LLVM_DEBUG({
2988 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
2989 dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
2991 return;
2993 for (const MCWriteProcResEntry &PRE :
2994 make_range(STI->getWriteProcResBegin(SCDesc),
2995 STI->getWriteProcResEnd(SCDesc))) {
2996 if (!PRE.Cycles)
2997 continue;
2998 ++ProcResourceCount[PRE.ProcResourceIdx];
2999 LLVM_DEBUG({
3000 if (SwpDebugResource) {
3001 const MCProcResourceDesc *ProcResource =
3002 SM.getProcResource(PRE.ProcResourceIdx);
3003 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3004 ProcResource->Name, PRE.ProcResourceIdx,
3005 ProcResourceCount[PRE.ProcResourceIdx],
3006 ProcResource->NumUnits, PRE.Cycles);
3010 LLVM_DEBUG({
3011 if (SwpDebugResource)
3012 dbgs() << "reserveResources: done!\n\n";
3016 bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
3017 return canReserveResources(&MI.getDesc());
3020 void ResourceManager::reserveResources(const MachineInstr &MI) {
3021 return reserveResources(&MI.getDesc());
3024 void ResourceManager::clearResources() {
3025 if (UseDFA)
3026 return DFAResources->clearResources();
3027 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);